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Strongly orrelated metal interfaes in the Gutzwiller approximation
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We study the e�et of spatial inhomogeneity on the physis of a strongly orrelated eletron

system exhibiting a metalli phase and a Mott insulating phase, represented by the simple Hubbard

model. In three dimensions, we onsider various geometries, inluding vauum-metal-vauum, a

juntion between a weakly and a strongly orrelated metal, and �nally the double juntions metal-

Mott insulator-metal and metal-strongly orrelated metal- metal. We applied to these problems the

self-onsistent Gutzwiller tehnique reently developed in our group, whose approximate nature is

ompensated by an extreme �exibility, ability to treat very large systems, and physial transpareny.

The main general result is a lear haraterization of the position dependent metalli quasipartile

spetral weight. Its behavior at interfaes reveals the ubiquitous presene of exponential deays and

rossovers, with deay lengths of lear physial signi�ane. The deay length of metalli strength in

a weakly-strongly orrelated metal interfae is due to poor sreening in the strongly orrelated side.

The deay length of metalli strength from a metal into a Mott insulator (or into vauum) is due to

tunneling. In both ases, the deay length is a bulk property, and diverges with a ritial exponent

(∼ 1/2 in the present approximation, mean �eld in harater) as the (ontinuous, paramagneti)

Mott transition is approahed.

I. INTRODUCTION

Metalli eletron wavefuntion deloalization in a lat-

tie of atoms or moleules is aused by the lowering of

eletron kineti energy and by the simultaneous improve-

ment of eletron-ion Coulomb attration. By abandon-

ing the ion ores and turning deloalized, an eletron

an in fat feel the potential of more than one nuleus.

However, oherent eletron motion is opposed by the mu-

tual eletron-eletron Coulomb repulsion, whih is higher

when eletrons move due to their higher hane of ol-

liding when visiting the same site. When the �rst two

terms prevail, the system is a onventional band insu-

lator or metal, depending whether the Fermi level falls

in a band gap or aross one or more bands. When the

eletron-eletron repulsion prevails instead the eletrons

loalize on their atomi or moleular sites leading to a

so-alled Mott insulator

1

. Despite that oneptual sim-

pliity, properties of Mott insulators and espeially of

strongly orrelated metals in the proximity of a Mott

metal-insulator transition as a funtion of inreasing or-

relations remain quite di�ult to apture both theo-

retially and experimentally. Theoretially, the reason

is that the Mott transition is a olletive phenomenon,

whih esapes single-partile or mean �eld theories suh

as Hartree-Fok or density-funtional-theory within the

loal-density approximation (LDA). Experimentally, ad-

ditional ompliations suh as magnetism, lattie distor-

tions, et., often onspire to mask the real nature of the

Mott loalization phenomenon.

Important insights into this problem have been gained

in the last two deades espeially thanks to dynamial

mean �eld theory (DMFT).

2

DMFT predits that, as

the eletron-eletron repulsion � usually parametrized by

a short-range Hubbard repulsion U � inreases, the or-

dinary band metal evolves �rst to a strongly orrelated

metal well before the Mott transition. In the strongly

orrelated metal the eletron spetral funtion under-

goes a profound hange, exhibiting well formed Mott-

Hubbard side-bands oexisting with deloalized quasi-

partiles, the latter narrowly entered in energy near the

Fermi level. Only suessively upon inreasing repulsion

do the quasipartiles disappear as the Mott transition

takes plae at U = Ucrit. This intriguing predition �

simultaneous metalli and insulating features, exhibited

on well separated energy sales � has stimulated a on-

siderable experimental e�ort to reveal oexisting quasi-

partiles and Mott-Hubbard bands in strongly orrelated

metals

3,4,5,6,7,8,9,10,11,12

, espeially in the paradigmati

system V2O3. This is the ompound where a Mott tran-

sition has been �rst disovered

13

and theoretially stud-

ied

14,15

. At ambient temperature and pressure V2O3 is a

orrelated metal. It undergoes a �rst-order Mott transi-

tion at ∼ TN ≃ 155 K to an antiferromagneti insulator

aompanied by a monolini distortion of the high tem-

perature orundum struture.

16

The paramagneti high-

temperature metal an moreover be turned into a param-

agneti Mott insulator upon substituting V with bulkier

Cr, (V1−xCrx)2O3. For 0.005 < x < 0.017 a �rst-order

line separates the high temperature metal from the para-

magneti Mott insulator, whih terminates with a ritial

point at T ≃ 400 K and x ≃ 0.005.

Near the metal-insulator transition of (V1−xCrx)2O3,

the strongly orrelated metal must of ourse possess well

de�ned quasipartiles at the Fermi energy. Surprisingly,

early photoemission experiments

17,18,19,20

failed to re-

veal the sharp quasipartile peak predited by DMFT

at EF . The eletroni spetrum appeared instead dom-

inated by the lower Mott-Hubbard band with barely a

hint of metalli weight at the Fermi energy. It was re-

ognized only later that photoemission in strongly orre-

lated metals is highly surfae-sensitive.

3,4,6,7,11,12,21

By
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inreasing the photon frequeny, whih orresponds to

more energeti exited photo-eletrons, i.e. longer es-

ape lengths, a prominent quasipartile peak oexist-

ing with inoherent Mott-Hubbard bands was eventu-

ally observed in V2O3
5,10,22

. Quasipartile suppression

in surfae-sensitive probes was attributed

22

to surfae-

modi�ed Hamiltonian parameters, the redued atomi

oordination pushing the surfae loser to the Mott tran-

sition than the underlying bulk. This onlusion, al-

though not unreasonable, raises however a more funda-

mental question. A metal does not possess any intrinsi

long-distane eletroni length-sale other than the Fermi

wavelength. Thus an imperfetion like a surfae an only

indue a power-law deaying disturbane suh as that

assoiated with Friedel's osillations. Sine one does not

expet Luttinger's theorem to break down, these osilla-

tions should be ontrolled by the same Fermi wavelength

as in the absene of interation, irrespetively of the

proximity of the Mott transition. On the other hand, a

strongly orrelated metal does possess an intrinsi energy

sale, the parametri distane of the Hamiltonian from

the Mott transition, and that ould be assoiated with a

length sale. For example, the arising of a ritial length

sale in assoiation with a free energy sale is well known

in seond order phase transitions. The surfae as a per-

turbation may alter the quasipartile properties within

a depth orresponding to that harateristi length. We

expet this length to be a bulk property, the longer the

loser the Mott transition, unlike the Fermi wavelength

that remains onstant. In this respet, it is not a priori

lear whether the reovery of bulk-quasipartile spetral

properties with inreasing depth should be power-law,

ompatible with the ommon view of a metal as an in-

herently ritial state of matter, or exponential, as one

would expet by regarding the Mott transition as any

other ritial phenomena where power laws emerge only

at ritiality.

Besides the interfae with vauum, whih is relevant

to spetrosopy, other types of interfae involving or-

related materials are attrating inreasing interest. In

2004, Ohtomo and Hwang

23

disovered that the inter-

fae between two insulating oxides, LaAlO3 and SrTiO3,

is a high-mobility two-dimensional ondutor that even

shows superondutivity

24

. This disovery stimulated ex-

perimental and theoretial studies on oxides heterostru-

tures

25

. On the theory side, some ativity has been

foused either on the haraterization of the eletroni

struture of these interfaes by ab-initio LDA alula-

tions, see e.g. Ref. 26, as well as on DMFT analy-

ses of simple models

27,28,29,30,31,32,33,34,35

and on om-

bined LDA-DMFT alulations

36

aimed at understand-

ing interfae orrelation e�ets poorly desribed within

straight LDA. The DMFT approahes adopted in the lit-

erature to desribe this kind of situations were ad-ho ex-

tensions of the single-site DMFT

2

to inhomogeneous sys-

tems.

27,28

In the spei� example of a layered struture,

the eletron self-energy was assumed to depend, besides

the frequeny, also upon the layer index. In this sheme

the self-energy is alulated by solving an auxiliary impu-

rity model for eah layer in whih the onduting bath de-

pends self-onsistently on the fully-interating impurity

Green's funtions not only of that given layer but also

of the nearby ones. This additional ompliation with

respet to onventional DMFT weighs on the numerial

alulation, whih is thus limited to few tens of layers.

Although this is adequate for the interfae between two

insulators, suh as that studied by Ohtomo and Hwang

23

,

it is generally insu�ient in other ases, suh as the sur-

fae e�ets in the interior of a orrelated metal,

37

or any

other interfae involving at least one metal.

Reently, we proposed an alternative theoretial ap-

proah to interfae problems,

38

based on the extension

of the Gutzwiller wavefuntion and approximation

39,40

to inhomogeneous situations. The method, although a

further approximation beyond DMFT, hene in priniple

less aurate, is muh more agile, and an treat without

e�ort hundreds of layers. Thus it an be used as a om-

plementary tool to extrapolate DMFT results to large

sizes, otherwise unaessible by straight DMFT.

In this work, we shall extend the analysis of Ref. 38 for

the vauum/orrelated-metal interfae to other model in-

terfaes that might be relevant for experiments: the jun-

tion between two di�erent orrelated metals and the tun-

neling between two metalli leads through a strongly or-

related, possibly Mott insulating, region. Although both

ases were in fat previously studied by DMFT

31,34,35

,

the results were interpreted in ontrasting ways. While

Helmes et al.

34

onluded that the Mott insulator is im-

penetrable to the eletrons oming from the metalli

leads, Zenia et al.

35

drew the opposite onlusion that

a onduting hannel always open up inside the insula-

tor at su�iently low temperature. The present study,

whih is ertainly less aurate than DMFT but an deal

with muh larger sizes, will also serve to larify this is-

sue. In partiular, the large sizes allow us to address the

asymptoti behavior and to identify the magnitude and

interfae role of the ritial length assoiated with the

bulk Mott transition.

The paper is organized as follows. In setion II we

introdue the model Hamiltonian, whih is a Hubbard

model with layer dependent parameters, and a Gutzwiller

variational sheme adapted for suh an inhomogeneous

situation. We then study in setion III three di�erent slab

geometries: (a) strong orrelated metal�vauum inter-

fae; (b) juntion between two di�erent orrelated met-

als; () a Mott insulator or a strongly orrelated metal

sandwihed between two weakly orrelated metals. In

the �rst two ases we �nd that the perturbation indued

by the surfae inside the bulk of the orrelated metal de-

ay exponentially at long distanes. The length sale ξ
that ontrols this deay is a bulk property that depends

in our simpli�ed model only on Ucrit−U and diverges on

approahing the Mott transition like ξ ∼ (Ucrit − U)
−ν

,

with a mean-�eld like exponent ν ≃ 0.5. The last ase

() is more interesting. Either when the entral region,

of width d, is a strongly orrelated metal, Ucenter < Ucrit
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or when it is a Mott insulator, Ucenter > Ucrit, the e�ets

of the two metal leads are found to deay exponentially

over a length ξ. Just like in ases (a) and (b) above, ξ is
only ontrolled by the distane from Mott ritiality, i.e.

ξ ∼ |Ucrit − Ucenter|−0.5
,

whih therefore appears naturally as a orrelation length

that is �nite on both sides of the transition. However,

while the quasipartile weight saturates to a �nite on-

stant determined by Ucenter < Ucrit and independent of

d when the entral region is a strongly orrelated metal,

in the opposite ase of a Mott insulator the quasiparti-

le weight saturates to a �nite value exponentially small

in d. Interestingly, right at ritiality, Ucenter = Ucrit,

the saturation value deays power law in d. Finally, se-
tion IV is devoted to onluding remarks. For a better

understanding of our numerial data, a simple analytial

model for the spatial dependene of quasipartile weight

is set up in appendix A, while in appendix B we disuss

the e�ets of eletron-eletron interation on the physis

of Friedel's osillations near surfaes and juntions within

the Gutzwiller approximation.

II. MODEL AND METHOD

In order to address the generi interfae features of

a a strongly orrelated metal, we onsider the simplest

Hamiltonian exhibiting a Mott transition, namely the

Hubbard model

H = −
∑

<RR′>σ

tRR′

(

c†
RσcR′σ +H.c.

)

+
∑

R

ǫRnR + UR nR↑nR↓, (1)

where < RR
′ > denotes nearest neighbor sites, c†

Rσ

and c
Rσ reates and annihilates, respetively, an ele-

tron at site R with spin σ, and �nally nRσ = c†
RσcRσ

and nR = nR↑ + nR↓. In our inhomogeneous system,

all Hamiltonian parameters are allowed to be site depen-

dent. For interfaes, we shall assume an N -layer slab

geometry where all parameters are onstant within eah

layer, identi�ed by a layer oordinate z = 1, . . . , N but

generally di�erent from layer to layer. For instane, the

hopping between nearest neighbor sites R and R
′
within

layer z depends only on z, i.e. tRR′ = t(z), while if R

and R
′
belong to nearby layers, e.g. z and z ± 1, then

tRR′ = t(z, z ± 1) = t(z ± 1, z).
We study the Hubbard Hamiltonian (1) in the non-

magneti (also alled paramagneti) setor by means of

a Gutzwiller type variational wavefuntion

|Ψ〉 =
∏

R

PR |Ψ0〉, (2)

where |Ψ0〉 is a paramagneti Slater determinant. Be-

ause of our hoie of layer-dependent parameters, the

operator PR has the general expression

PR =

2
∑

n=0

λn(z) |n,R〉〈n,R|, (3)

where |n,R〉〈n,R| is the projetor at site R = (x, y, z),
(x and y are intralayer oordinates), onto on�gu-

rations with n eletrons (note that |1,R〉〈1,R| ≡
∑

σ c
†
Rσ|0,R〉〈0,R|c

Rσ), and λn(z) are layer-dependent

variational parameters. We alulate quantum averages

on |Ψ〉 using the so-alled Gutzwiller approximation

39,40

,

(for details see e.g. Ref.

41

whose notations we use here-

after) and require that

〈Ψ0|P2
R|Ψ0〉 = 1, (4)

〈Ψ0|P2
R
nRσ|Ψ0〉 = 〈Ψ0|nRσ|Ψ0〉 ≡

n(z)

2
. (5)

Expliitly, these two onditions imply that

1 =

(

1− n(z)

2

)2

λ0(z)
2

+n(z)

(

1− n(z)

2

)

λ1(z)
2 +

n(z)2

4
λ2(z)

2, (6)

n(z) = n(z)

(

1− n(z)

2

)

λ1(z)
2 + 2

n(z)2

4
λ2(z)

2. (7)

We note that n(z) is �xed one the unorrelated vari-

ational wavefuntion |Ψ0〉 is given. In reality we �nd

more onvenient to treat n(z) as an additional variational
parameter, and onstrain |Ψ0〉 to span all paramagneti

Slater determinants that have a �xed loal harge den-

sity n(z). The average value of (1) within the Gutzwiller

approximation is aordingly given by

41,42

E =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 ≃

∑

R

UR

n(z)2

4
λ2(z)

2 + ǫR n(z) (8)

−
∑

<RR′>σ

tRR′ R(z)R(z′) 〈Ψ0|c†RσcR′σ +H.c.|Ψ0〉,

where

R(z) =

(

1− n(z)

2

)

λ0(z)λ1(z) +
n(z)

2
λ1(z)λ2(z), (9)

plays the role of a wavefuntion renormalization fa-

tor, whose square an be regarded as the atual layer-

dependent quasipartile weight, Z(z) = R2(z). Beause

of Eqs. (6), (7) and (9), one an express

λn(z) = λn [R(z), n(z)] ,

as funtional of the two variational funtions R(z) and
n(z). Furthermore, the single-partile wavefuntions that

de�ne the Slater determinant |Ψ0〉 an be hosen, for a

slab geometry, to have the general expression

φǫk||
(R) =

√

1

A
eik||·R φǫk||

(z),



4

where A is the number of sites per layer and k|| the mo-

mentum in the x-y plane. The minimum of E, Eq. (8),
an then be obtained by searhing for saddle points with

respet to the variational parameters R(z), n(z) and

φǫk||
(z), the latter subjet to the onstraint

2

A

occupied
∑

∣

∣φǫk||
(z)
∣

∣

2
= n(z),

the sum running over all oupied states in the Slater

determinant.

Considerable simpli�ations arise if we further assume

a bipartite lattie with a Hamiltonian (1) invariant under

the partile-hole transformation

c
Rσ → σ (−1)R c†

R−σ,

where (−1)R is +1 on one sublattie and −1 on the other.
This symmetry requires ǫR = 0 in (1) and implies n(z) =
1 hene λ0(z) = λ2(z) and λ1(z)

2 = 2 − λ0(z)
2
. In this

ase the saddle point is simply obtained by solving the

oupled equations

ǫ φǫk||
(z) = R(z)2 ǫk||

(z)φǫk||
(z)−R(z)

∑

p=±1

t(z, z + p)R(z + p a)φǫk||
(z + p a), (10)

R(z) =
4
√

1−R(z)2

U(z)A

occupied
∑

ǫk||

[

− 2R(z)ǫk||
(z)φǫk||

(z)2 + φǫk||
(z)

∑

p=±a

t(z, z + p)R(z + p a)φǫk||
(z + p a)

]

, (11)

where ǫk||
(z) = −2t(z) (cos kxa+ cos kya). The �rst

equation has the form of a Shr÷dinger equation whih

the single-partile wavefuntions φǫk||
(z) must satisfy,

the quasipartile hopping now depending parametri-

ally on R(z). The seond equation has been in-

tentionally ast in the form of a map Rj+1(z) =
F [Rj(z), Rj(z + a), Rj(z − a)] whose �xed point we have
veri�ed to oinide with the atual solution of (11) in the

parameter region of interest.

In spite of the various assumptions above, solving this

saddle point problem remains in priniple formidable.

Fortunately, Eqs. (10) and (11) an in fat be solved rel-

atively easily, by the following iterative proedure. First

solve the Shr÷dinger equation at �xed Rj(z); next �nd
the new Rj+1(z) using the old Rj(z) and the newly de-

termined wavefuntions φǫk||
(z). With the new Rj+1(z),

repeat the above steps and iterate until some desired level

of onvergene is reahed. Beause of the large number

of variational parameters, this iterative sheme is muh

more e�ient than � but fully equivalent to � a diret

minimization of E, Eq. (8). Away from partile-hole sym-

metry, the saddle point equations get more involved but

the solution an be obtained along the same lines.

Before onluding, we reall for future use the

Gutzwiller approximation results for the Mott transi-

tion at partile-hole symmetry in the homogeneous ase,

ǫR = 0, tRR′ = t and UR = U , i.e. when the varia-

tional parameters λn(z) are z-independent. In this ase,

the solution of Eqs. (10) and (11) is trivial. The ritial

values U = Ucrit at the Mott transition are Ucrit = 32t/π
(for a linear hain), Ucrit = 128t/π2

(for a square lattie),

Ucrit = 16t (for a ubi lattie). The quasipartile weight
Z in terms of the eletron-eletron interation U has the

simple expression

Z = R2 = 1− U2

U2
crit

, (12)

linearly vanishing at the Mott transition.

15

III. INTERFACES IN THE 3D HUBBARD

MODEL: RESULTS

We use the tehnique just exposed to study 3D sim-

ple ubi Hubbard model interfaes in a slab geometry

with in-plane (xy) translational symmetry and layer(z)-
dependent Hamiltonian parameters. We assume for sim-

pliity partile-hole symmetry and site-independent hop-

pings tRR′ = t throughout, so that the only soure of

inhomogeneity is a layer-dependent U(z). Therefore the
minimization proedure amounts to solve the oupled

equations (10) and (11) with onstant hoppings. Teh-

nially, we diagonalized the in-plane k-dependent Hamil-

tonian (10) at every point of a Monkhorst-Pak k-grid43.
The two-dimensional grid used was 32× 32, hosen so as

to yield well onverged values not just for the quasiparti-

le weight (for whih a 4× 4 grid was su�ient) but also

for the hopping matrix element for the geometries and

interation parameters onsidered. At every iteration j,
we hoose for the onvergene indiator

Qj =
1

N

(

N
∑

i=0

|Zj(i)− Zj−1(i)|
)

(13)

a threshold of 10−6
. This orresponds to a relative energy

onvergene of less than 10−7
. The alulations of the

spatial dependene of the hopping matrix elements (see
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appendix B ) were instead performed with a denser k-grid
of 64× 64 k-points.
We onsider the three di�erent geometries displayed in

Fig. 1:

(a) Correlated metal-vauum interfae: a orrelated

metal (Ubulk < Ucrit, where Ucrit = 16t is the

ritial value of U at the Mott transition in the

ubi lattie) with a stronger orrelated surfae

(Usurface > Ucrit).

(b) Weakly orrelated metal-strongly orrelated metal

interfae: a juntion between a moderately orre-

lated metal (Uleft < Ucrit) and a strongly orrelated

metal (Uright . Ucrit).

() Metal-Mott insulator-metal double juntion: a

Mott insulator Ucenter ' Ucrit or a strongly or-

related metal Ucenter . Ucrit sandwihed between

two moderately orrelated metalli leads Uleft =
Uright < Ucrit.

The dashed lines in the panels of Fig. 1 show the quasi-

partile weight Z(z) alulated for a N = 200 layer slab

in the three geometries with the Hamiltonian parameters:

panel (a) Ubulk = U(z > 1) = 15.9712t and Usurface = U(z =
1) = 20t. The bulk is a strongly orrelated metal

very lose to the Mott transition, the right surfae

has the same U as the bulk while the left surfae a

higher value well inside the Mott insulating range.

panel (b) Uleft = U(z ≤ 100) = 15.9198t and Uright = U(z >
100) = 15.9712t; The left metal is muh less orre-

lated than the right metal.

panel () Uright = U(z ≤ 80) = Uleft = U(z > 120) =
15.9198t and Ucenter = U(80 < z ≤ 120) =
16.0288t. Left and right leads are moderately orre-

lated metals, the entral region is Mott insulating.

We now disuss eah ase separately.

A. Geometry (a): Correlated metal-vauum

interfae

This is the simple surfae ase, U(z > 1) = Ubulk <
Ucrit and U(z = 1) = Usurface > Ucrit, previously studied

in Ref. 38. Looking at Figs. 2 and 3, with values of

Usurf = 20t, and Ubulk = 9.6t and Ubulk = 15.97118t,
respetively, we observe that:

i) The value of Z(z) at the enter of the slab, lose

to the bulk value, dereases monotonially to zero

while Ubulk approahes Ucrit. Due to the �nite

slab thikness N , the atual value of U at whih

Z(z) vanishes everywhere is slightly smaller than

the bulk value Ucrit = 16t for an in�nite system,

but tends to it as N inreases. In this limit, the

dependene of Zbulk = Z(z = N/2) upon Ubulk is

desribed by Eq.(12).

Figure 1: (Color online) The three di�erent inhomogeneities

studied in this paper: (a) free surfae geometry, (b) jun-

tion between metals with di�erent strength of orrelation,

() Mott (or strongly orrelated metalli) slab sandwihed

between metalli leads (sandwih geometry). The values

for U in all the three ases shown are: (a) Usurface = 20t,
Ubulk = 15.9712t; (b) Uleft = 15.9198t, Uright = 15.9712t; ()
Uleft = Uright = 15.9198t, Ucenter = 16.0288t (whih is the

ase of a Mott entral slab). In panel () the region with

eletron-eletron interation U = Ucenter is indiated by the

green-shaded area.

Figure 2: Spatial dependene of Z(z) for Usurf = 20t at z = 0
and Ubulk = 14.6642t, for any z > 0. The lower panel is the

same as the upper one zoomed lose to the surfae.

ii) Z(z) dereases dramatially while approahing the

surfaes, both the extra-orrelated left surfae z =
1, and the regular bulk-like one at z = N . In fat,

within the Gutzwiller approximation, the e�etive

interation strength at a given site is the value of

U relative to the average hopping energy at that

site. The redued surfae oordination lowers the

overall hopping energy of a surfae site, and hene
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Figure 3: Same as Fig. 2, for Usurf = 20t and Ubulk =
15.9712t.

e�etively strengthens the surfae interation. The

same e�et would be obtained by dereasing the

hopping at the surfae. We note however that, so

long as Z remains �nite in the interior of the slab,

Z remains �nite, even if very small, also at the

surfae: there annot be truly insulating surfaes

oexisting with a metalli bulk. The reason is that,

if we assume initially suh an insulating surfae,

then simple tunneling from the underlying bulk will

bring the metalli quasipartile weight to a nonzero

value, however small.

iii) The steep deay of Z(z) at the surfaes at z = 1
and z = N gets more and more gradual as Ubulk →
Ucrit.

As found in Ref. 38, the behavior of R(z) =
√

Z(z)
an be well desribed by an exponential

R(z) = Rbulk + (Rsurf −Rbulk) e
−(z−1)/ξ, (14)

where Rbulk = R(z = N/2) and Rsurf < Rbulk. In Ap-

pendix A we atually derive a more involved analytial

expression for R(z) that �ts well the numerial data, see

Eq. (A6). The surfae value, Rsurf , and the surfae metal-

li quasipartile weight Zsurf = R2
surf , are muh smaller

than the bulk ones but, as previously mentioned, they

an vanish only when Rbulk beomes stritly zero, for

Ubulk > Ucrit. For any Ubulk < Ucrit, there is a surfae

dead layer

38

, whih is muh less metalli than the bulk,

whose thikness ξ(U) depends only on bulk properties,

and diverges for Ubulk → Ucrit in the ritial form

ξ ∼ (Ucrit − Ubulk)
−ν

. (15)

Therefore ξ may be identi�ed with the orrelation length

harateristi of the bulk Mott transition. Numerially,

we �nd ν = 0.53± 0.3 ≃ 0.5, a typial mean �eld ritial

Figure 4: (Color online) Plot of log(1 − R/Rbulk) versus z
for U = 15.97118t (irles), U = 15.9198t (squares), U =
15.84242t (triangles). In the inset the same data are plotted

with respet to z (1− U/Ucrit)
0.5
.

exponent ompatible with the simple Gutzwiller approx-

imation. In Fig. 4 we plot the logarithm of the di�er-

ene between R and Rbulk, whih learly shows the ex-

ponential deay for three values of U . In the inset of the

same �gure we plot the same quantity as funtion of a

resaled oordinate z → z (1−U/Ucrit)
ν
with ν = 0.5: all

data fall on the same urve thus substantiating our state-

ment on the U -dependene of the orrelation length. Our
�nding of an exponential reovery of the quasipartile

weight inside the bulk in plae of the expeted Friedel-

like power-law behavior o�ers a unique opportunity to

experimentally aess the ritial properties of the Mott

transition. Photoemission experiments

37

show that the

surfae depletion of metalli eletron spetral weight in

V2O3 propagates inside the interior of the sample for an

anomalously large depth of many tens of Angstrom be-

neath the surfae, in qualitative agreement with our re-

sults. Further experiments would be desirable to follow

the behavior of this length sale upon approahing this

and other Mott transitions and verify our predition.

We end by noting that the alulated Z(z) shows an
upward urvature near the surfae (z = 0), see Fig. 3

and also Eq. (A12) in the appendix. This is unlike earlier

results obtained by the so-alled linearized DMFT

28

, dis-

playing instead a linear growth of Z(z) near the surfae
and very lose to ritiality. Besides a qualitative agree-

ment with the upward urvature observed in photoemis-

sion,

37

whih ould be oinidental sine the real V2O3 is

muh more ompliated than our simple one-band Hub-

bard model, we do not see strong arguments of prini-

ple supporting either approahes. Both Gutzwiller and

linearized DMFT are based on rather unontrolled ap-

proximations. More reliable tehniques, suh as straight

DMFT or Quantum Monte Carlo alulations on large

size systems, would be needed to larify this aspet; but

this is perhaps not important enough. What is more im-
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Figure 5: Spatial dependene of Z(z) for Uleft = 2t and

Uright = 15.9712t. The lower panel shows the same data as

the upper one but loser to the interfae.

Figure 6: Same as in Fig. 5, for Uleft = 15.9198t and Uright =
15.9712t.

portant is that, just like our approah, also linearized

DMFT yields, as we heked, to a length ontrolling the

depth of the surfae perturbed region that diverges at

the Mott transition.

B. Geometry (b): Weakly orrelated

metal-strongly orrelated metal interfae

The juntion between a metal and a Mott insulator or a

strongly orrelated metal was studied reently by Helmes,

Costi and Rosh

34

, who used the numerial renormaliza-

tion group as DMFT impurity solver. With our simpler

method we an address a broader lass of interfaes, in-

luding the general ase of a orrelated metal-orrelated

metal juntion, with di�erent values of eletron-eletron

interation in the left (Uleft) and right (Uright) leads. The

system we onsider, see Fig. 1(b), is made of two bloks

100 layers eah, and the juntion enter is at z = N/2.
Figs. 5 and 6 show the z dependene of the quasipartile

weight for �xed Uright ≃ Ucrit and two di�erent values

of Uleft < Uright. Even if U(z) is hanged stepwise from

left to right, we �nd that the loser Uleft is to Ucrit, the

smoother the funtion Z(z) for z < N/2. On the right

side of the juntion, after a harateristi length ξright,
the quasipartile weight Z reahes exponentially its bulk

value. We �nd for R(z > N/2) a layer dependene well

represented by the form (for a better �t see Eq. (A6) with

the minus sign)

R(z) = Rright + (Rleft −Rright) e
−(z−N/2)/ξright . (16)

The dependene of ξright on Uright is again given by

Eq. (15), i.e ξright ∝ (Ucrit − Uright)
−ν

(ν ≈ 0.5). By

symmetry, the same holds in the left side too, upon in-

terhanging the subsripts right and left.

Our results for weak Uleft and Uright . Ucrit an be di-

retly ompared with those of Helmes et al.

34

, who pro-

posed that a strongly orrelated slab, our right lead with

Uright ≃ Ucrit, in ontat with a non interating metal,

our left lead, has a quasipartile weight Z(x) that, lose
to ritiality, has a saling behavior

x2 Z(x) ≃ C f

(

x

∣

∣

∣

∣

U − Ucrit

Ucrit

∣

∣

∣

∣

1/2
)

, (17)

where f(0) = 1 and x is the distane from the interfae,

translated in our notation x = z −N/2 and U = Uright.

The prefator C ≃ 0.008 and the asymptoti behavior

f(ζ → ∞) = 0.15ζ2 of the saling funtion were ex-

trated by a DMFT alulation with a 40 layer orre-

lated slab in ontat with a 20 layer almost unorrelated

metal

34

.

We show in Fig. 7 the quantity x2 Z(x) ex-

trated by our Gutzwiller tehnique and plotted versus

x |1− U/Ucrit|1/2 for di�erent U 's aross the Mott transi-

tion value. The results are qualitatively similar to those

of Ref. 34, but di�ers in two aspets. First of all we �nd

that f(ζ) de�ned in Eq. (17) shows a plateau only when

z∗ ≪ x ≪
∣

∣

∣

∣

1− U

Ucrit

∣

∣

∣

∣

−1/2

,

where an approximate expression for the o�set value z∗
is given in the appendix A 1, see Eqs. (A7) and (A15).

For x ≪ z∗, f(ζ) ∼ ζ2 so that Z(x) approahes its sur-
fae value at the interfae. In our data the rossover

between the two di�erent regimes is learly visible, un-

like in Ref. 34. More seriously, the oe�ient C ≃ 0.08
found by Helmes et al.

34

is almost two orders of magni-

tude smaller than our, whih is numerially around≃ 0.4.
[The approximate analytial expression disussed in the

appendix A give a slightly larger value of 2/3, see (A11)
and (A17)℄. In the same appendix we also show that,

within the linearized DMFT approah introdued by Pot-

tho� and Nolting

28

one would extrat yet another value
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Figure 7: (Color online) Plot of Z(x) x2
versus the renor-

malized oordinate x
p

|1− U/Ucrit| for U < Ucrit (upper

blue urves: U = 15.7939t triangles, U = 15.8424t rosses,

U = 15.9198t pluses, U = 15.9712t points, U = 15.9968 tiny

dots) and U > Ucrit (lower blue urves: U = 16.2571t trian-
gles, U = 16.2035t rosses, U = 16.1148t pluses, U = 16.0511t
points, U = 16.0128 tiny dots). This �gure an be ompared

with the inset of Fig. 3 in referene 34

of the oe�ient C = 9/11 ∼ 0.82, of the same order

as ours, and again larger than that found by Helmes et

al.

34

. This disagreement is not just quantitative. Mainly

beause of the smallness of the prefator, Helmes and

oworkers

34

onluded that the strongly orrelated slab

with U ≃ Ucrit hene Zbulk = Z(x → ∞) ≪ 1 is very

weakly a�eted by the proximity of the good metal, a

onlusion later questioned by Zenia et al.

35

, who how-

ever onsidered a di�erent geometry. Our results, as well

as those that ould be obtained by linearized DMFT, do

not allow any suh drasti onlusion. Yet, sine straight

DMFT should be more reliable than either linearized

DMFT or our Gutzwiller approah, it is likely that our

Z(x) is strongly overestimated and that Helmes et al.'s

onlusions are basially orret. It seems worth investi-

gating further this important question with full DMFT

on wider slabs.

C. Geometry (): Correlated metal-Mott insulator

(Strongly orrelated metal)-orrelated metal double

juntion

In this setion we onsider geometry () of �gure 1, in

whih a strongly orrelated slab of d layers is sandwihed
between two weakly orrelated metal leads, a setup al-

ready studied by DMFT

31,35

. In Figs. 8, 9 and 10 we

show the layer dependene of the quasipartile weight for

di�erent values of the interation parameters, the Hub-

bard U in the leads, Uright = Uleft < Ucrit, and in the

entral slab, Ucenter

>
< Ucrit, and slab thikness d. From

Figure 8: Spatial dependene of Z(z) for Uleft = Uright = 2t
and Ucenter = 15.9712t. The upper panel refers to a entral

region of d = 20 layers, while the lower panel to d = 40

Figure 9: Same as in Fig. 8, for Uleft = Uright = 15.9198t and
Ucenter = 15.9712t.

those results one an draw the following onlusions:

• For any �nite thikness d, the quasipartile weight
in the entral slab never vanishes, as better revealed

in Figs. 11 and 12, even for Ucenter > Ucrit, fed as it

is by the evanesent metalli quasipartile strength

from the metalli leads. This result agrees perfetly

with reent DMFT alulations

35

.

• For Ucenter > Ucrit, see Fig. 10, the minimum value

Zmin in the entral region dereases when d in-

reases;

• The behavior of Z(z) aross the interfae is

smoother and smoother the loser and loser

Uright = Uleft are to Ucenter.

Looking more in detail at Figs. 9, 10 and at the log-

sale plots in Fig. 11 and 12, we an identify the har-
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Figure 10: Same as in Fig. 8, for Uleft = Uright = 15.9198t
and Ucenter = 16.0288t.

ateristi di�erenes between a Mott insulating slab and

a strongly orrelated metalli slab, when sandwihed be-

tween metalli leads. In a strongly orrelated metalli

slab, the entral quasipartile weight ultimately settles

to the self-standing value it would have in a homoge-

neous system with U = Ucenter < Ucrit. This value is

independent of the juntion width and of lead orrela-

tions. On the ontrary, the quasipartile weight inside

the insulating slab is ompletely borrowed from the leads,

and strongly depends therefore on their separation and

orrelation. What depends stritly on the entral slab in-

teration Ucenter > Ucrit is the quasipartile deay length

ξcenter from the lead to the enter of the slab, whih in-

reases for inreasing slab orrelation aording to the

law (Ucenter−Ucrit)
−ν

, with ν ≈ 0.5, a value that mathes

perfetly that found in setion III A

These onsiderations suggest that, if we look at the

problem from a transport point of view, we are on-

fronted with two ompletely di�erent mehanisms. In

a strongly orrelated metalli entral slab, ξcenter has the
role of a sreening length, exatly the same role of ξright in
setion III B. If instead the entral slab is insulating, the

meaning of ξcenter beomes ompletely di�erent, it is now

a tunneling length. No loal quasipartile peak would

survive in a homogeneous Mott insulator: the residual

quasipartile peak that we �nd inside the entral slab is

therefore the evanesent lead eletron wavefuntion that

tunnels into the slab.

A speial ase ours when Ucenter ≈ Ucrit, i.e. right at

ritiality, where neither of the previous two pitures is

valid. The rossover from the two opposite exponential

deays desribing either sreening or tunneling is har-

aterized by the absene of any harateristi length,

whih implies a power law variation of the quasipartile

strength upon the slab width d

Zmin(d) ∼
1

d2
+O

(

1

d3

)

. (18)

Figure 11: (Color online) Logarithm of the quasipartile

weight Z as a funtion of layer index z for a 20-sites wide

(solid line) and 40-sites wide (dashed line) strongly orrelated

metalli slab U = 15.9712t < Ucrit sandwihed between two

weakly orrelated metal leads (with U = 15.88438t, 15.79388t,
15.67674t, 15.53236t.). The entire system is 200-sites wide;

the interfaes between the leads and the slab are at z = 80
and z = 120 for the 40-sites wide slab and z = 90 and z = 110
for the 20-sites wide slab. The �gure shows that for inreas-

ing slab width the quasipartile weight goes to a value that is

independent of lead orrelation.

We �nd that the leading 1/d2 behavior is, within our

auray, independent of the spei� properties of the

metalli leads, while the subleading terms do depend on

them, see Fig. 14. A simple analytial justi�ation of the

ritial 1/d2 behavior is provided in appendix A.

IV. CONCLUSIONS

In this work we have studied how the spatial inho-

mogeneity of interfaes a�ets the physis of a strongly

orrelated eletron system. To address this problem,

we extended the onventional Gutzwiller approximation

tehnique to aount for inhomogeneous Hamiltonian pa-

rameters. Moreover, to e�iently ope with the larger

number of variational parameters in omparison with the

homogeneous ase, we derived iterative equations fully

equivalent to the saddle point equations that identify the

optimal variational solution, similarly to what is om-

monly done within unrestrited Hartree-Fok or ab ini-

tio LDA alulations. These iterative equations an be

solved without muh e�ort for very large system sizes; an

advantage with respet to more rigorous approahes, like

e.g. DMFT alulations, whih are numerially feasible

only for small systems.

We have applied the method to various interfae ge-

ometries in three dimensions; spei�ally the interfae

of a strongly orrelated metal with the vauum, the

interfae between two di�erently orrelated metals and
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Figure 12: (Color online) Same as in Fig. 11, but the entral

layers have now U = 16.1148 > Ucrit. In this ase the quasi-

partile weight at the enter of the juntion is strongly depen-

dent both on barrier width and on the strength of eletron

orrelation in the leads. The entral layer remains metalli

for arbitrary values of U > Ucrit, but its quasipartile weight

dereases exponentially with the slab width.

Figure 13: (Color online) Numerial results for Zmind
2/4 and

U = 15.999t (rosses), 16t (squares), 16.0002t (dashed line),

16.0004t (diamonds), 16.002t (pluses) for the sandwih geom-

etry with Uleft = Uright = 2t. The onstant value approahed
for U = 16.0002t ≈ Ucrit and large juntion width should be

ompared to the one we �nd in Eq. (A25).

the juntion between two weakly orrelated metals sand-

wihed by a strongly orrelated slab. All these geometries

had been already studied by DMFT

27,28,31,32,33,34,35,36

,

whih allowed us to diretly ompare our results with

more rigorous ones, thus providing a test on the qual-

ity of our approximation, whih is then applied to muh

larger sizes.

Our main result is that the e�ets of an interfae de-

ay exponentially in the interior of a strongly orrelated

system on a very long length-sale proportional to the

orrelation length of the inipient Mott transition, a bulk

property independent upon the details of the interfae.

38

Figure 14: (Color online) Numerial results for Zmind
2/4 for

Uleft = Uright = 2t [Ucenter = 16t (squares), 16.0002t (dashed
line), 16.0004t (diamonds)℄, and for Uleft = Uright = 15.8t
[Ucenter = 16.0002t (rosses), 16.0004t (hexagons), 16.0006t
(pluses)℄. The stronger lead orrelation in the lower urves

pushes the plateau of the funtion Zmind
2/4 towards larger

values of d.

In partiular, at the surfae of a strongly orrelated

metal we �nd a strong suppression of the metalli prop-

erties, e.g. of the quasipartile weight, that persists on a

large depth ontrolled by the Mott transition orrelation

length, a �dead layer�

38

appearing beause the surfae is

e�etively more orrelated than the bulk and onsistent

with photoemission experiments.

37

Conversely, metalli

features from a metal lead penetrate inside a Mott in-

sulator within a depth that, one again, diverges on ap-

proahing the Mott transition. As a onsequene, a on-

duting hannel always exists inside a Mott insulating

slab ontated to two metalli leads, in agreement with

reent DMFT analyses

35

, implying a �nite ondutane

at zero bias and temperature that deays fast on inreas-

ing both external parameters on an energy sale expo-

nentially small in the length of the slab in units of the

Mott transition orrelation length.

The method that we have developed is very simple and

�exible, so it an in priniple be applied to a variety of re-

alisti situations of urrent interest, not only for studying

interfaes but also for more general inhomogeneities, as

those arising by impurities or other defets, and an eas-

ily inorporate additional features like magnetism, whih

we have disregarded throughout this work.

Aknowledgments

The work was supported by the Italian Ministry of Uni-

versity and Researh, through a PRIN-COFIN award.

The environment provided by the independent ESF

projet CNR-FANAS-AFRI was also useful.



11

Appendix A: ANALYTICAL EXPRESSIONS

NEAR CRITICALITY

In this appendix, we show how to derive simple analyt-

ial expressions for the layer dependene of the quasipar-

tile residue near ritiality. We assume a three dimen-

sional slab geometry with onstant hopping but inhomo-

geneous interation U(z) and with partile-hole symme-

try. We de�ne as 2ǫ||(z) and 2ǫ⊥(z − 1/2) the average

over the unorrelated Slater determinant |Ψ0〉 of the hop-
ping energy per bond within layer z and between layers

z and z − 1, respetively. With these de�nitions, the

equation (11) an be written as

0 = 2R(z)

(

4 ǫ||(z) + ǫ⊥(z − 1/2) + ǫ⊥(z + 1/2)

)

+

(

ǫ⊥(z − 1/2) + ǫ⊥(z + 1/2)

)(

R(z + 1) +R(z − 1)− 2R(z)

)

+

(

ǫ⊥(z + 1/2)− ǫ⊥(z − 1/2)

)(

R(z + 1)−R(z − 1)

)

+
U(z)

4

R(z)
√

1−R2(z)
. (A1)

Near ritiality, we expet that the layer dependene

must appear as a dependene upon the saling vari-

able z/ξ, and, sine ξ ≫ 1, it beomes allowed to re-

gard z/ξ as a ontinuous variable and expand (A1) in

the leading gradients. Beause of the interfae, both

ǫ||(z) and ǫ⊥(z − 1/2) must aquire a Friedel-like z-
dependene. However, as shown expliitly in Fig. 15,

ǫ||(z) and ǫ⊥(z−1/2)+ǫ⊥(z−1/2) vary appreiably only
lose to the interfaes, while ǫ⊥(z − 1/2) − ǫ⊥(z − 1/2)
is negligible. Indeed, as disussed in more detail in the

Appendix B, the amplitude of the Friedel's osillations is

strongly redued near ritiality, while the period stays

invariant, so that it is legitimate to neglet the z depen-

dene of ǫ||(z) and ǫ⊥(z ± 1/2) and use for them their

large-z bulk values, ǫ|| and ǫ⊥.

Figure 15: Upper panel, plot ǫkin/t for the sandwih ge-

ometry () with 40 entral layers, Uleft = Uright = 2t and

Ucenter = 15.9712t. The value deviates by 2 to 4% from the

value it would have in a homogeneous system (ε̃kin = t). Mid-

dle panel, plot of ǫ⊥sum = ǫ⊥(z + 1/2) + ǫ⊥(z − 1/2). Lower
panel, plot of ǫ⊥diff = ǫ⊥(z + 1/2) − ǫ⊥(z − 1/2)

Noting that the average hopping energy per site in the

homogeneous ase is ǫkin = 4ǫ||+2ǫ⊥, the above Eq. (A1)
an be written in the ontinuous limit as

2R(z) ǫkin +
U

4

R(z)
√

1−R2(z)
+ 2ǫ⊥

∂2R(z)

∂z2
= 0, (A2)

where we take the bulk value U(z) = U , sine its vari-

ation is limited to a single layer. Eq. (A2) admits an

integral of motion, namely

E = ǫ⊥

(

∂R(z)

∂z

)2

+ ǫkin R2(z)

+
U

4

(

1−
√

1−R2(z)
)

≡ ǫ⊥

(

∂R(z)

∂z

)2

+ E [R(z)] , (A3)

where E [R(z)] is the Gutzwiller variational energy for a

homogeneous system alulated at �xed R = R(z), i.e.
not the optimized one. The onstant of motion E must

be hosen to orrespond to E[R(z0)] = E[R0], where z0 is
the layer oordinate at whih we expet vanishing deriva-

tive. In a single interfae, we expet that R(z) will reah
a onstant value only asymptotially far from the inter-

fae, i.e. z0 → ∞, where R0 tends to its bulk value

R0 =
√

1− u2,

and E[R0] to the optimized energy in a homogeneous

system, i.e.

E = E[R0] = −Ucrit

8
(1− u)

2
θ(1− u),

with u = U/Ucrit and Ucrit = −8ǫkin, in the Gutzwiller

approximation. In the ase of a orrelated slab sand-

wihed between two metal leads, we expet that R(z) will
reah a minimum somewhere at midway between the two

interfaes. If the leads are idential, the minimum ours
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right in the middle, so that R0 beomes an unknown pa-

rameter that has to be �xed by imposing that the atual

solution R[z,R0], whih depends parametrially on R0,

has a vanishing slope ∂z R[z,R0] = 0 for z in the middle

of the slab.

With the same de�nitions as above,

E [R(z)] = −Ucrit

8
R2(z) +

Ucrit

4
u
(

1−
√

1−R2(z)
)

.

Sine in a homogeneous ubi lattie ǫ⊥ = ǫkin/6 =
−Ucrit/48, Eq. (A3) an be rewritten as

1

6

(

∂R(z)

∂z

)2

= R2
0 + 2u

(

1−
√

1−R2
0

)

−R2(z) + 2u
(

1−
√

1−R2(z)
)

, (A4)

where

R2
0 + 2u

(

1−
√

1−R2
0

)

= (1− u)
2
θ(1 − u), (A5)

in the ase of a single interfae. The pre-fator 6 of

the (∂R(z)/∂z)2 omes from the homogeneous relation

ǫkin/ǫ⊥ = 6. As we shall see, the numerial data an be

better interpreted if ǫkin/ǫ⊥ is onsidered as a free �tting

parameter

The di�erential equation (A4) ontrols the z-
dependene of R(z > 0), hene of the quasipartile

residue Z(z) = R2(z), assuming that the interfae a�ets

only the boundary ondition R(z = 0) = Rsurf . There-

fore, a surfae less orrelated than the bulk should be de-

sribed by (A4) with Rsurf > Rbulk =
√
1− u2 θ(1 − u),

while by Rsurf < Rbulk the opposite ase, as for instane

the interfae with the vauum of setion III A.

We now onsider separately the ase of a single jun-

tion and of the double juntion, with either metalli or

insulating bulk.

1. Single interfae with metalli bulk: u ≤ 1

In the ase of a single interfae, Eq. (A5) with u ≤ 1
has to be used. The di�erential equation (A4) reads

1

6

(

∂R(z)

∂z

)2

=

(

√

1−R2(z)− u

)2

,

hene

∂R(z)

∂z
=

√
6

(

√

1−R2(z)− u

)

,

namely

∫ R(z)

Rsurf

dR
√

1−R2 − u
=

√
6 z.

This integral equation an be solved exatly, leading to

the impliit formula

√
6 z =

∫ arcsinR(z)

arcsinRsurf

cosx dx

cosx− u

= arcsinR(z)− arcsinRsurf

+
u

√

1− u2
tanh−1





R(z)Rbulk

1−
√

(1−R2
bulk) (1−R2(z))





− u
√

1− u2
tanh−1





Rsurf Rbulk

1−
√

(1−R2
bulk) (1−R2

surf)



 .

Close to ritiality, u ≃ 1, one an neglet the arsines in

the rhs and �nd the expliit expression

R(z) =
Rbulk sinh ζ

cosh ζ ±
√

1−R2
bulk

, (A6)

where the plus sign refers to the ase Rsurf < Rbulk, and

the minus sign to the opposite ase, and

ζ =
√

6 (1− u2) z

+tanh−1





Rsurf Rbulk

1−
√

(1−R2
bulk) (1−R2

surf)





≡
√
6 Rbulk (z + z∗) . (A7)

This solution provides a de�nition of the orrelation

length for u . 1

ξ =
1

√

6 (1− u2)
≃ 0.289

(

Ucrit

Ucrit − U

)1/2

, (A8)

quite lose to the DMFT value.

34

We note that, for ζ ≫
1, Eq. (A6) beomes

R(z → ∞) ≃ Rbulk

(

1∓
√

1−R2
bulk e−ζ

)

,

therefore

Z(z) = R2(z) ≃ Zbulk

(

1∓ 2
√

1−R2
bulk e−x/ξ

)

,

(A9)

tends exponentially to its bulk value on a length sale ξ,

from below or above aording to Rsurf

<
> Rbulk, respe-

tively.

Near ritiality, i.e. Rbulk =
√
1− u2 ≪ 1, Eq. (A6)

beomes

R(z) ≃ Rbulk coth
ζ

2
, (A10)

so that

(z + z∗)
2
Z(z) = (z + z∗)

2
R(z)2
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Figure 16: (Color online) Numerial results for Z(z) in the

surfae geometry, with U = 15.9872t (rosses), 15.9712t (di-
amonds), 15.9487t (squares), 15.9198t (irles). The solid

urve is tanh2(ζ/2), i.e. R2(ζ) as de�ned in Eq. (A6) (with

plus sign) and expanded to �rst order in Rbulk ≪ 1. In or-

der to de�ne ζ the same expansion has been arried out in

Eq. (A7), where we set the quantity ǫkin/ǫ⊥ equal to 9.427

instead of 6, in order to �t the numerial data.

=
4

6

(

1

4
ζ2 coth2

ζ

2

)

≡ 2

3
fu<1(ζ),

(A11)

shows a simple saling behavior

34

. The saling fun-

tion fu<1(ζ) that we �nd has the asymptoti behavior:

fu<1(0) = 1 and fu<1(ζ → ∞) ≃ ζ2/4.
Another ase of interest is that of the interfae with

vauum disussed in setion III A. Here Rsurf ≪ 1 hene
from Eq. (A7) it follows that

z∗ ≃ Rsurf√
6(1− u)

≪ 1.

Away from ritiality and for ζ ≪ 1, whih is allowed

sine z∗ ≪ 1, we �nd through (A6) with the plus sign

that

R(z) ≃
√
6 (1− u) (z + z∗) ,

so that

Z(z) ≃ 6 (1− u)
2
(z + z∗)

2
, (A12)

showing that the quasipartile residue approahes its sur-

fae value with a �nite urvature.

In Fig. 16 and Fig. 17 we show that resaled numerial

data for an interfae between a 200-layer-wide orrelated

metal slab and the vauum and for a juntion between a

weakly orrelated metal and a strongly orrelated metal.

It is easy to �t the numerial data with the funtion

R2(z) displayed in Eq. (A7) by tuning just one param-

eter, whih, as disussed above, is the value of ǫkin/ǫ⊥
(equal to 6 in the homogeneous problem). The fat that

the ideal theoretial result, relying on homogeneous val-

ues for hopping and kineti energy, �ts the numerial

data with just a single tunable parameter, is a pleasant

feature.

Figure 17: (Color online) Numerial results for Z(z) in the

single juntion geometry with metalli bulk, the position of

the juntion is hosen as the origin for the spatial oordinate,

the metal on the left side is very weakly orrelated (U = 2t);
the values for U on the right side are the same of Fig. 16. The

solid urve is now the funtion 1/ tanh2(ζ/2), i.e. the seond
power of Eq. (A6) (with minus sign) expanded to �rst order

in Rbulk. As in Fig. 16, the de�nition of ζ has been obtained

from Eq. (A7) by expanding to �rst order in Rbulk. The value

of ǫkin/ǫ⊥ that �ts the data is now 8.254.

2. Single interfae with insulating bulk: u ≥ 1

In this ase the equation (A4) using (A5) with u ≥ 1
reads

1

6

(

∂R(z)

∂z

)2

= −R2(z) + 2u
(

1−
√

1−R2(z)
)

,

(A13)

leading to

∫

dR
√

2u−R2 − 2u
√

1−R2

= −
√
6

∫

dz,

where we have assumed that on the surfae Rsurf is �nite

and deay in the bulk, so that the derivative is negative.

The above integral equation an be solved too, with an

impliit solution
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−
√

6 (u− 1) z = 2
√
u− 1 arcsin

(

cos y(z)√
u

)

− 2
√
u− 1 arcsin

(

cos ysurf√
u

)

− tanh−1

(√
u− 1 cos y(z)
√

u− cos2 y(z)

)

+ tanh−1

(√
u− 1 cos ysurf
√

u− cos2 ysurf

)

where R(z) = sin 2y(z), Rsurf = sin 2ysurf . As before the
arsines an be negleted near ritiality to obtain the

expliit solution

R2(z) = 1−
(

1− 2 (u− 1)

u cosh2 ζ − 1

)2

, (A14)

with

ζ =
√

6 (u− 1) z + tanh−1

(√
u− 1 cos ysurf
√

u− cos2 ysurf

)

≡
√

6 (u− 1) (z + z∗) . (A15)

In the ase of an insulating bulk, the orrelation length

de�ned through (A16) is therefore

ξ =
1

√

6 (u− 1)
≃ 0.408

(

Ucrit

U − Ucrit

)1/2

, (A16)

with a di�erent numerial prefator, atually a

√
2

greater, with respet to the metalli bulk (A8).

Near ritiality, u & 1,

R(z)2 = Z(z) ≃ 4 (u− 1)

sinh2 ζ
,

so that, as before,

(z + z∗)
2
Z(z) =

4

6

(

ζ2

sinh2 ζ

)

≡ 2

3
fu>1(ζ), (A17)

has a saling behavior with fu>1(0) = 1 and

fu>1(ζ → ∞) ≃ 4ζ2 e−2ζ .

3. Double juntion

We assume for simpliity a slab of length 2L in ontat

with two leads. In this ase we need to use Eq. (A4)

with R0 a parameter that has to be �xed by imposing

that the solution R(z) beomes R0 at some z0 within the

slab. If we assume that both leads are less orrelated

than the slab, then R(z) always dereases moving away

from any of the two interfaes, and we an determine R0

by imposing either of the two following onditions:

∫ R0

R<
surf

dR
√

R2
0 + 2u

√

1−R2
0 −R2 − 2u

√

1−R2

= −
√
6 z0, (A18)

∫ R>
surf

R0

dR
√

R2
0 + 2u

√

1−R2
0 −R2 − 2u

√

1−R2

=
√
6 (2L− z0) , , (A19)

where R<
surf and R>

surf are the values of R(z) at the left

and right surfaes, respetively. Taking the di�erene

(A19) minus (A18) we �nd

√
6 2L =

(

∫ R>
surf

R0

+

∫ R<
surf

R0

)

dR
√

R2
0 + 2u

√

1−R2
0 −R2 − 2u

√

1−R2

, (A20)
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whih has to be solved to �nd R0 as funtion of the other

parameters. One R0 is found, one an determine z0. In
order to simplify the alulations, we will assume two

idential leads, i.e. R<
surf = R>

surf = Rsurf , so that z0 = L
and (A20) beomes

√
6L =

∫ Rsurf

R0

dR
√

R2
0 + 2u

√

1−R2
0 −R2 − 2u

√

1−R2

=
2

√

(a− c)(b − d)

[

(c− b)Π

(

φ,
c− d

b− d
, k

)

+ b F (φ, k)

]

,

(A21)

with parameters a > b > c > u ≥ d. The last ex-

pression an be derived easily after the hange of vari-

able R =
√
1− x2

, and seemingly R0 =
√

1− x2
0 and

Rsurf =
√

1− x2
surf . Π(φ, n, k) and F (φ, k) are ellipti

integrals of third and �rst kind, respetively

F (φ, k) =

∫ φ

0

dx
√

1− k2 sin2 x
,

Π(φ, n, k) =

∫ φ

0

dx
(

1− n sin2 x
)

√

1− k2 sin2 x
,

and

φ = arcsin

√

(b − d)(c− u)

(c− d)(b − u)
,

k =

√

(a− b)(c− d)

(a− c)(b − d)
.

The various parameters are, when 2u− x0 ≥ 1,

a = 2u− x0,

b = 1,

c = x0,

d = −1,

u = xsurf ,

so that

φ = arcsin

√

2 (x0 − xsurf)

(x0 + 1) (1− xsurf)
,

k =

√

(2u− x0 − 1) (x0 + 1)

4 (u− x0)
.

On the ontrary, if 2u− x0 < 1, then

a = 1,

b = 2u− x0,

c = x0,

d = −1,

u = xsurf ,
hene

φ = arcsin

√

(2u− x0 + 1)(x0 − xsurf)

(x0 + 1)(2u− x0 − xsurf)
,

k =

√

(1− 2u+ x0)(x0 + 1)

(1− x0)(2u− x0 + 1)
.

We rewrite

(c− b)Π

(

φ,
c− d

b − d
, k

)

+ b F (φ, k) (A22)

=

∫ φ

0

dx

(

d(b− c) + b(c− d) cos2 x

(b− c) + (c− d) cos2 x

)

1
√

1− k2 sin2 x
,

and note that at x = φ

d(b− c) + b(c− d) cos2 φ

(b − c) + (c− d) cos2 φ
= xsurf ≥ 0.

In addition b − c in both ases is very small. Indeed,

for 2u− x0 > 1, whih orresponds to an insulating slab

where R0 =
√

1− x2
0 → 0 for large L, b − c = 1 − x0 ≪

1. In the opposite ase of a weakly orrelated slab, still

b − c = 2u − x0 − x0 ≪ 1 sine x0 → u for large L.
Therefore

d(b− c) + b(c− d) cos2 x

(b− c) + (c− d) cos2 x

is pratially onstant and equal to b everywhere but

lose to the extreme of integration, where it fastly de-

ays to xsurf . Therefore to leading order we an write

(c− b)Π

(

φ,
c− d

b − d
, k

)

+ b F (φ, k) ≃ b F (φ, k),

hene the equation to be solved beomes
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√
6L =

2b
√

(a− c)(b − d)
F (φ, k) =

2b
√

(a− c)(b− d)



K(k)− F



arcsin
cosφ

√

1− k2 sin2 φ

, k







 , (A23)

where K(k) = F (π/2, k) and the last expression being

more onvenient sine φ ≃ π/2.
In order to �nd x0 as funtion of the other parameters,

we have to onsider separately three di�erent ases.

a. Insulating o�-ritial behavior: u ≫ 1

In this ase 2u− x0 > 1. We note that k as a funtion

of u at �xed x0 ≃ 1 is equal to

k2 =
x0 + 1

4
≃ 1

2
,

for u = 1, and very rapidly inreases to its asymptoti

u ≫ 1 value

k2 =
x0 + 1

2
≃ 1.

Therefore (A23) is, at leading order,

√
6 L =

1√
u− 1

K

(

√

1 + x0

2

)

≃ 1

2
√
u− 1

ln
32

1− x0
.

Therefore, in this limit,

Z0 = R2
0 ≃ 64 e−

√
24(u−1) L, (A24)

vanishes exponentially in the length of the slab.

b. Critial behavior: u = 1

In this ase

k2 =
x0 + 1

4
≃ 1

2
,

hene at leading order Eq. (A23) reads

√
6 L =

1√
1− x0

K

(

1√
2

)

=
1

4
√
π
√
1− x0

[

Γ

(

1

4

)]2

,

from whih it follows that

Z0 = R2
0 =

1

48π

[

Γ

(

1

4

)]4
1

L2
≃ 1.146

L2 . (A25)

One again we �nd a ritial behavior L2Z0 ≃ const.,
with a sizable onstant 1.146.

. Metalli o�-ritial behavior: u ≪ 1

This is the ase in whih 2u − x0 < 1 and x0 ≃ u, so
that

1− k2 =
4(u− x0)

(2u− x1 + 1)(1− x0)
≃ 4(u− x0)

1− u2 .

Therefore Eq. (A23) is

√
6 L ≃ u

√

1− u2
ln

16

1− k2
=

u
√

1− u2
ln

4(1− u2)

u− x0
,

whose solution is

u− x0 = 4(1− u2) e−
√
6
√
1−u2 L/u.

Therefore, sine Zbulk = 1− u2
, it follows that

Z0 ≃ Zbulk

(

1 + 8u e−
√
6
√
1−u2 L/u

)

. (A26)

4. Comparison with DMFT

Near the Mott transition, U ≃ Ucrit, Pottho� and Nolt-

ing in Ref. 28 have introdued a set of linearized DMFT

reursive equations for the layer dependent quasipartile

residue. Taking, as before, the ontinuous limit of their

Eq. (37), with q = 4 p = 1 and Ucrit = 6t
√
6, one �nds

the following di�erential equation

1

6

∂2Z(z)

∂z2
+ 2Z(z) (1− u)− c Z(z)2 = 0. (A27)

The numerial onstant is estimated to be c = 11/944.
The limiting behavior for u → 1 is the solution of

1

6

∂2Z(z)

∂z2
= c Z(z)2,

namely

z2Z(z) =
1

c
=

9

11
≃ 0.82. (A28)

Let's onsider instead our Eq. (A2) that, divided by

2ǫkin = −Ucrit/4, an be written as

0 =
1

6

∂2R(z)

∂z2
+R(z)− u

R(z)
√

1−R(z)2

≃ 1

6

∂2R(z)

∂z2
+ (1− u) R(z)− 1

2
R(z)3.(A29)
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Figure 18: (Color online) Mean value of the hopping matrix

element on the unorrelated wavefuntion versus the distane

from the leftmost surfae layer in geometry (a) with Usurface =
20t and Ubulk = 14.6642t (triangles, panel 1) and Ubulk =
15.9712t (squares, panel 3). The irles in panel 2 show the

hopping for the same simulation that was performed for panel

1, but as a funtion of distane from the right surfae of the

sample, where U = Ubulk = 14.6642t. The results of �t are

showed by the solid lines. From above, the �rst and seond

urves are a plot of Eq. (B2) with A = 0.1673, w = −0.0046
and A = 0.1673, w = −0.0074 respetively.

At ritiality, u → 1, the solution

z2R(z)2 = z2Z(z) =
2

3
≃ 0.66, (A30)

is just the limiting value of Eqs. (A17) and (A11) for

ζ = 0. The numerial oe�ient 2/3 that we �nd is

slightly smaller than the linearized DMFT one, 9/11,
but both are muh bigger than the value extrated by

straight DMFT alulations in Ref. 34, namely 0.008.
Supposedly, straight DMFT is a better approximation

than linearized DMFT, whih in turns should be better

than our Gutzwiller tehnique, therefore it is likely that

our results overestimate the quasipartile residue Z.

Appendix B: FRIEDEL'S OSCILLATIONS

In the previous setions we have derived a simple model

to extrat the behavior of Z(z) assuming uniform val-

ues for the hopping matrix elements on the unorrelated

Slater determinant. Of ourse the hopping is not uni-

form, its variation being desribed in most ases by some

Friedel osillations around the bulk value (thin solid lines

in Figs. 2-10). The Friedel's osillations arise as a onse-

quene of broken translational symmetry in a Fermi gas,

i.e. around a single impurity or near an interfae. An

impurity embedded in an eletron gas of dimensionality

D indues osillations that deay as a power law 1/rD

and whose wavevetor is twie the Fermi wavevetor

45

.

The Friedel's osillations in a D = 3 eletron gas with

an interfae an be obtained as a superposition of Friedel

osillations for a layer of impurities, and one an readily

�nd that, moving perpendiularly to the interfae over a

length x, they behave at leading order as

cos 2kFx

(2kFx)2
, (B1)

results whih is stritly valid for a spherial Fermi surfae,

although the deay exponent is independent of the shape

of the Fermi surfae.

If we inlude eletron-eletron interation via the Hub-

bard U and treat it by the Gutzwiller approximation, we

expet that the Friedel's osillation will be a�eted also

by the layer-dependene of the quasipartile weight Z(z).
Our results show that the faster the hange of Z(z), the
larger the osillations. This means that a system with

geometry (a) and Ubulk / Ucrit displays muh smoother

osillations that a system with Ubulk ≪ Ucrit, sine the

spatial dependene of Z(z) is sharper when the bulk in-

teration parameter is far from ritiality.

In light of the spatial dependene of the osillations

predited by Eq. (B1), we �tted our data for the hop-

ping ǫ⊥(x + 1/2) perpendiular to the interfae and in

geometries (a) and (b) (see Fig. 1) with the funtion

A+ w
cos πx

x2
, (B2)

where x is the distane from either the surfae layer (ge-

ometry (a)) or the layer aross whih U(z) hanges step-
wise (geometry (b)). The funtion (B2) �ts the data

showed in Figs. 18 for a weakly orrelated system with

strongly orrelated surfae. If the bulk value of U is in-

reased towards Ucrit, the orrelation length ξ beomes so

big that it is hard to identify unambiguously any Friedel's

osillation, as shown in Fig. 18 panel (3). The funtion

(B2) �ts also the data for the hopping on the weakly or-

related side of the juntion in geometry (b), see Fig. 19).

On the strongly orrelated (right) side of the same jun-

tion again the orrelation length ξ is too large and we

were not able to make any �t.

In onlusion, the inhomogeneity of the interation pa-

rameter U a�ets the spatial dependene not only of the

quasipartile weight, but also of the hopping matrix ele-

ment on the unorrelated Slater determinant. The latter

displays Friedel's osillations that rise from the breaking

of disrete translational symmetry. In any ase, when

the system is in the lose viinity of the Mott transition,

the e�ets of these osillations are smoothed out as a re-

sult of the diverging harateristi length ξ of the loal

quasipartile weight.
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Figure 19: (Color online) Plot of the hopping matrix ele-

ment for a system with geometry (b), Uleft = 2t and Uright =
15.97118t. Upper panel: x is the distane from the juntion

on the weakly orrelated metalli (left) side; lower panel: the

same on the strongly orrelated metalli (right) side. The

Friedel osillations on the weakly orrelated side are �tted by

Eq. (B2) with A = 0.16715, w = 0.0050. On the strongly or-

related side the �t was not possible for the reasons explained

in the text.

1

N. Mott, Metal Insulator Transition (Taylor and Franis,

London, 1990).

2

A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).

3

A. Sekiyama, T. Iwasaki, K. Matsuda, Y. Saitoh, Y. Onuki,

and S. Suga, Nature 403, 396 (2000).

4

K. Maiti, D. D. Sarma, M. J. Rozenberg, I. H. Inoue,

H. Makino, O. Goto, M. Pedio, and R. Cimino, Europhys.

Lett. 55, 246 (2001).

5

S.-K. Mo, H.-D. Kim, J. W. Allen, G.-H. Gweon, J. D.

Denlinger, J.-H. Park, A. Sekiyama, A. Yamasaki, S. Suga,

P. Metalf, et al., Phys. Rev. Lett. 93, 076404 (2004).

6

A. Sekiyama, H. Fujiwara, S. Imada, S. Suga, H. Eisaki,

S. I. Uhida, K. Takegahara, H. Harima, Y. Saitoh, I. A.

Nekrasov, et al., Phys. Rev. Lett. 93, 156402 (2004).

7

N. Kamakura, Y. Takata, T. Tokushima, Y. Harada,

A. Chainani, K. Kobayashi, and S. Shin, Europhys. Lett.

67, 240 (2004).

8

H.-D. Kim, H.-J. Noh, K. H. Kim, and S.-J. Oh, Phys.

Rev. Lett. 93, 126404 (2004).

9

M. Taguhi, A. Chainani, N. Kamakura, K. Horiba,

Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino,

D. Miwa, T. Ishikawa, et al., Phys. Rev. B 71, 155102

(2005).

10

S.-K. Mo, H.-D. Kim, J. D. Denlinger, J. W. Allen, J.-

H. Park, A. Sekiyama, A. Yamasaki, S. Suga, Y. Saitoh,

T. Muro, et al., Phys. Rev. B 74, 165101 (2006).

11

R. Eguhi, T. Kiss, S. Tsuda, T. Shimojima, T. Mizokami,

T. Yokoya, A. Chainani, S. Shin, I. H. Inoue, T. Togashi,

et al., Physial Review Letters 96, 076402 (2006).

12

M. Yano, A. Sekiyama, H. Fujiwara, Y. Amano, S. Imada,

T. Muro, M. Yabashi, K. Tamasaku, A. Higashiya,

T. Ishikawa, et al., Phys. Rev.B 77, 035118 (2008).

13

D. B. MWhan and J. P. Remeika, Phys. Rev. B 2, 3734

(1970).

14

D. B. MWhan, T. M. Rie, and J. P. Remeika, Phys. Rev.

Lett. 23, 1384 (1969).

15

W. F. Brinkman and T. M. Rie, Phys. Rev. B 2, 4302

(1970).

16

P. D. Dernier and M. Marezio, Phys. Rev. B 2, 3771 (1970).

17

G. A. Sawatzky and D. Post, Phys. Rev. B 20, 1546 (1979).

18

K. E. Smith and V. E. Henrih, Phys. Rev. B 50, 1382

(1994).

19

S. Shin, Y. Tezuka, T. Kinoshita, T. Ishii, T. Kashiwakura,

M. Takahashi, and Y. Suda, J. Phys. So. Jpn. 64, 1230

(1995).

20

R. Zimmermann, R. Claessen, F. Reinert, P. Steiner, and

S. Hüfner, J.Phys.: Condens. Matter 10, 5697 (1998).

21

G. Panaione, M. Altarelli, A. Fondaaro, A. Georges,

S. Huotari, P. Laovig, A. Lihtenstein, P. Metalf,

G. Monao, F. O�, et al., Phys. Rev. Lett. 97, 116401

(2006).

22

S.-K. Mo, J. D. Denlinger, H.-D. Kim, J.-H. Park, J. W.

Allen, A. Sekiyama, A. Yamasaki, K. Kadono, S. Suga,

Y. Saitoh, et al., Phys. Rev. Lett. 90, 186403 (2003).

23

A. Othomo and H. Y. Hwang, Nature 427, 423 (2004).

24

N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis,

G. Hammerl, C. Rihter, C. W. Shneider, T. Kopp, A.-S.

Ruetshi, D. Jaard, et al., Siene 317, 1196 (2007).

25

See e.g. Refs. 46,47,48 and MRS Bulletin, volume 33



19

(2008), for an overview of the status and perspetives of

this subjet.

26

R. Pentheva and W. E. Pikett, Phys. Rev. B 74, 035112

(2006).

27

S. Shwieger, M. Pottho�, and W. Nolting, Phys. Rev. B

67, 165408 (2003).

28

M. Pottho� and W. Nolting, Phys. Rev. B 60, 7834 (1999).

29

S. Okamoto and A. J. Millis, Nature 428, 630 (2004).

30

S. Okamoto and A. J. Millis, Phys. Rev. B 70, 241104

(2004).

31

J. Freeriks, Phys. Rev. B 70, 195342 (2004).

32

A. Liebsh, Phys. Rev. Lett. 90, 096401 (2003).

33

L. Chen and J. K. Freeriks, Physial Review B (Con-

densed Matter and Materials Physis) 75, 125114 (pages 8)

(2007).

34

R. W. Helmes, T. A. Costi, and A. Rosh, Phys. Rev. Lett.

101, 066802 (2008).

35

H. Zenia, J. K. Freeriks, H. R. Krishnamurthy, and T. Pr-

ushke, Physial Review Letters 103, 116402 (pages 4)

(2009).

36

H. Ishida, D. Wortmann, and A. Liebsh, Phys. Rev. B 73,

245421 (2006).

37

F. Rodolakis, B. Mansart, E. Papalazarou, S. Gorovikov,

P. Vilmerati, L. Petaia, A. Goldoni, J. P. Rue�, S. Lupi,

P. Metalf, et al., Phys. Rev. Lett. 102, 066805 (2009).

38

G. Borghi, M. Fabrizio, and E. Tosatti, Phys. Rev. Lett.

102, 066806 (2009).

39

M. C. Gutzwiller, Phys. Rev. 134, A923 (1964).

40

M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).

41

M. Fabrizio, Phys. Rev. B 76, 165110 (2007).

42

J. Bünemann, F. Gebhard, T. Ohm, S. Weiser, and

W. Weber, in Frontiers in Magneti Materials, edited by

A. Narlikar (Springer, Berlin, 2005), pp. 117�151.

43

H. J. Monkhorst and J. D. Pak, Phys. Rev.B 13, 5188

(1976).

44

R. Bulla and M. Pottho�, Eur. Phys. J. B 13, 257 (2000).

45

G. Giuliani and G. Vignale, Quantum Theory of the Ele-

tron Liquid (Cambridge University Press, 2005).

46

J. Heber, Nature 459, 28 (2009).

47

B. Goss Levi, Physis Today 60, 23 (2007).

48

J. W. Reiner, F. J. Walker, and C. H. Ahn, Siene 323,

1018 (2009).


