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Abstract

In this Thesis, I explore the domain of hybrid quantum-classical computation, the

foremost approach for utilizing Noisy Intermediate-Scale Quantum (NISQ) devices.

The opening Chapter presents an overview of Variational Quantum Algorithms

(VQAs), highlighting the primary algorithmic challenges. It offers an in-depth re-

view of the Quantum Approximate Optimization Algorithm (QAOA), including a

discussion of its variants for ground state preparation. My presentation focuses on

the connection of QAOA with Adiabatic Quantum Computation, the patterns in

optimal QAOA parameters, and the ability to transfer optimal schedules across typ-

ical instances or from smaller to larger problem sizes. In the second Chapter, similar

techniques are proven effective in training QAOA for the supervised learning of a

simple Binary Neural Network. This model represents an idealized yet prototyp-

ical example of classical combinatorial optimization problems involving multi-spin

interactions. I remark on potential extensions of our work that could be amenable

to direct implementation on NISQ devices. In the third Chapter, the discussion

shifts toward quantum many-body ground state preparation, focusing on the one-

dimensional Heisenberg XYZ model and Longitudinal-Transverse-Field Ising Model

(LTFIM). We have developed a novel technique that, at any point in the phase

diagram, leverages the transferability of a specific class of optimal schedules from

systems with small to those with larger numbers of qubits. Remarkably, a classi-

cally computed solution for a small system may serve as a warm start for large-scale

ground state preparation on actual quantum devices. A warm-start optimization

is shown to be free from trainability issues, specifically vanishing gradients (Barren

Plateaus). In the fourth Chapter, we tailor a QAOA scheme to characterize a topo-

logical quantum phase transition within a Z2 lattice gauge theory model. This in-

vestigation is particularly significant due to its implications for high-energy physics

and relevance to quantum error correction and surface codes. Our methods may

serve as a solid ground to develop techniques aimed at investigating the dynamical

properties and excitations of analogous models. Appendices include supplementary

results on our case studies. In the concluding Chapter, I propose new stimulating

research directions and help to identify core challenges and unresolved questions in

variational quantum computing that transcend any particular application domain.
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1. Introduction

Can you do it with a new kind of computer – a quantum computer?

[. . . ] It’s not a Turing machine, but a machine of a different kind.

—Richard P. Feynman, May 1981

Computation and algorithms naturally arise in any logical and quantitative en-

deavor and have been the subject of speculation and practical investigation for

centuries (or millennia), even before the “recent” advent of the modern scientific

method. The undisputed leap forward in the computational capabilities of hu-

mankind was the dawn of the Information Age in the middle of the twentieth century:

a symbolic starting date was 1947, the year of the invention of the transistor.

In the last 70 years, digital computers have constantly been at the forefront of

technological advancement, reshaping industries and our daily lives, and leading to

an unprecedented pace of scientific progress and technological discoveries, including

the current ongoing revolution of Artificial Intelligence (AI).

From a historical perspective, it might be surprising that already in the 1980s, well

before the advent of the World Wide Web, physicists started to conjecture about

quantum computers. Quantum computers can be broadly intended as computational

models leveraging inherent properties of quantum mechanics, namely quantum su-

perposition and entanglement [5], to perform useful computation.

Perhaps ironically, the basic building block of every day “classical” computers

(your laptop), namely the aforementioned transistor, is ultimately a quantum device,

and its progressive technological improvement and miniaturization did require an

operative and theoretical understanding of quantum mechanics. Nonetheless, even

the most recent nanometer-scale transistors – featuring less than 1011 atoms – are

operated classically, as their usage is rooted in classical physics and Boolean algebra.

In simple terms, a transistor can only be in either of two distinct logical states: it

can conduct current if a bias voltage is applied, and this is a bit 1, or not, and this

is a bit 0. A bit is the basic unit of classical information.

In modern terms, a quantum computer is, borrowing Feynman’s words “a machine

of a different kind”, which relies on a new unit of quantum information, the quantum

bit or qubit. Intuitively, a qubit can be not only in the states 0 and 1, but also in

a quantum superposition of the two: elementary quantum mechanics proves that
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1. Introduction

the possible states of a qubit are in one-to-one correspondence with the points of

a (Bloch) sphere, specified by two angles (very much alike the latitude and the

longitude of a globe) [5].

In what follows, we briefly summarize the state of the art of quantum comput-

ing, focusing on the difference between fault-tolerant quantum computation and

the newer and faster-developing field of Noisy Intermediate-Scale Quantum (NISQ)

devices [6].

1.1. Two perspectives on quantum computing

The early scientific speculation on quantum computing [7] focused on a simple

yet far-reaching suggestion: if Nature behaves quantum-mechanically, it might be

more convenient to simulate it with a quantum computer, rather than a classical

one. This is what we call quantum simulation: it is perhaps the most natural and

straightforward application of quantum computing, rooted in the seminal ideas of

Feynman in 1980s [8] and later proved possible by S. Lloyd [9].

An even more ambitious question was posed in the same early years, notably by

D. Deutsch in 1985 [10]: could quantum computers offer any advantage over classical

computation at solving problems that have nothing to do with quantum physics? In

other terms, could a hypothetical perfectly working quantum computer impact tech-

nological and scientific endeavors beyond the mere simulation of quantum physics?

The first positive answer dates back to 1994, when P. Shor invented an efficient

quantum algorithm for determining prime factors of composite integers [11], a clas-

sically hard problem that lies at the heart of some of the most used cryptographic

protocols. The interest in quantum computing skyrocketed. The exponential compu-

tational advantage offered by a hypothetical quantum computer over the best-known

classical algorithm would have entailed the crack of many secure IT systems 1.

However, even back then, it was immediately clear that these neat theoretical

and algorithmic advances were at least decades ahead of the experimental platforms

required for their functioning: a quantum computer simply did not exist, and there

were serious concerns and a strong skepticism that it could ever be realized. Indeed,

transistors (the classical bits of our computers) are quite resilient to thermal and

electrical noise, and the classical errors (essentially, unwanted bit flips from 0 to 1

or vice versa) are quite easily corrected.

The opposite is true for qubits: these microscopic bits of quantum information

1By now, different post-quantum cryptographic algorithms have been devised, which would not

be vulnerable to quantum attacks. It is suggestive that the first commercial application of

quantum technologies is usually associated with quantum cryptography, specifically Quantum

Key Distribution (QKD).
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1.1. Two perspectives on quantum computing

are extremely sensitive to noise and very prone to lose their quantum information, a

phenomenon known as decoherence. Additionally, even if the quantum information

is preserved for a certain period of coherence time, the qubit state can be scrambled

in many more ways (the latitude and the longitude of the point on the Bloch sphere

can be randomly altered). If more qubits are present, the errors might even correlate,

potentially leading to a nightmare.

It was only two years later, in 1996, when the first quantum error-correcting

codes were devised [12, 13], leading to fault-tolerant quantum computation. This is

a true milestone in quantum computing: it was proven, at least in principle, that a

quantum computer built with noisy hardware can be scaled up to large devices and

be employed to solve hard problems, as long as the frequency and the correlations

of errors are kept under certain thresholds [14].

Let us fast-forward to today. Celebrated quantum algorithms with exponential

speed-up over classical methods include Shor’s algorithm for factoring integers [11],

the quantum simulation of quantum systems [9], and the HHL algorithm for the

solution of some kinds of linear systems of equations [15]. Quantum simulation, in

particular quantum chemistry [16], may provide the first real-world impact in the

not-so-distant future: it has the true potential of innovation for strategic areas, rang-

ing from improvements in human health (pharmaceuticals), agriculture, and pollu-

tion (nitrogen fixation), and the sustainability of ecosystems (energy storage [17] and

production). Another renowned example is Grover’s search algorithm [18], which

exhibits a provable quadratic speedup over the best possible classical algorithm for

search in an unstructured database 2.

However, to run these algorithms with quantum error correction, millions of physi-

cal qubits would be required. Remarkably, and against the bets of the most skeptical

scientists, it took only a few decades to implement the first “quantum computers”

based on a variety of different technological platforms. Regrettably, at the moment,

these devices feature at most a few hundred (or thousands, in the near-term future)

qubits, with significant shortcomings in terms of noise levels and usability 3. See

Ref. [19] for a review of the state of the art of experimental quantum technologies.

In summary, a universal fault-tolerant quantum computer is still far from experi-

mental reach. For this reason, the current “quantum computers” are better known as

Noisy Intermediate-Scale Quantum(NISQ) devices [6]. In the words of distinguished

scientist J. Preskill, inventor of the acronym: “Intermediate-scale” conveys that to-

2Despite being one of the conceptual milestones of quantum computing, this theoretical quadratic

speedup relies on a highly idealized assumption: the classical and quantum computers should

have the same clock speed (number of elementary operations per second). This and other

practical issues led to some skepticism on the actual realization of this speedup.
3In particular, depending on the experimental platform, these shortcomings include but are not

limited to: the qubit-connectivity map to perform entangling 2-qubit gates, short coherence

time, error rates for native single- and two-qubit gates, and readout (measurement) errors.

3



1. Introduction

day’s quantum devices with more than 50 well-controlled qubits cannot be simulated

by brute force using the most powerful currently existing classical supercomputers;

“noisy” reminds us that these devices are not error corrected and that the noise

limits their computational power [7].

A novel perspective on quantum computing naturally emerges from the first exper-

imental implementations of quantum devices: can we employ this NISQ technology

to do anything useful? Are NISQ devices capable of providing some kind of quantum

speed-up over classical computation [20]? These questions, at the moment, remain

open 4. Nowadays, most NISQ algorithms [21] are hybrid in nature: they rely both

on a classical and a quantum processor, delegating the quantum device to solve only

the classically-hard tasks of a larger computation. These hybrid quantum-classical

algorithms, known as Variational Quantum Algorithms (VQAs) [22], are covered in

the next section. Very recently, there has been substantial progress in the appli-

cation of quantum error-correcting strategies to near-term devices [23], paving the

way to the first implementations of error-corrected algorithms.

Here ends the non-technical introduction and motivation for this Thesis. A sum-

mary of quantum mechanics and quantum computation is well beyond the present

scope, and very good references exist [5, 24, 25]. From now on, we assume knowledge

of quantum circuits and quantum gates, the difference between digital gate-based

and analog quantum devices (such as quantum annealers), and the main tools and

concepts in quantum many-body physics.

1.2. Variational Quantum Algorithms

All you need in this life is ignorance and confidence; then success is

sure.
—Mark Twain

In broad terms, Variational Quantum Algorithms (VQAs) are a class of hybrid

quantum-classical computational schemes that do not require quantum error cor-

rection, certainly among the main candidates for near-term practical applications of

NISQ devices. These algorithms have recently raised an unprecedented interest in

the scientific and industrial community, leading to an ever-growing body of litera-

4Recent years have witnessed major investments in quantum computing by big tech companies,

intense funding for public and private institutions, and the rise of many quantum start-ups.

Although some of these processes might be reminiscent of speculative (or hype) bubbles, I find

the view of J. Preskill again inspiring: Though I’m confident that quantum computing will have

a transformative impact on society eventually, that impact might still be a few decades away. No

one knows for sure how long it will take to get there. Keep in mind, though, that the technology

is still at an early stage, with many competing approaches, so an unanticipated breakthrough

could change the outlook suddenly [7].
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1.2. Variational Quantum Algorithms

Figure 1.1.: An overview of the main fields of application for Variational Quantum Al-

gorithms. In this Thesis, our primary focus is on finding ground states for condensed

matter systems and solving combinatorial optimization problems. Although these prob-

lems appear quite distinct, they can be unified under a simplified variational framework,

by defining an appropriate quantum or classical target Hamiltonian, as described in this

Introduction. This figure is adapted from Ref. [22].

ture on many diverse applications. The main active research areas are summarized

in Fig. 1.1, which is borrowed from Ref. [22]. A few examples include finding quan-

tum ground states [3, 26, 27], classical combinatorial optimization [28], the solution

of linear systems of equations [29], and applications to quantum information [30].

Other promising VQA applications are represented by finding excited states and ap-

proximately simulating quantum dynamics in real or imaginary time. A particularly

active field is Quantum Machine Learning (QML), often based on hybrid quantum-

classical schemes. Recently, dequantization techniques [31] ruled out an exponential

advantage for promising QML applications on classical data. Despite the possibility

of a polynomial advantage of QML algorithms over classical computation, QML on

quantum data (either from a physical quantum system or a NISQ device) looks a

more promising avenue for a relevant quantum speedup. Any attempt to provide

a comprehensive list of publications on even a single area of application for VQAs

would be a daunting task. We refer the interested reader to two accurate reviews

on the state of the art [21, 22].

The two earliest proposals of VQAs have been the Variational Quantum Eigen-

solver (VQE) [32] and the Quantum Approximate Optimization Algorithm (QAOA)

[28]. Historically, both were devised in 2014: the former was designed for quantum

5



1. Introduction

ground state preparation, the latter for classical combinatorial optimization. Nev-

ertheless, on a practical level, they both rely on the same VQA framework: the

classically difficult part of the algorithm — i.e. preparing and measuring non-trivial

quantum states — is delegated to a quantum device, whereas the remaining com-

putations are performed on a standard classical computer. Depending on the ex-

perimental technology, it is often assumed that a gate-based quantum device with

a universal set of quantum gates is used. The quantum state is represented as a

Parameterized Quantum Circuit (PQC), iteratively updated by classical machinery,

with the goal of minimizing a cost function.

In what follows, we will dive into the general formulation of VQAs. We will then

introduce the concepts of Adiabatic Quantum Computation (AQC) and Quantum

Annealing (QA), focusing on a digitized version of QA and its connection with

QAOA. The latter is employed in the following chapters, both in its original [28]

and modified formulations [33].

1.2.1. VQA general framework

VQAs are designed to mitigate the principal limitations of contemporary quantum

hardware, including a limited number of qubits, limited qubit connectivity, and noise

processes (coherent and incoherent errors) that limit the circuit depth 5. Indeed, a

shallow-depth PQC is employed, and the optimization of its parameters is performed

using a classical algorithm.

Proposals for VQAs span a broad spectrum of scientific and technological disci-

plines, wherever quantum computing is expected to offer advantages over classical

algorithms, in the quest for a quantum speed up [20]. This class of algorithms relies

on a hybrid quantum-classical optimization scheme that is largely independent, in

its abstract formulation, of the specific domain of application or the experimental

support for the quantum circuit implementation.

Let us now describe the building blocks of a VQA, as schematically depicted in

Fig 1.2. To begin with, the problem should be formulated as the optimization of a

cost function C, which depends on a set of continuous or discrete real parameters θ

embedded in the PQC. The latter plays the role of an ansatz, which is iteratively

updated to solve the optimization task

θ∗ = argmin
θ

C(θ) . (1.1)

5In a quantum circuit, each qubit is sequentially involved in single or two-qubit operations, e.g.

Pauli rotations and CNOTs. The circuit depth refers to the maximum number of quantum

gates that need to be applied in sequence since they can not be parallelized. It is related to

the total time required to perform the computation, which can be lowered by optimizing the

quantum compilation of a high-level quantum algorithm into native gates of a given quantum

hardware.
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1.2. Variational Quantum Algorithms

C(θ)

θ1 θ2

θ1

θ2

|0⟩

|0⟩
|0⟩

|0⟩

|0⟩

θ3

Training set  

Observables  

PQC 

{ρk}
{Ôk}

U(θ)
Input

Optimal PQC   
Optimal bit string 

Samples

U(θ*)
Output

Hybrid loop

Quantum computer

Collect samples to estimate   
and its gradients

C(θ)

Classical computer

arg min
θ

C(θ)θ′ New

Figure 1.2.: Hybrid quantum-classical loop of a VQA, alongside its typical input and

output. The quantum device is utilized only for classically hard tasks, as depicted in the

shaded region. At each iterative step, the variational angles θ — encoded in the PQC —

are fixed: The quantum device is used for repeated state preparations and measurements.

Here, we show the simpler case of a single input state ρk = |ψ0⟩⟨ψ0| (with an initial blank

register), see Eq. 1.4. Once the state is prepared, qubits are measured in some bases, and

the outcomes are collected to estimate the cost function C(θ) and its gradients. A pictorial

two-dimensional cut of the cost function C(θ) is shown: the cost function is non-convex,

implying a challenging optimization. The estimated value of C(θ) (and its gradients) are

passed to a classical computer, where an optimization routine performs the step θ → θ′,

proposing a new improved set of variational parameters. A new PQC is then repeatedly

prepared and measured in the next iteration.

The crucial feature of a VQA is the synergy between quantum and classical com-

putational resources. At each iteration, the quantum hardware is used to prepare

the ansatz and perform measurements on it, yielding estimates for C(θ) and its

gradients, if needed. These values are then passed to a classical computer, which

performs an optimization step by updating the set of variational parameters θ. This

procedure is iterated up to convergence, or an exit condition is met. The outcome of

7



1. Introduction

the algorithm is usually the optimal PQC, or related quantities, such as a collection

of bit strings (or a single optimal bit string, like in QAOA).

Following Ref. [22], in very general terms, the cost function may be written as

C(θ) = f
(
{ρk}, {Ôk}, U(θ)

)
, (1.2)

where f is some function, U(θ) is a parameterized unitary, {ρk} is a set of input

(or initial) states that can be interpreted as a training set, and {Ôk} is a set of

observables. In practice, most implementations of a variational scheme rely on a

cost function in the form

C(θ) =
∑
k

fk
(
Tr[ÔkU(θ)ρkU

†(θ)]
)
. (1.3)

More explicitly, each initial state ρk is time-evolved by the parameterized unitary,

and then used to compute an expectation value for each observable Ôk: these expec-

tation values are post-processed by applying functions fk and then summed together,

to yield the total cost. The most common case, e.g. for quantum ground state prepa-

ration and classical optimization, reduces to the well-known variational principle,

adopted for instance in Variational Monte Carlo techniques. This is obtained by

simply dropping the sum over k, and choosing fk(x) = x, ρk = |ψ0⟩⟨ψ0|, leading to

C(θ) = ⟨ψ0|U †(θ)ÔU(θ)|ψ0⟩ , (1.4)

where the state ψ0 is an easily prepared initial state (often a product state), and the

observable Ô coincides with the quantum Hamiltonian, whose ground state we want

to find, or the classical optimization cost function embedded in a quantum setup

via standard base encoding [5] (see Eq. 1.13).

This abstract formulation may hide several complex tasks and open challenges

that are involved, in practice, to devise a meaningful VQA. Let us now focus on

the specific case of Eq. 1.4 for simplicity of notation, even though the discussion

extends straightforwardly to the general case. The definition of the cost function

C is crucial for many reasons. Obviously, it must be “faithful”, meaning that its

minimum should coincide with the solution of the problem. However, since the

global minimum is usually found only in simple idealized scenarios, it should also

be “operationally meaningful”, i.e. lower values should indicate progressively bet-

ter solutions. The choice of the observable Ô is usually quite obvious, as in the

aforementioned cases of ground state preparation or classical optimization tasks.

Incidentally, one should usually avoid global cost functions, such as the fidelity with

respect to a known quantum state, as this would lead to a poorly trainable regime

and vanishing gradients of C [34].

The real challenge resides in the definition of a PQC |ψ(θ)⟩ = U(θ)|ψ0⟩, i.e.

of the variational quantum state obtained by applying the parameterized unitary

U(θ) to the simple initial state ψ0. First, the physical hardware limitations should be

8



1.2. Variational Quantum Algorithms

accounted for, both concerning qubit number and connectivity and in terms of circuit

depth. Secondly, the PQC should be efficiently implementable on the hardware in

terms of a set of native gates, and it should be scalable up to a large number of

qubits with limited resources (e.g. gate counts). Moreover, at each iteration, the

cost function C(θ) is estimated by repeated measurements on the same quantum

state |ψ(θ)⟩, and this set of measurements (together with classical post-processing)

should also be efficient. Despite small-scale classical simulations are often run by

exactly computing the PQC, by employing dedicated software likewise Qiskit [35] or

Pennylane [36], in a real-world scenario it is not possible to access the exact values

of the cost function, which should be estimated as a sample mean (empirical mean

estimator) over a certain number of “shots” K:

C(K)(θ) :=
1

K

K∑
j=1

Cj(θ) . (1.5)

We remark that the right-hand side of the previous equation is the average over

different measurement outcomes on |ψ(θ)⟩, which might have to be performed on

different bases, typically depending on the decomposition of the operator Ô into

a weighted sum of Pauli strings. We dub “shot noise” the statistical noise that

is inherently present due to a finite value of K, even in the idealized scenario of

a perfectly working quantum device without any physical noise or gate errors: by

elementary statistics, we expect the statistical error to scale as K−1/2.

The computation of gradients ∇θC(θ) (if needed for the classical optimization

routine) is also a critical task, which can be tackled via finite differences approaches

(very sensitive to shot and physical noise), analytical tools such as the parameter

shift rule [37] and its generalized versions [38], or other techniques based on natural

gradients and their approximation [39, 40].

Another key point is the question of classical simulability: if any practical quan-

tum speedup is sought, certainly the quantum state ψ(θ) should not be classically

simulable. What might seem an obvious statement, is actually an open research

question of paramount importance in variational quantum computing and, more

generally, in quantum many-body physics. Indeed, it is still an open challenge to

characterize what makes a quantum state hard to be classically simulated, either in

the weak sense (efficient sampling of the square modulus of the wavefunction) or in

the hard sense (computing outcome probabilities efficiently) [41]. Note that, to sim-

ulate a VQA classically, it would be enough for the PQC to be simulable in the weak

sense (i.e. sampled efficiently, to compute the cost function C and its gradients),

a concept that has not been fully explored, yet [41]. For example, low-entangled

quantum states can be simulated with tensor network techniques [42], whereas sta-

bilizer circuits (composed by Clifford gates only) are classically simulable due to the

Gottesman-Knill theorem: quantum entanglement and the so-called quantum magic

are two necessary resources (but not sufficient, on their own) to make a quantum

9



1. Introduction

state classically hard. Another winning strategy to simulate classes of quantum

wavefunctions is neural network quantum states [43].

In summary, a good PQC (or ansatz) should be expressive enough to encode

non-trivial (and non-classically simulable) quantum states, including states that

yield a solution to the problem at hand. Nevertheless, there is a trade-off between

high “expressivity” — i.e. the portion of Hilbert space that is covered by the trial

wavefunction — and low trainability — i.e. the ease in finding good parameters, as

a result of the classical optimization of the cost function.

Ansatz design is an intricate subject, that is highly problem-dependent: an ex-

haustive review of different strategies is well beyond the current scope, see Refs. [21,

22]. A simple classification can be done in terms of “problem-inspired” and “problem-

agnostic” ansatzes, where the first class includes PQCs that draw inspiration from

the physics of the problem. An example of this class is QAOA, which is detailed in

Sec. 1.3. On the other hand, some implementations of VQE are problem-agnostic

and rather focus on clever use of hardware resources, namely the “hardware-efficient

ansatz”, which is crafted to minimize the circuit depth on a specific experimental

platform.

1.2.2. Algorithmic and theoretical challenges

Recent years have witnessed tremendous advances in the theory of hybrid quantum-

classical computation, with several algorithmic proposals and steady experimental

progress. However, conclusive evidence of practical quantum speedup over the best

classical algorithms is still lacking or highly debated in all application areas depicted

in Fig. 1.1. Unfortunately, any provable exponential speedup seems hard to obtain.

Short of sharp theoretical arguments or mathematical proofs, the best way to prove

practical quantum advantage (or quantum utility) in real-world use cases for science

or technology is to implement VQAs in practice. Nowadays, NISQ devices are nearly

beyond the threshold of classical simulations [44], even though convincing evidence

remains elusive [45]. Nevertheless, the current technology appears mature enough

for a direct investigation of the quantum utility of VQAs: To do so, many challenges

should be addressed.

Here, we summarize the main algorithmic and theoretical challenges that arise in

a realistic VQA implementation. We do not discuss coherent noise, gate errors, or

incoherent noise such as state-preparation-and-measurement (SPAM) errors, which

represent additional hurdles to quantum utility. These issues can be tackled, at least

in principle, by utilizing quantum error correction or error-mitigation techniques.

Since these tools are not used in the following Chapters, we refer the reader to

existing literature.
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1.2. Variational Quantum Algorithms

Local minima traps

First and foremost, the main challenge for a VQA is trainability, that is the effec-

tiveness of a classical optimization routine in the minimization of the cost function.

Even in the simplified setting of Eq. 1.4, e.g. QAOA (see the next section), the opti-

mization landscape is usually highly non-convex, and local minima traps represent a

serious issue. In practice, for a realistic application, a heuristic variational approach

is not expected to yield the global minimum. Hence, we remark the distinction

between “good” local minima solutions θ∗ (with low-enough values of the cost func-

tion C(θ∗)) and local minima “traps”, where the classical optimizer may get stuck,

without providing any reasonable solution. The presence of local minima traps in

the variational optimization of PQCs is a ubiquitous phenomenon experienced by

all practitioners. This empirical evidence led to incremental advances in devising

more effective optimizers [27, 46]. A systematic characterization of the presence of

local minima traps in the cost function landscape for certain PQCs was derived in

Ref. [47], and VQA training was formally proven to be NP-hard in Ref. [48]. On

the other hand, classical neural networks can be trained effectively using techniques

like the ADAM optimizer, especially when they have more parameters than are

strictly necessary — a condition known as benign overparameterization. Despite

seeming similarities, PQCs show substantial differences: To date, researchers have

not identified an effective overparameterized regime and a reliable classical opti-

mization routine for VQAs. Therefore, current VQAs rely on a careful design of

the ansatz — usually problem-inspired, or encoding model symmetries — and on a

careful training procedure. In addition to local minima traps, the issue of vanishing

gradients also affects the cost function landscape of VQAs: this is inherently due to

their quantum nature.

Barren plateaus

Another trainability issue has become a whole new research field, namely Barren

Plateaus (BPs): in a nutshell, the magnitude of the gradients of the cost function

C(θ) tend to vanish exponentially almost everywhere by increasing the number of

qubits N . This is a serious drawback for a learning model, such as VQAs, where the

cost function C(θ) and its gradients can be estimated only via sampling, namely by

repeated preparation and measurement of the parameterized quantum state ψ(θ).

To understand the essence of the BP phenomenon more formally, let us consider

a cost function C(θ) and its partial derivatives (gradient components) ∂θjC(θ). Un-

der mild assumptions, by averaging any partial derivative over the whole variational

landscape, one would expect to obtain nearly zero due to sign cancellations. If we de-

note as ⟨·⟩θ the average over the variational space with a flat (uniform) distribution,
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this condition reads

⟨∂θjC(θ)⟩θ = 0 . (1.6)

This is formally true for 1-design PQCs, i.e. for sufficiently expressive and deep

ansatzes, as proven in Ref. [49]. By definition, BPs occur when also the gradi-

ent magnitudes, quantified by the variance of a generic partial derivative, vanish

exponentially with the qubit number N :

Var
[
∂θjC(θ)

]
=
〈(
∂θjC(θ)

)2〉
θ
∼ 1

bN
, (1.7)

for some b > 1. As proven analytically in the first seminal paper on BPs, Ref. [49],

highly expressive PQCs suffer from vanishing gradients when randomly initialized.

These results are valid in the framework of 2-design random quantum circuits [50–

52], namely deep and problem-agnostic ansatzes that are, in informal words, just a

bunch of parameterized rotations and entangling gates repeated for a large number

of layers.

In this case, as formally stated by the Chebyshev inequality, the probability of

having sizeable gradients in the variational energy landscape is also exponentially

small for increasing N :

P
(
|∂θjC(θ)| > δ

)
≤ Var

[
∂θjC(θ)

]
δ2

, (1.8)

for any δ > 0. In classical learning models, such as artificial neural networks, the

cost function and its gradient components can be computed exactly (up to numerical

precision): an estimation with accuracy ε usually scales as O(log(1/ε)). In contrast,

in the quantum setting, a gradient estimation relies on sampling, very much like the

cost function estimation in Eq. 1.5. This can be seen e.g. by applying the parameter

shift rule or its generalized versions.

Hence, let us focus on the empirical mean estimator C(K)(θ) of the true value of

the cost function C(θ), which is constructed from K measurement outcomes Cj(θ).

To obtain an ε-accurate estimate of the true value, with a probability at least (1−δ),
i.e.

|C(K)(θ)− C(θ)| ≤ ε , (1.9)

one needs a number of shots 6 scaling as [53]

K = O

(
1

ϵ2

)
log

(
2

δ

)
. (1.10)

6Here, we are examining an idealized scenario, in which we perform measurements on the basis

of eigenstates of the operator Ô. In practice, this is rarely the case, unless Ô is classical, i.e.

diagonal in the computational basis. In most applications, it is necessary to decompose Ô

into a weighted sum of Pauli strings. Then, one performs repeated state preparations of ψ(θ),

measuring each time in the diagonal basis of a single Pauli string: all of this is required to obtain

a single experimental value for Cj(θ). This may often represent a significant computational

overhead.
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In the presence of BPs, it is mandatory to estimate the cost function with accuracy

at least ε ∼ b−N , leading to an unfeasible exponentially-large number of shots K =

O
(
b 2N
)
.

In summary, exponentially vanishing gradients imply an exponentially large num-

ber of state preparations and measurement shots at each VQA iteration, to accu-

rately estimate the gradients of the cost function, find a loss-minimizing direction,

and navigate the loss landscape. Hence, in the presence of BPs, an exponential

quantum speed-up is theoretically ruled out and, on a practical level, a randomly-

initialized VQA is certified to fail by scaling up the problem beyond a few tens

qubits, i.e. precisely in the regime beyond the reach of classical simulations.

Let us remark that the BP phenomenon is inherently quantum and related to the

sampling procedure. Indeed, in classical machine learning, one has access to float-

precision values of C(θ) and its gradients: it is possible to track gradient magnitudes

and rescale the whole cost function by an appropriate factor to cure vanishing or

exploding values of partial derivatives.

Following the first results on 2-design PQCs, many papers investigated the occur-

rence or absence of BPs in different frameworks, both numerically and analytically.

A remarkable link has been demonstrated between the locality of the observable Ô

in the cost function C and the severity of the BP phenomenon upon increasing the

qubit count N : A global cost function is very problematic, as the onset of BPs is

already observed for a PQC with a constant depth O(1). On the opposite, a local

observable is BP-free up to, at least, depth O(logN). Although these results are also

based on the 2-design assumption, they suggest the reasonable practice of avoiding

global operators Ô, such as projectors on a subspace.

In recent years, a lot of progress has been made in the formal understanding of this

topic. In particular, BPs have been linked to highly-expressive PQCs [54], beyond

the idealized framework of a 2-design. Unfortunately, they also arise in the context

of less-expressive symmetry-preserving ansatzes that are problem-inspired [55, 56],

or in equivariant [57] ansatzes. Other sources of exponentially vanishing gradients

are entanglement in the initial state [58] and, for a large class of PQCs, the presence

of noise: these noise-induced BPs [59] are conceptually distinct from other results

and may prove particularly difficult to overcome. On a theoretical side, the presence

of BPs has been equivalently characterized in terms of cost function concentration

and the presence of narrow gorges in the training landscape [60]. Despite being

formulated for first-order gradients (partial derivatives of C(θ)), in practice, the BP

issue has been shown to affect both higher-order gradient-based algorithms [61] and

common gradient-free methods [62].

As highlighted by this partial summary, there has been a flourishing of papers

investigating variants of the BP phenomenon for different PQC architectures. Very

recently, however, a unified theory of all possible sources of barren plateaus for
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generic deep PQCs has been proposed independently by two groups, in Refs. [63]

and [64].

Despite the intrinsic scientific interest of this research branch, the outlined sce-

nario might appear rather delusional: most currently-used PQC architectures have

severe trainability issues, due to unfavorable non-convex landscapes with many lo-

cal minima traps and vanishing gradients that require exponential resources to be

estimated. As mentioned above, this appears to be in stark contrast with the un-

reasonable effectiveness of training classical learning systems, e.g. artificial neural

networks [65]. The quest for a provably trainable VQA architecture, i.e. one that

is free of the BP phenomenon, has not led to promising results: on the contrary, it

appears that most (if not all) provably trainable PQCs end up being classically sim-

ulable, ruling out any super-polynomial quantum advantage. This conundrum has

ultimately led to a proposal to somehow “pause and rethink variational quantum

computing” [66].

Several proposals have been put forth by the community to mitigate or avoid BPs.

A non-comprehensive list includes employing classical pre-training techniques [67,

68], layerwise learning for classification tasks [69], identity-block initialization [70],

or classical shadows [71]. Moreover, some specific ansatz choices were proven to

be free from the vanishing gradient problem, e.g. Quantum Convolutional Neural

Networks [72] or some quantum tensor networks [73]. A nearly complete list of

approaches can be found in [66]: Unfortunately, many of them turn out to lead to

classically simulable algorithms that effectively live in polynomially-sized subspaces

of the full Hilbert space.

Luckily, these “negative” results do not rule out polynomial quantum advantage,

or even super-polynomial speed ups, if warm starts — i.e. clever initialization strate-

gies for the parameters θ — are adopted. More ambitiously, different approaches to

variational quantum computing might be explored, e.g. motivated by fault-tolerant

algorithms or by embracing the classical simulability and leveraging the quantum

device only for an initial data acquisition procedure, which might also be iteratively

optimized.

Despite these results being very recent, the importance of warm starts and smart

parameter initialization, often based on iterative procedures, was already renowned

by the community in the context of structured ansatzes inspired by Adiabatic Quan-

tum Computation (AQC), such as QAOA and its generalizations. In Refs. [74, 75],

the authors leverage an iterative scheme by optimizing only a subset of gate param-

eters at each iteration and using this result as a warm-start for the next iterative

step.

In this Thesis, we mainly focus on this class of problem-inspired ansatzes related to

AQC in the context of classical optimization and ground-state preparation, avoiding

highly expressive and unstructured PQCs. We also employ and develop strategies
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to avoid random initialization, boosting the trainability of hybrid quantum-classical

schemes.

In the next section, we review the basics of AQC and its connection to digitized

schemes that can be implemented on a gate-based model and trained in a VQA

framework.

1.3. Adiabatic Quantum Computation, Quantum

Annealing, and QAOA

Before the early proposals of VQAs in 2014, the concept of quantum optimization

had already been explored in the framework of Quantum Annealing (QA) [76–80]

and Adiabatic Quantum Computation (AQC) [81] 7, including the first experimental

implementations [82].

In a nutshell, AQC relies on the following idea: a quantum system is initialized in

the easy-to-prepare ground state of an initial Hamiltonian Ĥ0, and then driven out

of equilibrium by an external coupling, finally reaching the ground state of a target

Hamiltonian Ĥtarg, which encodes by construction the solution of a computational

problem. In the following, we summarize the main concepts and challenges of AQC,

referring to [81] for a historical introduction and a complete scientific review.

This framework was originally conceived for classical combinatorial optimization,

focusing on an Ising spin-glass cost function (or Hamiltonian)

EIsing(σ1, . . . , σN) =
N∑
i=1

hiσi −
∑
i<j

Jijσiσj , (1.11)

expressed in terms of N binary variables (or classical spins) σi = ±1. Since finding

the ground state of a spin glass is an NP-complete problem, there exist mappings

from every other combinatorial optimization problem in the NP complexity class

to a spin glass. Several explicit examples are formulated in Ref. [83]. This class of

problems is mathematically equivalent to QUBO (Quadratic Unconstrained Binary

Optimization) [84], and has its distinctive feature in the presence of 2-bodies inter-

actions only: this is a 2-local Hamiltonian, by definition. Notice that no hypotheses

are made on the interaction couplings Jij, which are usually disordered and long- or

infinite-range.

However, other interesting classical optimization problems that can still be recast

into classical spin models, do not admit a 2-local (or k-local, for any k ≪ N)

7Over the last two decades, there has been a flourishing of names referring to different variants of

QA (initially intended as a classical algorithm simulating quantum fluctuations) and AQC. Here,

following Ref. [81], we shall dub the most general case as AQC, encompassing all alternative

formulations.
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Hamiltonian. In this case, higher-order interactions are present:

E(σ1, . . . , σN) =
N∑
i=1

hiσi −
∑
i<j

Jijσiσj −
∑
i<j<k

Kijkσiσjσk − . . . . (1.12)

This is, for instance, the case of supervised learning of Binary Neural Networks

(see Chapter 2).

Regardless of k-locality, the standard strategy to obtain a quantum Hamiltonian

is to map classical spins to quantum spin-1/2 Pauli operators σ̂z
j , in the so-called

base encoding. Hence, the initial cost function is mapped to a quantum Hamiltonian

that is diagonal, by construction, in the standard computational basis of quantum

computation [5]:

E(σ1, . . . , σN)→ Ĥz(σ̂
z
1, . . . , σ̂

z
N) . (1.13)

Coming back to AQC, let us phrase it in its standard formulation: the target

Hamiltonian — whose ground state we wish to find — is Ĥtarg = Ĥz, while the

initial Hamiltonian is often Ĥ0 = Ĥx = −Γ0

∑
j σ̂

x
j , i.e. a transverse field term

allowing for quantum fluctuations (we set Γ0 > 0). The idea is to construct an

interpolating Hamiltonian

Ĥ(s) = sĤtarg + (1− s)Ĥ0 , (1.14)

with s = s(t) playing the role of an external driving. Ideally, the goal would be

to pursue adiabatic dynamics, following the instantaneous ground state of Ĥ(s), by

slowly increasing s(t) from s(0) = 0 to s(τ) = 1 in a large total annealing time τ .

Clearly, one should start from the easily prepared ground state of Ĥx:

|ψ0⟩ = |+⟩⊗N =

( |↑⟩+ |↓⟩√
2

)⊗N
, (1.15)

where |↑⟩ and |↓⟩ denote the spin up/down eigenstates of σ̂z. Let us remark that this

formulation of AQC is also valid for the ground state preparation of a many-body

quantum Hamiltonian Ĥtarg, which is usually expressed in terms of the whole set of

non-commuting Pauli operators
{
σ̂α
j

}
for j = 1 · · ·N and α = x, y, z.

The formal solution of the Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = Ĥ(s(t)) |ψ(t)⟩ (1.16)

given the initial condition |ψ(t = 0)⟩ = |ψ0⟩ is written as |ψ(t)⟩ = ÛAQC(t, 0)|ψ0⟩,
with a time-ordered evolution operator

ÛAQC(t, 0) = T exp

(
− i
ℏ

∫ t

0

Ĥ(s(t′))dt′
)
. (1.17)

In an ideal adiabatic evolution, the time-evolved state |ψ(t)⟩ would coincide with the

instantaneous ground state of the time-dependent Hamiltonian at any time t, leading
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to the correct ground state at t = τ . However, adiabaticity can be guaranteed only

under precise assumptions. In fact, the main hurdle in AQC is related to the large

values of the annealing time τ required for adiabaticity, possibly diverging in the

thermodynamic limit, if the system crosses a critical point or, even worse, a first-

order phase transition [85]. A quantitative analysis of the relationship between the

minimum spectral gap ∆ encountered during the annealing and the large values of

τ required for adiabaticity relies on the adiabatic theorem(s). This is a very subtle

theoretical subject, which is reviewed in [81]: here, in summary, and with a great

deal of simplification, we may state that (under reasonable hypotheses) the minimum

annealing time τ required for adiabaticity should scale as ∆−2. Whereas, in principle,

the annealing schedule s(t) could be chosen with some freedom, by “slowing down”

close to points where the spectral gap of Ĥ(s) is minimum, in practice this requires

knowledge of spectral information, a notoriously difficult problem [86]. Hence, very

often, a linear schedule s(t) = t/τ is assumed.

Remarkably, upon relaxing the previous hypotheses on the initial and target

Hamiltonians, it was proven that AQC is universal [87], as it is polynomially equiv-

alent to gate-based quantum computation. This is possible by considering generic

non-stoquastic Hamiltonians. A stoquastic Hamiltonian is characterized by having

only non-positive off-diagonal matrix elements, as in the case of Ĥx and, obviously,

a diagonal Ĥtarg = Ĥz.

Let us notice that these methods, unlike VQAs, do not require a hybrid quantum-

classical optimization loop or a PQC, but rather a single coherent quantum evolution

for a long time. Therefore, AQC/QA is better suited to analog quantum simulators:

current devices (notably D-Wave quantum annealers) are limited to stoquastic Ising-

like Hamiltonians, and therefore not universal. Sources of non-ideality include deco-

herence and thermal fluctuations. Nevertheless, commercial use cases of AQC/QA

have been put forward, featuring many potential industrial applications [88].

We highlight, however, that it is possible to simulate an adiabatic evolution in

a gate-based model of quantum computation: this can be accomplished by digi-

tized Quantum Annealing (dQA), which may be regarded as a first conceptual step

towards QAOA.

1.3.1. From digitized Quantum Annealing to QAOA

In this section, we provide a summary of dQA [89, 90] and QAOA, within the

context of Variational Quantum Algorithms. The digitalization of the continuous-

time AQC/QA dynamics (Eq. (1.17), with t = τ) is a natural procedure, which

requires two successive steps: time-discretization and the Trotter split-up of the

exponential of a linear combination of non-commuting operators.

In the first step, we simply choose a discretization of the time interval [0, τ ] into
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P small time steps ∆tm, such that
∑

m ∆tm = τ . Correspondingly, the continuous

schedule s(t) is discretized into a sequence of short-time evolutions utilizing a step

function, attaining P values s1, . . . , sP. In the limit of an infinite number of in-

finitesimal time steps, the time-ordered exponential in the evolution operator would

be approximated by a time-ordered sequence of infinitesimal-time evolutions with

a fixed Hamiltonian Ĥ(sm). By taking equal time intervals ∆tm = ∆t, the exact

dynamics is recovered in the limit

Ûstep =
←P∏
m=1

e−i
∆t
ℏ Ĥ(sm) ∆t→0−−−→ ÛAQC(τ, 0) , (1.18)

with the arrow← denoting a time-ordered product 8. This time-discretization works

remarkably well not only for small values of ∆t, but, surprisingly, even for ∆t ∼ O(1),

as long as P is large enough: such “robustness to time discretization” has been

confirmed by a few theoretical studies, see e.g. Ref. [91].

The second step towards dQA, i.e. for the simulation of AQC/QA on a gate-

based device, relies on a Trotter split-up of the non-commuting terms Ĥtarg and Ĥ0

appearing in Eq. (1.14), for each unitary operator e−i
∆t
ℏ Ĥ(sm) in Eq. (1.18). In the

case of classical optimization, with Ĥtarg = Ĥz (not necessarily 2-local), we would

simply write:

e−i
∆t
ℏ Ĥ(s) = e−iβĤxe−iγĤz + O

(
(∆t)2

)
, (1.19)

with β = (1 − s)∆t/ℏ and γ = s∆t/ℏ, to the lowest order in the Trotter splitting.

Similarly, if Ĥtarg is a combination of a σ̂z-part Ĥz and a σ̂x-part Ĥx — as for the

ground state preparation of an Ising model (or Ising spin glass) in a transverse

field — the same expression still holds, with suitable values of β and γ. Along the

same lines, one can extend this procedure to other target Hamiltonians or include

higher-order terms in ∆t 9.

Within the standard assumption of a linear annealing schedule s(t) = t/τ , the

step function approximation is simply sm = m/P for m = 1 · · ·P, where P is called

the number of Trotter steps (or slices). This amounts to setting, in the case of a

classical Ĥtarg = Ĥz, 
βm = (1− sm)

∆t

ℏ
,

γm = sm
∆t

ℏ
.

(1.20)

In conclusion, the digitized-QA unitary evolution is given by:

|ψP(β,γ)⟩ = Û(βP, γP) · · · Û(β1, γ1)|+⟩⊗N , (1.21)

8Notice that similar approximations must be carried out also to classically simulate the AQC

dynamics, e.g. via higher-order numerical integration methods for the Schrödinger Eq. (1.16).
9A second-order approximation that exhibits the same computational cost of the first-order for-

mula as a function of P is easily constructed from a symmetric second-order Trotter splitting.
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where β = (β1, · · · βP), γ = (γ1, · · · γP) and the m-th step evolution operator reads:

Û(βm, γm) = e−iβmĤxe−iγmĤz . (1.22)

In principle, each unitary term of Eq. (1.22) can be decomposed into elementary

gates with standard techniques 10. Upon selecting sufficiently large values of P and

small values of ∆t, with fixed product τ = P∆t, continuous-time AQC/QA can be

simulated with arbitrary accuracy on a gate-based model.

In a complementary view, if one fixes the number of Trotter slices P (i.e. the circuit

depth), this digitized-QA scheme can be regarded as a basic example of VQA with

a single variational parameter, ∆t in Eq. (1.20), which we can optimize to achieve

the lowest possible variational energy:

EP (β,γ) = ⟨ψP(β,γ)|Ĥtarg|ψP(β,γ)⟩ , (1.23)

with Ĥtarg = Ĥz for a classical optimization 11. Indeed, as discussed in Ref. [90],

a too-small value of ∆t corresponds to small Trotter errors but also to a short

annealing time, while a too-large ∆t is associated with large Trotter errors that

make the final state rather inaccurate. Consequently, there is an optimal value of

∆t for performing such digitized-QA dynamics [90].

Before concluding our discussion of dQA, a comment is in order, concerning the ac-

tual decomposition into elementary gates. Whereas the implementation of e−iβmĤx

requires a single layer of one-qubit Pauli rotations along the x-axis, the gate de-

composition (and thus the depth of the resulting quantum circuit) for the unitary

e−iγmĤz is strongly problem-dependent. In the case of Ising (i.e. of QUBO) Hamil-

tonians in Eq. (1.11) the gate decomposition is very simple. However, if multi-body

interactions are present, as in Eq. (1.12), this decomposition might lead to a highly

impractical scaling, requiring up to an exponentially large number of elementary

gates as a function of N . This may represent a bottleneck for the actual implemen-

tation of this computational paradigm.

With the introduction of dQA, we set the stage for a straightforward analysis of

the Quantum Approximate Optimization Algorithm (QAOA) by Farhi et al. [28].

Indeed, the QAOA trial wavefunction has the same form as in Eqs. (1.21)-(1.22),

where now β and γ are promoted to 2P independent variational parameters for

the quantum state, rather than fixed by a Trotter split-up. Hence, QAOA can be

regarded as a specific case of VQA, whose PQC draws inspiration from AQC/QA, by

generalizing its digitized version. As described in Sec. 1.2, the variational parameters

β and γ are iteratively updated by a classical optimization routine, with the goal

of minimization of Eq. (1.23).

10However, the required number of gates might scale exponentially with the qubit number N , as

commented below.
11In the present case of dQA, (β,γ) are intended to be solely a function of ∆t, through Eq. (1.20).
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Clearly, the optimal energy at the global minimum EP (β
∗,γ∗) is a monotoni-

cally decreasing function of P, which systematically improves on any digitized-QA

approach with an equal value of P. However, the same technical shortcomings il-

lustrated for general VQAs may occur for QAOA: determining the global minimum

(β∗,γ∗) is a non-trivial task, since local optimization routines tend to get trapped

into one of the many local minima of the 2P-dimensional search space, and the

phenomenon of barren plateaus can make the gradients of the variational energy in

Eq. (1.23) exponentially small in the qubit number N .

1.3.2. Theory and scope of QAOA

Since its first proposal [28], QAOA has rapidly gained popularity as a leading can-

didate among NISQ algorithms. Remarkably, it has been proven computationally

universal [92, 93], and even for the lowest P = 1 (under some basic complexity-

theoretic assumptions) the QAOA state in Eqs. (1.21)-(1.22) cannot be efficiently

sampled by classical methods [94]. Remarkably, QAOA has been successfully im-

plemented on a trapped-ion quantum simulator [95] and superconducting quantum

circuits [96, 97].

The vast majority of QAOA applications tackle classical combinatorial optimiza-

tion tasks yielding 2-local models, as in Eq. (1.11). In particular, an ever-growing

body of literature focuses on MaxCut for random graphs, often 3-regular graphs

(with, or without random weights). See e.g. Refs [28, 74, 98] and other more recent

publications. However, very little is known on average or worst-case performance

guarantees for P > 1 12, and no consistent proof of quantum advantage compared to

the best classical algorithms has yet been obtained, as it may require a large number

of qubits in an experimental setup [99]. QAOA for MaxCut has been intensively

investigated for years as a potential candidate for practical quantum advantage: this

is also due to its efficient gate decomposition. Nonetheless, a few studies focus on

relevant optimization tasks that require the more general, multi-spin, formulation

of Eq. (1.12). Relevant examples include Refs. [100–103]: We will outline some of

these results in the next sections. Moreover, in Chapter 2, we apply QAOA to the

supervised learning of simple Binary Neural Networks. This is a paradigmatic task

in machine learning, which does not admit an Ising-like cost function.

We highlight that the original QAOA formulation has been modified in many

ways: Ref. [104] provides an up-to-date review of the implementation of several

variants of QAOA. A recently rebranded version [33], namely the Quantum Al-

12The results for P = 1 are reported in the original QAOA paper [28]. In the opposite limit

P→∞, QAOA is guaranteed to find the solution, since it can provide an arbitrary-precision

digital simulation of AQC/QA, with arbitrarily large annealing time τ . Indeed, by handling

such limits with care, one could choose a vanishing ∆t and a large τ = P∆t. In practice, the

corresponding quantum circuit would be exceedingly deep.

20



1.3. Adiabatic Quantum Computation, Quantum Annealing, and QAOA

ternating Operator Ansatz, proposes a simple but far-reaching generalization: in

Eq. (1.22), one could replace either or both the diagonal Hamiltonian Ĥz and the

mixing Hamiltonian Ĥx with some other operators. For instance, Ĥz could be an

approximated version of the classical Hamiltonian (or cost-function) that admits

a simpler gate decomposition, whereas Ĥx could be modified to introduce tailored

quantum fluctuations among a relevant subset of the classical states.

Although QAOA was devised to find approximate solutions to classical combina-

torial optimization problems, it can be readily generalized to construct the ground

state of many-body quantum Hamiltonians, as previously mentioned also for AQC.

This approach will be utilized in Chapter 3 and Chapter 4. In this context, a gen-

eralized formulation of QAOA is commonly named Hamiltonian Variational Ansatz

(HVA) [2, 27, 56, 105–110], with a variational state of the form:

|ψP (θ)⟩ =
P∏

m=1

e−iθm,M ĤM · · · e−iθm,1Ĥ1|ψ0⟩ . (1.24)

Here, |ψ0⟩ is a simple initial state, while m = 1 · · ·P labels successive circuit layers,

each in turn composed by j = 1 · · ·M alternating unitaries generated by Hamil-

tonian operators Ĥj. The target Hamiltonian Ĥtarg can be linearly decomposed in

terms of the generators and is now a quantum Hamiltonian, usually expressed in

terms of Pauli operators. The trial PQC in Eq. (1.24) is iteratively optimized to

approximate the ground state by leveraging the variational principle with a cost

function in the same form of Eq. (1.23).

Theoretical insight on the relation between analog AQC/QA and QAOA was

gained in Refs. [111, 112], leveraging optimal control techniques [113]. Although

QAOA is usually implemented on a gate-based model, it can be theoretically de-

scribed as an analog algorithm, in the same form as a continuous-time driving pro-

tocol in Eq. 1.14. This is done by choosing for s = s(t) a bang-bang protocol (square

pulse), namely a discontinuous function jumping between 0 and 1 for tunable time

intervals, i.e. βm and γm respectively [75]. In this case, the total evolution time

amounts to (we set ℏ = 1)

τ =
P∑

m=1

(γm + βm) . (1.25)

Upon fixing a finite value of τ , a natural question concerns the optimal protocol s(t):

is it a continuous annealing-like schedule or a discontinuous bang-bang protocol? In

a previous seminal work on the interplay between optimal control theory and the

VQA hybrid scheme, the authors applied the Pontryagin principle to show that the

optimal schedule is a bang-bang protocol [114]. However, it turned out that some

assumptions were not as general as expected: in Ref. [111] the optimal protocol for

a fixed and finite value of τ is proven to be hybrid, consisting of both bang-bang

and annealing segments. Specifically, analytical and numerical evidence suggests

a “bang-anneal-bang” qualitative behavior: the optimal protocol begins and ends
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with a bang, and in between it usually has an extended annealing region (possibly

including additional bangs). In the follow-up paper [112], the qualitative features

of the optimal protocol are investigated in further detail. Initial and final bangs

are found to be related to diabatic transitions. The interior region is characterized

by a smooth annealing behavior, with a superposed oscillatory pattern. In the

large-τ limit, the optimal curve is observed to approach a monotonic optimized

adiabatic schedule, similar to the one derived analytically for the Grover search

in Ref. [115]. Indeed, numerical simulations show that the initial and final bangs

become shorter and eventually disappear, whereas the oscillations are damped and

finally vanish. Additionally, some quantitative connections between these optimal

features and optimal QAOA parameters are drawn: these are analyzed below in

Sec. 1.3.4, alongside some limitations of this approach and the generality of its

conclusions.

1.3.3. Concentration and transferability in QAOA

In Sec. 1.2 we reviewed the main algorithmic challenges for the cost function

optimization in a VQA. To date, we lack a provably trainable and classically hard

regime that holds across different application domains. Hence, problem-inspired

ansatzes like QAOA and careful training are constitutional in the early success of

VQAs.

A leitmotif in the QAOA literature are concentration effects: for fixed P, typical

instances drawn from the same problem distribution may yield a similar variational

energy landscape EP (β,γ). In this case, optimal parameters computed for the

first instance often serve as an excellent warm-start for local optimization for other

instances, significantly reducing the computational cost.

The topics of concentration and transferability of optimal parameters in QAOA are

subtle, since they may be due to different reasons, leading to possible misconceptions

about the underlying mechanism. To date, I have not found a comprehensive review

of these subjects, and even a recent review paper on QAOA [104] seems incomplete

concerning this matter. Since warm-start QAOA and transferability of optimal

parameters are a common thread of the next Chapters, I tried to provide a concise

yet thorough summary of key findings.

The first seminal results were presented in 2018 by Brandao et al. in Ref. [98]. The

authors studied QAOA for unweighted 3-regular MaxCut, proving rigorously that

the whole variational landscape concentrates for typical instances in the regime of

small P and large N . This result can be intuitively understood and formally derived

by a simple argument: in essence, due to the locality of the model, each term

in the variational energy can be computed via a “reverse causal cone”, involving
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only a subgraph whose size grows (geometrically) with P 13. Then, the occurrence

of concentration is explained by the statistical dominance of tree-like subgraphs.

We remark on two key aspects. Firstly, the whole parameter landscape, not only

local or global minima, concentrates for small P and large-N instances. Secondly,

concentration holds for typical instances drawn from the same distribution (in this

case, random 3-regular graphs).

A whole series of new results stemmed from Ref. [98]. For instance, in Ref. [116],

the authors propose and implement a classical technique to compute optimal QAOA

parameters in the low-P regime, in the infinite-size limit N →∞. The focus is again

on unweighted 3-regular MaxCut, but the method is benchmarked also against a

simple spin glass in 2 dimensions. This is accomplished by leveraging the statisti-

cal dominance of tree-like subgraphs and devising a classical tensor-network based

technique to compute the QAOA expectation value. The optimal parameters do

not strongly depend on the specific problem instance but rather on the general

“topological” features of the problem under investigation.

The general case of weighted MaxCut has a higher relevance for real-world com-

binatorial optimization, yet it features a challenging QAOA variational energy land-

scape, with a proliferation of local minimum traps. Very recently, in Refs. [117, 118],

the authors proposed a rescaling scheme that allows parameter transferability also

to weighted MaxCut. Results on the transferability of QAOA optimal parameters

among instances of the same problem are also found for graph clustering (i.e. network

community detection) in Ref. [119].

In the regime of shallow circuits (small P) for large instances (large N), concen-

tration and transferability of optimal parameters are due to an intuitive argument:

locality and a careful classification of subgraphs, which are typically trees. In prac-

tice, however, QAOA is not expected to provide high-quality solutions in this regime,

since it does not “see” the whole graph. Far more surprising results are obtained for

large P, or even in the case of non-local fully connected models, i.e. when a locality

argument based on a “reverse causal cone” does not hold. Already in the seminal

paper in Ref. [98], empirical observation of the validity of concentration results be-

yond the small P regime was presented. Here, the authors explain it in terms of

the law of large numbers applied to the sum of terms that defines the cost function

(which is, essentially, a sum over the edges of the graph). Albeit this argument

does not constitute any formal proof, it elucidates a possible mechanism behind

concentration in this regime and provides a way to test it empirically: concentration

certainly arises whenever the terms in the cost function sum are low-correlated.

The most impressive research line on QAOA is the one that originated from

Ref. [100], where the authors devised analytical approaches to find optimal QAOA

13An example is given in Chapter 3, precisely in Sec. 3.2, in the context of local quantum spin

models with nearest-neighbor interactions.
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angles for the fully-connected Sherrington-Kirkpatrick (SK) model. This is an Ising

spin glass in Eq. 1.11 with zero external fields hi = 0, where all-to-all random

couplings Jij are drawn from a symmetrical distribution with unit variance and nor-

malized by a scaling factor N−1/2. For any finite depth P, it is proven that the

whole QAOA landscape becomes instance-independent for N → ∞. In this limit,

the cost function EP (β,γ) is calculated analytically with an iterative classical algo-

rithm with complexity O(24P). This led to a computation of the global minimum,

obtained up to P = 8, and to a lower bound on the QAOA performance up to

P = 12. This argument goes beyond a “reverse causal cone” approach since the

all-to-all connectivity implies that, already for P = 1, each term in the variational

energy sum “sees” the whole graph.

Moreover, the authors prove a stronger concentration result for the SK model

at N → ∞. Not only does the QAOA energy landscape concentrate for almost

every instance in the thermodynamic limit (concentration over instances), but also

concentration of measurements is proven. In a nutshell, for any point (β,γ) in

the energy landscape, and for almost every instance, by sampling the QAOA state

one gets classical strings that concentrate with probability tending to one at the

calculated value EP (β,γ). Once the global minimum is classically computed, one

would need a quantum computer only to prepare the corresponding QAOA state: in

light of the concentration of measurements, only one shot (or very few shots) would

be needed to finally obtain the candidate optimal string.

This work has been recently generalized in Ref. [120], which initially tackles un-

weighted MaxCut on large-girth D-regular graphs 14. By providing an iterative

algorithm to compute analytically the QAOA variational energy for any value of P

and girth larger than 2P + 1, the authors can classically compute the global mini-

mum. In the limit of large D, which implies the thermodynamic limit, they prove

a promising performance, even compared to the best classical algorithms [120]. Re-

markably, the analytical expression found for EP (β,γ) for any finite P and D →∞,

is equal to the ensemble-averaged expression found in Ref. [100] for the SK model

in the N → ∞ limit. However, this new formula is found by looking at a single

tree subgraph and has an enhanced computational efficiency O(P222P), allowing the

authors to reach P = 20.

Quite recently, Refs. [102, 103] analytically proved parameter concentration for

models beyond 2-local in the large-N limit. Ref. [102] proves both concentration

over instances and concentration of measurements for a 1-layer QAOA applied to

generic classical optimization problems involving random multi-spin interactions. In

particular, the authors consider random combinatorial optimization problems in the

form of Eq. 1.12, where each of {hi}, {Jij}, {Kijk}, etc. is a set of IID random

variables drawn from symmetric distributions with variance depending only on the

14The girth of a graph is the length of its shortest cycle. If a graph is acyclic, its girth is considered

to be infinite.
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number of bodies involved. Due to their fully-connected nature, these models are

also known as mixed-spin Sherrington-Kirkpatrick models or mixed p-spin models 15.

These results were even extended in Ref. [103] to generic constant depth-P QAOA,

applied to ensembles of random combinatorial optimization problems — not nec-

essarily fully connected — in the thermodynamic limit. Moreover, building on

Ref. [120], the authors generalize the aforementioned equivalence between Max-

Cut on large-girth D-regular graphs (for D → ∞) and the ensemble-averaged SK

model (for N → ∞): an equivalence result is proven (in the same limits) between

Max-p-XORSAT (a generalization of MaxCut) on sparse random hypergraphs and

the fully connected pure p-spin model.

In both these works beyond 2-body models, the authors leverage the methodology

of Ref. [100], which already involved a great deal of complicated combinatorics. A

deep formal understanding of even a single one of the impressive Refs. [100, 102,

103, 120] would require many months of ascetic spiritual retreat away from modern

society, which I have not indulged myself in. However, the main open challenge

along this route is manifest: all these results were obtained for fixed depth P in

the large N limit. The cases where P scales e.g. as O(log(N)), O(poly(log(N))),

or even O(poly(N)) are still in the class of polynomial-time algorithms. A formal

understanding of these regimes would require new mathematical instruments and

may prove extremely challenging even for top-class mathematicians. However, this

seems the leading avenue to provide formal proof of (or exclude) quantum advantage

over the best-known classical algorithms for classical optimization problems. A more

physically oriented open path is to study use cases of realistic binary optimization

problems, which may include higher-order interactions as in Eq. 1.12, but do not

satisfy the ideal hypothesis of IID coefficients drawn from symmetric distributions.

A natural framework would be the supervised learning of Binary Neural Networks:

our first exploratory work is described in Chapter 2.

On a practical level, transferability may open up an interesting opportunity. In-

deed, already in the seminal work of Brandao et el. [98], the authors proposed to

leverage concentration effects not only to transfer optimal QAOA parameters for

depth P among typical instances with the same size N , but also from a small to

a larger system. Clearly, this approach would be invaluable as a warm-start pro-

cedure for a real experiment on a quantum device: a classically computed solution

could seed a large-scale experiment for a large qubit count N , beyond the reach

of classical simulations. In this framework, the quantum device could be employed

for a less expensive refinement optimization or, alternatively, only to prepare the

optimal QAOA state with transferred parameters and measure it to sample optimal

strings. A systematic study of optimal parameter transferability from small to large

15In contrast, a pure p-spin model — or simply a p-spin model — involves only p-bodies all-to-all

terms. If all coefficients are equal, this is an integrable model, due to the conservation of the

total angular momentum.
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instances can be found in Ref. [121] for P = 1 QAOA and unweighted MaxCut on

d-regular graphs. Remarkably, transferability holds among d1-regular graphs and

d2-regular graphs only provided that d1 and d2 have the same parity. When this is

the case, optimal P = 1 QAOA parameters found for a graph with N = 8 nodes

can be transferred successfully up to a graph with N = 64 nodes, with a negligible

performance loss compared to a direct optimization on the large model. The validity

of this approach has been proven analytically, with a scaling correction in inverse

powers of N , for the specific case of a Grover search with QAOA, first in Ref. [122]

and then in Ref. [123] 16. Transferability from small to large instances of a prob-

lem class is also observed in Ref. [124], which proposes a meta-learning scheme for

the optimal VQA parameters using classical learning, specifically Recurrent Neural

Networks.

1.3.4. Patterns in optimal QAOA parameters

Another common trend in QAOA, which may or may not be related to concentra-

tion and transferability depending on the context, is the following: optimal QAOA

parameters often appear to have a pattern. As we progress through the QAOA cir-

cuit, the optimal parameters γm appear to increase (nearly) monotonically, and the

parameters βm appear to decrease similarly. Informally, the overall trend appears

to be quite regular, or “smooth”: if we plot the two discrete sets of optimal angles

against a rescaled index m̃ = (m − 1)/(P − 1) ∈ [0, 1], these seem to be sampled

from two continuous functions γ(x), β(x) defined in the same interval. These qual-

itative features are reminiscent of linear digitized-QA in Eq. (1.20). Although the

optimal QAOA parameters often depart significantly from dQA, exploiting this sim-

ilarity for a warm-start procedure may sometimes be useful, as shown in Ref. [125]

for the usual MaxCut problem. This approach adds to the toolbox of warm-start

procedures for QAOA, and it has been adapted to our tasks in Chapter 2 and in

Chapter 4.

In Ref. [100], this regular pattern is observed in the global minimum of QAOA

with a fixed depth P in the infinite-size SK model. As stated above, this work

has been generalized in Ref. [120] to unweighted MaxCut on large-girth D-regular

graphs: for large D, also in this case (and in Max-p-XORSAT) the global optimum

is obtained in terms of smooth sequences of γm and βm. This set of results is quite

remarkable, as the global optimality of smooth solutions is proven analytically.

16A sign of the ubiquitous confusion on concentration and transferability is that Ref. [123] is often

mistakenly regarded as a general proof of transferability for QAOA, as stated e.g. in the QAOA

review in Ref. [104]. In reality, by choosing Ĥz = |t⟩⟨t|, i.e. a projector on a classical state, this

is nothing but the Grover search in disguise. Not only the proof of concentration (for low P)

is valid only in this case (which was already derived in Ref. [122]), but also, this operator is

global, and it does not admit any practical gate decomposition.
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Analogous results are obtained numerically in Ref. [74] for unweighted and weighted

3-regular MaxCut instances: also in this case, the authors numerically “prove” that

smooth solutions correspond to global minima. To leverage this pattern in opti-

mal parameters, two iterative approaches to QAOA optimization are devised, which

serve as a tool to avoid local minimum traps. At each step, the QAOA ansatz

acquires new variational parameters (e.g. new layers), and the new optimization is

seeded with a warm start yielded by the previous step. In practice, this is done by

adopting Fourier-based algorithms [74], or by interpolating from previous smaller P

solutions [74, 75]. More explicitly, in the latter case, the current optimal solution

at each step heuristically provides a good warm-start for the next step, e.g. from

P→ P′ (with P′ > P, such as P′ = P+1). Similar tools are utilized, with some mod-

ifications, in all subsequent Chapters, both in the context of classical optimization

and ground-state preparation.

Smooth solutions are commonly found numerically by leveraging these iterative

techniques without proving their global optimality, a task that is usually unfeasi-

ble beyond shallow circuits and small systems. A few examples include Ref. [126]

for MaxCut on random graphs, and Ref. [75] for the antiferromagnetic Transverse-

Field Ising Model (TFIM) on a chain. Significant evidence of the existence of smooth

QAOA solutions is provided by Ref. [95], where the authors focus on the long-range

Ising model with power-law decaying interactions, both quantum (with a transverse

field term) and classical. Remarkably, the QAOA algorithm is implemented exper-

imentally on a trapped-ion quantum simulator with up to 40 qubits. The smooth

solutions are not proven to be a global minimum, but turn out to be very effective.

They are found to be transferable from a small-N to a large instance of the same

model, and show similarities even in different points of the phase diagram (e.g. by

modifying the transverse field strength) and for different values of the power-law

decay coefficient. Note that the focus here is on the transferability of the smooth

optimal solution: there is neither numerical nor analytical evidence of parameter

concentration in the whole variational energy landscape, and due to long-range

interactions, a “reverse causal cone” argument does not apply. Smooth optimal pa-

rameters are also observed up to large values of P in CD-QAOA, a generalization

of QAOA including counter-diabatic (CD) terms [127], and for standard QAOA ap-

plied to the challenging task of Max K-Cut (for small values of P). In most cases,

smooth QAOA solutions serve as good-quality local minima without guaranteeing

global optimality. Indeed, there can exist better or equal-quality solutions that are

non-smooth, as proven in Ref. [75] for the TFIM. In practice, even distinct smooth

solutions for the same problem instance, e.g. implementing shortcuts to adiabaticity,

can be found in certain settings: this last point is exemplified in a paper in prepa-

ration, which focuses on the interplay between quantum optimal control techniques

and QAOA for hard instances of the weighted MaxCut problem.

A natural question is whether there is some physical insight or theoretical expla-
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nation for this pattern in optimal QAOA solutions. By utilizing optimal control, a

significant advancement is made in Ref. [112]. As previously discussed at the end

of Sec. 1.3.2, the authors describe the typical behavior of an optimal analog pro-

tocol for fixed time τ : this often has a bang-anneal-bang structure with a central

annealing region characterized by a continuous trend and a superposed oscillatory

pattern. These qualitative features turn out to be closely related to the regular

pattern observed in optimal QAOA schedules. Before summarizing these results, let

us clear up a potential ambiguity: the “smoothness” of the central annealing region

— which is a continuous-time analog evolution — is an entirely distinct concept

from the “smoothness” of the QAOA optimal parameters plotted against a rescaled

layer index m̃. Indeed, these always implement bang-bang dynamics, and the reg-

ular pattern concerns the time evolutions of this discontinuous schedule, which are

precisely the values of βm and γm.

To understand the connection between features of an analog optimal schedule and

patterns in QAOA solutions, let us go back to Eq. 1.20, obtained as a result of time-

discretization and first-order Trotter splitting for a linear annealing schedule. If we

rewrite it for a generic step function attaining values sm for small time intervals

∆tm, we get 17 {
βm = (1− sm)∆tm
γm = sm∆tm

(1.26)

By interpreting the angles βm and γm as free independent variational parameters,

as done in QAOA, we can invert the previous relation, finding sm =
γm

γm + βm

∆tm =γm + βm

(1.27)

By reversing the argument of Sec. 1.3.1, one could think of recomposing the optimal

bang-bang QAOA protocol into a discretized time-evolution:

e−iβPĤxe−iγPĤz · · · e−iβ1Ĥxe−iγ1Ĥz ⇒ e−i∆tPĤ(sP) · · · e−i∆t1Ĥ(s1) , (1.28)

with Ĥ(s) = sĤz +(1− s)Ĥx as in Eq. 1.14. However, this approximation would be

valid only for small βm and γm, leading to a small Trotter error. Finally, one could

even rephrase this discretized dynamics into a continuous-time analog evolution (see

Eq. 1.17), driven by a control field s(t) obtained by an interpolation of the optimized

step function in Eq. 1.27:

e−i∆tPĤ(sP) · · · e−i∆t1Ĥ(s1) ⇒ T exp

(
−i
∫ t

0

Ĥ(s(t′))dt′
)
. (1.29)

This tempting approach would be justified in the large P limit for vanishing op-

timal QAOA angles, leading to small Trotter and time-discretization errors. This

17We set ℏ = 1 for simplicity of notation.
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1.4. Outline of the Thesis

is the case for dQA with a small time step ∆t and large P, leading to small angles

in Eq. 1.20. However, as noted in Ref. [112], this is not the case for QAOA: the

optimal solutions may fall along certain smooth curves γ(x), β(x) for increasing cir-

cuit depth, as discussed above. However, these asymptotic curves prescribe angles

of constant order, invalidating the previous argument 18.

As demonstrated in Ref. [112], the central annealing region of an optimal analog

protocol does have some connection with Eq. 1.27 19. In summary, numerical re-

sults show two main features, when comparing a QAOA solution with the optimal

bang-anneal-bang curve characterized by the same value of τ (see Eq. 1.25). Semi-

analytical arguments also back these results. As previously stated, the central region

of the bang-anneal-bang schedule oscillates about some base curve. The period of

such oscillations matches up with the length of the QAOA layers, namely ∆tm in

Eq. 1.27, and the number of oscillations appears to be equal to P, the number of

QAOA layers. Moreover, the underlying annealing curve, obtained by filtering out

the oscillations, matches with the sm values. We remark that the bang-anneal-bang

optimal curve approaches an adiabatic limit, characterized by the shrinking of the

initial and final bangs and the damping of intermediate oscillations. Hence, if the

QAOA optimal schedule still matches this optimal protocol, the regular pattern

(smoothness) of QAOA optimal angles may follow as a consequence.

Despite being heuristically valid, this argument does not seem conclusive. As

previously happened for the alleged optimality of the bang-bang scheme [114], the

validity of some assumptions and semi-analytical arguments in Ref [112] might be

less general than expected. Also, the match with QAOA optimal angles is observed

on a limited set of problems, for a very small number of qubits, and it is not an-

alytically proven. Finally, a rigorous optimal control strategy can be applied only

to very modest system sizes, e.g. N = 8, and requires exact classical simulations.

To address this shortcoming, a modified variational scheme, including the main fea-

tures of these optimal protocols, is proposed in Ref. [112]. However, its effectiveness

should be ultimately verified empirically and a mixed bang-anneal-bang protocol

may prove particularly challenging to implement on real quantum hardware.

1.4. Outline of the Thesis

Having introduced the theoretical framework and provided a summary of the most

relevant topics, we now present the outline of the next Chapters.

18On the other hand, for small enough values of P, smooth optimal curves for QAOA can be found

by leveraging a linear warm start, given by an optimal-∆t dQA. This is the thesis of Ref. [125],

as previously mentioned. This topic is subtle and perhaps not yet completely understood.
19Note that the authors of Refs. [111, 112] use a different convention for Ĥ(s), by swapping Ĥz

and Ĥx, so that s(0) = 1 and s(τ) = 0.

29



1. Introduction

In Chapter 2, we adapt the toolbox of warm-start QAOA to a classical opti-

mization task that involves non-local multi-spin interactions, namely the supervised

learning of a binary perceptron for an unstructured dataset. We show the existence

of smooth optimal solutions that are transferable among different instances, each

characterized by a specific training set.

In Chapter 3, we extend this heuristic approach to ground state preparation

through the HVA in Eq. 1.24, focusing on many-body spin models. We study the

Heisenberg XYZ model [128] and the antiferromagnetic Longitudinal-Transverse-

Field Ising Model (LTFIM) [129], two ubiquitous lattice systems with interesting

phase diagrams. Although their ground state preparation through the HVA is af-

fected by BPs [55, 57], we avoid this issue by transferring an optimal smooth solution,

obtained for small system size via iterative techniques, to a large model, where a

random-start optimization would fail due to BPs. Remarkably, other equal-quality

non-smooth solutions for the small system fail to provide a useful warm start.

In Chapter 4, we adopt similar strategies to prepare and characterize the ground

state of a Z2 lattice gauge theory model. Our approach leads to the detection of

a topological quantum phase transition and proves accurate even in the deconfined

(topologically non-trivial) regime.

Finally, in Chapter 5, we present a summary of some promising research direc-

tions and open questions in the field, also stemming from the discussion and results

reported in this Thesis.
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2. QAOA for the binary perceptron

It expects will be able to walk, talk, see, write, reproduce itself and be

conscious of its existence.

—Frank Rosenblatt about the perceptron, July 7, 1958.

He was about 70 years ahead of his time.

In Chapter 1, we introduced digitized Quantum Annealing (dQA) and the Quan-

tum Approximate Optimization Algorithm (QAOA), by commenting on their con-

nection with AQC/QA. We mentioned several applications of QAOA to classical

combinatorial optimization leading to 2-local Ising (or QUBO) models in Eq. (1.11),

notably MaxCut. Besides, we summarized the relevance of a few studies that ex-

plored the applicability and effectiveness of QAOA beyond this standard framework

for optimization tasks in the general form of Eq. (1.12) [100–103].

An interesting example — of paramount importance in machine learning— is of-

fered by the training process required in supervised learning for artificial neural net-

works (ANNs): this is naturally formulated as a minimization problem of a suitable

cost function [130], which is, however, not 2-local in terms of its variables (network

weights and biases) due to non-linear activation functions. An intriguing question is

to explore if and how quantum computation might provide more efficient algorithms

to train ANNs, while potentially offering some deeper theoretical understanding of

their effectiveness in classification tasks.

Here, we apply dQA and QAOA to a paradigmatic task of supervised learning:

the optimization of synaptic weights for the binary perceptron, whose cost function

is expressed in terms of highly non-local multi-spin interactions.

2.1. Introduction and motivation

Our work stems from the results obtained in Ref. [131], where the authors provided

analytic and simulation evidence of exponential speed-up of Quantum Annealing

(QA) vs. classical Simulated Annealing for the training process of the binary per-

ceptron. The exponential speedup arises from the geometric structure of the solution

space of the problem: the presence of rare and yet dense regions of solutions allows
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2. QAOA for the binary perceptron

QA to converge efficiently despite the presence of an exponential number of local

minima traps. This property appears to be present even in more complex, highly

overparameterized neural networks such as the so-called deep neural networks [132].

Quantum algorithms could thus be highly efficient also for this kind of models, which

define the state of the art in contemporary machine learning.

Here, we focus on a digitized version of QA and on QAOA: in particular, we pro-

vide numerical evidence on how QAOA, by efficiently exploiting optimized quantum

fluctuations among classical states, systematically outperforms standard QA. As in

Ref. [131], these results are expected to generalize for more complex ANN archi-

tectures. Moreover, we show the emergence of smooth optimal QAOA parameters,

which seem to be independent of the details of the training problem. This finding

allows us to develop an effective heuristic procedure to speed up the convergence of

QAOA, in a similar fashion to previous results for 2-local models, by leveraging the

transferability of optimal solutions among typical instances of the same problem.

Finally, we enquire into the role of the classical cost-function landscape geome-

try [65] in the effectiveness of digitized-QA vs QAOA for our model. This is done by

artificially permuting the classical energies associated with each spin configuration:

despite the spectrum and the number of classical solutions being the same, a gap

closure on the adiabatic path appears [131], which has well-known detrimental ef-

fects on QA performance. We show that also our QAOA implementation is affected

by this gap closure, even though it still offers some advantages compared to digitized

QA.

2.2. Binary perceptron model

The perceptron represents the prototypical example of a single-layer binary clas-

sifier, first introduced decades ago by Rosenblatt [133]. It is still a subject of active

research, both as the fundamental unit of classical artificial neural networks [134] and

as a potential candidate for basic realizations of quantum neural networks [135, 136].

Following Ref. [131], we address the problem of supervised learning of M = αN

random patterns in a perceptron with N neurons in the input layer: any config-

uration of the binary synaptic weights σ = {σj} ∈ {−1, 1}N correctly classifies a

randomly generated pattern ξµ = {ξµj } ∈ {−1, 1}N into a prescribed binary label

τµ = ±1 if sgn(σ · ξµ) = τµ, see sketch in Fig. 2.1.

During the learning phase, a given training dataset {ξµ, τµ}Mµ=1 is provided, and

the task consists in finding the weight configurations σ such that all the patterns

are correctly classified. Here, we focus on an unstructured training dataset: by

hypothesis, the pattern components ξµ and the labels τµ are IID (unbiased) Bernoulli
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2.2. Binary perceptron model

ξµ1
σ1

ξµ2 σ2

ξµN

σN

...

...

τµsgn(σ · ξµ)

Figure 2.1.: Scheme of a perceptron. Binary synaptic weights σj have to be adjusted such

that for given binary values ξµj in the input layer, the scalar product σ · ξµ =
∑

j σjξ
µ
j

has a prescribed output sign τµ. Here µ = 1 · · ·M , with M = αN , labels the various

input-output patterns.

random variables, results of a fair coin flip. Hence, we can set the labels τµ all equal

to +1 without loss of generality.

The search problem can be easily reformulated as a minimization problem for a

suitable cost function. The underlying idea is to associate a positive energy cost for

every pattern incorrectly classified. The exact solutions to the classification problem

are the cost function’s zero-energy configurations σ∗. Let us define

mµ =
1√
N

N∑
j=1

σjξ
µ
j (2.1)

to be the overlap between the spin configuration σ and the µ-th pattern ξµ, normal-

ized in such a way that, upon averaging over the random patterns, one gets m2
µ = 1.

A possible definition of the cost function is:

Enc ({σj}) :=
M∑
µ=1

|mµ|nc Θ(−mµ) , (2.2)

where Θ(x) = (1 + sgn(x))/2 is the Heaviside step function. The energy cost for an

incorrect classification of a pattern, mµ < 0, is simply +1 if nc = 0, or proportional

to the error, |mµ|, if nc = 1. We remark that for both values of nc = 0, 1, the

cost function yields the same global minima σ∗ at zero-energy (exact solutions). In

contrast, the energy landscapes and the local minima are generally different.

Finding optimal solutions σ∗ where Enc(σ
∗) = 0 is a hard optimization problem

for either choice of nc = 0, 1: it has been shown that the energy landscape, in the

limit of large N and for M = αN with α < αc ≈ 0.83 [137], is characterized by an

exponential number of zero-energy solutions and local minima. The latter play the

role of metastable states for classical stochastic search algorithms, such as Simulated

Annealing (SA) [138], which typically get stuck, for large N , in one of these local

minima, with extensive energy costs (of the order O(N)).
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2. QAOA for the binary perceptron

More recently, further insight has been gained about the geometrical structure

of the ground states [65]. Very schematically, exponentially rare regions where the

ground states are dense exist. These regions are composed of an exponentially large

number of zero-energy solutions at extensive but relatively small Hamming distances,

thus possessing very high local entropy. Despite being exponentially rare, these dense

regions might be particularly well-suited for making predictions after training since

they are less likely to fit noise (small generalization error).

It has been conjectured and shown in Ref. [131] — with analytical and numerical

evidence — that quantum fluctuations, as encoded by a Path-Integral Monte Carlo

simulated QA [78], are particularly effective in exploring these “dense” regions. Here,

we will provide numerical evidence of the enhanced effectiveness of QAOA over QA

for small-size perceptron instances, where unitary evolutions are computationally

feasible to compare QA and QAOA directly.

The standard quantum mapping of the binary synaptic weights consists of pro-

moting the classical spins σj to quantum spin-1/2 Pauli operators σ̂z
j , as a particular

case of the procedure schematized in Eq. (1.13). Let us note that this standard map-

ping is not the only possibility for encoding classical bits into a quantum setup. For

instance, in Ref. [135], the authors implemented a quantum version of the percep-

tron model by employing the so-called amplitude encoding: such a scheme is, in

principle, very efficient in terms of memory resources, as it requires log2N quantum

spins to represent N classical spins. Still, it pays the price of an exponentially large

number of quantum gates necessary for the state preparation [135]. In our study,

we focus on leveraging quantum fluctuations to train a classical perceptron, rather

than implementing a quantum version of it. As a natural choice, in the following,

we proceed with the standard base encoding σj → σ̂z
j . The target Hamiltonian

associated with the perceptron is then given by

Ĥtarg = Enc

(
{σ̂z

j}
)
. (2.3)

Multi-spin interactions

The Hamiltonian in Eq. 2.3 has a complicated expression in terms of the quan-

tum spin variables {σ̂z
j}, due to the Heaviside step function: in principle, it may

involve all possible multi-spin interactions, up to N -body terms. This structure is

shared by other relevant optimization problems, such as the financial crash models

considered in Ref. [139], where the target Hamiltonian also involves the Heaviside

function. Similar problems featuring high-order multi-body terms can be addressed

by employing the parity architecture, see e.g. Ref. [140] and references therein.

In the standard QAOA framework, the expectation value

EP (β,γ) = ⟨ψP(β,γ)|Ĥtarg|ψP(β,γ)⟩ (2.4)
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2.3. Results

is estimated as the sample mean over a set of measurements on the computational

basis. This is done by repeatedly preparing the variational state for fixed parameters

β = (β1, · · · βP), γ = (γ1, · · · γP), i.e.

|ψP(β,γ)⟩ = Û(βP, γP) · · · Û(β1, γ1)|+⟩⊗N

Û(βm, γm) = e−iβmĤxe−iγmĤz

, (2.5)

with Ĥx = −∑j σ̂
x
j .

Therefore, the diagonal operator Ĥtarg = Ĥz is used in building up the QAOA

variational state. Whereas an exact gate decomposition of the unitaries e−iγmĤz is

always possible, it would require impractical resources, i.e. a number of elementary

gates growing exponentially with the qubit number N . However, as mentioned in

Sec. 1.3.2, the QAOA ansatz allows for some flexibility in the choice of the Ĥz term

appearing in the variational state, with the possibility of replacing it with a simpler

set of quantum gates. This aspect is the focus of ongoing research.

Note that the target Hamiltonian also appears in the expectation value in Eq. 2.4.

Nonetheless, once the QAOA state — or an approximate version of it — has been

prepared, one would perform a measurement and obtain a classical string: Each

evaluation of the classical cost function would require O(MN) complexity, indepen-

dently of its expansion in terms of binary spins.

2.3. Results

To perform a fair comparison of QAOA against QA (in its digitized form), we

consider a set of 10 instances of the perceptron problem for N = 21 spins, which were

previously analyzed in [131](SI). For each instance, we aim at classifying correctly

a training set of M = 17 patterns, corresponding to α = M
N
≈ 0.81. This is close

to the critical value αc ≈ 0.83, valid in the thermodynamic limit N → ∞, beyond

which zero-energy solutions may no longer exist.

Following Ref. [131](SI), these instances were obtained by randomly generating 450

candidate training set samples, and: i) keeping only those with a sufficiently large

number of solutions (> 21, thus hinting at a non-convex optimization problem); ii)

keeping only the instances for which SA failed to reach good approximate solutions.

The rationale of selecting these instances is to mimic the typical behavior of larger

system sizes [131], which cannot be tackled directly with exact classical simulations.

From here on, we shall refer to a perceptron instance characterized by a specific

randomly generated training set simply as sample.
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2. QAOA for the binary perceptron

2.3.1. Optimal digitized-QA

A natural figure of merit to compare the performance of digitized QA and QAOA

is the variational energy density

εP(β,γ) =
1

N
EP(β,γ) , (2.6)

defined in terms of Eq. 2.4, with fixed P. For QAOA, we aim at minimizing this quan-

tity w.r.t. the independent free parameters β and γ; on the contrary, for digitized-

QA (dQA), these are fixed as in Eq. (1.20), hence ∆t is the unique free parameter

to be optimized.

Let us now focus on dQA. Interestingly, for any given P, we obtain a unique,

well-defined global minimum for the variational energy density as a function of ∆t.

This is shown in Fig. 2.2 for the specific case of P = 64, and both cost function

definitions, nc = 0 and nc = 1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
∆t

0.0

0.1

0.2

0.3

0.4

εP=64

nc = 0

nc = 1

Figure 2.2.: The one-dimensional landscape of the variational energy density for digitized-

QA, where the parameters β and γ depend only on ∆t, see Eq. (1.20). All samples exam-

ined, and both choices of nc = 0, 1 are shown. The qualitative features of the landscape,

and in particular the position of global minima, show mild sample-to-sample variability.

As previously discussed, see also [90], the rationale behind the presence of an

optimal ∆t is simple: essentially, by increasing ∆t at fixed P, εP initially decreases,

because we are allowing for a longer annealing time τ = P∆t; however, upon further

increase of ∆t, Trotter errors start spoiling the result, leading to a noise-dominated

regime. Remarkably, the ∆t-landscape and the optimal values depend significantly

only on the cost function definition (nc = 0, 1), while much smaller sample-to-sample

variability is present. This is the first hint of general qualitative features of the

model that are largely independent of the specific sample under consideration. The

validity of these results naturally extends to different values of P, as summarized in

Appendix B.
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2.3. Results

2.3.2. Smooth QAOA solutions

In practical implementations of QAOA, both the choice of the classical optimiza-

tion algorithm and the starting point for the optimization routine can be relevant,

particularly when the search space’s dimensionality 2P grows, making the optimiza-

tion harder. The most straightforward approach would be to use a local gradient-

based algorithm starting from a random initialization of the parameters. Still, this

is often ineffective in practice due to many low-quality local minima and Barren

Plateaus, as discussed in Chapter 1.

Effective heuristic warm-start strategies have been proposed, which are based

on iterative procedures empirically yielding far better quality results than a ran-

dom start. Here, we adopt the following strategy. Let us denote by (βdQA,γdQA)

the optimal linear choice that a digitized QA provides, as discussed above. Using

(βdQA,γdQA) as a starting point for a Broyden-Fletcher-Goldfarb-Shanno (BFGS) op-

timization algorithm [141, 142], we find a minimum, denoted by (β(1),γ(1)), which

is often “close” to be a smooth curve, with occasional high-frequency localized os-

cillations of the optimal parameters. We associate these high-frequency oscillations

with the presence of spurious minima in the variational energy landscape. As pre-

dicted in Refs. [47, 143, 144], we expect the proliferation of such spurious minima

to limit the performance of the BFGS algorithm, which is unable to escape towards

better solutions. To overcome this performance limitation, we enforce smoothness

by applying a smoothing procedure to (β(1),γ(1)) and restarting a second BFGS op-

timization. This leads to a final solution (β(2),γ(2)) that is found to be smooth, and

to provide a systematically better variational minimum compared to the spurious

minimum (β(1),γ(1)). Schematically, here is the procedure adopted:

(βdQA,γdQA)→ BFGS optim.
QAOA−1−→ (β(1),γ(1))→

→ Smoothing + BFGS optim.
QAOA−2−→ (β(2),γ(2)) .

(2.7)

The smoothing procedure can be carried out either by hand or by locally interpo-

lating the curve (β(1),γ(1)) with a low-degree polynomial. We remark that details

on the smoothing procedure are not particularly relevant, since it only provides a

new educated guess for the second BFGS optimization, eventually converging to a

smooth optimal curve (β(2),γ(2)).

We now move to illustrate our results in more detail. We performed digitized-QA

and QAOA classical simulations for both nc = 0, 1. In this framework, we computed

the exact QAOA final state in Eq. (2.5) and the corresponding variational energy in

Eq. (2.4) by applying the algebra of Quantum Mechanics. While this analysis was

carried out for all samples under study, we now focus, for the sake of clarity, on a

single sample (or training set), with similar comments and results applying to all

samples.

Fig. 2.3 illustrates the results obtained for this sample. We show two represen-
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Figure 2.3.: Results for the optimal digitized-QA protocol (dashed and dash-dotted

straight lines), QAOA-1 (open symbols with dotted lines), and QAOA-2 (solid lines),

for P = 16, 64 (left to right) and for nc = 0, 1 (top to bottom). We adopt a uniform x-axis

scale in terms of m̃ = (m− 1)/(P− 1) ∈ [0, 1].

tative values of P = 16, 64 (left to right) and both energy-cost functions nc = 0, 1

(top to bottom). The dashed straight lines denote the optimal (βdQA,γdQA) solu-

tions. The empty symbols denote the optimal (β(1),γ(1)) solutions obtained by a

BFGS minimization starting from (βdQA,γdQA): our “first shot of QAOA”, labelled

as QAOA-1. Notice the irregularities on top of an overall “smooth” behavior, par-

ticularly evident for nc = 0, where they are quite localized. For nc = 0, we apply

a smoothing procedure, and start a “second shot” of QAOA simply as summarized

in Eq. (2.7). On the other hand, for nc = 1, irregularities of QAOA-1 solutions are

more diffuse. The procedure was slightly modified: we run the second BFGS lo-

cal minimization from a warm-start point, obtained by interpolation [74, 75] from a

smoothed P = 16 solution, in power-of-two steps, hence from P = 16→ 32→ 64 · · · .
In both cases, the resulting smooth solutions (β(2),γ(2)) are labelled as QAOA-2 and

denoted by solid lines. In Appendix B, we summarize a few more technical details

concerning these two procedures to single out QAOA-2 smooth solutions; however

— as discussed in the next section — we anticipate that these are not particularly

crucial: once a smooth solution for a single training set sample is found, there is no

need to repeat the whole procedure for other samples.

In Fig. 2.4 we plot the minimum values for εP, Eq. (2.6), by comparing the opti-

mal digitized-QA, QAOA-1 and QAOA-2 protocols. These results show a striking
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2.3. Results

gain by applying QAOA for both nc = 0 and nc = 1. Moreover, as anticipated,

smooth QAOA-2 protocols yield systematically better results compared to QAOA-1

protocols. As expected, the gain is larger for nc = 1 since our QAOA-2 implemen-

tation provides (for P > 16) a qualitatively different smooth optimal curve. In light

of these findings, the QAOA-1 solutions can always be interpreted as spurious local

minima — where the classical BFGS optimization gets trapped — systematically of

lower quality than the corresponding smoothed QAOA-2 protocols. These results

hold for all randomly generated training set samples.
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Figure 2.4.: Comparison of variational energy density minima for digitized-QA, QAOA-

1 and QAOA-2 for a specific sample of random patterns, with nc = 0 (left) and nc = 1

(right). QAOA-1 outperforms digitized-QA, especially for large values of P. This gain can

be further enhanced with the smooth QAOA-2 solution (see main text).

2.3.3. Transferability of a smooth ansatz

The procedure described in the previous section to obtain smooth solutions is

elaborate and fine-tuned. Nonetheless, there is no need to repeat it for each train-

ing set sample. Indeed, we show numerically that QAOA smooth solutions are

transferable among different instances (i.e. for different training set samples). This

result seems quite relevant, as our model goes beyond 2-local Hamiltonians and, at

the same time, does not satisfy ad-hoc hypotheses on the random coefficients, as

discussed in Sec. 1.3.3 for Refs. [102, 103]. To show this, we proceed as follows:

For any fixed value of P and nc = 0, 1, separately, we consider QAOA-2 optimal

angles (β(2),γ(2)) for our first sample and take them as a smooth model-dependent

ansatz (βAnsatz,γAnsatz) used as an initial point for a BFGS-minimization of a differ-

ent sample. In this way, we can find smooth optimal solutions for all other samples,

as illustrated in Fig 2.5. Remarkably, these smooth solutions are qualitatively co-

incident with the (β(2),γ(2)) solutions that one would construct by adopting the

QAOA-2 procedure previously outlined.

From a practical standpoint, by starting from the smooth ansatz (βAnsatz,γAnsatz),
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Figure 2.5.: QAOA optimal protocols for all tested samples, as obtained by a BFGS

minimization starting from the same smooth ansatz (βAnsatz,γAnsatz), corresponding to

smooth optimal schedules for the first sample (see main text). Data shown for P = 16, 64

(left to right) and for nc = 0, 1 (top to bottom). We adopt a uniform x-axis scale in

terms of m̃ = (m − 1)/(P − 1) ∈ [0, 1]. The qualitative similarity of QAOA solutions

for different samples is remarkable, particularly for nc = 1, where optimal protocols for

different samples are almost indistinguishable.

the convergence of the BFGS optimization is always faster. Moreover, we note that

all smooth solutions have the same qualitative shape of the smooth ansatz: remark-

ably, even without a new BFGS-optimization, the previously found (βAnsatz,γAnsatz)

already provides a better result compared to an optimal-∆t dQA. This finding is

also confirmed by additional simulations on a new (larger) set of samples, randomly

drawn without any requirement on the classical hardness or a large number of zero-

energy configurations (see Appendix B).

2.3.4. The role of the cost-function landscape geometry

As discussed in Ref. [131], quantum fluctuations are particularly efficient in explor-

ing exponentially rare dense regions of solutions in the classical cost-function land-

scape, defined by Eq. (2.2) for the binary perceptron case. These dense regions are

characterized by a large number of classical solutions clustering within a relatively

small Hamming distance. This geometrical structure of the landscape is linked to the
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2.3. Results

good performance of a linear QA schedule, defined by Ĥ(s) = sĤtarg + (1 − s)Ĥx,

simply with s(t) = t/τ . Indeed, the instantaneous spectral gap “seen” by the

QA dynamics only closes when approaching the end of the protocol s → 1, where

Ĥ(s)→ Ĥtarg, due to the degeneracy of classical solutions.

An interesting benchmark is provided by scrambling this geometrical structure by

permuting the classical energies associated with each configuration. Despite keeping

the spectrum unchanged, this procedure yields an unstructured problem, previously

studied in Refs. [145, 146]. This scrambling was shown to be detrimental to QA

in a general setting [145] and for our specific case [131]: it causes a sharp drop of

the instantaneous spectral gap at a finite sc < 1, the usual bottleneck of QA, and

a drastic worsening of its performance. It is natural to investigate to which extent

QAOA might be able to cope with such scrambling of the cost-function landscape

geometry and its associated ultra-narrow spectral gap (avoided level-crossing). After

all, QAOA is based on the variational principle rather than on the adiabatic theorem.

However, smooth QAOA solutions might signal an “optimal adiabatic schedule” [75],

which might suggest a worse performance.

To answer such a question, we adopted the following strategy. For each sample

considered, we generate a corresponding randomized sample by permuting the classi-

cal energies associated with each configuration σ̂, to retain the same classical energy

spectrum while destroying any geometrical feature of the classical energy landscape.

In summary, the randomized samples should be interpreted as a benchmark: they

provide (on average) the most difficult optimization problem (no geometrical struc-

ture), retaining the identical full spectra of the original samples. We then proceed

along the same lines of Sec. 2.3: by starting from an optimal-∆t digitized-QA so-

lution for the randomized samples, we run QAOA and compare the minima of the

variational energy density for the two methods. Incidentally, in Appendix B, we

show a comparison of digitized-QA optimal-∆t values for the two cases of original

vs randomized samples.

By following the same scheme outlined in Eq. (2.7), it is again possible to single

out smooth QAOA-2 solutions, being at the same time qualitatively different com-

pared to those for the original samples, and transferable among different randomized

samples (data not shown). Fig. 2.6 compares the minimized variational energy den-

sity obtained from digitized-QA and QAOA-2 for the randomized version of the

sample reported in Fig. 2.4; the original digitized-QA and QAOA-2 results are also

reported, to ease the comparison. Two main remarks are worthwhile: 1) QAOA-

2 solutions for the randomized sample considerably improve on the corresponding

digitized-QA results, especially for nc = 0, where they become comparable to the

original sample digitized-QA results; 2) the quality of these QAOA-2 solutions is

much lower compared to QAOA-2 solutions for the original sample, witnessing a

degradation of performance. These same comments apply to all samples examined.
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Figure 2.6.: Variational energy density minima for digitized-QA and QAOA-2, comparing

results for the original sample (the same as in Fig. 2.4, full symbols) with those obtained

by a randomization of its energy spectrum (empty symbols), for both nc = 0, 1.

To better understand the basic mechanism behind such a degradation of perfor-

mance, we plot in Fig. 2.7 the QAOA-2 smooth protocols for P = 64, re-expressed

in terms of sm = γm/(γm + βm), a parameter that in digitized-QA linearly inter-

polates from s = 0 to s = 1 during the annealing process, see Eq. (1.27) and the

accompanying analysis. The two figures correspond to the original (left) and the

randomized samples (right), in the case nc = 0. These optimal schedules should

be compared with the instantaneous spectral gap ∆(s) = Eex(s) − Egs(s), which

is plotted in the inset for both cases. We observe that the instantaneous gap of

randomized samples displays, as expected [131](SI), an avoided level-crossing close

to the numerical value sc = 0.725. Correspondingly, in proximity of sc, the opti-

mal schedule parameter sm shows a wide marked plateau, particularly evident for

large values of P: this is reminiscent of a “slowing down” of the annealing near

the gap closure, a kind of “optimal adiabatic schedule” [75], unfortunately unable

to fully overcome the basic limitations of the adiabatic mechanism. We note that

these QAOA-2 smooth solutions show striking similarity with adiabatic schedules

obtained for unstructured (Grover) search in Refs. [115, 147].

However, there is no assurance that the smooth solutions derived from our QAOA-

2 approach represent the true global minimum within the 2P-dimensional variational

energy landscape: in principle, there might be other better-performing QAOA pro-

tocols, e.g. similar to the “shortcut to adiabaticity” (STA) schedules found in some

hard-instances of 3-MaxCut [74]. The STA strategy goes beyond the adiabatic

paradigm and is a promising framework to overcome the shortcomings of the adi-

abatic mechanism. Refs. [127, 148, 149], have recently developed counterdiabatic-

QAOA (CD-QAOA) approaches, to extend the QAOA variational ansatz by in-

cluding terms that generate STAs. Since STA protocols are generally smooth, a

generalization of QAOA-2 might succeed in finding them. However, this requires

developing efficient strategies [150] to modify the linear guess inspired by dQA to
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target STA protocols specifically.
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Figure 2.7.: Plot of the QAOA-2 smooth protocols for P = 64, in terms of sm = γm/(γm+

βm) for both the original (left) and the randomized samples (right), in the case nc = 0.

In both figures, the thick dashed line represents the transferable smooth ansatz obtained

by a detailed study of the first sample, while data for other samples are obtained by

exploiting this transferability result. As a visual reference, we also plot the digitized-QA

linear interpolation from s = 0 to s = 1. In the insets, we show the instantaneous spectral

gap ∆(s) = Eex(s)− Egs(s): the gap starts at ∆(s = 0) = 2 (single spin-flip excitation of

Ĥx) and it vanishes for s = 1, due to the degeneracy of Ĥz, while negligible sample-to-

sample variability is observed. Remarkably, ∆(s) shows a sharp drop around sc = 0.725

for the randomized samples, and a wide plateau is highlighted in the corresponding smooth

optimal schedules by a red dotted horizontal line. Similar results and comments apply for

nc = 1.

2.4. Conclusion and outlook

In this Chapter, we aimed to provide evidence for the applicability and effec-

tiveness of digitized-QA and QAOA to solve hard classical optimization problems

defined by highly non-local Hamiltonians, well beyond the usual 2-local models stud-

ied e.g. for MaxCut and ground state preparation of a quantum spin model. To do

so, we employed an optimization scheme that leverages the transferability of smooth

optimal QAOA schedules among different instances of the same problem (different

training sets). Our results show similarity to previous work on parameter concentra-

tion (instance independence) and might be further investigated, possibly leading to

analytic results in the largeN limit, as in the papers discussed in Sec. 1.3.3 [102, 103].

Inspired by the analysis in Ref. [131], we assessed the importance of the geometrical

structure of the classical cost-function landscape. An artificial permutation of the

energy spectrum leads to a vanishing spectral gap along the annealing path. In this

regime, QAOA still provides some advantage vs an optimized-∆t dQA; however, it

seems to perform a kind of “optimal adiabatic schedule”, unable to fully overcome

the basic limitations of the adiabatic mechanism.
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2. QAOA for the binary perceptron

The primary objective for future developments, a.k.a. the elephant in the room,

is to design smart approximation schemes, enabling an efficient implementation of

unitaries generated by a highly non-local classical Hamiltonian. This is necessary

to implement our proposal on actual quantum hardware and assess its effectiveness

beyond classical simulation capabilities. We remark that similar challenges are also

encountered if one wishes to implement an analog real-time evolution on a Quantum

Annealer, as proposed in [131]. A possible step forward in this direction is to extend

the standard formulation of QAOA, as proposed in Ref. [33]. Indeed, one could

redefine the variational energy in Eq. (2.4) as follows: 1) keep the same exact classical

Ĥtarg = Ĥz in the objective function expectation value and 2) redefine the diagonal

unitary (which is quantum-computationally hard) generated by Ĥz — e.g., by using

a simplified version of it, encoding some minimal information on the problem. This

would replace QAOA with a more hardware-friendly PQC, admitting a simpler gate

decomposition. Moreover, one might even redefine the mixing unitary generated by

Ĥx, by replacing it with another operator inducing tailored quantum fluctuations.

An alternative strategy for developing a scalable algorithm involves employing a

parameterized quantum circuit independent of the problem Hamiltonian. This de-

sign would be specifically adapted to the resources of existing quantum devices, such

as native gates and qubit connectivity [151, 152]. This approach enjoys clear bene-

fits in the ease of implementation, but it is expected to suffer well-known drawbacks

such as the proliferation of local minima and Barren Plateaus. After an efficient

parameterized quantum circuit is implemented, applying the techniques described

above would be straightforward to assess the presence of smooth optimal proto-

cols and their transferability. Subsequently, one could test the robustness of these

protocols to shot-noise in the optimization or to mild gate errors.

Another option is to conduct efficient classical simulations of quantum optimiza-

tion methods, e.g. relying on tensor networks techniques. These concepts have been

explored in our publication in Ref. [4], but are not covered in this Thesis.

A simple gate-efficient modification of QAOA, which we have tested, is the fol-

lowing. Rather than using Ĥtarg = Ĥz in the quantum gates e−iγmĤz , we use the

Sherrington-Kirkpatrick (SK) model Hamiltonian, which derives from taking the

quadratic approximation (|mµ|)Θ(−mµ) → −mµ +m2
µ in the nc = 1 cost function

in Eq. (2.2), as depicted in Fig. 2.8. This quite arbitrary approximation, upon using

Eq. (2.1), leads to:

Ĥz = −
N∑
j=1

hjσ̂
z
j +

∑
j ̸=j′

Jjj′σ̂
z
j σ̂

z
j′ , (2.8)

where hj = 1√
N

∑M
µ=1 ξ

µ
j is a local field provided by all the input patterns at site

j, while Jjj′ = 1
N

∑M
µ=1 ξ

µ
j ξ

µ
j′ is the standard Hebbian-rule coupling [134]. Unfor-

tunately, such a choice of Ĥz appears to dramatically decrease the performance of

QAOA. However, recall that we are studying the supervised learning of random
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Figure 2.8.: The exact energy cost for the classification of a single pattern in the training

set (solid blue line): the sum of these contributions yields Enc=1 in Eq (2.2). This is

compared to a quadratic approximation (dashed red line), see the main text.

patterns drawn as IID random variables from a given distribution. This approach

is ubiquitous in the statistical physics community but leads to a dataset without

any structure. In contrast, in real-world applications, supervised learning is always

conducted on datasets with a structure: a standard testbed consists of datasets of

hand-written digits. In this framework, preliminary results indicate that a 2-local

expansion might be a valid approximation for the classical loss function of simple

instances of binary neural networks [153]. A potentially more effective strategy to

enhance performance involves maintaining a Hamiltonian with only two-body inter-

actions, by searching for an optimal SK model, either by iteratively identifying the

optimal J and h parameters or by defining an appropriate inverse Ising model [154].

Alongside a better account for implementability and gate decomposition, a natu-

ral extension of our work is to examine the training of more complex binary neural

networks, possibly further generalizing to low-precision discrete-weights neural net-

works. This could be tested numerically on more realistic correlated datasets (data

with a structure) and is a subject of ongoing research. This analysis would allow

us to better investigate the role of the classical cost-function landscape geometry,

which is expected to be crucial for the effectiveness of QAOA or analogous quantum

optimization schemes. Furthermore, it would be possible to evaluate the generaliza-

tion error using a test set composed of previously unseen data that follows the same

distribution.
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3. Barren Plateaus in the

Hamiltonian Variational Ansatz

Simulating the behavior of 100 billion neurons of the human brain is

not feasible by classical computers but quantum machine learning

promises to fulfill that requirement.

—Amit Ray, Indian author and “spiritual master”, 2023.

A slightly optimistic take on quantum computing.

In Chapter 1, we introduced and motivated the unprecedented scientific and tech-

nological interest in Variational Quantum Algorithms (VQAs). To obtain any prac-

tically useful and scalable hybrid quantum-classical algorithm, the scientific commu-

nity must not only overcome formidable experimental issues but also solve theoretical

and algorithmic challenges.

The cost function optimization is known to be a difficult task [48]: only a careful

choice of the ansatz is usually expressive enough to approximately find the ground

state of Ĥtarg and, at the same time, trainable enough for the optimization to suc-

ceed. In particular, the landscape of the cost function may not be easy to inspect for

two reasons: the proliferation of low-quality local minima traps, and the exponen-

tial flattening of the landscape by increasing the number of qubits, a phenomenon

dubbed barren plateaus, which can severely hinder the scalability of the VQA scheme

beyond small system sizes amenable to classical simulations.

A review of barren plateaus and trainability issues in VQAs is provided in Chap-

ter 1, where we also mention some promising approaches to boost trainability.

Here, we draw a new connection between smooth optimal solutions — obtained

employing iterative methods — and barren plateaus, developing a novel, efficient

scheme to circumvent this issue. Our procedure leverages the transferability of a

smooth optimal solution, obtained for a small system size, to solve the same task

with a larger number of qubits, where a direct optimization would fail due to barren

plateaus. In a nutshell, the transferred smooth solution serves as an excellent warm-

start with low variational energy for the large system, and a subsequent refinement

optimization is observed to be free of the barren plateau issue. Remarkably, even

though other (non-smooth) solutions for the small system can be obtained by stan-

dard random-start local optimization, they do not provide any useful warm-start
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3. Barren Plateaus in the Hamiltonian Variational Ansatz

for larger systems and, crucially, a refinement optimization still suffers from barren

plateaus in their neighborhood.

3.1. Problem definition

For definiteness, we focus on the Heisenberg XYZ model [128] and the antiferro-

magnetic Longitudinal-Transverse-Field Ising Model (LTFIM) [129], two ubiquitous

models in quantum physics with rich phase diagrams, whose ground state prepara-

tion with VQAs is affected by barren plateaus [55, 57]. We select ansatz states in

the Hamiltonian Variational Ansatz (HVA) form

|ψP (θ)⟩ =
P∏

m=1

e−iθm,M ĤM · · · e−iθm,1Ĥ1|ψ0⟩ , (3.1)

where |ψ0⟩ is a simple initial state, and m = 1 · · ·P labels successive circuit layers,

each composed by j = 1 · · ·M alternating unitaries generated by Hamiltonian op-

erators Ĥj. The target Hamiltonian Ĥtarg can be linearly decomposed in terms of

the generators, which are selected to enforce model symmetries into the variational

wavefunction: this procedure is detailed in Sec. 3.1.1. This way, we restrict the

Hilbert space to the ground state symmetry sector, boosting trainability. More-

over, this choice leads to a reduction in the number of independent Pauli correlators

needed to compute the cost function, namely the usual variational energy:

EP (θ) = ⟨ψP(θ)|Ĥtarg|ψP(θ)⟩ . (3.2)

The first class of models we consider is the spin-1/2 XYZ [128, 155] Hamiltonian:

ĤXYZ =
N∑
j=1

(
σ̂x
j σ̂

x
j+1 +∆Yσ̂

y
j σ̂

y
j+1 +∆Zσ̂

z
j σ̂

z
j+1

)
. (3.3)

We restrict our considerations to the antiferromagnetic case ∆Y,∆Z > 0. In this

quadrant, the system is gapped, except at three critical half-lines/segments: ∆Y ≤
1,∆Z = 1; ∆Y = 1,∆Z ≤ 1; ∆Y = ∆Z,∆Z ≥ 1 [156, 157]. The Hamiltonian (3.3)

is integrable in the whole (∆Y,∆Z) plane. In particular, ∆Y = 1 corresponds to the

XXZ model, while ∆Y = ∆Z = 1 corresponds to the spin-isotropic Heisenberg model.

The second Hamiltonian we examine is the antiferromagnetic LTFIM [158, 159]:

ĤLTFIM =
N∑
j=1

σ̂z
j σ̂

z
j+1 − gx

N∑
j=1

σ̂x
j − gz

N∑
j=1

σ̂z
j . (3.4)

We restrict our analysis to positive local fields gx, gz > 0. The system is gapped in the

whole positive quadrant, except for a line connecting the two points (gx = 1, gz = 0)

and (gx = 0, gz = 2), obtained numerically in Ref. [158]. While for gz = 0 the model
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3.1. Problem definition

is integrable by a Jordan-Wigner transformation to free fermions [27, 75, 160–162],

integrability is generically lost for gz ̸= 0. In Sec. 3.3.4, we specifically address the

integrable Transverse Field Ising Model (TFIM) line (gz = 0). For both the XYZ

model and the LTFIM, we examine even values of N , and assume periodic boundary

conditions.

As anticipated, our ansatz states are in the general form of Eq. (3.1) with M = 2

generating Hamiltonians only, defined to encode some symmetries of the model.

To illustrate this idea for the XYZ case, let us split ĤXYZ into two mutually non-

commuting parts that refer to the even (2j−1, 2j) and to the odd bonds (2j, 2j+1),

ĤXYZ = Ĥeven + Ĥodd, with

Ĥeven =

N/2∑
j=1

(
σ̂x
2j−1σ̂

x
2j +∆Yσ̂

y
2j−1σ̂

y
2j +∆Zσ̂

z
2j−1σ̂

z
2j

)
(3.5)

and similarly for Ĥodd. Next, in the spirit of AQC [81], imagine an interpolating

Hamiltonian connecting Ĥeven to the full ĤXYZ:

Ĥ(s) = sĤXYZ + (1− s)Ĥeven = Ĥeven + sĤodd , (3.6)

with s ∈ [0, 1]. For s = 0, the ground state of Ĥ(0) = Ĥeven is a valence-bond state

of singlets on the even bonds

|ψ0⟩ =
N/2∏
j=1

1√
2

(
|↑↓⟩ − |↓↑⟩

)
2j−1,2j

, (3.7)

which is taken as the initial state. This suggests, in close analogy with QAOA, the

following ansatz for the XYZ ground-state wavefunction:

|ψ(β,α)P⟩ = ÛP · · · Û2 Û1|ψ0⟩ . (3.8)

Here, (β,α)P = (β1 · · · βP , α1 · · ·αP) are 2P variational parameters, and the unitary

operators Ûm = Û(βm, αm), for m = 1 · · ·P, evolve the state according to Ĥeven and

Ĥodd, in an alternating fashion:

Ûm = Û(βm, αm) = e−iβmĤevene−iαmĤodd . (3.9)

As usual in the HVA framework, the goal is to minimize the variational energy

EN (β,α)P = ⟨ψ(β,α)P|Ĥtarg|ψ(β,α)P⟩ , (3.10)

with Ĥtarg = ĤXYZ. We explicitly indicated the system size N and the QAOA depth

P. The connection with AQC is restored in the P → ∞ limit, by setting specific

values for (β,α)P, as prescribed by a Trotter split-up of the continuous-time AQC

dynamics [75].
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3. Barren Plateaus in the Hamiltonian Variational Ansatz

Before moving to a more detailed analysis, let us summarize here the main points

of the discussion provided below in Sec 3.1.1. Firstly, the ansatz state lies in the

same symmetry subsector of the XYZ ground states for the following symmetries:

translations by two lattice spacings T̂2 (which maps j → j + 2), lattice inversion Î

(which maps j ↔ N − j+1) and parity P̂b =
∏

j σ̂
b
j , with (b = x, y, z). Additionally,

for the su(2)-invariant Heisenberg model, this holds true for the total spin Ŝb
tot (b =

x, y, z) and Ŝ2
tot, while for the u(1)-invariant XXZ model only for Ŝz

tot. As a result,

the variational energy in Eq. (3.10) requires the evaluation of only six independent

two-point correlators, which may be further reduced to four (two) by exploiting

rotational symmetries in the XXZ (XXX) case.

The ansatz for the ground state preparation of the LTFIM is defined along similar

lines. Indeed, it reads as in Eq. (3.8), with a single layer unitary given by:

Ûm = eiβmĤXe−iαm(ĤZZ−gzĤZ) , (3.11)

where we defined ĤZZ, ĤZ, and ĤX simply as the sum of nearest-neighbors interac-

tions, Pauli-z and Pauli-x operators, respectively. In this setting, the initial state

is simply the fully polarized state along-x |ψ0⟩ = |+⟩⊗N , once again bearing a di-

rect connection with AQC state preparation for P → ∞. The goal is to minimize

the variational energy as in Eq. (3.10), now with Ĥtarg = ĤLTFIM. Also in this case

(see Sec 3.1.1), the variational ansatz is restricted to the correct symmetry subsec-

tor of the target ground state, for both single-site translation T̂ (full translational

invariance) and lattice inversion Î.

3.1.1. Symmetries encoded in the HVA

An important aspect of the story concerns the symmetries of the ground state

we need to construct and those of our ansatz wavefunction. This section describes

the relevant symmetries of the XYZ models and the LTFIM. We will show that the

choice of ansatz wavefunctions as in Eqs. (3.8), (3.9), (3.11) restricts the search space

from the whole Hilbert space to a specific symmetry sub-sector, which is precisely

the one where the target ground state belongs.

Let us start with general considerations valid for problem-inspired HVA in Eq. (3.1).

Suppose we identify a set of symmetries of the target Hamiltonian Ĥtarg — whose

ground state we aim to prepare — and let us focus in particular on a specific sym-

metry (unitary) operator Ŝ.

In practice, a smart strategy can be to select the generators Ĥ1, . . . , ĤM such

that they all commute with Ŝ. In fact, if we select as the initial state an easy-to-

prepare symmetry eigenstate Ŝ|ψ0⟩ = eiϕ|ψ0⟩, it immediately follows that the HVA

is confined to the same symmetry subsector, since:

Ŝ|ψ (γ)⟩ = eiϕ|ψ (γ)⟩ , (3.12)
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3.1. Problem definition

for any choice of the variational parameters. The rationale behind this procedure is

simple: we should select the correct symmetry subsector, where the target ground

state belongs, by properly choosing |ψ0⟩: this sector is then preserved by applying

only symmetry-commuting unitaries.

For clarity, let us now restrict our discussion to the XYZ model; the LTFIM

requires only minor changes, which are summarized at the end of this section. As

a preliminary observation, we remark that the various bond terms appearing in

Ĥeven (or equivalently, in Ĥodd) form a set of mutually commuting operators, hence

the corresponding unitaries factorize; even more, since
[
σ̂b
j σ̂

b
j+1, σ̂

b′
j σ̂

b′
j+1

]
= 0 for

b, b′ = x, y, z, the various unitaries also factorize in the xx, yy and zz terms. This

leads to a standard parameterized quantum circuit, which can be further decomposed

into a basis set of native gates (e.g. CNOT and single-qubit rotations) [5]. Let us

simplify the notation for this ansatz state, evaluated in a generic point of the search

space, by setting |ψP⟩ ≡ |ψ(β,α)P⟩.

The initial state |ψ0⟩ in Eq. (3.7) has obvious symmetries with respect to transla-

tions by two lattice spacings T̂2 (which sends j → j + 2), lattice inversion Î (which

maps j ↔ N − j +1), parity P̂b =
∏

j σ̂
b
j and total spin Ŝb

tot, with b = x, y, z, as well

as Ŝ2
tot. Clearly, Ŝ

2
tot|ψ0⟩ = 0, and Ŝb

tot|ψ0⟩ = 0. The singlets, however, are odd under

the exchange of the two spins and also under the application of P̂b. Hence, while

T̂2|ψ0⟩ = |ψ0⟩, we have that P̂b|ψ0⟩ = (−1)N
2 |ψ0⟩ and Î|ψ0⟩ = (−1)N

2 |ψ0⟩.

Concerning the symmetries of the ansatz state |ψP⟩, they are inherited by the

symmetries of Ĥeven and Ĥodd. Hence, full spin rotational invariance is broken except

for ∆Y = ∆Z = 1; for ∆Y = 1, Ŝz
tot symmetry is preserved and Ŝz

tot|ψP⟩ = 0. Moreover,

since both Ĥeven and Ĥodd commute with T̂2, P̂b and Î, we immediately deduce that:

T̂2|ψP⟩ = |ψP⟩ Î|ψP⟩ = (−1)N
2 |ψP⟩

P̂b|ψP⟩ = (−1)N
2 |ψP⟩ .

These are precisely the quantum numbers of the ground states we want to con-

struct for ĤXYZ, as it can be verified numerically for small-size systems with exact

diagonalization.

Restricting the variational wavefunction to the ground state symmetry subsector

may foster trainability, but this is not the only practical advantage. Indeed, also the

number of independent Pauli correlators needed to compute the variational energy is

reduced. To prove this fact, we need to obtain an explicit formula for the variational

energy in Eq. (3.10). It is useful to introduce the k-points correlation functions:

C
bi,bj ,...,bk
i,j,...,k (β,α)P := ⟨ψ (β,α)P |σ̂bi

i σ̂
bj
j · · · σ̂bk

k |ψ (β,α)P⟩ , (3.13)

where the lower indices enumerate the involved spins i, j, k = 1 · · ·N , while the

upper indices assign corresponding directions b = x, y, z. Contrarily to quantum

chemistry applications [163] or some classical optimization problems (see discussion
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3. Barren Plateaus in the Hamiltonian Variational Ansatz

in Chapter 2), our quantum spin model is 2-local, hence the expectation value in

Eq. (3.10) only requires calculating two-point correlators of the type

Cb
i,j (β,α)P := ⟨ψ (β,α)P |σ̂b

i σ̂
b
j |ψ (β,α)P⟩ . (3.14)

In addition, Cb
i = ⟨ψP|σ̂b

i |ψP⟩ = 0 thanks to the parity symmetry. Importantly, we

can exploit ansatz symmetries to reduce the number of correlators needed: from the

T̂2 symmetry, it immediately follows that

Cb
(2j−1),(2j−1)+i = Cb

1,1+i , Cb
2j,2j+i = Cb

2,2+i . (3.15)

Additionally, since only nearest-neighbors correlators are needed, the ĤXYZ expec-

tation value reduces to

2

N
EN (β,α)P =

∑
b=x,y,z

Cb
1,2 (β,α)P + Cb

2,3 (β,α)P , (3.16)

involving only six independent correlators, which may be further reduced to four

(two) by exploiting rotational symmetries in the XXZ (XXX) case. Moreover, a

significant reduction in the number of shots to estimate expectation values in real

experiments might be accomplished by a final rotation into the Bell basis at the

end of the circuit, allowing direct access to the correlator statistics for b = x, y, z by

usual measurements in the computational basis [164].

It is relevant to notice that this symmetry-encoding procedure can be applied only

to a subset of symmetries of Ĥtarg, and it need not be applied to all of them. Indeed,

for the XYZ models, our ansatz state encodes all the aforementioned symmetries

of Ĥtarg = ĤXYZ, whereas it does not encode its one-site translational symmetry.

Nevertheless, the latter is almost exactly restored for optimal variational parameters,

as clearly shown in Sec 3.3.1 (see Fig 3.3).

The previous discussion extends straightforwardly to the LTFIM, with minor mod-

ifications. This variational ansatz lies in the same symmetry subsector as the target

ground state: precisely, both are eigenstates with eigenvalue +1 of the symmetry op-

erators T̂ (full translational invariance) and Î. This fact is once again easily verified

since the initial fully-polarized along-x state |ψ0⟩ is in the same symmetry sector,

and both symmetries commute with the generators of the HVA wavefunction. Inci-

dentally, note that the LTFIM parameterized quantum circuit reduces to the usual

QAOA ansatz for the TFIM (gz = 0), where also the parity symmetry P̂x is restored,

and the QAOA ansatz has the same eigenvalue of the ground state (for gx > 0).

Along the same lines as the previous discussion, due to the full translational

invariance, we now have:

Cz
i,j (β,α)P = Cz

1,2 (β,α)P

Cb
i (β,α)P = Cb

1 (β,α)P ,
(3.17)
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for any b = x, y, z, leading to the following expression for the variational energy:

1

N
EN (β,α)P = Cz

1,2 (β,α)P −
∑
b=x,z

gbC
b
1 (β,α)P . (3.18)

This reduction in the number of independent correlators — thanks to symmetry en-

coding in HVA — is handy for classical simulations but also in realistic experiments

on a quantum device [53].

As a final remark concerning additional symmetries, since both the XYZ and LT-

FIM Hamiltonians are real-valued matrices, and we are using ansatz wavefunctions

of the generic form in Eq. (3.1), then EN (β,α)P = EN (−β,−α)P (time-reversal

symmetry).

3.1.2. Alternative HVA implementations

Before moving to the results, let us briefly mention alternative HVA implemen-

tations that have appeared in the recent literature. To this end, we remark that

the number of variational parameters of our HVA for the XYZ models (defined by

Eqs. (3.8), (3.9)) is always equal to 2P. This is at variance with a different ver-

sion of the HVA for the XXZ model, studied e.g. in [56], which introduces more

parameters to account for the possible spin anisotropies in the Hamiltonian: here,

on the contrary, the ĤXYZ spin anisotropies are directly accounted for by Ĥeven and

Ĥodd in Eq. (3.9), using only two parameters per layer. Another possible approach

was tested in [165], by adopting a more general class of ansatz wavefunctions, with

a number of variational parameters per layer proportional to the system size N .

Alternative HVA formulations have also been proposed for LTFIM ground state

preparation, as in Ref. [55, 108]. Once more, with our definitions, we only need

two variational parameters per layer, regardless of the phase diagram point under

consideration.

3.2. The reverse causal cone for XYZ and LTFIM

A natural interpretation in terms of the spreading of quantum correlations emerges

for both our ansatz wavefunctions. This is an example of a “reverse causal cone”,

as discussed in Sec. 1.3.3 to explain the concentration and transferability of optimal

parameters for MaxCut, in the regime of shallow circuits and large system size.

As we shall now explain, it follows that the whole variational energy landscape,

once rescaled by the system size N , becomes independent of N for N > ÑP, where

ÑP = 4P + 2 and ÑP = 2P + 1 for the XYZ and the LTFIM, respectively.
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3. Barren Plateaus in the Hamiltonian Variational Ansatz

Figure 3.1.: The reverse causal cone spreading of quantum correlations for Cb
1,2 (left)

and Cb
2,3 (right) for the XYZ ansatz as in Eqs 3.8, 3.9, with a given depth P (here P = 2).

The blue blocks represent the observable, while the orange (green) blocks represent the

relevant part of e−iβmĤeven (e−iαmĤodd). Only a reduced spin chain of length proportional

to P is involved in the calculation: the white blocks (acting on spins outside the reduced

chain) can be trivially contracted. The gates are arranged according to a brickwork [166]

architecture.

Indeed, in Sec 3.1.1 above, we derived a simplified expression of the variational

energy for the XYZ model and the LTFIM, requiring the evaluation of a small

set of two-points and one-point correlators, as in Eqs. (3.16) and (3.18). The cal-

culation of these correlators admits a simple graphical interpretation in terms of a

“reverse causal cone” spreading of quantum correlations, which is an immediate con-

sequence of the locality of two-body spin interactions, reminiscent of Lieb-Robinson

bounds [167].

Let us first focus on the XYZ case. Given Eq. (3.16), it is sufficient to compute

only Cb
1,2 = ⟨ψP|σ̂b

1σ̂
b
2|ψP⟩ and Cb

2,3 = ⟨ψP|σ̂b
2σ̂

b
3|ψP⟩: this can be done by addressing a

reduced spin chain of length proportional to P, as sketched in Fig. 3.1. Remarkably,

the reduced spin chain is smaller than the whole chain — and it “does not see” the

boundary conditions [75] — only for small-enough values of P, corresponding to a

low-depth quantum circuit for our ansatz. When this is the case, it can be proven

that Cb
1,2 and C

b
2,3 do not depend on the system size N , and neither does the rescaled

variational energy in Eq. (3.16). More precisely, within this graphical interpretation,

it is easy to observe that Cb
1,2 is independent of N if 4P < N , while for Cb

2,3 the

condition reads 4P + 2 < N (notice the minor differences between the two reverse

causal cones in Fig. 3.1). Therefore, once we have fixed the depth P of the ansatz,

for large-enough sizes N of the XYZ chain the whole (rescaled) variational energy

landscape defined by Eq. (3.16) does not depend on N . Precisely, this holds true for

any N > ÑP, where ÑP = 4P+2. This analysis implies that the optimal parameters

for given P, found for an XYZ chain of size N > ÑP, can be exactly transferred to

any chain of size N ′ > N .

Similarly to the XYZ case, a description of quantum correlations spreading in

terms of a light cone also emerges for the LTFIM (analogously to the discussion

in [75] for the TFIM). In particular, one can prove that the rescaled variational

energy in Eq. (3.18) does not depend on the system size N if N > ÑP, with ÑP =
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3.3. Results

Figure 3.2.: The reverse causal cone for Cz,z
1,2 (left) and Cx

1 , C
z
1 (right) for the LTFIM

ansatz as in Eqs. (3.8), (3.11) for a depth P (here P = 2). The blue blocks represent

the observable, while the orange (green) blocks represent the relevant part of eiβmĤX

(e−iαm(ĤZZ−gzĤZ)). Also in this case, only a reduced spin chain of length proportional

to P is involved in the calculation: the white blocks (acting on spins outside the reduced

chain) can be trivially contracted.

2P + 1. This follows from the graphical interpretation in Fig. 3.2.

3.3. Results

As mentioned at the beginning of this Chapter, we seek smooth and transferable

optimal variational parameters. With this in mind, we adopt an iterative interpola-

tion scheme known as INTERP, first introduced in [74]. Essentially, the idea is to

perform a sequence of local optimizations for increasing values of P, each starting

from an educated guess that is iteratively updated by interpolating on the opti-

mal parameters found at the previous step. A formal description of the procedure,

including algorithmic details of our implementation, is reported in Appendix A.

Although INTERP was initially formulated for standard QAOA applied to clas-

sical optimization problems, here, we apply this heuristic to more general HVA

wavefunctions as in Eq. (3.1), with the goal of quantum many-body ground state

preparation. In the first place, we need to provide numerical evidence that both XYZ

and LTFIM ground states can be efficiently prepared across their phase diagrams,

reaching high fidelity values.
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Figure 3.3.: Infidelity 1−FP (top graphs) and translational infidelity FT
P (bottom graphs)

for the optimal XYZ ansatz, as a function of increasing number of layers. Even lower

(better) values can be obtained for the Heisenberg model (∆Y = ∆Z = 1, data not shown).

The translational infidelity follows a pattern similar to the infidelity, proving that full

translational symmetry is correctly restored. The optimal parameters always lie on a

smooth curve, as shown in Fig. 3.6.

3.3.1. Ground state preparation

We test the effectiveness of INTERP in providing excellent approximate ground

states for our models by applying it to the ansatz wavefunctions defined, for the

XYZ, by Eqs. (3.8), (3.9), and, for the LTFIM, by Eqs. (3.8), (3.11). We quantify

the accuracy of our ground state approximation — namely the ansatz state evaluated

at optimal parameters (β⋆,α⋆)P — with the ground state fidelity

FP =
∣∣∣⟨ψgs|ψ(β⋆,α⋆)P⟩

∣∣∣2 . (3.19)

Another useful quantity for the XYZ model is the translational fidelity of the optimal

state with its one-site translated version:

FT
P =

∣∣∣⟨ψ(β⋆,α⋆)P|T̂|ψ(β⋆,α⋆)P⟩
∣∣∣2 . (3.20)

Indeed, as stated in Sec 3.1.1, the ansatz for the XYZ model does not encode one-

site translational symmetry. Nevertheless, this translational fidelity is expected to

converge to one when approximating the true ground state with high fidelity, thus

restoring the full translational symmetry.
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Figure 3.4.: Infidelity for the optimal LTFIM ansatz, as a function of increasing number

of layers. As for the XYZ models, we observed empirically that similar infidelities can be

obtained for other points of the phase diagram (different values of gx and gz). Once again,

the optimal parameters lie on a smooth curve, as shown in Fig. 3.6.

Some illustrative results for the ground state fidelity are reported in Fig 3.3 for

XYZ models (also displaying data for the translational fidelity) and in Fig 3.4 for

the LTFIM. Note that, for ease of visualization, we plot infidelity (translational

infidelity) values, defined as 1 − FP (1 − FT
P). Remarkably, the INTERP method

avoids low-quality local minima of the energy landscape [47], allowing the obtaining

of high-fidelity values. Moreover, as shown below in Fig. 3.6, it converges to smooth

optimal curves for the variational parameters.

The mechanism underlying the effectiveness of INTERP can be understood intu-

itively as follows. Let us adopt the usual definition of residual energy

εN(β,α)P =
EN(β,α)P − Emin

N

Emax
N − Emin

N

, (3.21)

where EN(β,α)P is the variational energy in Eq. (3.10), while Emin
N (Emax

N ) is the

ground-state (maximum) energy of the spectrum. By looking at Fig. 3.5, it is evident

how this iterative scheme provides an effective warm start at each iteration of the

algorithm. Here, the residual energy is plotted for increasing values of P, both

evaluated at (β,α)startP (before the local optimization) and at (β,α)optP (after it).

We remark that the same ansatz (defined by Eqs. (3.8), (3.9)) successfully prepares

the ground state for the Heisenberg model (∆Y = ∆Z = 1), the XXZ in both phases

(∆Z < 1 and ∆Z > 1, with ∆Y = 1), and the XYZ model. Here, we show data for

arbitrary values of ∆Y,∆Z, but we verified that our results extend to different points

in the phase diagram. The same comments apply for the LTFIM ansatz (defined

by Eqs. (3.8), (3.11)), which is effective for the whole phase diagram. High fidelity

values are obtained despite the finite number of iterations (Niter = 100) set for the

classical optimizer.
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Figure 3.5.: Residual energy vs P before and after each local optimization leading from

(β,α)startP to (β,α)optP . Data refer to N = 16 qubits, for both the (∆Y = 1, ∆Z = 1)

Heisenberg model and the (gx = 1, gz = 1) LTFIM. Remarkably, the residual energy

before each optimization is already quite low, especially for large values of P. The vertical

green arrows show the improvement of the local optimization, while the red arrow depicts

the interpolation step from (β,α)optP to (β,α)startP+1 .

3.3.2. Smooth solutions and transferability

Usually, by adopting such iterative methods, one finds optimal angles that are

smooth functions of the layer index m = 1 · · ·P. For this reason, we dub them

smooth solutions. This is consistently observed in all phases of our models, as shown

in Fig. 3.6 at the critical point of XXZ (Heisenberg model) and close to the critical

line of the LTFIM [158]. On top of that, we note that these smooth optimal curves

are qualitatively similar for different system sizes. Inspired by this observation,

we verify numerically that smooth optimal solutions (β∗,α∗)|P,NG
— obtained by

applying INTERP to a small-size system with dimension NG up to a certain value

of P — can be transferred to solve the same task for a larger number of qubits,

thus providing an effective educated guess. In the following, we will always indicate

with NG the “guess” size used to obtain the smooth optimal solution, which will be

eventually transferred to a larger system withN > NG lattice sites. Unless otherwise

stated, we set NG = 8. To estimate the effectiveness of our transferability protocol,

we employ the residual energy for a system with N qubits, defined in Eq. 3.21, now

evaluated at εN(β
∗,α∗)|P,NG

. In Fig. 3.7, we plot this quantity for different points

in the phase diagram of our models: strikingly, smooth optimal curves obtained for

a small system provide an excellent educated guess for the ground-state preparation

up to N = 24 lattice sites.

A few comments are in order. The residual energy is not always a good proxy

for the fidelity with the ground state. However, in our case, the good agreement

between these two quantities is verified in Sec 3.3.3, where we compute the actual

fidelity of transferred solutions with target ground states. In practice, the residual

energy is a convenient choice for a figure of merit since it can be directly evaluated
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Figure 3.6.: Smooth optimal parameters (β∗,α∗)|P,N = (β∗1 · · ·β∗P , α∗1 · · ·α∗P) obtained

with INTERP, plotted vs the rescaled index m̃ ≡ (m−1)/(P−1) in the x-axis range [0, 1].

Results are shown for the Heisenberg model (∆Y = 1, ∆Z = 1) (left) and the LTFIM

(gx = 1, gz = 1) (right) for P = 16, and they are qualitatively similar for different sizes N .

These solutions are stable by further increasing the number of layers P. Similar smooth

solutions can be found for different points of the phase diagram.

on a quantum computer1, in contrast to the ground state fidelity. Intuitively, the

residual energy may roughly evaluate at ≈ 0.5 when computed at a random point in

the energy landscape 2, while its values obtained via transferability are remarkably

lower.

As a second crucial remark, the transferability of this class of smooth solutions

found via INTERP holds for larger values of P; in contrast, other equal-quality non-

smooth solutions for the small NG-size system — obtained using random-start local

optimization — do not provide any helpful guess for the ground state preparation

of the same model with a larger number of qubits. The analysis of these results is

also deferred to Sec 3.3.3. Additionally, we tested the existence of smooth curves

and their transferability to a larger number of qubits, also for the TFIM: our results

are confirmed up to much larger sizes by leveraging a standard mapping to free

fermions [75, 160, 161], as reported in Sec 3.3.4.

Now, despite the good educated guess provided by the transferability of smooth

solutions, one may be tempted to refine the ground state approximation for the

N -size model, e.g. by aiming at a target value of fidelity such as 99.9%. How-

ever, for such large sizes, both the XYZ models and the LTFIM are affected by

barren plateaus [2, 55]. Therefore, any local optimization starting from a random

1If the values of Emax
N and Emin

N are unknown, one can use the variational energy.
2This is approximately verified if the density of energy levels of Ĥtarg is almost uniform in the

spectrum.
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Figure 3.7.: Residual energies εN (β∗,α∗)|P,NG
for different system sizes using parameters

from a small-size “guess-system” (NG = 8) computed for different flavours of the two

models. We show the transferability of smooth optimal solutions (β∗,α∗)|P,NG
with P = 10

for XYZ models (left) and the LTFIM (right).

point in the parameter space is doomed to fail on a realistic quantum device, due

to vanishingly small gradients requiring an exponential scaling of resources [34, 49].

Remarkably — and this is one of the main original results of this Chapter — we

find that transferred smooth optimal solutions stand out in this respect: in their

neighborhood, the landscape does not suffer from small gradients, and a local opti-

mization would succeed.

Figures 3.8 and 3.9 illustrate this important point. For conciseness, we show data

for (∆Y = 1, ∆Z = 1) and (gx = 1, gz = 1), but our results extend to other points of

the phase diagrams. Specifically, in Fig. 3.8, we plot the variance of a representative

gradient component of the variational energy in Eq. (3.10), as customary in studies

on barren plateaus [49, 54, 56], which is sampled at random in the whole landscape.

As expected, its exponential decay with the system size N confirms the presence

of barren plateaus. However, if we sample the same gradient component only in a

neighborhood of radius ϵ of the transferred smooth solution, its magnitude does not

show any appreciable exponential decay. This result is observed for both classes of

models under exam, and it is further evidenced in Fig. 3.9, showing data for a fixed

value of P: the exponential decrease of the gradients in the whole search space is

equivalent to that in a neighborhood of radius ϵ of any given set of angles, with

the exception of the smooth transferred curve (β∗,α∗)|P,NG
. Once more, also this

local landscape property does not extend to the neighborhood of other transferred

non-smooth solutions, which neither provide a useful educated guess for the large

system nor solve the barren plateau issue for local optimization. This is shown in

Sec 3.3.3, along with data supporting the effectiveness of a refinement optimization

performed classically in the neighborhood of the transferred smooth curve.

Incidentally, for each value of N , the sample variance in the whole search space
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Figure 3.8.: Barren plateaus in the whole search space (data denoted as “Global” and

shown as solid circles of different colors for different N , in both plots). A qualita-

tively different trend is observed in the ϵ-neighborhood of the transferred smooth solution

(β∗,α∗)|P,NG
, obtained with INTERP for a small system size NG = 8 (data denoted as

“Smooth”, and shown as solid triangles, with colors matching those of “Global” data for

various N , in both plots). Here, we focus on a single partial derivative w.r.t. θ = α1 (see

Eqs. (3.9), (3.11)) of the variational energy in Eq. (3.10), rescaled as in Sec 3.1.1 (see

Eqs. (3.16), (3.18)) and dubbed C. We plot the sample variance of the partial derivative

as a function of the number P of HVA layers in the circuit. We fix ϵ = 0.05 and a batch

of 1000 samples for each value of P and N .
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Figure 3.9.: Same quantity as in Fig. 3.8, here plotted vs the qubit number for a fixed

circuit depth P = 40 (P = 100) for the Heisenberg model (LTFIM). The labels “Global”

and “Smooth” refer to the same data of Fig. 3.8. We denote with “Local ϵ” a sampling

performed in an ϵ-region centered around a random point. Data are averages over 20

random points (generated independently for each value of N) with ϵ = 0.05. We use

a constant batch size of 1000 samples, for each N and sampling region. A clear trend

appears: the neighborhood of a random point exhibits the same exponential decay as the

whole space, which is not present in the neighborhood of the transferred smooth solution.

saturates after a certain circuit depth P, as argued in [34, 49] and clearly shown in

Fig. 3.8. This fact is usually linked to the ansatz parameterized quantum circuit

approaching an approximate 2-design [52, 168, 169] on its symmetry subspace [55].

In conclusion of this section, let us highlight that our findings pave the way to an

improved scheme to prepare the ground state of this class of many-body quantum

systems with a large number of qubits: the smooth optimal curves can be found

classically for a small system and then transferred to solve the same task for larger

N , beyond the reach of classical simulations. In this scenario, the quantum device

would only be needed for a refinement optimization without barren plateaus.

3.3.3. Additional results on transferability and barren plateaus

In the previous section, we described the transferability properties of a class of

smooth solutions found via INTERP. However, for a small system (e.g. “guess size”

NG = 8) and a large value of P, one can easily find other solutions employing stan-

dard random-start local optimization, not displaying any smoothness property as a

function of the layer index m = 1 · · ·P. Remarkably, these do not offer, in general,

any useful educated guess for the ground state preparation of a larger system, as
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Figure 3.10.: Transferability of smooth optimal solutions (INTERP) vs random-start

solutions (local optimization), both obtained for a small-size “guess” system (NG = 8) and

then transferred to a larger system sizes N . Data refer to the (∆Y = 1, ∆Z = 1) Heisenberg

model; we plot the average and the best out of 20 random-start local optimizations,

compared to the usual INTERP smooth curve (β∗,α∗)|P,NG
. INTERP solutions are always

observed to provide an excellent educated guess for larger systems: this is particularly

evident for large values of P, where random-start solutions always fail in this respect.
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Figure 3.11.: Transferability of smooth optimal solutions (INTERP) vs random-start

solutions (local optimization), both obtained for a small-size “guess” system (NG = 8)

and then transferred to a larger system sizes N . Data refer to the (gx = 1, gz = 1) LTFIM

and we plot the average and the best out of 20 random-start local optimizations. The

same comments apply as in Fig. 3.10.

shown in Figs. 3.10 and 3.11 for the Heisenberg model and the LTFIM, both in

terms of ground state infidelity and residual energy. Notice that both INTERP and

any random-start solution prepare the ground state for the small system equally well
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Figure 3.12.: Comparison between the local landscape of transferred random-start (non-

smooth) solutions with that of random points in the search space (dubbed “Local ϵ”, same

data as in Fig. 3.9). In both cases, we average over 20 instances and, for each instance,

we sample 1000 points in a neighborhood of radius ϵ = 0.05. The exponential decay

is manifest, with a striking similarity. This is at variance with the local landscape of

transferred smooth solutions found via INTERP, not displaying barren plateaus (compare

with Fig. 3.9).

(essentially, with zero infidelity). Nevertheless, only the former class of solutions is

observed always to yield an excellent educated guess for the same task with a larger

number of qubits. This fact is particularly evident for large values of P. Indeed,

in this regime, transferred random-start solutions perform as poorly as the ansatz

evaluated at random in an arbitrary point of the search space (i.e., almost-unit infi-

delity, residual energy of the order of ≈ 0.5). Moreover, smooth solutions found via

INTERP also stand out concerning their favorable local landscape, where gradients

do not show any appreciable exponential decay. In contrast, this is not observed in

the neighborhood of transferred non-smooth solutions, where barren plateaus are as

marked as in the neighborhood of a random point in the search space (or as in the

global search space, see Fig. 3.9). These results are outlined in Fig 3.12. Here, and

in the rest of the section, we focus again on the (∆Y = 1, ∆Z = 1) Heisenberg model

and the (gx = 1, gz = 1) LTFIM.

Thanks to this favorable local landscape, one can effectively perform a refinement

optimization for the large system to further increase the ground state fidelity above

a target threshold. An example is shown in Fig. 3.13, by setting a maximum number

of iterations Niter = 100 for the classical routine performing the refinement optimiza-

tion. Despite this constraint, the local optimization succeeds, significantly lowering

the final infidelity. Incidentally, we verified that the refined optimal curve is still in

the “basin of attraction” of the transferred smooth curve, as shown in Fig. 3.14. At

this level of detail, the curves appear almost exactly overlapping.
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Figure 3.13.: Refinement optimization starting from the transferred smooth curve, for

the Heisenberg model with P = 40 (left panel) and the LTFIM with P = 100 (right

panel). Even with a fixed number of iterations Niter = 100 for the classical optimizer, we

can significantly reduce the ground state infidelity.

3.3.4. Large-scale simulations for the TFIM

In this section, we address the line (gz = 0) of the LTFIM phase diagram, corre-

sponding to the integrable Transverse Field Ising Model (TFIM), with Hamiltonian

ĤTFIM =
N∑
i=1

σ̂z
i σ̂

z
i+1 − gx

N∑
i=1

σ̂x
i . (3.22)

A mapping to non-interacting fermions allows us to perform large-N VQA simula-

tions, well beyond the usual limits of exact diagonalization techniques. In particu-

lar, we used the same ansatz as in Eqs. (3.8), (3.11), which reduces to the standard

QAOA ansatz for gz = 0.

As argued in [55], we verified numerically that the TFIM ground state preparation

is not affected by barren plateaus. However, the possibility of large-scale simulations

offers a useful benchmark on the effectiveness of INTERP in this regime, particularly

concerning the existence of smooth optimal solutions and their transferability. The

variational energy is given by Eq. (3.10) with Ĥtarg = ĤTFIM, while the residual

energy reads as in Eq. (3.21).

Refs. [27, 75, 162] previously discussed how to efficiently simulate QAOA using

the fermionic mapping of the TFIM. They showed that, after applying a Jordan-

Wigner and a Bogoliubov transformation, a system of an even number of spins N

decomposes in a direct sum of N/2 independent two-level systems, which are labeled

by the wave-vectors kn = (2n−1)π/N with n = 1 · · ·N/2. The total residual energy
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Figure 3.14.: A coarse-grained picture of the optimal parameters after performing a

refinement optimization, compared with the initial smooth guess (obtained by INTERP)

at NG = 8, i.e. (β∗,α∗)|P,NG
. These are the refined optimal parameters corresponding to

Fig. 3.13, i.e. P = 40 (P = 100) for the Heisenberg model (LTFIM).

of the one-dimensional TFIM then reads

εN(β,α)P =

N/2∑
n=1

ε(kn)(β,α)P , (3.23)

where ε(kn)(β,α)P are the residual energies associated to each two-level system. The

analytical expression for ϵ(kn)(β,α)P, as provided in Ref. [75], is

ϵ(k)(β,α)P =
1

2
− 1

2
vT
k

(
←P∏
m=1

Rẑ(4βm)Rbk(4αm)

)
ẑ ,

where ẑ = (0, 0, 1)T , bk = (− sin k, 0, cos k)T and vk = (bk + gxẑ)/||bk + gxẑ|| are
three-dimensional unit vectors. Rω̂(θ) is the 3× 3 matrix associated with a rotation

of an angle θ around the unit vector ω̂, and their product is “time”-ordered from

right to left for increasing m = 1 · · ·P.

These formulas allow for efficient computation of εN(β,α)P, enabling us to nu-

merically study the performance of QAOA for a large number of qubits. Also for

the TFIM, we find smooth curves, shown in Fig. 3.15 at the critical point gx = 1, up

to sizes as large as N = 128. In the same figure, we also show that smooth curves

— prepared by applying INTERP to a small system of size NG = 8 — are trans-

ferable up to sizes as large as 250 qubits, i.e. they offer a good educated guess for

TFIM ground state preparation. This is in stark contrast with other (non-smooth)
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Figure 3.15.: (Left panel) Smooth optimal parameter curves for the TFIM, obtained

by applying INTERP up to P = 80. Smooth curves are qualitatively similar for a wide

range of system sizes. (Right panel) Numerical evidence on the transferability of smooth

optimal solutions — obtained for a small-size “guess” system (NG = 8) — up to very large

systems. In contrast, non-smooth solutions found via random-start local optimization do

not provide, on average, any useful guess for the ground state preparation of a larger

system, yielding a residual energy ≈ 0.5. We averaged over 100 random-start solutions

but, remarkably, not even the best of them is nearly comparable with the one obtained

via INTERP. Data refer to the critical point gx = 1, and the same behavior is observed in

other regions of the TFIM phase diagram.

solutions, found via random-start local optimization for the small system: despite

preparing the small-size ground state with perfect accuracy (the same as applying

INTERP), they do not provide any useful educated guess for the large system.

3.4. Conclusion and outlook

We tackled many-body ground state preparation via problem-inspired VQAs, and

provided extensive numerical evidence on the transferability of a class of optimal

smooth solutions — obtained using iterative schemes for a small number of qubits —

to solve the same task for larger system sizes. Remarkably, these solutions provide

an excellent educated guess for the ground-state wavefunction, as opposed to other

solutions that can be easily obtained for small systems without appropriate iterative

schemes (e.g. with random-start local optimization). These results are confirmed up

to larger sizes for the TFIM.

For ground state preparation of these models, our procedure overcomes the well-

known difficulties related to the highly non-trivial structure of the variational energy

landscape. On top of avoiding low-quality local minima traps daunting random-

start local optimization [47, 74], we provided evidence of a novel feature of this

class of solutions: the cost-function landscape is observed to become free of barren
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3. Barren Plateaus in the Hamiltonian Variational Ansatz

plateaus in their neighborhood, potentially allowing for further effective refinement

optimizations with a quantum device on a classically obtained smooth guess.

This work paves the way for many novel, exciting research directions. Our new

effective way of approaching ground state preparation for larger many-body systems

may allow to deal with 2D lattice models, ranging from spin systems to Hubbard-like

systems, with or without disorder. Furthermore, an interesting proposal would be

to test our scheme in the presence of noise and for the mitigation of noise-induced

barren plateaus [59]. Theoretically, it might be interesting to prove analytically

the transferability and landscape properties of smooth solutions found via INTERP.

Previous numerical and analytical results on reusable optimal parameters exist, as

explained in detail in Chapter 1. These “parameter concentration” results are usu-

ally valid for the whole landscape, while here, they apply specifically to smooth opti-

mal solutions for large values of P, providing a link between solution transferability

and the local absence of barren plateaus. Hence, a possible connection between this

class of solutions and adiabaticity might be investigated [75, 112, 127]. Finally, our

scheme could be directly tested with near-term technology on real quantum devices

beyond the size limits of classical computation.
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4. Ground state preparation of a

Lattice Gauge Theory

In topology, you don’t understand things. You just get used to them.

—James Waddell Alexander II

In this Chapter, we address the realization and characterization on near-term

quantum devices of the ground states of a special class of interacting many-body

systems, namely lattice gauge theories. We focus on a two-dimensional Z2 lattice

gauge theory model on a shallow quantum circuit, a paradigmatic problem of interest

for its implications in high-energy physics and the realization of topological quantum

memories. Our implementation involves single and two-qubit gates compatible with

present-day technologies, employing a Variational Quantum Algorithm in the class

of Quantum Approximate Optimization Algorithms (QAOA).

Our results are based on systems with 18 qubits, and, despite their small size,

enable us to detect the presence of a phase transition between confined and de-

confined regimes, which can be detected by measuring expectation values of Wilson

loop operators or the topological entropy. Moreover, if periodic boundary conditions

are implemented, the same optimal solution is transferable among all four different

topological sectors, without any need for further optimization of the variational

parameters.

These techniques can be generalized to more complex lattice gauge theories or

models with topological order, and they constitute a useful instrument to be added

to the toolbox for the digital quantum simulation of gauge theories, especially for

quantum computers based on arrays of superconducting qubits.

4.1. Introduction

When considering current quantum computers based on superconducting qubits,

the typical platforms are constituted by qubits arranged in two-dimensional ar-

rays [170, 171]. These systems allow us to manipulate the qubits via single and

two-qubit gates and, in most cases, two-qubit gates are local, i.e. they can be ap-
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4. Ground state preparation of a Lattice Gauge Theory

plied to neighboring qubits only. These platforms are usually initialized starting

from simple product states, while the efficient creation of complex entangled states

is a non-trivial challenge. Despite the limitations of the noisy hardware currently

available, these architectures open the path to various applications. One of the most

important is the implementation of error-correcting codes and, to this purpose, con-

siderable attention has been devoted to the realization of surface codes [172], thus

to the preparation via local gates of states displaying topological order. In this

context, the first experimental realization of the ground state of a surface code has

been successfully achieved [173], and it allowed for the study of the main topological

properties of its anyonic excitations.

In this framework, Lattice Gauge Theories (LGT) emerged as a paradigmatic

research subject. They constitute the backbone of particle physics, and many of their

important features display a non-perturbative nature, requiring advanced numerical

techniques to be studied. Furthermore, some of the simplest two-dimensional (2D)

LGTs share the same topological properties of surface codes which, indeed, can be

seen as the extreme deconfined limit of systems with Z2 gauge symmetry. In the

last decade, the application of quantum technologies to LGT became a lively field of

research [174–179], progressing both on the development of several technologies and

algorithms to tackle the complexity of LGTs and on the study of LGTs themselves.

One task that can be addressed through the quantum simulation of LGTs is

the study of their static properties. A key step to this purpose is the efficient

initialization of their ground states, which allows the investigation of their phase

diagrams at low temperatures.

In the next sections, we explore the possibility of studying the ground state of

a 2D pure lattice gauge theory within the framework of quantum circuits and dig-

ital quantum simulations. Indeed, the recent developments of quantum simula-

tions provide complementary approaches to other quantum many-body approxima-

tion techniques such as Tensor Networks [176, 180–184], which are challenging to

implement in 2D with current technologies, in particular for what regards quan-

tum dynamics. We shall focus on the 2D Z2 LGT, which is known to display a

confinement-deconfinement phase transition between a trivial (confined) phase and

a topologically ordered (deconfined) phase, matching the topological features of

Kitaev’s toric code [185]. As we show, most of the interesting ground state proper-

ties linked to topological order, which are usually described in the thermodynamic

limit, can be characterized even with small lattices. To do so, we employ QAOA

to prepare the ground state at arbitrary values of the coupling and we show that

the algorithm reaches high fidelity within a very small number of variational pa-

rameters, corresponding to a shallow quantum circuit. To reliably find optimal or

quasi-optimal minima, we employ a two-step local optimization procedure similar

to the one in Chapter 2, which provides regular schedules that can be efficiently

transferred to larger systems.
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4.2. Z2 lattice gauge theory

Targeting the ground state in the confined phase, where there is no long-range

entanglement, can always be performed efficiently and our numerical simulations

suggest that QAOA can be scaled up to larger sizes without increasing the circuit

depth. Concerning the preparation of states in the deconfined phase, instead, it is

known that topologically ordered states cannot be obtained exactly with circuits of

fixed depth for growing system size. In particular, for the ground states of the toric

code, the required circuit depth scales linearly with the system width [173, 186–189].

This is also a general property of QAOA, where long-range correlation and perfect

control on the system is attained only with an extensive number of layers [75, 190,

191]. As a consequence, when targeting states in different phases, we compare two

strategies: either we apply directly the QAOA evolution on a trivial product state,

or we first build exactly the toric code state and then apply the variational circuit

from that starting point. The two approaches offer optimal results for targeting

states in the confined or deconfined phase, respectively. They also display similar

performances for the small system sizes we consider, except for the required overhead

of the second approach.

The ground states prepared with QAOA are then used to characterize the crossover

from the confined-topologically trivial phase to the deconfined-topologically ordered

one. In particular, we focus on the behavior of Wilson loop operators and the

topological entropy. We also discuss the possibility of exploring the ground state

degeneracy when the lattice has periodic boundary conditions. Remarkably, all these

indicators of a topological phase transition display very small deviations from their

expected behavior in the thermodynamic limit despite the reduced size of our lat-

tices. The successful implementation of 2D Z2 LGT and the correct description of

this crossover — with very limited resources in terms of qubit numbers and circuit

depth — provides a proof of principle of the feasibility of quantum simulations of

deconfined and topological phases of lattice gauge theories in general.

4.2. Z2 lattice gauge theory

In this work, we consider a pure Z2 gauge theory model on a regular square

lattice. The discretized gauge fields are represented by qubits on the links of the

lattice. Using a lattice of size L × L, there are 2L2 qubits if periodic boundary

conditions are imposed. The Hamiltonian we use is the sum of two competing terms

Ĥ = ĤE + h ĤB , (4.1)

which represent “electric” and “magnetic” non-commuting contributions. Their

structure comes from an analogy with the QED Hamiltonian, where both space and

the gauge group U(1) are discretized: the real space becomes a lattice, and U(1)

is discretized to Zn. Here we focus on the smallest discrete group n = 2, which is
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naturally encoded in terms of qubits. The electric contribution to the Hamiltonian

is

ĤE =
∑
l

(1− σ̂x
l ) , (4.2)

where the index l runs over all the links in the lattice and the Pauli matrices are

denoted σ̂α
l , with α = x, y, z. This specific choice of ĤE is motivated by the QED

analogy since the electric field enters the Hamiltonian via E⃗2 and our term is positive

definite. A spin in the eigenstate σ̂x
l |+⟩l = |+⟩l brings no contribution to the electric

energy and corresponds to a vanishing electric field. The state |−⟩l indicates instead
the presence of a Z2 electric excitation on the link l, with energy cost assigned by

ĤE. The magnetic term reads

ĤB = −
∑
p

Bp = −
∑
p

σ̂z
p1
σ̂z
p2
σ̂z
p3
σ̂z
p4
, (4.3)

where p labels the plaquettes of the lattice and the plaquette operator Bp involves

the product of the four spin variables σ̂z around the four links p1, · · · p4 of the p-th

plaquette (see Fig. 4.1). In particular, Bp = −1 represents a magnetic flux through

the p-th plaquette, and the interaction term hĤB assigns an energy 2h to each of

these excitations. Note that ĤB is diagonal in the computational basis, whereas the

electric Hamiltonian ĤE effectively provides kinetic energy to the magnetic fluxes.

The local gauge constraint is the analog of Gauss’s law and it selects the physically

relevant sector of the Hilbert space. For each vertex v of the lattice, physical states

must be left invariant by gauge transformations, thus satisfying

Av|ψ⟩phys =
∏
l∈v

σ̂x
l |ψ⟩phys = |ψ⟩phys , (4.4)

where the star operator Av is the product of the spin operators σ̂x on the four links

connected to the vertex v, as represented in Fig. 4.1. It is straightforward to check

that any plaquette operator Bp commutes with any star operator Av, i.e.

[Bp,Av] = 0 ∀ p, v , (4.5)

hence the star operators are local symmetries of the model since they commute with

the Hamiltonian in Eq. (4.1) for any value of the field h.

This Hamiltonian has two well-known limits, for h → 0 and h → ∞. When

only ĤE is present (h → 0), the electric ground state is a trivial product state

with all spins aligned along the x direction |ΩE⟩ =
⊗

l |+⟩l, which satisfies the local

gauge constraints in Eq. (4.4) and corresponds to the absence of any electric field

excitation.

In the opposite limit h→∞ only the magnetic term remains, the system behaves

like a surface code [172, 185, 192] and displays topological order. In this case, the

number of ground states depends on the boundary conditions. The ground states
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Figure 4.1.: Representation of a star operator Av (in red) and a plaquette operator Bp

(in blue), with the corresponding qubits on the links (solid circles).

of ĤB are the simultaneous eigenstates of all plaquette and star operators with

eigenvalue 1 and correspond to the absence of magnetic fluxes. In the case of open

and smooth boundaries [172], there is a single magnetic ground state which can

be expressed as an equal amplitude linear superposition of all possible contractible

electric flux loops Γ:

|ΩB⟩ = N
∑
Γ

WΓ|ΩE⟩ =
∏
p

(
1 +Bp√

2

)
|ΩE⟩ . (4.6)

Here N is a normalization factor and WΓ is the Wilson loop operator associated to

a closed path Γ, defined as the product of σ̂z matrices on the links belonging to Γ:

WΓ =
∏
l∈Γ

σ̂z
l . (4.7)

Since σ̂z|±⟩ = |∓⟩, Wilson loops applied to the electric ground state |ΩE⟩ create
closed lines of electric field excitations. Note that any contractible Wilson loop can

be uniquely written as a suitable product of plaquette operators Bp, thus, by taking

the uniform superposition in Eq. (4.6), one obtains an eigenstate with eigenvalue

1 for each Bp. This is made explicit by the second form of |ΩB⟩, expressed as the

normalized product of the projectors on the eigenstates of each plaquette operator

with eigenvalue 1.

The magnetic coupling h drives the system across a topological phase transition,

occurring at hc, between the electric and the magnetic phases, which are distin-

guished by different behaviors of the expectation values of the Wilson loop opera-

tors. From the definition of the limiting ground states |Ω⟩E, |Ω⟩B, it follows that in
the two limits h = 0 and h→∞ we have for all paths Γ

⟨ΩE|WΓ|ΩE⟩ = 0 and ⟨ΩB|WΓ|ΩB⟩ = 1 .

At a finite value of h, the expectation value of Wilson loops on the ground state

decreases exponentially in the size of Γ, with a leading contribution given by [193,
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194]

⟨WΓ⟩ = e−χ(h)AΓ−δ(h)PΓ , (4.8)

where AΓ and PΓ are the area enclosed by the loop Γ and its perimeter, respectively,

while χ and δ are two positive functions. For h < hc, the system is in a phase

dominated by the electric term ĤE, χ(h) > 0 and ⟨WΓ⟩ decays with an “area law”.

This means that large loops of electric excitations are strongly suppressed, which

is a signature of confinement [195, 196]. In the opposite deconfined phase, where

h > hc and the dominant term is ĤB, χ(h) → 0, and the behavior of large Wilson

loops follows a “perimeter law”.

When periodic boundary conditions (PBC) are considered in both directions, the

Hamiltonian acquires an extra Z2×Z2 symmetry related to non-contractible ’t Hooft

loops. Consider a closed path C in the dual lattice. C crosses orthogonally a sequence

of links of the direct lattice that we denote schematically by ℓ ∩ C. The ’t Hooft

loop operator

τC =
∏
l∩C

σ̂x
l , (4.9)

commutes with the Hamiltonian (4.1) for any closed loop C. However, if C is con-

tractible, τC can always be expressed as a product of star operators Av, so that

[τC, Ĥ] = 0 does not provide any additional information that is not already con-

tained in the gauge-invariance of the Hamiltonian. Considering PBC, the lattice

becomes a torus and there are indeed two inequivalent non-contractible loops, whose

corresponding ’t Hooft operators τh and τv cannot be expressed as a product of star

operators, and thus provide new symmetries. Fig. 4.2 shows examples of ’t Hooft

loop operators. Similarly, with PBC, two non-contractible Wilson loop operators

Wh and Wv can be constructed, associated with a horizontal or vertical winding

around the lattice, respectively. These two operators commute with ĤB and Av,

but they can not be written as a product of plaquette operators. The following

mixed commutation relations are easily derived:

[Wh, τh] = [Wv, τv] = 0

{Wh, τv} = {Wv, τh} = 0 . (4.10)

In the trivial limit h→ 0, the expectation values of τh and τv on the electric ground

state |ΩE⟩ are +1. In the topological limit h → ∞, when [Wh, Ĥ] = [Wv, Ĥ] = 0,

we get four degenerate ground states characterized by different eigenvalues of the ’t

Hooft loops, corresponding in the basis |τh, τv⟩ to:

|++⟩ = |ΩB⟩ ,
|+−⟩ = Wh|ΩB⟩ ,
| −+⟩ = Wv|ΩB⟩ ,
| − −⟩ = WhWv|ΩB⟩ .

74



4.2. Z2 lattice gauge theory

Figure 4.2.: The two non-contractible ’t Hooft loops τh, τv and a simple example of how

a contractible ’t Hooft loop operator τC is written as a product of star operators. The

dotted link indicates a cancellation due to (σ̂xl )
2 = 1.

Now, one clearly sees that τh and τv measure the winding number of the lines of

electric field excitations in the vertical and horizontal directions, created by the

non-contractible Wilson loops Wv and Wh, respectively. A non-trivial topological

ground state is signaled by eigenvalues -1 in the basis |τh, τv⟩. This is an immediate

consequence of the anticommutation relations.

At finite values of h > hc, the perfect degeneracy between these four states

gets lifted by an energy splitting vanishing exponentially with the linear size L.

Hence, in the thermodynamic limit, the topological phase of a Z2 LGT with PBC

is characterized by four exactly degenerate ground states in different topological

sectors. The phase transition occurs at hc = 3.04438(2) [197] and it can be un-

derstood by considering the duality between the Hamiltonian in Eq. (4.1) and the

2-dimensional quantum Ising model with transverse field (2D-TFIM), valid under

the following assumptions on our LGT model: the lattice has PBC, the gauge-

symmetry Av|ψ⟩phys = |ψ⟩phys is imposed at each vertex, and the Hilbert space is

restricted to the τh = τv = +1 sector [198]. Indeed, we can define new Pauli spin

variables Xp and Zp on the dual lattice, where p denotes the plaquette centers, by

identifying {
Xp = Bp

ZpZp′ = σ̂x
l(p,p′)

, (4.11)

where p and p′ are neighboring plaquettes and l(p, p′) is the link shared by p, p′.

With the mapping in Eq. (4.11), the Hamiltonian becomes a transverse-field Ising

model on the dual lattice:

Ĥ =
∑
⟨p,p′⟩

(
1− ZpZp′

)
− h

∑
p

Xp . (4.12)

One can check that the algebra generated by the new operators is the same as the

original one, confirming the unitary equivalence of the two models. Notice that the

number of degrees of freedom is now halved: L2 qubits (one for each plaquette),
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instead of 2L2 (one for each link). This is an effect of the gauge symmetries, which

are now automatically incorporated into the model. Finally, it is important to

mention the fact that this duality fixes the global Z2 symmetry of the Ising model:

in the original representation, the product of all plaquette operators is the identity∏
p Bp = 1. In the 2D-TFIM, this is reflected in the condition

∏
p Xp|ψ⟩ = |ψ⟩,

which means that the physical states must be invariant under a global spin flip.

In this work, we shall employ both the original formulation of Eq. (4.1) and its

dual model in Eq. (4.12). The dual Ising model will be exploited to speed up our

numerical analysis of the Z2 LGT and, in particular, to verify the scalability of

QAOA between different system sizes.

4.2.1. Ground state preparation with QAOA

To prepare the ground state of the LGT Hamiltonian in Eq. (4.1), we use a

version of the Quantum Approximate Optimization Algorithm (QAOA) described

in Chapter 1, in the broad class of AQC-inspired variational states. Considering

the two terms ĤB and ĤE in the LGT Hamiltonian, we construct the following

variational ansatz

|ψP(γ,β)⟩ = Û(γP, βP) . . . Û(γ1, β1) |ψ0⟩ , (4.13)

where β = β1, . . . , βP and γ = γ1, . . . , γP are 2P free real parameters, and the

unitary operators Û(γm, βm), for m = 1 · · ·P, evolve the state according to ĤB and

ĤE, in an alternating fashion. More precisely, the initial state |ψ0⟩ can either be

the electric ground state |ΩE⟩ or the magnetic one |ΩB⟩ = | + +⟩, and, depending
on the choice of |ψ0⟩, we define the operator Ûm = Û(γm, βm) in Eq. (4.13) as 1

Ûm =

{
e−iβmĤEe−iγmĤB if |ψ0⟩ = |ΩE⟩ ,
e−iγmĤBe−iβmĤE if |ψ0⟩ = |ΩB⟩ .

(4.14)

For a given choice of the coupling h, which identifies a target Hamiltonian Ĥtarget(h) =

ĤE+hĤB, an approximation of the associated ground state is found using a classical

minimization of the variational energy

EP (γ,β) = ⟨ψP(γ,β) | Ĥtarget(h) |ψP(γ,β)⟩ (4.15)

in this 2P-dimensional energy landscape. This is a specific implementation of the

general framework outlined in Chapter 1.

As previously discussed, precisely determining the global minimum is generally

a challenging task. This difficulty arises because local optimization routines often

become trapped in one of the numerous local minima. In the following, we shall

1This choice avoids adding only a global phase in the first step.
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adopt an effective strategy to search for optimal (or quasi-optimal) solutions by a

two-step QAOA procedure that starts from a linear schedule for the parameters,

drawing inspiration from digitized Quantum Annealing. This is essentially the same

procedure we dubbed QAOA-1 in Chapter 2.

4.2.2. Circuit implementation of the variational ansatz

The QAOA variational wavefunction in Eq. (4.13) is obtained by applying P

layers of local unitary operators, by alternating the time evolutions generated by

plaquette and electric field interactions. In what follows, we are going to describe

how to implement the operations involved in each layer of the variational circuit by

using only single and two-qubit gates. Since we shall focus on a single application

of the unitary operations e−iβmĤE and e−iγmĤB , the index m will be dropped from

the parameters.

The electric term of Eq. (4.2) is a sum of single-qubit operators, therefore the evo-

lution it generates can be realized as a product of single-qubit rotations around the

x axis by the angle β, up to an irrelevant global phase. As usual, the computational

basis we adopt hereafter is the σ̂z eigenbasis. Therefore, we employ Hadamard

gates to diagonalize ĤE, and we reproduce the electric evolution during a single

QAOA step by simultaneously applying operators Up(β) = eiβσ̂
z
to all qubits, i.e.

a global rotation of angle β around the z-axis 2. A schematic representation of the

single-qubit gates required is sketched in Fig. 4.3(b).

The implementation of the time evolution associated with plaquette operators is

less trivial [199–201], but it can be realized in a local way as a combination of single-

and two-qubit gates. Fig. 4.3(a) shows that a single-plaquette unitary operator eiγBp

is obtained by a suitable combination of CNOT gates and a single-qubit rotation

Up(γ) applied to the fourth qubit of the plaquette. The fourth qubit is the target

of all CNOTs and it is restored to its initial logical state by the last three CNOTs,

such that Up(γ) successfully applies the phase γBp only. An alternative technique

based on ancillary qubits is presented in Refs. [202–204].

For a lattice composed of several plaquettes, the circuits in Fig. 4.3(a) cannot be

simultaneously run on all of them, since two neighboring plaquettes share a qubit:

as shown in Fig. 4.3(c), the qubit 4 not only acts as the target for the left plaquette

but also as one of the controls for the right plaquette. The time evolution of the

plaquette operators, however, can still be efficiently parallelized. For the sake of

simplicity, we shall first consider systems with an even number of columns (for an

even number of rows the situation is formally equivalent). In this case, we can

2In the σ̂z eigenbasis the circuit depth is 3; however, in a realistic experimental setup, it is often

possible to implement single-qubit rotations around the x axis, requiring only a single layer of

gates
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Figure 4.3.: (a) Circuit implementation of the operator eiγB acting on a single plaquette,

with a target and 3 control qubits. The states |pi⟩ are expressed in the σ̂z eigenbasis and

Up(γ) = eiγσ̂
z
is a single-qubit rotation around the z axis. (b) Implementation of the single-

qubit operations that describe e−iβĤE . (c) Example of the sequential implementation of

the operator eiγB on two neighboring plaquettes. Here, the qubit |p4⟩ is used first as the

target qubit for the left plaquette and afterward as a control qubit for the right plaquette.

decompose the whole lattice into sets of two neighboring horizontal plaquettes, each

set having the same structure as depicted in Fig. 4.3(c). Let us focus on a single set,

which corresponds to our basic unit. We show in Fig. 4.4 the corresponding quantum

circuit that will be run in parallel for all such sets. Neighboring pairs of plaquettes

share qubits at their boundary: this can be understood by ideally replicating the

pair in Fig. 4.3(c), to build a lattice. For instance, the qubits 3 and 6 of our set

also correspond to the qubits 2 and 5 of the set above the one in exam. Similarly,

qubits 2 and 5 are homologous of qubits 3 and 6 for the set below, whereas qubit 7

matches qubit 1 of the plaquette pair lying on the right of the one depicted, and so

on.

The quantum circuit defined in Fig. 4.4 performs the rotation of both plaquettes

in 12 steps and it can be run in parallel for all plaquette pairs. This procedure is

based on applying the phase gates Up(γ) on qubits 4 and 7 (thus on all the qubits

of the lattice lying on the vertical links) to implement the plaquette rotation. The

gates partially depicted in green are related to the simultaneous realization of the

same algorithm for the neighboring plaquettes. All the qubits lying on the vertical

links are required to be connected via CNOTs to four neighboring qubits, whereas

the horizontal qubits are just connected to two neighbors each. As a result of the

previous scheme, each of the P steps of QAOA can be realized with a circuit of

depth 13 on systems with open boundaries, or systems with closed boundaries and

an even number of rows or columns. In this work, we mainly focus on the numerical
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4.2. Z2 lattice gauge theory

Figure 4.4.: Algorithm to implement the plaquette operator eiγB on the two neighboring

plaquettes depicted in Fig. 4.3(c). The labeling of the qubit lines emphasizes that all the

boundary qubits are shared with the neighboring plaquette pairs. The partially depicted

green gates (dashed lines) are related to the simultaneous implementation of the same

algorithm on a couple of neighboring plaquettes. They connect the displayed qubits with

qubits belonging to the surrounding lattice sites, based on suitable translations of the

two-plaquette unit.

investigation of a lattice with 3 × 3 plaquettes and periodic boundary conditions.

Its implementation on actual quantum hardware requires some additional care due

to the boundary conditions and, in that case, each QAOA step can be realized with

a circuit of depth 18. This is explained in detail in Appendix C.

Preparation of the initial state |ψ0⟩

To estimate the computational cost for the preparation of a target ground state

of the Z2 LGT, it is also important to consider the preparation of the initial state

|ψ0⟩, which will be subsequently modified by the QAOA layers. The electric ground

state |ΩE⟩ is a trivial product state and it can be prepared by applying Hadamard

gates on all qubits, to rotate them into the eigenstate |+⟩ of the σ̂x operator. The

toric code (magnetic) ground state |ΩB⟩ displays instead topological order and long-

range entanglement [187]. To initialize this state, we follow the technique adopted in

Ref. [189]: assuming that each qubit is initially in the eigenstate |↑⟩ of σ̂z (the usual

computational basis state |0⟩), in each plaquette we first apply three Hadamard

gates on the control qubits and then three CNOT gates targeting the fourth 3.

This procedure is similar to the first 3-CNOT sequence of the circuit depicted in

Fig. 4.3(a), with the addition of Hadamard gates on the qubits |p1⟩, |p2⟩, and |p3⟩.

These operations can be performed in parallel on plaquettes belonging to a single

column and then repeated L times to cover the whole lattice. Operations on dif-

3Our implementation is equivalent to the procedure in Ref. [189] up to a rotation of the basis.

Hence, we have three control qubits and one target for each plaquette, instead of one control

and three targets.
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ferent rows, however, cannot be parallelized because in each plaquette the CNOT

gates must be applied before using one of the control qubits as the target for the

neighboring column. If we consider Fig. 4.3(c), the plaquette operations must start

from the rightmost column, in such a way that the qubit |p4⟩ is used as a con-

trol before becoming the target of the plaquette on the left. Incidentally, this is

the opposite order to what is described in the caption of Fig. 4.3(c) and depicted

in Fig. 4.4. However, in that case, the specific order is irrelevant, since different

plaquette operators trivially commute.

We remark an important difference between the circuit implementing |ΩB⟩ and
the gate decomposition of e−iγĤB : despite the preparation of the ground state of

ĤB on a single plaquette requires a smaller number of gates, for large systems the

initialization of |ΩB⟩ requires a deeper circuit than the Hamiltonian gate, which,

instead, can be run in parallel on all the even or odd columns (rows). This reflects

the necessity of having a circuit with depth O(L) to prepare a state with long-range

entanglement, such as |ΩB⟩, which has been well studied in the literature [186–188].

In conclusion, when we compare the QAOA results with different choices of the

initial state |ψ0⟩, we need to take into account the overhead required for preparing

|ΩB⟩.

Possible generalizations

The construction of the QAOA layers we presented so far was restricted to the

case of an Abelian Z2 LGT. We stress, however, that the same procedure can be

generalized to pure 2D LGTs with arbitrary discrete gauge groups. In particular, by

suitably extending the Hilbert space associated with each link of the square lattice,

it is possible to implement the time evolution steps of both the electric and magnetic

Hamiltonian based on local unitary operators [201].

In this respect, the simplest generalization is provided by Zn LGTs (see, for in-

stance [203, 205–211]). In this case, a gauge degree of freedom is encoded into an

n-dimensional Hilbert space, as common in quantum clock models with Zn symme-

tries [212, 213]. The electric field assumes indeed n different values, which may be

represented by suitable qudits (or by embedding each degree of freedom in a set of

qubits). ĤE remains a local Hamiltonian, whose time evolution can be performed

in a parallel way over all links.

As in the case of the Z2 theory, also for Zn symmetries, there is a suitable unitary

transformation mapping the eigenstates of the electric Hamiltonian into the eigen-

states of the magnetic operators adopted to build the plaquette terms (the so-called

connection operators). Such unitary transformations generalize the Hadamard gates

we adopted and correspond to a quantum Fourier transform. Additionally, the pla-

quette term maintains the same 4-body interaction form through a suitable replace-
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ment of σ̂z with quantum clock operators. The implementation of the plaquette

operator thus requires generalizing the CNOT to controlled Zn clock gates. Again,

the phase diagram of pure 2D Zn LGT models presents a deconfined and topological

phase at large h, whose topological order matches the Zn generalization of the toric

code [214, 215], and a confined phase whose ground state becomes a trivial product

for h = 0.

By following the Kogut-Susskind Hamiltonian construction, a further generaliza-

tion can be implemented to investigate ground states of discrete non-Abelian 2D

LGTs (see, for example, Refs. [201, 216, 217]). In this case, the gauge degrees of

freedom can be represented either in an eigenbasis associated with the irreducible

representations of the group, which is diagonal in the electric term of the Hamilto-

nian, or in an eigenbasis associated to the group elements, which is diagonal in the

magnetic term of the Hamiltonian. The general structure of a quantum algorithm

for implementing the QAOA steps, in this case, is analogous to the previous one

and can be based on the construction in Ref. [201]. Given the non-Abelian nature

of the group, however, the implementation of the magnetic time evolution requires

a further technical generalization. In this case, the irreducible representations are

not one-dimensional and correspondingly the connection operators acquire a tensor

form, therefore the gauge-invariant plaquette terms must be written in terms of

their trace [195], requiring, in turn, to extend the rotation operators Up(γ) to more

general single-link gates, which apply phases given by the traces of gauge group

matrices.

4.3. Numerical results

In this section we analyze the QAOA performance on our LGT model, showing

that the ground state can be prepared through shallow circuits with good fidelity

both in the confined and in the topological phase. Unless otherwise stated, the

numerical analysis is performed on a lattice with 3 × 3 plaquettes (18 qubits) and

implemented through the python package Qiskit [35], using the circuit sketched in

Appendix C that slightly generalized the one in Fig. 4.4. Simulations of larger

systems (L = 4, 5), instead, exploit the mapping onto the 2D-TFIM to reduce the

Hilbert space dimension and allow for the exact evaluation of the QAOA ansatz.

4.3.1. Energy landscape

As remarked in Chapter 1, the presence of rugged energy landscapes is a common

problem that severely affects the classical optimization loop of VQAs by making

it prone to remaining stuck in local minima, some of which might be far from the

ground state energy. Here, we address this issue by inspecting the structure of
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Figure 4.5.: Infidelity vs residual energy rescaled over the magnetic coupling h, for

h = 5, 4, 3. Notice that the infinite-size value of the critical coupling is hc = 3.04438(2)

[197]. Data refer to 100 local optimizations on a system with linear dimension L = 3,

initial random guess of the QAOA parameters, and circuit depth P = 5. The initial state

is |ψ0⟩ = |ΩE⟩.

the energy landscape, which determines whether the classical optimization of the

variational parameters can be performed efficiently or not [22]. To characterize

the energy landscape and to assess the quality of the optimized variational ansatz

|ψP(γ
∗,β∗)⟩, two common metrics are the residual energy and the fidelity. Given a

target Hamiltonian Ĥtarg(h), we denote with |ψtarg⟩ its ground state and with EGS

the corresponding energy, both obtained with exact diagonalization. The residual

energy is simply the difference between the minimized variational energy E(γ∗,β∗),

defined in Eq. (4.15), and EGS, while the fidelity follows the usual definition

FP(γ
∗,β∗) = |⟨ψP(γ

∗,β∗)|ψtarg⟩|2 . (4.16)

Clearly, the fidelity is a precise estimate of the accuracy of the approximation of the

target state, even though, in an actual experiment, it is hardly accessible because

it requires an exponential number of measurements. The energy, instead, is easily

estimated: the magnetic contribution is diagonal in the computational basis, while

the electric contribution is obtained by applying a basis rotation on each qubit, i.e.

a set of Hadamard gates, before the measurement.

In the Z2 LGT model, the energy landscape emerging from the QAOA ansatz

is characterized by many local minima covering a wide energy interval, making

random-start local optimization impractical. This effect is particularly severe if the

target state is in a phase different from the initial one |ψ0⟩. This is illustrated in

Fig. 4.5, where we show the residual energy and the infidelity 1 − FP(γ
∗,β∗) for

100 different random-start local optimizations with P = 5 QAOA layers and three

different values of the magnetic coupling, around or above the topological phase
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transition at hc = 3.04438(2) [197] (for L → ∞). The initial state is the product

state |ΩE⟩ in the extreme confined limit (h = 0) and the local minimizations are

performed with the BFGS algorithm [141]. Although there is a clear concentration

of data in the corner corresponding to successful optimizations, where both the

infidelity and the residual energy tend to zero, there are many local minima far

from the ground state, suggesting that more refined optimization techniques are

needed for this model.

However, the clear correlation between the residual energy and the fidelity is

reassuring since the absence of low-energy minima with small projection on the

ground state guarantees that any scheme that allows for a reliable minimization of

the energy will also lead to a good approximation of the target state. This correlation

is intuitively justified by the existence of a gap in the topological phase. Indeed,

the construction in Eq. (4.13) cannot mix different topological sectors of the model

and, for each topological sector, there is only one ground state. Away from the

critical point, the ground state is protected by a finite gap, such that the correlation

between infidelity and residual energy must hold below this energy scale. Close

to the critical point, other orthogonal low-energy states may appear and spoil the

correlation. This, however, seems not to be the case. This resilience is not surprising

for small system sizes in which the gap does not close even at hc. However, we

observe that the correlation between infidelity and residual energy holds also when

we increase the linear dimension L of the lattice, and it actually appears to be even

sharper, as shown in App. C. The variational energy is therefore a reliable figure of

merit for the optimization, it can be efficiently measured in experiments, and the

procedure is still effective when the system size is scaled up. All these represent

positive factors for the feasibility of the implementation of QAOA on the Z2 LGT

model in near-term quantum devices.

4.3.2. Heuristic local optimization: two-step QAOA

Because of the large number of suboptimal minima present in the energy land-

scape, it is important to adopt an efficient strategy to reliably find a good approxi-

mation of the true ground state of the target Hamiltonian. As previously discussed,

this is, indeed, a crucial task for QAOA and VQAs in general, where the classi-

cal optimization outer loop is often the main computational bottleneck and several

strategies have been proposed that go beyond a local search from a random start.

These strategies range from problem-specific methods to general iterative techniques,

based on observed patterns in the optimal schedules, which have already been dis-

cussed in the previous Chapters. Here, we adopt a simple two-step minimization

protocol inspired by a version of digitized Quantum Annealing [75, 90] that corre-

sponds to a slow turning-on of either the magnetic or the electric Hamiltonian. We

outline this procedure below, which is closely related to the QAOA-1 implementation
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in Chapter 2.

The idea behind this two-step optimization is to leverage the formal analogy

between QAOA and digitized Quantum Annealing discussed in Chapter 1: for depth-

P QAOA, we first optimize the total run time of a digitized linear QA [90] of the

same depth, and then fine-tune the variational parameters around this schedule.

This approach can be used effectively when the system is initialized either in the

electric state |ΩE⟩ or in the magnetic one |ΩB⟩. For generic applications, the confined
electric ground state |ΩE⟩ — a uniform superposition of all possible states in the

computational (magnetic) basis — is a standard choice for initializing the variational

circuit, because it is easy to prepare. However, this choice is non-optimal when

we target states with long-range entanglement in the deconfined/topological phase,

since a circuit of local unitary gates with bounded depth cannot create states with

topological order beyond a certain system size [187].

When the initial state is |ΩE⟩ we adiabatically turn on the magnetic coupling

through Ĥ(t) = ĤE + (t/τ)hĤB in a total time τ . After a digitization by Trotter

decomposition (we set ℏ = 1)

e−i∆tĤ(tm) ≈ e−i∆tĤEe−i
m∆t
P

hĤB , (4.17)

with tm/τ = m/P, we set γ0m = m∆t
P
h and β0

m = ∆t in the state in Eq. (4.13). In

our first step, these linear-schedule parameters are optimized by searching for the

optimal digitized QA ∆t∗ — a simple one-dimensional minimization — which leads

to setting:

γdQA

m =
m∆t∗

P
h , βdQA

m = ∆t∗ . (4.18)

The second step in our QAOA procedure is to perform 10 local BFGS optimizations

in the 2P-dimensional parameters space, starting from (γdQA,βdQA) + ϵ, where ϵ

is a small 2P-dimensional vector with random entries uniformly sampled in the

interval [−0.025, 0.025), keeping the best outcome out of these local optimizations.

Schematically:

(γdQA,βdQA) + ϵ
best BFGS−−−−−→ (γ⋆,β⋆) . (4.19)

The toric code ground states |ΩB⟩, corresponding to the extreme deconfined limit

h → ∞, provide a better initial state |ψ0⟩ when targeting ground states in the

topological phase: they can be exactly prepared with local circuits whose depth

scales linearly with the system width L [173, 189]. Proceeding with an adiabatic

turning-on, now of the electric part of the Hamiltonian, through Ĥ(t) = h(ĤB +

(t/hτ)ĤE), leads to a Trotter decomposition (ℏ = 1):

e−i(∆t/h)Ĥ(tm) ≈ e−i∆tĤBe−i
m∆t
hP

ĤE , (4.20)

with tm/τ = m/P. Hence, we set γ0m = ∆t and β0
m = m∆t

hP
in the state in Eq. (4.13).

Once again, these can be optimized by searching for the optimal digitized QA ∆t∗,

84



4.3. Numerical results

which leads to:

γdQA

m = ∆t∗ , βdQA

m =
m∆t∗

hP
. (4.21)

The second step in our QAOA procedure is identical to the previous case, as schemat-

ically indicated in Eq. (4.19).

In close analogy to the results of Chapter 2 and Chapter 3, two noteworthy fea-

tures of the QAOA minima obtained by applying our two-step QAOA procedure are

the smoothness of the schedules (γ⋆,β⋆) (see Appendix C), and the closely related

transferability of such smooth schedules from a smaller to a larger L′ > L model,

discussed in Sec. 4.3.3. We benchmarked our heuristic two-step QAOA approach

against a computationally expensive global optimization, finding comparable quality

results in terms of ground-state fidelity, both in the confined and in the deconfined

phase: we illustrate this in Appendix C.

In the following, we will compare the performance of our two-step QAOA for

systems prepared either in the electric ground state |ΩE⟩, or in the toric code ground

state |ΩB⟩ = | + +⟩. For a fair comparison, a remark is in order: while |ΩE⟩ is
trivially prepared with one layer of single-qubit Hadamard gates, for the preparation

of |ΩB⟩ one should include an overhead circuit with O(3L2) gates, organized in L

layers applied sequentially. As explained in Sec. 4.2.2, although no optimization is

necessary for this preliminary step, it is still required to apply 3 CNOT gates for

each plaquette.

The QAOA results obtained from the initial product state |ΩE⟩ are reported in

Fig. 4.6, where we show the infidelity 1−FP(γ,β) as a function of the circuit depth

P for several values of the magnetic coupling, both in the confined phase (h ≲ 3)

and in the deconfined one (h ≳ 3). As expected, the variational ansatz converges

faster to states in the same phase (e.g. h = 1, 2) but QAOA can reach very good

fidelity 1− FP < 10−3, when P ≥ 5, for all the couplings we considered.

With the “reversed” protocol, starting from the toric code ground state |ΩB⟩ =
| + +⟩, we obtain an overall behavior similar to what observed for |ψ0⟩ = |ΩE⟩,
see Fig. 4.7(a), with the important difference that now the optimization converges

faster when targeting the deconfined phase. Indeed, only P = 3 QAOA layers are

now needed to reach 1−FP < 10−3 when h > hc, see data for h = 4 or h = 5, while

confined states require more QAOA layers to reach comparable accuracy.

For both choices of initial state, we observe that the infidelity decreases exponen-

tially with the circuit depth; the only exceptions for P = 5, 6 can be ascribed to

the algorithm remaining stuck in a (high-quality) local minimum, when the target

state is very close to the initial one (see Appendix C). However, if we focus on the

minimal resources to approximate the target state within a certain fidelity thresh-

old, we can further reduce the number of parameters required. Figure 4.7(b) shows

a comparison of QAOA performance with the two possible choices of the initial
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Figure 4.6.: Infidelity vs the number of QAOA layers P for L = 3 and several values

of the magnetic coupling h. The initial state is the electric ground state |ΩE⟩, thus the

convergence towards the exact GS is faster for smaller values of h. We show the best

result out of ten local BFGS minimizations following the heuristic two-step optimization

method.

state, for P = 2 and P = 3, by looking at the best fidelity reached by the two-step

optimization as a function of the coupling h. Remarkably, such shallow variational

circuits are enough to prepare with high fidelity the ground states in the confined

and deconfined phases, provided the initial state is selected in the same phase as

the target ground state. Unsurprisingly, the region that requires a larger number of

parameters, i.e. a deeper variational circuit, corresponds to the crossover between

the two regimes, where 2 ≲ h ≲ 3.

We finally observe that the choice of the initial state based on the target value

of h plays a role analogous to the choice of the electric or magnetic representation

of the LGT Hamiltonians applied in the quantum simulation protocols presented in

Refs. [218, 219].

4.3.3. Schedule transferability

A promising route to reduce the computational cost of the outer-loop classical

optimization in VQAs is the transferability of the optimal parameters from small

to large instances of the same model. Indeed, as empirically observed or proven

in specific applications of VQAs, see e.g. Chapter 3, if you consider two instances

of the same model and a fixed variational circuit depth P, the optimal parameters

obtained for the small system of size L may serve as a very good warm-start (or

educated guess) for a local optimization for the L′-size model (L′ > L).

Classical numerical simulations soon become unfeasible even for modest sizes, of-
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Figure 4.7.: (a): Infidelity vs the number of QAOA layers P for L = 3 and several values

of the magnetic coupling h. Data correspond to the best out of 10 results obtained in the

two-step optimization, performed on a state initially prepared in the toric code ground

state |ΩB⟩, hence the convergence is now faster for larger couplings h. (b): Comparison

between two-step QAOA performance by starting from the electric and the magnetic

ground states: we plot the fidelity vs magnetic coupling h at fixed values of P. Here P

only takes into account the number of QAOA layers with parameterized gates, while it

does not include the computational overhead for the preparation of |ΩB⟩, compared to

preparing |ΩE⟩.
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ten hindering a more systematic analysis on this issue: for our LGT model, which

requires 2L2 quantum spins, even sizes as small as L = 4, 5 can be extremely chal-

lenging to simulate exactly. To partially overcome the size limitation, we exploit the

mapping onto the 2D-TFIM, explained in Sec. 4.2, which involves only L2 spins on

a square lattice, by taking advantage of the restrictions imposed by the gauge con-

straints. This allows us to simulate exactly the variational optimization for L = 4, 5.

To study schedule transferability, we first perform the two-step QAOA on the sys-

tem with L = 3, as described in Sec. 4.3.2. The optimal angles (γ⋆,β⋆) found for

L = 3 are then used as warm-start points for a local optimization on larger sizes.

In particular, we keep the best run out of 10 BFGS optimizations on the larger

systems, each of them starting in the neighborhood of (γ⋆,β⋆)L=3, similarly to the

strategy used in the second part of the two-step QAOA protocol. This procedure is

repeated for different values of the coupling.

The results obtained are reported in Fig. 4.8, where we compare the fidelity

FP(γ
∗,β∗) vs h, for circuit depth P = 6 — which allows us to prepare the ground

state for arbitrary h with an error 1 − FP(γ
∗,β∗) < 10−3 for L = 3 — and both

possible initial states: |ψ0⟩ = |ΩE⟩ (full symbols) and |ψ0⟩ = |ΩB⟩ (empty symbols).

The transferability of the parameters is almost perfect when the initial and target

states are in the same topological phase, leading to very high fidelities both in the

small and large magnetic coupling regimes. Even when we target a ground state in a

different phase than the initial one — for instance, |ψ0⟩ = |ΩE⟩ and h > hc ∼ 3.0 —

the final fidelity is still large, allowing us to characterize the topological properties

of the final state. Interestingly, the warm-start initialization provided by the L = 3

optimal parameters leads to a successful local minimum search for L = 4, 5, with

an accuracy close to what can be achieved with a full global minimization. These

additional results are discussed in Appendix C. Moreover, the number of iterations

needed for the local optimization is rather small (Niter ≲ 50), confirming the ben-

efit of the transferability of optimal solutions: once the L = 3 two-step solution is

provided, only a small overhead in computation resources is required to fine-tune

the parameters for larger sizes. Hence, transferability provides a speed advantage

over starting from scratch a two-step optimization: even though the fidelity reached

is comparable, the latter requires more runs of the quantum circuit, making it less

efficient when the optimal schedule for a smaller system is already known.

This transferability evidence may be linked to the observation of the smooth

schedules we found with the two-step optimization. Indeed, consistently with the

discussion in Chapter 3, it is important to remark that the schedule transferability is

not a general property of any minimum in the energy landscape, but it is associated

with the smooth solution found with the two-step protocol. For instance, a global

optimization yields slightly better results on the L = 3 system, but it often represents

a poor choice as an educated guess to initialize a local minimum search on larger

sizes, as discussed in Appendix C: this phenomenon might have some similarity to
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Figure 4.8.: Fidelity vs the magnetic coupling h. The data are obtained by using the

two-step optimal schedules for L = 3, as an initial guess for 10 local BFGS optimizations

performed on the larger systems L = 4, 5 (we fixed P = 6). Here, we report the best result

out of the 10 runs. The full and empty symbols respectively correspond to |ψ0⟩ = |ΩE⟩
and |ψ0⟩ = |ΩB⟩.

overfitting in machine learning [220]. In this respect, the two-step scheme appears

to outperform an extensive global search.

4.3.4. Ground state characterization

In the following, we turn our attention to the properties of the approximate ground

states we prepare with QAOA. Despite the finite size limitations of our simulations,

the states obtained through QAOA display most of the main features associated

with the appearance of topological order and the crossover from a confined to a

deconfined phase as h increases. The main observables to distinguish these two

regimes are the Wilson loops, as defined in Eq. (4.7). We consider in particular

Wilson loops Wlx,ly defined over rectangles of size lx × ly.

As explained in Sec. 4.2, it is known that the deconfined phase is characterized

by an exponential decay of ⟨Wlx,ly⟩ with the perimeter P of the loop, whereas the

confined phase displays a decay dictated by the area A of the loop [194]. In par-

ticular, the magnetic ground states |ΩB⟩ are such that ⟨Wlx,ly⟩ = 1, while in the

electric ground state |ΩE⟩Wilson loops always present vanishing expectation values.

Recalling Eq. (4.8), the overall behavior of a Wilson loop can be approximated by

⟨W⟩ ∝ e−χA−δP . Indeed, if χ > 0, the exponential decay with the area dominates

for large loops, while if instead χ = 0, the decay is dictated by the perimeter law

only. To extract the information about the χ coefficient we estimate the so-called
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4. Ground state preparation of a Lattice Gauge Theory

Figure 4.9.: Cruetz ratio χ(l, l), defined in Eq. (4.22), for two different loops in a system

with L = 5. Inset: expectation value of Wilson operators Wl,l, corresponding to the

data in the main plot, vs the coupling strength h. The vertical dashed line indicates the

critical value of the coupling hc. All data refer to the best energy out of 20 BFGS local

optimizations, with P = 6 and |ψ0⟩ = |ΩE⟩, |ΩB⟩, performed on a system of linear size

L = 5 and initialized with the optimal parameters found for L = 3. Empty symbols in

the inset are data obtained with |ψ0⟩ = |ΩE⟩.

Creutz ratio [196]:

χ(l, l) = − log
⟨Wl,l⟩⟨Wl−1,l−1⟩
⟨Wl,l−1⟩⟨Wl−1,l⟩

. (4.22)

This ratio is indeed built to cancel the perimeter contribution to the decay of the

observables and approximate the coefficient χ, which is recovered for large l.

Fig. 4.9 displays the Creutz ratio in a system with L = 5 and periodic boundary

conditions for states obtained with P = 6 QAOA steps applied either to the state

|ΩE⟩ (for h < 3) or to |ΩB⟩ (for h ≥ 3). The optimization on the L = 5 systems was

initialized with the best result obtained with the two-step protocol for L = 3, on

top of which we performed 20 local minimum searches, keeping the best outcome.

Analogously to other LGT studies on small lattices [184, 221, 222], the finite size

effects in our computations are strong. When considering a Wilson loop of width

3, its opposite sides lay at distance 2. This implies that what we observe in Fig.

4.9 may provide a quantitative estimate of the behavior in thermodynamic systems

only if the correlation length is sufficiently smaller than this distance, thus only

sufficiently far from the phase transition. Despite this limitation, the Creutz ratio

χ(3, 3) presents a behavior that clearly distinguishes the confined phase (χ > 0)

and the deconfined phase (χ → 0) appearing for h ≳ 3, although a quantitative

identification of hc is beyond the possibilities of these small systems and loops.

The inset of Fig. 4.9 reports the expectation value of the Wilson loop opera-
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tors corresponding to the Creutz ratios shown in the main plot. It clearly shows a

crossover between the trivial, confined state with ⟨WΓ⟩ → 0 and the topologically or-

dered, deconfined limit ⟨WΓ⟩ → 1. With the chosen scheme, i.e. starting from |ΩE⟩
or |ΩB⟩ depending on the target state, they perfectly match the results from exact

diagonalization (not shown) as expected from the high fidelity reached, see Fig. 4.8.

We emphasize that the possibility of obtaining a reliable estimate of the expectation

value of the Wilson loops yields further important implications: Ref. [219] shows

that, in a U(1) LGT, even the expectation value of the single plaquette operator

can be used to extract the running coupling of the model, which is a fundamental

quantity related to its renormalization.

If we chose to start always from the electric ground state, the deviation from

exact results would become larger in the deconfined phase, as also expected from

the fidelity drop observed in Fig. 4.8. However, the results obtained in this non-

optimal case still provide an acceptable scaling of the Wilson loop for the deconfined

regime (empty symbols in Fig. 4.9): even without perfect reconstruction of the target

state, it is still possible to signal the existence of a deconfined phase. This is, indeed,

useful for experimental investigation, where realistic setups are limited to shallow

circuits and noise would decrease the quality of the approximate ground state.

Another observable that marks the onset of topological order is the topological

entropy [223, 224]. Given a connected subsystem A ∪ B ∪ C of the whole lattice,

one should define its topological entropy as

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC . (4.23)

Here SX is the von Neumann entanglement entropy of a generic subsystem X,

obtained by tracing out all degrees of freedom in the complement of X with respect

to the whole system, and {A,B,C} is a tripartition of the region of which we

compute the topological entropy. This specific choice allows for the cancellation

of terms that are proportional to each separation boundary between the partition

elements [223], a step conceptually similar to the Creutz ratio definition. In the

toric code state |ΩB⟩, the topological entropy of any subsystem is Stopo = − ln 2 and

the total entanglement entropy is

SABC = Nv ln 2 + Stopo = (Nv − 1) ln 2 , (4.24)

where Nv is the number of vertex operators Av cut by the edge of the bipartition X

[173, 225]. In a product state, such as |ΩE⟩, we expect both quantities to be zero,

while for generic values of h the entropy should interpolate between the two limits.

To compute the entropy, we choose a subsystem X with 6 qubits, as depicted in

Fig. 4.10(a), and we divide it into three further regions A, B, and C with two qubits

each. We compute the entanglement entropy of all the subsets used in Eq. (4.23) by

tracing out explicitly their complements and obtain the data plotted in Fig. 4.10(b).

Despite the small dimension of the lattice and its subsystem, our results perfectly
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Figure 4.10.: (a): Graphical representation of the subsystem used to compute the topo-

logical and entanglement entropy, with the tripartition A, B, C highlighted. Notice that

a total of Nv = 5 vertices are cut by the outer edge of A ∪ B ∪ C. Empty dots indicate

the presence of PBC in the lattice, thus identifying the upper edge with the lower one and

the right edge with the left one. (b): Entanglement and topological entropy as a function

of the coupling h. Notice that we plot −Stopo to make it positive.
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agree with the theoretical prediction: in the deconfined phase, the total entangle-

ment entropy is Sent = 4 ln 2, since the partition ABC cuts five vertices and the

topological entropy approaches Stopo = − ln 2.

Finally, we would like to show that it is possible to manipulate the state con-

structed with QAOA to change its symmetry sector when the system has PBC.

Let |++⟩P denote the approximate ground state constructed with a QAOA circuit

of P layers. We then construct approximate candidate ground states in the other

topological sectors by applying non-contractible Wilson loops Wv/h, i.e., |+−⟩P =

Wh|++⟩P, | −+⟩P = Wv|++⟩P, | −−⟩P = WhWv|++⟩P. The subscript label P is

here used to distinguish the states obtained via QAOA from the exact eigenstates of

the Hamiltonian. Non-contractible Wilson loops Wv/h are readily implemented via

L single-qubit gates σ̂z acting on a vertical or horizontal line. By doing so, however,

we introduce an extra error on top of the finite accuracy of the QAOA state: indeed,

the choice of a specific vertical or horizontal Wilson loop to change the symmetry

sector of the system breaks the translational invariance of the constructed state,

producing a small excitation. This effect is visible in Fig. 4.11, where we show the

energies of the state approximated with QAOA, denoted by | + +⟩P, and of the

other three states obtained by applying Wh and Wv on |++⟩P. For comparison, we

also plot the low eigenvalues obtained by exact diagonalization (drawn with solid

blue lines). For large h, the four lowest energy levels should be almost degenerate,

and, indeed, the exact diagonalization results are almost indistinguishable for h ≥ 4.

In the same region, the excess energy of the approximate states |τh, τv⟩ is instead

clearly visible, although well below the topological gap with the first proper excited

state.

An alternative procedure to explore the different topological sectors in the de-

confined regime, is to apply first the relevant Wilson loop on |ΩB⟩ and then the

QAOA unitaries. In such a way, the initial state Wh/v|ΩB⟩ is exactly degenerate

with |ΩB⟩. We find that the optimal schedule (γ∗,β∗) used to prepare the state

|++⟩P minimizes also the expectation value of the energy in the other topological

sectors, so no further optimization is required. However, the picture presented in

Fig. 4.11 remains valid, and small excitations are created in the other topological

sectors. In other words, by inverting the order of application of the operators Wh/v

and Û(γ∗,β∗), we observe nearly irrelevant changes in the expectation value of the

energy; Û(γ∗,β∗) is the QAOA evolution operator with optimal parameters for the

state |++⟩P.

The expectation value of the ’t Hooft loops τh and τv, which distinguish the

different topological sectors, is perfectly reconstructed by the algorithm. This last

feature is, however, independent from the specific values of h and P, since the QAOA

evolution respects the global Z2 × Z2 symmetry (τh/v commute with both ĤE and

ĤB) and τh/v always anticommute with Wv/h.
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Figure 4.11.: The solid lines correspond to the 5 lowest eigenvalues obtained with exact

diagonalization: The 5th eigenvalue, corresponding to the first excited state, is shown to

highlight the topological gap in the deconfined phase. Only four lines are visible because

| + −⟩ and | − +⟩ are exactly degenerate. The symbols indicate the four lowest energy

states in different symmetry sectors, as approximated by QAOA. All data refer to the

best solution found for L = 3, P = 6, and |ψ0⟩ = |ΩE⟩. States different from | + +⟩P
are obtained by acting with non-contractible Wilson loops after the unitary evolution, a

procedure yielding a small excitation energy. Note that also the approximate states |+−⟩P
and | −+⟩P are degenerate.

94



4.4. Conclusion and outlook

4.4. Conclusion and outlook

In this Chapter, we studied the ground-state properties of a two-dimensional Z2

lattice gauge theory using a version of QAOA, leading to good-quality variational

approximations while keeping circuits with a low depth. Hence, this allows us to

prepare the target state with a number of standard single-qubit rotations and CNOT

gates comparable with the realistic expectations for near-term quantum technologies.

We focused on the minimal resources needed for an accurate description of the

ground state in a quantum circuit setup, to show that interesting physics can be

observed despite the small system size. In particular, we showed that both the be-

havior of Wilson loops and entanglement entropy clearly distinguish the trivial and

the topological phase, also characterizing the confinement/deconfinement transition.

To reliably find good approximations of the ground state, we adopted a two-step

protocol for QAOA, which produces regular optimal schedules that can be success-

fully transferred to larger sizes. In this respect, the two-step protocol outperforms a

resource-costly global minimum search, as well as other local optimization strategies

that are prone to remaining trapped in low-quality local minima.

However, the role of noise brought by measurements and gates has been neglected,

even though it will inevitably appear in a realistic implementation of our proposal. In

general, the effect of noise on VQAs is still an important open question [22], and error

mitigation techniques, or even quantum error correction, could be integrated into

our scheme in the near-term future. In the worst-case scenario, where noise prevents

an accurate reconstruction of the cost function EP(γ,β) for optimization purposes

in a large system, one might still use a “simulated” QAOA to infer good variational

parameters for a smaller system in the same phase, which might be transferred to the

quantum device for measuring physical properties or for a refinement optimization

on the large system.

We emphasize that the QAOA technique we propose can be easily combined to

extend several proposals for the study of 2D LGTs through digital quantum simula-

tions [201–203, 217, 219, 226–229]. Digital quantum simulations of LGTs on small

systems have already been implemented in trapped ion experiments [106, 230] and

superconducting qubit platforms [231–234]. These experiments inspired several the-

oretical studies aimed at investigating the dynamics of the most important LGT

excitations [222, 235–238]. Our results provide a tool to efficiently initialize the

ground states of LGTs, which, in turn, make it possible to engineer in a controlled

way several of the excited states studied to explore the dynamical and topological

properties of LGTs, including, for example, flux excitations and mesons. The system

we considered can be regarded as a surface code perturbed by onsite interactions that

provide kinetic energy to its plaquette excitations [239, 240]. Hence, the study of its

dynamics delivers information on the resilience of topological quantum memories in

which anyons acquire a non-trivial dispersion. Furthermore, the topological order of
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the Z2 LGT is the same as the most common topological quantum spin liquids, and

our QAOA approach can be extended, for instance, to the study of quantum dimer

models based on plaquette interactions, such as the Rokhsar Kivelson model [241],

which displays this kind of topological phases and transitions on suitable lattices

[198].

More in general, our variational quantum optimization successfully enables ex-

ploration of the properties of Hamiltonians with non-trivial four-body interactions,

which represent not only an essential element for designing topological phases but

also a useful tool for encoding classical optimization problems [199, 200, 242, 243].

Such interactions are compatible with the native geometry and qubit gate connec-

tivity of several recently developed quantum computation platforms, encompassing

both two-dimensional superconducting architectures, such as the Google Sycamore

array [170, 173], and programmable arrays of Rydberg atoms [244–247]. By match-

ing model interactions with the hardware connectivity (coupling map) of a physical

platform, no additional overhead would be needed to map virtual into physical qubits

and measurements in the computational basis would give direct information on the

addressed models, as in the case of the Z2 LGT.

In conclusion, the combination of QAOA, initialization of the excitations, and

digital quantum simulation of their time evolution opens the path to study many

aspects of the dynamics of the confined and deconfined phases in LGTs as well as

the anyonic excitations appearing in topologically ordered phases.
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Do the best you can until you know better. Then when you know

better, do better.

—Maya Angelou

In this Thesis, I have explored new applications of hybrid quantum-classical

schemes that can be implemented on near-term quantum devices.

In Chapter 1, I briefly described the profoundly different approach of VQAs and

near-term quantum computing, compared to fault-tolerant algorithms. I summa-

rized the main algorithmic challenges for VQAs, focusing on trainability issues,

namely local minimum traps and barren plateaus.

After a quick summary of Adiabatic Quantum Computation / Quantum Anneal-

ing, I switched to a gate-based framework and thoroughly reviewed the Quantum

Approximate Optimization Algorithm (QAOA), a version of which has been imple-

mented across all our case studies. Instead of examining the vast array of recent

literature on QAOA applications, I concentrated on the principal theoretical find-

ings and certain ubiquitous, yet not fully understood, phenomena. I specifically

addressed landscape concentration, optimal parameter reusability across different

instances of the same problem or from small to large systems, and patterns in QAOA

optimal solutions. These concepts have been observed and generalized in the next

Chapters, both for classical optimization problems beyond a 2-local Hamiltonian

and for many-body ground state preparation.

In Chapter 2, I tackled the supervised learning of a binary perceptron for the

highly idealized case of an unstructured dataset, as customary in the statistical

physics community. This work showed promising evidence, yet is quite preliminary,

in particular for what concerns its implementation on realist quantum hardware.

Nonetheless, it has contributed to identifying a challenging research direction: de-

signing problem-inspired variational quantum algorithms for classical optimization

problems that involve multi-spin interactions, as illustrated in Eq. 1.12. A natural

generalization of our work concerns the supervised learning of more general Binary

Neural Networks, tested on a realistic dataset with a structure. Promising results

have been showcased in Ref. [153], and we are currently working on this topic. The

trade-off between trainability and gate decomposition is particularly subtle for this

problem class, and it could represent a valid benchmark for many proposals of ansatz
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design, see e.g. Ref. [248].

A related question regards the connection between the geometric structure of

the classical cost function landscape — for instance, the occurrence of clusters of

optimal strings proximate in Hamming distance — and the effectiveness of quantum

optimization. This was investigated in Ref. [131] and in this Thesis, but I am

not aware of other similar results. Introducing a structured training dataset seems

the first relevant step forward in this direction. Moreover, analytical tools may

yield formal results in the large N limit for QAOA on Binary Neural Networks, at

least for unstructured datasets. One could envisage a generalization of analytical

tools developed in Refs. [102, 103, 120], potentially proving concentration results or

performance bounds in typical cases.

Next, I moved to ground state preparation of quantum many-body spin systems on

a lattice. This is a crucial task for quantum simulation, and it could enable a direct

study of quantum many-body systems beyond the reach of classical techniques. In

this framework, the study of two-dimensional systems is particularly relevant, since

standard tools like Matrix Product States are unsuccessful. An optimized strategy

would be to tailor the details of an algorithmic implementation to the available

hardware, employing a decomposition into native gates. Moreover, it is necessary

to develop efficient schemes to train a parameterized Quantum Circuit (PQC), e.g.

the Hamiltonian Variational ansatz that generalizes QAOA.

In Chapter 3, I described how to successfully tackle the ground state preparation

for the one-dimensional Heisenberg XYZ model and the longitudinal-and-transverse

field Ising model. We employ a problem-inspired ansatz that embodies some of the

symmetries of the model, boosting its trainability. We circumvent local minimum

traps and barren plateaus through the transferability of a specific class of optimal

schedules. Indeed, our numerical results reveal that a smooth optimal solution —

obtained through iterative interpolation techniques for a smaller system — serves as

an excellent warm start for preparing the ground state of the identical model at the

same point in the phase diagram, but for a system of considerably larger size. One

may further refine the transferred solution via a local optimization, in a favorable

landscape free of barren plateaus. These findings have been confirmed also for the

simpler TFIM, by leveraging a free-fermions mapping and reaching larger system

sizes.

Besides a natural extension of this scheme to other quantum many-body models,

it would be fascinating to theoretically characterize this class of smooth solutions,

elucidating potential relations with adiabaticity or shortcuts to adiabaticity. Con-

trarily to the QAOA for a binary perceptron, our proposal here can be directly

tested on existing hardware. This involves classically simulating a small system and

then transferring the solution to a quantum-classical setup, potentially beyond the

limits of classical simulation capabilities.
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In Chapter 4, I focused on a Z2 lattice gauge theory model, a problem of interest

due to its implications in high-energy physics and its role in quantum error correc-

tion and surface codes. Despite small system sizes and a limited number of gates,

allowing for a potentially straightforward implementation on NISQ devices, it was

possible to detect the presence of a topological phase transition between confined

and deconfined regimes. These techniques can be adapted to more complex lattice

gauge theories or other models with topological order. Digital simulation of lattice

gauge theory is a very active research field, and an ambitious goal is to simulate

excited states and dynamical properties of increasingly realistic models with local

symmetries and topological properties. During my PhD, I have only touched upon

this interdisciplinary field. However, it appears an ideal playground to evaluate the

effectiveness of VQAs and simultaneously test advanced physical theories.

From a broader perspective, the field of variational quantum computing is evolv-

ing rapidly, with significant challenges and best practices that transcend any single

application area. Although not the focus of this Thesis, error mitigation and the

first implementations of logical (error-corrected) qubits [23] are essential tools for

the progress of near-term quantum computing. A major open question concerns the

ultimate trainability of hybrid quantum-classical algorithms. The comparison with

classical learning systems seems discouraging: Artificial Neural Networks feature

billions (or trillions) of free parameters, which are routinely trained with standard

algorithms, based on noisy versions of gradient descent. The identification of a be-

nign overparameterization for VQAs, namely a regime characterized by a simple

variational landscape, would constitute an undisputed leap forward for quantum

computing. As discussed in Chapter 1, another crucial question relates to the clas-

sical resources that are necessary to simulate a VQA. The hybrid quantum-classical

loop relies on iterative state preparations and measurements on the PQC: if the

samples can be efficiently generated classically (weak simulability) there is no room

for quantum speed up. The identification of new classes of wavefunctions that can

be classically simulated seems to be a constitutional requirement for guiding ansatz

design in VQAs.

On a practical level, it would be ideal if practical algorithmic proposals were to

include, at a minimum, simulated shot noise and intermediate system sizes (e.g.

N > 14 qubits). This would allow practitioners to seriously tackle trainability

issues, such as the proliferation of local minimum traps and barren plateaus, that

are hidden under the carpet for small-scale exact simulations. In particular, the

computation of gradients of the VQA cost function should not be performed exactly,

as in any realistic setup it would rely on samples and thus inherit a statistical noise,

even in the idealized scenario of a noise-free quantum computer without coherent or

incoherent errors.

A comprehensive analysis of QAOA theory and the development of a conceptual

framework that synthesizes parameter concentration, the transferability of optimal
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schedules, and patterns in optimal solutions remain incomplete. Specifically, ex-

ploring connections with adiabaticity and counter-diabatic effects could be advan-

tageous. Interestingly, as shown in Chapter 3, these techniques are likely to prove

beneficial also for quantum ground state preparation.

Finally, as duly noted in Ref. [66], the advent of VQAs has democratized the

“quantum” research field. Nonetheless, the comparison with traditional quantum

computing, even considering e.g. the basic Deutsch-Jozsa algorithm, seems both

perplexing and somewhat embarrassing: We have moved from a meticulously crafted

design, which delicately manipulates quantum information, to, literally, a bunch of

quantum gates, with some variational parameters to be optimized. From a skeptical

standpoint, encountering technical hurdles with this approach should not be overly

surprising. Perhaps it would be beneficial to delve into the theory of quantum

computing once again and understand how to manipulate qubits in a more structured

fashion, while ensuring resource scaling that aligns with the capabilities of near-term

quantum devices.
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A.1. Interpolation algorithm (INTERP)

In this section, we describe the INTERP (interpolation) procedure, specifying

technical information on our implementation for Chapter 3. The INTERP strategy,

introduced in [74], is an algorithm devised for an iterative optimization of variational

parameters of the cost function, originally applied in the context of QAOA for

classical combinatorial optimization tasks. The INTERP strategy works as follows:

1. The optimization starts from a guess of the initial parameters at P = Pmin

(e.g. Pmin = 1), namely (β,α)startP=Pmin
.

2. We run a local optimization starting from (β,α)startP=Pmin
, using a classical local

optimization routine, in order to minimize the cost function and obtain new

optimized angles (β,α)optP=Pmin
.

3. We run the following instructions on a loop up to P = Pmax:

a) Given the optimal parameters at step P, (β,α)optP , we set the initial pa-

rameters at step P + 1, (β,α)startP+1 , using the interpolation formula of

Ref. [74] for i = 1, 2, . . . ,P + 1:[
β start

P+1

]
i
=
i− 1

P

[
β opt

P

]
i−1 +

P− i+ 1

P

[
β opt

P

]
i
,

where β opt
P is a P-dimension vector. Note that it is not required to de-

fine values of
[
β opt

P

]
0
and

[
β opt

P

]
P+1

, since they are multiplied by null

coefficients in the formula. The same rule applies to α angles.

b) We run a new local optimization starting from (β,α)startP+1 , yielding a new

set of angles (β,α)optP+1.

c) We increment the value of P by one unit: P→ P + 1.

As a visual support, in Fig. A.1 we sketch the INTERP procedure for a simple case,

starting from the optimized parameters (β,α)optP=3, and finding (in sequence) the

angles (β,α)startP=4 , (β,α)optP=4, (β,α)startP=5 .

In practice, this is the specific version of INTERP we used in this paper, involving

a single-unit increase of the value of P at each iteration, starting from P = 1.
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Figure A.1.: Visual example of the interpolation strategy, showing few initial steps of

the iterative algorithm that is described in the main text.

Nevertheless, several minor modifications can be made to this scheme, and whole

other iterative methods have also been developed [249]. Concerning the initial guess

at P = 1, we always set (β1, α1)
start
P=1 = (1/10, 1/10), as a starting point to run the

first preliminary optimization. Albeit this choice might be arbitrary, in practice

we verified that this preliminary optimization always converges to a well-defined

minimum in the (P = 1) search space. Moreover, this minimum is close to the

origin, which might provide a useful bias toward short total coherence times in the

iterative construction of the smooth optimal curve.

The code for numerical simulations is written with Qiskit [35] (using as classical

optimizer the L-BFGS-B algorithm [250]). We test INTERP algorithm by artificially

fixing a maximum number of iterations for the classical optimizer: throughout Chap-

ter 3 we set Niter = 100, but our results are qualitatively unaffected by moderately

reducing (or increasing) this value. This fixed maximum number of iterations sets

an upper bound on the computational resources of the algorithm. In practice, by

stopping the optimization loop, we find quasi-optimal schedules, which, however,

are good enough to obtain almost-unit fidelity with the exact ground state.
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the binary perceptron

In this Appendix, we include supplementary numerical results and technical de-

tails on Chapter 2. Let us begin with additional evidence on optimal-∆t digitized-

QA, in particular by drawing a comparison between ordered and randomized sam-

ples. The randomization procedure and its geometrical significance are described

in Chapter 2. Here we show that, also in the randomized scenario, the ∆t-landscape

and the position of minima are almost identical for all samples in exam. This is

depicted in Fig. B.1: for conciseness, we plot data for P = 64 and both definitions

of the cost function nc = 0, 1, to be compared with Fig. 2.2 for the original samples.

As anticipated in Sec. 2.3.1, these results are qualitatively valid also for different

values of P. This is illustrated in Fig B.2, where we plot the optimal values of ∆t vs

P for the original samples (left panel) and randomized samples (right panel). In the

latter case, we notice that the sample-to-sample variability of the optimal values of

∆t is even smaller, and also the differences — for any fixed value of P — between

nc = 0, 1 are negligible (especially for large values of P). Apparently, by scrambling

the classical cost-function landscape geometry, the initial specification of the cost

function becomes less relevant. In contrast, we remark that the optimal values of

∆t differ significantly between any original sample and its randomized version.

Let us now remark on some details of the procedure outlined by Eq. (4.19). In

practice, two slightly different procedures are adopted in order to single out smooth

optimal QAOA-2 solutions. This choice is related to some qualitative differences

between QAOA-1 results for nc = 0 and nc = 1, which are visible in Fig. 2.3 (empty

symbols) for the first training set sample, but are present for all the samples in

exam. Concisely, we observe that for nc = 0 the QAOA-1 optimal parameters

(β(1),γ(1)) are noticeably different from (βdQA,γdQA) for all values of P , and the

high-frequency oscillations are either completely absent or well-localized on top of

the smooth solutions. This observation motivates the original QAOA-2 procedure

outlined in Eq. (4.19) (smoothing, second BFGS minimization), which is applied

straightforwardly e.g. for P = 16, 64, yielding the smooth (β(2),γ(2)) protocols in

Fig. 2.3 (solid curves).

On the contrary, for nc = 1, we observe the same qualitative features e.g. for

P = 16, whereas for larger values such as P = 32, 64 the QAOA-1 solutions seem
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Figure B.1.: The one-dimensional landscape of the variational energy density (Eq. (2.6))

for digitized-QA, where the parameters β and γ depend only on ∆t, see Eq. (1.20).

All randomized samples and both choices of nc = 0, 1 are shown. We remark that the

landscape, and in particular the position of global minima, show mild sample-to-sample

variability.

to get “trapped” in a neighborhood of (βdQA,γdQA), also displaying more extended

high-frequency oscillations in the optimal parameters (β(1),γ(1)). This numerical

evidence calls for a slightly different approach: we simply apply Eq. (4.19) pre-

scription only for P = 16, and we find smooth solutions for larger values P′ using

an iterative procedure: for each P′ > 16, we determine the new starting point for

BFGS minimization by interpolating on the smooth optimal curve found for the

previous value of P. We implement this procedure in power-of-two steps, hence

from P = 16→ 32→ 64, but we expect to obtain similar results e.g. using a linear

increment in P at each iteration. Consistently with our intuition, and as depicted

in Fig. 2.4, QAOA-2 offers a noticeable improvement for nc = 1, since the solutions

for P = 32, 64 have now “escaped” the digitized-QA qualitative shape.

We remark that these details — concerning only the technical implementation of

our QAOA-2 framework — do not affect our central message, as reported in the main

text: for each sample in exam, QAOA hints at the presence of a smooth solution that

systematically outperforms (optimal-∆t) digitized-QA, as shown in Fig. 2.4. This

QAOA-1 solution is sometimes affected by the presence of high-frequency oscillations

which can be smoothed out without spoiling the result: on the contrary, QAOA-2

is systematically (albeit sometimes negligibly) outperforming QAOA-1.

Let us remark that — in light of the discussion on transferability in Sec. 2.3.3 —

the specific procedure adopted to obtain QAOA-2 solutions becomes less relevant:

once a detailed study of a single sample is carried out, its optimized smooth solutions

serve as an excellent warm start for all other randomly generated training sets,

yielding an effective unique procedure to find smooth QAOA solutions outperforming

optimal digitized-QA, valid for both nc = 0, 1.
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Figure B.2.: Optimal digitized-QA ∆t values for increasing P, with logarithmic scales on

both axes. The original samples (left) are compared to the randomized samples (right).

The presence of evident clusters shows mild sample-to-sample variability, with few excep-

tions (as P = 4 for nc = 1, in the left panel) due to an almost-flat energy landscape in

that range.

Concerning our study on randomized samples, we proceeded with the same itera-

tive interpolation strategy starting from P = 16, for both nc = 0, 1. Once a smooth

QAOA-2 solution is obtained for the first sample, the transferability of the ansatz

yields a well-defined strategy to apply QAOA on all the other randomized samples.
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Figure B.3.: (Left panel) Variational energy density averaged over the same set of samples

analyzed in Fig. 2.5. We plot data for optimal dQA, and for the transferred smooth ansatz,

before and after a refinement optimization. (Right panel) Variational energy density

averaged over a new batch of 50 random samples. The transferred smooth ansatz still

outperforms an optimal dQA. The same results are found for nc = 0 (data not shown).

In conclusion, we briefly discuss some additional evidence on transferability. In

Fig. B.3 (left panel), we plot the variational energy density obtained with an optimal-

∆t dQA, compared to the one of the smooth ansatz, before and after a refinement

optimization. These data correspond to the protocols shown in Fig. 2.5: here, we

show results averaged over the training set samples for nc = 1. Remarkably, the

transferred solution significantly outperforms an optimal dQA, even without re-
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optimizing the QAOA variational parameters for the new training set. The same

results are valid for nc = 0. As depicted in Fig. 2.5, for nc = 1 the re-optimized

parameters are almost indistinguishable from the ansatz : a new BFGS-optimization

provides only a minor increase in performance.

The effectiveness of a transferred QAOA solution is confirmed on a new batch

of 50 training sets, generated randomly without any a posteriori selection on the

number of zero-energy solutions or the hardness for a classical optimization. This is

shown in Fig. B.3 (right panel): also here, a transferred smooth ansatz outperforms

the optimal dQA, even without a further optimization. The same results are verified

for nc = 0. On a side-note, we notice that the average variational energy obtained

with the smooth ansatz for the original 10 samples is lower than the values obtained

here for the new simulations: this may be due to the selection of samples with a large

number of classical solutions, on which quantum methods are expected to perform

particularly well [131].
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C. Additional results on ground state

preparation of a Lattice Gauge

Theory

C.1. Realization of the plaquette rotation in the 3× 3

torus

When considering a system with periodic boundary conditions and an odd number

of rows and columns, some further details must be considered when implementing

the two-plaquette rotation, by modifying the picture shown in Fig. 4.4

In Fig. C.1 we depict a circuit that applies to the case of the 3 × 3 system con-

sidered throughout most of the paper. To this purpose, we consider a stripe of

three plaquettes, as shown in panel (a). The operator eiβBp is applied to all three

plaquettes through the quantum circuit displayed in panel (b), which has depth 17.

When considering larger systems with periodic boundaries and an odd number of

rows and columns, a suitable combination of the schemes presented in Fig. 4.4 and

C.1 allows us to perform each QAOA step with a circuit of depth 18, involving only

CNOTs between neighboring qubits and single-qubit rotations.

C.2. Energy landscape

In the Z2 LGT model, the energy landscape associated to the QAOA ansatz is

characterized by the presence of many local minima, as discussed in Sec. 4.3.1.

This makes the employment of a clever optimization strategy, such as the two-step

protocol or schedule transferability, a necessity to target reliably low energy minima.

However, for general variational problems, there might exist a deep minimum in the

energy landscape, associated with a state with small or no overlap with the target

one. This is not the case for the problem under investigation, where there is a clear

correlation between the fidelity and the variational energy for the minima in the

energy landscape, see Fig.4.5 in the main text.
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C. Additional results on ground state preparation of a Lattice Gauge Theory

Figure C.1.: (a) A stripe of the 3 × 3 lattice with periodic boundary conditions (b)

Quantum circuit to implement the plaquette operator eiγB on all three plaquettes. The

labeling of the qubit lines emphasizes that all the boundary qubits are shared with the

plaquette stripes above and below. The partially depicted green CNOTS are related to

the simultaneous implementation of the same algorithm on the neighboring stripes: qubits

2,3,5,6,8,9 act as controls also for the circuit in neighboring plaquettes.
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Here, we show that this correlation holds also for the larger systems considered

in this paper, L = 4 and L = 5, corresponding to 32 and 50 qubits respectively. We

repeat the analysis of Sec. 4.3.1: focusing on |ψ0⟩ = |ΩE⟩, we perform 100 QAOA

runs with random initial parameters, targeting states in the deconfined phase h ≥ 3.

In Fig. C.2 we plot the infidelity 1−FP vs the residual energy of the minima found

with this procedure, for both L = 4 (panel (a)) and L = 5 (panel (b)) and a circuit

depth of P = 6. Interestingly, it appears that increasing the system size leads to a

sharper correlation between energy and fidelity, compared to the data presented in

Fig. 4.5.

C.3. Details on the QAOA implementation

In the following, we discuss additional details regarding our two-step implementa-

tion of QAOA for the problem under investigation. Firstly, we focus on a benchmark

of our heuristic approach against a global minimum search, which, remarkably, yields

similar-quality results for both phases, in terms of ground-state fidelity, offering a

convincing numerical validation of our scheme. The global search is performed with

the basin hopping method [251] from the SciPy Python library. Secondly, we com-

ment on the transferability of the optimal schedules, obtained by either a two-step

optimization or basin hopping, to larger system sizes, a strategy that would provide

an educated guess to lower the computational cost for a new optimization. Finally,

we observe some patterns for optimal QAOA variational parameters obtained with

the two-step scheme, in particular their smoothness as a function of m = 1 · · ·P,
similar to results showcased in Chapter 2 and Chapter 3.

C.3.1. Global optimization vs two-step scheme

In order to prove the effectiveness of the two-step optimization protocol, we com-

pare it with a global minimum search, based on the basin hopping method. In this

case, we run up to 500 local minimizations, each of them initialized in the proximity

of a previously found local minimum. The parameter space is explored with an

effective temperature chosen to allow jumps between typical low-energy minima. To

reliably determine the absolute minimum we run the basin hopping optimization

100 times and select the best result.

Figure C.3 shows a comparison between the fidelity obtained with the global and

the two-step optimization procedures, as a function of h for fixed P = 6. The

initial state is |ψ0⟩ = |ΩE⟩. For h < 3 the two-step approach matches the global

optimization performance and it yields the same results, while for h ≥ 3 it finds a

sub-optimal local minimum. However, we stress that, even in this case, the final

fidelity is almost one: the difference in the accuracy between the two methods is
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Figure C.2.: Infidelity vs residual energy for 100 minima in the energy landscape found

with random initialization of local BFGS searches, with |ψ0⟩ = |ΩE⟩ and P = 6. Panel (a)

corresponds to the lattice with 4 × 4 plaquettes, panel (b) to 5 × 5 plaquettes. We only

show data that falls in the interval (EP − EGS)/h ∈ [0, 4.2].
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Figure C.3.: Comparison of the accuracy with respect to the magnetic coupling h between

global optimization (empty squares) and the two-step approach (full squares) described in

the text. The data refer to P = 6 and |ψ0⟩ = |ΩE⟩.

much lower than a realistic experimental resolution. Moreover, the two-step protocol

has the clear advantage of requiring only a single local optimization — on top of a

modest computational overhead for the one-dimensional optimal ∆t grid search —

to be compared with 500 × 100 local optimizations for the basin hopping method.

Consequently, the two-step heuristics certainly requires drastically fewer function

evaluations and it is, therefore, a better candidate to be implemented on a realistic

quantum device and also much faster to simulate on a classical computer.

Concerning the transferability of the optimal schedules to larger system sizes, we

use the optimal angles obtained for L = 3, either with basin hopping or with a

two-step optimization, as an initial guess for local optimizations of larger L = 4, 5.

Specifically, for each value of h, we compare the best fidelity out of 10 BFGS local

search runs, each of them initialized with the optimal 2P parameters previously

found for L = 3, plus a small noise to facilitate the exploration of the energy land-

scape. Our results are reported in Fig. C.4(a), where we compare local minimizations

starting from the L = 3 two-step optimal schedules (star symbols), local searches

starting from the L = 3 global minimum (circles), and the two-step process applied

directly on the larger system (squares). We find that the optimal angles returned by

the two-step algorithm provide a better guess for larger systems, resulting in higher

fidelity than a local search initialized with the global minimum for L = 3. This fact

is linked to the existence of some patterns in the optimal parameters found with

the two-step scheme, in particular, their smoothness as a function of m = 1 · · ·P,
consistently with the results presented in Chapter 3. The performance of the two-

step optimization applied directly on the target system L = 4 or L = 5 is instead

comparable with the transfer of the schedule from L = 3, although the latter is

slightly better for large magnetic fields.
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Figure C.4.: (a) Comparison of the two-step vs global schedules for L = 3 as an educated

guess for optimization on larger system sizes L = 4, 5. The data refer to the best out of

10 local BFGS minimizations, run by starting close to the optimal two-step schedule (blue

stars) or optimal global schedule (green circles). The plot also shows the fidelity of the

optimal two-step schedule (orange squares) run for L = 4, 5. (b) Number of iterations

required for the convergence of the final BFGS optimization; comparison between trans-

ferring the schedule from L = 3 to L = 5 (blue stars), transferring from L = 4 to L = 5

(red triangles), and two-step optimization directly on L = 5 (orange squares). All data

refer to P = 6 and |ψ0⟩ = |ΩE⟩.
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Figure C.5.: Variational parameters associated with the best result out of 10 local min-

imum searches, as prescribed by the two-step optimization procedure. In each panel, the

black dashed line corresponds, through Eq. (C.5), to the linear annealing schedule defined

by Eq.(4.18), with the corresponding value of h and P = 6 steps. The quantum circuit is

initially prepared in the electric ground state |ΩE⟩.

However, once the optimal schedule for a given system size is known, it is con-

venient to leverage that result to initialize the QAOA search for larger systems,

instead of running a new two-step optimization from scratch. In fact, although the

performance in terms of final fidelity is similar, the schedule transfer requires fewer

iterations than the two-step optimization. This is shown in Fig. C.4(b), where we

compare the number of BFGS iterations required in the final local minimum search

on a system with L = 5 for different optimization strategies: schedule transferring

from L = 3 to L = 5, from L = 4 to L = 5, and the two-steps protocol directly on

L = 5. The latter requires in general a larger number of iterations and its overall

cost must be added to the resources required for the optimization of the time step

∆t.
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C.3.2. Smooth schedules

For the Z2 LGT model, we found that the two-step optimization scheme pro-

duces smooth protocols for the optimal variational parameters more easily than

other heuristic methods present in the literature, such as the application of iter-

ative schemes based on parameter interpolation or Fourier component optimiza-

tion [74, 75]. Moreover, it provides a minimum (γ∗,β∗) for a chosen circuit depth P

without requiring the solution for shallower circuits with P′ < P, contrarily to both

the iterative approaches just mentioned. However, the effectiveness of any similar

heuristic method seems model-dependent: for instance, in Chapter 3, the iterative

interpolation scheme resulted in a winning strategy.

The presence of regular patterns in the optimal parameters suggests a comparison

with a dQA scheme, such as the ones adopted to initialize the two-step QAOA. In

Sec. 4.3.2 we defined two possible annealing protocols, depending on the choice of

the initial state. If |ψ0⟩ = |ΩE⟩, we construct the time-dependent Hamiltonian

Ĥ(t) = ĤE + h
t

τ
ĤB , (C.1)

while if |ψ0⟩ = |ΩB⟩ we use

Ĥ(t) = h

(
t

hτ
ĤE + ĤB

)
. (C.2)

In both cases, t ∈ [0, τ ] and at the end of the protocol Ĥ(t = τ) = Ĥtarget. The

corresponding parameters γm and βm of a dQA are reported in Eq. (4.18) and

Eq. (4.21), respectively.

For a graphical representation of smooth optimal two-step schedules and a direct

comparison with dQA, it is useful to consider the following more general protocol,

as customary in AQC:

Ĥ(s) = (1− s)ĤE + sĤB , (C.3)

where s(t) ∈ [0, 1] is a time-dependent parameter that interpolates between ĤE and

ĤB. Note that this time-dependent Hamiltonian is in the same form introduced in

Chapter 1. With this notation, we can identify Eq. (C.1) with a process starting

from s(0) = 0 and ending in s(τ) = sf, with sf =
h

h+1
; Eq. (C.2), instead, corresponds

to a process with s(0) = 1, ending again in s(τ) = sf (both identifications are valid

modulo an overall multiplicative factor).

As described in Chapter 1, dQA requires a discretization of the time interval [0, τ ]

into P small time steps ∆tm, such that
∑

m ∆tm = τ . Correspondingly, the contin-

uous schedule s(t) is discretized into a sequence of short-time evolutions generated

by Ĥ(sm), where

sm = s0 + (sf − s0)
m

P
, (C.4)
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with m = 1 · · ·P. The resulting expression can be further simplified with a first

order Trotter split-up, neglecting quadratic terms in ∆tm. Thus, the final state is

written as the variational ansatz in Eq. (4.13), with fixed parameters given by sm =
γm

γm + βm
,

∆tm = γm + βm ,
(C.5)

with ℏ = 1. Along the same lines of Sec. 1.3.4, once we have found optimal smooth

QAOA parameters γ⋆, β⋆ with our two-step QAOA scheme discussed in Sec. 4.3.2,

we can extract the corresponding digitized schedule s∗m and compare it with the

linear dQA protocol sdQA
m , which we used as an educated guess for the local mini-

mization.

As examples of typical smooth QAOA optimal parameters, we report in Fig. C.5(a)-

(d) the schedules s∗m corresponding to four different values of the coupling h, both be-

low and above the “topological transition”, with P ≥ 3 and initial state |ψ0⟩ = |ΩE⟩.
The dashed black lines correspond to the linear annealing schedule of Eq.(4.18) that

we used as a starting point for the local minimizations, with P = 6. In all four

cases, it appears evident that as P increases, the parameters gradually approach a

smooth continuous behavior, with the possible exception of a single localized irreg-

ularity, which seems to appear in Fig. C.5(a) for P = 5, 6. This is not surprising,

however, since we are preparing a state very close to the initial one. Thus, a large

value of P could “overfit” the target state, and many different parameter choices,

usually non-smooth, could yield similar accuracy. A comparison with Fig. 4.6 for

the case h = 1, clearly shows a degradation of performance (almost-flat curve) of

the infidelity vs P, exactly for P = 5, 6: this irregularity can thus be interpreted

as a local lower-quality minimum or a saturation of the numerical precision of the

algorithm. For larger values of the coupling h, instead, we observe a clear continuity

in the optimal schedule s∗m, as we change both P and h. This leads to the interesting

consequence that the optimal schedule for a given Ĥtarget and circuit depth P could

be used as a seed to initialize the optimization for different values of h, requiring

only a small fine-tuning of the parameters to adapt the schedule to the new target

ground state.

A similarly smooth pattern is observed when we initialize the system in the mag-

netic ground state |ΩB⟩, as reported in Fig. C.6(a)-(d). The dashed black lines

correspond here to the schedules sdQA
m extracted from Eq.(4.21), with P = 6. The

main difference is that the smoothness now is more easily lost when targeting the

deconfined phase, see panel(d), which is closer to the initial state. Similar comments

on this irregularity apply as to the previous case, by comparing with Fig. 4.7(a). On

a side note, we notice that the evident irregularity in panel(d) for P = 5, 6 involves

a single point with a numerical value smaller than 0.4: this is not a significant fea-

ture, and it could easily be eliminated by an appropriate smoothing procedure with

a likely improvement in performance.
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Figure C.6.: Variational parameters associated with the best result out of 10 local min-

imum searches, as prescribed by the two-step optimization procedure. In each panel, the

black dashed line corresponds, through Eq. (C.5), to the linear annealing schedule defined

by Eq.(4.21), with the corresponding value of h, and P = 6 steps. The quantum circuit is

initially prepared in the magnetic ground state |ΩB⟩.
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Unsurprisingly, the two-step optimization might get trapped in a (high-quality)

local minimum even when we target the opposite phase: this is seen, e.g., for the

outlier set of h = 1 and P = 5 in Fig. C.6(a), which might be associated to a subop-

timal minimum. This observation is once again consistent with the corresponding

data in Fig. 4.7(a), where the curve for h = 1 shows a small spike in correspondence

to P = 5.

Regarding the comparison with the linear dQA protocol sdQA
m (dashed black lines),

in both Figs. C.5 and C.6, the overall monotonicity of optimized s∗m is the same of

the original schedule, i.e., an increasing function of m when |ψ0⟩ = |ΩE⟩, and a

decreasing function when |ψ0⟩ = |ΩB⟩. However, when targeting states in a phase

that differs from the initial one, the optimal schedule deviates more and more from

the original ansatz, highlighting the importance of the local optimization of the

parameters.
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[78] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, Theory of quantum

annealing of an Ising spin glass, Science 295, 2427 (2002).

[79] G. E. Santoro and E. Tosatti, Optimization using quantum mechanics: Quan-

tum annealing through adiabatic evolution, J. Phys. A: Math. Gen. 39, R393

(2006).

[80] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, A

Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an

NP-Complete Problem, Science 292, 472 (2001).

[81] T. Albash and D. A. Lidar, Adiabatic quantum computation, Rev. Mod. Phys.

90, 015002 (2018).

[82] J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Quantum annealing

of a disordered magnet, Science 284, 779 (1999).

[83] A. Lucas, Ising formulations of many NP problems, Frontiers in Physics 2, 5

(2014).

[84] F. Glover, G. Kochenberger, and Y. Du, A Tutorial on Formulating and Using

QUBO Models, (2019), arXiv:1811.11538 [cs.DS] .

[85] V. Bapst, L. Foini, F. Krzakala, G. Semerjian, and F. Zamponi, The quantum

adiabatic algorithm applied to random optimization problems: The quantum

spin glass perspective, Physics Reports 523, 127 (2013).

[86] T. S. Cubitt, D. Perez-Garcia, and M. M. Wolf, Undecidability of the spectral

gap, Nature 528, 207 (2015).

[87] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev,

Adiabatic quantum computation is equivalent to standard quantum computa-

tion, in 45th Annual IEEE Symposium on Foundations of Computer Science

(2004) pp. 42–51.
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[197] H. W. J. Blöte and Y. Deng, Cluster Monte Carlo simulation of the transverse

Ising model, Phys. Rev. E 66, 066110 (2002).

[198] E. Fradkin, Field Theories of Condensed Matter Physics , 2nd ed. (Cambridge

University Press, 2013).

[199] C. Dlaska, K. Ender, G. B. Mbeng, A. Kruckenhauser, W. Lechner, and

R. van Bijnen, Quantum Optimization via Four-Body Rydberg Gates, Phys.

Rev. Lett. 128, 120503 (2022).

[200] W. Lechner, Quantum Approximate Optimization With Parallelizable Gates,

IEEE Transactions on Quantum Engineering 1, 1 (2020).

[201] H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS Collaboration), General

methods for digital quantum simulation of gauge theories, Phys. Rev. D 100,

034518 (2019).

[202] E. Zohar, A. Farace, B. Reznik, and J. I. Cirac, Digital Quantum Simulation

of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter, Phys. Rev.

Lett. 118, 070501 (2017).

[203] E. Zohar, A. Farace, B. Reznik, and J. I. Cirac, Digital lattice gauge theories,

Phys. Rev. A 95, 023604 (2017).
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Parity Quantum Optimization: Compiler, (2021).

[244] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran,

D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev,
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