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A B S T R A C T

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide
range of graph domains in a data-driven fashion. Based on a message passing mechanism, GNNs have gained
increasing popularity due to their intuitive formulation, closely linked to the Weisfeiler–Lehman (WL) test for
graph isomorphism, to which they were demonstrated to be equivalent (Morris et al., 2019 and Xu et al.,
2019). From a theoretical point of view, GNNs have been shown to be universal approximators, and their
generalization capability — related to the Vapnik Chervonekis (VC) dimension (Scarselli et al., 2018) — has
recently been investigated for GNNs with piecewise polynomial activation functions (Morris et al., 2023). The
aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation
functions, such as the sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds
are provided with respect to the architecture parameters (depth, number of neurons, input size) as well as with
respect to the number of colors resulting from the 1–WL test applied on the graph domain. The theoretical
analysis is supported by a preliminary experimental study.
1. Introduction

Since Deep Learning (DL) has become a fundamental tool in ap-
proaching real-life applications (Fresca, Manzoni, Dedè, & Quarteroni,
2020; Jumper et al., 2021; Lam et al., 2023; Rolnick et al., 2022),
the urgency of investigating its theoretical properties has become
more evident. Neural networks were then progressively studied ana-
lyzing, for example, their expressive power in terms of approximating
classes of functions (Daubechies, DeVore, Foucart, Hanin, & Petrova,
2022; Hammer, 2000; Hornik, 1991; Hornik, Stinchcombe, & White,
1989) or showing their limitations in the imitation of neurocognitive
tasks (Brugiapaglia, Liu, & Tupper, 2020, 2022; D’Inverno, Brugia-
paglia, & Ravanelli, 2024). The generalization capability of a learning
model, intended as the capacity of correctly performing a specific task
on unseen data, has always been a core aspect to evaluate the effec-
tiveness of proposed architectures (Jacot, Gabriel, & Hongler, 2018;
Neyshabur, Li, Bhojanapalli, LeCun, & Srebro, 2018). Several metrics
and/or methods have been proposed over the years to evaluate such
capability (Haussler & Warmuth, 2018; Koltchinskii, 2001). Among
them, the Vapnik Chervonenkis (VC) dimension (Vapnik & Chervonenkis,
1968) is a metric that measures the capacity of a learning model to
shatter a set of data points, which means that it can always realize a
perfect classifier for any binary labeling of the input data. Intuitively,
the greater the VC dimension of the learning model, the more it will fit
the data on which it has been trained. However, as it has been shown
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in Vapnik (2006), a large VC dimension leads to poor generalization,
i.e. to a large difference between the error evaluated on the training and
on the test set. Therefore, it is important to establish the VC dimension
of a model, especially with respect to its hyperparameters, in order to
make it capable of generalizing on unseen data.

Graph Neural Networks (GNNs) (Scarselli, Gori, Tsoi, Hagenbuch-
ner, & Monfardini, 2009; Zhou et al., 2020) are machine learning
architectures capable of processing graphs that represent patterns (or
part of patterns) along with their relationships. GNNs are among the
most used deep learning models nowadays, given the impressive per-
formance they have shown in tasks related to structured data (Liu &
Zhou, 2022). A great effort has been dedicated to assess their expressive
power, mainly related to the study of the so-called Weisfeiler–Lehman
(WL) test (Weisfeiler & Leman, 1968) and its variants (Bodnar, Frasca,
Otter, et al., 2021; Bodnar, Frasca, Wang, et al., 2021; Morris et al.,
2019). Indeed, the standard WL algorithm, which checks whether two
graphs are isomorphic by iteratively assigning colors to their nodes, has
been proved to be equivalent to GNNs in terms of the capability of dis-
tinguishing graphs (Xu, Hu, Leskovec, & Jegelka, 2019). However, little
is known about the generalization capabilities of GNNs. In Scarselli,
Tsoi, and Hagenbuchner (2018), bounds for the VC dimension have
been provided for the original GNN model, namely the first model being
introduced. Very recently (Morris, Geerts, Tönshoff, & Grohe, 2023),
bounds have been found also for a large class of modern GNNs with
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Table 1
Summary of the main theorems reported in Section 4.

Theorem 1 General upper bound on the VC dimension for generic GNNs

Theorem 2 Specific upper bound on the VC dimension for each
hyperparameter

Theorem 3 General upper bound on the VC dimension for GNNs of type (2)

Theorem 4 Specific upper bound on the VC dimension w.r.t. the colors in
the dataset obtained via the 1–WL test

piecewise polynomial activation functions. Nevertheless, message pass-
ing GNNs with other common activation functions, such as hyperbolic
tangent, sigmoid and arctangent, still lack characterization in terms of
VC dimension. This work aims to fill this gap, providing new bounds
or modern message passing GNNs with Pfaffian activation functions.

Pfaffian functions are a large class of differentiable maps, which includes
the above mentioned common activation functions, i.e, 𝗍𝖺𝗇𝗁, 𝗅𝗈𝗀𝗌𝗂𝗀, 𝖺𝗍𝖺𝗇,
and, more generally, most of the functions used in Engineering having
continuous derivatives up to any order. Our main contributions are
listed below.

• Section 4 provides upper bounds for message passing GNNs with
Pfaffian activation functions with respect to the main hyper-
parameters, such as the feature dimension, the hidden feature
size, the number of message passing layers implemented, and the
total number of nodes in the entire training domain (Theorems 1
and 2). To address this issue, we exploit theoretical results in
the literature that link the theory of Pfaffian function with the
characterization of the VC dimension of GNNs via topological
analysis.

• We also study the trend of the VC dimension w.r.t. the colors
in the dataset obtained by running the WL test (Theorem 4).
Theoretical results suggest that the number of colors have an
important effect on the GNN generalization capability. On the one
hand, a large total number of colors in the training set improves
generalization, since it increases the examples available for learn-
ing; on the other hand, a large number of colors in each graph
raises the VC dimension and therefore increases the empirical
risk value. Table 1 summarizes the main results presented in
Section 4;

• Our theoretical findings are assessed by a preliminary experimen-
tal study; specifically, in Section 5, we evaluate the gap between
the predictive performance on the training and test data.

The manuscript is organized as follows. In Section 2, we offer an
overview of work related to the addressed topic. In Section 3, we
ntroduce the main concepts and the notation used throughout the
anuscript. In Section 4, we state and discuss our main theoretical

results. The preliminary experiments aimed at validating our theoret-
ical results are described in Section 5. Finally, in Section 6, we draw
ome conclusions, also providing a brief discussion of open problems
nd future research directions.

2. Related work

In this section we collect the main contributions present in the
literature relating to the generalization ability of GNNs, the calculation
of the VC dimension and the theory of Pfaffian functions.

Generalization bounds for GNNs —. Several approaches have been ex-
ploited to give some insights on the generalization capabilities of

NNs. In Garg, Jegelka, and Jaakkola (2020), new bounds are pro-
ided on the Rademacher complexity in binary classification tasks; the

study is carried out by focusing on the computation trees of the
nodes, which are tightly linked to the 1–WL test (D’Inverno, Bian-
chini, Sampoli, & Scarselli, 2024; Krebs & Verbitsky, 2015). Similarly,
2 
in Esser, Chennuru Vankadara, and Ghoshdastidar (2021), generaliza-
tion bounds for Graph Convolutional Networks (GCNs) are derived,
ased on the Transductive Rademacher Complexity, which differs from
he standard Rademacher Complexity by taking into account unob-
erved instances. In Verma and Zhang (2019), the stability, and con-

sequently the generalization capabilities of GCNs, are proved to be
ependent on the largest eigenvalue of the convolutional filter; there-
ore, to ensure a better generalization, such eigenvalue should be
ndependent of the graph size. Under the lens of the PAC-learnability
ramework, the generalization bounds reported in Garg et al. (2020)

have been improved in Liao, Urtasun, and Zemel (2020), showing a
tighter dependency on the maximum node degree and the spectral norm
of the weights. This result aligns with the findings in Verma and Zhang
(2019). In Ju, Li, Sharma, and Zhang (2023), sharper bounds on the
GNN stability to noise are provided by investigating the correlation
between attention and generalization. Specifically, GCNs and Graph
somorphism Networks (GINs) are considered. The results show a link
etween the trace of the Hessian of the weight matrices and the stability
f GNNs. A correlation between attention and generalization in GCNs
nd GINs is empirically investigated also in Knyazev, Taylor, and Amer

(2019).

VC dimension —. Since it was first introduced in Vapnik and Cher-
vonenkis (1968), the VC dimension has become a widespread metric
to assess the generalization capabilities of neural networks. In Vapnik,
Levin, and Le Cun (1994), the VC dimension is proven to be tightly
elated to how the test error correlates, in probability, with the training
rror. Bounds on the VC dimension have been evaluated for many
aseline architectures, such as Multi Layer Perceptrons (MLPs) (Bartlett

& Maass, 2003; Sontag et al., 1998), Recurrent Neural Networks (RNNs)
Koiran & Sontag, 1998) and Recursive Neural Networks (Scarselli
t al., 2018). In Scarselli et al. (2018), bounds on the VC dimension of

the earliest GNN model with Pfaffian activation function are provided
as well, while, in Esser et al. (2021), GCNs with linear and ReLU acti-
vation functions are considered. Our contribution extends such results
to generic GNNs described by Eq. (1) and is particularly related to the

ork in Morris et al. (2023), where bounds for the VC dimension of
modern GNNs are studied, when the activation function is a piecewise
linear polynomial function. Bounds are derived also in terms of the
number of colors computed by the 1–WL test on the graph domain.
However, aside from Scarselli et al. (2018), all the aforementioned
works focus solely on specific GNN models with piecewise polynomials
activation functions, not considering common activation functions as
arctangent, hyperbolic tangent or sigmoid.

Pfaffian functions —. Pfaffian functions have been first introduced
n Khovanski (1991) to extend Bezout’s classic theorem, which states
hat the number of complex solutions of a set of polynomial equations

can be estimated based on their degree. The theory of Pfaffian functions
has been exploited initially in Karpinski and Macintyre (1997) to char-
acterize the bounds of the VC dimension of neural networks. Similarly,
in Scarselli et al. (2018), the same approach is used to provide the
forementioned bounds. Pfaffian functions have also proven useful for

providing insights into the topological complexity of neural networks
and the impact of their depth (Bianchini & Scarselli, 2014).

3. Notation and basic concepts

In this section we introduce the notation used throughout the pa-
er and the main basic concepts necessary to understand its content.

Table 2 lists the main notation used in this work.

Graphs —. An unattributed graph 𝐺 can be defined as a pair (𝑉 , 𝐸),
where 𝑉 is the (finite) set of nodes and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges
between nodes. A graph can be defined by its adjacency matrix 𝐀, where
𝐴𝑖𝑗 = 1 if 𝑒𝑖𝑗 = (𝑖, 𝑗) ∈ 𝐸, otherwise 𝐴𝑖𝑗 = 0. The neighborhood of a

node 𝑣 is represented by 𝗇𝖾(𝑣) = {𝑢 ∈ 𝑉 |(𝑢, 𝑣) ∈ 𝐸}. A graph 𝐺 is said
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Table 2
Main notation.
Symbol Meaning

𝐺 Graph
𝑉 Set of nodes
𝐸 Set of edges
𝐀 Adjacency matrix
𝗇𝖾(𝑣) Neighborhood of node 𝑣
𝛴 Color set
𝖧𝖠𝖲𝖧0, 𝖧𝖠𝖲𝖧 Hashing functions
{{⋅}} Multiset
𝐡𝑣 Hidden feature of a node 𝑣
𝖦𝖭𝖭 Function implementing a GNN
𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡+1)(⋅, ⋅) Combine function at layer 𝑡 + 1
𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡+1)({{⋅}}) Aggregate function at layer 𝑡 + 1
𝖱𝖤𝖠𝖣𝖮𝖴𝖳 Readout function of a GNN
𝝈 Element-wise activation function
𝖵𝖢𝖽𝗂𝗆 VC dimension
𝜽 Set of learnable parameters of a GNN
𝑝 Number of learnable parameters of a GNN
𝐿 Number of layers of a GNN
𝑑 Hidden dimension of a GNN layer
𝖿 𝗈𝗋𝗆𝖺𝗍 Format of a Pfaffian function

to be undirected if it is assumed that (𝑣, 𝑢) = (𝑢, 𝑣) (and therefore its
adjacency matrix is symmetric), directed otherwise. A graph is said to
be node–attributed or labeled if there exists a map 𝜶 ∶ 𝑉 → R𝑞 that
ssigns to every 𝑣 ∈ 𝑉 a node attribute (or label) 𝜶(𝑣) ∈ R𝑞 . In this case,

the graph can be defined as a triple (𝑉 , 𝐸 ,𝜶).
The 1–WL test —. The 1st order Weisfeiler–Lehman test (briefly, the 1–
WL test) is a test for graph isomorphism, based on the so–called color
refinement procedure. Given two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2),
in a finite graph domain , we perform the following steps.

• At initialization, we assign a color 𝑐(0)(𝑣) to each node 𝑣 ∈ 𝑉1∪𝑉2.
Formally, in the case of attributed graphs, we can define the color
initialization as

𝑐(0)(𝑣) = 𝖧𝖠𝖲𝖧0(𝜶(𝑣)),

where 𝖧𝖠𝖲𝖧0 ∶ R𝑞 → 𝛴 is a function that codes bijectively
node attributes to colors. In case of unattributed graphs, the
initialization is uniform, and each node 𝑣 gets the same color
𝑐(0)(𝑣).

• For 𝑡 > 0, we update the color of each node in parallel on each
graph by the following updating scheme

𝑐(𝑡)𝑣 = 𝖧𝖠𝖲𝖧(𝑐(𝑡−1)𝑣 , {{𝑐(𝑡−1)𝑢 |𝑢 ∈ 𝗇𝖾[𝑣]}}), ∀𝑣 ∈ 𝑉1 ∪ 𝑉2 ,

where {{⋅}} denotes a multiset and 𝖧𝖠𝖲𝖧 ∶ 𝛴×𝛴∗ → 𝛴 is a function
mapping bijectively a pair (color, color multiset) to a single color.

To test whether the two graphs 𝐺1 and 𝐺2 are isomorphic or not,
the set of colors of the nodes of 𝐺1 and 𝐺2 are compared step by
step; if there exist an iteration 𝑡 such that the colors are different,
amely 𝑐(𝑡)𝐺1

∶= {{𝑐(𝑡)(𝑣) ∣ 𝑣 ∈ 𝑉1}} is different from 𝑐(𝑡)𝐺2
, the graphs

re declared as non-isomorphic. When no difference is detected, the
rocedure halts as soon as the node partition defined by the colors
ecomes stable. It has been proven (Kiefer, 2020) that |𝑉 |− 1 iterations

are sufficient, and sometimes necessary, to complete the procedure.
Moreover, the color refinement procedure can be used also to test
whether two nodes are isomorphic or not. Intuitively, two nodes are
isomorphic if their neighborhoods (of any order) are equal; such an
isomorphism can be tested by comparing the node colors at any step of
the 1–WL test. In Krebs and Verbitsky (2015), it has been proven that
for node isomorphism up to 2 max(|𝑉1|, |𝑉2|) − 1 refinement steps may
be required.

We would like to mention two important results that demonstrate
he equivalence between GNNs and the 1–WL test in terms of their ex-
ressive power. The first result was established in Xu et al. (2019) and
3 
characterizes the equivalence of GNNs and the 1–WL test on a graph-
evel task. This equivalence is based on GNNs with generic message

passing layers that satisfy certain conditions. Another characterization
is due to Morris et al. (2019) and states the equivalence on a node
coloring level, referring to the particular model defined by Eq. (2).

Graph neural networks (GNNs) —. Graph Neural Networks are a class
of machine learning models suitable for processing structured data in
the form of graphs. At a high level, we can formalize a GNN as a
function 𝖦𝖭𝖭 ∶  → R𝑟, where  is a set of node–attributed graphs
and 𝑟 is the dimension of the output, which depends on the type of
task to be carried out; in our setting, we will assume that 𝑟 = 1.
Intuitively, a GNN learns how to represent the nodes of a graph by
vectorial representations, called hidden features, giving an encoding of
the information stored in the graph The hidden feature 𝐡𝑣 of a node 𝑣
is, at the beginning, set equal to node attributes, i.e., 𝐡(0)𝑣 = 𝜶(𝑣). Then,
the features are updated according to the following scheme

𝐡(𝑡+1)𝑣 = 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡+1)
(

𝐡(𝑡)𝑣 ,𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡+1)({{𝐡(𝑡)𝑢 |𝑢 ∈ 𝗇𝖾(𝑣)}})
)

, (1)

for all 𝑣 ∈ 𝑉 and 𝑡 = 0,…𝐿 − 1, where 𝐡(𝑡)𝑣 is the hidden feature
of node 𝑣 at time 𝑡, 𝐿 is the number of layers of the GNN. Here,
{𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡)}𝑡=1,…,𝐿 and {𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡)}𝑡=1,…,𝐿 are functions that can
be defined by learning from examples. Popular GNN models like Graph-
SAGE (Hamilton, Ying, & Leskovec, 2017), GCNs (Kipf & Welling,
2016), and Graph Isomorphism Networks (Xu et al., 2019) are based
on this updating scheme. The output 𝑜 is produced by a 𝖱𝖤𝖠𝖣𝖮𝖴𝖳

function, which, in graph-focused tasks, takes in input the features of
all the nodes, i.e. 𝑜 = 𝖱𝖤𝖠𝖣𝖮𝖴𝖳({{𝐡(𝐿)𝑢 |𝑢 ∈ 𝑉 }}), while, in node-focused
tasks, is calculated on each node, i.e., 𝑜𝑣 = 𝖱𝖤𝖠𝖣𝖮𝖴𝖳(𝐡(𝐿)𝑣 ), ∀𝑣 ∈ 𝑉 .

For simplicity, in the following we will assume that 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(1)

as 𝑝𝖼𝗈𝗆𝖻(1) parameters and for every 𝑡 = 2,… , 𝐿 the number of
parameters of 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡) is the same, and we denote it as 𝑝𝖼𝗈𝗆𝖻.
The same holds for 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡) and 𝖱𝖤𝖠𝖣𝖮𝖴𝖳, with the number
of parameters denoted respectively as 𝑝𝖺𝗀𝗀 and 𝑝𝗋𝖾𝖺𝖽. Thus, the total
number of parameters in a GNN defined as in Eq. (1) is 𝑝̄ = 𝑝𝖼𝗈𝗆𝖻(1) +
𝑝𝖺𝗀𝗀(1) + (𝐿 − 1)(𝑝𝖼𝗈𝗆𝖻 + 𝑝𝖺𝗀𝗀) + 𝑝𝗋𝖾𝖺𝖽.

For our analysis, following Morris et al. (2019), we also consider a
simpler computational framework, which has been proven to match the
expressive power of the Weisfeiler–Lehman test (Morris et al., 2019),
nd is general enough to be similar to many GNN models. In such

a framework, the hidden feature 𝐡(𝑡+1)𝑣 ∈ R𝑑 at the message passing
iteration 𝑡 + 1 is defined as

𝐡(𝑡+1)𝑣 = 𝝈
(

𝐖(𝑡+1)
comb𝐡

(𝑡)
𝑣 +𝐖(𝑡+1)

agg 𝐡(𝑡)
𝗇𝖾(𝑣) + 𝐛(𝑡+1)

)

, (2)

where 𝐡(𝑡)
𝗇𝖾(𝑣) = 𝖯𝖮𝖮𝖫

(

{{𝐡(𝑡)𝑢 |𝑢 ∈ 𝗇𝖾(𝑣)}}
)

, 𝝈 ∶ R𝑑 → R𝑑 is an element–
ise activation function, and 𝖯𝖮𝖮𝖫 is the aggregating operator on the

eatures of neighboring nodes,

𝖯𝖮𝖮𝖫
(

{{𝐡(𝑡)𝑢 |𝑢 ∈ 𝗇𝖾(𝑣)}}
)

=
∑

𝑢∈𝗇𝖾(𝑣)
𝐡(𝑡)𝑢 .

With respect to Eq. (1), we have that 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡)(⋅) = 𝖯𝖮𝖮𝖫(⋅)
𝑡 = 1,… , 𝐿, while 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡+1)(𝐡𝑣,𝐡𝗇𝖾(𝑣)) = 𝝈

(

𝐖(𝑡+1)
comb𝐡𝑣+𝐖

(𝑡+1)
agg 𝐡𝗇𝖾(𝑣)+

𝐛(𝑡+1)
)

. In this case, the 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 function for graph classification tasks
can be defined as

𝖱𝖤𝖠𝖣𝖮𝖴𝖳
(

{{𝐡(𝐿)𝑣 ∣ 𝑣 ∈ 𝑉 }}
)

∶= 𝑓
(

∑

𝑣∈𝑉
𝐰𝐡(𝐿)𝑣 + 𝑏

)

. (3)

For each node, the hidden state is initialized as 𝐡(0)𝑣 = 𝜶(𝑣) ∈ R𝑞 . The
learnable parameters of the GNN can be summarized as

𝜽 ∶= (𝐖(1)
comb,𝐖

(1)
agg,𝐛(1),𝐖

(2)
comb,𝐖

(2)
agg,𝐛(2),… ,𝐖(𝐿)

comb,𝐖
(𝐿)
agg,𝐛(𝐿),𝐰, 𝑏),

with 𝐖(1)
comb,𝐖

(1)
agg ∈ R𝑑×𝑞 , 𝐖(𝑡)

comb,𝐖
(𝑡)
agg ∈ R𝑑×𝑑 , for 𝑡 = 2,… , 𝐿,

𝐛(𝑡) ∈ R𝑑×1, for 𝑡 = 2,… , 𝐿, 𝐰 ∈ R1×𝑑 , and 𝑏 ∈ R.
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VC dimension —. The VC dimension is a measure of complexity of a set
of hypotheses, which can be used to bound the empirical error of ma-
chine learning models. Formally, a binary classifier  with parameters
𝜽 is said to shatter a set of patterns {𝐱1,… , 𝐱𝑚} ⊆ R𝑞 if, for any binary
labeling of the examples {𝑦𝑖}𝑖=1,…,𝑚, 𝑦𝑖 ∈ {0, 1}, there exists 𝜽 s.t. the
model  correctly classifies all the patterns, i.e. ∑𝑛

𝑖=0 |(𝜽, 𝐱𝑖) − 𝑦𝑖| = 0.
The VC dimension of the model  is the dimension of the largest set that
 can shatter.

The VC dimension is linked with the generalization capability of
achine learning models. Actually, given a training and a test set

for the classifier , whose patterns are i.i.d. samples extracted from
the same distribution, the VC dimension allows to compute a bound,
in probability, for the difference between the training and test error
(Vapnik & Chervonenkis, 1971):

Pr
(

Etest ≤ Etraining +

√

1
𝑁

[

𝖵𝖢𝖽𝗂𝗆

(

log
(

2𝑚
𝖵𝖢𝖽𝗂𝗆

)

+ 1
)

− log
(

𝜂
4

)])

= 1 − 𝜂

(4)

for any 𝜂 > 0, where Etest is the test error, Etraining is the training error,
is the size of the training dataset and 𝖵𝖢𝖽𝗂𝗆 is the VC dimension of

.

Pfaffian functions —. A Pfaffian chain of order 𝓁 ≥ 0 and degree
≥ 1, in an open domain 𝑈 ⊆ R𝑛, is a sequence of analytic functions
1, 𝑓2,… , 𝑓𝓁 over 𝑈 , satisfying the differential equations

𝑑 𝑓𝑗 (𝐱) =
∑

1≤𝑖≤𝑛
𝑔𝑖𝑗 (𝐱, 𝑓1(𝐱),… , 𝑓𝑗 (𝐱))𝑑 𝑥𝑖, 1 ≤ 𝑗 ≤ 𝓁.

Here, 𝑔𝑖𝑗 (𝐱, 𝑦1,… , 𝑦𝑗 ) are polynomials in 𝐱 ∈ 𝑈 and 𝑦1,… , 𝑦𝑗 ∈ R of
degree not exceeding 𝛼. A function 𝑓 (𝐱) = 𝑃 (𝐱, 𝑓1(𝐱),… , 𝑓𝓁(𝐱)), where
𝑃 (𝐱, 𝑦1,… , 𝑦𝓁) is a polynomial of degree not exceeding 𝛽, is called a
Pfaffian function of format (𝛼 , 𝛽 ,𝓁). Pfaffian maps are a large class of
functions that include most of the functions with continuous derivatives
used in practical applications (Khovanski, 1991). For instance, the
ogistic sigmoid 𝗅𝗈𝗀𝗌𝗂𝗀 = 1

1+𝑒−𝑥 has derivative 𝗅𝗈𝗀𝗌𝗂𝗀′(𝑥) = 𝗅𝗈𝗀𝗌𝗂𝗀(𝑥)(1 −
𝗅𝗈𝗀𝗌𝗂𝗀(𝑥)). Therefore, the chain of 𝗅𝗈𝗀𝗌𝗂𝗀 is just (𝗅𝗈𝗀𝗌𝗂𝗀), the derivative
can be expressed as a polynomial of order 2, and the function itself
is a polynomial of order 1 in the functions belonging to the chain,
which means that 𝚏𝚘𝚛𝚖𝚊𝚝(𝗅𝗈𝗀𝗌𝗂𝗀) = (2, 1, 1). Moreover, the arctangent
𝗍𝖺𝗇 and the hyperbolic tangent 𝗍𝖺𝗇𝗁 are Pfaffian functions, with formats
𝚘𝚛𝚖𝚊𝚝(𝖺𝗍𝖺𝗇) = (3, 1, 2) and 𝚏𝚘𝚛𝚖𝚊𝚝(𝗍𝖺𝗇𝗁) = (2, 1, 1), respectively.

4. Theoretical results

In this section we report the main results on the VC dimension of
GNNs with Pfaffian activation functions. The proofs can be found in
Appendix A.

4.1. Bounds based on the network hyperparameters

Our main result provides a bound on the VC dimension of GNNs
in which 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡), 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡) and 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 are Pfaffian func-
ions. More precisely, we consider a slightly more general version of
he GNN model in Eq. (1), where the updating scheme is
𝐡(𝑡+1)𝑣 = 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡+1)

(

𝐡(𝑡)𝑣 ,𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡+1)({{𝐡(𝑡)𝑢 |𝑢 ∈ 𝑉 }}, 𝐴𝑣)
)

, (5)

and 𝐴𝑣 is the 𝑣–th column of the connectivity matrix, which represents
he neighborhood of 𝑣. The advantage of the model in Eq. (5) is
hat it makes explicit the dependence of 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡) on the graph
onnectivity. Actually, here we want to underline what the inputs of
𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡) are to clarify and make formally precise the assumptions

hat those functions are Pfaffian and have a given format.
Our result provides a bound on the VC dimension w.r.t. the total

umber 𝑝̄ of parameters, the number of computation units 𝐻 , the
umber of layers 𝐿, the feature dimension 𝑑, the maximum number

of nodes in a graph, and the attribute dimension 𝑞. Here, we assume
4 
that GNN computation units include the neurons computing the hidden
features of each node and the outputs. Therefore, there is a computation
unit for each component of a feature, each layer, each node of the input
graph and a further computation unit for the 𝖱𝖤𝖠𝖣𝖮𝖴𝖳.

Theorem 1. Let us consider the GNN model described by Eq. (5).
f 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡), 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡) and 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 are Pfaffian functions
ith format (𝛼𝖼𝗈𝗆𝖻, 𝛽𝖼𝗈𝗆𝖻,𝓁𝖼𝗈𝗆𝖻), (𝛼𝖺𝗀𝗀, 𝛽𝖺𝗀𝗀,𝓁𝖺𝗀𝗀), (𝛼𝗋𝖾𝖺𝖽, 𝛽𝗋𝖾𝖺𝖽,𝓁𝗋𝖾𝖺𝖽), respec-

ively, then the VC dimension satisfies

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ 2 log𝐵 + 𝑝̄(16 + 2 log 𝑠̄) (6)

where 𝐵 ≤ 2
𝓁(𝓁−1)

2 +1(𝛼̄ + 2𝛽 − 1)𝑝̄−1((2𝑝̄ − 1)(𝛼̄ + 𝛽) − 2𝑝̄ + 2)𝓁 , 𝛼̄ =
ax{𝛼𝖺𝗀𝗀 + 𝛽𝖺𝗀𝗀 − 1 + 𝛼𝖼𝗈𝗆𝖻𝛽𝖺𝗀𝗀, 𝛼𝗋𝖾𝖺𝖽}, 𝛽 = max{𝛽𝖼𝗈𝗆𝖻, 𝛽𝗋𝖾𝖺𝖽},
𝑝̄ = 𝑝𝖼𝗈𝗆𝖻(0) + 𝑝𝖺𝗀𝗀(0) + (𝐿 − 1)(𝑝𝖼𝗈𝗆𝖻 + 𝑝𝖺𝗀𝗀) + 𝑝𝗋𝖾𝖺𝖽, 𝓁 = 𝑝̄𝐻 , 𝐻 =

𝑁 𝑑(𝓁𝖼𝗈𝗆𝖻 + 𝓁𝖺𝗀𝗀) + 𝓁𝗋𝖾𝖺𝖽 and 𝑠̄ = 𝐿𝑁 𝑑 +𝑁 𝑞 + 1 hold. By substituting the
efinitions in Eq. (6), we obtain

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ 𝑝̄2(𝐿𝑁 𝑑(𝓁𝖼𝗈𝗆𝖻 + 𝓁𝖺𝗀𝗀) + 𝓁𝗋𝖾𝖺𝖽)2

+ 2𝑝̄ log (3𝛾)
+ 2𝑝̄ log ((4𝛾−2)𝑝̄+2−2𝛾)
+ 𝑝̄(16 + 2 log(𝐿𝑁 𝑑 +𝑁 𝑞 + 1)) (7)

where 𝛼̄ , 𝛽 ≤ 𝛾 for a constant 𝛾 ∈ R.
By inspecting the bound, we observe that the dominant term is

𝑝̄2𝐻2 = 𝑝̄2(𝐿𝑁 𝑑(𝓁𝖼𝗈𝗆𝖻+𝓁𝖺𝗀𝗀) +𝓁𝗋𝖾𝖺𝖽)2. Thus, Theorem 1 suggests that the
VC dimension is 𝑂(𝑝̄2𝐿2𝑁2𝑑2), w.r.t. the number of parameters 𝑝̄ of the
GNN, the number of layers 𝐿, the number 𝑁 of graph nodes, and the
feature dimension 𝑑. Notice that those hyperparameters are related by
constraints, which should be considered in order to understand how the
VC dimension depends on each of them. Therefore, the VC dimension is
at most 𝑂(𝑝4) since, as the number 𝑝 of parameters grows, the number
of layers 𝐿 and/or the feature dimension 𝑑 also increases.

Interestingly, such a result is similar to those already obtained
or feedforward and recurrent neural networks with Pfaffian activa-
ion functions. Table 3 compares our result with those available in

the literature, highlighting that, even if GNNs have a more complex
structure, the growth rate of the VC dimension, depending on the
hyperparameters, is the same as the simpler models.

The following theorem provides more details and clarifies how the
C dimension depends on each hyperparameter.

Theorem 2. Let 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡), 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡) and 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 be the
Pfaffian functions defined in Theorem 1. If 𝑝𝖼𝗈𝗆𝖻, 𝑝𝖺𝗀𝗀𝗋, 𝑝𝗋𝖾𝖺𝖽 ∈ (𝑑), then
the VC dimension of a GNN defined as in Eq. (1), w.r.t. 𝑝̄, 𝑁 , 𝐿, 𝑑 , 𝑞 satisfies

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ (𝑝̄4)
𝖵𝖢𝖽𝗂𝗆

(

𝖦𝖭𝖭
)

≤ (𝑁2)

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ (𝐿4)

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ (𝑑6)
𝖵𝖢𝖽𝗂𝗆

(

𝖦𝖭𝖭
)

≤ (𝑞2) □

The proof of Theorem 1 adopts the same reasoning used in Karpinski
and Macintyre (1997) to derive a bound on the VC dimension of
feedforward neural networks with Pfaffian activation functions, and
used in Scarselli et al. (2018) to provide a bound for the first GNN

odel. Intuitively, the proof is based on the following steps: it is shown
that the computation of the GNNs on graphs can be represented by a set
of equations defined by Pfaffian functions with format (𝛼̄ , 𝛽 ,𝓁), where
𝛼̄ , 𝛽 ,𝓁 are those defined in the theorem; then, the bound is obtained
exploiting a result in Karpinski and Macintyre (1997) that associates the

C dimension to the number of connected components in the inverse
mage of a system of Pfaffian equations. Finally, a result in Gabrielov

and Vorobjov (2004) allows to estimate the required number of con-
nected components. Note that our bound and other bounds obtained
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Table 3
Upper bounds on the VC dimension of common architectures, where 𝑝 is the number of network parameters, 𝑁 the number of nodes in the
input graph or sequence, and  the maximum number of colors per graph.
Activation function Bound References

Modern GNNs

Piecewise polynomial 𝑂(𝑝 log(𝑝) + 𝑝 log(𝑁)) Morris et al. (2023)
𝗍𝖺𝗇𝗁, 𝗅𝗈𝗀𝗌𝗂𝗀 or 𝖺𝗍𝖺𝗇 𝑂(𝑝4𝑁2) This work
𝗍𝖺𝗇𝗁, 𝗅𝗈𝗀𝗌𝗂𝗀 or 𝖺𝗍𝖺𝗇 𝑂(𝑝42) This work
Original GNNs (Scarselli et al., 2009)

Polynomial 𝑂(𝑝 log(𝑁)) Scarselli et al. (2018)
Piecewise polynomial 𝑂(𝑝2𝑁 log(𝑁)) Scarselli et al. (2018)
𝗍𝖺𝗇𝗁, 𝗅𝗈𝗀𝗌𝗂𝗀 or 𝖺𝗍𝖺𝗇 𝑂(𝑝4𝑁2) Scarselli et al. (2018)

Positional RecNNs

Polynomial 𝑂(𝑝𝑁) Hammer (2001)
𝗅𝗈𝗀𝗌𝗂𝗀 𝑂(𝑝4𝑁2) Hammer (2001)

Recurrent Neural Networks

Polynomial 𝑂(𝑝𝑁) Koiran and Sontag (1997)
Piecewise polynomial 𝑂(𝑝2𝑁) Koiran and Sontag (1997)
𝗍𝖺𝗇𝗁 or 𝗅𝗈𝗀𝗌𝗂𝗀 𝑂(𝑝4𝑁2) Koiran and Sontag (1997)

Multilayer Networks

Binary 𝑂(𝑝 log 𝑝) Baum and Haussler (1988), Maass (1994), Sakurai (1995)
Polynomial 𝑂(𝑝 log 𝑝) (Goldberg & Jerrum, 1993)
Piecewise polynomial 𝑂(𝑝2) Goldberg and Jerrum (1993), Koiran and Sontag (1997)
𝗍𝖺𝗇𝗁, 𝗅𝗈𝗀𝗌𝗂𝗀 or 𝖺𝗍𝖺𝗇 𝑂(𝑝4) Karpinski and Macintyre (1997)
𝖵
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for networks with Pfaffian activation functions are larger than those
for networks with simpler activations. As explained in Karpinski and

acintyre (1997) Scarselli et al. (2018), such a difference is likely due
o the current limitations of mathematics in this field, which makes
ight bounds more difficult to achieve with Pfaffian functions.

We now specifically derive bounds for the VC dimension for the
rchitecture described by Eqs. (2)–(3).

Theorem 3. Let us consider the GNN model described by Eqs. (2)–(3). If
𝜎 is a Pfaffian function in 𝐱 with format (𝛼𝜎 , 𝛽𝜎 ,𝓁𝜎 ), then the VC dimension
satisfies

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ 2 log𝐵 + 𝑝̄(16 + 2 log 𝑠̄),

where 𝐵 ≤ 2
𝓁(𝓁−1)

2 +1(𝛼̄ + 2𝛽 − 1)𝑝̄−1((2𝑝̄− 1)(𝛼̄ + 𝛽) − 2𝑝̄+ 2)𝓁 , 𝛼̄ = 2 + 3𝛼𝜎 ,
𝛽 = 𝛽𝜎 , 𝓁 = 𝑝̄𝐻𝓁𝜎 , and 𝑠̄ = 𝐿𝑁 𝑑 +𝑁 𝑞 + 1 hold.

In particular, if 𝜎 is the logistic sigmoid activation function, we have

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ 𝑝̄2𝐻2 + 2𝑝̄ log (9) + 2𝑝̄𝐻 log (16𝑝̄) + 𝑝̄(16 + 2 log(𝑠̄)). □

The proof of Theorem 3 can be found in Appendix A.
Interestingly, the bounds on the VC dimension that can be derived

from Theorem 3, w.r.t the hyperparameters, turn out to be the same
erived in Theorem 2. Thus, even if the considered model is simpler,
hose bounds do not change.

4.2. Bounds based on the number of the 1–WL colors

The developed theory is also easily applied to the case when nodes
re grouped according to their colors defined by the Weisfeiler–Lehman
lgorithm. Intuitively, since GNNs produce the same features on group
f nodes with the same color, the computation can be simplified by
onsidering each group as a single entity. As consequence, the bounds
n VC dimension can be tightened by using colors in place of nodes.

Formally, for a given graph 𝐺, let 𝐶1(𝐺) = ∑𝑇
𝑖=1 𝐶

𝑡(𝐺) be the number of
colors generated by the 1–WL test, where 𝐶 𝑡(𝐺) is the number of colors
at step 𝑡 > 0. Moreover, let us assume that 𝐶 𝑡(𝐺) is bounded, namely
here exists 𝐶1 such that 𝐶1(𝐺) ≤ 𝐶1 for all the graphs 𝐺 in the domain
. The following theorem provides a bound on the VC dimension w.r.t.
the number of colors produced by the 1–WL test.

Theorem 4. Let us consider the GNN model described by Eqs. (2)–(3)
sing the logistic sigmoid 𝗅𝗈𝗀𝗌𝗂𝗀 as the activation function. Assume a subset
5 
 ⊆ . The VC dimension of the GNN satisfies

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭(𝐶1)
)

≤ (𝐶2
1 )

𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭(𝐶0)
)

≤ (log(𝐶0)) □

The theorem suggests that the VC dimension depends quadratically
on the total number of node colors and logarithmically on the initial
umber of colors. Actually, a GNN processes all the nodes of a graph
t the same time and the GNN architecture is similar to a feedforward
etwork where some computation units are replicated at each node.

Thus, the complexity of the GNN grows with the number of nodes and
this explains the dependence of the VC dimension on the number of
nodes (see Theorem 2). On the other hand, nodes with the same colors
cannot be distinguished by the GNN: this means that, in theory, we can
se the same computation units for a group of nodes sharing the color.
herefore, to get tighter bounds on the VC dimension, we can consider
he number of colors in place of the number of nodes.

Finally, it is worth mentioning that, the presented theorems suggest
hat GNNs may have a worst generation capability when the domain is
omposed by graphs with many different colors. This happens because
hen the number of colors in each graph increases, the VC dimension

ncreases as well. On the other hand, the generalization capability
enefits from a large total number of colors in the training set. Actually,
eneralization depends not only on VC dimension, but, obviously, also
n the number of patterns in training set (see Eq. (4)). In GNN graph–

focused tasks, graphs play the role of patterns, where we count only
he graphs with different colors, as those with the same colors are just
opies of the same pattern. A similar reasoning applies to node–focused

tasks, by counting the total number of nodes with different colors in the
training set.

5. Experimental validation

In this section, we present an experimental validation of our theoret-
ical results. We will show how the VC dimension of GNNs, described
in Eqs. (2)–(3), changes as the hyperparameters vary, respecting the
bounds found in Theorems 2 and 4.

5.1. Experimental setting

We design two experiments to assess the validity, respectively, of
Theorems 2 and 4. In both cases, we train a Graph Neural Network,
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Fig. 1. Results on the task E1 for GNNs with activation function 𝖺𝗋𝖼𝗍𝖺𝗇.
Table 4
Statistics on the benchmark datasets used for E1.

Dataset # Graphs # Classes Avg. # Nodes Avg. # Edges

PROTEINS 1113 2 39.06 72.82
NCI1 4110 2 29.87 32.30
PTC-MR 344 2 14.29 14.69

Table 5
Summary of the parameters for each split of the ordered NCI1 dataset in task E2.

Split 1 Split 2 Split 3 Split 4
# Nodes 27 667 30 591 31 763 32 673
# Colors 26 243 26 569 24 489 16 348
min
𝐺

#Nodes(𝐺)
#Colors(𝐺)

1.000 1.105 1.208 1.437
max
𝐺

#Nodes(𝐺)
#Colors(𝐺)

1.105 1.208 1.437 8

composed by message passing layers, defined as in Eq. (2), where the
activation function 𝝈 is 𝖺𝗋𝖼𝗍𝖺𝗇 or 𝗍𝖺𝗇𝗁; the final 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 layer is an
affine layer with 𝐖𝗈𝗎𝗍 ∈ R1×𝗁𝖽, after which a 𝗅𝗈𝗀𝗌𝗂𝗀 activation function
is applied. The expressive power of this model has been proven to be
equivalent to the 1–WL test and, therefore, such a model is a good
representative of the class of message passing GNNs. The model is
trained via Adam optimizer with an initial learning rate 𝜆 = 10−3. The
hidden feature size is denoted by 𝗁𝖽 and the number of layers by 𝑙.

E1: We measure the evolution of the difference between the training
accuracy and the validation accuracy, 𝖽𝗂𝖿 𝖿 = 𝗍𝗋𝖺𝗂𝗇𝗂𝗇𝗀_𝖺𝖼𝖼− 𝗍𝖾𝗌𝗍_𝖺𝖼𝖼,
through the training epochs, over three different datasets taken
from the TUDataset repository (Morris et al., 2020). In particu-
lar, PROTEINS (Borgwardt et al., 2005) is a dataset of proteins
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represented as graphs which contains both enzymes and non-
enzymes; NCI1 (Wale, Watson, & Karypis, 2008) is a dataset of
molecules relative to anti-cancer screens where the chemicals are
assessed as positive or negative to cell lung cancer; finally, PTC-
MR (Helma, King, Kramer, & Srinivasan, 2001) is a collection
of chemical compounds represented as graphs which report the
carcinogenicity for rats. The choice of the datasets has been
driven by their binary classification nature. Their statistics are
summarized in Table 4. In the experiments, firstly, we fix the
hidden feature size to 𝗁𝖽 = 32 and let the number of layers
vary in the range 𝑙 ∈ [2, 3, 4, 5, 6], to measure how 𝖽𝗂𝖿 𝖿 evolves.
Subsequently, we fix the number of layers to 𝑙 = 3 and let the
hidden feature size vary in the range, 𝗁𝖽 ∈ [8, 16, 32, 64, 128], to
perform the same task. We train the model for 500 epochs in each
run, with the batch size set to 32.

E2: We measure the evolution of the difference between the training
accuracy and the validation accuracy, 𝖽𝗂𝖿 𝖿 , through the training
epochs over the dataset NCI1, whose graphs are increasingly
ordered according to the ratio |𝑉 (𝐺)|

𝐶 𝑡(𝐺) and split in four different
groups. The intuition here is that, being the number of graph
nodes bounded, splitting the ordered dataset as described above,
should provide four datasets in which the total number of colors
is progressively increasing. The hidden size is fixed at 𝗁𝖽 = 16, the
number of layers is 𝑙 = 4, the batch size is fixed equal to 32. In
Table 5, we report the reference values for each split. We train the
model for 2000 epochs (the number of epochs is greater than in
the E1 task because E2 shows greater instability during training).

Each experiment is statistically evaluated over 10 runs. The overall
training is performed on an Intel(R) Core(TM) i7-9800X processor
running at 3.80 GHz, using 31 GB of RAM and a GeForce GTX 1080
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Fig. 2. Results on the task E1 for GNNs with activation function 𝗍𝖺𝗇𝗁.
Ti GPU unit. The code developed to run the experiments exploits the
Python package Pytorch Geometric and can be found at https://github.
com/AleDinve/vc-dim-gnn.

5.2. Experimental results

Task E1 —. Numerical results for the NCI1 dataset are reported in
Figs. 1 and 2, for 𝖺𝗋𝖼𝗍𝖺𝗇 and 𝗍𝖺𝗇𝗁 activations, respectively, while results
for PROTEINS and PTC_MR are reported in Appendix B. Figures show
the mean values of 𝖽𝗂𝖿 𝖿 as a solid colored line and the 95% confidence
interval as a shaded area, to quantify the statistical variability of the
results over the 10 runs. In particular, in both Figs. 1 and 2, the
evolution of 𝖽𝗂𝖿 𝖿 is shown as the number of epochs varies, for different
values of 𝗁𝖽 keeping fixed 𝑙 = 3 in (a), and for different values of 𝑙
keeping fixed 𝗁𝖽 = 32 in (c), respectively. Moreover, the evolution of
𝖽𝗂𝖿 𝖿 as the hidden size increases, for varying epochs, is shown in (b),
while (d) depicts how 𝖽𝗂𝖿 𝖿 evolves as the number of layers increases.

The behavior of the evolution of 𝖽𝗂𝖿 𝖿 proves to be consistent with the
bounds provided by Theorem 2 with respect to increasing the hidden
dimension or the number of layers. Although it is hard to establish
a precise function that links the VC dimension to 𝖽𝗂𝖿 𝖿 , given also the
complex nature of Pfaffian functions, we can partially rely on Eq. (4)
(which is valid for large sample sets) to argue that our bounds are
verified by this experimental setting.

It is interesting to notice that 𝖽𝗂𝖿 𝖿 tends to increase faster with the
hidden size over the dataset PTC-MR than over the dataset PROTEINS.
This could be due to the different average number of nodes in the two
datasets; indeed, if we fix the architecture, the GNN could be less prone
to overfit (and then to poor generalization capabilities) as the graphs
in the dataset become bigger.
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Task E2 —. Numerical results for this task on the NCI1 dataset are re-
ported in Fig. 3, considering the 𝗍𝖺𝗇𝗁 activation function. In particular,
the evolution of 𝖽𝗂𝖿 𝖿 is shown in (a) as the number of epochs varies, for
different values of 𝑉 (𝐺)

𝐶 𝑡(𝐺) , keeping fixed 𝑙 = 4 and 𝗁𝖽 = 16; instead, the
evolution of 𝖽𝗂𝖿 𝖿 as the ratio 𝑉 (𝐺)

𝐶 𝑡(𝐺) increases is depicted in (b), for the
number of epochs varying in {1000, 1500, 2000}.

Similar observations as for the experimental setting E1 can be drawn
here: indeed, the evolution of 𝖽𝗂𝖿 𝖿 in our experiment is consistent with
the bounds presented in Theorem 4, as the ratio between colors and
nodes increases.

6. Discussion

In this work we derived new bounds for the VC dimension of mod-
ern message passing GNNs with Pfaffian activation functions, closing
the gap present in the literature with respect to many common used ac-
tivation functions; furthermore, we propose a preliminary experimental
validation to demonstrate the coherence between theory and practice.
Such a characterization allows to compare different GNN models and to
find the appropriate tradeoff between the expressivity of those models
and their generalization capabilities.

The bounds derived in this work can also be straightforwardly
exploited to quantify an upper bound on the Rademacher complexity
of a function F (𝐹 ); indeed, it holds that (𝐹 ) ≤ 𝐶

√

𝑉 𝐶(𝐹 ) for
some constant 𝐶 (Gnecco, Sanguineti, et al., 2008). Nevertheless, other
analytical tools should be used to obtain an exhaustive overview on
the characterization of the Rademacher Complexity for message passing
GNNs; we will further investigate this perspective in future works.

Different research perspectives can be envisaged to improve the
results obtained: first, our analysis lacks the derivation of lower bounds,
which could provide a more precise intuition of the degradation of

https://github.com/AleDinve/vc-dim-gnn
https://github.com/AleDinve/vc-dim-gnn
https://github.com/AleDinve/vc-dim-gnn
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Fig. 3. Results on the task E2 for GNNs with activation function 𝗍𝖺𝗇𝗁.
generalization capabilities for GNNs within the chosen architectural
framework. In addition, providing a relationship between the VC di-
mension and the difference between the training and test accuracy
would be much more informative; we could establish a quantitative
measure with respect to the number of parameters that would allow
us to better explain the experimental performance. Furthermore, the
proposed analysis on the VC dimension deserves to be extended to other
GNN paradigms, such as Graph Transformers (Yun, Jeong, Kim, Kang,
& Kim, 2019) and Graph Diffusion Models (Zhang et al., 2023).
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Appendix A. Proof of the main results

The proof of Theorems 1, 3 and 4 adopts the same reasoning used
in Karpinski and Macintyre (1997) and Scarselli et al. (2018) to derive
a bound on the VC dimension of feedforward neural networks and the
original GNN model, respectively. Before proceeding with the proofs,
let us introduce the required notation and some results from Karpinski
and Macintyre (1997). These results will provide us with the mathemat-
ical tools to represent the computation of GNNs with a set of Pfaffian
equations and to bound the VC dimension based on the format of the
functions involved in such equations.
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A.1. Notation and results from the literature

Representing a set of equations by a logical formula
Formally, we use a theory in which a classifier is described by a

logical formula that is constructed by combining Pfaffian equations.
Thus, let 𝜏1,… , 𝜏𝑠̄ be a set of 𝐶∞ (infinitely differentiable) functions
from R𝛾+𝑝 to R. Suppose that 𝛷(𝐲,𝜽), 𝐲 ∈ R𝛾 , 𝜽 ∈ R𝑝 is a quantifier-free
logical formula constructed using the operators and and or, and atoms
in the form of 𝜏𝑖(𝐲,𝜽) = 0. Note that, fixed 𝜽, 𝛷(⋅,𝜽) takes as input a
vector 𝐲 and returns a logical value, so that it can be considered as a
classifier with input 𝐲 and parameters 𝜽. Moreover, the formula can be
also used to represent a set of Pfaffian equations, which corresponds
to the case when 𝛷 includes only the operator and and 𝜏𝑖 are Pfaffian.
Actually, later, we will see that 𝜏1,… , 𝜏𝑠̄ can be specified so that 𝛷
defines the computation of a GNN.

The VC dimension of 𝛷
The VC dimension of 𝛷 can be defined in the usual way. Indeed, 𝛷 is

said to shatter a set  = {𝐲̄1,… , 𝐲̄𝑟} if, for any set of binary assignments
𝛿 = [𝛿1,… , 𝛿𝑟] ∈ {0, 1}𝑟, there exist parameters 𝜽̄ such that, for any 𝑖,
𝛷(𝐲𝑖, 𝜽̄) is true if 𝛿𝑖 = 1, and false if 𝛿𝑖 = 0. Then, the VC dimension of
𝛷 is defined as the size of the maximum set that 𝛷 can shatter, i.e.,

𝖵𝖢𝖽𝗂𝗆(𝛷) = max
 is shattered by 𝛷

||.

Interestingly, the VC dimension of 𝛷 can be bounded by studying
the topological properties of the inverse image, in the parameter do-
main, of the functions 𝜏𝑖 (Karpinski & Macintyre, 1997). More precisely,
let 𝐲̄1,… , 𝐲̄𝑧 be vectors in R𝛾̄ , and 𝐓 ∶ R𝑝̄ → R𝑢̄, 𝑢̄ ≤ 𝑝̄, be defined as

𝐓(𝜽̄) = [𝜏1(𝜽̄),… , ̄𝜏𝑢̄(𝜽̄)], (A.1)

where 𝜏1(𝜽̄),… , ̄𝜏𝑢̄(𝜽̄) are functions of the form of 𝜏𝑖(𝐲̄𝑗 , 𝜽̄), i.e., for each
𝑟, 1 ≤ 𝑟 ≤ 𝑢̄, there exist integers 𝑖 and 𝑗 such that 𝜏𝑟(𝜽̄) = 𝜏𝑖(𝐲̄𝑗 , 𝜽̄).
Let [𝜖1,… , 𝜖𝑢̄] be a regular value1 of 𝐓 and assume that there exists a
positive integer 𝐵 that bounds the number of connected components
of 𝐓−1(𝜖1,… , 𝜖𝑢̄) and does not depend on the chosen 𝜖1,… , 𝜖𝑢̄ and on
the selected 𝐲̄𝑗 . Then, the following proposition holds (Karpinski &
Macintyre, 1997).

Theorem 5. The VC dimension of 𝛷 is bounded as follows:

𝖵𝖢𝖽𝗂𝗆(𝛷) ≤ 2 log𝐵 + 𝑝̄(16 + 2 log 𝑠̄) .

Therefore, Theorem 5 provides a bound on the VC dimension of 𝛷
that depends on the number 𝑝̄ of parameters, the total number 𝑠̄ of

1 We recall that [𝜖1,… , 𝜖𝑢̄] is a regular value of 𝐓 if either 𝐓−1([𝜖1,… , 𝜖𝑢̄]) =
∅ or 𝐓−1([𝜖 ,… , 𝜖 ]) is a (𝑝̄ − 𝑢̄)–dimensional 𝐶∞–submanifold of R𝑝̄.
1 𝑢̄
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functions 𝜏𝑖, and the bound 𝐵 on the number of connected components
f 𝐓−1.

A bound on the number of connected components
A bound 𝐵 on the number of connected components of 𝐓−1 can be

btained based on known results from the literature. In particular, the
ollowing theorem provides a bound in the case of a set of Pfaffian
quations.

Theorem 6 (Gabrielov & Vorobjov, 2004). Consider a system of equations
̄1(𝜽) = 0,… , 𝑞𝑘(𝜽) = 0, where 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑘, are Pfaffian functions
n a domain 𝐺 ⊆ R𝑝̄, having a common Pfaffian chain of length 𝓁 and
aximum degrees (𝛼̄ , 𝛽). Then the number of connected components of the

et {𝜽|𝑞1(𝜽) = 0,… , 𝑞𝑘(𝜽) = 0} is bounded by

2
𝓁(𝓁−1)

2 +1(𝛼̄ + 2𝛽 − 1)𝑝̄−1((2𝑝̄ − 1)(𝛼̄ + 𝛽) − 2𝑝̄ + 2)𝓁 .

A.2. Proof of Theorem 1

First, we prove Theorem 1. The proofs of Theorems 3 and 4 will
adopt the same argumentative scheme. As already mentioned, we
will follow the reasoning in Karpinski and Macintyre (1997), Scarselli
et al. (2018), which consists of three steps. First, it is shown that the
omputation of GNNs can be represented by a set of equations defined
y Pfaffian functions. Then, using the format of such Pfaffian functions,

Theorem 6 allows to derive a bound on the number of connected
components of the space defined by the equations. Finally, Theorem 5
provides a bound on the VC dimension of GNNs.

Let us define a set of equations 𝜏𝑖(𝐲,𝜽) = 0 that specifies the compu-
ation of the generic GNN model of Eq. (5). Here, 𝜽 collects the GNN

parameters, while 𝐲 contains all the variables necessary to define the
GNN calculation, that is, some variables involved in the representation
f the GNN input, i.e., the input graph, and other variables used for the
epresentation of the internal features of the GNN.

More precisely, let us assume that 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(1) has 𝑝𝖼𝗈𝗆𝖻(1) param-
eters, 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡) has 𝑝𝖼𝗈𝗆𝖻 parameters for 2 ≤ 𝑡 ≤ 𝐿, 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(1)
has 𝑝𝖺𝗀𝗀(1) parameters, 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡) has 𝑝𝖺𝗀𝗀 parameters for 2 ≤ 𝑡 ≤ 𝐿,
and 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 has 𝑝𝗋𝖾𝖺𝖽 parameters.

Then, the dimension of 𝜽 is 𝑝𝖼𝗈𝗆𝖻(1)+𝑝𝖺𝗀𝗀(1)+ (𝐿− 1)(𝑝𝖼𝗈𝗆𝖻+𝑝𝖺𝗀𝗀) +𝑝𝗋𝖾𝖺𝖽.
oreover, for a given graph 𝐆 = (𝐺 ,𝐋) in , 𝐲 contains some vectorial

epresentation of 𝐆, namely the 𝑁 𝑞 graph attributes in 𝐋𝐺, and a
ectorial representation of the adjacency matrix 𝐀, which requires
(𝑁 − 1)∕2 elements. Besides, to define the equations, we use the

ame trick as in Karpinski and Macintyre (1997) and introduce new
ariables for each computation unit of the network. These variables
elong to the input 𝐲 of 𝜏. Formally, we consider a vector of 𝑑 variables
(𝑘)
𝑣 for each node 𝑣 and for each layer 𝑘. Note that, as we may be
nterested in defining multiple GNN computations on multiple graphs at
he same time, here 𝑣 implicitly addresses a specific node of some graph
n the domain. Finally, a variable 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 for each graph contains

just a single output of the GNN. Thus, in total, the dimension of 𝐲 is
𝑁 𝑞 +𝑁(𝑁 − 1)∕2 +𝑁 𝑑 𝐿 + 1.

Therefore, the computation of the GNN model in (5) is defined by
he following set of 𝐿𝑁 𝑑 +𝑁 𝑞 + 1 equations,

𝐡(0)𝑣 − 𝐋𝑣 = 0, (A.2)

𝐡(𝑡+1)𝑣 − 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡+1)
(

𝐡(𝑡)𝑣 ,𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡+1)({{𝐡(𝑡)𝑢 |𝑢 ∈ 𝗇𝖾(𝑣)}},𝐀)
)

= 0,
(A.3)

𝖱𝖤𝖠𝖣𝖮𝖴𝖳 − 𝖱𝖤𝖠𝖣𝖮𝖴𝖳({{𝐡(𝐿)𝑣 ∶ 𝑣 ∈ 𝑉 }}) = 0, (A.4)

where 𝐀 is the variable storing the adjacency matrix of the input graph.
e can assume that 𝐀 is valid for any finite graph.
The following lemma specifies the format of the Pfaffian functions

nvolved in Eqs. (A.2)–(A.4).
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Lemma 7. Let 𝖢𝖮𝖬𝖡𝖨𝖭𝖤(𝑡), 𝖠𝖦𝖦𝖱𝖤𝖦𝖠𝖳𝖤(𝑡) and 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 be Pfaffian
functions with format, respectively, (𝛼𝖼𝗈𝗆𝖻, 𝛽𝖼𝗈𝗆𝖻,𝓁𝖼𝗈𝗆𝖻), (𝛼𝖺𝗀𝗀, 𝛽𝖺𝗀𝗀, 𝓁𝖺𝗀𝗀),
(𝛼𝗋𝖾𝖺𝖽, 𝛽𝗋𝖾𝖺𝖽,𝓁𝗋𝖾𝖺𝖽) w.r.t. the variables 𝐲 and 𝜽 described above, then:

1. the left part of Eq. (A.2) is a polynomial of degree 1;
2. the left part of Eq. (A.3) is a Pfaffian function with format

(𝛼𝖺𝗀𝗀 + 𝛽𝖺𝗀𝗀 − 1 + 𝛼𝖼𝗈𝗆𝖻𝛽𝖺𝗀𝗀, 𝛽𝖼𝗈𝗆𝖻,𝓁𝖼𝗈𝗆𝖻 + 𝓁𝖺𝗀𝗀);
3. the left part of Eq. (A.4) is a Pfaffian function with format

(𝛼𝗋𝖾𝖺𝖽, 𝛽𝗋𝖾𝖺𝖽,𝓁𝗋𝖾𝖺𝖽);
4. Eqs. (A.2)–(A.4) constitute a system of Pfaffian equations with a

maximal format (𝛼𝗌𝗒𝗌𝗍𝖾𝗆, 𝛽𝗌𝗒𝗌𝗍𝖾𝗆,𝓁𝗌𝗒𝗌𝗍𝖾𝗆), where 𝛼𝗌𝗒𝗌𝗍𝖾𝗆 = max{𝛼𝖺𝗀𝗀 +
𝛽𝖺𝗀𝗀 − 1 + 𝛼𝖼𝗈𝗆𝖻𝛽𝖺𝗀𝗀, 𝛼𝗋𝖾𝖺𝖽}, 𝛽𝗌𝗒𝗌𝗍𝖾𝗆 = max{𝛽𝖼𝗈𝗆𝖻, 𝛽𝗋𝖾𝖺𝖽} and 𝓁𝗌𝗒𝗌𝗍𝖾𝗆 =
𝐿𝑁 𝑑(𝓁𝖼𝗈𝗆𝖻 + 𝓁𝖺𝗀𝗀) + 𝓁𝗋𝖾𝖺𝖽.

Proof. The first point is straightforwardly evident, while the third
s true by definition. The second point can be derived by applying
he composition lemma for Pfaffian functions (Gabrielov & Vorobjov,

1995), according to which, if two functions 𝑓 and 𝑔 have format
(𝛼𝑓 , 𝛽𝑓 ,𝓁𝑓 ) and (𝛼𝑔 , 𝛽𝑔 ,𝓁𝑔), respectively, then their composition 𝑓◦𝑔 has
format (𝛼𝑔 + 𝛽𝑔 − 1 + 𝛼𝑓 𝛽𝑔 , 𝛽𝑓 ,𝓁𝑓 + 𝓁𝑔). Finally, the fourth point is
btained by taking the maximum of the format of the involved Pfaffian

equations also observing that the common chain is the concatenation
of the chains. □

Now we can proceed with the proof of Theorem 1.

Proof. Let 𝐓 be defined as in Eq. (A.1), where 𝜏𝑖(𝐲,𝜽) = 0 are the
equations in (A.2), (A.3), (A.4). Combining Theorem 6 with the formats
provided by point 3. of Lemma 7, for any input graph and any value of
the variables 𝐲, the number of connected components of 𝐓−1 satisfies

𝐵 ≤ 2
𝓁(𝓁−1)

2 +1(𝛼̄ + 2𝛽 − 1)𝑝̄−1((2𝑝̄ − 1)(𝛼̄ + 𝛽) − 2𝑝̄ + 2)𝓁 , (A.5)

where 𝑝̄ = 𝑝𝖼𝗈𝗆𝖻(1) + 𝑝𝖺𝗀𝗀(1) + (𝐿 − 1)(𝑝𝖼𝗈𝗆𝖻 + 𝑝𝖺𝗀𝗀) + 𝑝𝗋𝖾𝖺𝖽, 𝛼̄ = 𝛼𝗌𝗒𝗌𝗍𝖾𝗆,
𝛽 = 𝛽𝗌𝗒𝗌𝗍𝖾𝗆, 𝓁 = 𝑝̄(𝐿𝑁 𝑑(𝓁𝖼𝗈𝗆𝖻 + 𝓁𝖺𝗀𝗀) + 𝓁𝗋𝖾𝖺𝖽).

By Theorem 5, the VC dimension of the GNN described by Eqs.
(A.2)–(A.4) is bounded by
𝖵𝖢𝖽𝗂𝗆(𝖦𝖭𝖭) ≤ 2 log𝐵 + 𝑝̄(16 + 2 log 𝑠̄) , (A.6)

where 𝑠̄ = 𝐿𝑁 𝑑 +𝑁 𝑞 + 1. Thus, substituting Eq. (A.5) in Eq. (A.6), we
have:
𝖵𝖢𝖽𝗂𝗆

(

𝖦𝖭𝖭
)

≤ 2 log𝐵 + 𝑝̄(16 + 2 log 𝑠̄)
≤ 2 log

(

2
𝓁(𝓁−1)

2
+1(𝛼̄ + 2𝛽 − 1)𝑝̄−1((2𝑝̄ − 1)(𝛼̄ + 𝛽) − 2𝑝̄ + 2)𝓁

)

+

+ 𝑝̄(16 + 2 log 𝑠̄)
= 𝓁(𝓁− 1) + 2(𝑝̄− 1) log (𝛼̄+ 2𝛽− 1)+ 2𝓁 log

(

(2𝑝̄− 1)(𝛼̄+𝛽) − 2𝑝̄+ 2)+
+ 𝑝̄(16 + 2 log 𝑠̄) + 2,

obtaining Eq. (6).
If we denote 𝐻 = 𝐿𝑁 𝑑((𝓁𝖼𝗈𝗆𝖻 + 𝓁𝖺𝗀𝗀) + 𝓁𝗋𝖾𝖺𝖽), we have:

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ 𝑝̄𝐻(𝑝̄𝐻 − 1) + 2(𝑝̄ − 1) log(𝛼𝗌𝗒𝗌𝗍𝖾𝗆 + 2𝛽𝗌𝗒𝗌𝗍𝖾𝗆 − 1)
+ 2𝑝̄𝐻 log

(

(2𝑝̄ − 1)(𝛼𝗌𝗒𝗌𝗍𝖾𝗆 + 𝛽𝗌𝗒𝗌𝗍𝖾𝗆) − 2𝑝̄ + 2)

+ 𝑝̄(16 + 2 log(𝑠̄)) + 2 (A.7)
≤ 𝑝̄2𝐻2 + 2𝑝̄ log (3𝛾)

+ 2𝑝̄𝐻 log ((4𝛾 − 2)𝑝̄ + 2 − 2𝛾)
+ 𝑝̄(16 + 2 log(𝑠̄)) + 2.

Then, by replacing 𝑝̄, 𝐻 and 𝑠̄, and setting 𝛾 = max{𝛼̄ , 𝛽}, it follows
hat:
𝖵𝖢𝖽𝗂𝗆

(

𝖦𝖭𝖭
)

≤ (𝑝𝖼𝗈𝗆𝖻(1)+𝑝𝖺𝗀𝗀(1)+ (𝐿− 1)(𝑝𝖼𝗈𝗆𝖻+𝑝𝖺𝗀𝗀) +𝑝𝗋𝖾𝖺𝖽)2(𝐿𝑁 𝑑(𝓁𝖼𝗈𝗆𝖻+𝓁𝖺𝗀𝗀) +𝓁𝗋𝖾𝖺𝖽)2

+ 2(𝑝𝖼𝗈𝗆𝖻(1) + 𝑝𝖺𝗀𝗀(1) + (𝐿 − 1)(𝑝𝖼𝗈𝗆𝖻 + 𝑝𝖺𝗀𝗀) + 𝑝𝗋𝖾𝖺𝖽) log (3𝛾)
+ 2(𝑝 + 𝑝 + (𝐿 − 1)(𝑝 + 𝑝 ) + 𝑝 )⋅
𝖼𝗈𝗆𝖻(1) 𝖺𝗀𝗀(1) 𝖼𝗈𝗆𝖻 𝖺𝗀𝗀 𝗋𝖾𝖺𝖽
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⋅ log
(

(4𝛾 − 2)(𝑝𝖼𝗈𝗆𝖻(1) + 𝑝𝖺𝗀𝗀(1) + (𝐿 − 1)(𝑝𝖼𝗈𝗆𝖻 + 𝑝𝖺𝗀𝗀) + 𝑝𝗋𝖾𝖺𝖽) + 2 − 2𝛾)

+ (𝑝𝖼𝗈𝗆𝖻(1)+𝑝𝖺𝗀𝗀(1)+ (𝐿− 1)(𝑝𝖼𝗈𝗆𝖻+𝑝𝖺𝗀𝗀) +𝑝𝗋𝖾𝖺𝖽)(16 + 2 log(𝐿𝑁 𝑑+𝑁 𝑞+ 1)) ,
which leads to Eq. (7) as in the thesis. □

A.3. Proof of Theorem 2

The orders of growth of the VC dimension w.r.t. 𝑝̄, 𝑁 , 𝐿, 𝑑 , 𝑞 are
traightforwardly derived by inspecting Eq. (7) in Theorem 1.

A.4. Proof of Theorem 3

As already mentioned in Appendix A.2, the proof of Theorem 3
follows the same scheme used in proof of Theorem 1. We just recall
that we consider a GNN defined by the following updating equation:

𝐡(𝑡+1)𝑣 = 𝝈(𝐖(𝑡+1)
𝖼𝗈𝗆𝖻

𝐡(𝑡)𝑣 +𝐖(𝑡+1)
𝖺𝗀𝗀 𝐡(𝑡+1)

𝗇𝖾(𝑣) + 𝐛(𝑡+1)), (A.8)

where 𝝈 is the activation function and

𝐡(𝑡+1)
𝗇𝖾(𝑣) =

∑

𝑢∈ne(𝑣)
𝐡(𝑡)𝑢 . (A.9)

The hidden states are initialized as 𝐡(0)𝑣 = 𝐋𝑣. It is easily seen that the
otal number of parameters is 𝑝 = (2𝑑 + 1)(𝑑(𝐿− 1) + 𝑞 + 1) − 𝑞. Indeed,
he parameters are:

• 𝐖(1)
𝖼𝗈𝗆𝖻

,𝐖(1)
𝖺𝗀𝗀 ∈ R𝑑×𝑞 ,𝐛(1) ∈ R𝑑×1, so that we have 2𝑑 𝑞 + 𝑑

parameters;
• 𝐖(𝑡)

𝖼𝗈𝗆𝖻
,𝐖(𝑡)

𝖺𝗀𝗀 ∈ R𝑑×𝑑 ,𝐛(𝑡) ∈ R𝑑×1 for 𝑡 = 2,… , 𝐿, so that we have
(2𝑑2 + 𝑑)(𝐿 − 1) parameters;

• 𝐰 ∈ R1×𝑑 , 𝑏 ∈ R, so that we have 𝑑 + 1 parameters.

Summing up, we will have 2𝑑 𝑞 + 𝑑 + (2𝑑2 + 𝑑)(𝐿 − 1) + 𝑑 + 1 = (2𝑑 +
1)(𝑑(𝐿− 1) + 𝑞+ 1) − 𝑞 parameters. By Eq. (A.8), the computation of the
GNN is straightforwardly defined by the following set of 𝐿𝑁 𝑑 +𝑁 𝑞+ 1
equations:

𝐡(0)𝑣 − 𝐋𝑣 = 0, (A.10)

𝐡(𝑡+1)𝑣 − 𝝈
(

𝐖(𝑡+1)
𝖼𝗈𝗆𝖻

𝐡(𝑡)𝑣 +
∑

𝑢
𝐖(𝑡+1)

𝖺𝗀𝗀 𝐡(𝑡)𝑢 𝑚𝑣,𝑢 + 𝐛(𝑡+1)
)

= 0, (A.11)

𝖱𝖤𝖠𝖣𝖮𝖴𝖳 − 𝝈
(

∑

𝑣∈𝑉
𝐰𝐡(𝐿)𝑣 + 𝑏

)

= 0, (A.12)

where 𝑚𝑣,𝑢 is a binary value, which is 1 when 𝑣 and 𝑢 are connected
nd 0, otherwise.

Now we state the analogue of Lemma 7 to retrieve the format of
Pfaffian functions involved in the above equations.

Lemma 8. Let 𝝈 be a Pfaffian function in 𝐱 with format (𝛼𝜎 , 𝛽𝜎 ,𝓁𝜎 ), then
.r.t. the variables 𝐲 and 𝐰 described above,

1. the left part of Eq. (A.10) is a polynomial of degree 1;
2. the left part of Eq. (A.11) is a Pfaffian function having format

(2 + 3𝛼𝜎 , 𝛽𝜎 ,𝓁𝜎 );
3. the left part of Eq. (A.12) is a Pfaffian function having format

(1 + 2𝛼𝜎 , 𝛽𝜎 ,𝓁𝜎 );
4. Eqs. (A.10)–(A.12) constitute a system of Pfaffian equations with

format (2 + 3𝛼𝜎 , 𝛽𝜎 , 𝐻𝓁𝜎 ), where the shared chain is obtained by con-
catenating the chains of 𝐻 = 𝐿𝑁 𝑑 + 1 equations in (A.11),(A.12),
including an activation function.

Proof. The first point is straightforwardly evident. The second and
hird points can be derived by applying the composition lemma for
faffian functions. Actually, the formula inside 𝝈 in Eq. (A.11) is a
olynomial of degree 3, due to the factors 𝐡(𝑡−1)𝑢 𝐖(𝑡)

𝖺𝗀𝗀𝑚𝑣,𝑢, while the
ormula inside 𝝈 in Eq. (A.12) is a polynomial of degree 2, due to the

factors 𝐡(𝐿)𝐖. Moreover, polynomials are Pfaffian functions with null
𝑣

10 
chains, 𝛼 equals 0 and 𝛽 equals their degrees. Thus, the functions inside
in Eqs. (A.11) and (A.12) have format (0, 3, 0) and (0, 2, 0), respec-

tively. Then, the thesis follows by the composition lemma (Gabrielov
& Vorobjov, 1995), according to which if two functions 𝑓 and 𝑔 have
format (𝛼𝑓 , 𝛽𝑓 ,𝓁𝑓 ) and (𝛼𝑔 , 𝛽𝑔 ,𝓁𝑔), respectively, then their composition
𝑓◦𝑔 has format (𝛼𝑔 + 𝛽𝑔 − 1 +𝛼𝑓 𝛽𝑔 , 𝛽𝑓 ,𝓁𝑓 +𝓁𝑔). Finally, the fourth point
is a consequence of the fact that the equations are independent and the
chains can be concatenated. The length of the chain derives directly
from the existence of 𝐻 = 𝐿𝑁 𝑑 + 1 equations using 𝝈. The degree is
obtained from the largest degree of a Pfaffian function, which is the
one in Eq. (A.11). □

As in Appendix A.2, it is enough to combine Lemma 8, Theorem 6
and Theorem 5 to obtain the bounds stated in the thesis. The bounds on
he VC dimension of the specific GNN with 𝗅𝗈𝗀𝗌𝗂𝗀 as activation function
s easily found since the format of 𝗅𝗈𝗀𝗌𝗂𝗀 is (2,1,1):

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ ((2𝑑 + 1)(𝑑(𝐿 − 1) + 𝑞 + 1) − 𝑞)2(𝐿𝑁 𝑑 + 1)2
+ 2((2𝑑 + 1)(𝑑(𝐿 − 1) + 𝑞 + 1) − 𝑞) log (9)
+ 2((2𝑑 + 1)(𝑑(𝐿 − 1) + 𝑞 + 1) − 𝑞) log (16((2𝑑 + 1)(𝑑(𝐿 − 1) + 𝑞 + 1) − 𝑞))

+ ((2𝑑 + 1)(𝑑(𝐿 − 1) + 𝑞 + 1) − 𝑞)(16 + 2 log(𝐿𝑁 𝑑 +𝑁 𝑞 + 1)) . □

A.5. Proof of Theorem 4

Let us call Basic GNN (BGNN) the model of Eqs. (2)–(3). The proof is
based on the introduction of an extended version, which we call EGNN,
that can simulate the BGNN. Due to this capability, the EGNN can
shatter any set that is shattered by the BGNN so that its VC dimension
is greater or equal to the VC dimension of the BGNN. The proof will
follow by bounding the VC dimension of the former model.
More precisely, the EGNN exploits the same aggregation mechanism of
the BGNN to compute the features, which is described by Eq. (2). On
the other hand, the 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 function is defined as

𝖱𝖤𝖠𝖣𝖮𝖴𝖳
(

{{𝐡(𝐿)𝑣 ∣ 𝑣 ∈ 𝑉 }}
)

∶= 𝑓
(

∑

𝑣∈𝑉
𝐰𝐡(𝐿)𝑣 𝑐𝑣 + 𝑏

)

, (A.13)

where 𝑐𝑣 are additional real inputs used to weight each node feature in
the 𝖱𝖤𝖠𝖣𝖮𝖴𝖳 function. The simulation is based on the following steps.

(1) Each input graph 𝐺 of the BGNN is transformed to another graph
𝐺′, where all the nodes having the same 1–WL color are merged
into a single node and the edges are merged consequently;

(2) The EGNN is applied to 𝐺′ and each 𝑐𝑣 is set equal to the number
of nodes that have been merged to obtain node 𝑣.

Note that a GNN cannot distinguish nodes with the same color as the
omputation is the same on all these nodes. Thus, the BGNN and the
GNN produce the same features on nodes sharing color. As a conse-

quence, also the 𝖱𝖤𝖠𝖣𝖮𝖴𝖳𝗌 of the two models have the same output,
when the 𝑐𝑣 are equal to the number of nodes within each color cluster.
Given these assumptions, the number of equations describing the Pfaf-
fian variety associated to the EGNN is reduced to 𝑠𝑐 = 𝐶1𝑑 + 𝐶0𝑞 + 1,
which can be used in place of 𝑠̄ in Theorem 5. Moreover, also the chains
of the Pfaffian functions in merged equations can be merged and we
have that 𝐻 can be replaced by 𝐻𝑐 = 𝐶1𝑑+ 1. Finally, the length of the
hain 𝓁 of Theorem 6 is replaced by 𝓁𝑐 = 𝑝̄𝐻𝑐𝓁𝜎 .

With the above changes, we can replace the variables in Eq. (A.7)
as in Appendix A.2, obtaining:

𝖵𝖢𝖽𝗂𝗆
(

𝖦𝖭𝖭
)

≤ 𝑝̄𝐻𝑐 (𝑝̄𝐻𝑐 − 1) + 2𝑝̄ log (9)
+ 2𝑝̄𝐻𝑐 log (16𝑝̄ − 7)
+ 𝑝̄(16 + 2 log(𝑠̄𝑐 )) + 2

≤ 𝑝̄2(𝐶1𝑑 + 1)2 + 2𝑝̄ log (9)
+ 2𝑝̄(𝐶1𝑑 + 1) log (16𝑝̄ − 7)
+ 𝑝̄(16 + 2 log(𝐶1𝑑 + 𝐶0𝑞 + 1)).

and the thesis holds. □
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Fig. B.4. Results on the task E1 for GNNs with activation function 𝖺𝗍𝖺𝗇 over the dataset PROTEINS.
Fig. B.5. Results on the task E1 for GNNs with activation function 𝖺𝗍𝖺𝗇 over the dataset PTC-MR.
Appendix B. Experiments on other datasets

In this appendix, we report the additional results on the experiment
E1, regarding the evolution of the difference between the training and
11 
the test set, for GNNs with activation function 𝑓 ∈ {𝖺𝗋𝖼𝗍𝖺𝗇, 𝗍𝖺𝗇𝗁}, over
a dataset  ∈ {PROTEINS, PTC-MR}. Each figure shows the evolution
of 𝖽𝗂𝖿 𝖿 through the epochs, for certain values of 𝗁𝖽, keeping fixed 𝑙 = 3,
and for certain values of 𝑙, keeping fixed 𝗁𝖽 = 32; for each figure, the
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Fig. B.6. Results on the task E1 for GNNs with activation function 𝗍𝖺𝗇𝗁 over the dataset PROTEINS.
Fig. B.7. Results on the task E1 for GNNs with activation function 𝗍𝖺𝗇𝗁 over the dataset PTC-MR.
picture on the left shows how 𝖽𝗂𝖿 𝖿 evolves as the hidden size increases,
while the picture on the right shows how 𝖽𝗂𝖿 𝖿 evolves as the hidden size,
12 
or the number of layers, increases (see Figs. B.4–B.7). The experiments
reported here confirm the same conclusion drawn in Section 5.



G.A. D’Inverno et al. Neural Networks 182 (2025) 106924 
Data availability

I have shared my code within the manuscript.
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