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Abstract

The numerical approximation of partial differential equations (PDEs) involves the challenge of han-
dling complex geometries and their discretization. In this thesis, we focus on different computational
aspects that can be applied in a large variety of scientific and industrial contexts.

The first part of the thesis delves into the complexities of managing non-matching grids. Indeed, a
common feature to many multi-physics problems is the need for the transfer of data or information
between different meshes. We first consider the problem of computing coupling matrices, which
require the integration of functions defined on different, arbitrarily overlapped, meshes. We discuss
the relevant implementation details and provide a comparison between different unfitted methods.
Additionally, we note that the transfer of discrete fields plays a crucial role in several other contexts,
e.g. within multilevel methods. Motivated by the excellent properties of multilevel solvers and
the performance gain given by matrix-free methodologies, we present a parallel and matrix-free
implementation of the non-nested multigrid method. It allows for completely independent and
distributed multigrid levels, thereby increasing flexibility on the choice of the hierarchy, while
avoiding the explicit assembly of sparse matrices.

The second part is devoted to the task of implementing efficient agglomeration procedures,
within the polytopic discontinuous Galerkin setting. We develop a novel and efficient approach to
perform grid agglomeration using spatial data structures, and validate its robustness and performances
also in the memory-distributed setting. Such a coarsening strategy is particularly appealing for
multigrid methodologies, as it can deliver a hierarchy of nested grids out of a given geometry.
We successfully exploited such versatility in the realistic setting of cardiac electrophysiology, by
using our agglomeration procedure to build a multilevel preconditioner for a DG discretization of
the monodomain problem. Finally, a preliminary investigation aimed at proving the convergence
properties of our multilevel strategy is presented.

Many results presented in this thesis are also software contributions integrated into the C++ finite
element library DEAL.II.
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1.5 Triangulation of the intersected region Ẽ for a triangle cutting a square and the relative
sub-tessellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Quadrature points distributed on O, S and I for a cell T cut by the curve γ . . . . . . . 24
1.7 The relative error for the discrete level set describing a disk of radius R = 0.3 as a

function of the distance from the center xxxccc = (1
2 ,

1
2). . . . . . . . . . . . . . . . . . . 25

1.8 Zoom on pre-processed background grid Ωh for the circle interface γ = γ1 (left) and
the flower-shaped interface γ = γ2 (right). . . . . . . . . . . . . . . . . . . . . . . . 27

1.9 L2, H1, and H−
1
2 errors versus the number of DoF for all schemes applied to γ1 (left)

and to γ2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.10 L2, H1, and H−

1
2 errors versus the number of DoF for all schemes applied to γ1, with

non-smooth solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.11 L2, H1, and H−

1
2 error versus the number of DoF for all schemes applied to γ3 with a

smooth solution u (left) and with a non-smooth solution u (right). . . . . . . . . . . . 37



xiv List of figures

1.12 Background mesh Ωh and immersed mesh of the sphere interface γh for the three-
dimensional case (left) and section of the contour plot for the approximate solution uh

in (1.29), γ = γ3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.13 Breakdown of CPU times for the three schemes. In (bottom left) Setup level set

indicates the time required to interpolate the discrete level set described in Algorithm
1 onto the finite element space. Mesh classification shows the time needed to partition
the computational mesh and classify the cells in cut, interior or outside cells. Bottom
right: overall CPU times to assemble the algebraic system for the smooth 3D test. For
the cut-FEM method, we also show the CPU time obtained by using an analytical
representation of the interface through an analytic level set function. . . . . . . . . . 39

1.14 Work-precision diagrams for the two 3D tests. . . . . . . . . . . . . . . . . . . . . . 40

2.1 Two overlapping cells coming from consecutive levels. Green dots: DoF associated
to aQ1 element on the coarser cell K. Blue squares and red stars: DoF associated to a
Q1 element on the finer cell T . Red stars correspond to the DoF (ppp2, ppp4) falling inside
K ∈ Tl , while blue squares are the ones that are falling outside. When evaluating
the contribution of this particular coarse cell to the DoF of the fine cell, each basis
function related to such DoF qqqi, i = 1, . . . ,4, will evaluate on (ppp2, ppp4) only. . . . . . 46

2.2 Schematic illustration of hp-multigrid scheme for a Q3 element. DoF corresponding
to continuous Lagrangian elements are represented with white dots. Left: Classical
nested setting. Right: Non-nested hp variant where the hierarchy of levels is non-
matching. Notice how the CoarseGridSolver is set to polynomial multigrid (p-MG). 48

2.3 UML diagram of transfer operators available in the MGTransferGlobalCoarsening
framework in DEAL.II. The new abstract class delegates the implementation of the
intergrid transfers to the derived class MGTwoLevelTransfer (used in case of nested
meshes) or to the new MGTwoLevelTransferNonNested in case of a non-nested
multigrid method. Each two-level transfer object is specific to consecutive levels l
and l +1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Coupling between processors for two overlapped and distributed triangulations (each
color represents a different MPI rank). (a) The two partitioned triangulations. The
cube is displayed with a wireframe view in order to show the inner ball. (b) Clip
view to highlight the coupling between ranks. Notice that grids are discretizing two
different geometries only for the purpose of showing the issue. In practice, they will
both discretize the same domain Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 (a) Gauss-Lobatto points for a quadrature rule of order p = 4 on a cell T ∈ Tl+1.
(b) Evaluation points seen from the coarser cell K ∈ Tl (red stars) do not have a
tensor-product structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



List of figures xv

2.6 Illustration of the situation occurring when the hierarchy discretizes a two-dimensional
domain Ω with curved boundaries. (a) Red dash-dotted lines: elements of a coarser
triangulation Tl . Green dashed lines: boundary for a finer triangulation Tl+1. Black
solid line: exact representation of the boundary ∂Ω. (b) Pre-image of point ppp through
FK and its nearest point projection p̂pp ∈ K̂ defined according to (2.19). . . . . . . . . . 53

2.7 Four of the levels employed for the L-shaped domain, refined near the re-entrant corner. 56
2.8 Consecutive levels employed for the Fichera test, refined near the re-entrant corner. . 56
2.9 Scatter plot with times required by piston test case with l = 3 while varying solver

and polynomial degree p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.10 Left: CAD model used in the preprocessing procedure. Right: Two different levels.

For the sake of visualization, the finer level is displayed in orange using a wireframe
representation. The coarser level is represented as a volumetric mesh (edges in blue).
Notice that each level has not been generated on top of the coarser one through a
global or local refinement process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.11 Left: Magnitude of the displacement vector uuu for the piston test case. Right: Scaled
view of the vector field u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.12 Magnitude (scaled) of the displacement uuu for the wrench test case. . . . . . . . . . . 62
2.13 Scatter plot with times required by wrench test case for l = 3 while varying solver

and polynomial degree p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.14 Serial profiles of a V-cycle. Left: Cube example with L = 7 and p = 4. Right: ball

example with L = 6 and p = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.15 Profile of a V-cycle with 12 processes with non-nested multigrid. Left: Cube example

with L = 7 and p = 4. Right: ball example with L = 6 and p = 4. . . . . . . . . . . 66
2.16 Profile of a V-cycle with 12 processes with non-nested multigrid using a degree

5 Chebyshev smoother. Left: Cube example with L = 7 and p = 4. Right: ball

example with L = 6 and p = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.17 Profile of a V-cycle with 12 processes with global coarsening variant. Left: cube

example with L = 7 and p = 4. Right: ball example with L = 6 and p = 4. Notice
how, compared to the previous Figure 2.15, the only major difference are bar charts
associated to prolongation and restriction. . . . . . . . . . . . . . . . . . . . . . . . 68

2.18 Breakdown of the computational time (in seconds) required for prolongation between
levels with 12 processes. In blue: total time spent to prolongate a coarse finite element
field from level l to l +1. In red: time spent entirely on the evaluation at arbitrarily
located reference points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.19 Exclusive time in a V-cycle with 12 processes for the cube example with L = 7 and
p = 4. Right: global coarsening. Left: non-nested multigrid. . . . . . . . . . . . . . 69

2.20 Clipped view of consecutive levels in the hierarchy for the piston test case 2.10
partitioned across 12 processors (each color represents a different MPI rank). It can
be appreciated how a fixed MPI rank owns different regions when the mesh is refined. 70



xvi List of figures

3.1 Example of MBRs holding geometric data and their MBRs. . . . . . . . . . . . . . . 79
3.2 Corresponding R-tree data structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Left: 8× 8 square grid obtained with 3 uniform refinements of Ω = [0,1]2. Right:

Minimal bounding rectangles generated on top of the grid elements of Ω. . . . . . . 81
3.4 R-tree data structure for the 8×8 mesh example. For the sake of readability, only two

internal nodes are shown. Each entry at the leaf level is one mesh element T . Notice
how each node stores exactly 4 entries. . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 The set of meshes used in the numerical experiments. . . . . . . . . . . . . . . . . . 84
3.6 Comparison between METIS and R-tree based agglomeration starting from the grid

Ω1 displayed in Figure 3.5a. Grids displayed in the same row always comprise the
same number of elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Comparison between METIS and R-tree based agglomeration of the grid Ω2 shown
in Figure 3.5b. Grids displayed in the same row always comprise the same number of
elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8 Comparison between METIS and R-tree agglomeration starting from the grid Ω3 seen
in Figure 3.5c. Grids displayed in the same row always comprise the same number of
elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.9 Min, Max and Average chart of metrics UF, CR, and BR for grids Ω1,Ω2,Ω3 and
different agglomeration strategies. In the plots on the left, metrics related to the R-tree
collapse to a single dot since all mesh elements have the same value for that particular
metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.10 Min, Max and Average chart of metrics UF, CR, and BR for grids Ω1,Ω2,Ω3 and
different agglomeration strategies, after creation of one more level. In the plots on the
left, metrics related to the R-tree collapse to a single dot since all mesh elements have
the same value for that particular metric. . . . . . . . . . . . . . . . . . . . . . . . . 91

3.11 Wall clock time (in seconds) needed to build polytopic grids with R-tree and METIS. 93
3.12 Problem (3.8) with d = 2. Convergence under p-refinement for p = 1,2,3,4,5. . . . 96
3.13 Problem (3.8) with d = 3. Convergence under p-refinement for p = 1,2,3,4. . . . . 97
3.14 Left: sample agglomerates generated by the R-tree algorithm. Right: view of the

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.15 Convergence under p-refinement for the piston test case for p = 1,2,3,4. Fixed

polytopic grids made of 731 agglomerates. . . . . . . . . . . . . . . . . . . . . . . . 98
3.16 Left: Clip of the piston geometry Ω5 with colour plot of the solution computed

with p = 1. In the foreground, highlighted in grey, a single element out of the 90
elements level grid. Right: detailed view of the highlighted element (wireframe)
and its 8 sub-agglomerates belonging to the finer level. For better visualisation, the
sub-agglomerates, identified by different colours, are displayed in either of the two
plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of figures xvii

3.17 A patch of pentagonal cells (thick black lines) is created after agglomeration of
underlying triangles. Within each patch, the master cell taking care of the enumeration
of DoF is highlighted with a red-dashed square. The new global enumeration of the
three polygonal cells is {0,1,2} and elements are indicated with KA

0 ,KA
1 ,KA

2 . . . . . . 103
3.18 Left: view from process 0 of the locally owned (red), ghosted (yellow), and remote

(blue) quadrilateral cells. Right: on the same grid, a patch of cells (orange) is created
after agglomeration of some quadrilateral elements on process 0, while the dark green
agglomerate has been created on process 1. The dashed squares flag the respective
master cells. For instance, the three cells on top of KA

1 are fully remote cells for which
process 0 has no information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.19 Strong scaling experiment with p = 2 on a polytopic mesh consisting of NA = 5 000
agglomerates built on top of a fine hexahedral mesh Ωh of 262 144 elements. . . . . 110

3.20 Strong scaling experiment with p = 2 on a polytopic mesh consisting of NA = 70 000
agglomerates built on top of a fine hexahedral mesh Ωh of 2 097 152 elements. . . . 111

4.1 Elements K ∈ T tr are assumed to satisfy Assumption 4.2.1 (a) (left) and (b) (right); •

denotes a vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2 Curved elements K, K′′ with, respectively, 8 and 4 sub-elements satisfying Assump-

tion 4.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3 One agglomerate, denoted by K, and its associated bounding box BK with diameter

HK (indicated with the diagonal, red, dashed line). Right: zoom on the right boundary,
showing the fine mesh edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 A reference generalized prism K̂ for d = 2. . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Ωh partitioned among 12 processors using PARMETIS. Each color maps to one MPI
rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Snapshots of the transmembrane potential UUU after the external application of the
current Iapp(xxx, t) in Equation (5.13). . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4 Detailed views of the hexahedral mesh Ωh representing a left ventricle, with a zoom
at the bottom of the ventricle to highlight (in red) the point where Iapp(xxx, t) is applied.144

5.3 Number of CG iterations per time step for Problem (5.1), varying polynomial degree
p and the number of sweeps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 Number of CG iterations per time step for Problem (5.1) for the 3D ventricle test case
with p = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6 Number of CG iterations per time step for Problem (5.1) for the 3D ventricle test case
with p = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.7 Snapshots of the transmembrane potential UUU at selected time steps after the external
application of the current Iapp(xxx, t) at one point. . . . . . . . . . . . . . . . . . . . . 149

5.8 Hexahedral mesh of an ellipsoid representing an idealized left ventricle. . . . . . . . 150



xviii List of figures

5.9 Number of CG iterations per time step for Problem (5.9) for the idealized ventricle
test case with p = 1 and different number of levels. . . . . . . . . . . . . . . . . . . 150

5.10 Number of CG iterations per time step for Problem (5.9) for the idealized ventricle
test case with p = 2 and different number of levels. . . . . . . . . . . . . . . . . . . 151



List of tables

1.1 Rates in L2 and H1 for a smooth u and H−
1
2 rates for the Lagrange multiplier method. 28

1.2 L2 and H1 error rates for γ = γ1 and a smooth solution with Nitsche. . . . . . . . . . 29
1.3 L2 and H1 error rates for γ = γ1 and a smooth solution with cut-FEM. . . . . . . . . 29
1.4 L2 and H1 error rates for γ = γ2 and a smooth solution with Lagrange multiplier method. 30
1.5 L2 and H1 error rates for γ = γ2 and a smooth solution with Nitsche . . . . . . . . . 31
1.6 L2 and H1 error rates for γ = γ2 and a smooth solution with cut-FEM . . . . . . . . . 31
1.7 L2-error and H1-error for non smooth u in (1.26) and for the multiplier. . . . . . . . 32
1.8 L2-error, H1-error for non smooth u in (1.26). . . . . . . . . . . . . . . . . . . . . . 32
1.9 L2-error, H1-error for non smooth u in (1.26) with cut-FEM. . . . . . . . . . . . . . 33
1.10 L2 and H1 error rates for γ = γ3 and a smooth solution with Lagrange multiplier. . . 34
1.11 L2 and H1 error rates for γ = γ3 and a smooth solution with Nitsche. . . . . . . . . . 34
1.12 L2 and H1 error rates for γ = γ3 and a smooth solution with cut-FEM . . . . . . . . . 35
1.13 L2 and H1 error rates for γ = γ3 and non-smooth solution u in (1.29) with Lagrange

multiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.14 Rates for γ = γ3 and a non-smooth solution u in (1.29) with Nitsche. . . . . . . . . 36
1.15 L2 and H1 error for γ = γ3 and a non-smooth solution u in (1.29) with cut-FEM . . . 36

2.1 #i: number of iterations for non-nested multigrid in two space dimensions. #i_n:
number of iterations for the nested version. #i_a: number of iterations required by
AMG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 #i: number of iterations for non-nested multigrid in three space dimensions. #i_n:
number of iterations for the nested version. #i_a: number of iterations required by
AMG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Number of required iterations and DoF per level to solve the system with the L-shaped
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Number of required iterations and DoF per level to solve the system with the L-
shaped domain and a coarser structured level with 192 elements as first level for each
polynomial degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Number of required iterations and DoF per level to solve the system with the Fichera’s
corner test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



xx List of tables

2.6 In each row we report the polynomial space and the solvers applied to the FEA
problem (2.20). Legend: AMG (Algebraic multigrid), NN (Non-nested multigrid),
PMG (Polynomial multigrid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7 Number of iterations and time to solution for algebraic multigrid (AMG), polynomial
multigrid (PMG), non-nested Multigrid (NN) applied to the piston test case with
different polynomial degrees from p = 1 to p = 4. AMG times are shown for Q1 and
Q2 elements only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Total number of DoF for polynomial degree p and mesh-size for the piston test. . . . 61
2.9 Total number of DoF for polynomial degree p and mesh-size for the wrench test. . . 62
2.10 Number of iterations and time to solution for algebraic multigrid (AMG), polynomial

multigrid (PMG), non-nested Multigrid (NN) applied to the wrench test case with
different polynomial degrees from p = 1 to p = 4. AMG times are shown for Q1 and
Q2 elements only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.11 Number of iterations and Time to solution for Global Coarsening (GC) and Non-
Nested Multigrid (NN) applied to the cube test case with polynomial degree p = 4. . 64

2.12 Number of iterations and Time to solution for Global Coarsening (GC) and Non-
Nested Multigrid (NN) applied to the ball test case with polynomial degree p = 4. . 64

2.13 Multigrid statistics for the 2D L-shaped test case for different number of levels (wl:
serial/parallel workload, wl-eff: parallel workload efficiency, v-eff: vertical com-
munication efficiency, v-eff-METIS: vertical communication efficiency employing
METIS.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.14 Multigrid statistics for the 3D Fichera test case for different number of levels (wl:
serial/parallel workload, wl-eff: parallel workload efficiency, v-eff: vertical com-
munication efficiency, v-eff-METIS: vertical communication efficiency employing
METIS.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.15 Multigrid statistics for the piston test case for different number of levels (wl: serial/-
parallel workload, wl-eff: parallel workload efficiency, v-eff: vertical communication
efficiency, v-eff-METIS: vertical communication efficiency employing METIS.). . . 70

3.3 3D piston model. Total number of DoF in function of the polynomial degree p. . . . 98
3.4 Iteration counts for conjugate-gradient with multigrid preconditioning (CG+MG) on

the grids Ω1,Ω2,Ω3. Multigrid levels are obtained through the R-tree procedure. The
number of required iterations by plain conjugate-gradient (CG) is reported in the last
column of each table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Iteration counts for conjugate-gradient with multigrid preconditioning (CG+MG) on
the grids Ω1,Ω2,Ω3 with l = 3 levels and m = 5 smoothing steps. Multigrid levels
are obtained through the R-tree procedure. The number of required iterations by plain
conjugate-gradient (CG) is reported in the last column. . . . . . . . . . . . . . . . . 101



List of tables xxi

3.6 Iteration counts for conjugate-gradient with multigrid preconditioning (CG+MG) on
the 3D grids Ω4, Ω5 with polynomial degree p = 1,2,3 and l = 3 levels. Multigrid
levels are obtained through the R-tree procedure. The number of required iterations
by plain conjugate-gradient (CG) is reported in the last column of each table. . . . . 102

5.1 Coarsened hierarchy {Tl}3
l=0 on top of the original mesh Ω0 ≡ T0, partitioning the

original mesh across 128 processors. The number of agglomerates per level is shown
in second column, while the ratio between the cardinality of consecutive grids is
reported in the last column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Coarsened hierarchy {Tl}3
l=0 on top of the original mesh Ω0 ≡ T0, partitioning the

original mesh across 256 processors. The number of agglomerates per level is shown
in second column, while the ratio between the cardinality of consecutive grids is
reported in the last column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3 Coarsened hierarchy {Tl}3
l=0 on top of the original mesh Ω0 ≡ T0, partitioning the

original mesh across 1024 processors. The number of agglomerates per level is shown
in second column, while the ratio between the cardinality of consecutive grids is
reported in the last column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4 Coarsened hierarchy {Tl}4
l=0 on top of the mesh representing the left ventricle, parti-

tioning the original mesh across 12 processors. . . . . . . . . . . . . . . . . . . . . 150
5.5 FitzHugh-Nagumo parameters used in the 2D numerical test. . . . . . . . . . . . . . 153
5.6 Parameters for Bueno-Orovio model used in the 3D numerical test. In this case

χm ≡Cm = 1 as we are using formulation (5.1). . . . . . . . . . . . . . . . . . . . . 153





Chapter 0

Introduction

Several mathematical and computational approaches have been presented during the years in order
to tackle the solution of multi-physics problems on complex domains, such as in fluid-structure
interaction problems. Often, the discretization of these systems of PDEs naturally leads to the use
of multiple grids. We can classify these methods with respect to the approach used to handle the
interaction of one domain (for instance, the solid domain) into the other domain (the fluid domain) or
vice versa. In this context, methods are historically divided into two big categories: non-boundary-
fitted methods and unfitted methods. The so-called Arbitrary Lagrangian Eulerian formulation
(ALE) [115, 80, 119] is by far the most popular scheme of the first type, where different grids for
independent problems are joined at the (shared) interface between domains. Although ideal in that
kinematic constraints are satisfied by construction, it may easily become computationally inefficient
during the evolution of the system in presence of moving interfaces. Indeed, the computational mesh
may become severely distorted, requiring a costly remeshing procedure. Non-boundary-fitted methods
were hence developed as an alternative approach to avoid such computational drawbacks. Non-
boundary-fitted methods can embed the possibly complicated domain of interest in a geometrically
simple background grid (usually a structured Cartesian mesh) providing a great amount of flexibility at
the geometrical discretization step, often at cost of a reduction in accuracy near the interface between
the two grids. Among these, we mention the X-FEM [36, 144], the immersed boundary method [152],
and fictitious domain methods [99, 100].

The great freedom shared by this class of schemes comes at the price of handling non-matching
grids which arbitrarily overlap at interfaces, where the meshes need to be coupled and exchange
information [127, 139]. The interaction between different geometries is usually represented by a
coupling matrix which describes how the physical fields defined on the two domains interact. In
some cases (cf. [42]), the accurate computation of coupling terms is crucial in order not to destroy the
convergence properties of the numerical scheme. In Chapter 1, we present several implementation
details related to the exact integration of coupling terms, discussing different numerical integration
strategies and comparing their influence on different unfitted methods. As a by-product, we developed
dimension-independent routines that can be used to assemble interface terms and coupling matrices
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across heterogeneous dimensions in a robust way, which we have included in the finite element
library DEAL.II [21].

In practice, the implementation of such schemes in a fully distributed setting in which different
grids are independently partitioned among processors brings several challenges due to lack of pre-
defined communication patterns between different geometries. After having identified such sources
of complexity, we note that for practical applications it is crucial to provide efficient solvers and
preconditioners. Multigrid methods are among the most competitive solvers for elliptic problems [97].
In general, the choice of a multigrid approach depends on the way the mesh is generated and on the un-
derlying finite-element space. For globally refined meshes, geometric multigrid is a natural choice, as
the levels of the resulting mesh hierarchy may be used as multigrid levels. In the context of high-order
finite elements, levels can also be obtained by reducing the polynomial order of the shape functions
of the elements, while keeping the mesh fixed, as done in polynomial multigrid [29, 148]. Hybrid
multigrid solvers such as hp-multigrid, where both the mesh-size h and the polynomial degree p are
allowed to vary among levels, are nowadays common and exploit the robustness of both approaches. It
is common to assemble the system matrix related to the discretized system and to pass this matrix to an
iterative solver. However, from a High-Performance-Computing perspective, the assembly step is not
cheap and the matrix might become locally dense, e.g., in the context of high-order methods, leading
to high costs of the matrix application due to limited bandwidth on modern CPU-based hardware. For
these reasons, matrix-free algorithms are a means to accelerate FEM computations, by applying the
effect of the system matrix without assembling. Matrix-free implementations of multigrid schemes
have proven extremely efficient on modern computing systems [133, 145, 131], achieving significant
gain against standard matrix-based approaches as the polynomial degree is greater than one.

Possibly, the biggest drawback of classical geometric multigrid schemes is that for complex
geometries and moderately low order elements, it becomes impractical to create a nested hierarchy of
grids. Indeed, one may be given with grids generated externally after using CAD (computer-assisted-
design) solid modelers. Or, a fine and unstructured mesh may be given as is. In such instances,
multigrid levels are not directly available and other multilevel strategies must be employed. The
simplest and most used way to overcome this issue, especially for linear elements, is the Algebraic
Multigrid method [167] which circumvents the explicit construction of a hierarchy by working
only at the algebraic level. In this scenario, a non-nested multigrid method [47, 2, 38] can reduce
the burden of hierarchy generation by allowing levels to be generated independently, requiring in
turn ad-hoc definitions of suitable intergrid transfer operators. These operators realize the coupling
between arbitrarily overlapped (and memory-distributed) levels. It becomes then apparent how the
computational kernels identified in Chapter 1 are really close to the tasks that we have to face if we
want to provide a reliable realization of such a multigrid technique. The realization of a parallel and
matrix-free non-nested multigrid scheme is the subject of Chapter 2. We avoid to explicitly construct
the sparse and large transfer matrices and rely on efficient algorithms for pointwise evaluation of
finite element fields at arbitrarily located points [37], as well as on distributed geometric search
algorithms. Our implementation has been thoroughly tested on a variety of configurations by changing
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polynomial degrees, geometries, and number of levels, confirming its practical validity. The associated
software has been added in the DEAL.II library [21]. In this way it has been possible to integrate
our implementation with other core components of the multigrid pipeline such as the pre- and post-
smoothing phases, highly-optimized matrix-free kernels for operator evaluators developed within
such library during the years [130].

An attractive approach to perform coarsening of very fine grids can be offered by agglomeration
techniques, which consist in merging elements of the original mesh to obtain coarser grids. Indeed,
through agglomeration we can obtain a coarser approximation of the underlying differential problem,
resulting in a huge reduction in terms of number of unknowns. This strategy can be naturally performed
in the context of numerical methods that allow general polygons and polyhedra as grid elements.
Among numerical schemes of this type, we mention the Virtual Element Method (VEM) [16], the
Polytopic Discontinuous Galerkin [15, 30, 59], and the Hybrid High-Order method (HHO) [75, 78]. In
this thesis, we adopt a Polytopic Discontinuous Galerkin (PolyDG) framework. Early approaches on
agglomerated multigrid can be found, although in different contexts, in works [141, 174] and in [63].
The process of element agglomeration is still an active area of research. Standard approaches rely on
graph partitioners such as METIS [125], which take into account only the connectivity of the graph
associated to the computational grid, rather than any geometrical information. Recently, Machine-
Learning based strategies have been developed in [20, 19] to automatically perform agglomeration
of meshes eventually composed of heterogeneous media. In this thesis, a novel approach to obtain
a balanced sequence of agglomerated levels that can be employed in a multigrid framework is the
subject of Chapter 3. The new strategy is based on efficient spatial data structures such as R-trees [105]
that can be extracted from the geometrical and topological representation of the computational grid
at hand. We show how the R-tree-based agglomeration delivers automatically a nested hierarchy
of agglomerated levels which can be employed within a geometric multigrid method, which we
named R3MG (R-tree MultiGrid) [87]. We also describe and validate our memory-distributed
implementation with a series of benchmarks, confirming its robustness. This thus appears as an
alternative approach to the conforming setting of Chapter 2, fully relying on polytopic shapes to
obtain coarser levels out of a fine grid.

Leveraging on the versatility and the efficiency of R3MG, we apply our multilevel methodology
to a real context such as cardiac electrophysiology. In particular, we consider the monodomain
problem [146], where discontinuous Galerkin methods could be beneficial in order to resolve the
physics of the system thanks to their simple applicability to complex geometries and higher-order
discretizations [69, 90, 106]. More specifically, we consider a discontinuous Galerkin discretization
of the monodomain problem as done in [15, 118]. We show how, starting from a realistic hexahedral
mesh and its associated standard DG discretization, we can exploit polytopic shapes obtained through
the agglomeration strategy outlined in Chapter 3 to build a parallel multigrid preconditioner. We
confirm the practical validity and robustness of this approach through several experiments varying
models, polynomial degrees, and number of levels employed. Finally, building on the analysis done
in [9, 10], and on estimates and bound developed in the general setting [61], we show in Chapter 4
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some preliminary results aimed at proving the convergence of our multilevel scheme by adapting such
analysis to the properties of our agglomerates.

The flexibility allowed by polytopic methods makes them potentially extremely powerful computa-
tional tools. Their exploitation for the construction of efficient multigrid solvers, pioneered in [30, 10]
and pursued here with the R3MG algorithm, constitutes one of the prominent examples of their poten-
tial. On the other hand, their success depends on the availability of efficient implementations tackling
the computational overhead involved, for instance, in the design of appropriate basis, quadrature
rules, and solvers. For instance, R-tree agglomeration is shown here to produce, in a scalable manner,
agglomerates which are tightly close to their bounding boxes, thus yielding polygonal and polyhedral
meshes for which the design of optimal basis is trivial. One of the main objectives of this thesis is to
propose a number of such efficient techniques, and we trust that their impact goes well beyond the
results presented here.

Thesis outline

This thesis is organized into two parts. The first part covers the presentation of some computational
aspects related to non-matching methods and interface problems and the application of such procedures
to develop a non-nested and matrix-free multigrid solver. The second part involves polytopic methods.
A new and efficient agglomeration technique based on spatial indices is presented and applied within
the context of polytopic discontinuous Galerkin methods. Building on this infrastructure, we develop
a novel multigrid strategy that exploits the flexibility of polytopes to build coarser levels that can
be employed in a multilevel solver, and investigate its effectiveness by applying it to non-trivial
geometries. The outline of the thesis is summarized in Figure 1.

• Part I. Non-matching methods

– chapter 1 Interface problems. This chapter refers to the paper A comparison of non-matching
techniques for the finite element approximation of interface problems [43] in collaboration with
Prof. Daniele Boffi (KAUST), Prof. Lucia Gastaldi (University of Brescia), Prof. Luca Heltai
(SISSA), and Prof. Andrea Cangiani (SISSA). Part of the work involved the development of
generic computational geometry routines which have been added to the DEAL.II library and
such contributions are part of publication [22].

– chapter 2 Matrix-free implementation of the non-nested multigrid method. This chapter
refers to a work done in collaboration with Prof. Martin Kronbichler (University of Augsburg,
Ruhr-Universität Bochum), Dr. Peter Münch (University of Augsburg, Uppsala University),
and Prof. Luca Heltai (SISSA). This implementation has been added to the DEAL.II library and
is part of publication [23].

• Part II. Polytopic finite elements
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Fig. 1 Thesis structure: the first part focuses on computational aspects of non-matching methodologies,
the second part on agglomeration techniques, which are applied to polytopic discontinuous Galerkin
methods and multigrid preconditioning.

– chapter 3 Agglomeration of grids. This chapter refers to the preprint R-tree based agglomera-
tion of polytopic grids with applications to multilevel methods [87] in collaboration with Prof.
Andrea Cangiani (SISSA) and Prof. Luca Heltai (SISSA, University of Pisa).

– chapter 4 Convergence Analysis for multigrid. This chapter refers to preliminary results
about the convergence analysis of the multigrid method based on the agglomeration strategy
developed in Chapter 3.

– chapter 5 Application of multilevel solver to cardiac electrophysiology. This chapter refers
to the application and the investigation of a multilevel methodology, based on the results in
Chapter 3, to cardiac electrophysiology. This part is based on an ongoing collaboration with
Dr. Pasquale Claudio Africa (SISSA).
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Chapter 1

Non-matching methods

We perform a systematic comparison of various numerical schemes for the approximation of inter-
face problems. We consider unfitted approaches in view of their application to possibly moving
configurations. Particular attention is paid to the implementation aspects and to the analysis of the
computational costs related to the different phases of the simulations.

Contents
1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Model problem and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Non-matching discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 The method of Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 14

1.3.2 The cut-FEM method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Integration of coupling terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Integration driven by the immersed mesh . . . . . . . . . . . . . . . . . 20

1.4.2 Integration on mesh intersections . . . . . . . . . . . . . . . . . . . . . 21

1.4.3 Integration through level set splitting . . . . . . . . . . . . . . . . . . . 22

1.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 2D numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.2 3D numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.3 Computational times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.1 Literature review

The efficient numerical solution of partial differential equations modeling the interaction of physical
phenomena across interfaces with complex, possibly moving, shapes is of great importance in
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many scientific fields. We refer, for instance, to fluid-structure interaction, or crack propagation,
just to mention two relevant examples. A crucial issue is the handling of computational grids.
In this respect, we can classify computational methods for interface problems into two families:
boundary fitted methods and boundary unfitted methods. For time dependent problems, the former are
typically handled using the Arbitrary Eulerian Lagrangian formulation ([80], [116]), where meshes
are deformed in a conforming way with respect to movements of the physical domains. In this case,
the imposition of interface conditions is usually easy to implement. However, an accurate description
of both meshes is required, and the allowed movements are restricted by the topological structure
of the initial state. When topology may change, or when the grid undorgoes severe deformations,
these methods require remeshing. An operation which is computationally very expensive in time
dependent scenarios and three dimensional settings. Conversely, unfitted approaches are based on
describing the physical domains as embedded into a constant background mesh. As it does not require
remeshing, this approach is extremely flexible, but it requires sophisticated methods to represent
interfaces. Among unfitted approaches, we mention the Immersed Boundary Method [152, 40], the
Cut Finite Element Method [53], and the Extended Finite Element Method [143]. Another popular
choice is the Fictitious Domain Method with Lagrange multipliers, proposed by Glowinski, Pan and
Periaux in [100] for a Dirichlet problem, analyzed in [98], and then extended to particulate flows
in [99].

The use of a Lagrange multiplier to deal with Dirichlet boundary conditions was introduced in
the seminal work by Babuška [25]. This is formulated in terms of a symmetric saddle point problem
where the condition at the interface is enforced through a Lagrange multiplier. The main drawback
of this method is that it suffers from a loss of accuracy at interfaces, even if it is known (cf. [111])
that this detrimental effect on the convergence properties of the approximate solution is a local
phenomenon, restricted to a small neighbourhood of the interface. From the computational standpoint,
the Fictitious Domain Method poses the additional challenge of assembling coupling terms involving
basis functions living on different meshes. In this context, one can distribute quadrature points on the
immersed mesh and let it drive the integration process, or one may compute a composite quadrature
rule by identifying exact intersections (polytopes, in general) between the two meshes. This approach
has been presented in different papers and frameworks: for instance, in [128], a high performance
library has been developed to perform such tasks, and in [42] it has been shown how composite rules
on interfaces turn out to be necessary to recover optimal rates for a fluid-structure interaction problem
where both the solid and the fluid meshes are two dimensional objects. In the cut-FEM framework, we
mention [140] for an efficient implementation of Nitsche’s method on three dimensional overlapping
meshes.

We consider a two or three dimensional domain with an immersed interface of co-dimension
one and we study the numerical approximation of the solution of an elliptic PDE whose solution
is prescribed along the interface. Although in our case the domain and the interface are fixed, we
are discussing the presented numerical schemes in view of their application to more general settings.
We perform a systematic comparison between three different unfitted approaches, analyzing them
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in terms of accuracy, computational cost, and implementation effort. In particular, we perform
a comparative analysis in terms of accuracy and CPU times for the Lagrange multiplier method,
Nitsche’s penalization method, and cut-FEM for different test cases, and discuss the benefit of
computing accurate quadrature rules on mesh intersections.

After introducing the model Poisson problem posed on a domain with an internal boundary, we
review the Lagrange multiplier method, the Nitsche penalization method, and the cut-FEM method
for its solution. We discuss the central issue of the numerical integration of the coupling terms, and
present a numerical comparison of the three methods, focusing on the validation of the implementation,
on how coupling terms affect the accuracy of numerical solutions, and on computational times.

1.2 Model problem and notation

Let ω be a closed and bounded domain of Rd , d = 2,3, with Lipschitz continuous boundary γ := ∂ω ,
and Ω⊂ Rd a Lipschitz domain such that ω ⋐ Ω; see Figure 1.1 for a prototypical configuration. We
consider the model problem 

−∆u = f in Ω\ γ,

u = g on γ,

u = 0 on Γ := ∂Ω,

(1.1)

for given data f ∈ L2(Ω) and g ∈ H
1
2 (γ). Throughout this chapter we refer to Ω as the background

domain, while we refer to ω as the immersed domain, and γ as the immersed boundary. The rationale
behind this setting is that it allows to solve problems in a complex and possibly time dependent
domain ω , by embedding the problem in a simpler background domain Ω – typically a box – and
imposing some constraints on the immersed boundary γ . For the sake of simplicity, we consider the
case in which the immersed domain is entirely contained in the background domain, but more general
configurations may be considered.

As ambient spaces for (1.1), we consider V (Ω) := H1
0 (Ω) = {v ∈ H1(Ω) : v|Γ = 0} and Q(γ) :=

H−
1
2 (γ). Given a domain D⊂ Rd and a real number s≥ 0, we denote by ∥ · ∥s,D the standard norm

of Hs(D). In particular, ∥ · ∥0,D stands for the L2-norm stemming from the standard L2-inner product
(·, ·)D on D. Finally, with ⟨·, ·⟩γ we denote the standard duality pairing between Q(γ) and its dual
Q′(γ) = H

1
2 (γ). Across the immersed boundary γ , we define the jump operator as

JvK|γ = v+− v−,

JτττK|γ = τττ
+− τττ

−,

for smooth enough scalar- and vector- valued functions v and τττ . Here, v± and τττ± are external and
internal traces defined according to the direction of the outward normal nnn to ω at γ .
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Problem (1.1) can be written as a constrained minimization problem by introducing the Lagrangian
L : V (Ω)×Q(γ)→ R defined as

L(v,q) :=
1
2
(∇v,∇v)Ω− ( f ,v)Ω + ⟨q,v−g⟩γ . (1.2)

Looking for stationary points of L gives the following saddle point problem of finding a pair (u,λ ) ∈
V (Ω)×Q(γ) such that

(∇u,∇v)Ω + ⟨λ ,v⟩γ = ( f ,v)Ω ∀v ∈V (Ω), (1.3)

⟨q,u⟩γ = ⟨q,g⟩γ ∀q ∈ Q(γ), (1.4)

Below in Theorem 1.2.1 we show that this problem admits a unique solution. Starting from (1.1) and
integrating by parts, one can easily show that setting λ =−J∇u ·nnnK|γ , the pair (u,λ ) ∈V (Ω)×Q(γ)

is the solution of (1.3)-(1.4). Conversely, with proper choices for v ∈ V (Ω) in (1.3) one gets that
−∆u = f in Ω \ γ , while (1.4) implies u = g on γ , so that (1.3)-(1.4) are equivalent to (1.1) with
−λ equal to the jump of the normal derivative of u on the interface γ . Moreover, if the datum g
is sufficiently smooth, say g ∈ Hs(γ) for s > 1, we can further take λ ∈ L2(γ) and use in practice
Q(γ) = L2(γ).

In the following theorem we sketch the proof of existence and uniqueness of the solution of (1.3)-
(1.4).

Theorem 1.2.1. Given f ∈ L2(Ω) and g ∈ H1/2(γ), there exists a unique solution of Problem (1.3)-
(1.4) satisfying the following stability estimate

∥u∥1,Ω +∥λ∥−1/2,γ ≤C(∥ f∥0,Ω +∥g∥1/2,γ).

Proof. Problem (1.3)-(1.4) is a saddle point problem, hence to show existence and uniqueness of the
solution we need to check the ellipticity on the kernel and the inf-sup condition [41]. The kernel
K= {v ∈V (Ω) : ⟨q,v⟩= 0 ∀q ∈ Q(γ)}, can be identified with the subset of functions in V (Ω) with
vanishing trace along γ . Thanks to Poincaré inequality we have that there exists α0 > 0 such that

(∇u,∇u)Ω ≥ α0∥u∥2
1,Ω.

The inf-sup condition can be verified using the definition of the norm in Q(γ) and the fact that, by the
trace theorem, for each w ∈ H1/2(γ) there exists at least an element v ∈V (Ω) such that v = w on γ ,
with ∥v∥1,Ω ≤C1∥w∥1/2,γ . Hence we get the inf-sup condition

inf
q∈Q(γ)

sup
v∈V (Ω)

⟨q,v⟩
∥q∥−1/2,γ∥v∥1,Ω

≥ β0,
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with β0 = 1/C1.

A detailed analysis for the Dirichlet problem, where the Lagrange multiplier is used to impose the
boundary condition, can be found in the pioneering work by Glowinski, Pan and Periaux [100].

1.3 Non-matching discretizations

We assume that both Ω and ω are Lipschitz domains and we discretize the problem introducing
computational meshes for the domain Ω and for the immersed boundary γ which are unfitted with
respect to each other in that they are constructed independently. The computational meshes Ωh of Ω

and γh of γ consist of disjoint elements such that Ω =
⋃

T∈Ωh
T and γ =

⋃
K∈γh

K. When d = 2, Ωh

will be a triangular or quadrilateral mesh and γh a mesh composed by straight line segments. For
d = 3, Ωh will be a tetrahedral or hexahedral mesh and γh a surface mesh whose elements are triangles
or planar quadrilaterals embedded in the three dimensional space. We denote by hΩ and hγ the mesh
sizes of Ωh and γh, respectively. For simplicity, we ignore geometrical errors in the discretizations of
Ω, and γ , and we assume that the mesh sizes hΩ and hγ are small enough so that the geometrical error
is negligible with respect to the discretization error (see Sect. 1.4.3 for a quantitative estimate of the
geometrical error in our numerical experiments).

We consider discretizations of V (Ω) based on standard Lagrange finite elements, namely

Vh(Ω) := {v ∈ H1
0 (Ω) : v|T ∈Rp(T ),∀T ∈Ωh} p≥ 1, (1.5)

with Rp(T ) := P p(T ) or Qp(T ), the spaces of polynomials of total degree up to p or of degree p
separately in each variable, respectively, depending on whether T is a simplex or a quadrilateral/hexa-
hedron. For the cut-FEM method, the corresponding spaces will be constructed separately in each
subdomain; this results in a doubling of the degrees of freedom on the elements cut by the interface
(see Sect. 1.3.2).

For the Lagrange multiplier space Q(γ) we employ the space of piecewise-polynomial functions

Qh(γ) := {q ∈ L2(γ) : q|K ∈Rp(K),∀K ∈ γh} p≥ 0, (1.6)

which we equip with the mesh dependent norm

∥q∥− 1
2 ,γ

:= ∥h− 1
2 q∥0,γ ∀q ∈ Qh(γ), (1.7)

where h is the piecewise constant function given by h|K = hK the diameter of K for each K ∈ γh. The
definition and the notation are justified by the fact that, on a quasi-uniform meshes, norm (1.7) is
equivalent to the norm in H−1/2(γ).
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1.3.1 The method of Lagrange Multipliers

The discrete counterpart of (1.3)-(1.4) is to find a pair (uh,λh) ∈Vh×Qh such that

(∇uh,∇vh)Ω + ⟨λh,vh⟩γ = ( f ,vh)Ω ∀vh ∈Vh, (1.8)

⟨qh,uh⟩γ = ⟨qh,g⟩γ ∀qh ∈ Qh. (1.9)

The next theorem states existence, uniqueness, and stability of the discrete solution together with
optimal error estimates.

Theorem 1.3.1. Assume that the mesh γh is quasi uniform and that there exists a constant Cr > 1
independent of hΩ and hγ such that hΩ/hγ ≤Cr. Then, there exists a unique solution (uh,λh)∈Vh×Qh

of Problem (1.8)-(1.9). Moreover, it holds

∥u−uh∥1,Ω +∥λ −λh∥−1/2,γ ≤ C inf
vh∈Vh
µh∈Qh

(
∥u− vh∥1,Ω +∥λ −µh∥−1/2,γ

)
, (1.10)

with C > 0 a constant independent of the mesh sizes hΩ and hγ .

Proof. The existence, uniqueness, and stability of the discrete solution can be obtained by showing
that there exist positive constants α and β , independent of hΩ and hγ , such that the ellipticity on
the kernel and inf-sup condition hold true at the discrete level [41]. Since Qh ⊂ L2(γ), we have that
the discrete kernel Kh = {vh ∈Vh : ⟨qh,vh⟩= 0∀qh ∈ Qh} contains element with

´
γ

vhds = 0. Hence,
Poincaré inequality (see [48, (5.3.3)]), which can be formulated as

∥vh∥1,Ω ≤ CΩ

(∣∣∣∣ˆ
γ

vhds
∣∣∣∣+∥∇vh∥0,Ω

)
= CΩ∥∇vh∥0,Ω,

implies that
(∇vh,∇vh)Ω ≥ α∥vh∥2

1,Ω ∀vh ∈ Kh.

The discrete inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

⟨qh,vh⟩
∥qh∥−1/2,γ∥vh∥1,Ω

≥ β ,

is more involved and makes use of the continuous inf-sup, together with Clément interpolation, trace
theorem, and inverse inequality. The interested reader can find the main arguments of this proof in [39,
sect. 5].

Thanks to the above conditions, the theory on the approximation of saddle point problems gives
both existence and uniqueness of the solution of Problem (1.8)-(1.9) satisfying the a priori estimate

∥uh∥1,Ω +∥λh∥−1/2,γ ≤ C(∥ f∥0,Ω +∥g∥1/2,γ),

and the error estimate (1.10).
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Given basis functions {vi}N
i=1 and {qi}M

i=1 such that Vh := span{vi}N
i=1 and Qh := span{qi}M

i=1, we
have that (1.8), (1.9) can be written as the following algebraic problem(

A C⊤

C 0

)(
U
λ

)
=

(
F
G

)
(1.11)

where

Ai j = (∇v j,∇vi)Ω i, j = 1, . . . ,N

Cα j = ⟨qα ,v j⟩γ j = 1, . . . ,N,α = 1, . . . ,M

Fi = ( f ,vi)Ω i = 1, . . . ,N

Gα = ⟨qα ,g⟩γ α = 1, . . . ,M.

To solve the block linear system (1.11) we use Krylov subspace iterative methods applied to the
Schur complement system:

λ = S−1(CA−1F−G), (1.12)

U = A−1(F−C⊤λ ), (1.13)

where S := CA−1C⊤, and we use CAC⊤+M as preconditioner for S, where M is the immersed
boundary mass matrix with entries (M)i j = ⟨q j,qi⟩γ .

Ω

Γ ω

γ

n

Fig. 1.1 Model problem setting, with immersed domain ω , immersed boundary γ , and background
domain Ω.

We next show how the Lagrange multiplier formulation is directly linked to a penalization
approach used to impose the Dirichlet condition u = g on the internal curve γ , by locally eliminating
the multiplier in the same spirit of the work by Stenberg [165].

Instead of enforcing the constraint on γ with a multiplier, it is possible to impose it weakly through
a penalization approach following the so-called method of Nitsche. Here we show that the enforcement
of boundary conditions via Nitsche’s method can be derived from a stabilized Lagrange multiplier
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method by adding a consistent term that penalizes the distance between the discrete multiplier λh and
the normal derivative [165]. With this in mind, we penalize the jump of the normal derivative along
the internal curve γ to impose the constraint u = g. The consistency here follows from the observation
that at the continuous level the multiplier is the jump of the normal derivative on the interface.

We define h(xxx) as the piecewise constant function describing the mesh-size of γ and we choose
the discrete spaces Vh and Qh as in the Lagrange multiplier case.

The addition of the normal gradient penalization term to the Lagrange multiplier formulation (1.8)-
(1.9) leads to the problem of seeking a pair (uh,λh) ∈Vh×Qh such that

(∇uh,∇vh)Ω + ⟨λh,vh⟩γ +
1
β
⟨J∇vh ·nnnK,h(λh + J∇uh ·nnnK)⟩γ = ( f ,vh)Ω ∀vh ∈Vh,

⟨qh,uh⟩γ −
1
β
⟨qh,h(λh + J∇uh ·nnnK)⟩γ = ⟨qh,g⟩γ ∀qh ∈ Qh,

where β is a positive penalty parameter. In the discrete setting, ⟨q,v⟩γ is identified with the scalar
product in L2(γ) for q ∈ Qh and v ∈Vh and we use the notation ⟨q,v⟩γ = ∑K∈γh

(q,v)K . The second
equation gives

⟨qh,uh−
1
β

h(λh + J∇uh ·nnnK)−g⟩γ = 0 ∀qh ∈ Qh,

and, introducing the L2-projection on Qh as Πh : L2(γ)→ Qh, we can eliminate the multiplier locally
on each element K ∈ γh:

λh|K =−(ΠhJ∇uh ·nnnK)K +βh−1
K (Πh(uh−g))K .

We observe that it is possible to formally refine γh to γ ′h such that the element boundaries of Ωh

coincide with some element boundaries of the immersed grid γ ′h. If we now choose a space Q′h which
contains piece wise polynomials of degree compatible with that of the elements in Vh, we can avoid
the projection operator altogether, and are allowed to write

λ
′
h =−J∇uh ·nnnK+βh−1(uh−g).

Inserting this back into the first equation we get the variational problem (in which no multiplier is
involved) of finding uh ∈Vh such that

(∇uh,∇vh)Ω−⟨J∇uh ·nnnK,vh⟩γ −⟨J∇vh ·nnnK,uh⟩γ +β ⟨h−1uh,vh⟩γ
= ( f ,vh)Ω−⟨J∇vh ·nnnK,g⟩γ +β ⟨h−1g,vh⟩γ ,

(1.14)

holds for every vh ∈Vh.
Equation (1.14) represents the Nitsche method [147] applied to Problem (1.1). Owing to the

non-matching nature of our discretization, the immersed and background mesh facets are not expected
to be aligned in general. If indeed for all facets (elements) K of γ and facets F of Ωh we have
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Hd−1(K∩F) = 0, withHd−1 denoting the Hausdorff measure in d−1-dimension, then the variational
problem can be simplified since all the jump terms vanish.

1.3.2 The cut-FEM method

When using the cut-FEM discretization approach, one changes the perspective of the original vari-
ational problem, which is no longer solved on a single space defined globally on Ω: instead, one
solves two separate problems on the two domains ω and Ω \ω . This approach gives additional
flexibility on the type of problems that can be solved. For example, problems with more general
transmission conditions across γ where the solution u is allowed to jump. Moreover, separating the
problem transforms the cut-FEM method into a boundary-fitted approach, where the approximation
space is changed to resolve the interface.

The usual approach to impose constraints on γ in the cut-FEM method is to use Nitsche’s method
applied on the two subdomains separately:Ω1 := ω,

Ω2 := Ω\ ω̄.

In this context, it is necessary to take special care of those elements of Ωh that are cut by γ . First, we
introduce the corresponding computational meshes Ωi

h given by

Ω
i
h := {T ∈Ωh : T ∩Ωi ̸= /0} i = 1,2,

and notice that both meshes share the set of cells intersected by the curve γ , namely

τ := {T ∈Ωh : T ∩ γ ̸= /0}, τ
i := {T̃ i := T ∩Ω

i, T ∈ τ},

where we distinguish between entire cells that intersect γ (these are in the set τ) and cut cells (with
arbitrary polytopic shape, which are in the set τ i), i.e., (T ∈ τ) = (T̃ 1 ∈ τ1)∪ (T̃ 2 ∈ τ2)∪ (γ ∩T ) with
T̃ 1∩ T̃ 2 = /0.

When defining a finite element space on these elements, one uses the same definition of the
original finite element space defined on entire elements T ∈ τ , which is then duplicated and restricted
to the corresponding domain, i.e., one introduces on Ωi

h, i = 1,2 the discrete spaces

V i
h :=Vh(Ω

i
h)|Ωi = {vh|Ωi , vh ∈Vh(Ω

i
h)}.

Then, applying twice Nitsche’s method requires to find ui
h ∈V i

h such that

ai
h(u

i
h,v

i
h) = li

h(v
i
h) ∀vi

h ∈V i
h i = 1,2,
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with

ai
h(u

i
h,v

i
h) = (∇ui

h,∇vi
h)Ωi

h∩Ωi−⟨J∇ui
h ·nnnK,vi

h⟩γ −⟨ui
h,J∇vi

h ·nnnK⟩γ +
β1

h
⟨ui

h,v
i
h⟩γ , (1.15)

and
li
h(v

i
h) = ( f ,vi

h)Ωi
h∩Ωi +

〈
g,

β1

h
vi

h− J∇vi
h ·nnnK

〉
γ

. (1.16)

This formulation is known to suffer from the so called small-cut problem deriving from the fact that
the size of the cuts T ∩Ωi cannot be controlled and hence can be arbitrarily small. This may result in
a loss of coercivity for the bilinear forms ai

h when the size of a cut cell goes to zero. As shown in [53],
the formulation can be stabilized by adding to the bilinear form the following penalty term acting on
the interior or exterior faces of the intersected cells, depending on the domain Ωi

h:

Gi
h := {F = T+∩T− : T+ ∈ τ,T− ∈Ω

i
h} i = 1,2, (1.17)

ji
h(u,v) := β2 ∑

F∈Gi
h

⟨hFJ∇u ·nnnK,J∇v ·nnnK⟩F , (1.18)

where β2 is a positive penalty parameter and hF the size of F ∈ Gi
h. With such definition at hand we

set

Vh :=V 1
h +V 2

h , with elements vh =

v1
h in Ω1

v2
h in Ω2

(1.19)

ah(uh,vh) :=
2

∑
i=1

(ai
h(u

i
h,v

i
h)+ ji

h(u
i
h,v

i
h)), (1.20)

lh(vh) :=
2

∑
i=1

li
h(v

i
h), (1.21)

and the method reads: find uh ∈Vh such that

ah(uh,vh) = lh(vh) ∀vh ∈Vh.

The penalization term in (1.18), usually called ghost-penalty, is not the only choice that allows to
recover optimal rates. Another practical alternative, developed earlier in [108], consists in associating
“bad elements”, i.e. elements with small cuts, with suitable neighboring elements having sufficiently
large intersections with the domain in order to extend the polynomial approximation. This technique
is usually referred to as agglomeration and it has been applied to several unfitted methods in recent
years [122, 54].
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1.4 Integration of coupling terms

In all three methods, some terms need to be integrated over the non-matching interface γ . For example,
in the Lagrange multiplier method, we need to compute ⟨λh,vh⟩γ where vh ∈Vh and λh ∈Qh, while in
the Nitsche’s interface penalization method and in the cut-FEM method, one needs to integrate terms
of the kind ⟨βh−1uh,vh⟩γ , where both uh and vh belong to Vh, but the integral is taken over γ .

We start by focusing our attention on the term ⟨λh,vh⟩γ where vh ∈Vh and λh ∈Qh. This is delicate
to assemble as it is the product of trial and test functions living on different meshes and it encodes
the interaction between the two grids. Let K ∈ γh and FK be the map FK : K̂→ K from the reference
immersed cell K̂ to the physical cell K, JFK(xxx) the determinant of its Jacobian and assume to have a
quadrature rule {x̂xxq,wq}Nq

q=1 on K̂. Since the discrete functions are piecewise polynomials, we can use
the scalar product in L2(γ) instead of the duality pairing, then standard finite element assembly reads:

⟨λh,vh⟩γ = ∑
K∈γh

⟨λh,vh⟩K . (1.22)

In the forthcoming subsections we discuss three strategies to compute this integral. Identical
considerations apply in order to compute the term β ⟨h−1uh,vh⟩γ in (1.14).

In general, such integrals are always computed using quadrature formulas. What changes is
the algorithm that is used to compute these formulas, and the resulting accuracy. Independently
on the strategy that is used to compute the quadrature formulas, all algorithms require the efficient
identification of pairs of potentially overlapping cells, or to identify background cells where quadrature
points may fall. This task can be performed efficiently by using queries to R-trees of axis-aligned
bounding boxes of cells for both the background and immersed mesh.

An R-tree is a data structure commonly used for spatial indexing of multi-dimensional data that
relies on organizing objects (e.g., points, lines, polygons, or bounding boxes) in a hierarchical manner
based on their spatial extents, such that objects that are close to each other in space are likely to be
located near each other in the tree.

In an R-tree, each node corresponds to a rectangular region that encloses a group of objects, and
the root node encloses all the objects. Each non-leaf node in the tree has a fixed number of child
nodes, and each leaf node contains a fixed number of objects. R-trees support efficient spatial queries
such as range queries, nearest neighbor queries, and spatial joins by quickly pruning parts of the tree
that do not satisfy the query constraints.

In particular, we build two R-tree data structures to hold the bounding boxes of every cell of
both the background and the immersed meshes. Spatial queries are performed traversing the R-tree
structure generated by the Boost.Geometry library [44]. The construction of an R-tree with M
objects has a computational cost that is proportional to O(M log(M)), while the cost of a single query
is O(log(M)).
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1.4.1 Integration driven by the immersed mesh

Applying straightforwardly a given quadrature rule defined over γ to equation (1.22) gives:

⟨λh,vh⟩γ ≈ ∑
K∈γh

Nq

∑
q=0

λh
(
FK(x̂xxq)

)
vh
(
FK(x̂xxq)

)
JFK(x̂xxq)wq, (1.23)

with respect to some reference quadrature points x̂xxq and weights wq, letting the immersed domain
drive the integration. In this case the computational complexity stems from the evaluation of the
terms vh(FK(x̂xxq)), since the position within the background mesh Ωh of the quadrature point FK(x̂xxq)

is not known a-priori (see Figure 1.2). A possible algorithm for the evaluation of vh(FK(x̂xxq)) can be
summarized as follows:

• Compute the physical point yyy = FK(x̂xxq);

• Find the cell T ∈Ωh s.t. yyy ∈ T ;

• Given the shape function v̂h(x̂xx) in the reference element T̂ , compute v̂h
(
G−1

T (yyy)
)
, where GT :

T̂ → T denotes the reference map associated to T ∈Ωh for the background domain.

The first part of the computation takes linear time in the number of cells of the immersed mesh γh, while
the second part requires a computational cost that scales logarithmically with the number of cells of the
background grid for each quadrature point. Finally, the evaluation of the inverse mapping G−1

T requires
Newton-like methods for general unstructured meshes or higher order mappings (i.e., whenever FK is
non-affine). Overall, implementations based on R-tree traversal will result in a computational cost that
scales at least as O((M+N) log(N)), where M is the total number of quadrature points (proportional
to the number of cells of the immersed mesh), and N is the number of cells of the background mesh.

The main drawbacks of this approach are twofold: i) on one side it does not yield the required
accuracy even if quadrature rules with the appropriate order are used, due to the piecewise polynomial
nature of the integrands, that may have discontinuities within the element K, and ii) since the couplings
between the two grids is based solely on a collection of quadrature points on the immersed surface, it
may happen that two elements overlap, but no quadrature points fall within the intersection of the two
elements.

This is illustrated in a pathological case in Figure 1.3 (top), where we show a zoom-in of a solution
computed with an insufficient number of quadrature points, and an overly refined background grid.
In this case the quadrature rule behaves like a collection of Dirac delta distributions, and since the
resolution of the background grid is much finer than the resolution of the immersed grid, one can
recognize in the computed solution the superposition of many small fundamental solutions, that, in the
two-dimensional case, behave like many logarithmic functions centered at the quadrature points of γh.

These issues with the quadrature driven approach may hinder the convergence properties of the
methods, as shown in [42] for a 2D-2D problem, and require a careful equilibrium between the
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TiTi−1

Ti+1

Kj−1

Kj

Kj+1

Fig. 1.2 Squares: DoF for linear basis functions attached to some elements K j of γ intersecting a
background element Ti ∈Ωh. Dots: DoF for a linear Lagrangian basis attached to cells Ti. Crosses:
quadrature points corresponding to a Gaussian quadrature rule of order 3 on elements of γ .

(a) Underresolved mesh-driven integration

(b) Integration using mesh intersection

Fig. 1.3 Comparison between exact and non exact integration (zoomed-in on the interface in order to
highlight the kinks) for a pathological case. (a) Spurious kinks around the interface, on the location of
the immersed quadrature points. (b) Well-resolved solution around the interface.

resolution of the immersed grid γh, the choice of the quadrature formula on K, and the resolution
of the background grid Ωh. Alternatively, one can follow a different approach that is based on the
identification of the intersections between the two grids, and on the use of a quadrature rules defined on
the intersection of the two elements, to remove the artifacts discussed above (at the cost of computing
the intersection between two non-matching grids), as shown in Figure 1.3 (bottom).

1.4.2 Integration on mesh intersections

An accurate computation of the interface terms may be performed by taking into account the intersec-
tion between the two grids. First, the non-empty intersections Ẽ := T ∩K ̸= /0 between any T ∈Ωh

and K ∈ γh are identified and the intersection is computed accordingly. Then, given that the restriction
of vh to Ẽ is smooth, a suitable quadrature formula can be applied in Ẽ. Since Ẽ is a polygon in
general, we use a sub-tessellation technique, consisting in splitting Ẽ into sub-elements S ∈ SẼ such
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that Ẽ =
⋃

S∈SẼ
S and we use standard Gaussian quadrature rules on each of these sub-elements. See

Figures 1.4 and 1.5 for an example in two and three dimensions, respectively.
In conclusion, interface terms such as ⟨λh,vh⟩γ are assembled by summing the contribution of

each intersection Ẽ computed by appropriate quadrature:

⟨λh,vh⟩Ẽ = ∑
S∈SẼ

⟨λh,vh⟩S ≈ ∑
S∈SẼ

Nq

∑
q=1

λh(FS(x̂q))vh(FS(x̂xxq))JFS(x̂xxq)wq, (1.24)

where FS : K̂ → SS is the mapping from the reference element K̂ to S and {x̂xxq,wq}Nq
q=1 a suitable

quadrature rule defined on K̂.
The efficient identification of pairs of potentially overlapping cells is performed using queries to

R-trees of axis-aligned bounding boxes of cells for both the background and immersed mesh. While
this allows to record the indices of the entries to be allocated during the assembly procedure and the
relative mesh iterators, the actual computation of the geometric intersection Ẽ between two elements
T ⊂ Ωh and K ⊂ γ is computed using the free function CGAL::intersection(). The resulting
polytope is sub-tessellated into simplices, i.e., Ẽ =∪Ns

i=0Si, even though other techniques for numerical
quadrature on polygons may be employed [59].

In Figures 1.4 and 1.5 we show this procedure graphically for cells T and K and provide an
example for the corresponding sub-tessellations of the intersection Ẽ in two and three dimensions.
The resulting sub-tesselations are used to construct the quadrature rules {Qi}i in (1.24).

The overall complexity of the algorithm is O((N+M) log(N)), where N and M are the numbers of
cells in the background and immersed mesh, respectively. Notice, however, that the complexity of the
algorithm should be multiplied by the complexity of the CGAL::intersection() function, which is
O(nm) for the intersection of two polygons with n and m vertices, respectively. In practice, this is not
a problem since the number of vertices of the polygons is typically small, and the complexity of the
algorithm is dominated by the complexity of the R-tree queries, but these costs are non-negligible for
large grids, and many overlapping cells (see, e.g., the discussion in [42]).

1.4.3 Integration through level set splitting

If a level set description of the immersed domain is available, this may be used to generate quadrature
formulas without explicitly computing the geometric intersection (see [53] for some implementation
details). It has also been shown in [162] how to generate quadrature rules on different regions of a cut
element using Ψ, identified as

O = {(x,y) ∈ T : Ψ > 0},
S = {(x,y) ∈ T : Ψ = 0},
I = {(x,y) ∈ T : Ψ < 0},
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K

T

(a) Background cell T and foreground cell K.

K

TT

Ẽ

(b) The intersection Ẽ is computed and
triangulated. In this case, resulting in a

single one-dimensional simplex (a segment).

Fig. 1.4 Triangulation of the intersected region Ẽ for a line immersed in 2D. The one-dimensional cell
K is allowed to be positioned arbitrarily w.r.t. to the two-dimensional quadrilateral T .

where Ψ : Rd→R is the level set function determining the immersed domain. A typical configuration
including quadrature points for each entity is shown in Figure 1.6.

In practical computations, however, the interface γ is not available in terms of a simple analytical
description of the level set function. Should one still wish to use quadrature formulas based on a level
set, a discrete (possibly approximated) level set function Ψh that is zero on γh must be provided when
γh is a triangulated surface. Such level set would also allow a robust partitioning of the background
computational mesh into cells that are completely inside ω , cells cut by γ , and cells that are completely
inside Ω\ω .

We propose a simple implementation of a discrete level set function Ψh constructed from a
triangulated interface γh. Point classification (i.e., detecting if a point is inside or outside ω) is
performed using a query to the CGAL library, to detect if a point is inside or outside the coarsest
simplicial mesh bounded by γh (denoted by Ih).

We then define a discrete level set function Ψh(xxx) on top of γh as follows:

Ψh(ppp) =

−d(ppp,γ) if ppp ∈ Ih,

d(ppp,γ) if ppp /∈ Ih,

where d(ppp,γ) := minyyy∈γ d(ppp,yyy) is constructed by first finding the closest elements of γ to ppp using
efficient R-tree data structures indexing the cells of the immersed triangulation, and then computing
the distance between ppp and those elements.

This procedure is summarized in Algorithm 1. We validate our approach with a manufactured
case by choosing randomly distributed points {pi}i in the interval [−1,1]2 and computing the relative
error Er(ppp) := |Ψ(ppp)−Ψh(ppp)|

|Ψ(ppp)| for a level set describing a circle of radius R = 0.3, and a corresponding
approximated grid γh.
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(a) In grey the background cell, in green the
immersed one.
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K

Ẽ
S1

S2

S3
S4

S5

S6

(b) The intersection Ẽ is computed and
triangulated.

Fig. 1.5 Triangulation of the intersected region Ẽ for a triangle cutting a square and the relative
sub-tessellation.

Ψ > 0

γ

T

(a)

Ψ = 0

γ

T

(b)

Ψ < 0

γ

T

(c)

Fig. 1.6 Quadrature points distributed on O, S and I for a cell T cut by the curve γ .

In Figure 1.7 we report the relative error committed by replacing the exact level set with the
discrete one (induced by replacing the exact curve with a triangulated one). The initial discretization
of γ is chosen so that the error is below 10−6 everywhere, and we can safely neglect it when computing
convergence rates of the error computed w.r.t. exact solutions known on the analytical level set.

As long as such geometrical error is not dominating we can observe optimal rates in the numerical
experiments for cut-FEM. At the same time, this setting allows for a fair comparison between all the
schemes. We expect that other practical implementations would require similar tasks and hence that
the observed computational cost is representative.
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Fig. 1.7 The relative error for the discrete level set describing a disk of radius R = 0.3 as a function of
the distance from the center xxxccc = (1

2 ,
1
2).

Algorithm 1: Evaluation of the discrete level set (1.4.3) for a given mesh γ .
Input :γ polygonal surface mesh,

Ih coarse triangulation for the interior of γ ,
ppp ∈Ω.

Output :d(ppp,γ).
1 if ppp ∈ Ih then
2 s←−1
3 else
4 s←+1

5 Find{Ki} ∈ γh nearest to ppp.
6 for K ∈ {Ki}i do
7 di← d(ppp,K);

8 Return s ·mini di

1.5 Numerical experiments

Our implementation is based on the C++ finite element library deal.II [22, 21], providing a dimen-
sion independent user interface. The implementation of the Lagrange multiplier and of the Nitsche’s
interface penalization methods are adapted from the tutorial programs step-60 and step-70 of
the deal.II library, respectively, while the cut-FEM algorithm is adapted from the tutorial program
step-85, developed in [166].

As a result of this chapter, we added support and wrappers for the C++ library CGAL ([172], [83])
into the deal.II library [22], in order to perform most of the computational geometry related tasks.
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Thanks to the so called exact computation paradigm provided by CGAL, which relies on computing
with numbers of arbitrary precision, our intersection routines are guaranteed to be robust.

We assume that the background mesh Ωh is a d-dimensional triangulation and the immersed mesh
γh is (d−1)-dimensional with d = 2,3. We validate our implementations with several experiments
varying mesh configurations, algorithms, and boundary conditions. The source code used to reproduce
the numerical experiments is available on GitHub 1.

The tests are designed to analyze the performance of the methods presented in Section 1.3 in
different settings, varying the complexity of the interface and the smoothness of the exact solution
in both two and three dimensions. All tests are performed using background meshes made of
quadrilaterals or hexahedra and immersed boundary meshes made of segments and quadrilaterals.
For the Lagrange multiplier and Nitsche’s interface penalization methods, we perform an initial
pre-processing of the background grid Ω by applying a localized refinement around the interface
(where most of the error is concentrated), so that the resulting number of degrees of freedom for the
variable uh is roughly the same for all methods. Sample grids resulting from this process are shown in
Figure 1.8, where the interface has been resolved from Ωh. We then proceed by computing errors
and convergence rates against a manufactured solution under simultaneous refinement of both the
background and immersed mesh.

Classical Q1 Lagrangian elements are used for the background space while piecewise constant
elements are used to discretize the Lagrange multiplier. For the Nitsche penalization method (1.14),
we set the penalty parameter as β = 10. Errors in the H1- and L2-norm are reported for the main
variable while for the Lagrange multiplier we use the discrete norm in (1.7) which, as already observed,
is equivalent to the H−1/2(γ) norm on a quasi-uniform mesh. In the case of the Lagrange multiplier
method, we report the sum of the number of Degrees of Freedom (DoF) for uh and λh to underline the
fact that a larger system must be solved, while rates are computed against the number of DoF of each
unknown.

For the (symmetric) penalized methods, the resulting linear systems are solved using a precondi-
tioned conjugate gradient method, with an algebraic multigrid preconditioner based on the Trilinos
ML implementation [113], while for the Lagrange multiplier we exploit the preconditioner described in
Section 1.3.1 with the same preconditioned conjugate gradient method for inner solves of the stiffness
matrices, and flexible GMRES as the outer solver. In the case of the Lagrange multiplier method, we
list the total number of inner iterations required to invert the Schur complement.

1.5.1 2D numerical tests

In order to make the comparison between the three methods as close to real use cases as possible,
we do not exploit any a-priori knowledge of analytical level set descriptions of the exact interfaces.
Indeed, using this information one could expect faster computations of the intersections, and an overall

1https://github.com/fdrmrc/non_matching_test_suite.git

https://github.com/fdrmrc/non_matching_test_suite.git


1.5 Numerical experiments 27

reduction of the computational costs of the assembly routines. Instead, we fix the same discretization
of the interface as input data of the computational problem for all three methods.

In particular, we consider as computational domain Ω = [−1,1]2 with immersed domains of
different shapes originating from an unfitted discretization of two different curves:

• circle interface; we let γ1 := ∂BR(ccc),

• flower-shaped interface; we let
γ2 :=

{
(x,y) :

√
x2 + y2− r

(
1−2 y2

x2+y2

)(
1−16 x2y2

(x2+y2)2

)
−R = 0

}
,

where the first is a circle of radius R centered at ccc and the second is a flower-like interface. We
choose as parameter values ccc = (1

2 ,
1
2), R = 0.3 and r = 0.1. The initial discretization of the immersed

domains are chosen so that the geometrical error is negligible w.r.t. the discretization errors (see
Figure 1.8). In the case of the circle interface γ1, the discrete interface is generated using a built-in
mesh generators from deal.II while the flower-shaped interface γ2 is imported from an external file.
When required, we implement a discrete level set function Ψh as described in Algorithm 1. Figure 1.8
shows a representation of the two interfaces.

In the first two tests, we set up the problem using the method of manufactured solutions, imposing
the data f in Ω and the boundary conditions on Γ and γ according to the exact solution

u(x,y) := sin(2πx)sin(2πy). (1.25)

Hence, the right hand side of (1.1) is f = 8π2u(x,y) and the data on the outer boundary Γ and on
γ are computed accordingly. Notice that the smoothness of the solution implies λ ≡ 0 in this case,
meaning that the Dirichlet condition does not constraint the solution u at the interface.

(a) (b)

Fig. 1.8 Zoom on pre-processed background grid Ωh for the circle interface γ = γ1 (left) and the
flower-shaped interface γ = γ2 (right).

This test is meant to assess the basic correctness of the implementation of the three methods, and
corresponds to a case in which the interface is truly not an interface. Instead, when we impose an
arbitrary value for the solution at the interface, we expect the solution u to be only in H

3
2−ε(Ω) for
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any ε > 0, even thought its local regularity on the two subdomains ω and Ω\ω may be higher. This
is due to the fact that the gradient of the solution is not a continuous function across the interface,
and therefore the solution cannot be in H2(Ω). In this case, we cannot expect non-matching methods
that does not resolve the interface exactly, such as the Lagrange multiplier and the Nitsche’s interface
penalization method, to be able to recover the optimal rate of convergence.

In the tables below we also report the number of iterations required in the solution phase in
the column ‘Iter.’. We observe for all experiments a similar number of iterations for the three
methods (which are independent on the number of degrees of freedom, indicating a good choice of
preconditioner for all three methods) even though the solution of the linear system stemming from the
Lagrange multiplier method is generally more expensive compared to the other two methods, owing to
the higher computational complexity of the preconditoner for the saddle-point problem. The balance
in the computational cost of the three different methods is discussed in details in Section 1.5.3.

Test 1: smooth solution over circular interface

We report in Tables 1.1, 1.2, and 1.3 the errors and computed rates for the Lagrange multiplier,
Nitsche’s interface penalization, and cut-FEM method, respectively. In each case, the background
variable converges linearly and quadratically in the H1- and L2-norm, respectively. As for the Lagrange
multiplier, we observe a convergence rate close to two instead of the theoretical rate of one, most likely
due to the very special exact solution that the multiplier converges to (i.e., the zero function). For a
direct comparison, we also report in Figure 1.9 (left) the convergence history of all three methods
against the number of DoF. These results clearly indicate that for smooth problems with relatively
simple interfaces the three methods perform similarly.

Results for γ = γ1 and smooth solution with Lagrange multiplier
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
∥λ −λh∥− 1

2 ,γ
H−

1
2 (γ)

rate
Iter.

389+32 5.579e-02 - 1.879e+00 - 7.402e-02 - 7
1721+64 1.393e-02 1.87 9.391e-01 0.93 1.042e-02 2.83 7
7217+128 3.479e-03 1.94 4.690e-01 0.97 2.805e-03 1.89 9
29537+256 8.691e-04 1.97 2.343e-01 0.98 6.716e-04 2.06 11
119489+512 2.172e-04 1.98 1.171e-01 0.99 2.078e-04 1.69 11

Table 1.1 Rates in L2 and H1 for a smooth u and H−
1
2 rates for the Lagrange multiplier method.
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Results for γ = γ1 and smooth solution with Nitsche
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

389 5.597e-02 - 1.879e+00 - 1
1721 1.396e-02 1.87 9.391e-01 0.93 11
7217 3.487e-03 1.94 4.690e-01 0.97 11
29537 8.712e-04 1.97 2.343e-01 0.98 12
119489 2.177e-04 1.98 1.171e-01 0.99 12

Table 1.2 L2 and H1 error rates for γ = γ1 and a smooth solution with Nitsche.

Results for γ = γ1 and smooth solution with cut-FEM
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

329 8.7560e-02 - 2.1335e+00 - 2
1161 2.2064e-02 1.99 1.0582e+00 1.01 2
4377 5.4875e-03 2.01 5.2351e-01 1.02 15
16953 1.3554e-03 2.02 2.5863e-01 1.02 17
66665 3.3152e-04 2.03 1.2855e-01 1.01 18

Table 1.3 L2 and H1 error rates for γ = γ1 and a smooth solution with cut-FEM.

Test 2: smooth solution over flower-shaped interface

We report in Tables (1.4), (1.5) and (1.6) the error with the computed rates of convergence for the
three schemes. Again we observe the theoretical rates of convergence for all three methods. This
time, however, the direct comparison of the errors shown in Figure 1.9 (right) indicates that the
cut-FEM approach has an advantage over the other two methods. This may be due to the worst
approximation properties of the non-matching methods based on Lagrange multipliers and Nitsche’s
interface penalization in the presence of high curvature sections of the immersed boundary, as can be
seen by comparing the meshes shown in Figure 1.8. Despite the fact that the reached accuracy is the
same for the Lagrange multiplier and We further note that the Nitsche’s interface penalization method
requires less iterations than the Lagrange multiplier method.
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Fig. 1.9 L2, H1, and H−
1
2 errors versus the number of DoF for all schemes applied to γ1 (left) and to

γ2 (right).

Results for γ = γ2 and smooth solution with Lagrange multiplier
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
∥λ −λh∥− 1

2 ,γ
H−

1
2 (γ)

rate
Iter.

1958+256 5.327e-02 - 1.781e+00 - 6.551e-03 - 17
8783+512 1.331e-02 1.85 8.916e-01 0.92 1.183e-03 2.47 20
37037+1024 3.326e-03 1.93 4.458e-01 0.96 5.237e-04 1.18 33
151961+2048 8.312e-04 1.96 2.228e-01 0.98 1.959e-04 1.42 49
615473+4096 2.078e-04 1.98 1.114e-01 0.99 5.327e-05 1.88 53

Table 1.4 L2 and H1 error rates for γ = γ2 and a smooth solution with Lagrange multiplier method.
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Results for γ = γ2 and smooth solution with Nitsche
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

1958 5.327e-02 - 1.781e+00 - 13
8783 1.331e-02 1.85 8.916e-01 0.92 12
37037 3.326e-03 1.93 4.458e-01 0.96 13
151961 8.312e-04 1.96 2.228e-01 0.98 12
615473 2.078e-04 1.98 1.114e-01 0.99 14

Table 1.5 L2 and H1 error rates for γ = γ2 and a smooth solution with Nitsche

Results for γ = γ2 and smooth solution with cut-FEM
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

1209 2.2306e-02 - 1.0422e+00 - 2
4487 5.7207e-03 1.96 5.2424e-01 0.99 17
17163 1.4123e-03 2.02 2.5901e-01 1.02 17
67089 3.4377e-04 2.04 1.2865e-01 1.01 19
265249 8.5223e-05 2.01 6.4118e-02 1.00 20

Table 1.6 L2 and H1 error rates for γ = γ2 and a smooth solution with cut-FEM

Test 3: non-smooth solution over circular interface

In this test, we fix once more γ = γ1 and we define an exact solution with a non-zero jump of the
normal gradient ∇u ·nnn across γ taken from [111], namely

u(x,y) =

− ln(R) if |r| ≤ R

− ln(r) if |r|> R,
(1.26)

where r := xxx− ccc, implying as right hand side f = 0. The Lagrange multiplier associated to this
solution is λ (xxx)≡ λ =− 1

R , as u solves the following classical interface problem:

−∆u = 0 in Ω\ γ,

u =− ln(r) on Γ,

J∇u ·nnnK = 1
R on γ,

JuK = 0 on γ.

(1.27)
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Since the global regularity of the solution is H
3
2−ε(Ω) for any ε > 0, theoretically we would

expect the convergence rates of the L2(Ω), H1(Ω), and H−
1
2 (γ) norms of the errors to be 1, 0.5,

and 0.5 for the Lagrange multiplier method, the same for the variable uh in the Nitsche’s interface
penalization method, and the optimal convergence rates observed in the smooth case in the case of the
cut-FEM method. These are shown in Tables 1.7, 1.8 and 1.9 and plotted in Figure 1.10.

The results show a clear advantage in terms of convergence rates and absolute values of the
errors for the cut-FEM method. In all cases (both smooth and non-smooth), the Nitsche’s interface
penalization method and the Lagrange multiplier method give essentially the same errors. A simple
way to improve the situation for the latter two methods would be to use a weighted norm during the
computation of the error, which was proven to be localized at the interface in [111]. This would allow
to reduce the overall error, but it would still result in a solution that does not capture correctly the
jump of the normal gradient across the interface, which is the main source of error.

Results for γ = γ1 and non-smooth solution with Lagrange multipliers
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
∥λ −λh∥− 1

2 ,γ
H−

1
2 (γ)

rate
Iter.

389+32 1.413e-02 - 3.656e-01 - 3.354e-02 - 2
1721+64 5.698e-03 1.22 2.254e-01 0.65 1.112e-02 1.59 2
7217+128 3.248e-03 0.78 1.621e-01 0.46 6.273e-03 0.83 2
29537+256 1.796e-03 0.84 1.141e-01 0.50 4.094e-03 0.62 2
119489+512 1.099e-03 0.70 8.015e-02 0.51 2.845e-03 0.52 2

Table 1.7 L2-error and H1-error for non smooth u in (1.26) and for the multiplier.

Results for non-smooth u with Nitsche
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

389 9.216e-03 - 3.667e-01 - 1
1721 3.324e-03 1.37 2.286e-01 0.64 11
7217 1.936e-03 0.75 1.640e-01 0.46 11
29537 9.957e-04 0.94 1.151e-01 0.50 12
119489 5.016e-04 0.98 8.070e-02 0.51 13

Table 1.8 L2-error, H1-error for non smooth u in (1.26).



1.5 Numerical experiments 33

Results for non-smooth u with cut-FEM
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

329 3.1670e-02 - 5.6660e-01 - 2
1161 1.5998e-03 4.31 1.2352e-01 2.20 2
4377 3.6791e-04 2.12 5.8327e-02 1.08 16
16953 8.5282e-05 2.11 2.7307e-02 1.09 18
66665 2.1914e-05 1.96 1.3726e-02 0.99 19

Table 1.9 L2-error, H1-error for non smooth u in (1.26) with cut-FEM.
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Fig. 1.10 L2, H1, and H−
1
2 errors versus the number of DoF for all schemes applied to γ1, with

non-smooth solution.

1.5.2 3D numerical tests

We mimic the tests reported above for the two-dimensional setting also in the three-dimensional
case, but we restrict our analysis to the case of a sphere immersed in a box. We fix Ω = [−1,1]3
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and consider as immersed interface a sufficiently fine discretization of the sphere γ3 := ∂BR(ccc) with
ccc = (1

2 ,
1
2 ,

1
2), R = 0.3.

In this setting, we consider two test cases with smooth and non-smooth solution.

Test 1: smooth solution over spherical interface

We proceed analogously to the previous section by computing convergence rates when the solution u
is smooth and defined as

u(x,y,z) := sin(2πx)sin(2πy)sin(2πz), (1.28)

which corresponds to the right hand side f = 12π2u(x,y,z). We report in Tables 1.10, 1.11 and 1.12
the error rates for the three schemes, while in Figures 1.11 (left) we plot errors against the number of
DoF.

The convergence rates are as expected and the results are in line with the two-dimensional
case. The Lagrange multiplier method and the interface penalization method give again very close
computational errors for uh. As in the smooth two-dimensional case, this test should only be considered
as a validation of the code and of the error computation, since the interface does not have any effect
on the computational solutions.

Results for γ = γ3 and smooth solution with Lagrange multiplier
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
∥λ −λh∥− 1

2 ,γ
H−

1
2 (γ)

rate
Iter.

4127+96 6.416e-02 - 2.432e+00 - 0.1027 - 9
37031+384 1.590e-02 1.91 1.212e+00 0.95 0.0287 1.84 14
313007+1536 3.963e-03 1.95 6.051e-01 0.98 0.0069 2.06 19
2572511+6144 9.996e-04 1.96 3.024e-01 0.99 0.0019 1.89 14

Table 1.10 L2 and H1 error rates for γ = γ3 and a smooth solution with Lagrange multiplier.

Results for γ = γ3 and smooth solution with Nitsche
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

4127 6.411e-02 - 2.432e+00 - 17
37031 1.588e-02 2.01 1.212e+00 1.00 14
313007 3.959e-03 2.00 6.050e-01 1.00 14
2572511 9.887e-04 2.00 3.023e-01 1.00 14

Table 1.11 L2 and H1 error rates for γ = γ3 and a smooth solution with Nitsche.
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Results for γ = γ3 and smooth solution with cut-FEM
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

5163 7.0847e-02 - 2.4835e+00 - 24
36781 1.7743e-02 2.12 1.2479e+00 1.05 21
278157 4.5124e-03 2.03 6.2396e-01 1.03 22
2160541 1.1302e-03 2.03 3.1154e-01 1.02 22

Table 1.12 L2 and H1 error rates for γ = γ3 and a smooth solution with cut-FEM

Test 2: non-smooth solution over spherical interface

We consider the test case in [111]:

u(x,y) =

 1
R if |r| ≤ R,
1
|r| if |r|> R,

(1.29)

where r := xxx− ccc, f = 0, and R = 0.3. Analogously to the two dimensional case, the multiplier
associated to this problem is λ (xxx) = λ =− 1

R2 , since u solves the following problem:

−∆u = 0 in Ω\ γ,

u = 1
|r| on Γ,

J∇u ·nnnK = 1
R2 on γ,

JuK = 0 on γ.

(1.30)

We report in Tables 1.13, 1.14, 1.15 the error rates for the three schemes and in Figure 1.11 (right) the
error decay in L2(Ω) and H1(Ω) for uh and the decay in H−

1
2 (γ) for λh. A contour plot of the discrete

solution uh obtained with Nitsche’s penalization method is shown in Figure 1.12.
The difference between the three methods is less evident in terms of absolute values of the errors

when compared to the two dimensional case: while it is still clear that the convergence rates of
cut-FEM are higher compared to the other two methods, the difference between the three methods is
smaller. In particular, the Nitsche’s interface penalization method seems to perform better than the
Lagrange multiplier method when considering the L2 norm.
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Results for γ = γ3 and non-smooth solution with Lagrange multiplier
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
∥λ −λh∥− 1

2 ,γ
H−

1
2 (γ)

rate
Iter.

4127+96 3.907e-02 - 1.251e+00 - 0.4552 - 2
37031+384 2.041e-02 0.89 8.119e-01 0.59 0.2598 0.81 3
313007+1536 1.095e-02 0.88 5.764e-01 0.48 0.1806 0.52 3
2572511+6144 6.214e-03 0.81 4.253e-01 0.43 0.1216 0.57 3

Table 1.13 L2 and H1 error rates for γ = γ3 and non-smooth solution u in (1.29) with Lagrange
multiplier.

Results for γ = γ3 and non-smooth solution with Nitsche
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

4127 8.688e-02 - 1.562e+00 - 19
37031 2.157e-02 2.01 8.885e-01 0.81 16
313007 4.893e-03 2.14 5.724e-01 0.63 16
2572511 1.887e-03 1.37 3.954e-01 0.53 16

Table 1.14 Rates for γ = γ3 and a non-smooth solution u in (1.29) with Nitsche.

Results for γ = γ3 and non-smooth solution with cut-FEM
DoF number ∥u−uh∥0,Ω L2(Ω)

rate
∥u−uh∥1,Ω H1(Ω)

rate
Iter.

5163 6.3609e-02 - 1.3046e+00 - 25
36781 6.9076e-03 3.39 4.5097e-01 1.62 22
278157 1.5076e-03 2.26 2.2098e-01 1.06 24
2160541 3.3802e-04 2.19 9.3590e-02 1.26 24

Table 1.15 L2 and H1 error for γ = γ3 and a non-smooth solution u in (1.29) with cut-FEM
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Fig. 1.11 L2, H1, and H−
1
2 error versus the number of DoF for all schemes applied to γ3 with a smooth

solution u (left) and with a non-smooth solution u (right).

1.5.3 Computational times

In order to better understand the performance of the three methods, we consider a breakdown of the
computational costs into work precision diagrams. These provide a more fair measure of efficiency as
they take into account the computational cost required to reach a given accuracy.

We report hereafter a breakdown of the computational times needed by our implementations of the
three proposed methods. All computations were carried out on a 2.60GHz Intel Xeon processor. For
each benchmark we report the average time required to solve 10 times the 3D smooth Problem 1.5.2.
We recall that a smooth solution implies a vanishing Lagrange multiplier λ , hence the solution u is
not constrained. We compute separately the required CPU times (in seconds) for the main tasks that
each scheme has to perform. On a quasi-uniform mesh, the number N of background cells in Ωh

scales with O(h−3
Ω
), and we expect the assembly of the stiffness matrix to scale linearly in the number

of cells. On the other hand, the number of facets in γh scales with O(h−2
γ ); in our experiments, the

ratio hΩ/hγ is kept fixed, therefore we expect the assembly of the coupling terms ⟨λ ,v⟩γ and ⟨u,v⟩γ
to scale with O(N 2

3 ).
This is indeed what we observe in the experiments as shown in CPU breakdown plots of Fig-

ure 1.13 for each method.
The three schemes have comparable computational times. In particular, the Nitsche interface

penalization method exhibits lower global assembly times compared to the others. However, it is
well known that the number of iterations required to solve the algebraic problem is influenced by the
choice of the penalty parameter β in (1.14), which determines simultaneously also the accuracy of
the numerical solution uh. This can be better seen in work-precision diagrams, where we compare the
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Fig. 1.12 Background mesh Ωh and immersed mesh of the sphere interface γh for the three-dimensional
case (left) and section of the contour plot for the approximate solution uh in (1.29), γ = γ3.

CPU times to solve each refinement cycle versus the L2 error for both test problems (1.28) and (1.29)
in Figure 1.14. In the smooth scenario, results for the Lagrange multiplier and Nitsche’s interface
penalization methods are almost overlapping both in terms of time and accuracy, while cut-FEM
shows larger computational times. The situation is different in the non-smooth case where cut-FEM
better captures the discontinuity at the interface and thus gives more accurate results, with a larger
cost in terms of time for low degrees of freedom count, and with smaller cost for large degrees of
freedom count, owing to the better convergence rate of the method. These results indicate that the
additional implementation complexity eventually pays back for non-smooth solutions. This would be
even more the case with higher order elements, as cut-FEM would keep optimal rates while the other
methods would not be optimal.

Based on the higher efficiency of the Lagrange multiplier and Nitsche penalization method in the
smooth case, we believe that these methods can be made competitive also in the non-smooth case by
an improved local refinement strategy [110].

1.6 Conclusions

The numerical solution of partial differential equations modeling the interaction of physical phenomena
across interfaces with complex, possibly moving, shapes is of great importance in many scientific
fields. Boundary unfitted methods offer a valid alternative to remeshing and Arbitrary Lagrangian
Eulerian formulations, but require care in the representation of the coupling terms between the
interface and the bulk equations.
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Fig. 1.13 Breakdown of CPU times for the three schemes. In (bottom left) Setup level set indicates
the time required to interpolate the discrete level set described in Algorithm 1 onto the finite element
space. Mesh classification shows the time needed to partition the computational mesh and classify
the cells in cut, interior or outside cells. Bottom right: overall CPU times to assemble the algebraic
system for the smooth 3D test. For the cut-FEM method, we also show the CPU time obtained by
using an analytical representation of the interface through an analytic level set function.

In this chapter, we performed a comparative analysis of three non-matching methods, namely
the Lagrange multiplier method (or fictitious domain method), the Nitsche’s interface penalization
method, and the cut-FEM method, in terms of accuracy, computational cost, and implementation
effort.

We presented the major algorithms used to integrate coupling terms on non-matching interfaces,
discussed the benefit of computing accurate quadrature rules on mesh intersections, and concluded
our analysis with a set of numerical experiments in two and three dimensions.

Our results show that accurate quadrature rules can significantly improve the accuracy of the
numerical methods, and that there are cases in which simpler methods, like the Nitsche’s interface
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Fig. 1.14 Work-precision diagrams for the two 3D tests.

penalization method, are competitive in terms of accuracy per computational effort. In general, the
additional implementation burden of the cut-FEM method is justified by the higher accuracy that
it achieves, especially in three dimensions and for the solution of non-smooth problems. Some
computational strategies presented in this chapter will be applied in a memory-distributed setting in
the next chapter, where non-matching grids will be emplyed in a multilevel context.



Chapter 2

Non-nested multigrid method

Traditionally, the geometric multigrid method is used with nested levels. However, the construction
of a suitable hierarchy for very fine and unstructured grids is, in general, highly non-trivial. In
this scenario, the non-nested multigrid method could be exploited in order to handle the burden of
hierarchy generation, allowing some flexibility on the choice of the levels. We present a parallel,
matrix-free, implementation of the non-nested multigrid method for continuous Lagrange finite
elements. Each level may consist of independently partitioned triangulations. Our implementation
has been added to the multigrid framework of the C++ finite-element library DEAL.II, paving the way
to hp-multigrid with non-matching levels. Several 2D and 3D numerical experiments with different
polynomial degrees and non-trivial geometries show the robustness and performance of proposed
implementation.
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2.1 Literature review

Scientific and industrial applications often require the solution of differential problems of the form

Au = f (2.1)

where A and f are a given elliptic operator and source term, respectively, and u the solution field
of interest. Discretizations relying on the finite element method (FEM) applied to complicated
geometries often require large meshes with many unknowns and adaptive mesh refinement in order
to capture the behavior of the solution in some regions or to resolve the geometry of the domain.
In order to solve the resulting large and sparse linear systems of equations, fast and robust solvers
and preconditioners are developed. Among various possibilities, multigrid methods constitute one of
the most efficient techniques for elliptic and parabolic problems [175]. Multigrid methods come in
various flavors, and the choice of variant strongly depends on the underlying mesh and finite element
space. Globally refined meshes generated out of modestly-sized coarse grids are ideal candidates
for the geometric multigrid method, which uses each mesh as a level for the multigrid algorithm.
In this context, the construction of coarse meshes out of a finer one is a simple task and can be
exploited by element agglomeration when the fine grid is structured. On the other hand, for very
fine and unstructured meshes on complicated geometries, becomes highly non-trivial the generation
of a suitable hierarchy of levels needed by the multigrid algorithm, representing a subject of active
research. This is often the case, for instance, for complex industrial CAD (computer-assisted-design)
models. In such cases, one may fall back to algebraic multigrid methods (AMG) [167, 70, 71, 95]
or to non-nested multigrid variants [47, 38]. Multigrid methods for non-nested hierarchies have
recently gained renewed attention in the context of polygonal-based methods, where the presence
of polyhedra naturally induces non-nestedness between levels and hence an ad-hoc definition of the
transfer operators has to be carried out, see e.g. [7, 76] and references therein. In this context, due to
the lack of automatic and high-quality coarsening strategies for complicated tetrahedral or hexahedral
meshes, it is typical to build each level as an independent remeshing of the problem geometry by
changing the mesh size inside a chosen mesh generator.

From the implementation standpoint, the main difficulty in the design of a geometric multigrid
method for non-matching levels lies in the implementation of the intergrid operators, used to transfer
discrete functions from one level to another. In [79], different options have been thoroughly compared
both in terms of accuracy and computational cost for grids of moderate size. The tasks required in the
implementation of such transfer operators, as for instance a spatial search procedure to identify which
elements of the two relevant meshes are intersecting, are shared by a large class of non-matching finite
element techniques such as the ones introduced in Chapter 1. We refer, for instance, to the fictitious
domain method, the immersed boundary method, X-FEM, and the distributed Lagrange multiplier



2.2 Non-nested multigrid method 43

scheme [100, 152, 99] as well as to particle-like methodologies [101, 121]. All of them require the
computation of coupling operators which represent the interaction between two non-matching meshes
over which suitable finite element spaces and physics are defined. The inaccurate computation of the
entries of the matrices representing at the algebraic level these operators may in some cases hinder the
convergence properties of the method [109, 42, 134].

Despite the different contexts and applications of the works mentioned so far, a shared feature
is the explicit storage of the coupling operator as a sparse and generally rectangular matrix that is
later used in matrix-vector products. In contrast, we propose a completely matrix-free implementation
of a geometric multigrid solver and of its transfer operator, applicable for low and moderately high
polynomial degrees. For this purpose, we have extended the multigrid infrastructure of DEAL.II
[65, 145], which has been developed for nested meshes and optimized in the last decade. We perform
comparison with geometric multigrid as well as with AMG and polynomial multigrid, indicating good
performance and robust behavior of the new implementation. To the best our author’s knowledge, this
is the first matrix-free implementation of the multigrid method for non-nested levels. The algorithms
described have been developed for continuous Lagrangian finite elements and pointwise interpolation
as transfer operator. All of this infrastructure has been added within the C++ finite-element library
DEAL.II [21], and are available in the 9.5 release [23]. Note, however, that the main building blocks
are generic and could be inserted in other finite element frameworks which support distributed memory
parallelism through the MPI standard [103], matrix-free evaluation of weak forms on generic points
in reference coordinates as well as efficient geometric search capabilities. The rest of this chapter is
organized as follows. In Section 2.2, the non-nested multigrid method and its relevant properties are
recalled. Section 2.3 focuses on implementation details related to the matrix-free transfer operator
between two arbitrarily overlapping and distributed grids. Section 2.4 presents a series of 2D and 3D
numerical experiments that validate the described implementation and then their performance is tested
on some examples from classical Finite Element Analysis. Conclusions are drawn in Section 3.7.

2.2 Non-nested multigrid method

The main goal of this section is to describe the prolongation and restriction operators used to transfer
between two consecutive grids. We refer the reader to [107] for an extensive presentation of the
multigrid method and to [47] for the convergence analysis of multigrid methods with non-nested
spaces and non-inherited bilinear forms applied to elliptic problems. For the sake of clarity we
consider the classical form of a variational problem: find u ∈V such that

a(u,v) = b(v) ∀v ∈V, (2.2)

where V is a suitable functional space defined on a domain Ω⊂Rd , d = 2,3 with Lipschitz continuous
boundary. a(·, ·) and b(·) are the bilinear and linear forms of the problem, respectively. Let {Tl}l=1,...,L

denote a family of non-nested and shape-regular partitions of Ω, each one characterized by disjoint
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open elements K with diameter hK , such that Ω =
⋃

K∈Tl
K. The subscript l ∈ {1, . . . ,L} is used

to index multigrid levels and we indicate with hl = maxK∈Tl hK the mesh size of the l-th level. In
our notation, level L consists of the finest mesh, whereas l = 1 represents the coarsest level in the
hierarchy. The coarser level Tl is independent of Tl+1, with the only refinement constraint that there
exists a constant C > 0 independent of the discretization parameters such that

Chl ≤ hl+1 ≤ hl l ∈ {1, . . . ,L−1}. (2.3)

All grids consist of tensor product elements (quadrilaterals or hexahedra) and to each one of the levels
we associate a set of degrees of freedom (DoF) Dl and a conforming Lagrangian finite element space

Vl = {v ∈V : v|K ∈Qp(K),∀K ∈ Tl} ⊂V,

withQp(K) the space of polynomials of degree p in each variable. In particular, the fact that Tl ̸⊂ Tl+1

induces the sequence of finite element spaces to be non-nested: Vl ̸⊂Vl+1. The approximation of (3.1)
by finite elements and multigrid techniques requires solving several variational problems of the form:
find ul ∈Vl such that

a(ul,v) = b(v) ∀v ∈Vl. (2.4)

By introducing discrete operators Al : Vl →Vl and fl : Vl → R defined by

(
Alw,v

)
L2(Ω)

= a(w,v) ∀w,v ∈Vl, (2.5)

and (
fl,v
)

L2(Ω)
= b(v) ∀v ∈Vl, (2.6)

problem (2.4) can be written as follows: find ul ∈Vl such that

Alul = fl. (2.7)

Let C0(Ω) be the space of continuous functions defined on Ω. The standard nodal interpolant for
Lagrangian finite elements Il : C0(Ω)→Vl is defined as

u 7→ Ilu := ∑
i∈Dl

u(xi)ϕ
i
l . (2.8)

The Lagrange interpolant can be employed to derive a transfer operator P l
l−1 from the coarse to the

fine grid. In (2.8), ϕ i
l denotes the basis function associated to the i-th degree of freedom in the mesh

Tl located at the support point xi. The residual associated to any finite element function ũl ∈ Vl is
defined as

rl(v) := b(v)−a(ũl,v) = ∑
i∈Dl

[
b(ϕ i

l )−a(ũl,ϕ
i
l )
]
v(xi), (2.9)
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for all v ∈Vl , l ∈ {1, . . . ,L}. It is natural to associate a functional r̃l ∈V
′
l−1 defined by

r̃l : Vl−1→ R, r̃l(vl−1) := rl(Ilvl−1). (2.10)

It is not difficult to verify that r̃l is a linear and bounded functional, the latter thanks to the coercivity
assumption on a. For a given vl−1 ∈Vl−1, based on employing (2.8), (2.9) (2.10), we have:

rl(Ilvl−1) = b(Ilvl−1)−a(ũl, Ilvl−1)

= ∑
i∈Dl

[
b(ϕ i

l )−a(ũl,ϕ
i
l )
]
vl−1(xi)

= ∑
i∈Dl

([
b(ϕ i

l )−a(ũl,ϕ
i
l )
]

∑
x j∈Dl−1

vl−1( j)ϕ j
l−1(xi)

)

= ∑
j∈Dl−1

(
∑

i∈Dl

[
b(ϕ i

l )−a(ũl,ϕ
i
l )
]
ϕ

j
l−1(xi)

)
vl−1(x j)

= ∑
j∈Dl−1

(
∑

i∈Dl

rl(ϕ
i
l )ϕ

j
l−1(xi)

)
vl−1(x j).

(2.11)

This implies that the residual vector rl can be transferred from Tl to Tl−1 with the matrix-vector
product

rl−1 =
(
P l

l−1
)T rl, (2.12)

where

P l
l−1 =


ϕ1

l−1(x1) ϕ2
l−1(x1) ϕ3

l−1(x1) . . . ϕ
|Dl−1|
l−1 (x1)

ϕ1
l−1(x2) ϕ2

l−1(x2) ϕ3
l−1(x2) . . . ϕ

|Dl−1|
l−1 (x2)

...
...

...
. . .

...

ϕ1
l−1(x|Dl |) ϕ2

l−1(x|Dl |) ϕ3
l−1(x|Dl |) . . . ϕ

|Dl−1|
l−1 (x|Dl |)

 .
The generic entry of matrix P l

l−1 thus being given by:

(
P l

l−1
)

i j := ϕ
j

l−1(xi), (2.13)

for all integers i, j indexing DoF in Dl−1 and Dl , respectively. This corresponds to the evaluation of
the j-th basis function located in the coarser triangulation Tl−1 on the i-th DoF attached to Tl and
leads in general to a large and sparse rectangular matrix. The restriction operator is naturally defined
from (2.12) as the transpose of the prolongation operator defined via (2.13):

Rl−1
l :=

(
P l

l−1
)T

. (2.14)

Using nodal Lagrangian basis, if a support point xi ̸∈ suppϕ
j

l−1, then the corresponding entry evaluates
to 0. Clearly, if parent-child relations between consecutive levels are not directly available, then ad-hoc
search strategies must be performed in order to identity the coarse-grid element T ∈ Tl−1 s.t. xi ∈ T for
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Fig. 2.1 Two overlapping cells coming from consecutive levels. Green dots: DoF associated to a Q1

element on the coarser cell K. Blue squares and red stars: DoF associated to aQ1 element on the finer
cell T . Red stars correspond to the DoF (ppp2, ppp4) falling inside K ∈ Tl , while blue squares are the ones
that are falling outside. When evaluating the contribution of this particular coarse cell to the DoF of
the fine cell, each basis function related to such DoF qqqi, i = 1, . . . ,4, will evaluate on (ppp2, ppp4) only.

each finer point xi. This has the effect that the sparsity pattern of P l
l−1 is more involved with respect to

the nested case, where only the knowledge of neighbors is needed, and can hence be pre-allocated just
by using the connectivity of the mesh. A prototypical scenario is shown in Figure 2.1, where some
DoF on the finer cells fall outside the coarser cell. A more in-depth description of the information
retrieval between two meshes and of the necessary data structures is given in Section 2.3. Given an
initial guess u0 ∈VL and the numbers of pre-smoothing and post-smoothing steps (m1,m2) ∈ N×N,
the non-nested multigrid V-cycle algorithm for the approximation of uL is implemented in a recursive
fashion, as summarized in Algorithm 2. Concrete choices for PreSmoother, CoarseGridSolver
and PostSmoother usually depend on the application at hand, discussed in Section 2.4. In the present
work, we use the multigrid method as a preconditioner within conjugate-gradient solvers, as it is often
more robust [173]. As a critical remark, if the true geometry is complex, it may not be possible to
mesh it with a coarser mesh while preserving the relevant geometrical features. Therefore, the coarsest
level may indeed not be really coarse, affecting the choice of the CoarseGridSolver component.
This is particularly evident as soon as the finite element degree becomes moderately high, where plain
conjugate-gradient as coarse solver soon becomes the bottleneck in terms of the total time to solution.
We will describe a possible way to overcome this issue in Section 2.3.3.

2.2.1 Polynomial global coarsening

With polynomial global coarsening [163, 51, 148], the mesh size h is kept constant on every level
of the hierarchy, but the polynomial degree p of the finite element space is reduced incrementally
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from one level to the other. Among various possibilities, here we choose to decrease the polynomial
degree by one from one level to the next, i.e., the degree on the p(c) on the coarse mesh is defined as
p(c) = p( f )−1, being p( f ) the degree defined on the finer mesh. The main benefit in our framework
stems from the observation that whenever the coarsest level has a large number of DoF due to
high polynomial degrees p for which CG is suffering as a coarse-grid solver, we can change to
conjugate-gradient method preconditioned by polynomial global coarsening. As we assume to work
with linear elements at the coarsest level of the polynomial hierarchy, we can switch to AMG which
is very competitive in that scenario [130]. Denoting with T1 the coarsest level over which we apply
polynomial multigrid starting with degree p, then the sequence of finite element spaces {V l

1}l=1,...,p

generated by the polynomial hierarchy is indeed nested in the classical sense, as each space is defined
on the same triangulation T1. In particular, highly optimized matrix-free kernels for polynomial
transfer with nested levels can be exploited [89, 145]. An illustration of this multigrid methodology
and a comparison with the classical hp-multigrid is shown in Figure 2.2. The outcome of this
procedure can be regarded as an hp-multigrid scheme where the "h-" component may be non-nested.

Algorithm 2: One iteration of non-nested multigrid V-cycle on level l ≥ 2 to solve Alx = fl

Data: x0 initial guess
1 if l = 1 then
2 δ1← CoarseGridSolver(A1, f1);
3 else
4 xl ← PreSmoother

(
Al,0, fl,m1

)
;

5 rl ← fl−Alxl;
6 rl−1← Restrictor

(
rl
)
;

7 δl−1← V−cycle
(
Al−1,rl−1,0,m1,m2

)
;

8 xl ← xl +Prolongator
(
δl−1

)
;

9 xl ← PostSmoother
(
Al,0, fl,m2

)
;

2.3 Implementation details

Since each level l ∈ {1, . . . ,L} covers the whole computational domain as in geometric global coars-
ening algorithms [32, 123, 31], it is natural to implement the present framework in the already
available global coarsening infrastructure present in DEAL.II. The global coarsening infrastructure
(MGTransferGlobalCoarsening), extensively described in [145] for nested grids, delegates the ac-
tual transfer operations to a two-level implementation class (MGTwoLevelTransfer). In order to allow
a non-nested transfer within the same interface, a new abstract base class (MGTwoLevelTransferBase)
has been introduced. A UML diagram is displayed in Figure (2.3).
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Fig. 2.2 Schematic illustration of hp-multigrid scheme for a Q3 element. DoF corresponding to
continuous Lagrangian elements are represented with white dots. Left: Classical nested setting.
Right: Non-nested hp variant where the hierarchy of levels is non-matching. Notice how the
CoarseGridSolver is set to polynomial multigrid (p-MG).

Among the several components required by a multigrid framework, we detail the two following
main ingredients. First, due to the overlapping nature of the two grids, a geometric search must be
carried out to obtain the mutual relationships between two consecutive levels l and l +1, i.e., which
cells on level l own the DoF of level l + 1 and the associated reference positions. In a distributed
setting, where all triangulations are partitioned independently (see Figure (2.4)), the relevant owner
processes need to be determined by appropriate communication patterns. Second, a matrix-free
transfer operator has to evaluate the solution field on arbitrary located points in the reference cell
[0,1]d using the underlying polynomial basis. The same setting is well-established in distributed
implementations of immersed methods, and we refer to [127] for an extensive description of this task
and details concerning load balancing.

2.3.1 Distributed geometric search

The evaluation of a discrete finite element field on a given list of physical points requires to determine
the cell K owning every point xxx along with its reference coordinates x̂xx. As described before, the
major difficulty in the distributed case is that K and xxx might belong to different processes. Consider
a communicator consisting of p processes, a list {xxxi}i of points locally owned by process q ̸= p,
and the task to find cells and corresponding ranks owning each xxxi. A first coarse search is used to
determine, in a cheap way, the candidate ranks owning each entity. A possible option uses a global
communication step where each process shares a rough description of the local portion of the domain
it owns with other participants, allowing the global mesh description to be available to each process.
Using the MPI standard, this can be achieved via an MPI_Allgather with vectors of Axis-Aligned
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MGTransferGlobalCoarsening

prolongate(level,vec_fine,vec_coarse) = 0
restrict(level,vec_fine,vec_coarse) = 0

<<interface>>
MGTwoLevelTransferBase

prolongate(vec_fine,vec_coarse) = 0
restrict(vec_coarse,vec_fine) = 0

transfers(l, l +1)

MGTwoLevelTransfer

prolongate(vec_fine,vec_coarse)
restrict(vec_coarse,vec_fine)

MGTwoLevelTransferNonNested

prolongate(vec_fine,vec_coarse)
restrict(vec_coarse,vec_fine)

Fig. 2.3 UML diagram of transfer operators available in the MGTransferGlobalCoarsening

framework in DEAL.II. The new abstract class delegates the implementation of the intergrid trans-
fers to the derived class MGTwoLevelTransfer (used in case of nested meshes) or to the new
MGTwoLevelTransferNonNested in case of a non-nested multigrid method. Each two-level transfer
object is specific to consecutive levels l and l +1.

Bounding Boxes (AABB) local to each rank. Thanks to a local tree data structure, for xxx ∈ {xxxi}i one
can find possible owning cells and ranks. Once candidates have been determined, a finer search is
carried out by each process, checking whether it owns the points or not. The sequence of requests
and answers can be realized efficiently by using consensus-based algorithms for dynamic sparse
communications [117]. In order to avoid the quadratic complexity of MPI_Allgather in the number
of ranks, we optionally use a distributed tree search provided by the ARBORX library [135] during
the coarse search: each process builds the local tree out of a local vector of AABB. Then, roots of
all the local trees are used to create a second tree used for querying possible ownership of entities.
Alternatively, other techniques that allow to determine ownership of possibly remote points based
on forest-of-trees approaches are possible [55]. Search strategies of this kind are general and can be
performed with other geometric entities for which suitable simple predicates can be queried. Once all
the owners have been determined, reference positions {x̂xxi}i associated to each {xxxi}i are computed by
inversion of the transformation map from real to unit cell. For affine mappings, the inversion can be
done explicitly, otherwise Newton-like methods are used.
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(a) Ball inside the cube (b) Clip view

Fig. 2.4 Coupling between processors for two overlapped and distributed triangulations (each color
represents a different MPI rank). (a) The two partitioned triangulations. The cube is displayed with a
wireframe view in order to show the inner ball. (b) Clip view to highlight the coupling between ranks.
Notice that grids are discretizing two different geometries only for the purpose of showing the issue.
In practice, they will both discretize the same domain Ω.

2.3.2 Efficient evaluation on reference positions

The cell K and reference positions of each point are determined in a setup phase of the multigrid
transfer operator. For the actual transfer operation, the remaining work is to evaluate the finite element
solution at each point:

uK(xxx) = ∑
1≤i≤NK

ϕi (x̂xxK)uK,i, (2.15)

where NK is the number of DoF on cell K and ϕi the basis functions in reference coordinates with
x̂xxK the reference position in cell K for the point xxx. For tensor-product shape functions in Rd , the
evaluation of a basis function ϕi at point x̂xx can be written as follows:

ϕi(x̂xx) = ∏
j=1,...,d

ϕ̂i j

(
x̂xx j) , (2.16)

being ϕi(·) the one-dimensional shape function in direction i and x̂xxi the i−th coordinate of point x̂xx.
Combining Equations (2.15) and (2.16), we get

uK(xxx) = ∑
1≤k≤N1D

DoF

ϕ̂k(x̂xx3) ∑
1≤ j≤N1D

DoF

ϕ̂ j(x̂xx2) ∑
1≤i≤N1D

DoF

ϕ̂i(x̂xx1)uK,i jk, (2.17)
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using multi-indices (i, j,k) that are related to the index i in (2.15) in a bijective way. Following the
algorithm presented in [131] for a single point with optimizations from [37], the one-dimensional
basis functions at x̂xx j, j = 1,2,3, are tabulated. With the tabulated arrays N1

xxx ,N
2
xxx ,N

3
xxx , one per direction

with size N1D
DoF each, equation (2.17) can be written in tensor-product notation as

uK(xxx) = N3
zzz
(
Iz⊗N2

xxx
)(

Iz⊗ Iy⊗N1
xxx
)
uK . (2.18)

The resulting computational complexity per point is O
((

N1D
DoF
)d
)

. Note that if the evaluation
points within a cell have a tensor-product structure, classical sum-factorization techniques [149, 131]
combining evaluation steps for all points on a cell yield a final complexity of O

(
dN1D

DoF
)

per degree
of freedom. For nested transfers, we use this strategy.

To summarize the computational properties, the present non-nested algorithm has a similar
O
((

N1D
DoF
)d
)

complexity as matrix-based variants for the transfer. The crucial difference to previous
methods is the fact that the identified computational complexity of unstructured matrix-free evaluation
proposed in the present contribution happens on cached data, with the different arithmetic intensity
suggesting an advantage of at least one order of magnitude for contemporary hardware [130, 37].

(a) Gauss-Lobatto points for degree
p = 4.

(b) Finer Gauss-Lobatto points seen
from coarser cell K.

Fig. 2.5 (a) Gauss-Lobatto points for a quadrature rule of order p= 4 on a cell T ∈ Tl+1. (b) Evaluation
points seen from the coarser cell K ∈ Tl (red stars) do not have a tensor-product structure.

2.3.3 Domains with curved boundaries

For simple geometrical shapes such as shells and cylinders, the placement of new vertices upon
mesh refinement can be done through polar or cylindrical coordinates. In practice, more complex
and realistic shapes are modeled by means of CAD tools, which are internally exploiting B-splines
and NURBS to represent most surfaces of interest with high accuracy. In consequence, the external
generation by meshing software of a sequence of refined grids that discretize an input complex
geometry Ω gives rise to non-conformity on the boundaries of consecutive levels if ∂Ω is curved.
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Furthermore, this approach uses the geometrical information only at the pre-processing stage of
meshing, not at later stages of the pipeline where it may be required to use high order representations
of mappings from real to unit cells. Indeed, even if each level (mesh) has boundary vertices placed
correctly on ∂Ω, support points defining the shape functions on each boundary face will not lie on
the manifold ∂Ω. The non-conformity implies that some entries of the matrix P l

l−1, which should be
non-zero, will vanish on points on the finer grid if not contained in the mesh involving coarser shape
functions, resulting in an inaccurate intergrid transfer. For Dirichlet boundary conditions on a portion
ΓD ⊂ ∂Ω, this does not constitute a problem as DoF on ΓD are already constrained. Conversely, for
Neumann boundaries ΓN it is necessary to include all unconstrained DoF on ΓN in order to provide an
accurate transfer operator. This situation is illustrated in Figure 2.6. Point ppp lies on a boundary face
of Tl+1 and falls outside the coarser level Tl . During the geometric search procedure, by expanding
local bounding boxes by a large enough tolerance, ppp is associated to the red element K ∈ Tl . Denoting
by FFFK : K̂→ K the unit-to-real map to cell K, it holds that FFF−1

K (ppp) ̸∈ K̂. Hence, shape functions are
evaluated at point p̂pp ∈ K̂ nearest to FFF−1

K (ppp):

p̂pp := argmin
x̂xx∈K̂

d
(
x̂xx,FFF−1

K (ppp)
)
, (2.19)

with d(·, ·) the Euclidean distance on Rd . Another approach, more robust and requiring fewer
heuristics, is to propagate the geometrical information stored inside the CAD into the finite element
computations by using state-of-the-art libraries such as OPENCASCADE [161] to interrogate the CAD
model during the refinement process and the distribution of evaluation points on boundary faces [112].

2.4 Numerical experiments

This section presents several numerical experiments to verify the robustness of our algorithm with
respect to 2D and 3D geometries and polynomial degrees. Some sanity checks aimed to check
basic properties of the algorithm in well-known simple cases are shown first before considering
actual non-matching levels. Each test solves the Poisson equation with homogeneous Dirichlet
boundary conditions and constant right-hand side f = 1. Continuous Lagrangian finite elements
defined on quadrilaterals or hexahedra with polynomial degree p ranging from 1 to 4 are employed.
As quadrature formula, the Gauss-Legendre rule with (p+ 1)d points per cell is considered, with
d = 2,3. As discussed in Section 2.3, each level consists of a sequence of (possibly) distributed and
unstructured triangulations meshed independently. In 2D tests, unstructured levels are meshed by
using the mesh generator GMSH [96]. Concerning 3D tests, the commercial software COREFORM

CUBIT [1] has been adopted in order to generate high quality unstructured hexahedral meshes. Finally,
we conclude the section with applications of the proposed methodology using non-trivial geometries
stemming from classical Finite Element Analysis (FEA): a complicated geometry is first read from a
CAD model and then meshed by an external software. We remark that in practice, a CAD file must
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(a) Non-conformity at the boundaries
of different levels.

(b) Position of F−1
K (p) with respect

to reference cell K̂.

Fig. 2.6 Illustration of the situation occurring when the hierarchy discretizes a two-dimensional
domain Ω with curved boundaries. (a) Red dash-dotted lines: elements of a coarser triangulation Tl .
Green dashed lines: boundary for a finer triangulation Tl+1. Black solid line: exact representation of
the boundary ∂Ω. (b) Pre-image of point ppp through FK and its nearest point projection p̂pp ∈ K̂ defined
according to (2.19).

first be repaired in order to be meshed. Removing the so-called small features from a CAD file is
necessary in order to mesh the model at hand and in general is a non-trivial operation. After this
procedure is completed, specific mesh-related parameters have to be carefully tuned, depending on
the physical situation at hand. The grids generated through this procedure are inherently non-nested.
The iterative solver is configured in the following way, taken from [145], with the exception that in
the present chapter a non-nested multigrid preconditioner is employed in place of a nested one:

• The conjugate-gradient solver is run until a reduction of the l2-norm of the unpreconditioned
residual by 104 is reached. Such a loose tolerance is typical in many multigrid applications, for
instance in time-dependent problems in computational fluid dynamics, for which good initial
guesses are usually available by employing extrapolation or projection.

• The conjugate-gradient solver is preconditioned by a single V-cycle of the non-nested multigrid
method.
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l p = 1 p = 2 p = 3 p = 4

#i #i_n #i_a #DoF #i #i_n #i_a #DoF #i #i_n #i_a DoF #i #i_n #i_a #DoF

2 3 3 1 9 3 3 3 25 3 3 4 49 3 3 6 81
3 3 3 3 25 3 3 5 81 3 3 8 169 3 3 12 289
4 3 3 4 81 3 3 7 289 3 3 10 625 3 3 14 1 089
5 3 3 6 289 3 3 8 1 089 3 3 14 2 401 3 3 20 4 225

Table 2.1 #i: number of iterations for non-nested multigrid in two space dimensions. #i_n: number of
iterations for the nested version. #i_a: number of iterations required by AMG.

• Operations in the V-cycle are run with single precision floating-point numbers, while conjugate-
gradient is run in double precision, which increases the computational throughput while main-
taining acceptable accuracy [131, 129].

• A point Jacobi smoother employed within a Chebyshev iteration of degree 3 is used on every
level, using eigenvalue estimates computed with 12 iterations of the Lanczos iteration.

• Two V-cycles of the TRILINOS ML implementation of AMG [95] are used, in double precision,
as coarse-grid solver. The used parameters are the same as the ones in Appendix C of [145].

In every test, we report the number of DoF attached to each level for different polynomial degrees.
All the experiments have been carried out on compute nodes with Intel Xeon Skylake, 2.7 GHz, and
the AVX-512 ISA extension so that 8 doubles or 16 floats can be processed per instruction.

The wall-clock times (measured in seconds) shown in the upcoming Tables consist of the
actual solve time needed by the conjugate-gradient iteration. All results shown in this chapter,
along with the necessary meshes and CAD files, are available on a maintained GitHub repository
https://github.com/peterrum/dealii-multigrid.

2.4.1 Application to nested meshes

The present test is only meant to assess the consistency of the algorithm. A sequence of structured
and globally refined nested meshes discretizing [−1,1]2 is considered. Since Vl−1 ⊂Vl , the transfer
operator P l

l−1 coincides with the classical injection from Vl−1 to Vl . As a matter of fact, the numerical
results obtained both with the nested and the non-nested implementation are identical, as reported in
Table 2.1. The same sanity check is repeated for a sequence of nested levels discretizing the unit cube
[−1,1]3. Results are reported in Table 2.2.

https://github.com/peterrum/dealii-multigrid
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l p = 1 p = 2 p = 3 p = 4

#i #i_n #i_a #DoF #i #i_n #i_a #DoF #i #i_n #i_a DoF #i #i_n #i_a #DoF

2 3 3 1 27 3 3 3 125 3 3 10 343 3 3 20 729
3 3 3 4 125 3 3 10 729 3 3 20 2 197 3 3 33 4 913
4 3 3 5 729 3 3 12 4 913 3 3 31 15 625 3 3 47 35 937
5 3 3 6 4 913 3 3 16 35 937 3 3 73 117 649 3 3 100 274 625

Table 2.2 #i: number of iterations for non-nested multigrid in three space dimensions. #i_n: number
of iterations for the nested version. #i_a: number of iterations required by AMG.

2.4.2 L-shaped domains

2D unstructured L-shaped domains

A sequence of unstructured meshes of an L-shaped domain is constructed using GMSH [96]. The
right-hand side and boundary conditions force a singular behavior at the re-entrant corner. For this
reason, several refinements have been applied near the corner during the generation of the levels. The
number of iterations required by our multigrid preconditioner and the number of DoF on the finest
level are reported in Table 2.3. For every level and polynomial degree, an almost constant number of
iterations required by the solver is observed. A set of the first four levels is shown in Figure 2.7. To
highlight the flexibility of the present framework, we repeat the same test with the exception that the
coarsest level is a classical structured L-shaped domain with 192 cells, leaving all the other levels
unchanged. The number of required iterations follows the one in the fully unstructured case (see the
first row of Table 2.4).

l p = 1 p = 2 p = 3 p = 4

#i #DoF #i #DoF #i #DoF #i #DoF

2 4 1 691 6 6 613 9 14 767 12 26 153
3 4 2 988 6 11 757 9 26 308 12 46 641
4 4 5 055 6 19 965 9 44 731 12 79 353
5 4 8 735 6 34 605 9 77 611 12 137 753
6 4 14 675 6 58 261 9 130 759 11 232 169
7 4 24 308 6 96 661 9 217 060 12 385 505

Table 2.3 Number of required iterations and DoF per level to solve the system with the L-shaped
domain.
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Fig. 2.7 Four of the levels employed for the L-shaped domain, refined near the re-entrant corner.

l p = 1 p = 2 p = 3 p = 4

#i #DoF #i #DoF #i #DoF #i #DoF

2 5 1 691 6 6 613 7 14 767 11 26 153
3 4 2 988 5 11 757 7 26 308 11 46 641
4 4 5 055 5 19 965 6 44 731 11 79 353
5 4 8 735 5 34 605 6 77 611 11 137 753
6 4 14 675 5 58 261 5 130 759 10 232 169
7 4 24 308 5 96 661 6 217 060 11 385 505

Table 2.4 Number of required iterations and DoF per level to solve the system with the L-shaped
domain and a coarser structured level with 192 elements as first level for each polynomial degree.

Fichera’s corner

Fichera’s corner is the prototype of a domain where edge and corner singularities interact and
represents the three-dimensional extension of the two-dimensional L-shaped test shown in 2.4.2.
Levels are generated with COREFORM CUBIT starting from a coarse, structured three-dimensional
L-shaped domain, refining around the vertex located at the re-entrant corner by increasing the
element_depth parameter (how many elements away from the specified vertex are refined) from 2 to
5. Three consecutive levels of the hierarchy are shown in Figure 2.8. Similarly to the two-dimensional
case, we observe iterations counts which are in practice independent of the number of levels employed.

Fig. 2.8 Consecutive levels employed for the Fichera test, refined near the re-entrant corner.
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l p = 1 p = 2 p = 3 p = 4

#i #DoF #i #DoF #i #DoF #i #DoF

2 4 3 983 5 30 105 7 99 775 9 234 401
3 4 11 579 4 90 171 7 301 789 9 712 445
4 3 27 859 4 219 283 6 736 381 8 1 741 261
5 3 57 719 4 456 513 6 1 535 311 8 3 633 041
6 4 219 283 4 1 741 261 7 5 862 799 9 13 880 761

Table 2.5 Number of required iterations and DoF per level to solve the system with the Fichera’s
corner test.

2.4.3 Applications to FEA

On a given linear elastic body Ω⊂ R3, with boundary ∂Ω partitioned in ∂ΩD and ∂ΩN , we solve,
under the assumption of infinitesimal strains, the linear elasticity equation for compressible materials.
The governing equations for the unknown displacement uuu : Ω→ R3 are( [104]):

−∇ ·σ(uuu) = fff in Ω,

σ(uuu) = λ tr(ε(uuu))I +2µε(uuu),

ε(uuu) = 1
2

(
∇uuu+(∇uuu)⊤

)
,

uuu = 000 on ∂ΩD,

σ(uuu) ·nnn = ggg on ∂ΩN ,

(2.20)

where λ ,µ are the Lamé coefficients for the material, σ is the stress tensor, I the identity tensor,
ε(uuu) the linearized strain rate tensor and fff : Ω→ R3 is the body force exerted per unit volume. The
boundary ∂ΩD is clamped, whereas the normal load ggg is imposed on ∂ΩN . A natural space for the
kinematically admissible displacement field u and related test functions is

VD := {vvv ∈ [H1(Ω)]3 : vvv|∂ΩD = 000},

the set of vector-valued H1 functions in Ω with zero trace (displacement) on the Dirichlet portion of
the boundary ∂ΩD. The variational formulation of (2.20) requires to find uuu ∈VD such that

a(uuu,vvv) = b(vvv) ∀vvv ∈VD,

where a(uuu,vvv) =
(
σ(uuu),ε(vvv)

)
Ω

and b(vvv) =
(

f ,vvv
)

Ω
+ ⟨ggg,vvv⟩∂ΩN . Well-posedness for this problem

follows from Korn inequalities and the Lax-Milgram lemma [82]. The material considered in the
forthcoming examples is plain steel with Young’s modulus E = 205 GPa and Poisson’s ratio ν = 0.3.
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Given E and ν , Lamè constants can be computed as follows:

λ =
Eν

(1−2ν)(1+ν)
, (2.21)

µ =
E

2(1+ν)
. (2.22)

It is well known that low-order elements (p = 1,2) applied to (2.20) with mixed boundary conditions
may suffer from the so-called locking phenomenon when λ → 1

2 , meaning that the material is nearly
incompressible. Among the possible remedies, a simple and generally accepted rule in engineering
is that using higher order conforming elements can reduce the potential for locking (even though
there are counterexamples, cf. [5]). On the other hand, matrix-vector multiplications for higher order
matrix-based discretization rapidly become quite expensive as the bandwidth of the matrices increases
[132, 72]. Other strategies that can prevent locking consist in mixed or augmented formulations [41],
but higher order polynomials are rarely employed in practice, usually owing to some low regularity
arguments. The forthcoming examples consider domains arising from applications in structural
analysis that are widely studied in the literature. The geometry is described through .step files, a
standardized ISO file format used in CAD design. Models have been first repaired and later meshed
using COREFORM CUBIT. On both the considered domains, we solve the elasticity equations (2.20)
varying the polynomial degree p, the number of levels in the hierarchy, and the number of processes.
We show in Table 2.6 the chosen solvers depending on the degree of the finite element space. For Q1

elements we compare with AMG, a setting very competitive for linear elements. For higher orders,
we compare with polynomial multigrid (PMG) preconditioning, using CG preconditioned by AMG as
coarse grid solver since the coarsest mesh of the polynomial hierarchy is made by linear elements.

Solvers for problem (2.20)

Element
Solver

AMG NN PMG

Q1 ✓ ✓ ✗

Q2 ✓ ✓ ✓

Q3 ✗ ✓ ✓

Q4 ✗ ✓ ✓

Table 2.6 In each row we report the polynomial space and the solvers applied to the FEA prob-
lem (2.20). Legend: AMG (Algebraic multigrid), NN (Non-nested multigrid), PMG (Polynomial
multigrid).

In order to successfully apply AMG to vector-valued problems it is necessary to provide the
nullspace of the weak form ã(·, ·) associated to the problem with free boundary conditions on ∂Ω,
defined as:

ker(ã) := {vvv ∈ H1(Ω) : ã(vvv,vvv) = 0}. (2.23)
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In case of the three-dimensional linear elasticity problem with strain tensor ε and it holds [26]:

ker(ã) = ker(ε) = span{ttt1, ttt2, ttt3,rrr4,rrr5,rrr6}, (2.24)

with

ttt1 = eee1, ttt2 = eee2, ttt3 = eee3,rrr4 =

 0
z
−y

 ,rrr5 =

−z
0
x

 ,rrr6 =

 y
−x
0

 . (2.25)

The first three elements correspond to translation modes and can be represented by the canonical basis
{eeei}i of R3, while {rrri(xxx)}i are the rotational modes describing rotations around coordinate axes. It
should be noted that, from a user’s perspective, the human time required for preparing and exporting
all levels might certainly be non-negligible in practice even for experts in mesh generation. On the
other hand, classical AMG implementations such as the one used in this thesis usually require only
the setup of a list of parameters related to the problem at hand.

Elasticity examples: piston

The domain depicted in Figure 2.10(a) describes a flat head piston. We set fff = 000 N/m3, neglecting
external body forces, and we prescribe zero displacement on the surfaces of pin hole and a normal load
ggg =−105nnn Pa on the head, being nnn the outward unit normal. The rest of the boundary is traction-free.
Table 2.8 lists the approximate mesh size per level hl set inside the mesh generator and the resulting
number of DoF obtained using continuous Lagrangian finite elements for each l ∈ {1, . . . ,4} while
varying the polynomial degree p from 1 to 4. Each generated grid constitutes a level used in the
V-cycle. Figure 2.10(b) shows a zoom to highlight the non-nestedness of two resulting levels obtained
by the aforementioned process. A visualization of the magnitude of the displacement uuu is given in
Figure 2.11. Table 2.7 shows time to solution and number of iterations for polynomial degrees k
ranging from 1 to 4 and different number of levels, with 72 processes. Some general observations can
be made. First, the number of iterations for the non-nested multigrid method is roughly constant for
every degree p, indicating a correct implementation of the proposed methodology. Moreover, for a
fixed number of levels l, we observe similar patterns in the time to solution. Figure 2.9 shows the times
to solution for the combination of solvers reported in Table 2.6 when l = 3. For Q1 elements, AMG
shows higher number of iterations compared to the non-nested multigrid, but with overall better time
to solution. When employing Q2 elements, AMG shows times that are always higher than the ones
observed with the non-nested multigrid, while PMG is clearly comparable to the non-nested approach.
Moving to the Q3 case, we note again almost overlapping results between PMG and the non-nested
procedure. The gap between non-nested and PMG starts increasing for higher order elements such as
Q4. This is expected as the prolongation and restriction operators for polynomial global coarsening
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72 processes

p = 1 p = 2 p = 3 p = 4

l AMG NN AMG NN PMG NN PMG NN PMG

#i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s]

2 16 0.0263 6 0.2364 22 0.3971 8 0.2204 8 0.1854 9 0.4266 12 0.3093 11 0.9177 9 0.2888
3 17 0.0340 6 0.2298 22 0.8033 7 0.3040 8 0.2682 8 0.5202 11 0.4221 11 1.3653 10 0.5512
4 12 0.0519 6 0.2323 20 1.0428 7 0.3100 8 0.4258 9 0.7887 12 0.7198 11 1.9711 10 0.8504

Table 2.7 Number of iterations and time to solution for algebraic multigrid (AMG), polynomial
multigrid (PMG), non-nested Multigrid (NN) applied to the piston test case with different polynomial
degrees from p = 1 to p = 4. AMG times are shown for Q1 and Q2 elements only.

are employing matrix-free kernels based on sum-factorization algorithms for classical nodal FEM
spaces, which generally have favorable complexity for higher-order elements.

p=
1

p=
2

p=
3

p=
4

0

0.5

1

Polynomial degree (p)

Ti
m

e
[s

]

Time to solution per solver (l = 3)

AMG
NN

PMG

Fig. 2.9 Scatter plot with times required by piston test case with l = 3 while varying solver and
polynomial degree p.
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DoF per mesh size and polynomial degree p

hl

p
1 2 3 4

0.25 25 005 171 765 548 367 1 262 901
0.19 50 814 360 843 1 167 090 2 706 561
0.15 110 904 804 399 2 622 462 6 107 073
0.123 165 069 1 208 187 3 952 203 9 219 969

Table 2.8 Total number of DoF for polynomial degree p and mesh-size for the piston test.

(a) CAD model for the piston. (b) Two non-nested levels for the piston (clipped, ref-
erence configuration).

Fig. 2.10 Left: CAD model used in the preprocessing procedure. Right: Two different levels. For
the sake of visualization, the finer level is displayed in orange using a wireframe representation. The
coarser level is represented as a volumetric mesh (edges in blue). Notice that each level has not been
generated on top of the coarser one through a global or local refinement process.

Fig. 2.11 Left: Magnitude of the displacement vector uuu for the piston test case. Right: Scaled view of
the vector field u.
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DoF per mesh size and polynomial degree p

hl

p
1 2 3 4

1.8 25 425 171 138 542 691 1 245 636
1.5 48 366 336 822 1 082 052 2 500 740
1.1 108 492 777 894 2 526 372 5 872 092
0.95 175 020 1 275 312 4 166 334 9 713 544

Table 2.9 Total number of DoF for polynomial degree p and mesh-size for the wrench test.

Elasticity examples: wrench

As a second example we consider the static structural analysis of a wrench, a classical benchmark
problem in FEA. Zero displacement is imposed on one head, while a pressure of ggg = −105nnn Pa
is applied on one top of the other head, acting in onward direction. The rest of the boundary is
traction-free. In Table 2.10 we show time to solution along with the number of required iterations
by the outer solver, while Table 2.9 shows the number of degrees of freedom per each level l. The
magnitude of the displacement field uuu, along with a graphical representation of the displacement
vector field is displayed in Figure 2.12. The same observations made for the piston test readily apply
also for this test. In particular, Figure 2.13 shows the same behavior in terms of time to solution and
polynomial degrees as the one exhibited by the piston test case in Figure 2.9. In this case, we notice a
high number of iterations for AMG with Q1 and Q2 elements, while geometric approaches keep low
and constant iteration counts for every polynomial degree p, resulting in overall better performances.

Fig. 2.12 Magnitude (scaled) of the displacement uuu for the wrench test case.
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72 processes

p = 1 p = 2 p = 3 p = 4

l AMG NN AMG NN PMG NN PMG NN PMG

#i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s] #i t[s]

2 35 0.0444 7 0.1406 36 0.5099 9 0.2047 7 0.1374 13 0.5155 11 0.2070 16 1.1557 9 0.2451
3 35 0.0640 8 0.1748 44 1.5859 10 0.2923 7 0.4400 14 0.7704 10 0.6029 16 1.7310 8 0.6973
4 37 0.1212 8 0.1875 47 2.7108 10 0.3669 7 0.6863 13 1.0150 10 1.0249 17 2.8615 8 1.1035

Table 2.10 Number of iterations and time to solution for algebraic multigrid (AMG), polynomial
multigrid (PMG), non-nested Multigrid (NN) applied to the wrench test case with different polynomial
degrees from p = 1 to p = 4. AMG times are shown for Q1 and Q2 elements only.
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Fig. 2.13 Scatter plot with times required by wrench test case for l = 3 while varying solver and
polynomial degree p.

2.5 Performance evaluation

We investigate the performance of our implementation by means of the 3D Poisson problem detailed
in Section 2.4. In the next tests, we compare the time to solution and the breakdown of times spent on
each multigrid level by global coarsening and non-nested multigrid for different geometries for which
both methods can be applied. As a crucial remark, we stress that we are measuring against the highly
optimized base-line of matrix-free methods described in [145]. The hierarchies considered are:

• cube: refine globally l times the cube [−1,1]3,

• ball: refine globally l times B1(000), the ball of radius 1 centered at the origin.
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1 process 12 processes

l GC NN GC NN

#i t[s] #i t[s] #i t[s] #i t[s]

4 4 2.3×10−2 4 4.4×10−2 4 1.4×10−2 4 2.0×10−2

5 4 2.0×10−1 4 3.8×10−1 4 3.5×10−2 4 6.7×10−2

6 4 1.6e+0 4 3.2e+0 4 2.0×10−1 4 3.8×10−1

7 4 1.2e+1 4 2.5e+1 4 1.5e+0 4 2.9e+0

Table 2.11 Number of iterations and Time to solution for Global Coarsening (GC) and Non-Nested
Multigrid (NN) applied to the cube test case with polynomial degree p = 4.

1 process 12 processes

l GC NN GC NN

#i t[s] #i t[s] #i t[s] #i t[s]

4 5 3.3e-1 6 6.4e-1 5 6.0e-2 6 1.1e-1
5 6 3.2e+0 6 5.3e+0 6 4.3e-1 6 6.5e-1
6 6 2.5e+1 6 4.3e+1 6 3.4e+0 6 4.9e+0

Table 2.12 Number of iterations and Time to solution for Global Coarsening (GC) and Non-Nested
Multigrid (NN) applied to the ball test case with polynomial degree p = 4.

2.5.1 Serial and parallel runs

The nestedness of levels for these tests implies that the transfer operator P l
l−1 for the multigrid method

described in 2.2 coincides with the canonical injection. While the number of iterations is the same for
both variants, the transfers P l

l−1 andRl−1
l are expected to be much more expensive if compared to

classical transfer operators tailored for nested hierarchies. This is confirmed by Figure 2.14 for a serial
run with the cube and ball examples, where a factor of roughly 20 for transfers is observed between
the two multigrid variants, whereas the other ingredients are in practice identical. As shown in Tables
2.11 and 2.12, this results in times to solution that are slower by a factor of 2 in favor of global
coarsening in the serial case. It is classical in multigrid literature to assume that pre-/post-smoothing
steps consume most of the run time, while transfers between levels are in general not a bottleneck.
Figures 2.15 and 2.17 show a profile of the V-cycle for a parallel run with 12 processes, where we show
the minimum and maximum time (in seconds) spent on each component of the algorithm. The figures
illustrate that, for the non-nested approach, transfers are more expensive than the classical transfer
with sum factorization used by global coarsening with a run time comparable to the application of the
smoother.

To better understand what is contributing to these higher values, a further analysis of the cost
of P l

l−1 has to be carried out. Besides the total time spent to interpolate the coarse finite element
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field δ l−1 from Tl−1 on Tl , we also consider the time spent internally in evaluating δ l at arbitrarily
located reference points determined after the search procedure explained in Sec. 2.3.1. Even if in these
particular instances levels are nested and hence points are not truly arbitrary, this is transparent to the
algorithmic realization of the method and allows to have an indication about how much time is spent in
sending messages compared to the effective evaluation cost. Figure 2.18 shows that evaluation is the
most expensive component of prolongation kernels, taking roughly between 60% and 70% of the total
time for the present setup and geometries, whereas the remaining part is related to communication. In
Figure 2.19 we show the minimum and maximum time spent on each level for the ball test case for a
parallel run with 12 processes for both approaches. With a similar distribution between levels, the
non-nested variant exhibits higher computational times overall because of the cost of the intergrid
transfers. The figure also confirms that the good workbalance for the time to solution typical of the
global coarsening algorithms is seamlessly inherited by the non-nested approach. Increasing the
degree of the Chebyshev smoother in order to reduce the impact of the level transfer by possibly
reducing the total number of conjugate gradient iterations, as shown in Figure 2.16, is shown to not
improve the overall time to solution.
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Fig. 2.14 Serial profiles of a V-cycle. Left: Cube example with L = 7 and p = 4. Right: ball example
with L = 6 and p = 4.
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Fig. 2.15 Profile of a V-cycle with 12 processes with non-nested multigrid. Left: Cube example with
L = 7 and p = 4. Right: ball example with L = 6 and p = 4.

2.5.2 Non-nested tests

In this subsection, we analyze the two non-nested tests presented in Section 2.4.2 more in depth. An
analysis of the different components required by the non-nested multigrid method is presented. We
adapt the setup and tests described in [145, 65]. Almost every metric adopted therein and in classical
multigrid literature can be immediately reused, except for the vertical communication efficiency, i.e.,
the share of fine cells that are owned by the same process that owns their parent coarse cell. That
metric quantifies the amount of data that has to be exchanged by the participating processes during the
level transfer. The lack of exact overlapping between distributed levels slightly complicates standard
metrics that are derived solely on geometrical information, usually considered in standard multigrid
literature. In order to extend this definition to our context, we replace the concept of children cells
with the one of owned points.

Definition 1 (Vertical communication efficiency for non-matching levels). Given two arbitrarily
partitioned triangulations discretizing Ω, the vertical communication efficiency is the share of owned
points on the finer grid that have the same owning process as their corresponding owners on the
coarse grid.

Moreover, we consider other more classical metrics taken from [145, 65]:

• Serial workload: Sum of the number of cells on all levelsWs := ∑l Cl , being Cl the number of
cells on the l-th level.

• Parallel workload: Sum of the maximum number of cells owned by any process on every level
of the hierarchy: Wp := ∑l maxpC p

l , where C p
l is the number of cells owned by process p on

level l. Load imbalances imply that in general one hasWp ̸= Ws
p , meaning that the work is not

properly distributed on the levels. The parallel workload efficiency is hence defined as Ws
Wp·p .
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Fig. 2.16 Profile of a V-cycle with 12 processes with non-nested multigrid using a degree 5 Chebyshev
smoother. Left: Cube example with L = 7 and p = 4. Right: ball example with L = 6 and p = 4.

• Vertical efficiency according to Definition 1: This metric gives a good indication on how
much data has to be exchanged in order to perform intergrid transfers. A large value means
that consecutive partitions of the levels are well overlapped, implying a small volume of
communication. Within this chapter, all meshes are partitioned independently by employing
space-filling curves through the P4EST library [55]. Optionally, graph partitioners such as
METIS can be employed.

In the global coarsening case the parallel workload is, by construction, well distributed among
the participating processes as each level is partitioned during the construction of the hierarchy.
On the other hand, this affects the value of vertical efficiency which is generally low (less than
20%). Indeed, a high load balance and a high overlap of parallel partitions are mutually orthogonal
requirements. Overall, this implies a higher computational pressure on the data exchange phase
needed for prolongation and restriction operations. In this context, where levels do not share the same
coarse mesh, the drop in vertical efficiency is even more pronounced compared to global coarsening.
Tables 2.13 and 2.14 confirm this expected behavior for the levels displayed in Figures 2.7 and 2.8. In
particular, the good parallel workload efficiency of global coarsening is automatically inherited, at the
cost of a poor vertical efficiency for both geometries. Table 2.15 reports the findings for the piston
test case in 2.10 partitioned with 12 processors. The statements made for the previous geometries still
hold also for the piston hierarchy. In this case the low value of the vertical efficiency is even more
prominent. The vertical efficiency obtained employing METIS as partitioning tool is shown in the
last column of Tables 2.13,2.14, and 2.15. As it can be appreciated from Figure 2.20, the overlap of
the parallel partitions for two consecutive levels is quite low with both partitioners, although METIS
gives slightly better results. Our findings match with the ones reported in [145], so making definite
statements is not possible as they would depend on the number of processes and are, in practice,
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Fig. 2.17 Profile of a V-cycle with 12 processes with global coarsening variant. Left: cube example
with L = 7 and p = 4. Right: ball example with L = 6 and p = 4. Notice how, compared to
the previous Figure 2.15, the only major difference are bar charts associated to prolongation and
restriction.

problem-specific. A possible workaround that aims to reduce the load imbalance between levels could
consist in matching the partitioning of some levels of the hierarchy.

1 process 12 processes

l wl wl wl-eff v-eff v-eff METIS

3 5.0e+3 4.4e+2 99% 10% 6%
4 1.0e+4 8.5e+2 99% 7% 5%
5 1.8e+4 1.5e+3 99% 6% 8%
6 3.3e+4 2.7e+3 99% 15% 35%

Table 2.13 Multigrid statistics for the 2D L-shaped test case for different number of levels (wl:
serial/parallel workload, wl-eff: parallel workload efficiency, v-eff: vertical communication efficiency,
v-eff-METIS: vertical communication efficiency employing METIS.).
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Fig. 2.19 Exclusive time in a V-cycle with 12 processes for the cube example with L = 7 and p = 4.
Right: global coarsening. Left: non-nested multigrid.

1 process 12 processes

l wl wl wl-eff v-eff v-eff METIS

2 1.5e+4 1.2e+3 99% 1% 10%
3 4.2e+4 3.5e+3 99% 2% 11%
4 9.9e+4 8.2e+3 99% 5% 7%

Table 2.14 Multigrid statistics for the 3D Fichera test case for different number of levels (wl: seri-
al/parallel workload, wl-eff: parallel workload efficiency, v-eff: vertical communication efficiency,
v-eff-METIS: vertical communication efficiency employing METIS.).
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12 processes

l wl wl-eff v-eff v-eff METIS

2 1.5e+3 99% 1% 1%
3 4.1e+3 99% 2% 9%
4 7.9e+3 99% 5% 9%

Table 2.15 Multigrid statistics for the piston test case for different number of levels (wl: serial/parallel
workload, wl-eff: parallel workload efficiency, v-eff: vertical communication efficiency, v-eff-METIS:
vertical communication efficiency employing METIS.).

(a) Coarser level. (b) Finer level.

Fig. 2.20 Clipped view of consecutive levels in the hierarchy for the piston test case 2.10 partitioned
across 12 processors (each color represents a different MPI rank). It can be appreciated how a fixed
MPI rank owns different regions when the mesh is refined.
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2.6 Conclusions

In this chapter, we have presented a matrix-free and memory-distributed implementation of the non-
nested multigrid method which gives large flexibility for the levels that can be employed, allowing
them to be arbitrarily overlapping and distributed among processors. We have shown its robustness
through an extensive set of examples by varying grids, equations, polynomial degrees, and the number
of levels. We confirmed its reliability also in the case of complicated three-dimensional geometries.
Building on top of the DEAL.II finite element library, it was possible to integrate our implementation
with highly-optimized and state-of-the-art matrix-free evaluation kernels. Finally, we have carried out
a breakdown of the different components of our pipeline, showing the computational cost associated
to the different phases and pointing to possible future improvements.
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Polytopic Finite Elements





Chapter 3

Agglomeration of polytopic grids

We present a novel approach to perform agglomeration of polygonal and polyhedral grids based on
spatial indices. Agglomeration strategies are a key ingredient in polytopic methods for PDEs as they
are used to generate (hierarchies of) computational grids from an initial grid. Spatial indices are spe-
cialized data structures that significantly accelerate queries involving spatial relationships in arbitrary
space dimensions. We show how the construction of the R-tree spatial indexes database of an arbitrary
fine grid offers a natural and efficient agglomeration strategy with the following characteristics: i)
the process is fully automated, robust, and dimension-independent, ii) it automatically produces
a balanced and nested hierarchy of agglomerates, and iii) the shape of the agglomerates is tightly
close to the respective axis aligned bounding boxes. Moreover, the R-tree approach provides a full
hierarchy of nested agglomerates which permits fast query and allows for efficient geometric multigrid
methods to be applied also to those cases where a hierarchy of grids is not present at construction time.
We present several examples based on polygonal discontinuous Galerkin methods, confirming the
effectiveness of our approach in the context of challenging three-dimensional geometries, including
for the design of geometric multigrid preconditioners.
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3.1 Literature review

The Finite Element Method (FEM) is well known to provide a flexible discretization framework
thanks to the use of unstructured meshes. Tetrahedral, hexahedral, or prismatic elements are typically
used to mesh general domains. Mesh generation is a crucial step in the FEM and often a bottleneck in
the resolution of complex real-world models.

To overcome these limitations, a natural possibility is to use methods that leverage general
polygons and polyhedra as mesh elements. These methods, known as polytopic methods, have
witnessed tremendous development in the last two decades. We refer, for instance, to polygonal
FEM [168, 93], Mimetic Finite Differences [34, 120, 50], Virtual Element Method (VEM) [35, 16],
Polygonal Discontinuous Galerkin [60, 30, 15], Hybridized Discontinuous Galerkin (HDG) [66, 68,
67], and Hybrid High-Order method (HHO) [77, 78].

Regardless of the underlying method, generating hierarchies of computational grids is a key
step in the efficient numerical solution of partial differential equations. For simple geometries and
traditional FEMs, the generation of these hierarchies is often straightforward, and it is performed in a
bottom-up approach, by refinement of an initially coarse grid. For complex geometries, however, the
construction of a hierarchy of grids may be challenging or impractical. One may only have access
to non-nested sequences, which requires the construction of challenging transfer operators with a
possibly high computational cost due to the non-matching nature of consecutive levels. For instance,
this may occur when CAD (computer-aided design) models are meshed with external software and
one is given a very fine geometry for which no hierarchical information is available.

The use of polytopic methods is attractive in this respect since coarse grids can be simply generated
by merging polygonal and polyhedral elements [63, 14, 30, 150]. However, providing automated
and good-quality agglomeration strategies for polygonal and polyhedral elements remains an open
problem and challenging task. It is indeed crucial, but challenging, to preserve the original mesh
quality, as any deterioration could potentially affect the overall performance of the method in terms
of stability and accuracy. Typically, general graph-partitioning tool such as METIS [124] are used,
which are not designed to retain the properties of the underlying fine mesh.
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During the last few years, significant progress has been made, for instance by exploiting Machine
Learning (ML) algorithms. ML provides a framework to automatically extract information from
data to enhance and accelerate numerical methods for scientific computing [156, 157]. Their use in
handling polygonal meshes has been recently introduced by Antonietti and co-authors in [20, 58, 17].

In this chapter, we propose an alternative approach to produce efficient and high-quality agglom-
erates based on R-trees [105, 138], a spatial indexing data structures. R-trees excel at organizing
spatial data using bounding boxes, particularly in contexts where performing spatial queries for
large sets of geometric objects in a fast way is required. Such geometric predicates are ubiquitous
within the efficient implementations of non-matching finite element techniques, where two different
geometries, usually representing different physical components, overlap arbitrarily. This is the case
for the immersed methods [127, 43] studied in Chapter 1 as well as in particle methods [121]. By
leveraging the R-trees structure, we develop an efficient and automatic mesh agglomeration algorithm
specifically tailored for polygonal and polyhedral grids. This approach is fully automated, robust,
and dimension-independent. Moreover, it preserves mesh quality while significantly reducing the
computational cost associated with the agglomeration process.

To validate R-tree as an agglomeration methodology, we assess the quality metrics of the polytopic
elements produced from a set of representative fine grids. We compare our findings with METIS,
a standard solver for graph partitioning, which is designed to process only the graph information
regarding the mesh, and is often employed as an agglomeration algorithm. Our results show that the
R-trees approach produces meshes which are either similar or superior in quality to those produced
by METIS using a fraction of the computational time. In particular, R-tree based agglomeration
preserves structured meshes, a property not shared by METIS. Thus, for instance, when starting from
a square grid, the repeated application of R-tree agglomeration produces a sequence of nested square
grids. Moreover, even in the case of unstructured meshes, subsequent agglomerates tend to align to
the corresponding bounding boxes, thus producing logically rectangular grids.

In the context of polytopic methods, multilevel solvers generally rely on non-nested hierarchies
due to the presence of general shapes which naturally induces non-nestedness between levels. As a
consequence, ad-hoc definitions of the transfer operators have to be employed, see e.g. [7, 76]. On
the contrary, by exploiting the tree structure and appropriate parent-child relationships, it becomes
possible to automatically extract nested sequences of agglomerated meshes, which can then be di-
rectly used within multigrid solvers. We propose R-tree based MultiGrid (R3MG) preconditioning
with discontinuous Galerkin methods. We test R3MG on a second-order elliptic model problem
discretized using the polytopic hp-version of Interior Penalty discontinuous Galerkin method analyzed
in [59–61]. Multigrid methods for DG discretizations have been developed and studied, for instance,
in [10, 7, 9, 123]. Exploiting the nested sequences of polytopic meshes produced by R-tree agglom-
eration, we construct multigrid preconditioners and report on the number of iterations required by
the preconditioned conjugate gradient iterative solver. Our results show good convergence properties
of both the two- and three-level preconditioned iterative solver in two- and three-dimensions. The
experiments are carried out using a newly developed C++ library based on the well-established
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DEAL.II Finite Element Library [21]. Our implementation allows for the use of polytopic discon-
tinuous Galerkin methods on agglomerated grids both in 2D and 3D, in parallel, and with different
agglomeration strategies.

The chapter is organized as follows. In Section 3.2 we recall the R-tree data structure and the
algorithmic realization of our approach, which is then used to build hierarchies of agglomerated grids
in Section 3.3. We validate the R-tree based agglomeration strategy in Section 3.4, while in Section 3.5
we introduce the polytopic discontinuous Galerkin method for the discretization of second-order
elliptic problems on general meshes and showcase the application of R-tree based agglomeration in
the solution of benchmark PDEs as well as its application to multigrid methodology. In Section 3.6
we will discuss relevant implementation details and data structure. Finally, Section 3.7 summarizes
our conclusions and points to further research directions.

3.2 R-trees

We briefly list the basic properties of the R-tree data structure proposed by Guttman in the seminal
paper [105] and discuss its variations following [138]. R-trees are hierarchical data structures used
for the dynamic organization of collections of d-dimensional geometric objects, representing them
by their minimum bounding – axis aligned – d-dimensional rectangle, also denoted by MBR. In this
context, dynamic means that no global reorganization is required upon insertion or deletion of new
elements of the tree. We will use the terms MBR or bounding box interchangeably throughout the
work. An internal node of an R-tree consists of the MBR that bounds all its children. In particular,
each internal node stores two pieces of data: a way of identifying a child node and the MBR of all
entries within this child node. The actual data is stored in the leaves of the tree, i.e., the terminal
nodes of the tree data strcuture. We summarize these aspects in the following definition of R-tree.

Definition 2. R-tree of order (m,M). An R-tree of order (m,M) has the following characteristics:

• Each leaf node is a container that can host between a minimum of m≤ M
2 and a maximum of

M entries (except for the root node, which is allowed to contain fewer elements if the number
of objects to classify is less than m). Each entry is of type (MBR, id) where id is the object’s
identifier and MBR is the minimum bounding rectangle that covers the object.

• Each internal node is a container that can store again between a minimum of m ≤ M
2 and a

maximum of M entries. Each entry is of the form (MBR,p) where p is a pointer to a child node
(that can be either an internal or a leaf node) and MBR is the minimum bounding rectangle that
covers all the MBRs contained in this child.

• All leaves of the R-tree are at the same level.

• The minimum allowed number of entries in the root node is 2 unless it is a leaf node, in which
case it may contain zero or one entry (and this is the only exception to the rule that all leaves
must contain a minimum of m entries).
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An example of the minimum bounding rectangles of some geometric objects (not shown) is given
in Figure 3.1, while the associated R-tree of order (4,2) is shown in Figure 3.2. In this example,
the leaf level stores the minimum bounding rectangles D,E,F,G,H, I,J,K,L,M,N. Conversely, the
internal node comprises the three MBRs A,B,C. Notice the empty box in the internal node and the
rightmost leaf node, meaning another entry could be stored there since the order is (4,2).

Fig. 3.1 Example of MBRs holding geometric data
and their MBRs.

A B C

D E F G H I J K L M N

Fig. 3.2 Corresponding R-tree data structure.

The original R-tree is based solely on the minimization of the measure of each MBR. Several
variants have been proposed, aimed at either improving performance or flexibility, generally depending
on the domain of application.

In view of optimizing quality and handling of grid generation, it is desirable to minimize the
overlap between MBRs. Indeed, the larger the overlap, the larger the number of paths to be processed
during queries. Moreover, the smaller the overlap the closer the agglomerated element will conform
to the corresponding bounding boxes, thus making the resulting agglomerated grid qualitatively close
to rectangular. Among the several available variants, we adopt the R∗-tree data structure designed in
[33]. The criteria that R∗-trees aim to achieve are the following:

• Minimization of the area covered by each MBR. This criterion aims at minimizing the dead
space (area covered by MBRs but not by the enclosed elements) to reduce the number of paths
pursued during query processing.

• Minimization of overlap between MBRs. The larger the overlap, the larger the expected number
of paths followed for a query. As such, this criterion has the same objective as the previous one.

• Minimization of MBRs perimeters. Shaping more square bounding boxes results in reduced
query time as this suffers in the presence of large overlaps and/or heterogeneous shapes.
Moreover, since square objects are packed more easily, the corresponding MBRs at upper levels
are expected to be smaller.

• Maximization of storage utilization. Increasing the storage utilization per node will generally
reduce the cost of queries since the height of the tree will be low. This holds especially true for
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larger queries, where a significant portion of the entries satisfies the query. Conversely, when
storage utilization is low, more nodes tend to be invoked during query processing.

It should be noted that such requirements can easily be orthogonal. As an example, keeping the area
and the overlap between MBRs low could imply a lower number of entries packed within each node of
the tree, leading to higher storage usage. Therefore, the R∗-tree does some heuristics to find the best
possible compromise of these criteria. We refer to the original paper [33] for the relevant algorithmic
details.

In our implementation, we rely on the BOOST.GEOMETRY module supplied by the Boost C++
Libraries [44] for the construction and manipulation of R∗-trees. BOOST is a generic C++ library
providing concepts, geometry types, and general algorithms for solving, among others, problems in
computational geometry. Its kernels are designed to be agnostic with respect to the number of space
dimensions, coordinate systems, and types. Moreover, BOOST provides the capability to perform
spatial queries with polygonal shapes, therefore we envision its usage also when the underlying grid
is already polytopic, such as with Voronoi tessellations.

In the remainder of the thesis, we will not make any distinction between R-trees and R∗-trees, as
we always employ the latter.

3.2.1 R-trees and finite element meshes

Here we describe the construction of the R-tree data structure associated with a given finite element
mesh. Let a domain Ω⊂Rd , d ≥ 1 be given, which we identify with its partition into non-overlapping
mesh elements T ∈Ω covering Ω. The construction of the R-tree data structure for Ω is initialised
with the construction of the minimal bounding rectangle for each mesh element. We denote by
{MBR(Ti)}N

i=1, with N the cardinality of Ω, the resulting collection of MBRs. To give a simple yet
practical example, consider the discretization of the unit square [0,1]2 with the 8×8 square grid in
Figure 3.3 (left). In this particular instance, for every T ∈Ω, it holds that MBR(T )≡ T . Once the
container with all MBRs is stored, the R-tree is ready to be built. The generated hierarchical structure
is depicted in Figure 3.3 (right). The root node, which constitutes the first level of the R-tree, has
four entries with MBRs A,B,C,D (dashed lines). Each one of the entries points to an internal node,
which in turn is composed of other four MBRs. For instance, looking at the entry associated with A, it
can be seen that it has as a child the internal node with entries E,F,G and H, each one composed of
other four elements, which are leaves of the R-tree (and coincide with the mesh elements). The same
pattern applies to the other three blocks of the mesh. The resulting R-tree is a (4,2) R-tree, according
to Definition 2. A schematic view of the tree hierarchy is shown in Figure 3.4.
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Fig. 3.3 Left: 8×8 square grid obtained with 3 uniform refinements of Ω = [0,1]2. Right: Minimal
bounding rectangles generated on top of the grid elements of Ω.

A B C D

E F G H I J K L

Fig. 3.4 R-tree data structure for the 8×8 mesh example. For the sake of readability, only two internal
nodes are shown. Each entry at the leaf level is one mesh element T . Notice how each node stores
exactly 4 entries.

3.3 Agglomeration based on R-trees

Here we describe the construction of an agglomerated mesh starting from a given finite element mesh
and the associated R-tree data structure. Let the mesh Ω of cardinality N be given and assume the
associated R-tree of order (m,M) has been constructed. We denote with L the total number of levels
of the R-tree and with Nl the set of nodes in level l, for l ∈ {1, . . . ,L}. Our agglomeration strategy
depends on an input parameter l ∈ {1, . . . ,L} which describes the level to be employed to generate the
final agglomerates. The basic idea consists of looping through the nodes Nl and, for each node n ∈ Nl ,
descending recursively its children until leaf nodes are reached. These leaves share the same ancestor
node n (on level l) and thus are agglomerated. We store such elements in a vector v[n], indexed by the
node n. This procedure is outlined in Algorithm 3.

After the recursive visit of the children of a node n, a sequence of at most M elements T j
n can be

stored in v[n] and flagged appropriately for agglomeration. Since the R-tree data structure provides a
spatial partition of mesh elements, each of which is uniquely associated with a node, the traversal of
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Algorithm 3: Creation of agglomerates.
Data: R-tree R of order (M,m)
Data: l ∈ {1, . . . ,L} target level.
Result: v vector s.t. v[n] stores leafs associated to node n

1 Function ComputeAgglomerates(R, l):
2 for node n in Nl do
3 v[n]← ExtractLeafs(l,n);

4 return v;

Algorithm 4: Recursive extraction of leafs from a node n on level l.
Data: l ∈ {1, . . . ,L} target level
Data: n ∈ Nl
Result: vector v[n] containing leafs which share the ancestor node n

1 Function ExtractLeafs(l,n):
2 if l = 1 then
3 v[n]←{T 1

n , . . . ,T
M

n };
4 else
5 ExtractLeafs(l−1,n)

all nodes on a level l provides a partition of mesh elements into agglomerates. The overall procedure
can be summarized as follows:

1. Compute {MBR(Ti)}i for i = 1, . . . ,N,

2. Build the R-tree data structure using {MBR(Ti)}i as described in Section 3.2,

3. Choose one level l ∈ {1, . . . ,L} and apply Algorithm 3,

4. For each node n, flag together elements of v[n].

We point out that elements in v[n] are usually mesh-like iterators, i.e. lightweight objects such
as pointers that uniquely identify elements of Ω. As we will show in Section 3.4.3, the overall
construction of the R-tree and the actual identification of agglomerates turns out to be quite efficient
also for large 3D meshes. Moreover, having in mind multilevel methods, we notice that Algorithm
3 can be employed to generate sequences of nested agglomerated meshes. As a consequence, such
meshes can be used as a hierarchy in a multigrid algorithm, allowing the usage of simpler and
much cheaper intergrid transfer operators, when compared to the non-nested case. Building efficient
intergrid transfer operators for non-matching meshes is far from trivial even for simple geometries
and their construction constitutes a severe bottleneck in terms of computational efforts, becoming
critical in 3D [7, 76]. We notice, however, that in the context of Lagrangian Finite Elements on
standard hexahedral or quadrilateral grids, a completely parallel and matrix-free implementation of the
non-nested geometric multigrid method has been recently addressed in [88] and is part of Chapter 2.
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3.4 Validation

To show the effectiveness of the R-tree based grid agglomeration strategy, we perform several
experiments with different grid types and compare it with METIS [124], a standard graph partitioning
algorithm often used for grid agglomeration.

More in detail, we use the multilevel k-way partitioning algorithm implemented in METIS to
perform a partition of the graph associated with the given grid. Each partition corresponds to one
agglomerated element and the cardinality of the resulting grid is thus fixed a priori as the number of
partitions of the graph. We recall that, instead, the input parameter in R-tree-based agglomeration is
the level of the tree used to extract the agglomerates, as described in Algorithm 3. Therefore, we will
write extraction_level and n_partitions for the parameters required by the R-tree and METIS
strategy, respectively. The value of parameter M in 2 is set to 2d , being d the space dimension, while
m is set to M

2 = 2d−1.
In view of a fair comparison, we always employ METIS setting n_partitions as the number of

elements produced by the R-tree-based algorithm with a given extraction_level. In this way, the
grids we compare, although effectively different, are guaranteed to be made of the same number of
elements.

A crucial part of this chapter has been the development of the C++ library POLYDEAL, using
the well-established Finite Element library DEAL.II [23, 21] as a third-party library. POLYDEAL
provides the building blocks for solving partial differential equations with polytopic discontinuous
Galerkin methods. It is distributed and builds on the Message Passing Interface (MPI) communication
model [142]. Providing an implementation within an existent finite element library has several
advantages. Most importantly, we seamlessly inherit many robust features readily available and well-
tested. Among them, we mention here P4EST [57] for mesh partitioning across several processors, and
TRILINOS [113] or PETSC [27] as parallel linear algebra libraries which provide a large variety of
solvers. The library can be compiled by following the instructions available at the maintained GitHub
repository [86]. The results presented in this section, as well as the grids used in all the examples, are
also made available in the same repository.

3.4.1 Validation on a set of grids

To validate our methodology, we consider the following set of grids, sampled in Figure 3.5:

• Ω1 structured partition of [0,1]2,

• Ω2 structured partition of B1(000),

• Ω3 unstructured partition of [0,1]2,

• Ω4 structured partition of [0,1]3,

• Ω5: CAD-modelled mesh of a piston,
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• Ω6: mesh of a human brain.

We expect the circular domain and grid Ω2 to provide a less favourable case, for which higher overlap
is to be expected due to the fixed, axis-aligned, orientation of the bounding boxes. The grid Ω5

has been generated after repairing and meshing the associated CAD 3D model with the commercial
mesh generator CUBIT [1], while Ω6 is a brain model created from magnetic resonance imaging
(MRI) data which has been preprocessed, segmented, and meshed in [102]. These two latter grids
are challenging and provide good three-dimensional test cases for assessing the performance of our
algorithm.

(a) Ω1 (b) Ω2 (c) Ω3

(d) Ω4 (e) Ω5 (f) Ω6

Fig. 3.5 The set of meshes used in the numerical experiments.

Test 1: Structured square

We fix as underlying mesh Ω1 the 32×32 structured grid of squares. We report in Figure 3.6 the grids
obtained by agglomeration of Ω1 using either METIS or the R-tree. With the extraction of the R-tree
second level, we obtain the 4×4 square mesh reported in Figure 3.6b. The target number of mesh
elements required by METIS is hence set to 16. The resulting agglomerated elements are jagged, cf.
Figure 3.6a. This is to be expected: METIS only processes the information coming from the graph
topology of the mesh, hence the agglomerates are not supposed to preserve in any way the initial



3.4 Validation 85

geometry, despite the fact that each polygon is made by 16 sub-elements (as it is also the case for the
R-tree).

We repeat the procedure by setting extraction_level= 3. The R-tree naturally produces the
8×8 Cartesian mesh, exactly the subdivision one would get by globally refining the coarser mesh
in Figure 3.6b. We thus set 64 as the number of target elements for METIS. Results are shown in
the bottom plots in Figure 3.6c. We observe that METIS produces polygons with even more jagged
shapes, with many skinny and elongated elements,a particularly poor result considering that the
underlying mesh is Cartesian.

(a) METIS, n_partitions= 16. (b) R-tree, extraction_level= 2.

(c) METIS, n_partitions= 64. (d) R-tree, extraction_level= 3.

Fig. 3.6 Comparison between METIS and R-tree based agglomeration starting from the grid Ω1
displayed in Figure 3.5a. Grids displayed in the same row always comprise the same number of
elements.
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Test 2: structured ball

We consider next as Ω2 the structured partition of a circle shown in Figure 3.5b. We remark that
this grid is much finer than Ω1 as it is made of 20,480 elements. We start with extracting the third
level of the R-tree, which gives 20 agglomerates and accordingly set the target number of elements
for METIS as n_partitions = 20. We observe from Figure 3.7b that the R-tree agglomerates
conform to the rectangular shape of the respective bounding boxes, even though in this case the
underlying quadrilateral mesh is not axis-aligned. METIS partitions, on the other hand, produce
elements with general shapes. Extracting the next level (i.e. setting extraction_level= 4) of the
hierarchy is equivalent to partitioning each agglomerate of extraction_level= 3 into balanced
sub-agglomerates, as shown in Figure 3.7d, similarly to what happens with the square case shown
previously. On the contrary, the two corresponding grids produced by METIS and shown in Figure 3.7a
and Figure 3.7c are completely unrelated.

Test 3: unstructured square

The same procedure is repeated with the grid Ω3, composed of 93,184 non-uniform quadrilaterals.
The main difference between the two examples above relies on the fact that this grid is fully un-
structured. With the R-tree, we extract first level 4, which gives 91 elements. Employing METIS
with n_partitions = 91 as input value, we obtain the grid in Figure 3.8a. Here it is even more
evident how the R-tree approach inherently gives rectangular-like shapes, in contrast to METIS.
This is confirmed by the grids corresponding to extraction_level= 5 and shown in Figures 3.8c
and 3.8d.

3.4.2 Quality of resulting elements

To assess the quality of the proposed methodology, we follow the same approach used in [20] and
compute some of the quality metrics devised in [24], which are reported hereafter for completeness:

• Uniformity Factor. Ratio between the diameter of an element K and the mesh size h defined as
the maximum overall diameter of the polygons in the mesh:

UF(K) =
diam(K)

h
.

• Circle Ratio. Ratio between the radius of the inscribed circle and the radius of the circumscribed
circle of an element K:

CR(K) =
max{B(r)⊂K} r
min{K⊂B(r)} r

.
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(a) METIS, n_partitions= 20. (b) R-tree, extraction_level= 3.

(c) METIS, n_partitions= 80. (d) R-tree, extraction_level= 4.

Fig. 3.7 Comparison between METIS and R-tree based agglomeration of the grid Ω2 shown in
Figure 3.5b. Grids displayed in the same row always comprise the same number of elements.

• Box Ratio. Ratio between the measure of an element K and the measure of its bounding box:

BR(K) =
|K|

|MBR(K)| .

In addition to the previous metrics, we consider also the following:

• Overlap Factor. Ratio between the sum of the measures of all the bounding boxes in the
polytopic mesh and the global measure of the domain:

OF(Ω) =
∑

N
i=1 |MBR(Ki)|
|Ω| ,

where N is the cardinality of the mesh Ω.
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(a) METIS, n_partitions= 91. (b) R-tree, extraction_level= 4.

(c) METIS, n_partitions= 364. (d) R-tree, extraction_level= 5.

Fig. 3.8 Comparison between METIS and R-tree agglomeration starting from the grid Ω3 seen in
Figure 3.5c. Grids displayed in the same row always comprise the same number of elements.

The first three metrics take values in [0,1], while OF takes values greater or equal to 1. In particular,
higher average values of UF imply that elements of the grid have comparable sizes, while higher
averages of CR suggest that elements are close to circular shapes. To estimate this particular metric,
we compute the radius of the inscribed circle of general polygons using the C++ library CGAL [83]
and approximate the radius of the inscribed circle with diam(P)

2 . The metric BR takes into account how
much an agglomerate K and its bounding box are coinciding. Therefore, values close to 1 indicate
that the bounding box is tightly close to the agglomerate.

The metric OF(Ω) is a global version of the metric BR: it estimates the sum of the overlaps
between all bounding boxes relative to the measure of Ω. In addition, it indicates how tightly the
computational domain can be covered by boxes. For instance, we obtain the optimal BR = 1 for the
axis-aligned grid of Figure 3.5a, cf. Table 3.1.
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In the table, we report the average values of UF, CR, and BR for each geometry when we perform
the first round of agglomeration of the grids displayed in Figure 3.5 (top), namely the structure square,
structure ball, and unstructured square grids. The last two columns of Table 3.1 show the global
overlap factor OF(Ω). The R-tree approach produces elements with shapes close to the associated
Cartesian bounding box, resulting in values of OF(Ω) close to 1 even in the case of underlying grids
whose elements are not axis-aligned. With reference to the grid Ω3, which is fully unstructured, we
are nevertheless able to obtain an almost optimal value for the overlap factor. In the case of Ω2, we
have a slightly larger value of 1.2 due to the curved geometry. In this particular case, the contributions
coming from agglomerates on the boundary exit from the domain due to the axis-aligned nature of the
bounding boxes.

Regarding the procedure employing METIS, we note that this is not meant to conserve any
geometric information. This fact can be visually deduced by examining the Figures in Section 3.4.1.
The results reported in Table 3.1 show that the R-tree grids are superior to the corresponding METIS
grids in all four metrics. In Figures 3.9 we show, for each grid and agglomeration strategy, the
minimum, maximum, and average value of each metric. The metrics obtained after performing a
second round of agglomeration are reported in Table 3.2 and Figure 3.10. We observe that in both
cases the metrics related to the R-tree approach are better than with METIS. Among these metrics, BR
is showing values always close to 1 with the R-tree and high gaps compared to METIS, confirming
the fact that shapes are preserved while increasing the levels. Furthermore, the overlap factor does
not deteriorate using the R-tree, meaning that the global percentage of overlap of the bounding boxes
is very low and that the resulting polygonal grid is very close to a global refinement of the coarser
agglomerates.

Grid # polygons UF CR BR OF

R-tree METIS R-tree METIS R-tree METIS R-tree METIS

Ω1 16 1.0 0.8441 0.7071 0.5054 1.0 0.7713 1.00 1.32

Ω2 20 0.7317 0.6193 0.4432 0.3690 0.8541 0.5485 1.23 1.97

Ω3 91 0.7622 0.7500 0.7622 0.4070 0.9235 0.5965 1.08 1.71

Table 3.1 Average values for the Uniformity Factor (UF), Circle Ratio (CR), and Box Ratio (BR),
and global Overlap Factor (OF) for the first level of agglomerated meshes with the two different
agglomeration strategies.
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Fig. 3.9 Min, Max and Average chart of metrics UF, CR, and BR for grids Ω1,Ω2,Ω3 and different
agglomeration strategies. In the plots on the left, metrics related to the R-tree collapse to a single dot
since all mesh elements have the same value for that particular metric.

Grid # polygons UF CR BR OF

R-tree METIS R-tree METIS R-tree METIS R-tree METIS

Ω1 64 1.0 0.6382 0.7071 0.3368 1.0 0.5605 1.00 2.00

Ω2 80 0.599658 0.5457 0.4462 0.4002 0.8356 0.5890 1.23 1.77

Ω3 364 0.698383 0.6111 0.4799 0.3970 0.8630 0.5815 1.15 1.75

Table 3.2 Average values for the Uniformity Factor (UF), Circle Ratio (CR), Box Ratio (BR), and
global Overlap Factor (OF) for the second level of agglomerated meshes with the two different
agglomeration strategies.
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Fig. 3.10 Min, Max and Average chart of metrics UF, CR, and BR for grids Ω1,Ω2,Ω3 and different
agglomeration strategies, after creation of one more level. In the plots on the left, metrics related
to the R-tree collapse to a single dot since all mesh elements have the same value for that particular
metric.

3.4.3 Performance validation

To further assess our method, a breakdown of the computing times required by the agglomeration
process is tracked both in 2D and in 3D test cases. The grid used for the 2D case is Ω3 (the unstructured
square [0,1]2), while for 3D meshes we consider a globally refined version of the piston grid in Figure
3.5e, referred to as Ω5,ref, and the brain mesh Ω6. The elapsed time we are interested in measuring is
the time to build the target polytopic mesh. This means that different components must be measured
depending on the agglomeration strategy. In the case of METIS, we measure the wall-clock time
(in seconds) associated with the call to the METIS function METIS_PartGraphKway(). For the
R-tree-based strategy, we time cumulatively the following phases:

• Build the R-tree;

• Visit the hierarchy and store data structures needed to generate agglomerates;
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• Flag elements of the underlying triangulation Ω.

We perform 10 runs for each agglomeration strategy and average the recorded wall-clock times.
All the experiments have been performed on a 2.60GHz Intel Xeon processor. We observe from
Figure 3.11 that the R-tree based approach keeps constant timings which are independent of the
extraction level. On the other hand, a graph partitioner requires increasing computational times which
in all cases are orders of magnitude larger than those required by the R-tree-based strategy. Moreover,
the parallel extension of our approach in the case of distributed grids is conceptually straightforward.
In an MPI-distributed framework, each process stores only a local part of the computational domain.
And, within each locally owned partition, agglomeration can be performed locally. Since the original
fine grid is already distributed, it must be noted that the ghost polytopic elements do not live on the
layer of standard ghost cells as is usual with classical FEMs implementations, but are owned by a
different partition. Our algorithmic realization carefully avoids calls to potentially expensive collective
MPI routines and performs the exchange of such information in a setup phase, cf. Section 3.6.

3.5 Polytopic discontinuous Galerkin

3.5.1 Notation and model problem

Let Ω be a bounded, simply connected, and open polygonal/polyhedral domain in Rd , d = 2,3. The
boundary ∂Ω of Ω is split into two disjoint parts, ΓD and ΓN with |ΓD| ̸= 0. We consider the linear
elliptic problem: find u ∈ H1(Ω), such that

−∇ · (a∇u) = f in Ω,

u = gD on ΓD,

a∇u ·n = gN on ΓN,

(3.1)

with data f ∈ L2(Ω), gD ∈ H1/2(ΓD), gN ∈ L2(ΓN), and a positive definite diffusion tensor a ∈[
L∞(Ω)

]d×d
. Setting H1

D := {v ∈ H1(Ω) : v = 0 on ΓD}, the weak formulation of (3.1) reads: find

u ∈ H1(Ω), with u = gD on ΓD such that

ˆ
Ω

a∇u ·∇vdx =

ˆ
Ω

f vdx+
ˆ

ΓN

gNvds, (3.2)

for all v ∈ H1
D(Ω). The well-posedness of the weak problem (3.2) is guaranteed by the Lax-Milgram

Lemma.

3.5.2 Finite element spaces and trace operators

We consider meshes consisting of general polygonal (for d = 2) or polyhedral (for d = 3) mutually
disjoint open elements K ∈ T , henceforth termed collectively as polytopic, with ∪K∈T K̄ = Ω̄.
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Fig. 3.11 Wall clock time (in seconds) needed to build polytopic grids with R-tree and METIS.

Given hK := diam(K), the diameter of K ∈ T , we define the mesh-function h : ∪K∈T K → R+

by h|K = hK , K ∈ T . Further, we let Γ := ∪K∈T ∂K denote the mesh skeleton and set Γint := Γ\∂Ω.
The mesh skeleton Γ is decomposed into (d−1)–dimensional simplices F denoting the mesh faces,
shared by at most two elements. These are distinct from elemental interfaces, which are defined as
the simply connected components of the intersection between the boundary of an element and either a
neighbouring element or ∂Ω. As such, an interface between two elements may consist of more than
one face, separated by hanging nodes/edges shared by those two elements only.

Over T we introduce the discontinuous finite element space defined by

Vh := {u ∈ L2(Ω) : u|K ∈Qp(K),K ∈ T },
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for some p∈N, withQp(K) denoting the space of tensor-product polynomials of degree p on K. Note
that in original works on polytopic methods [59–61], the space of total degree p was used instead,
with the flexibility of variable polynomial degrees. Here we keep a unique polynomial degree and
exploit once again the bounding boxes to construct Vh: we use readily available tensor-product basis
for polynomials defined on the bounding boxes and then consider their restriction over the physical
element K; see Section 3.5.3 for more details. We observe though that all developments described
below remain valid with the appropriate adjustments in the context considered in the original works.

Let Ki and K j be two adjacent elements of T sharing a face F ⊂ ∂Ki∩∂K j ⊂ Γint. The outward
unit normal vectors on F of ∂Ki and ∂K j are denoted by nnnKi and nnnK j , respectively. For a function
element-wise continuous function v : Ω→ R, we define its average and the jump across F by

[[v]]|F := v|F∩KinnnKi + v|F∩K j nnnK j , {{v}}|F :=
1
2
(v|F∩Ki + v|F∩K j). (3.3)

Similarly, for a vector-valued function www, piecewise smooth on T , we define

[[www]]|F := www|F∩Ki ·nnnKi +www|F∩K j ·nnnK j , {{www}}|F :=
1
2
(www|F∩Ki +www|F∩K j). (3.4)

On a boundary face F ⊂ ΓD, with F ⊂ ∂KI , KI ∈ T , we set {{v}} := v, [[v]] := vnnn, and [[www]] := www ·nnn,
where nnn denotes the outward unit normal to the boundary ∂Ω.1.

For v ∈Vh we denote by ∇hv the element-wise gradient; namely, (∇hv)|K := ∇(v|K) for all K ∈ T .
Then, the symmetric interior penalty discontinuous Galerkin method reads: find uh ∈Vh such that

B(uh,vh) = l(vh), ∀vh ∈Vh, (3.5)

with

B(uh,vh) =

ˆ
Ω

a∇huh ·∇hvh dx−
ˆ

Γ

(
{{a∇uh}}· [[vh]]+{{a∇vh}}· [[uh]]

)
ds+
ˆ

Γ

σ [[uh]] · [[vh]]ds, (3.6)

and
l(vh) =

ˆ
Ω

f vdx+
ˆ

ΓD

gD(σvh−a∇vh ·n)ds+
ˆ

ΓN

gNvds, (3.7)

where σ : Γ→ R is the so-called penalization function, which we fix with (3.9) below. The stability
of the discontinuous Galerkin method is linked to the correct choice of σ . Furthermore, it can strongly
affect convergence properties when high local variation of geometry or diffusion coefficients occur,
as detailed in [81]. A rigorous analysis showing that the method can be made stable and optimally
convergent in the hp-setting even on the rough grids considered herein is presented in [59–61].

1Due to the different context, we use a different notation for jumps and averages with respect to Chapter 1.
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3.5.3 Convergence tests

In the following examples, we consider the Poisson model problem−∆u = f in Ω,

u = g on ∂Ω.
(3.8)

For d = 2, we consider Ω as either the unit square or the unit circle, while for d = 3 we take Ω as the
unit cube. In all cases, the Dirichlet boundary conditions g is forced by a smooth manufactured analyt-
ical solution u(xxx) = Πd

i=1 sin(πxi). We discretize it using the polytopic interior penalty discontinuous
Galerkin method described in Section 3.5, setting a = Id×d .

For any agglomerated polytopic element K ∈ T , we define on its bounding box BK the standard
polynomial space Qp(BK) spanned by tensor-product Lagrange polynomials of degree p in each
variable, denoted with {φi}Np

i=1 , with local dimension Np = (p+1)d . Since K ⊂ BK , the basis on K
may be defined by restricting each basis function to K. Standard Gauß-Lobatto quadrature rules of
order 2p+1 are defined on the already available sub-tessellation {τK} of K part of the underlying
grid. Several other choices are possible, and we refer to the textbook [59] for a discussion about
relevant implementation details. We stress that in all comparisons presented below the only difference
lies in the choice of the agglomeration strategy, while the number of degrees of freedom is identical
as the number of total partitions is the same. For each domain, we investigate convergence under p
refinement in both the L2-norm and the H1-seminorm. The penalization function in (4.2) is fixed as

σ(xxx) =Cσ


p2

hKI
on F ∈ Γ∩∂Ω,

p2

min{hKi ,hKj}
on F ∈ Γint,

(3.9)

where in the forthcoming experiments we have set Cσ = 10. As discussed in Section 3.5, the choice of
the penalization function σ can dictate the stability of the DG method. Our choice above is classical
in view of the good quality of the agglomerates, but we refer to [61, 81] where this parameter plays
a crucial role. Moreover, as it will be clear from the experiments, the convergence property for the
present example yield almost always comparable results. We first consider the case d = 2. For Ω the
unit square, we fix as underlying grid either the square or an unstructured quadrilateral mesh made of
93,184 elements. Identifying the mesh with the domain, we shall refer to these two cases as Ω = Ω1

(structured square), and Ω = Ω3 (unstructured square). Finally, for Ω the unit circle, we let Ω = Ω2

represent the domain and its structured mesh made of 20,480 elements. These three meshes are visible
in Figures 3.5a, 3.5b, and 3.5c.

In Figure 3.12 we display errors in function of the polynomial degree p for fixed grids obtained
by agglomeration of the two-dimensional grids Ω1,Ω2 and Ω3. We repeat the same procedure
starting from the unit cube grid Ω4 consisting of 32,768 hexahedra, which is then agglomerated to
generate coarse polytopic grids T obtained with either METIS or R-tree and comprising only 72
polytopes. The respective findings are reported in Figure 3.13. In all cases, we observe the exponential
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convergence predicted by the theory [59–61]. METIS and R-tree results are always very close to each
other, with the exclusion of the structure square case the perfectly square mesh produced by the R-tree
yields marginally superior results. In any case our results confirm the robustness of the polygonal
discontinuous Galerkin method over very general polytopic grids.
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Fig. 3.12 Problem (3.8) with d = 2. Convergence under p-refinement for p = 1,2,3,4,5.
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Fig. 3.13 Problem (3.8) with d = 3. Convergence under p-refinement for p = 1,2,3,4.

3D complex geometry

We finally compare the two strategies on a three-dimensional example with a complex geometry. We
refer to complex geometries as geometries that can be meshed only with a non-negligible number
of coarse cells. As an example, we employ the grid Ω5, consisting of 45,714 hexahedra, displayed
in Figure 3.5e, which once again we are identifying with the domain Ω of the problem. Such mesh
comes from a real three-dimensional CAD model which has been first repaired and later meshed
with hexahedra through the commercial software CUBIT. We adopt, on this fixed mesh, both the
METIS and R-tree agglomeration strategies, and investigate again convergence under refinement of
the polynomial degree p, using as manufactured solution u(xxx) =Π3

i=1 sin(π xi
10). Given the simple form

of the chosen solution, we expect the polytopic DG method to still produce exponential convergence
under p-refinement even on the complex geometry considered here. Even if agglomeration strategies
strongly decrease the number of DoF, sparse direct solvers quickly become prohibitive for non-trivial
three-dimensional geometries with moderately high degrees, such as p≥ 3, and modest mesh sizes.
We report in Table 3.3 the number of DoF in function of the polynomial degree required by the
discontinuous Galerkin method with the original hexahedral model and the agglomerated version. The
level of agglomeration is fixed so as to keep the number of DoF within a regime where sparse direct
solvers are still effective. This allows us to solve the resulting linear system with the MUMPS solver
by the TRILINOS library [113]. After generating the R-tree data structure as outlined in Section 3.2,
we extract its second level, resulting in a polytopic mesh with only 731 elements, thereby reducing the
size of the original problem by a factor of 64. Following the procedure of the previous experiments,
we employ METIS by setting 731 as the target number of partitions. A view of some elements of
the coarse mesh T generated using Algorithm 3, as well as a view of the solution u interpolated
onto the finer mesh, are shown in Figure 3.14. The convergence history is reported in Figure 3.15;
it can be appreciated how both approaches yield comparable results in terms of accuracy also for
the present configuration, thus verifying once more in practice the robustness of the polytopic DG
method, with METIS giving slightly more accurate results in the L2-norm.
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Number of DoF
p Number of DoF (original mesh) Number of DoF (agglomerated mesh)
1 365,712 25,425
2 1,234,278 48,366
3 2,925,696 108,492
4 5,714,250 175,020

Table 3.3 3D piston model. Total number of DoF in function of the polynomial degree p.

Fig. 3.14 Left: sample agglomerates generated by the R-tree algorithm. Right: view of the solution.
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Fig. 3.15 Convergence under p-refinement for the piston test case for p = 1,2,3,4. Fixed polytopic
grids made of 731 agglomerates.

3.5.4 Multigrid preconditioning

We finally introduce R-tree based MultiGrid (R3MG) preconditioning. The R-tree agglomeration
algorithm naturally produces nested hierarchies of agglomerated grids. We exploit these grids and the
flexibility of the discontinuous Galerkin framework to construct multigrid preconditioners. For an
analysis of multigrid solvers applied to polygonal discontinuous Galerkin methods we refer to [7, 10].
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We consider again the model problem (3.1) with a = Id×d and manufactured solution u =

sin(πx)sin(πy) on the set of 2D grids shown at the beginning of section 3.4. We use multigrid
as preconditioner for the conjugate-gradient solver (CG) [114] with one multigrid cycle per iteration
as this is known to be usually more robust than using multigrid as a solver. We stress that a sequence
of nested agglomerated grids {Tl}M

l=1 can be directly generated thanks to the structure of the tree.
Denoting with V l

h the finite-dimensional discontinuous space defined on Tl , the sequence of nested
grids induces a nested sequence of spaces V 1

h ⊂V 2
h ⊂ . . .⊂V M

h . Thanks to this property, the intergrid
transfer operators (restriction and prolongation) are more easily defined and cheaper to compute com-
pared to a non-nested version. Indeed, the latter requires the computation of expensive L2 projections
over arbitrarily intersecting meshes.

The prolongation operator between the spaces Vl−1 and Vl is denoted by P l
l−1 and consists of the

natural injection operator, P l
l−1 : Vl−1 ↪−→Vl , while as restriction operator we chooseRl−1

l :=
(
P l

l−1

)T .
For each domain, the experiments are configured in the following way:

• The conjugate-gradient solver is run with abstol= 10−12 and reltol= 10−9;

• The conjugate-gradient solver is preconditioned by a single V-cycle of multigrid;

• As pre- and post-smoothers, m steps of a Chebyshev smoother of degree 3 is employed, using
eigenvalue estimates computed with 20 iterations of the Lanczos iteration.

• As coarse grid solver, a direct solver is used.

The two finest levels used in each experiment correspond to the grids shown in the right columns
of Figures 3.6, 3.7, and 3.8. We report the iteration counts when varying the number of levels l,
the number of smoothing steps m, and the polynomial degree p. To show the effectiveness of the
multigrid preconditioner, we also report the number of iterations needed by the conjugate-gradient
method without preconditioning.

In Table 3.4a we report the iteration counts when varying the number of levels l and fixing the
polynomial degree and the number of smoothing steps by (p,m) = (1,2). We observe a roughly
constant number of iterations when MG is employed as a preconditioner. The iterations with plain
CG are significantly higher when no preconditioner is used. This is expected since CG is applied to
the finest level of the hierarchy.

Table 3.4b shows, instead, the results obtained by varying the number of smoothing steps m from
3 to 5, again with (p, l) = (1,3). As expected, the iteration counts decrease when increasing m. For
completeness, we display again in the last column the plain CG iterations.

In Table 3.5 we investigate the iteration counts varying the polynomial degree p from 1 to 3,
with (l,m) = (3,5). In this scenario, the benefit of a preconditioner is even more evident as the
number of iterations required by plain CG becomes soon order of magnitudes larger compared to the
preconditioned version.

Finally, we test our approach on the three-dimensional grids Ω4 and Ω5, varying the number of
smoothing steps m and employing again a Chebyshev smoother of degree 3. In the case of grid Ω4, we
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consider the same model problem as in Section 3.5.3, having as exact solution u(xxx) = Πd
i=1 sin(πxi).

In this case, the first level and second level comprise 64 and 512 agglomerated elements, respectively.
For Ω5, we solve again problem (3.8), but this time with f = 10 and g = 0, producing a more
challenging setting for which the exact solution and its regularity properties are not available. For this
mesh, the hierarchy of levels consists of the fine mesh, and two coarser agglomerated grids of 90 and
715 polytopes, respectively. We display in Figure 3.16 a coarse three-dimensional polytopic element
and its sub-agglomerates for the piston mesh Ω5, giving a pictorial representation of the capability
of generating coarse elements even for complex geometries. We remark that the tolerances we have
chosen can be considered quite strict. Indeed, many real multigrid applications with complicated
geometries are generally configured with much looser tolerances, especially in time-dependent
problems. As in the previous examples, we perform experiments with polynomial degrees up to 3.

The iteration counts reported in Tables 3.6a, 3.6b, and 3.6c confirms once again how increasing
the number of smoothing steps m leads to lower number of iterations for every instance of the problem.
Compared to plain CG, we observe that for a non-trivial geometry such as Ω5 we get a consistently
lower number of iterations for every polynomial degree p. With p = 3, in particular, plain CG does
not achieve convergence within 105 iterations. This is to be expected given the moderately high
polynomial degree, the complicated three-dimensional geometry, and the absence of a preconditioner.

(a) Polynomial degree p = 1 and m = 2
smoothing steps.

Iteration counts (p = 1, m = 2)
Grid l CG+MG CG

Ω1
2
3

10
11

46

Ω2
2
3

15
16

183

Ω3
2
3

18
18

343

(b) Polynomial degree p = 1 and l = 3
levels.

Iteration counts (p = 1, l = 3)
Grid m CG+MG CG

Ω1
3
5

9
7

46

Ω2
3
5

13
10

183

Ω3
3
5

15
11

343

Table 3.4 Iteration counts for conjugate-gradient with multigrid preconditioning (CG+MG) on the
grids Ω1,Ω2,Ω3. Multigrid levels are obtained through the R-tree procedure. The number of required
iterations by plain conjugate-gradient (CG) is reported in the last column of each table.
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Iteration counts (l = 3, m = 5)

Grid p CG+MG CG

Ω1

1

2

3

10

10

11

46

105

149

Ω2

1

2

3

13

14

32

183

639

2,537

Ω3

1

2

3

16

16

23

343

914

2,166

Table 3.5 Iteration counts for conjugate-gradient with multigrid preconditioning (CG+MG) on the
grids Ω1,Ω2,Ω3 with l = 3 levels and m = 5 smoothing steps. Multigrid levels are obtained through
the R-tree procedure. The number of required iterations by plain conjugate-gradient (CG) is reported
in the last column.

Fig. 3.16 Left: Clip of the piston geometry Ω5 with colour plot of the solution computed with p = 1.
In the foreground, highlighted in grey, a single element out of the 90 elements level grid. Right:
detailed view of the highlighted element (wireframe) and its 8 sub-agglomerates belonging to the finer
level. For better visualisation, the sub-agglomerates, identified by different colours, are displayed in
either of the two plots.
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(a) Polynomial degree p = 1 and l = 3
levels.

Iteration counts (p = 1, l = 3)
Grid m CG+MG CG

Ω4
3
5

11
8

86

Ω5
3
5

7
6

1,546

(b) Polynomial degree p = 2 and l = 3
levels.

Iteration counts (p = 2, l = 3)
Grid m CG+MG CG

Ω4
3
5

10
8

194

Ω5
3
5

14
11

26,869

(c) Polynomial degree p = 3 and l = 3
levels.

Iteration counts (p = 3, l = 3)
Grid m CG+MG CG

Ω4
3
5

10
7

238

Ω5
3
5

18
15

> 105

Table 3.6 Iteration counts for conjugate-gradient with multigrid preconditioning (CG+MG) on the
3D grids Ω4, Ω5 with polynomial degree p = 1,2,3 and l = 3 levels. Multigrid levels are obtained
through the R-tree procedure. The number of required iterations by plain conjugate-gradient (CG) is
reported in the last column of each table.

3.6 Implementation details

In this section, some relevant implementation choices and details will be discussed. As mentioned
at the beginning of Section 3.4, building on top of a consolidated Finite Element library as DEAL.II
has several advantages such as inheriting robust and optimized implementations of extensively used
computational kernels, as well as a set of external library related to mesh partitioning, distributed
linear algebra, and adaptive mesh refinement, to name a few. Nevertheless, the fact that all the popular
and widely used Finite Element libraries are tailored to simplex or tensor-product elements poses
several challenges if one wants to embed polytopic shapes (generated by agglomeration) in such
frameworks. Our approach is generic and can be applied in a non-intrusive fashion to any mature
Finite Element framework that supports MPI-based parallelism, advanced mesh partitioning strategies,
and parallel linear algebra capabilities. The whole codebase is validated and maintained through
modern CI/CD pipelines (Continuous integration and deployment), where a large number of unit tests
is run at each committed change.

3.6.1 Data structures and interfaces

Given an input mesh Ωh = ∪N
i Ti composed by N elements, the agglomeration strategy outlined in

Section 3.3 induces a different partition of Ωh into NA elements (agglomerates) defined as

Ωh = ∪NA
i=1KA

i ,

where each KA
i represent an agglomerate of, say, Mi ∈ N standard-shaped cells coming from the

original underlying triangulation Ωh, that is

KA
i = ∪Mi

j=1Tj.
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Notice that this approach does not depend on the partitioning strategy. The agglomeration procedure
identifies each agglomerate KA

i as a vector of mesh-like iterators (essentially pointers) which can
easily be stored in a container, such as an STL vector of iterators.

1
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Fig. 3.17 A patch of pentagonal cells (thick black lines) is created after agglomeration of underlying
triangles. Within each patch, the master cell taking care of the enumeration of DoF is highlighted
with a red-dashed square. The new global enumeration of the three polygonal cells is {0,1,2} and
elements are indicated with KA

0 ,KA
1 ,KA

2 .

Since each KA
i is a new element over which we need to define a set of DoF, we enumerate the

indices of the DoF only to one of the original Ti, i = 1, . . . ,M, which is identified as a master cell. The
rest of the cells are called slave cells, and no local indices are associated to them. Such cells are in
practice needed only for what concerns the geometrical and topological information of the elements,
and for the generation of the quadrature rules. Hence, there is a bijective correspondence between the
concept of polytope and master cell. For efficiency reasons, it is appropriate to translate the global
index of a master cell (which pertains to the original triangulation Ωh) to a unique index related to
the polytopic entity. In particular, it is necessary to provide a contiguous indexing for polytopes
from 0 to NA−1. For a given agglomeration strategy, each agglomerate is handed out to a routine
DefineAgglomerate() which does the following operations:

• Identify one master cell,

• Compute bounding box BKA
i

of the agglomerate KA
i ,

• Index the present polytope,

which are summarized in Algorithm 5. The actual basis functions are defined on the bounding
box of the agglomerate BKA

i
as explained at the beginning of Section 3.4. The construction of BKA

i
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Algorithm 5: Insertion of an agglomerate given a patch of cells v.
Data: Cells to be agglomerated v = {K0, . . . ,KN−1}

1 Function DefineAgglomerate(v):
2 master_cell← K0 ; /* Attach DoF to master */
3 slaves←{K1, . . . ,KN−1};
4 ++n_agglomerates;
5 ComputeBoundingBox(v) ; /* Compute bounding box of the agglomerate */

is particularly cheap and is performed by using all the vertices of the present agglomerate. Upon
insertion of each agglomerate, we perform a translation from the global index of the master cell to
a contiguous index in terms of polytopic cells. The effect of this can be visualized in Figure 3.17.
The underlying triangulation Ωh is simplicial, and the original cell index is indicated in black at the
center of each triangle. After agglomeration, we obtain three pentagonal patches each identified by
a master cell, which is highlighted with a red-dashed square in the figure. The global index of the
new polytope is then defined by incrementing a counter (named n_agglomerates in Algorithm 5)
based on the current number of polytopes, rather than using the global index of the underlying cell.
With reference to the same figure, this means the polytope consisting of cells with global indices
{10,11,12,13,14} is indexed by 1 instead of 10. Such a contiguous enumeration allows for fast
traversal of associative containers such as STL vectors, instead of resorting to associative containers.
In this way, it is possible to store the bounding boxes over which the basis functions are defined
contiguously in a vector indexed by the polytope’s index, something convenient especially in the
assembly phase where we need frequent access to the bounding boxes in order to map points from real
to reference space K̂. After the definition of all agglomerates, the connectivity of the resulting grid is
carried out. Then, for each polytope we can query the number of faces (which in this setting cannot be
defined a-priori), its neighbors, as well as the DoF associated to a neighboring element. We build our
library on top of a dimension-independent programming paradigm already present in the design of
DEAL.II [21] and exploiting modern C++ techniques such as template metaprogramming. To foster
the overall readability of application codes and the user experience, we provide design patterns such
as iterators and accessors patterns [94] which enable the iteration over mesh-like containers without
exposing the user to underlying data structures by adding only an additional layer of abstraction. As a
matter of fact, an application code is for all intents and purposes quite close to a classical user code
in DEAL.II as it can be appreciated by comparing Listings 3.1 and 3.2. The main difference of the
two snippets is the usage of the new class AgglomerationHandler, which implements the same
interface as the original DoFHandler class of DEAL.II and is responsible to distribute DoF on a given
mesh, along with mesh traversal.

1 // Assume dof_handler object has been set up
2 for (const auto &cell : dof_handler.active_cell_iterators ())
3 {
4 if (cell ->is_locally_owned ())
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5 {
6 // work with cell
7 const unsigned int n_faces = cell ->n_faces ();
8 for (unsigned int f = 0; f < n_faces; ++f)
9 {

10 const auto &neighbor = cell ->neighbor(f);
11 neighbor ->get_dof_indices(local_dof_indices); // fill DoF vector
12 }
13 }
14 }
15

Listing 3.1 Standard loop over local cells in DEAL.II.

1 // Assume agglomeration_handler has been set up after agglomeration
2 for (const auto &polytope : agglomeration_handler.polytope_iterators ())
3 {
4 if (polytope ->is_locally_owned ())
5 {
6 // work with polytope on the current processor
7 const unsigned int n_faces = polytope ->n_faces ();
8 for (unsigned int f = 0; f < n_faces; ++f)
9 {

10 const auto &neighbor = polytope ->neighbor(f);
11 neighbor ->get_dof_indices(local_dof_indices); // fill DoF vector
12 }
13 }
14 }
15

Listing 3.2 Loop over local polytopes.

3.6.2 Memory distributed implementation

Adapting the original DEAL.II infrastructure to polytopes to a MPI-based parallelism is not immedi-
ately possible due to the level of freedom that elements now have. In order to inherit crucial properties
achieved for standard shapes such as load balancing, we employ classical mesh partitioners such as
PARMETIS, P4EST, and SCOTCH [125, 56, 64] for the original input triangulation Ωh. An extensive
description about the algorithmic details and data structures used in DEAL.II to handle the parallel
distribution of mesh data, adaptive mesh refinement (AMR), and related data structures is described
in [28]. To present our approach, we need to introduce some notation. Let T denote the set of cells
existing in the distributed (original) mesh consisting of standard shapes. Moreover, let Tp

loc ⊂ T be
the subset of cells owned by processor p. By construction, this induces a partition of the elements for
which it holds that ⋃

p
Tp

loc = T, Tq
loc∩T

p
loc = { /0},
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for all q ̸= p. Finally, we indicate with Tp
ghost the set of ghost cells that processor p knows about;

we have that Tp
loc∩T

p
ghost = { /0} and we make the assumption that each ghost cell T ∈ Tp

ghost has at
least one neighbor in Tp

loc via faces, lines, or vertices. Out of the above partitioning of the original
triangulation, we perform the agglomeration procedure within each processor p by agglomerating the
cells in the set Tp

loc, resulting in a new agglomerated partition where we indicate all the agglomerated
elements in the distributed mesh with K. Hence, we can define the following sets as before:

• Kp
loc ⊂K, the sets of polytopes locally owned by processor p,

• Kp
ghost ⊂K, the sets of ghost polytopes that process p knows about,

with the property that Kp
loc ∩K

p
ghost = { /0}. Furthermore, we define I = [0,Ndo f ) as the complete

index set for the Ndo f degrees of freedom of the problem. We denote with I p
loc the (contiguous) set

of degrees of freedom locally owned by processor p. They are all defined on polytopes in Kp
loc and

owned exclusively by such elements as no conformity is required by a DG method. We have therefore
that N = #I p

loc ,
⋃

pI p
loc = I and I p

loc∩I
q
loc = { /0} for p ̸= q. This approach naturally inherits load

balancing properties of the chosen mesh partitioner. However, due to the fact that the ghost layer is
made by classical elements, we do not immediately have a clear way to define a ghost polytope since
the master cell of a neighboring polytope belonging to another processor could not (and, in most of
the cases, will not) live on the layer of ghost cells. However, the identification of a ghosted neighbor
is necessary in order to compute flux terms appearing in the weak form (4.2) on faces f lying at
processor’s boundaries. This situation is illustrated in Figure 3.18, where the set K0

loc (the cells owned
by process 0) is shown in red, K0

ghost in yellow, and the remote cells (the ones not in K0
loc and K0

ghost),
are shown in blue. Given a patch of cells KA

0 ∈ K0
loc, the figure shows how the master cell of the

neighboring polytope KA
1 is fully remote. The simplest approach to build the discrete operator is to

exchange with all the participating processors the metadata needed to assemble the matrix by using a
many-to-many (and blocking) exchange by calling MPI_Allgather(), which however has quadratic
complexity in the number of ranks. To avoid this, we determine the communication pattern when
building the connectivity of the agglomerated grid. During this setup phase, when we are on polygons
at boundaries of the working processor, we identify the rank of the neighboring processor which is
meant to receive the data by querying it to ghost cells, and we prepare metadata such as ghosted
bounding boxes, indices of the ghosted degrees of freedom, and jacobians at quadrature points to be
sent. In this way, we can initiate a some-to-some communication pattern, leading to a ghost exchange
in a non-blocking manner by using calls to standard MPI non-blocking routines MPI_Isend() and
MPI_Irecv().

With reference to Snippet 3.2, the variable neighbor in Line 10 can identify both an element in
Kp

loc or in Kp
ghost . For what concerns the handling of parallel linear algebra, no additional change is

required as we rely on TRILINOS and PETSC, offering a large variety of solvers including Krylov-
space methods and commonly used preconditioners available through the packages HYPRE [84] and
ML [95].
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(a) Original (idealized) partition among pro-
cessors.

(b) A pair of topologically neighboring ag-
glomerations living on different partitions.

Fig. 3.18 Left: view from process 0 of the locally owned (red), ghosted (yellow), and remote (blue)
quadrilateral cells. Right: on the same grid, a patch of cells (orange) is created after agglomeration
of some quadrilateral elements on process 0, while the dark green agglomerate has been created on
process 1. The dashed squares flag the respective master cells. For instance, the three cells on top of
KA

1 are fully remote cells for which process 0 has no information.

One of the advantages of the application of agglomeration techniques within multilevel frameworks
is that the explicit construction of the sequence of grids is not required. As noted in Section 3.6.2, since
the hierarchy is generated on top of a unique (distributed) grid, and agglomerates are conveniently
generated within each local region, the coherence between different partitions at different levels of
the hierarchy is by construction optimal. With reference to the performance metrics presented in
Section 2.5 of Chapter 2, this implies very high values for the vertical efficiency metric.

3.6.3 Building the sparse operator

Using a Discontinuous Galerkin method, and in particular the formulation (4.2), one has to integrate
the flux terms over the faces between neighboring cells. This implies that the DoF on each element
also couple to the DoF on other cells connected to the current one by a common face. These couplings
must be added to the sparsity pattern of the problem, which is stored through a compressed row
storage (CSR) format and is used as a basis to build (also in the memory-distributed case) the resulting
sparse matrix. The elements of a sparsity pattern, corresponding to the places where resulting sparse
matrix objects can store nonzero entries, are stored row-by-row. The generation of the sparsity
pattern associated to a DG discretization (as well as the one for continuous Lagrangian elements)
in DEAL.II is a well-established core component of the library. To adapt this to our context, we
mimic the classical approach: each processor loops over its own polytopes Kp

loc and simulates which
elements of the matrix would be written if we were assembling the system matrix of the problem
from local contributions. Due to the generality of our framework and the fact that the coupling
now happens between neighboring polytopes, we manually add the face couplings through the mesh
iterators described above. We notice that each processor will only store matrix rows indexed by
I p

loc. Since the index sets are a partition of the global index space, we automatically have a non-
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overlapping distribution of rows among the available processors. The algorithmic realization of this
procedure is sketched in Algorithm 6. In practice, we also exploit the symmetry of the operator and
avoid visiting the same faces multiple times, adding redundant information to the same entry. It
is worth mentioning that in the distributed case, where each processor is owning only a portion of
the triangulation, the neighboring polytope can be ghosted, as it is the case with classical elements.
Finally, we need to exchange entries with other processors to make sure that each processor knows all
the elements of the rows of a matrix it stores and that may eventually be written to. This is achieved
by calling the distribute_sparsity_pattern() function in Line 9, which takes care of setting up
the communication pattern between the participating ranks. It is crucial to remark that since hanging
nodes are not present in a DG setting, we do not have to take care of constraints during the setup of
the sparsity pattern as well as the system matrix.

Algorithm 6: Creation of sparsity pattern for a polygonal DG discretization.
Data: Reference to an empty sparsity pattern S

1 Function MakeAgglomerateSparsityPattern(S):
2 locally_owned_rows← extract_local_dofs();
3 for K in LocallyOwnedPolytopes do
4 dof_indices← get_dof_indices(K) ; /* Get DoF of K */
5 add_entries_local_to_global(dof_indices,S) ; /* Volumetric terms */
6 for f in faces do
7 K f ← neighbor(K, f );
8 dof_indices_neigh← get_dof_indices(K f );
9 add_entries_local_to_global(dof_indices_neigh,S)

10 distribute_sparsity_pattern(S,locally_owned_rows,communicator);

3.6.4 Benchmarks

In the following, we will present some test cases that are intended to verify the scalability of the
algorithms and data structures discussed above. The numerical simulations presented here have been
performed on the GALILEO100 supercomputer at CINECA center (10 nodes with 2xCPU Intel Cas-
cadeLake 8260, 2.4 GHz,384GB RAM)2. The scalability of the DEAL.II core has been already demon-
strated in [28]. The forthcoming tests are part of POLYDEAL, a C++ library developed and maintained
by the author of this thesis, and have been compiled with the intel−oneapi−mpi/2021.10.0

compiler and −O3 optimization level. For the sake of showing the scalability of the algorithms only,
we will test the three-dimensional Poisson problem −∆u = f , on the unit cube [0,1]3. The right-hand-
side f and Dirichlet boundary conditions are chosen so that the exact solution is u(xxx) = Π3

i=1 sin(πxi).
Albeit the geometry is very simple, we stress that after mesh partitioning among processors (here

2For the technical specifications, see https://www.hpc.cineca.it/systems/hardware/galileo100/. Retrieved on August 8,
2024.

https://www.hpc.cineca.it/systems/hardware/galileo100/
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through the graph partitioner PARMETIS), the locally owned regions are not preserving the original
geometric structure of the original mesh. The equation is discretized as in Section 3.5.3, using
polynomial degree p = 2, and solving the resulting linear systems with the conjugate gradient method
preconditioned with an incomplete LU factorization provided by TRILINOS, with absolute tolerance
10−8. We note that, thanks to the great reduction in terms of elements provided by the agglomeration
strategy, we are able to exploit a direct solver. We measure the wall clock time for the following
dominant parts of the program:

• Init matrix: Exchange between processors which non-locally owned matrix entries they will
write to in order to populate the necessary sparsity pattern for the global matrix. Copy interme-
diate data structures used to collect these entries into a more compact one and allocate memory
for the system matrix.

• Sparsity Pattern: Determine the locations of non-zero matrix entries as described in 3.6.3.

• Assembly: Assembling the contributions by looping over locally owned polytopes Kp
loc to the

global system matrix and right hand side vector. This includes the transfer of matrix and vector
elements locally computed but stored on other processors.

• Linear Solver: Solving the linear system with the conjugate gradient method preconditioned by
ILU factorization.

Test 1: NA = 5 000

We globally refine 6 times the unit cube Ω, resulting in a mesh Ωh consisting of N = 26×3 =

262 144 hexahedra. Such mesh is distributed among processors, and cells among each partition are
agglomerated in such a way that the global number of polytopes is NA = 5 000, gaining a reduction
factor of about 52 compared to the size of the original matrix. We increase the number of processors
progressively from 10 to 256 and report the wall-clock times in Figure 3.19. We observe almost perfect
scalability for all components. In contrast to what is seen in all scalability results for FEM codes, for
which the solution phase is usually largely dominant, the polytopic DG pipeline is dominated by the
assembly phase. This is due to the fact the fine underlying mesh has to be traversed, while the great
reduction in the number of unknowns clearly simplifies the solver part.

Test 2: NA = 70 000

We globally refine 7 times the unit cube Ω, resulting in a mesh Ωh consisting of N = 27×3 = 2 097 152
hexahedra. We agglomerate cells among each partition in such a way that the global number of
polytopes is NA = 70 000, gaining a reduction of a factor of about 40. As before, we increase the
number of processors from 10 to 256 and plot the result in Figure 3.20. We observe the same pattern
of Figure 3.20, with the complexity shifting from the linear solver to the assembly phase. Since we are
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Fig. 3.19 Strong scaling experiment with p = 2 on a polytopic mesh consisting of NA = 5 000
agglomerates built on top of a fine hexahedral mesh Ωh of 262 144 elements.

solving a three-dimensional problem with a non-trivial number of agglomerates and degree p = 2, the
solution phase timing are relatively higher compared to the previous case, but still below the assembly
phase timings as before.
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Fig. 3.20 Strong scaling experiment with p = 2 on a polytopic mesh consisting of NA = 70 000
agglomerates built on top of a fine hexahedral mesh Ωh of 2 097 152 elements.

3.7 Conclusions

We presented and validated a novel method to generate polytopic grids based on a spatial structure
that can be easily built by agglomeration of an underlying fine mesh. The method relies on the
so-called R-tree data structure and generates sequences of nested agglomerated grids in a quite fast
and scalable way compared to standard approaches such as METIS. We showed its robustness and
effectiveness on a sequence of two- and three-dimensional benchmarks and non-trivial geometries.
The numerical experiments for R-tree based Geometric Multigrid (R3MG) show good convergence
properties typical of multilevel solvers, also in cases where a hierarchy of grids was not available to
start with. The time to assemble the linear system is the most computationally intensive operation.
However, this cost can be dramatically reduced, for instance, by employing the so-called quadrature
free algorithm as shown in [11] and more recently in [155], which allows the computation of volume
integrals without resorting to the sub-tessellation of the background mesh Ω. A proof of the R3MG
convergence is given in the next chapter. Also, we consider in Chapter 5 an alternative solution that
exploits so-called inherited approaches to build coarser operators, aiming to more complex geometries
and time-dependent problems.





Chapter 4

Convergence analysis for multigrid

In the previous chapter, a new way to generate a hierarchy of agglomerated grids was presented
and validated on classical second order elliptic problems. This chapter contains some preliminary
results about the convergence of our multilevel strategy. To do so, we build on the analysis performed
by Antonietti et. al in [10], where the convergence properties of two-level and W-cycle multigrid
solvers for system of equations arising from the hp-version Symmetric Interior Penalty Discontinuous
Galerkin discretizations were established. In particular, we adapt such analysis to the properties of the
agglomerates obtained with the R-tree approach by relying on estimates and error bounds developed
in the general setting of almost arbitrarily shaped elements in [61].
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4.1 Literature review

Recently, there has been significant interest in developing multilevel schemes the system of equations
stemming from the discretization of differential problems by polytopic methods. Multilevel develop-
ments for HHO discretizations can be found in [73, 74, 76], while for VEM we refer to [18, 12, 154].
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The many advantages offered by Discontinuous Galerkin methods in handling general meshes, hanging
nodes, and the limited neighboring communication through numerical fluxes, perfectly matches many
desirable characteristics needed for the efficient development of fast multilevel solvers. The possibility
to perform h-coarsening by agglomeration [20, 19, 87] leads to high flexibility in the definition of the
coarse meshes. Indeed, starting from a fine grid, a coarse mesh can be generated clustering together a
number of mesh elements. Such versatility allows a natural definition of the associated subspaces since
no inter-element continuity is required. This property overcomes the usual difficulties encountered
in the construction of agglomeration multigrid schemes in conforming frameworks, where a proper
definition of the conforming subspaces and ad-hoc intergrid operators must be constructed. In the DG
setting, we refer to [46, 150, 10, 62]. In [7], a non-nested multigrid scheme for DG spaces defined
on overlapping and independent polygonal grids was developed. In [10], extending the theoretical
analysis developed in [9], the convergence of a two-level scheme and W-cycle multigrid method on
meshes consisting of polytopic elements was analyzed, exploiting trace and inverse inequalities for
polytopic elements developed in [59]. More recently, new estimates for essentially arbitrarily-shaped
elements were provided in [61], generalizing what initially proved in [59], and allowing a larger degree
of generality for the shapes of agglomerated elements. In this regard, the agglomeration strategy
developed in the previous chapter fits seamlessly into the framework and allows the convergence
analysis of the h-multigrid method presented, which was validated through a series of numerical
experiments varying polynomial degree, geometry, and number of smoothing steps in Section 3.5.3.
In this chapter, we closely follow the structure of [10], generalizing it to the case when polytopic
elements are stemming from our agglomeration routine, hence removing the dependence on the ratio
between the size of the fine grid and the size of the agglomerates.

4.2 Model problem

Let Ω ⊂ Rd , d = 2,3, be a convex polytopic domain with Lipschitz boundary. We consider the
Poisson problem with homogeneous Dirichlet boundary conditions: find u ∈V such that

−∇ · (a∇u) = f in Ω, (4.1)

where V := H2(Ω)∩H1
0 (Ω), a =

{
ai j
}d

i, j=1 symmetric with ai j ∈ L∞(Ω), and f ∈ L2(Ω) a given
source term. We close the problem by prescribing homogeneous Dirichlet boundary conditions on
∂Ω.

We denote with T a shape-regular and quasi-uniform subdivision of the domain Ω and consider a
sequence of partitions {T j}J

j=1 of Ω, with TJ ≡ T , into disjoint polytopic elements K (with possibly
curved Lipschitz boundaries) such that Ω̄ =

⋃
K∈T j

K̄. The mesh skeleton Γ := ∪K∈T ∂K is subdivided
into its internal part Γint := Γ\∂Ω and its boundary part ∂Ω. Furthermore, we indicate the mesh size
of T j with h j = maxK∈T j hK . As in previous chapters, on each partition T j, j ∈ {1, . . . ,J} we associate



4.2 Model problem 115

a Discontinuous Galerkin space Vj defined as

Vj =
{

v ∈ L2(Ω) : vh|K ∈ Pp(K),K ∈ T j
}
,

with Pp(K) denoting the space of polynomials of degree p in each element. The classical h-multigrid
framework is obtained by keeping fixed the polynomial degree p on a sequence of nested and quasi-
uniform partitions {T }J

j=1. We require that the coarse level T j−1 can be obtained by agglomeration
from the finer level T j, j = {2, . . . ,J}, so that the resulting sequence of nested finite element spaces is
nested, e.g. V1 ⊂V2 ⊂ . . .⊂VJ .
On each level j, j ∈ {1, . . . ,J}, we have the following weak for problem 4.1: find u ∈Vj such that

A j(u,v) = l(v), ∀v ∈Vj, (4.2)

where A j(u,v) : Vj×Vj→ R defined as

A j(u,v) =
ˆ

Ω

a∇u ·∇vdx−
ˆ

Γ

(
{{a∇u}} · [[v]]+{{a∇v}} · [[u]]

)
ds+
ˆ

Γ

σ [[u]] · [[v]]ds, (4.3)

and
l(v) =

ˆ
Ω

f vdx, (4.4)

with jump [[·]] and average {{·}} operators defined as in Section 3.5.2. The precise definition of the
penalization function σ will be given in next sections. In particular, we are interested in solving
Problem 4.1 on the finest level J with a geometric multigrid method. For a given level j, we define
the DG norm for a v ∈Vj as follows

∥v∥2
DG, j :=

∥∥√a∇v
∥∥2
T +

∥∥√σ [[v]]
∥∥2

Γ
. (4.5)

4.2.1 Grid assumptions

In this section we present some assumptions and definition that will be needed throughout the analysis.
We start by quoting the general framework developed in [61] which provides trace and inverse
inequalities for general shaped elements, cf. [61, Assumption 4.1, 4.3].

Assumption 4.2.1. For each element K ∈ T , we assume that K is a Lipschitz domain, and that we can
subdivide ∂K into mutually exclusive subsets {Fi}nK

i=1 satisfying the following property: there exist
respective sub-elements KFi≡ KFi(x0

i ) ⊂ K with d planar faces meeting at one vertex x0
i ∈ K, with

Fi ⊂ ∂KFi , such that, for i = 1, . . . ,nK ,

(a) KFi is star-shaped with respect to x0
i . We refer to Figure 4.1(left) for an illustration for d = 2;

(b) mi(x) ·n(x) > 0 for mi(x) := x− x0
i , x ∈ KFi , and n(x) the respective unit outward normal

vector to Fi at x ∈ Fi. (We refer to Figure 4.1(right) for an illustration for d = 2.)
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Fig. 4.1 Elements K ∈ T tr are assumed to satisfy Assumption 4.2.1 (a) (left) and (b) (right); • denotes
a vertex.

Fig. 4.2 Curved elements K, K′′ with, respectively, 8 and 4 sub-elements satisfying Assumption 4.2.1.

Remark 4.2.1. As noted in [61], the sub-domains {Fi}nK
i=1 are not required to coincide with the faces

of the element K: nK are not required to be uniformly bounded. This provides a very general setting.
In the case of polytopic meshes obtained by agglomeration of an underlying standard mesh, there
exists a global constant csh > 0

mi(x) ·n(x)≥ cshhKFi
; (4.6)

Assumption 4.2.2. We assume that the boundary ∂K of each element K ∈ T is the union of a finite
(but arbitrarily large) number of closed C1 surfaces.

Assumption 4.2.1 is sufficient for the proof of the trace estimate, while requiring Assumptions
4.2.1 and 4.2.2 is sufficient in view of deriving optimal a priori error bounds.

Assumption 4.2.3. With reference to Figure 4.3, we indicate with HK the diameter of the bounding
box BK for an agglomerate K element constructed by patching together fine elements. Hinging on the
agglomeration algorithm developed in Chapter 3, we assume that the R-tree based strategy implies

|K| ≈ Hd
K . (4.7)

Finally, we require a bounded variation in terms of mesh sizes between subsequent levels.

Assumption 4.2.4. Let h j, j ∈ {1, . . . ,J}, denote the mesh-size of the j-th partition. For any j ∈
{1, . . . ,J}, the partitions {T j}J

j=1 satisfy

h j−1 ≲ h j ≤ h j−1. (4.8)
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Fig. 4.3 One agglomerate, denoted by K, and its associated bounding box BK with diameter HK

(indicated with the diagonal, red, dashed line). Right: zoom on the right boundary, showing the fine
mesh edges.

Remark 4.2.2. The last two assumptions are not restrictive in our framework, thanks to the geometric
properties that the R∗-tree data structure tries to fulfill when performing agglomeration on top of the
fine mesh TJ , as underpinned by numerical evidences and the quality metrics reported experimentally
in previous chapter. Moreover, the hierarchical subdivision of the space done by the tree and the
fact that each agglomerate is split into 2d sub-agglomerates, perfectly fits the definition of bounded
variation requirement. Such a property can already be appreciated in Figure 3.5e and will be showed
to hold in practice for other real geometries in next chapter.

Remark 4.2.3. We note that in case of domains with complex (curvilinear) boundaries, Assump-
tion 4.2.3 may not hold since the axis-aligned bounding box associated to a boundary agglomerate
may not be able to fit the profile of the underlying mesh. This will be more and more the case as more
levels of agglomeration are performed. From this viewpoint, the relation (4.7) represents a cheap
criterion to evaluate the applicability of the theory.

The next assumption is needed for the stability of the intergrid transfer operators used within the
multigrid method, which we quote from [10].

Assumption 4.2.5. For any F ∈ F j ∩F j−1, j ∈ {2 . . . ,J}, let K±j and K±j−1 the neighboring elements
sharing face F in T j and T j−1, respectively. We assume that there exists a Θ > 0 such that

1 <
hK±j−1

hK±j

≤Θ ∀F ∈ F j ∩F j−1. (4.9)



118 Convergence analysis for multigrid

Remark 4.2.4. Motivated by the fact that with the R-tree procedure agglomerates from belonging
to subsequent levels have comparable ratios, we consider the above assumption not restrictive and
satisfied by construction in our setting.

4.3 Inverse estimates

Next, we introduce a some definitions needed to state precise trace and inverse estimates for very
general polytopic elements, cf. [61, Section 4].

Definition 3. Let F̂0 := [0,1]d−1 ⊂ Rd and φ : F̂0→ R a Lipschitz continuous scalar function. A
reference generalized prism is a domain K̂ ≡ K̂φ ⊂ Rd given by

K̂ ≡ K̂φ := {x ∈ Rd : 0≤ xi ≤ 1, i = 1, . . . ,d−1,0≤ xd ≤ φ(x1, . . . ,xd−1)},

with the properties: 1) [0,1]d ⊂ K̂, and 2) the straight line connecting any pair (x,y) ∈ F̂0× F̂ lies
fully in K̂.

F̂ := {x ∈ Rd : 0≤ xi ≤ 1, i = 1, . . . ,d−1,xd = φ(x1, . . . ,xd−1)}.

Also, we set ρ̂ := sup{ρ ≥ 1 : F̂0× [0,ρ]⊂ K̂} and r̂ := ⌊maxx∈F̂0 φ(x)⌋+1.

We refer to Figure 4.4 for an illustration.

Remark 4.3.1. The ‘height’ r̂ is a measure of anisotropy of the reference generalized prism. Note
that we can take ρ̂ = 1 without essential loss of generality. Indeed, if ρ̂ > 1, the change of variables
xd → xd/ρ̂ implies a modification of the Lipschitz function φ , reducing its Lipschitz constant. Star-
shapedness with respect to F̂0 is also ensured (cf. [61]).

F̂

F̂0
ρ̂

Fig. 4.4 A reference generalized prism K̂ for d = 2.

Definition 4. Given a mesh T , we define a covering T ♯ = {K} of T to be a set of open shape-regular
d–simplices K, such that for each K ∈ T , there exists a K ∈ T ♯ with K ⊂ K. For a given T ♯, we
define the covering domain Ω̄♯ := ∪K∈T ♯K̄.

Assumption 4.3.1. For a given mesh T , we postulate the existence of a covering T ♯, and of a (global)
constant OΩ ∈ N, independent of the mesh parameters, such that

max
K∈T

card
{

K′ ∈ T : K′∩K ≠ /0, K ∈ T ♯ such that K ⊂K
}
≤OΩ.
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For such T ♯, we further assume that hK := diam(K) ≤CdiamhK , for all pairs K ∈ T , K ∈ T ♯, with
K ⊂K, for a (global) constant Cdiam > 0, uniformly with respect to the mesh size hK .

The next definition, introduced in [61, Definition 4.18], relaxes an earlier coverability assumption
(cf. [59, Definition 10]) which assumed the ability to properly cover general-shaped elements by
unions of simplices of similar size.

Definition 5. An element K ∈ T is said to be p-coverable with respect to p ∈N, if there exists a set of
mK ∈ N generalized prisms K̂ j and corresponding affine maps Φ j, such that the mapped generalized
prisms K j := Φ j(K̂ j), j = 1, . . . ,mK , form a, possibly overlapping, covering of K with the additional
properties

dist(∂Kj,K)≤ hK j
(8p)−2 (4.10)

and
|K j| ≥ cas|K|, (4.11)

for all j = 1, . . . ,mK , where hK j
:= supx∈F̂0 |Φ j(ℓx, j)| and cas is a positive constant, independent of K

and of T , with dist(∂K j,K) := supx∈∂K infy∈K |x−y| the one-sided Hausdorff distance of ∂K j from
K, and ℓx, j := K̂ j ∩{x+αed : α ∈ R}.

We quote hereafter the trace and inverse estimates on general elements, and we refer the reader
to [61, Lemmata 4.21, 4.23] for their detailed proofs.

Lemma 4.3.1. Let K ∈ T Lipschitz satisfying Assumption 4.2.1. Then, for each v ∈ Pp(K), we have
the inverse inequality

∥v∥2
Fi
≤ CINV(p,K,Fi)

(p+1)(p+d)|Fi|
|K| ∥v∥2

K , (4.12)

with

CINV(p,K,Fi) :=

 min
{
Creg(K,Fi),2c−1

as 32d p2(d−1)
}
, K p-coverable,

Creg(K,Fi), otherwise,

 (4.13)

with Creg(K,Fi) := |K|/
(
|Fi|supx0

i ∈K minx∈Fi(mi ·n)
)
, and cas > 0 as in Def. 5.

Lemma 4.3.2. Let K ∈ T satisfy Assumptions 4.2.1 and 4.2.2. Then, for each v ∈ Pp(K), the inverse
estimate

∥∇v∥2
K ≤ CB

INV(p,K)
p4

ρ2
K
∥v∥2

K , (4.14)

holds, with ρω denoting the radius of the largest inscribed circle of a domain ω ⊂ Rd , and

CB
INV(p,K) :=

 min
{

ρcov(K),ρp−cov(p,K)
}
, if K p-coverable

ρcov(K), otherwise,
(4.15)
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with

ρcov(K) :=
mK

∑
j=1

CB
inv(d, r̂ j)

( r̂ jρK

ρK j

)2
, (4.16)

and
ρp−cov(p,K) := c−1

as (32)d(p−1)2d max
1≤ℓ≤mK

CB
inv(d, r̂ℓ)

( r̂ℓρK

ρKℓ

)2
, (4.17)

for Kℓ, ℓ= 1, . . . ,mK , cover of K consisting of affinely mapped generalised prisms.

Remark 4.3.2. We note that the key attribute of CINV(p,K,Fi) from Lemma 4.3.1 is that it remains
bounded for degenerating |Fi|, allowing for the estimate (4.12) to remain finite as |Fi| → 0.

4.3.1 R-tree agglomeration and p-coverability

The inherent geometrical nature of the agglomeration algorithm presented in Chapter 3 nicely fits in
this framework and allows to explicitly characterize the notion of p-coverability. Recall that starting
from the fine mesh TJ , each subsequent mesh level T j, j ∈ {1, . . . ,J}, is obtained by successive
agglomeration dictated by the R-tree. Let κ ∈ TJ denote the fine mesh element and csh the shape
regularity constant of TJ , such that ρκ ≥ cshhκ . We shall also assume that each face of each κ ∈ TJ is
shape-regular with respect to the same constant csh. Now, recall that each K ∈ T j, j ∈ {1, . . . ,J−1},
is the union of all κ ∈ TJ such that κ ∈ BK . Hence, each K is tightly close to its bounding box BK and,
with the notation of Assumption 4.2.3, it follows we can rewrite the p-coverability condition (4.10) as

max
κ∈TJ ,κ⊂K

hκ ≤
HK

csh
(8p)−2, (4.18)

We now specialize the constant CINV(p,K,Fi) in Lemma 4.3.1 by exploiting the new characterization
of p-coverability. To do so, we consider each case in (4.13) separately. If the agglomerate K ∈ T j, is
not p-coverable, i.e. (4.18) does not hold, then we have

CINV(p,K,Fi) = Creg(K,Fi) = |K|/
(
|Fi| sup

x0
i ∈K

min
x∈Fi

(mi ·n)
)
≤ c sup

κ∈TJ ,∂κ∩Fi ̸= /0

Hd
K

hd−1
κ hκ

≤ c1 p2d .

Conversely, if the agglomerate satisfies (4.18), we have, using Assumption 4.2.1,

CINV(p,K,Fi) = min
{
Creg(K,Fi),cp2(d−1)}= min

{
c1 p2d ,c2 p2(d−1)}

where both constants c1,c2 are independent of h, H, and p, but depend on the shape regularity of the
agglomerates. We assume from now on that the agglomeration procedure based on the R-tree implies
the above Assumptions, and hence such characterization is guaranteed.
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4.3.2 A priori error bounds

ƒ In the following, we recall error bounds for the DG and L2(Ω) norms for the interior penalty DG
method adapting from [61]. To this aim, we first need to introduce a precise form of the penalization
term σ , which we quote from [61, Lemma 5.2].

Lemma 4.3.3. Let T be a mesh satisfying Assumption 4.2.1. We define the discontinuity-penalization
function σ : Γ→ R for every interface F ∈ Γ, F = ∂K∩∂K′, by

σ |F := 2 max
K∈{K,K′}

{
max
i∈IKF

{
CINV(pK,K,FK

i )|FK
i |
} āK(p+1)(p+d)

|K|
}

; (4.19)

when F ⊂ ∂Ω we set K = K′.

With this definition of σ we can present the next theorem, adapted from [61].

Theorem 4.3.1. Let T = {K} be a subdivision of Ω ⊂ Rd , consisting of general curved elements
satisfying Assumptions 4.2.1, 4.2.2 and 4.3.1. Let also T ♯ = {K} an associated covering of T
consisting of shape-regular simplices as per Definition 4. Assume that u ∈ H1(Ω), the exact solution
to (4.1), is such that u|K ∈H lK (K), lK > 1+d/2, for each K ∈ T . Let uh ∈Vh, with p≥ 1, K ∈ T , be
the solution of (4.2), with σ as in (4.19). Then, we have

∥u−uh∥2
DG ≤C ∑

K∈T

h2sK
K

p2lK

(
GK(F,CINV,Cap, p)

)
∥Eu∥2

H lK (K)
,

with sK = min{p+1, lK}, and

GK(F,CINV,Cap, pK) = ā2
K p3h−d−2

K ∑
F⊂∂K∩Γ

σ
−1 max

i∈IK
F

{
Cap(p,K,FK

i )|FK
i |
}

+ ā2
K p4h−2

K |K|−1
∑

F⊂∂K∩Γ

σ
−1 max

i∈IK
F

{
CINV(p,K,FK

i )|FK
i |
}

+h−d
K p ∑

F⊂∂K∩Γ

σ max
i∈IK

F

{
Cap(p,K,FK

i )|FK
i |
}
,

and C > 0 a constant which does not depend on discretization parameters. Here E : Hs(Ω) 7→Hs(Rd),
s ∈ N0, is the classical linear extension operator presented by Stein [164].

For mesh sequences obtained by agglomeration such that condition (4.18) holds, the expression
GK(F,CINV,Cap, pK) can be bounded as follows

GK(F,CINV,Cap, pK)≤ C̃C(p)h−2
K K ∈ T , (4.20)

where C̃ is a positive constant and does not depend on the discretization parameters. Thus, in this case
we are able to derive the following bounds which are the basis of the forthcoming multigrid analysis.
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Theorem 4.3.2. Assume that Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.3.1 hold. Let u j ∈ Vj, j ∈
{1, . . . ,J}, be the DG solution of problem (4.2) with penalty function δ as in (4.19). Assume that the
exact solution u is such that u ∈ H l(Ω), l > 1+ d

2 . Then the following bounds hold

∥∥u−u j
∥∥

DG ≤ G j
√

C(p)
hs−1

j

pl− 3
2
∥u∥H l(Ω) , (4.21)

∥∥u−u j
∥∥

L2(Ω)
≤C j

L2

√
C(p)

hs
j

pl−1 ∥u∥H l(Ω) , (4.22)

where s=min{p+1, l} and the constants G j and C j
L2 are independent of the discretization parameters.

Proof. The first bound follows immediately by using GK as in (4.20). The second bound is proven by
a duality argument. Let j ∈ {1, . . . ,J} be fixed and let w ∈V be the only function satisfying

A j(v,w) =
ˆ

Ω

(u−u j)v ∀v ∈V.

For any wI ∈Vj, exploiting Galerkin orthogonality we have∥∥u−u j
∥∥2

L2(Ω)
=A j(u−u j,w−wI).

Since Vj ̸⊂V , we can not directly control the last term with the DG-norm. To this aim, we add and
subtract uI ∈Vj and write ∥∥u−u j

∥∥2
L2(Ω)

=A j(u−uI +uI−u j,w−wI).

We highlight the steps to bound the problematic term containing the product of jumps and averages,
namely

ˆ
Γ

(
{{a∇(u−uI)}} · [[w−wI]]

)
ds+
ˆ

Γ

(
{{a∇(uI−u j)}} · [[w−wI]]

)
d = I1 +I2

As homogeneous Dirichlet boundary conditions are considered, by multiplying and dividing by
√

σ

we have
I1 ≤

1
2 ∑

F∈Γint

ˆ
F

σ
− 1

2

(
∇(u−uI)

++∇(u−uI)
−
)
[[σ

1
2 (w−wI)]],

and upon application of trace inverse inequality and the penalization function σ defined in (4.19), we
have, for any F ∈ Γ, with F ⊂ ∂K, for a K ∈ T ,∥∥∥σ

− 1
2 ∇(u−uI)

∥∥∥
F
≤C

(
h−1

j

∥∥∥σ
− 1

2 ∇(u−uI)
∥∥∥

L2(K)
+h j|σ

1
2 ∇(u−uI)|1,K

)
(4.23)

≤C
(

Cσ (p)p−2 ∥∇(u−uI)∥+h2
jCσ (p)p−2|∇(u−uI)|1,K

)
, (4.24)



4.4 Convergence analysis for the multigrid algorithm 123

where Cσ (p) contains the polynomial dependence of the penalization function in 4.19. Choosing
now, on each element K ∈ T , uI = Π ju, where Π j : H l(K)→P p(K) is the operator defined in [61,
Theorem 4.31], we obtain upon using Assumption 4.3.1

∥∥∥σ
− 1

2 ∇(u−uI)
∥∥∥

F
≤Cσ (p)

( h2(s−1)
j

p2l−2+2 +
h2(s−1)

j

p2l−4+2

)
∥u∥2

H l(K) . (4.25)

From this, after summing over all elements we conclude

I1 ≤
√

Cσ (p)
hs−1

j

pl−1 ∥w−wI∥DG, j ∥u∥H l(Ω) .

For I2, we divide and multiply again by
√

σ , use the trace-inverse multiplicative inequality in [61,
Lemma 4.21], and exploit the L2-stability of Π j, obtaining

I2 ≤
√

Cσ (p)|u−u j|1,Ω ∥w−wI∥DG, j .

Choosing again wI = Π jw, and employing elliptic regularity we have

∥w−wI∥DG ≤C j h j

p
1
2
∥w∥H2(Ω) ≲C j h j

p
1
2

∥∥u−u j
∥∥

L2(Ω)
,

where C j is independent of the discretization parameters. All in all, we have

I1 +I2 ≤
√

Cσ (p)
(hs−1

j

pl−1 + |u−u j|1,Ω
) h j

p
1
2

∥∥u−u j
∥∥

L2(Ω)
.

From this, by using standard arguments one obtains

∥∥u−u j
∥∥

L2(Ω)
≤
√

Cσ (p)
(hs−1

j

pl−1 +
hs−1

pl− 3
2

) h

p
1
2
∥u∥H l(Ω) ≤C(p)

hs
j

pl−1 ∥u∥H l(Ω) ,

where C(p) contains the dependence on Cσ (p).

4.4 Convergence analysis for the multigrid algorithm

We closely follow the framework developed in [10, 9], cf. also [49]. The two main ingredients we
need to specify are the intergrid transfers operators and the smoothing iterations. Moreover, assume
that mesh levels are obtained by agglomeration such that p-coverability holds under condition (4.18).
The prolongation operator is denoted by P j

j−1 : Vj−1→ Vj, for j ∈ {2, . . . ,J}, while the restriction
operatorR j−1

j : Vj→Vj−1 is its the adjoint with respect to the L2(Ω)-inner product
(
·, ·
)

and is thus
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defined by (
P j

j−1v,w
)
=
(

v,R j−1
j w

)
∀v ∈Vj−1,w ∈Vj. (4.26)

The smoother on level j is defined to be a Richardson iteration, whose iteration matrix is

B j = Λ jI j,

where I j is the identity and Λ j ∈ R is a bound for the spectral radius of the operator A j : Vj → Vj

defined by
(A ju,v) =A j(u,v) ∀u,v ∈Vj, j ∈ {1, . . . ,J}. (4.27)

Next, we define the operator P j−1
j : Vj→Vj−1 as

A j−1

(
P j−1

j v,w
)
=A j

(
v,P j

j−1w
)

∀v ∈Vj,w ∈Vj−1. (4.28)

For any j, j ∈ {1, . . . ,J}, we define the following norms based on A j

|||v|||s, j :=
√(

As
jv,v
)

j
∀s ∈ N∪{0},v ∈Vj.

In particular, it holds

|||v|||21, j =
(

A jv,v
)

j
=A j(v,v), |||v|||0, j = (v,v) j = ∥v∥2

L2(Ω) .

In the following theorem we prove an upper bound on the largest eigenvalue of A j by employing
the general estimates of [61], adapted in Section 4.3.2 to our agglomerates.

Theorem 4.4.1. Assume that Assumptions 4.2.1, 4.2.2, 4.2.3 and 4.2.4 hold. For any v ∈ Vj, j ∈
{1, . . . ,J}, we have that

A j(u,u)≤C j
eig(p)

(
p4

ρ2
j
+

(p+1)2(p+d)2

ρ2
j

)
∥v∥2

0,Ω , (4.29)

where C j
eig(p) := max{C(p),C j

INV(p)}, with CB, j
INV(p) := maxK∈T j CB

INV(p,K).

Proof. We estimate separately the two contributions involved in the definition of the DG norm. The
first addendum involving the H1-seminorm is bounded by using Lemma 4.3.2 and Assumption 4.2.4:

∑
K∈T j

|u|21,K ≤ ∑
K∈T j

CB
INV(p,K)

p4

ρ2
K
∥u∥2

0,K ≤max
K∈T j
CB

INV(p,K) ∑
K∈T j

p4

ρ2
K
∥u∥2

0,K ≤ C
B, j
INV

p4

ρ2
j
∥u∥2

0,Ω ,

being CB, j
INV(p) = maxK∈T j CB

INV(p,K). Jump terms across facets F ∈ F j are bounded thanks to the
inverse inequality from Lemma 4.3.1, and the element-wise definition of the penalty σK :
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∑
F∈F j

∥∥∥∥σ
1
2
j [[u]]

∥∥∥∥2

0,F
≤ ∑

K∈T j

∥∥∥∥σ
1
2
j [[u]]

∥∥∥∥2

0,∂K
≤ ∑

K∈T j

∑
F∈∂K

CINV(K,F, p)
(p+1)2(p+d)2|F |

ρ2
K |K|

∥u∥2
0,K .

Using the inverse estimate (4.12) and the characterization of CINV implies

∑
F∈F j

∥∥∥∥σ
1
2
j [[u]]

∥∥∥∥2

0,F
≤C(p)

(p+1)2(p+d)2

ρ2
j

∥u∥2
0,Ω .

The statement follows by summing the above bounds and collecting the constants.

Remark 4.4.1. In the special case for which we do not need to resort to the p-coverability setting for
all K ∈ T j, j ∈ {1, . . . ,J}, the constants CB

INV and CINV involved in Lemmata 4.3.1 and 4.3.2 do not
depend on the polynomial degree p. Therefore, Ceig is independent of p. In particular, we retrieve in
Theorem 4.4.1 the same behavior of O

(
p4

h2
K

)
as found in [10, Theorem 7].

We consider the two-level cycle sketched in Algorithm 7 to solve the problem (posed on the fine
level) AJuJ = fJ with fJ ∈VJ .

Algorithm 7: Two-level method to solve AJx = fJ

Data: x0 initial guess, m1,m2 smoothing steps parameters.
1 for i = 1, . . . ,m1 do
2 x(i)← x(i−1)+B−1

J

(
fJ−AJx(i−1)

)
;

3 rJ−1← Restrictor
(

fJ−AJx(m1));
4 eJ−1← CoarseGridSolver(AJ−1,rJ−1);
5 x(m1+1)← xm1 +Prolongator(eJ−1);
6 for i = m1 +2, . . . ,m1 +m2 +1 do
7 x(i)← x(i−1)+B−1

J

(
fJ−AJx(i−1)

)
;

In order to perform a convergence analysis of the two-level method, we need to estimate the error
propagation operator associated to the multigrid scheme, defined by

E2lvl
m1,m2

:= Gm2
J

(
IdJ−PJ

J−1PJ−1
J

)
Gm1

J , (4.30)

with GJ = IdJ −B−1
J AJ . To this aim, we follow the classical approach of studying separately the

smoothing property and the approximation property associated to the two-level operator. By Theo-
rem 4.4.1, we can bound Λ j, j ∈ {1, . . . ,J} as follows:

Λ j ≤C j
eig(p)

(
p4

ρ2
j
+

(p+1)2(p+d)2

ρ2
j

)
, (4.31)

with C j
eig(p) as in Theorem 4.4.1.
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Lemma 4.4.1 (Smoothing property). Let Assumptions 4.2.1, 4.2.2, 4.2.3 and 4.2.4 hold. Then, for
any v ∈Vj, j ∈ {1, . . . ,J}, we have

∣∣∣∣∣∣Gm
j v
∣∣∣∣∣∣

s, j
≤
[

C j
eig(p)

(
p4

ρ2
j
+

(p+1)2(p+d)2

ρ2
j

)] s−t
2

(1+m)
t−s

2 |||v|||2t, j, (4.32)

for 0≤ t < s≤ 2, m ∈ N\{0}.

Proof. By considering the eigenvalue problem associated to the level operator A j, namely

Alϕ
j

i = λiϕ
j

i , (4.33)

with operator eigenvalues 0 < λ1 ≤ λ2 ≤ ·· · ≤ λn and associated eigenbasis {ϕ j
i }

n j
i=1 of Vj, we can

write any v ∈Vj as

v =
nl

∑
i=1

viϕ
j

i , vi ∈ R. (4.34)

Based on the previous identity, Gm
j can be written as:

Gm
j =

(
I j−

1
Λ j

A j

)m
v =

n j

∑
i=1

(
1− λi

Λ j

)m
viϕ

j
i .

Combining the above identity and estimate (4.31) gives the thesis:

∣∣∣∣∣∣Gm
j v
∣∣∣∣∣∣2

s, j
= hd

l

n j

∑
i=1

(
1− λi

Λ j

)2m

v2
i λ

s
i = Λ

s−t
j

{
hd

j

n j

∑
i=1

(
1− λi

Λ j

)2m
λ

s−t
i

Λ
s−t
j

v2
i λ

t
i

}

≤ Λ
s−t
j max

x∈[0,1]
{xs−t(1− x)2m}|||v|||2t, j ≤

[
C j
eig(p)

(
p4

ρ2
j
+

(p+1)2(p+d)2

ρ2
j

)]s−t

(1+m)t−s|||v|||2t, j.

Lemma 4.4.2 (Approximation property). Let Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.3.1 hold. Then
for any v ∈Vj, j ∈ {1, . . . ,J}, we have

∣∣∣∣∣∣∣∣∣(Id j−P j
j−1P j−1

j

)
v
∣∣∣∣∣∣∣∣∣

0, j
≲
√

C(p)
(
C j

L2 +C j−1
L2

)h2
j

p
|||v|||2, j. (4.35)

Proof. For a given v ∈Vj, we have by definition of the norm

∣∣∣∣∣∣∣∣∣(Id j−P j
j−1P j−1

j

)
v
∣∣∣∣∣∣∣∣∣

0, j
= sup

0̸=φ∈L2(Ω)

´
Ω

φ(Ik−P j
j−1P j−1

j )v

∥φ∥L2(Ω)

. (4.36)
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We consider the following problem

ˆ
Ω

∇η ·∇vdx =

ˆ
Ω

φ ·∇vdx ∀v ∈ V,

for φ ∈ L2(Ω), and write η j ∈Vj and η j−1 ∈Vj−1 for the DG solution of

A j(η j,v) =
ˆ

Ω

φv ∀v ∈Vj, (4.37)

A j−1(η j−1,v) =
ˆ

Ω

φv ∀v ∈Vj−1. (4.38)

Using now Theorem 4.3.2 we have

∥∥η−η j
∥∥

L2(Ω)
≲C j

L2

√
C(p)

h2
j−1

p
∥φ∥L2(Ω) , (4.39)

∥∥η−η j−1
∥∥

L2(Ω)
≲C j−1

L2

√
C(p)

h2
j−1

p
∥φ∥L2(Ω) , (4.40)

By the definition of P j−1
j we obtain the following chain of equalities for a w ∈Vj−1

A j−1(P
j−1
j η j,w) =A j(η j,P j

j−1w) =A j(η j,w) =
ˆ

Ω

φwdx =Aj−1(ηj−1,w),

which implies
η j−1 = P j−1

j η j. (4.41)

Using (4.37), the error estimates (4.39), the equality (4.41), and the definition of P j−1
j we get

ˆ
Ω

φ(Id j−P j
j−1P j−1

j )vdx =A j(η j,v)−A j(η j,P j
j−1P j−1

j v)

=A j(η j,v)−A j−1(P
j−1
j η j,P

j−1
j v)

=A j(η j,v)−A j−1(η j−1,P
j−1
j v)

=A j(η j−P j
j−1η j−1,v)

≲
∣∣∣∣∣∣η j−η j−1

∣∣∣∣∣∣
0, j|||v|||2, j

≲
(∥∥η j−η

∥∥
L2(Ω)

+
∥∥η j−1−η

∥∥
L2(Ω)

)
|||v|||2, j

≲
√

C(p)
(

C j
L2 +C j−1

L2

)h2
j

p
|||φ |||L2(Ω)|||v|||2, j,

(4.42)

where the first inequality exploits the generalized Cauchy-Schwarz inequality for elements of Vj

developed in [10, Lemma 4.1] (cf. also [48, Lemma 6.2.10]). Replacing (4.42) in (4.36) yields the
result.
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4.4.1 Convergence of the two-level method

Lemmata 4.4.1 and 4.4.2 allow the convergence analysis of a two-level method with the error
propagation operator defined in (4.30).

Theorem 4.4.2. Assume that Assumptions 4.2.1, 4.2.2, 4.2.4, 4.2.3, and 4.3.1 hold. There exists a
positive constant C2lvl, independent of the mesh size and the polynomial degree such that∣∣∣∣∣∣E2lvl

m1,m2
v
∣∣∣∣∣∣

1,J ≤C2lvlΣK |||v|||1,J (4.43)

for any v ∈VJ , where

Σ j :=CJ,J−1CJ
eig(p)

√
C(p)
p

(
p4 +(p+1)2(p+d)2

)
(1+m2)

− 1
2 (1+m1)

− 1
2 , (4.44)

and CJ,J−1 does not depend on the discretization parameters, but on the shape-regularity the agglom-
erated grids.

Proof. By using the definition of E2lvl
m1,m2

, the approximation property, and the smoothing property
twice∣∣∣∣∣∣E2lvl

m1,m2
v
∣∣∣∣∣∣

1,J

=
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J

(
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J−1PJ−1
J

)
Gm1

J v
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1,J

≤
[

CJ
eig(p)

(
p4
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J
+
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The thesis follows by setting
CJ,J−1 :=

(
CJ

L2 +CJ−1
L2

)
,

and using the bounded variation assumption 4.2.4.

From (4.44) we can immediately derive a condition on the number of smoothing steps needed for
the convergence of the two-level method.

Corollary 4.4.2.1. Let ξ > 0 be a constant such that ξ >C2lvl. Then, provided that

(1+m2)
1
2 (1+m1)

1
2 > ξCJ,J−1CJ

eig(p)

√
C(p)
p

(
p4 +(p+1)2(p+d)2

)
,

the two-level multigrid method converges uniformly.
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As expected, we observe that the number of smoothing steps needed to achieve uniform conver-
gence increases with the polynomial degree p. In particular, we observe in this general case a bound
of type (m1 +1)

1
2 (m2 +1)

1
2 ≥O

(
CJ
eig(p)

√
C(p)p3

)
, with additional contribution of p compared to

O(p2+µ), µ = 1, observed in [10, Theorem 8]. As noted in Remark 4.4.1 above, in the case for which
the involved constants do not depend on p, we obtain indeed the expected behavior of O(p3).

4.4.2 Convergence of the W-cycle algorithm

To prove the convergence of the W-cycle multigrid algorithm, summarized in Algorithm 8, the stability
for operators P j

j−1 and P j−1
j is required. In turn, this is based on the following inequality expressing

the equivalence between DG norms on subsequent grid levels (cf. [9, Lemma 4.6]):

∥v∥DG, j ≤Cequiv ∥v∥DG, j−1 ∀v ∈Vj−1, j ∈ {2, . . . ,J}.

Such equivalence can be derived using Assumption 4.2.5, as observed in [10, Lemma 7].

Lemma 4.4.3. Under Assumption 4.2.5, there exists a constant Cstab ≥ 1 which does not depend on
the mesh size, the polynomial degree, and the multigrid level j, j ∈ {2, . . . ,J}, such that∣∣∣∣∣∣∣∣∣P j

j−1v
∣∣∣∣∣∣∣∣∣

1, j
≤Cstab|||v|||1, j−1 ∀v ∈Vj−1,∣∣∣∣∣∣∣∣∣P j−1

j v
∣∣∣∣∣∣∣∣∣

1, j−1
≤Cstab|||v|||1, j ∀v ∈Vj.

(4.45)

Algorithm 8: One iteration of W-cycle to solve AJx = fJ

Data: x0 initial guess, m1,m2 smoothing steps parameters.
1 if j = 1 then
2 δ1← CoarseGridSolver(A1, f1);
3 else
4 for i = 1, . . . ,m1 do
5 x(i)← x(i−1)+B−1

j

(
f j−A jx(i−1)

)
;

6 r j−1← Restrictor
(

f j−A jx j
)
;

7 δ̄ j−1← W−cycle
(
A j−1,r j−1,0,m1,m2

)
;

8 δ j−1← W−cycle
(
A j−1,r j−1, δ̄ j−1,m1,m2

)
;

9 xm1+1← xm1 +Prolongator
(
δ j−1

)
;

10 for i = m1 +2, . . . ,m1 +m2 +1 do
11 x(i)← x(i−1)+B−1

j

(
f j−A jx(i−1)

)
;

For a W-cycle, the error propagation operator can be defined recursively on top of the two-level
error propagation (4.30) as follows

E j,m1,m2v := Gm2
J

(
Id j−P j

j−1(Id j−E2
j,m1,m2

)P j−1
j

)
Gm1

J v, j ∈ {2, . . . ,J}, (4.46)
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with E1,m1,m2v = 0. Similarly to the two-level case, we define G j = Id j−B−1
j A j and restriction and

prolongation operators analogously.

Theorem 4.4.3. Assume that Assumptions 4.2.1, 4.2.2, 4.2.3, 4.2.4, and 4.2.5 hold. Let C2lvl and
Cstab be defined as in Theorem 4.4.2 and Lemma 4.4.3, respectively. Moreover, let C j, j−1 be as in
Theorem 4.13 but on a generic level j. Then, there exists a constant Ĉ > C2lvl, independent of the
mesh size and the polynomial degree on level j, j ∈ {1, . . . ,J}, such that if the number of pre- and
post- smoothing steps satisfy

(1+m1)
1/2(1+m2)

1/2 ≥


C̃ j(p)C j, j−1

(
Cstab

)2
Ĉ2

Ĉ−C2lvl
if C j−1, j−2

C j, j−1
≤ 1,

C̃ j(p)
(

C j−1, j−2

)2

C j, j−1

(
Cstab

)2
Ĉ2

Ĉ−C2lvl
otherwise.

(4.47)

then ∣∣∣∣∣∣E j,m1,m2v
∣∣∣∣∣∣

1, j ≤ ĈΣ j|||v|||1, j v ∈Vj, (4.48)

with

Σ j :=C j, j−1
C̃ j(p)

(1+m1)1/2(1+m2)1/2 , (4.49)

and C̃ j(p) :=C j
eig(p)

√
C(p)
p .

Proof. The proof is essentially identical to similar results showed in [10, 9] and is done by induction.
For the base case j = 1, the statement holds. For j > 1, by induction, we assume that (4.48) holds for
j−1. The definition of the error propagator E j,m1,m2 as in (4.46) implies the following bound∣∣∣∣∣∣E j,m1,m2v

∣∣∣∣∣∣
1, j ≤

∣∣∣∣∣∣∣∣∣Gm2
J

(
Id j−P j

j−1P j−1
j

)
Gm1

J v
∣∣∣∣∣∣∣∣∣

1, j
+
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J P
j
j−1E

2
j,m1,m2

P j−1
j Gm1

J v
∣∣∣∣∣∣∣∣∣

1, j
.

The expression in the first term is precisely the error operator associated to a two-level method between
levels j−1 and j and is bounded by applying the two-level estimate in Theorem 4.4.2. The second
addendum can be bounded by applying to a generic level j the smoothing property twice, the stability
estimate in (4.4.3), and the induction hypothesis. It follows that∣∣∣∣∣∣∣∣∣Gm2

J P
j
j−1E

2
j−1,m1,m2

P j−1
j Gm1

J v
∣∣∣∣∣∣∣∣∣

1, j
≤C2

stabĈ2
Σ

2
j−1|||v|||1, j. (4.50)

Therefore, we obtain ∣∣∣∣∣∣E j,m1,m2v
∣∣∣∣∣∣

1, j ≤
(

C2lvlΣ j +C2
stabĈ2

Σ
2
j−1

)
|||v|||1, j (4.51)

After setting C̃ j(p) :=C j
eig(p)

√
C(p)
p , the error operators between consecutive levels Σ j−1 and Σ j are

linked by the following equality
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Σ j−1 = Σ jC̃ j(p)

(
C j−1, j−2

C j, j−1

)
≤ Σ j

(
C j−1, j−2

C j, j−1

)
. (4.52)

Using this relation in (4.51) it follows that

C2lvlΣ j +C2
stabĈ2

Σ
2
j−1 ≤

(
C2lvl +C2

stabĈ2 C̃ j(p)
(1+m1)1/2(1+m2)1/2

(
C j−1, j−2

)2

C j−1, j

)
Σ j.

Then, if smoothing steps m1 and m2 are such that

(1+m1)
1/2(1+m2)

1/2 ≥ C̃ j(p)

(
C j−1, j−2

)2

C j−1, j

CstabĈ2

Ĉ−C2lvl
,

it holds
C2lvlΣ j +C2

stabĈ2
Σ

2
j−1 ≤ ĈΣ j.

Moreover, if C j−1, j−2 ≤C j, j−1, the condition on m1 and m2 can be written as

(1+m1)
1/2(1+m2)

1/2 ≥ C̃ j(p)C j, j−1
C2

stabĈ2

Ĉ−C2lvl
. (4.53)

4.5 Conclusions

In this chapter we have shown preliminary results on the convergence of two-level and multigrid
methods for the solution of the system of equations associated to the interior penalty DG scheme,
following the analysis in [10] and adapting it to the case in which the agglomerates are produced
using the algorithms in Chapter 3. We confirmed that also in our case the two-level and the W-cycle
multigrid schemes converge uniformly with respect to the discretization parameters (and, in the
W-cycle case, the number of levels in the hierarchy), if the number of smoothing steps (depending on
parameters m1 and m2) is sufficiently large.





Chapter 5

Application to cardiac electrophysiology

In this chapter, we exploit the agglomeration strategy developed in Chapter 3 in a polytopic discontin-
uous Galerkin framework to build a multigrid preconditioner for the monodomain problem, a classical
and well established model in cardiac electrophysiology. We present several results which validate
our approach both in two and three dimensions, varying ionic models, geometries, and polynomial
degrees.
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5.1 Literature review

Computational modeling of the heart has been proposed and actively pursued as a tool for accelerating
cardiovascular research. One of the main challenges of the computational modeling of the heart is
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the high computational cost, in particular when moving towards whole heart modeling and coupling
different physics and scales. The development of methods that reduce the computing time while
keeping numerical accuracy becomes essential for speeding-up fundamental research and, ultimately,
for translation of modeling into clinical practice. Cardiac electrophysiology simulations are classically
based on monodomain or bidomain reaction-diffusion equations for the transmembrane electrical
potential. In order to take into account the electrochemical reactions that occur at a cellular level,
these systems are coupled through a reaction term to a system of Ordinary Differential Equations
(ODEs), modelling the inward and outward flow of ionic currents across the cell membrane [92].
During the years, a large variety of models have been developed, ranging from reduced models with
only one or few unknowns such as the Rogers-McCulloch ionic model [160], or the FitzHugh and
Nagumo model [91], up to the Bueno-Orovio and Ten Tusscher-Panfilov ionic models [170, 171, 52].
The electric impulse is originated in the sinoatrial node and then is transmitted to the ventricle
myocardium, causing a fast depolarization of the tissue. Due to the quick upstroke of the action
potential, which is caused by voltage-dependent sodium channels, a numerically robust calculation
of the propagation of the wave across the tissue is well known to be computationally challenging.
The rapid increase of the transmembrane potential in one cell over a few milliseconds results also
in a steep wave front in space, requiring high resolution in both temporal and spatial discretizations.
The classical approaches to solve the monodomain or bidomain problems usually exploit linear
elements on very fine computational grids, to be able to capture the features of the solution. Higher
order Finite Elements and Discontinuous Galerkin (DG) approaches have recently received more
attention [118, 4, 45]. The discontinuous setting allows a straightforward implementation of high-order
discretizations and lends itself well for hp-adaptivity, assuming that a good a-posteriori error estimator
is available. The development of efficient preconditioners for these models is an incredibly vast and
active area of research. Among them, we mention Balancing Domain Decomposition with Constraints
(BDDC) [136, 137] and Finite Element Tearing and Interconnecting (FETI) methods [85, 126]. In
this chapter we exploit the flexibility of the polytopic Discontinuous Galerkin framework introduced
in previous chapters, and in particular the multilevel strategy developed in Chapter 3, to precondition
the monodomain problem with polynomial degrees p ≥ 1. We present a sequence of numerical
experiments varying ionic models and testing from simple two-dimensional geometries up to fine
three-dimensional meshes of true human ventricles. Grids of real-life models are generally very fine
due to geometrical complexity. Classical geometric multigrid approaches require the construction of a
hierarchy of grids that in the present context is most often obtained by uniformly refining the input
mesh. As discussed at the beginning of Chapter 2, in case of very fine and unstructured geometries,
building such hierarchies is non-trivial. During the last years, several multilevel strategies have been
explored for a large variety of numerical methods posed on arbitrarily shaped elements such as in
Virtual Element methods [18, 12, 154] and Hybrid High-Order methods [74, 73]. Motivated by a
Discontinuous Galerkin setting, we take here a different perspective and exploit the flexibility given by
polytopes to perform a coarsening of the original fine, given, mesh and employ such coarsened levels
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in a multigrid framework to precondition a DG discretization [46, 141] using the strategy developed
in Chapter 3.

This chapter is organized as follows. In Section 5.2 we introduce the electrophysiology and
monodomain model, and address its spatial and time discretization in Section 5.3. We discuss the
details of our preconditioning and coarsening strategy in Section 5.4. Finally, we present numerical
results in Section 5.5 and point to future developments in Section 5.6.

5.2 Mathematical model

The heart wall consists of three distinct layers: the internal thin endocardium, the external thin epi-
cardium and the thick muscular cardiac tissue known as the myocardium. The latter is predominantly
composed of cardiomyocytes, which are specialized, striated excitable muscle cells responsible for
the essential cardiac function. When these cardiomyocytes are stimulated by an electrical impulse, a
change in the electro-chemical balance of the cell membrane results in a series of biochemical reac-
tions that determine a large variation of the transmembrane potential, namely the voltage differential
between the intra and extracellular spaces of the cell, which implies a depolarization and subsequent
slow repolarization mechanism. This process is triggered and controlled by the opening and closing
of voltage-gated ion channels that make the cell membrane permeable to specific ionic species, like
sodium, potassium, and calcium. The transmembrane potential changes as a result of the ionic fluxes,
which, in turn, are driven by the voltage difference itself.

5.2.1 Monodomain problem

The monodomain model in the computational domain Ω over the time interval (0,T ] reads [92, 69]

∂u
∂ t (t)+Iion(u(t),www(t))−∇ · (D∇u) = Iapp(xxx, t), in ∈Ω× (0,T ],
∂www(t)

∂ t = HHH(u(t),www(t)), in ∈Ω× (0,T ],

D∇u ·nnn = 0 on ∂Ω× (0,T ],

u(0) = u0,www(0) = www0,

(5.1)

with unknowns u : Ω× [0,T ]→R and www : Ω× [0,T ]→RM , where M is the number of ionic variables.
The permeability tensor D is defined as

D= σl fff 0⊗ fff 0 +σtsss0⊗ sss0 +σnnnn0⊗nnn0,

where the vector fields fff 0,sss0, and nnn0 express respectively the longitudinal, transversal and normal
conductivities [153]. The action potential is triggered by an external applied stimulus Iapp(xxx, t),
which mimics the presence of a (natural or artificial) pacemaker, while the Iion term is responsible
for describing the electric current generated by the flux of ionic species across the cell membrane.
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Homogeneous Neumann boundary conditions are prescribed on the whole boundary ∂Ω to impose
the condition of electrically isolated domain, with nnn denoting the outward normal unit vector to the
boundary. When d = 2, we will test the model on a unit square [0,1]2, while with d = 3 we will
consider a realistic mesh of a human ventricle. In order to compare different models, we note that the
monodomain equation can also be written as

χm

(
Cm

∂u
∂ t

+ Îion(u,www)
)
−∇ · (D̂∇u) = χmÎapp(xxx, t),

with Cm the membrane cell capacitance, and χm the membrane surface-to-volume ratio. Such equation
can immediately be written as (5.1) by using the relations Iion =

Îion
Cm

, Iapp =
Îapp
Cm

, and D= D̂
χmCm

.

5.2.2 Ionic models

Many ionic models can be recast as the following set of ODEs
∂www(t)

∂ t = HHH(u(t),www(t)) t ∈ (0,T ],

u(0) = u0,www(0) = www0,
(5.2)

where the unknowns are the transmembrane potential u = u(t) and the vector www = (w1, . . . ,wM) of
the M ionic variables. The dynamic of the ionic variables is governed by the functions HHH and Iion

which couple the gating variables with the evolution of the action potential. In this chapter, we will
consider two phenomenological ionic models: FitzHugh-Nagumo [91] and Bueno-Orovio [52].

FitzHugh-Nagumo

The FitzHugh-Nagumo model has the following form
∂w(t)

∂ t = ε(u−Γw) t ∈ (0,T ],

u(0) = u0,w(0) = w0,
(5.3)

The Iion term associated to this model has the following expression

Iion = ku(u−a)(u−1)+w,

where (k,a,ε,Γ) are known parameters used to tune the ionic model.
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Bueno-Orovio

The Bueno-Orovio minimal model has 3 gating variables www = (w1,w2, .w3) and is described by the
following system of ODEs

∂w0(t)
∂ t = [(b0(u)−a0(u))w0 +a0(u)w∞

0 (u)] t ∈ (0,T ],
∂w1(t)

∂ t = [(b1(u)−a1(u))w1 +a1(u)w∞
1 (u)] t ∈ (0,T ],

∂w2(t)
∂ t = [(b2(u)−a2(u))w2 +a2(u)w∞

2 (u)] t ∈ (0,T ],

u(0) = u0,www(0) = www0,

(5.4)

where

• a0(u) =
1−HV1 (u)

H−V1
(u)(τ ′′1 −τ

′
1)+τ

′
1
,

• a1(u) =
1−HV2 (u)

H−V2
(u)(τ ′′2 −τ

′
2)+τ

′
2
,

• a2(u) = 1
HV2 (u)(τ

′′
3 −τ

′
3)+τ

′
3
,

• b0(u) =−HV1 (u)
τ
+
1

,

• b1(u) =−HV2 (u)
τ
+
2

,

• b2(u) = 0,

• w∞
0 (u) = 1−HV−1

(u),

• w∞
1 (u) = HVo(u)

(
w∗∞−1 u

τ∞
2

)
+1− u

τ∞
2

,

• w∞
2 (u) = HK3

V−3
(u).

Here, the function Hε
z0
(z) = 1+tanh(ε(z−z0))

2 is a smooth approximation of the Heaviside function
depending on the constant parameter ε ∈ R+. When ε is omitted, it corresponds to the classical
Heaviside function. With this model, the ionic term in (5.1) is given by

Iion(u,www) = ∑
q∈{ f i,so,si}

Iq(u,www), (5.5)

where

• I f i =−HV1 (u)(u−V1)(V̂−u)
τ f i

w0,

• Iso =
1−HV2 (u)(u−Vo)

HVo (u)(τ
′′
o −τ

′
o)+τ

′
o
+

HV2(u)

HVso (u)(τ
′′
so−τ

′
so)+τ

′
so

,

• Isi =−HV2
τsi

w1w2.
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We can hence introduce here the monodomain equation, which will be coupled with one of the
presented ionic models. Albeit relatively simple, the Bueno-Orovio model has the characteristic of
capturing the main features of the electrophysiology in healthy myocardial tissues.

5.3 Space and time discretization

In this section we describe the spatial and temporal discretization of system (5.1). We adopt a classical
discontinuous Galerkin approach. We consider a shape-regular mesh Ωh which satisfies standard
assumptions of regularity and quasi-uniformity and parametrized by the mesh size h. Let us recall
the usual function space V p

h of globally discontinuous polynomials of degree p in each coordinate
direction, namely

V p
h =

{
vh ∈ L2(Ω) : vh|K ∈Qp(K),K ∈Ωh

}
,

with Qp(K) denoting the space of tensor-product polynomials on element K of degree p≥ 1. The
application of the Symmetric Interior Penalty Discontinuous Galerkin [159] method involves the
definition of the following bilinear forms, with a(uh,vh) adapted from (4.3)

a(uh,vh) =

ˆ
Ω

D∇huh ·∇hvh dx−
ˆ

Γ

(
{{D∇uh}} · [[vh]]+{{D∇vh}} · [[uh]]

)
ds+
ˆ

Γ

σ [[uh]] · [[vh]]ds,

m(uh,vh) =

ˆ
Ω

uhvh dx.

The penalty parameter is defined edge-wise as σ(xxx) = αnnnTDnnn > 0, with α = Cp2

h . In our numerical
experiments, we set C = 10.

5.3.1 Semidiscrete formulation

The semi-discrete formulation associated to problem (5.1) requires, for any t ∈ (0,T ], to find uh(t) ∈
V p

h and wh(t) ∈V p
h such that

(
∂uh
∂ t ,vh

)
+a(uh,vh)+

(
Iion(uh,wwwhhh),vh

)
=
(
Iapp,vh

)
,(

∂wh
∂ t ,vh

)
= HHH(uh,wh),

uh(0) = uh,0,

wwwhhh(0) = wwwh,0,

(5.6)

holds for every vh ∈V p
h . Here, uh,0 and wwwh,0 are given initial data in V p

h and
(
·, ·
)

is the L2-inner product
on Ω. The right-hand side of the equation involves only the external current term since homogeneous
Neumann boundary conditions are imposed. Given a basis {φi}N

i of V p
h , with N = dim(V p

h ), we write
UUUh(t) and WWW h(t) for the vectors holding the expansion coefficients of uh(t),wwwh(t) with respect to
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{φi}N
i for each time instant t ∈ (0,T ]. We denote with A and M the stiffness and mass matrix obtained

after numerical integration of the bilinear forms a(·, ·) and m(·, ·). Finally, let Ih
ion, I

h
app be the finite

element interpolants of Iion and Iapp, respectively. With this notation, the algebraic formulation
of (5.6) reads 

MU̇UUh +AUUUh +MIh
ion(UUUh,WWW h) = MIh

app,

UUUh(0) =UUU0,

WWW h(0) =WWW 0,

(5.7)

and has to be coupled with the system of ODEs for the ionic model at hand, cf. (5.3) and (5.4)
above. To obtain a fully discrete system, we split the interval (0,T ] into NT uniform subintervals
with a time step ∆t = tn+1− tn, with tn = n∆t for n = 0, . . . ,NT − 1. We use the subscript n to
indicate the approximation of UUUh(t) and WWW h(t) at time tn. We adopt a semi-implicit backward Euler
approach where the diffusion term is discretized implicitly in time, while the reaction term is evaluated
explicitly [176, 151, 45]. This results in the following scheme

M
UUUn+1−UUUn

∆t
+AUUUn+1 +MIh

ion(UUUn,WWW n+1) = MIh
app,n+1, (5.8)

which yields an explicit formula for UUUn+1(
M
∆t

+A

)
UUUn+1 = MIh

app,n+1−MIh
ion(UUUn,WWW n+1)+

M
∆t

UUUn. (5.9)

Therefore, given the solution
(
UUUn,WWW n

)
at time tn, the solution at time tn+1 is computed as follows:

• For i = 1, . . . ,N: solve the ionic model system for WWW n+1.

• Plug the computed WWW n+1 in (5.9) and solve the resulting linear system for UUUn+1.

Note that this scheme allows crucial gains in computational efficiency: the problem for UUUn+1 is
linear and hence the system matrix M

∆t +A and relative preconditioner are assembled only once at
the beginning of the computation. In our implementation, matrices A and M are both assembled
consistently, without lumping the mass matrix M which is clearly an option since in a DG discretization
it is block diagonal. As for the evaluation of the ionic term Ih

ion(UUUn,WWW n+1) in (5.7), we opt for the
so-called Ionic Current Interpolation (ICI) method [158]. We first compute the values of UUUn and WWW n+1

at the degrees of freedom, and then we interpolate them at quadrature points while assembling local
contributions for the right-hand side vector. This procedure is cheaper and requires less memory than
solving at each time step the system of ODEs and computing Ih

ion at quadrature nodes (a procedure
also known as State Variable Interpolation). The system matrix is symmetric and positive definite,
hence the natural choice is to solve the resulting system with the preconditioned conjugate gradient
method. The focus of this chapter will be the investigation of a multilevel preconditioner which
exploits a polytopic coarsening of the given mesh.
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5.4 Multilevel preconditioning based on polytopes

In this section, we present our multilevel preconditioner based on polytopic elements, used to enable
convergence acceleration. The classical geometric multigrid (GMG) begins with a coarse (possibly
unstructured) mesh which is then repeatedly subdivided in finer meshes to obtain a hierarchy of levels
for which intergrid transfers are simple and fast. However, GMG does not allow for the usage of a
predetermined fine grid. A way to alleviate this strong bond between mesh generation and hierarchies
is to employ a non-nested approach, where coarse and fine meshes are generated independently. A
novel procedure to avoid the computational burden stemming from this flexibility was the object
of Chapter 2. A popular and effective way to obviate the need for coarsening mesh levels is to
operate at the discrete level as done in Algebraic Multigrid approaches (AMG). Algebraic Multigrid
methodologies are widely employed as method of choice for large and sparse systems arising from a
large class of PDEs, particularly effective for those arising from scalar elliptic problems [70, 71]. In
finite element the context, AMGs are often used for matrices stemming from low order Lagrangian
elements (p = 1,2). The fact that they only rely on information extracted from the system matrix
is a clear advantage in terms of usability. With a Discontinuous Galerkin setting, however, the
redundancy of the degrees of freedom associated to the same grid point is known to hinder the
creation of aggregates. In [6], a purely algebraic (i.e. without the need to access mesh points) AMG
method tailored for high-order DG schemes has been developed and tested in two dimensions. Here,
we assume to be given the target, fine, mesh Ωh over which we need to solve the problem, along
with the associated discretized operator. Instead of uniformly refining Ωh or using only the matrix,
we take a hybrid route and use the built-in flexibility given by polytopic shapes, together with the
strategy developed in Chapter 3, to build a hierarchy of coarser operators that can be employed
as level matrices in a multilevel method. We note that, given the sequence of grids is nested by
construction, the transfer operators between consecutive levels are cheap as previously discussed
in this thesis. Our multilevel preconditioner will then be built at the algebraic level exploiting the
geometrical information encoded in the agglomeration routine, complemented by such convenient
transfer operators. Therefore, we propose an approach somewhat dual in that it can be interpreted
both as algebraic and geometric.

5.4.1 Inherited bilinear forms

Following the agglomeration procedure in Section 3.3, a sequence of L nested levels {Tl}L−1
l=0 and

Finite Element spaces {Vl}L−1
l=0 , where V0 ⊂V1 ⊂ . . .⊂VL−1, is generated, with T0 ≡Ωh and V0 ≡V p

h .
There are essentially two ways to build a sequence of coarser operators: the inherited approach, where
the discrete operators are recursively built on top of the fine one, and the non-inherited one, where
bilinear forms are explicitly assembled on each agglomerated grid Tl of the hierarchy. Since the
number of resulting levels L may not be known a-priori, we index the sequence of operators in the
same way as it is customary in AMG methods, where to a higher index corresponds a coarser level,
and denote with P l

l+1 the prolongation from the coarser level l +1 to the finer level l. As usual, the
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restriction operatorRl+1
l is defined as the adjoint of the prolongation. On the input mesh Ωh ≡ T0, we

consider the bilinear form A0 : V0×V0→ R defined by

A0(u,v) :=
m(u,v)

∆t
+a(u,v) ∀u,v ∈V0, (5.10)

and its associated matrix representation A0 :=
(

M
∆t +A

)
introduced in Section 5.3.

Instead of assembling each bilinear form on each sublevel, we considered inherited bilinear
forms [9] which are obtained iteratively from the restriction of the original bilinear formA0 as follows

Al+1(u,v) :=Al

(
P l

l+1u,P l
l+1v

)
∀u,v ∈Vl+1, (5.11)

with associated matrices
Al+1 :=

(
Pl

l+1
)T AlPl

l+1. (5.12)

This technique is one of the basic ingredients of AMG methods and is often referred to as Galerkin
projection or Galerkin triple product.

Algorithm 9 summarizes the overall non-inherited procedure. From the implementation standpoint,
we observe that each prolongation matrix Pl

l+1 ∈ Rnl×nl+1 is a distributed matrix whose parallel layout
is easily defined thanks to nestedness of the partitions and the fact that in a DG discretization DoF are
non-overlapping. Moreover, the simple block structure of the prolongation matrices allows avoiding
explicit assembly: restriction and prolongation of vectors can indeed be performed in a completely
matrix-free fashion by using the local action of each block element-wise. The strategy of avoiding to
discretize the operators Al (l ≥ 1) explicitly for each level is quite attractive, as looping over all the
polytopes for each level l (see snippet 3.2), albeit showed to scale in Section 3.6, becomes increasingly
expensive when agglomerated elements are composed of many sub-elements, particularly for high
polynomial degrees, due to large number of quadrature points. In [13], it was showed that in case of
homogeneous coefficients such cost can be dramatically reduced using a so-called quadrature-free
approach. This exploits the generalized Stokes theorem together with the Euler’s homogeneous
function theorem in order to reduce the integration over a polytope only to boundary evaluations. In
both quadrature approaches, the original mesh Ωh has to be used to assemble all operators, with a
huge gain in favor of the quadrature-free approach if it can be employed. Furthermore, we stress
that the inherited technique is easy to be added in existing Finite Element frameworks, in that it
does not require assembling explicitly flux terms over ghost polytopic elements. Indeed, with this
approach the polytopic shapes obtained by agglomeration are used just as a tool to build a sequence
of operators {Pl}l which are in turn used as in (5.12) to create coarse level matrices, as observed
originally in [46]. On the other hand, it was proved in [9], for classical h-multigrid with Interior
Penalty DG discretization of the Laplace equation, that only the non-inherited multigrid provides
uniform convergence with respect to the number of levels (at the cost of assembling the bilinear forms
over agglomerated elements). Following the approach [46], this dependence on the number of levels
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for the inherited approach can be removed by using a properly rescaled Galerkin projection of the
stabilization terms in the DG discretization, originally proposed in [8] in the context of two level
Schwarz methods. However, our numerical simulations indicate that for the present problem the
number of iterations does not seem to be affected by the number of levels, cf. Section 5.5 for details.

Algorithm 9: Construction of level operators {Al}l .
Data: Mesh Ωh.
Result: Sequence of level operators {Al}l .

1 Function BuildLevelOperators():
2 read_mesh(Ωh);
3 A0← assemble_system();
4 build_agglomerated_hierarchy(Ωh);
5 for l in 0, . . . ,L−1 do
6 Pl

l+1← compute_prolongation(l) ; /* Canonical injection */

7 Al+1←
(
Pl

l+1

)T AlPl
l+1;

8 return {Al}l;

5.5 Numerical experiments

In this section we investigate the capabilities of the polytopic preconditioner in different scenarios by
varying dimensions, geometry, and ionic models. We compare our scheme with the TRILINOS ML
implementation of AMG [95] used as a preconditioner to the conjugate-gradient solver. In all the tests,
the stopping criterion for the preconditioned conjugate-gradient is based on the absolute residual with
tolerance 1×10−14. We consider the isotropic case for the diffusion tensor, i.e. D= ΣId×d , d = 2,3,
as it is known that for this particular case the number of iterations does not depend strongly on the
anisotropy of D since there is always a dominant direction.

5.5.1 Two-dimensional test case

We start with the following test, taken from the recent work [45], aiming at assessing the validity
of our implementation with a two-dimensional problem which exhibits both the depolarization and
repolarization phases. We consider Problem (5.1) on the domain Ω = [0,1]2 ⊂ R2 and as ionic model
the FitzHugh-Nagumo model outlined in (5.3), with the same parameters used in [45], which we
report in Table 5.5 for completeness. The initial unit square is refined 6 times, resulting in a mesh
Ωh of 22·6 = 4096 quadrilaterals. Running all the experiments in parallel by splitting the workload
through a mesh partitioner implies that the resulting partitions loose the original structured nature of
the grid, as shown in Figure 5.1. Hence, the agglomeration procedure is not producing the sequence
one would obtain by coarsening a fine square in a structured way. As such, this test is representative
of the general situation.
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Fig. 5.1 Ωh partitioned among 12 processors using PARMETIS. Each color maps to one MPI rank.

The applied current is

Iapp(xxx, t) = 2×106
1[0.4,0.6](x)1[0.4,0.6](y)1[0,1×10−3](t), (5.13)

where 1[a,b](·) is the indicator function over the interval [a,b]. Such definition corresponds to a
temporary and localized electric shock localized in the square [0.4,0.6]2. We solve the problem until
time T = 3×10−3s, with step size ∆t = 1×10−4s and both the potential u and the gating variable
www ≡ w set at rest. We show the activation and the subsequent propagation of the transmembrane
potential u in Figure 5.2, with polynomial degree p = 2 and standard nodal Lagrangian basis. As can
be seen from the figure, the wavefront has been captured by the DG discretization, which achieves the
maximum value of 1 on the while the internal part undergoes repolarization. We test the multilevel
framework detailed in Section 5.4 and Algorithm 9. In particular, we precondition a conjugate-gradient
by a single V-cycle of multigrid, using m = (1,3) pre- and post-smoothings sweeps of a Chebyshev
smoother of degree 5. The needed eigenvalue estimates are computed with 20 iterations of the Lanczos
iteration. This is compared with AMG, with parameters tuned for best results, varying the number of
sweeps to be performed by the Chebyshev smoother from 1 to 3. We report in Figure 5.3 the number
of outer iterations required by conjugate gradient for each time step, varying polynomial degree p
from 1 to 5. In all instances, the multilevel strategy achieves lower iterations counts compared to the
AMG preconditioner. Lower iteration counts is achieved by our approach also in the low-order case
p = 1, which is usually the most favourable for AMG. Increasing the polynomial order p shows a
more pronounced gain for the polytopic approach, displaying a clear pattern for which the number
of iterations is essentially constant after the initial propagation of the electric potential u, while the
iterations’ path for AMG is more prone to jitter.



144 Application to cardiac electrophysiology

(a) t = 0.04s (b) t = 0.16s

Fig. 5.2 Snapshots of the transmembrane potential UUU after the external application of the current
Iapp(xxx, t) in Equation (5.13).

5.5.2 Three-dimensional test case

The following experiment employs a CAD-modeled mesh Ωh representing the realistic left ventricle
made of 374 022 hexahedra and displayed in Figure 5.4, available at the repository associated to the
work [3]. On this mesh and with time-step ∆t = 1×10−4s, we solve until T = 0.4s the problem (5.1)
using the Bueno-Orovio ionic model in (5.4), with the parameters reported in Table 5.6, until . The
external stimulus Iapp(xxx, t) is localized at one point of the ventricle for 3ms with a magnitude of
300Vs−1. The location of the point where the impulse is applied is shown in Figure 5.4 (right). As
initial data we take u =−84mV for the transmembrane potential while all gating variables are set at
rest. Some snapshots of the transmembrane potential uh at selected time steps (with p = 2) are shown
in Figure 5.7. Note that the steep wavefront has been captured.

Fig. 5.4 Detailed views of the hexahedral mesh Ωh representing a left ventricle, with a zoom at the
bottom of the ventricle to highlight (in red) the point where Iapp(xxx, t) is applied.

The multigrid hierarchy has been generated using the adapted parallel version of our Algorithm 3.
The number of mesh elements (agglomerates) at each level l ∈ {0, . . . ,L−1} is shown in Table 5.2
when the full ventricle geometry is distributed with MPI among 256 processors. With the given
number of processors, the coarsest level (l = 3) consists of 3 agglomerates per process. It is remarkable
that the decrease of the global number of elements between consecutive levels has a ratio very close
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(b) p = 2
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(c) p = 3
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(d) p = 4
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Fig. 5.3 Number of CG iterations per time step for Problem (5.1), varying polynomial degree p and
the number of sweeps.
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Hierarchy for ventricle mesh (128 processors)
Level l Card(Tl) Card(Tl−1)/Card(Tl)

l = 0 374 022 −
l = 1 46 809 ∼ 7.9
l = 2 5 908 ∼ 7.9
l = 3 768 ∼ 7.7

Table 5.1 Coarsened hierarchy {Tl}3
l=0 on top of the original mesh Ω0 ≡ T0, partitioning the original

mesh across 128 processors. The number of agglomerates per level is shown in second column, while
the ratio between the cardinality of consecutive grids is reported in the last column.

to 8, which is the value one would obtain by halving the mesh step size of a uniform hexahedral grid.
In three-dimensional problems, a sufficient number of levels L is needed to guarantee that the grid
on the coarse level is coarse enough and, consequently, that the coarse solver is not destroying the
performance of the whole V-cycle. In Tables 5.1 and 5.3 we report the number of agglomerates per
level by shifting the number of processors from 128 to 1024. We observe again very good balancing
in terms of workload per process and ratios between the cardinality of consecutive grids. This is
possible thanks to the combination of the graph partitioner PARMETIS, applied to the initial grid Ω0,
and the balance achieved by the agglomeration routine. In case of 1024 processes, the hierarchy is
formed by 3 levels, with the coarsest one comprising precisely 6 agglomerates per process. In order
to coarsen even further the coarse grid, it is possible to remove processes on the coarse level in a
controlled way and to switch to subcommunicators, as explained in [169] in the field of high order
multigrid for continuous FEM.

We report the iterations’ path per time step with polynomial degrees p = 1 and 2 in Figures 5.5
and 5.6, respectively. For all degrees and approaches, the number of CG iterations have a maximum
during the initial propagation of the potential, a successive drop around t = 0.17s, when the solution
does not exhibit abrupt variations, and finally a slight increase at the end of the simulation where
the repolarization phase starts taking place. The observed patterns follow what was observed in the
two-dimensional case, where the polytopic approach achieves lower iterations counts than AMG for
all the polynomial degrees. As expected, we verify that increasing the number of smoothing steps
from 1 to 3 (with fixed degree p) leads to lower iteration counts across the whole time interval [0,T ].
Conversely, fixing the number of smoothing steps and increasing the polynomial degree p we observe
a slight increase in terms of iteration counts for all approaches.
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Hierarchy for ventricle mesh (256 processors)
Level l Card(Tl) Card(Tl−1)/Card(Tl)

l = 0 374 022 −
l = 1 46 871 ∼ 7.9
l = 2 5 987 ∼ 7.8
l = 3 768 ∼ 7.8

Table 5.2 Coarsened hierarchy {Tl}3
l=0 on top of the original mesh Ω0 ≡ T0, partitioning the original

mesh across 256 processors. The number of agglomerates per level is shown in second column, while
the ratio between the cardinality of consecutive grids is reported in the last column.

Hierarchy for ventricle mesh (1024 processors)
Level l Card(Tl) Card(Tl−1)/Card(Tl)

l = 0 374 022 −
l = 1 47 160 ∼ 7.9
l = 2 6 144 ∼ 7.7

Table 5.3 Coarsened hierarchy {Tl}3
l=0 on top of the original mesh Ω0 ≡ T0, partitioning the original

mesh across 1024 processors. The number of agglomerates per level is shown in second column,
while the ratio between the cardinality of consecutive grids is reported in the last column.
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Fig. 5.5 Number of CG iterations per time step for Problem (5.1) for the 3D ventricle test case with
p = 1.

5.5.3 Dependence on number of levels

As discussed in Section 5.4, a drawback of building the coarse operators through an inherited approach
is that the number of iterations depends on the number of employed multigrid levels L, as proven
in [10]. In [46, Section 6], this behavior was indeed observed while solving a series of two-dimensional
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Fig. 5.6 Number of CG iterations per time step for Problem (5.1) for the 3D ventricle test case with
p = 2.

Poisson problems with smooth solutions using FGMRES preconditioned with h-multigrid, and later
fixed by adjusting the amount of stabilization in each level through a suitable choice of the intergrid
transfers. Here, we investigate this dependence for the linear system of equations arising from (5.7).
In order to provide a meaningful test, we consider as grid Ωh the idealized left ventricle showed in
Figure 5.8, consisting of 50 988 hexahedral elements. Using 12 processors we obtain the 5 levels
indicated in Table 5.4. We solve the monodomain problem with the same data and tolerances as in
previous test, but changing the number of levels and the polynomial degree p in order to verify if the
number of iterations is affected by the number of levels. We report our findings in Figures 5.9, 5.10.
The number of required CG iterations is in all cases constant both in time and in the number of levels
L present in the hierarchy. We note only an increase of 1 iteration when the number of levels is 2.
As mentioned before, however, for large three-dimensional geometries the number of levels must be
chosen large enough because of the higher pressure on the coarse grid solver.
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(a) t = 0.04s (b) t = 0.1s

(c) t = 0.16s (d) t = 0.29s

(e) t = 0.35s (f) t = 0.4s

Fig. 5.7 Snapshots of the transmembrane potential UUU at selected time steps after the external applica-
tion of the current Iapp(xxx, t) at one point.
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Fig. 5.8 Hexahedral mesh of an ellipsoid rep-
resenting an idealized left ventricle.

Idealized ventricle (12 processors)
Level l Card(Tl)

l = 0 50 988
l = 1 6 377
l = 2 803
l = 3 108
l = 4 24

Table 5.4 Coarsened hierarchy {Tl}4
l=0 on top

of the mesh representing the left ventricle,
partitioning the original mesh across 12 pro-
cessors.
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Fig. 5.9 Number of CG iterations per time step for Problem (5.9) for the idealized ventricle test case
with p = 1 and different number of levels.
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Fig. 5.10 Number of CG iterations per time step for Problem (5.9) for the idealized ventricle test case
with p = 2 and different number of levels.
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5.6 Conclusions and perspectives

In this chapter, we have demonstrated the high flexibility of a multilevel preconditioner in a polytopic
Discontinuous Galerkin framework by applying it to the monodomain problem in cardiac electrophys-
iology. By exploiting the coarsening strategy introduced in Chapter 3, we described how to generate
a sequence of coarse operators in a completely distributed fashion, and showed its effectiveness
through a sequence of two- and three-dimensional tests, including real geometries and data. This
approach fully exploits the power of DG methods in terms of their ability to handle general shapes.
Future work could include the investigation of the stabilization strategy of [46] and its influence on
the iteration counts. A matrix-free implementation of the action of coarser operators is currently
under investigation and is subject of future work. In particular, we aim to operate on batches of
cells and perform cell operations for each batch in a vectorization-over-cells fashion to increase the
throughput, by exploiting SIMD capabilities of modern processors. The author of this thesis thanks
the Italian supercomputing center CINECA for the computational resources made available through
the polyDEAL-HP10C9NFGS ISCRA-C project.
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Parameter Value
Cm[m−1] 1×10−2

χm[Fm−2] 1
Σ[m2 s−2] 1.2×10−1

D[m2 s−2] ΣI2×2
κ 19.5
ε 40
Γ 0.1
a 1.3×10−2

Table 5.5 FitzHugh-Nagumo parameters used in the 2D numerical test.

Parameter Value
Σ[m2 s−2] 1×10−4

τ
′
o[s
−1] 6×10−3

τ
′′
o [s
−1] 6×10−3

τ
′′
so[s
−1] 4.3×10−2

τ
′′
so[s
−1] 2×10−4

τsi[s−1] 2.8723×10−3

τ f i[s−1] 1.1×10−4

τ
+
1 [s−1] 1.4506×10−3

τ
+
2 [s−1] 2.8×10−1

τ∞
2 [s
−1] 7×10−2

τ
′
1[s
−1] 6×10−2

τ
′′
1 [s
−1] 1.15

τ
′′
2 [s
−1] 7×10−2

τ
′′
2 [s
−1] 2×10−2

τ
′
3[s
−1] 2.7342×10−3

τ
′′
3 3×10−3

w⋆
∞ 9.4×10−1

k2 6.50×101

k3 2.0994
kso 2.0
V1 3×10−1

V1m 1.5×10−2

V2 1.5×10−2

V2m 3×10−2

V3 9.087×10−1

V̂ 1.58
Vo 6×10−3

Vso 6.5×10−1

Table 5.6 Parameters for Bueno-Orovio model used in the 3D numerical test. In this case χm ≡Cm = 1
as we are using formulation (5.1).





Chapter 6

Conclusions and final remarks

In this thesis, we have presented and validated a series of computational techniques associated to
the handling of complex and non-matching meshes in a distributed-memory setting, as well as their
application to the context of multilevel solvers. Notably, we have designed and implemented an
efficient agglomeration strategy in the context of polytopic finite elements, and in particular within
the polytopic Discontinuous Galerkin framework. Our approach leverages spatial data structures and
allows constructing hierarchy of grids that can be employed in multilevel contexts starting from of an
original fine mesh. Here we summarize the main results presented in this manuscript.

• Handling the coupling of grids stemming from different domains has been successfully per-
formed in a dimension-independent way. This is relevant in FSI problems and within non-
matching finite element approaches. We have investigated the effect of exact quadrature rules on
mesh intersections as a tool to preserve accuracy. We validated our implementation by testing
several non-matching techniques for elliptic interface problems and discussed relevant imple-
mentation challenges and computational costs [23]. Our software contribution was integrated
into a well-established software framework [22].

• In Chapter 2, we have developed a novel implementation of the non-nested multigrid method [47,
7, 38] in a memory-distributed setting where levels can be generated and partitioned indepen-
dently in case of continuous Lagrangian elements. Our implementation is matrix-free, which is
known to be a crucial feature when the polynomial degree p increases. We provide a detailed
explanation of the algorithmic realization of our scheme and perform benchmarks in order to
assess computational costs. Tests on non-trivial geometries confirm the robustness and relia-
bility of our implementation, as well its robustness in terms of iteration counts. The resulting
software contribution has also been integrated within the DEAL.II library in [23] and is part
of [88].

• In Chapter 3, we have shown a novel agglomeration algorithm to generate a sequence of
polytopic and nested grids starting from an initial fine mesh. The theoretical framework where
we have applied our algorithm is the polytopic discontinuous Galerkin method. The key
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strategy was the usage of spatial data structures such as R-trees [105] and their application
within a (polytopic) finite element context. We have demonstrated, through an extensive set
of geometries and numerical experiments on Poisson problems, that our algorithm produces
high-quality agglomerated meshes in a robust and dimension-independent fashion. One of the
crucial points of such technique is that the sequence of grids can be used as a hierarchy in
a multilevel framework. This chapter is based on our work [87]. On top of this, we discuss
and present several implementation details. Notably, we highlight the design choices of our
memory-distributed implementation and show, through a series of tests, how our data structures
(which build on top of the DEAL.II library design), allow obtaining a scalable solver also in
presence of polytopic shapes.

• In Chapter 4, we established convergence for two-level and multigrid methods for the general
polytopal Discontinuous Galerkin discretizations analysed in [61]. Exploiting the theoreti-
cal framework developed in [10], we prove that our multilevel strategy based on R-trees is
convergent.

• By extending the results presented in Chapters 3 and 4 we have developed a multigrid precondi-
tioner for the monodomain problem, one of the central models in cardiac electrophysiology.
After describing the implementation pipeline for the particular model at hand, we validate our
multilevel preconditioner in both two- and three-dimensional geometries. The approach has
been validated by covering different ionic models, geometries, and polynomial degrees.

6.1 Future perspectives

During the investigation of the various methodologies presented in this thesis, we have identified
several research lines that should be further studied and developed.

The computational infrastructure developed in Chapter 2, within a non-nested multigrid context,
perfectly fits with the topics presented in Chapter 1. Exploiting such algorithms in the context of
non-matching methods where different domains are coupling in a distributed and arbitrarily manner
will boost their efficiency and applicability to even more challenging scenarios.

With regard to the agglomeration procedure outlined in Chapter 3, we foresee several possible
research directions. From a more mathematical standpoint, the assumption on the delivered shapes
allows carrying out a more detailed analysis such as the one presented in Chapter 4. In addition to that,
the fact that agglomerates are geometrically similar to their enclosing box is appealing in that suitable
basis functions can be devised. From a more practical side, the application to even more complex
shapes such as meshes with different material properties as well as grids comprising complex features
must be taken into account. Preliminary tests in this direction show promising results for grids arising
from biomedical applications. Enlarging the viewpoint beyond polytopic methods, and inspired by the
results in Chapter 5 where agglomeration stands as a basis to multilevel methodologies, we think that
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multigrid strategies exploiting mesh coarsening can be extremely versatile and appealing in contexts
where the generation of hierarchy is practically not feasible.

Finally, from a more HPC-oriented perspective, various paths should be explored and are currently
under investigation. In relation to the performance results in Chapter 3, it is clear that the computational
bottleneck (especially for higher-orders) is associated to the assembly phase. This motivates the
investigation of suitable matrix-free approaches also in this context, possibly combining vectorization
strategies such as the ones exploited for classical elements [131], as well as taking advantage of
hardware accelerators such as GPUs, which have emerged in the last decade as a game changer in the
context of high-order methods.
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