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Abstract
An isogeometric Galerkin approach for analysing the free vibrations of piezo-
electric shells is presented. The shell kinematics is specialized to infinitesimal
deformations and follow the Kirchhoff–Love hypothesis. Both the geometry
and physical fields are discretized using Catmull–Clark subdivision bases. This
provides the required C1-continuous discretization for the Kirchhoff–Love the-
ory. The crystalline structure of piezoelectric materials is described using an
anisotropic constitutive relation. Hamilton’s variational principle is applied to
the dynamic analysis to derive the weak form of the governing equations. The
coupled eigenvalue problem is formulated by considering the problem of har-
monic vibration in the absence of external load. The formulation for the purely
elastic case is verified using a spherical thin shell benchmark. Thereafter, the
piezoelectric shell formulation is verified using a one dimensional piezoelec-
tric beam. The piezoelectric effect and vibration modes of a transverse isotropic
curved plate are analyzed and evaluated for the Scordelis–Lo roof problem.
Finally, the eigenvalue analysis of a CAD model of a piezoelectric speaker shell
structure showcases the ability of the proposed method to handle complex
geometries.
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1 INTRODUCTION

Piezoelectricity is a reversible two-way coupling effect resulting from electromechanical interactions in certain crystalline
materials. In 1880, Curie and Curie1 discovered the direct piezoelectric effect whereby a mechanical excitation generates
an electrical potential. Shortly thereafter, Lippmann2 derived the converse piezoelectric effect from fundamental thermo-
dynamic principles. In 1881, Curie and Curie3 proved the existence of a strain that occurs when an electric field is applied.
Shortly after the piezoelectric phenomenon was discovered, Langevin and Rutherford independently applied the piezo-
electric effect for submarine detection.4 In the last century the piezoelectric effect has been extensively studied. A wide
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range of novel piezoelectric materials have been developed and the resulting devices applied to engineering applications.
The direct piezoelectric effect is used in sensors/transducers5-10 and energy harvesters,11,12 and the converse piezoelectric
effect is used in resonators13-15 and actuators.16-18

Piezoelectric sensors and actuators are often constructed from films, plates and shells as they can generate large strains
under small loads. Early studies of piezoelectric structures focused on simple geometries such as rods,19 plates,20,21 and
cylindrical shells.22,23 Laminated piezoelectric plates24,25 are also well studied. With the development of active, adaptive
and smart structures, piezoelectric materials are now widely used because of their ability to achieve a precise and com-
plex mechanical response to electrical loads. This motivates the requirement for analysis of piezoelectric structures with
complex geometries. The finite element method is the ideal modeling framework to analyse such complex structures and
to deal with the inherent nonlinearities. Allik and Hughes26 proposed a three-dimensional finite element method for
electroelastic analyses, focussing mainly on piezoelectric vibrations. The early works of the piezoelectric finite element
method have been reviewed by Benjeddou.27 Tzou and Tseng8 evaluated the performance of intelligent piezoelectric thin
plates using a finite element approach. Hwang and Park18 developed a finite element model of laminated plates with
piezoelectric sensors and actuators. A nonlinear finite element approach to phase transition in piezoelectric materials was
proposed by Ghandi and Hagoo,28 while Lam et al.29 analysed piezoelectric composite laminates. A static and dynamic
analysis of a piezoelectric bimorph was undertaken by Wang.30

Although many three-dimensional finite element approaches for piezoelectric structures have been proposed, work
on piezoelectric Kirchhoff–Love shells is limited. Kirchhoff–Love and Reissner–Mindlin shell theories categorize shells
into “thin” and “thick” according to the ratio of curvature radius to thickness. The Kirchhoff–Love shell theory, also
called the “classical shell model”, is tailored to thin shells. The Reissner–Mindlin shell theory is an extension of the
Kirchhoff–Love theory, which can be applied to both thin and thick shells since it accounts for shear deformations. How-
ever, Reissner–Mindlin shells theory requires additional rotational degrees of freedom, resulting in a larger system matrix
than the Kirchhoff–Love shell theory. Kirchhoff–Love shells require only three translational degrees of freedom, which is
computationally more efficient. However, the Kirchhoff–Love finite element method requires C1-continuity of the basis
functions while a conventional Lagrangian interpolation only provides C0-continuity.

Hughes et al.31 presented the framework for isogeometric analysis (IGA) in 2005. IGA provides higher-order continuity
by using splines as interpolation functions and thereby allows for exact geometric representation which completely elim-
inates geometry error in the numerical solution. However, volume parameterization of a computer aided desgin (CAD)
model is the most challenging problem for IGA.32 Shell formulations are well suited for IGA since they only require a dis-
cretization of the mid-surfaces of the shell. Kiendl et al.33 developed an isogeometric approach for Kirchhoff–Love shells
using non-uniform rational B-splines (NURBS). Isogeometric Reissner–Mindlin shells have also been extensively studied
in References 34 and 35. Cirak et al.36 developed a C1-conforming discretization based on Loop subdivision surfaces for
an elastic Kirchhoff–Love shell formulation and applied it to hyperelastic thin shells.37 Subdivision surfaces are an alter-
native to NURBS surfaces. They represent a mature geometry modeling method that is widely used in the animation and
gaming industry, and is also widely available in CAD packages. An attractive feature of subdivision surfaces is that they
can be evaluated using spline functions, while retaining a simple polygonal mesh data structure able to represent complex
geometries. Extraordinary vertices in the mesh allow for local refinement and patch conforming, both challenges faced
by NURBS. Subdivision surfaces shell formulations have been extended to applications including shell fracture,38 shape
optimization,39,40 fluid-structure interaction,41 nonmanifold geometry42 and structural-acoustic analysis.43 The ability of
subdivision surfaces to analyse thin shells underpins the analysis of the electromechanical coupled thin shells presented
here.

Applications for piezoelectric shells, such as resonators, actuators and energy harvesters, often involve the structural
dynamics. Thus, understanding the effect of electroelastic coupling on the vibration mode of piezoelectric struc-
tures is critical. The coupling effect will influence the lattice structure of the piezoelectric material and enhance the
stiffness of such structure via the so-called “piezoelectric stiffening” effect.44 Thus, the natural frequencies of vibra-
tion modes increase. This effect is used in laminated beams45 and plates46 with piezoelectric actuators to enhance
their stiffness. However, the “piezoelectric stiffening” effect of piezoelectric thin shells with complex geometry is
seldom studied. This work provides a numerical analysis tool for understanding these effects in piezoelectric thin
shells.

The proposed method adopts Catmull–Clark subdivision surfaces to formulate a novel isogeometric Galerkin
approach to analyse piezoelectric thin shells with arbitrary geometries. The formulation for analysing piezoelectric thin
shells is carefully presented. Physically meaningful electric conditions are considered, these are no electrodes, prescribed
voltage with electrodes and short-circuited electrodes. A potential application of our new formulation is demonstrated
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via a method to tailor the natural frequency of a piezoelectric curved plate by changing its curvature. In addition, the
proposed method also provides, for the first time, a way to examine the “piezoelectric stiffening” effect of piezoelectric
thin shells with complex geometry.

This contribution is organized as follows. Section 2 introduces the notation and defines various coordinate systems
used throughout the manuscript. Section 3 illustrates the kinematics of Kirchhoff–Love shells. Section 4 briefly reiterates
the theory of Catmull–Clark subdivision surfaces. A detailed formulation of our new isogeometric Galerkin approach
for piezoelectric shells is presented in Section 5. Finally, Section 6 presents four numerical examples to demonstrate the
ability of the proposed piezoelectric thin shell method to deal with various geometries and a range of mechanical and
coupled problems.

2 NOTATION

Brackets:
Two types of brackets are used. Square brackets [] are used to clarify the order of operations in an algebraic expression.
Circular brackets () are used to denote the parameters of a function. If brackets are used to denote an interval then ()
stands for an open interval and [] is a closed interval.

Symbols:
A variable typeset in a normal weight font represents a scalar. A bold weight font denotes a tensor. An overline indicates
that the variable is defined with respect to the reference configuration and if absent, the variable is defined with respect
to the current (deformed) configuration. A scalar variable with superscript or subscript indices normally represents the
components of a vector or tensor. Upright font is used to denote matrices and vectors.

Indices i, j, k, … vary from 1 to 3 while a, b, c, … , used as surface variable components, vary from 1 to 2. Einstein
summation convention is used throughout.

The comma symbol in a subscript represents partial derivative, for example, A
,b is the partial derivative of A with

respect to its bth component. ∇(•) is the three-dimensional gradient operator.

Coordinates:
ci represent the basis vectors of an orthonormal system in three-dimensional Euclidean space and x, y, and z are its com-
ponents. 𝝃i denote the orthonormal basis vectors in the local element space and 𝜉, 𝜂, and 𝜁 are its coordinate components.
The three covariant basis vectors for a surface point are denoted as ai, where a1, a2 are two tangential vectors and a3 is
the normal vector.

3 KIRCHHOFF–LOVE SHELL KINEMATICS

The Kirchhoff–Love hypothesis can be applied to three-dimensional structures in which one dimension is much smaller
than the other two. Important examples include plates and shells. It is assumed that lines perpendicular to the mid-surface
remain straight and perpendicular to the mid-surface after deformation (see Figure 1). The shell occupies the physical
domain Ω and has a uniform thickness h. Figure 2 shows the reference and deformed configurations of the mid-surface.
The shell kinematics are restricted to infinitesimal deformations, and hence the thickness does not change upon defor-
mation. The mid-surface of the shell in both the reference and deformed configurations is denoted by Γ. Points on the
mid-surface in the reference and the deformed configurations are denoted by x̄ and x, respectively, and are obtained as
map from the parametric coordinates 𝜉 and 𝜂. The position vector of a point in the deformed configuration r is computed
using the mid-surface point x and the normal vector n as

r(𝜉, 𝜂, 𝜁) = x(𝜉, 𝜂) + 𝜁n(𝜉, 𝜂), (1)

where 𝜁 ∈ [−h∕2, h∕2]. A mid-surface point in the deformed configuration x can be expressed as

x = x̄ + u, (2)

where u denotes the displacement.
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F I G U R E 1 Kirchhoff–Love shell of thickness h occupying regionΩ and mid-surface Γ is parametrized by the coordinate system (𝜉, 𝜂, 𝜁).

F I G U R E 2 Reference and deformed configurations for the mid-surface of a Kirchhoff–Love shell

3.1 Green–Lagrangian strain tensor

The covariant basis vectors of the tangent plane of the mid-surface in the reference and the deformed configurations are
defined by

ā1 =
𝜕x̄
𝜕𝜉

, ā2 =
𝜕x̄
𝜕𝜂

and a1 =
𝜕x
𝜕𝜉

, a2 =
𝜕x
𝜕𝜂

. (3)
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Thus, the normal vectors in the two configurations can be computed as

n̄ = ā3 =
ā1 × ā2
̄J

and n = a3 =
a1 × a2

J
, (4)

where ̄J and J are the respective Jacobians given by

̄J = |ā1 × ā2| and J = |a1 × a2|. (5)

Thus, the covariant components of the metric tensor for the mid-surface points x̄ and x are respectively given by

āij = āi ⋅ āj and aij = ai ⋅ aj. (6)

The contravariant metric tensors are defined by

āikākj = 𝛿i
j and aikakj = 𝛿i

j , (7)

where 𝛿i
j denotes the Kronecker delta. The three-dimensional covariant basis vectors for the shell in the reference and the

deformed configurations are respectively given by

ḡ1 =
𝜕r̄
𝜕𝜉

= ā1 + 𝜁 ā3,1, ḡ2 =
𝜕r̄
𝜕𝜂

= ā2 + 𝜁 ā3,2, ḡ3 =
𝜕r̄
𝜕𝜁

= ā3, (8)

and

g1 =
𝜕r
𝜕𝜉

= a1 + 𝜁a3,1, g2 =
𝜕r
𝜕𝜂

= a2 + 𝜁a3,2, g3 =
𝜕r
𝜕𝜁

= a3, (9)

where (•)
,1 and (•)

,2 represent the partial differentials with respect to 𝜉 and 𝜂, respectively. The components of the
covariant metric tensors are defined by

ḡij = ḡi ⋅ ḡj and gij = gi ⋅ gj, (10)

which allows one to define the Green–Lagrange strain tensor Sn as

Sn ∶=
1
2
[gij − ḡij]ḡi

⊗ ḡj
, (11)

where ḡi denote the contravariant basis vectors defined by

ḡi ⋅ ḡj = 𝛿
i
j . (12)

3.2 Linearization and simplification of the strain tensor

On substituting Equations (8) and (9) into (11) and ignoring higher-order terms, the Green–Lagrange strain tensor
linearized in 𝜁 follows as

S = A + 𝜁B. (13)

The components of the tensors A and B are 𝛼ij and 𝛽ij, respectively, with 𝛼13 and 𝛼23 measuring the shearing in the normal
direction ā3, and which are zero under the Kirchhoff–Love assumption. The stretching in normal direction is given by
𝛼33 = 0 and vanishes due to the assumption that the thickness does not change with deformation. Similarly, 𝛽i3 = 0 as the
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normal vector is perpendicular to the two basis vectors. Thus, the two tensors A and B reduce to two-dimensional tensors
in the subspace defined with two contravariant basis vectors as

A ∶= 𝛼ab ḡa
⊗ ḡb and B ∶= 𝛽ab ḡa

⊗ ḡb
, (14)

where their components are computed as

𝛼ab =
1
2
[aa ⋅ ab − āa ⋅ āb] and 𝛽ab = aa ⋅ a3,b − āa ⋅ ā3,b. (15)

The membrane strain components are denoted as 𝛼ab while the bending strain components 𝛽ab measure the change in
the curvature of the shell. In order to compute the bending strain tensor, the product rule of differentiation is applied and
the components expressed as

𝛽ab = āa,b ⋅ ā3 − aa,b ⋅ a3. (16)

On substituting Equation (2) into the membrane and bending strains, the components can eventually be computed to
first order in u as

𝛼ab =
1
2
[āa ⋅ u

,b + u
,a ⋅ āb], (17)

𝛽ab = −u
,ab ⋅ ā3 +

1
̄J
[
u
,1 ⋅ [āa,b × ā2] + u

,2 ⋅ [ā1 × āa,b]
]
+

ā3 ⋅ āa,b

̄J
[
u
,1 ⋅ [ā2 × ā3] + u

,2 ⋅ [ā3 × ā1]
]
. (18)

Thus, the linearized strain tensor S is computed using the covariant basis vectors along with the first and second
derivatives of the displacement u.

4 CATMULL–CLARK SUBDIVISION SURFACES

Kirchhoff–Love shells require that the test and trial functions of the Galerkin method are in the Hilbert space
H2(Ω).36 Hence a C1-continuous discretization is required. Conventional Lagrangian bases only provide C0-continuity.
Catmull–Clark subdivision surfaces,47 which adopt cubic B-splines as interpolating functions, display C2 continuity every-
where except at the surface points related to extraordinary vertices,48 where continuity is only C1. Figure 3 shows an
example of cubic B-splines for one dimensional elements. The Catmull–Clark subdivision surfaces adopt a tensor-product
structure of two cubic B-splines to interpolate points on a two-dimensional surface. Figure 4 shows a smooth surface
constructed by successive subdivision from a coarse polygonal mesh using the Catmull–Clark subdivision scheme.49

The surface, composed of points x̄ ∈ Γ, can be interpolated using the basis functions (cubic B-splines) and control
points as

x̄ =
nb−1∑

A=0
NAPA, (19)

where nb is the number of basis functions. The Ath basis function is denoted as NA and PA denotes the Ath control
point. An element of a regular patch with 16 basis functions is shown in Figure 4. We note that the control points are
not necessarily on the surface Γ. It is well known that the Galerkin method with Catmull–Clark subdivision surfaces can
exhibit suboptimal convergence rate.50

5 PIEZOELECTRIC SHELL FORMULATION

The energy considerations required for piezoelectric thin shells are presented first. Hamilton’s variational principle is
then applied and the resulting weak form of the governing equations of piezoelectric shells are derived. Finally, the weak
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F I G U R E 3 An example of cubic B-splines in a one-dimensional parametric domain. Spline functions span multiple elements.

F I G U R E 4 The mid-surface of the shell Γ is a Catmull–Clark subdivision surface constructed from a control polygonal mesh.

form of the governing equations is discretized using Catmull–Clark subdivision bases resulting in the discrete system of
equations.

5.1 Energy densities

The electric enthalpy density per unit volume for a coupled piezoelectric problem51,52 is most generally defined by

(S,E) = Wela(S) −Wpiezo(S,E) −Welec(E). (20)

The electric enthalpy density contains the elastic energy density Wela, the piezoelectric energy density Wpiezo and the
electric energy density Welec. The electric field is denoted as E. The piezoelectric and electric energy densities are
expressed as

Wpiezo(S,E) = E ⋅ [e ∶ S] = eijkEi[𝛼jk + 𝜁𝛽jk], (21)

and

Welec(E) =
1
2
[𝜿 ⋅ E] ⋅ E = 1

2
𝜅

ijEiEj, (22)
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respectively. The components of the third-order piezoelectric tensor e are eijk while 𝜅 ij are the components of the
second-order dielectric tensor 𝜿. Since the structure is thin and has uniform thickness, we introduce the quadratic elastic
strain energy density per unit area ̃W ela for the Kirchhoff–Love shell as

̃W ela(S) =
∫

h
2

− h
2

Wela(S) d𝜁. (23)

A piezoelectric material is normally anisotropic due to the interaction between the mechanical and electrical states in
crystalline materials with no inversion symmetry. Thus, with S = A + 𝜁B, one defines a general formulation for the elastic
energy density per unit area by

̃W ela(S) = ̃W ela(A,B) =
h
2

[

[A ∶ C ∶ A] + h2

12
[B ∶ C ∶ B]

]

, (24)

where C is the fourth-order elastic tensor which can be defined using the covariant base vectors by

C = Cijklḡi ⊗ ḡj ⊗ ḡk ⊗ ḡl = ̃Cmnoptm ⊗ tn ⊗ to ⊗ tp. (25)

The preferable anisotropy directions of the piezoelectric material are denoted as tm. Therefore, the components of the
elasticity tensor are related by

Cijkl = ̃Cmnop[ḡi ⋅ tm][ḡj ⋅ tn][ḡk ⋅ to][ḡl ⋅ tp]. (26)

5.2 Kinetic energy

Neglecting the contribution of rotational inertia, the kinetic energy of a Kirchhoff–Love thin shell is defined by

Πkin =
𝜌h
2 ∫Γ

[
𝜕ui

𝜕t

]2

dΓ, (27)

where 𝜌 denotes the mass density per unit volume which is here assumed constant.

5.3 Electric enthalpy

The total electric enthalpy of the system is composed of three parts:

𝔈(S,E) = Πela(S) − Πpiezo(S,E) − Πelec(E), (28)

where Πpiezo is the piezoelectric energy. The dielectric energy is denoted as Πelec and the elastic energy is defined by

Πela(S) =
∫Γ

̃Wela(S) dΓ. (29)

To consider the piezoelectric and the dielectric energy for a thin shell formulation, a power series expansion is applied to
the electric potential with respect to the thickness coordinate 𝜁 .53 As the electric field is coupled to both the membrane and
bending strains through the piezoelectric tensor, the first three terms are retained to thoroughly investigate the coupling
effects, that is

𝜙(r(𝜉, 𝜂, 𝜁)) ≈ 𝜙(0)(x(𝜉, 𝜂)) + 𝜁𝜙(1)(x(𝜉, 𝜂)) +

[

𝜁

2 −
[

h
2

]2
]

𝜙

(2)(x(𝜉, 𝜂)). (30)

The electric field is computed as

E = −∇𝜙, (31)
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and it can be expressed using contravariant basis vector as

E = Eiḡi
. (32)

Due to the large relative permittivity of piezoelectric materials, the electric field in the surrounding free space is neglected.
The energy contributions and hence the coupling effect depends on the configuration of the piezoelectric shell structure.
Unelectroded and electroded shells along with a special short-circuited case, as displayed in Figure 5, are three options
considered here.

• Shell with no electrodes

In this case, the shell structure is assumed to be embedded in free space, thus 𝜙(1) ≠ 0 and 𝜙(2) ≠ 0. Upon substituting
expression (30), the contravariant coefficients of the electric field are calculated as

E1 = −
𝜕𝜙

𝜕𝜉

= −𝜙(0)
,𝜉

− 𝜁𝜙(1)
,𝜉

−
[

𝜁

2 − h2

4

]

𝜙

(2)
,𝜉

,

E2 = −
𝜕𝜙

𝜕𝜂

= −𝜙(0)
,𝜂

− 𝜁𝜙(1)
,𝜂

−
[

𝜁

2 − h2

4

]

𝜙

(2)
,𝜂

,

E3 = −
𝜕𝜙

𝜕𝜁

= −𝜙(1) − 2𝜁𝜙(2). (33)

The piezoelectric energy is expressed as

Πpiezo(A,B,E) =
∫Ω

eibcEi[𝛼bc + 𝜁𝛽bc] dΩ. (34)

On substituting expressions (13) and (33) into (34), the piezoelectric energy can be expressed as

Πpiezo(A,B, 𝜙(0), 𝜙(1), 𝜙(2)) = −h
∫Γ

eabc
𝜙

(0)
,a 𝛼bc dΓ − h3

12 ∫Γ
eabc

𝜙

(1)
,a 𝛽bc dΓ − h

∫Γ
e3bc

𝜙

(1)
𝛼bc dΓ

+ h3

6 ∫Γ
eabc

𝜙

(2)
,a 𝛼bc dΓ − h3

6 ∫Γ
e3bc

𝜙

(2)
𝛽bc dΓ. (35)

The third-order piezoelectric tensor is expressed either in the covariant basis or the local coordinate system as

e = eijkḡi ⊗ ḡj ⊗ ḡk = ẽlmntl ⊗ tm ⊗ tn, (36)

with components related via

eijk = ẽlmn[ḡi ⋅ tl][ḡj ⋅ tm][ḡk ⋅ tn]. (37)

mechanical excitation
no electrodes

2V̄

+ V̄

− V̄

prescribed voltage
mechanical excitation mechanical excitationshortcircuit

(A) (B) (C)

F I G U R E 5 Three electric setups for piezoelectric shells. (A) A shell in free space with no electrodes. (B) An electroded shell with
symmetrically prescribed voltage. (C) A special case in which the electrodes are short-circuited.
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In the present work, the piezoelectric material only polarizes in the thickness direction, t3 = n. Then, the coefficients eabc

can be considered as zeros. Thus two terms contribute to the piezoelectric energy, that is

Πpiezo(A,B, 𝜙(1), 𝜙(2)) = −h
∫Γ

e3bc
𝜙

(1)
𝛼bc dΓ − h3

6 ∫Γ
e3bc

𝜙

(2)
𝛽bc dΓ. (38)

Because 𝜙(0) does not contribute to the piezoelectric energy, we conveniently set 𝜙(0) = 0. The membrane strain is paired
with the linear potential function and the bending strain is paired with the quadratic potential function. Since the electric
field in the surrounding free space is neglected, the electric energy is expressed as

Πelec(𝜙(1), 𝜙(2)) =
h3

24 ∫Γ
𝜅

ab
𝜙

(1)
,a 𝜙

(1)
,b dΓ + h

2 ∫Γ
𝜅

33[𝜙(1)]2 dΓ + h5

60 ∫Γ
𝜅

ab
𝜙

(2)
,a 𝜙

(2)
,b dΓ + h3

6 ∫Γ
𝜅

33[𝜙(2)]2 dΓ, (39)

where the dielectric tensor is expressed in the covariant or the local coordinate systems as

𝜿 = 𝜅 ijḡi ⊗ ḡj = 𝜅̃
kltk ⊗ tl (40)

with components related via

𝜅

ij = 𝜅̃kl[ḡi ⋅ tk][ḡj ⋅ tl]. (41)

• Symmetrically prescribed voltage with electrodes

Here we assume the shell is electroded on top and bottom surface with constant voltage V1 and V2, respectively. Thus, as
the surface potential is constant for all x and the following relation must be satisfied

𝜙

(0) + h
2
𝜙

(1) = V1, (42)

𝜙

(0) − h
2
𝜙

(1) = V2. (43)

Thus 𝜙0 and 𝜙(1) are constants and computed as

𝜙

(0) = V1 + V2

2
, (44)

𝜙

(1) = V1 − V2

h
. (45)

If the shell is symmetrically electroded with constant voltage, V1 = ̄V and V2 = − ̄V , then 𝜙

(0)
≡ 0 and 𝜙

(1) = 2 ̄V∕h.
Equation (30) thus becomes

𝜙(r(𝜉, 𝜂, 𝜁)) = 𝜁 2 ̄V
h
+

[

𝜁

2 −
[

h
2

]2
]

𝜙

(2)(x(𝜉, 𝜂)). (46)

Eventually, the contravariant coefficients of the electric field simplify to

E1 = −
𝜕𝜙

𝜕𝜉

= −
[

𝜁

2 − h2

4

]

𝜙

(2)
,𝜉

, E2 = −
𝜕𝜙

𝜕𝜂

= −
[

𝜁

2 − h2

4

]

𝜙

(2)
,𝜂

, E3 = −
𝜕𝜙

𝜕𝜁

= −2 ̄V
h
− 2𝜁𝜙(2). (47)

On substituting expressions (13) and (47) into Equation (34), the piezoelectric energy is now expressed as

Πpiezo(A,B, 𝜙(2)) = −
h3

6 ∫Γ
e3bc

𝜙

(2)
𝛽bc dΓ − 2 ̄V

∫Γ
e3bc

𝛼bcdΓ. (48)
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Furthermore, the electric energy can be expressed as

Πelec(𝜙(2)) =
2 ̄V 2

h
𝜅

33
∫Γ

dΓ + h5

60 ∫Γ
𝜅

ab
𝜙

(2)
,a 𝜙

(2)
,b dΓ + h3

6 ∫Γ
𝜅

33[𝜙(2)]2 dΓ. (49)

• Short-circuited electrodes

A special electric condition can be obtained by short-circuiting the electrodes, thus ̄V = 0. The piezoelectric energy is
now expressed as

Πpiezo(B, 𝜙(2)) = −
h3

6 ∫Γ
e3bc

𝜙

(2)
𝛽bc dΓ, (50)

while the corresponding electric energy is given by

Πelec(𝜙(2)) =
h5

60 ∫Γ
𝜅

ab
𝜙

(2)
,a 𝜙

(2)
,b dΓ + h3

6 ∫Γ
𝜅

33[𝜙(2)]2 dΓ. (51)

The three electric conditions for the piezoelectric shell are summarized in Table 1.

5.4 Stress relaxation for thin-shells

The stress tensor is denoted as 𝝈 = 𝜎ijḡi ⊗ ḡj with components given by

𝜎

ij = CijklSkl − ekijEk, (52)

where Sij denote the components of strain tensor S. Since the thin shell assumption is adopted in the current work,
the dominant stress components are the in-plane terms 𝜎ab. The Kirchhoff–Love assumption implies the shear stresses
and strains are both neglected, thus the 𝜎33 and S33 are the only nonzero out-of-plane components. Stress relaxation is
performed by setting 𝜎33 = 0, that is

𝜎

33 = C33ijSij − ei33Ei = 0. (53)

Since Si3 and S3j are 0, the remaining out-of-plane strain component is computed as

S33 = −
1

C3333 [C
33abSab − ei33Ei]. (54)

T A B L E 1 Three different electric conditions applied to the top and bottom surfaces of piezoelectric shells

Electric functions

Electric conditions 𝝓(1) 𝝓(2) V̄ Summary

Unelectroded ✓ ✓ × The shell is embedded in free space, the linear potential function 𝜙

(1) is a
variable coupled with the membrane strain. The quadratic potential function
𝜙

(2) is a variable coupled with the bending strain

Prescribed voltage × ✓ ✓ The top and bottom surfaces are electroded and a constant potential dif-
ference 2 ̄V is symmetrically applied between them. Thus a linear potential
is prescribed which induces a global membrane strain. Only the quadratic
potential function 𝜙

(2) remains as a variable. If ̄V is large, the quadratic
coupling term can be ignored and the problem reduces to a one-way coupling

Short-circuited × ✓ × The top and bottom surfaces are electroded and short-circuited, ̄V = 0. Only
the quadratic potential function 𝜙(2) is a variable
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The elastic, piezoelectric and dielectric tensors are modified accordingly as

̂Cabcd = Cabcd − Cab33C33cd

C3333 , êijk = eijk − ei33C33jk

C3333 , and 𝜅̂

ij = 𝜅 ij + ei33ej33

C3333 . (55)

Those modified tensors are used in the following formulation.

5.5 External energy

The external energy contains the elastic and dielectric parts expressed as

Πext(u, 𝜙) = Πela
ext(u) + Π

elec
ext (𝜙). (56)

The external elastic energy is computed as

Πela
ext(u) = h

∫Γ
biui dΓ + h

∫St

𝜏iui dSt, (57)

where bi denotes the components of a body force and 𝜏i the components of a prescribed traction. St ∈ 𝜕Γ represents the
line where the traction is applied.

The external electric energy is only a function of 𝜙(2) since

Πelec
ext (𝜙

(2)) = h3

6 ∫Γ
q𝜙(2) dΓ + h3

6 ∫Sd

𝜔𝜙

(2) dSd, (58)

where q is the volume charge density and 𝜔 is the surface charge density on the cross-section of the shell. Sd ∈ 𝜕Γ repre-
sents the line where the electric loads are applied. We note that the piezoelectric shell is made of a dielectric material and
is thus an insulator. Since its cross-section is very thin, both volume and surface charge are difficult to apply in practical
devices. The expression (58) is kept in the formulation for the sake of completeness but the contribution is neglected in
the subsequent numerical examples.

5.6 Variational setting

Hamilton’s principle, ignoring dissipative mechanisms, states that the variation of the action integral of a piezoelectric
shell is zero, thus

𝛿

∫

t1

t0

L(u, 𝜓, 𝜑) dt = 0, (59)

where𝜓 and𝜑 are henceforth used to denote𝜙(1) and𝜙(2) to simplify the notation. 𝛿(•) represents the variational operator
and the Lagrangian is defined as

L(u, 𝜓, 𝜑) = Πkin(u) − 𝔈(u, 𝜓, 𝜑) + Πext(u, 𝜑). (60)

Thus Equation (59) expands as

𝛿

∫

t1

t0

Πkin(u) dt − 𝛿
∫

t1

t0

𝔈(u, 𝜓, 𝜑) dt + 𝛿
∫

t1

t0

Πext(u, 𝜑) dt = 0, (61)

where the variation of the kinetic and external energy integrals can be expressed as

𝛿

∫

t1

t0

Πkin(u)dt = −
∫

t1

t0

[

𝜌h
∫Γ
𝛿ui

𝜕

2ui

𝜕t2 dΓ
]

dt, (62)
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and

𝛿

∫

t1

t0

Πext(u, 𝜑)dt =
∫

t1

t0

[

h
∫Γ

bi𝛿ui dΓ + h
∫St

ti𝛿ui dSt +
h3

6 ∫Γ
q𝛿𝜑 dΓ + h3

6 ∫Sd

𝜔𝛿𝜑 dSd

]

dt. (63)

The variation of the electric enthalpy for the unelectroded shell is given by

𝛿

∫

t1

t0

𝔈(u, 𝜓, 𝜑) dt =
∫

t1

t0
∫Γ

h
[

̂Cabcd
𝛿𝛼ab𝛼cd +

h2

12
̂Cabcd

𝛿𝛽ab𝛽cd

]

dΓdt

+
∫

t1

t0

[

h
∫Γ

ê3bc
𝜓𝛿𝛼bc dΓ + h3

6 ∫Γ
ê3bc

𝜑𝛿𝛽bc dΓ
]

dt

+
∫

t1

t0

[

h
∫Γ

ê3bc
𝛿𝜓𝛼bc dΓ + h3

6 ∫Γ
ê3bc

𝛿𝜑𝛽bc dΓ
]

dt

−
∫

t1

t0

[
h3

12 ∫Γ
𝜅̂

ab
𝛿𝜓

,a𝜓,b dΓ + h
∫Γ
𝜅̂

33
𝛿𝜓 𝜓 dΓ

]

dt

−
∫

t1

t0

[
h5

30 ∫Γ
𝜅̂

ab
𝛿𝜑

,a𝜑,b dΓ + h3

3 ∫Γ
𝜅̂

33
𝛿𝜑 𝜑 dΓ

]

dt, (64)

and for the symmetrically electroded shell by

𝛿

∫

t1

t0

𝔈(u, 𝜑) dt =
∫

t1

t0
∫Γ

h
[

̂Cabcd
𝛿𝛼ab𝛼cd +

h2

12
̂Cabcd

𝛿𝛽ab𝛽cd

]

dΓdt

+
∫

t1

t0

[
h3

6 ∫Γ
ê3bc

𝜑𝛿𝛽bc − 2 ̄V
∫Γ

ê3bc
𝛿𝛼bc dΓ

]

dt +
∫

t1

t0

[
h3

6 ∫Γ
ê3bc

𝛿𝜑𝛽bc dΓ
]

dt

−
∫

t1

t0

[
h5

30 ∫Γ
𝜅̂

ab
𝛿𝜑

,a𝜑,b dΓ + h3

3 ∫Γ
𝜅̂

33
𝛿𝜑 𝜑 dΓ

]

dt. (65)

To satisfy Equation (61) for all possible 𝛿u, 𝛿𝜓 , and 𝛿𝜑 (that vanish at the end of the time interval), the weak form of the
governing equation for the unelectroded shell follows as

𝜌h
∫

t1

t0
∫Γ
𝛿ui

𝜕

2ui

𝜕t2 dΓdt

+
∫

t1

t0
∫Γ

h
[

̂Cabcd
𝛿𝛼ab𝛼cd +

h2

12
̂Cabcd

𝛿𝛽ab𝛽cd

]

dΓdt

+
∫

t1

t0

[

h
∫Γ

ê3bc
𝜓𝛿𝛼bc dΓ + h3

6 ∫Γ
ê3bc

𝜑𝛿𝛽bc dΓ
]

dt +
∫

t1

t0

[

h
∫Γ

ê3bc
𝛿𝜓𝛼bc dΓ + h3

6 ∫Γ
ê3bc

𝛿𝜑𝛽bc dΓ
]

dt

−
∫

t1

t0

[
h3

12 ∫Γ
𝜅̂

ab
𝛿𝜓

,a𝜓,b dΓ + h
∫Γ
𝜅̂

33
𝛿𝜓 𝜓 dΓ

]

dt −
∫

t1

t0

[
h5

30 ∫Γ
𝜅̂

ab
𝛿𝜑

,a𝜑,b dΓ + h3

3 ∫Γ
𝜅̂

33
𝛿𝜑 𝜑 dΓ

]

dt

+
∫

t1

t0

[

−h
∫Γ

bi𝛿ui dΓ − h
∫St

𝜏i𝛿ui dSt −
h3

6 ∫Γ
q𝛿𝜑 dΓ − h3

6 ∫Sd

𝜔𝛿𝜑 dSd

]

dt

= 0, (66)

and for the symmetrically electroded shell as

𝜌h
∫

t1

t0
∫Γ
𝛿ui

𝜕

2ui

𝜕t2 dΓdt

+
∫

t1

t0
∫Γ

h
[

̂Cabcd
𝛿𝛼ab𝛼cd +

h2

12
̂Cabcd

𝛿𝛽ab𝛽cd

]

dΓdt
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+
∫

t1

t0

[
h3

6 ∫Γ
ê3bc

𝜑𝛿𝛽bc − 2 ̄V
∫Γ

ê3bc
𝛿𝛼bc dΓ

]

dt +
∫

t1

t0

[
h3

6 ∫Γ
ê3bc

𝛿𝜑𝛽bc dΓ
]

dt

−
∫

t1

t0

[
h5

30 ∫Γ
𝜅̂

ab
𝛿𝜑

,a𝜑,b dΓ + h3

3 ∫Γ
𝜅̂

33
𝛿𝜑 𝜑 dΓ

]

dt

+
∫

t1

t0

[

−h
∫Γ

bi𝛿ui dΓ − h
∫St

𝜏i𝛿ui dSt −
h3

6 ∫Γ
q𝛿𝜑 dΓ − h3

6 ∫Sd

𝜔𝛿𝜑 dSd

]

dt

= 0. (67)

5.7 Discretization and system of equations

The displacement is discretized using the subdivision surface basis functions as

u =
nb−1∑

A=0
NAUA, (68)

where nb is the number of basis functions, and UA denotes the Ath nodal coefficients of the displacement. Thus the
membrane and bending strain components are computed as

𝛼ab =
nb−1∑

A=0

1
2
[NA

,bāa + NA
,aāb] ⋅UA, (69)

𝛽ab =
nb−1∑

A=0

[

−NA
,abā3 +

1
̄J
[
NA
,1[āa,b × ā2] + NA

,2[ā1 × āa,b]
]
+

ā3 ⋅ āa,b

̄J
[
NA
,1[ā2 × ā3] + NA

,2[ā3 × ā1]
]
]

⋅UA. (70)

The electrical potential functions are also discretized using the same basis functions as u, and expressed as

𝜓 =
nb−1∑

A=0
NAΨA, 𝜑 =

nb−1∑

A=0
NAΦA. (71)

Here ΨA and ΦA are the Ath nodal coefficients of the potential functions. Following a Bubnov–Galerkin approach, the
subdivision surface bases are also used for the trial functions 𝛿u and 𝛿𝜑, and the weak form (66) follows in matrix format as

⎡
⎢
⎢
⎢
⎣

M 0 0

0 0 0

0 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

ü

0

0

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

K Cu𝜓 Cu𝜑

C
𝜓u D1 0

C
𝜑u 0 D2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

u

𝜓

𝜑

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

fu

0

f
𝜑

⎤
⎥
⎥
⎥
⎦

, (72)

and Equation (67) follows in matrix format as

[
M 0

0 0

][
ü

0

]

+

[
K + P Cu𝜑

C
𝜑u D2

][
u

𝜑

]

=

[
fu

f
𝜑

]

. (73)

Here, M is the global mass matrix. ü is the global acceleration vector. K denotes the global stiffness matrix, D1 and D2 are
the global dielectric system matrices, Cu𝜓 (Cu𝜑) and C

𝜓u(C
𝜑u) are the direct and converse piezoelectric coupling matrices,

respectively. The global matrix P has only diagonal entries and takes into account the direct piezoelectric effects caused
by the prescribed voltage. u, 𝜓 , and 𝜑 are the global vectors of displacement, and the first and second order electrical
potential coefficients, respectively. fu and f

𝜑
on the right hand side denote the global structural and electrical load vectors.

Note, the system of equations is nonsymmetric. For computational efficiency, we modify the system of equations using
the Schur complements Cu𝜓D−1

1 C
𝜓u and Cu𝜑D−1

2 C
𝜑u. Thus the problem for u becomes

Mü + [K − Cu𝜓D−1
1 C

𝜓u − Cu𝜑D−1
2 C

𝜑u]u = fu − Cu𝜑D−1
2 f

𝜑
, (74)
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for the unelectroded case and

Mü + [K + P − Cu𝜑D−1
2 C

𝜑u]u = fu − Cu𝜑D−1
2 f

𝜑
, (75)

for shells with symmetrically prescribed voltage electrodes. Consequently, one defines new global system matrices

A = K − Cu𝜓D−1
1 C

𝜓u − Cu𝜑D−1
2 C

𝜑u, (76)

or

A = K + P − Cu𝜑D−1
2 C

𝜑u, (77)

respectively. The system of equations is thus defined by

Mü + Au = fu − Cu𝜑D−1
2 f

𝜑
. (78)

The problem of a free vibrating piezoelectric shell can be obtained by assuming harmonic motions, and is given by

[−𝜔2M + A]u = fu − Cu𝜑D−1
2 f

𝜑
, (79)

where 𝜔 is the angular frequency. For the free vibration analysis, the external mechanical and electrical loads are set to
zero, and the system of equation reduces to

−𝜔2M + A = 0. (80)

6 NUMERICAL EXAMPLES

Four numerical examples are considered. This first is the free vibration of an elastic spherical thin shell which is used
to validate the Kirchhoff–Love shell formulation and implementation. The electro-mechanical coupling formulation is
verified by a one dimensional piezoelectric beam. Then, the piezoelectric effect for curved shells is investigated using the
Scordelis-Lo roof geometry. The final example demonstrates the potential of the formulation by analysing the vibration of
piezoelectric shell applications with complex geometry. For all the numerical examples, 2 × 2 Gaussian quadrature is used
for regular elements and an adaptive quadrature rule50 is used for elements with extraordinary vertices. All numerical
results are computed using the open source finite element library deal.II.54,55

6.1 Validation using an elastic spherical shell

The first numerical example is the free vibration analysis of an elastic spherical thin shell which is used to validate the
pure elastic Kirchhoff–Love shell formulation. This problem was first examined by Lamb.56 Baker57 used the membrane
theory to examine the axisymmetric modes of a complete spherical shell. The method developed here is based on thin
shell elements and can compute both axisymmetric and nonaxisymmetric modes. Figure 6A shows cross section of the
spherical shell domain Ω, which has a uniform thickness h and with Γ denoting its mid-surface. The radius R measures
the distance between the center of the sphere to the mid-surface.

If the material is assumed as isotropic, the elastic strain energy density per unit area consists of the membrane and
bending parts36 as

̃Wela(A,B) =
1
2

Eh
1 − 𝜈2

[

[A ∶ H ∶ A] + h2

12
[B ∶ H ∶ B]

]

= 1
2

Eh
1 − 𝜈2 Habcd

𝛼ab𝛼cd +
1
2

Eh3

12[1 − 𝜈2]
Habcd

𝛽ab𝛽cd, (81)

where E and 𝜈 are the Young’s modulus and Poisson’s ratio, respectively. Habcd denote the components of the fourth-order
tensor H computed from the contravariant metric tensors as
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hx̄
R = | x̄ − o |

o
Γ

Ω

(A) A slice of the spherical shell (B) Limit surface

(C) Initial control mesh (D) First refinement

(E) Second refinement

F I G U R E 6 (A) Definition of a spherical shell. (B) The limiting surface constructed using Catmull–Clark subdivision from (C). (C) A
control mesh with 1536 elements for the mid-surface of the spherical shell. (D) First level refined mesh with 6144 elements using a least
square fitting method. (E) Second level refined mesh with 24,576 elements

Habcd = 𝜈āabācd + 1
2
[1 − 𝜈][āacābd + āadābc]. (82)

Duffey et al.58 provide a comparison of experimental results59 with analytical solutions for the problem considered here.
The values of the geometric and material parameters are given in Table 2. It is worth noting here that they used the
imperial system of units in their work. Here we aim to simulate the same problem using the proposed method and compare
our numerical results to experimental and analytical solutions. Since no piezoelectric effect is considered in this problem,
the system of equations (80) simplifies to

−𝜔2M + K = 0. (83)
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T A B L E 2 Geometric and material parameters for the elastic spherical thin shell

Parameter Value

Radius R 4.4688 (in) 0.1135 (m)

Thickness h 0.0625 (in) 1.5875 (mm)

Young’s modulus E 28 × 106 (psi) 193.05 (GPa)

Poisson’s ratio 𝜈 0.28

Mass density 𝜌 0.000751 (lbf-s2/in4) 8025.937(kg/m3)

These can be solved as an eigenvalue problem where 𝜔2 is the eigenvalue and the eigenvectors can be used to generate
the corresponding eigenmode shapes. The natural frequency is computed as

f = 𝜔

2𝜋
. (84)

The vibration modes of the spherical shell can be defined in terms of a polynomial degree nd, where nd = 1, 2, 3, … .
Each polynomial degree corresponds to a 2nd + 1 clustering of eigenvalues with different eigenmodes. nd = 1 corresponds
to a rigid body motion and the corresponding eigenvalue equals to 0. Thus the first nonzero eigenvalue corresponds
nd = 2. Figure 6C shows the control mesh used to construct the Catmull–Clark subdivision limit surface (Figure 6B) for
the mid-surface of a spherical thin shell. The control mesh contains 1536 elements with 8 extraordinary vertices. The
presence of extraordinary vertices leads to computational errors which can be reduced using an adaptive quadrature
scheme.50,60 Two refined meshes with 6144 and 24,576 elements generated using a least square fitting method are also
used for this problem. Table 3 shows the numerical results for both the initial and refined control meshes. For nd = 2, the
numerically determined natural frequency has only a small error of approximately 0.296% for the initial mesh, 0.087%
for the first level refinement and 0.024% for the second level refinement. The numerical error increases as the mode
becomes more complex. For nd = 3, the error is in the range of (0.180%, 0.528%) for the initial mesh and (0.062%, 0.149%)
for the first level refinement and (0.021%, 0.043%) for the second level refinement. For nd = 4 the errors are in the range of
(0.159%, 0.510%) for the initial mesh, (0.059%, 0.147%) for the first level refinement, and (0.020%, 0.044%) for the second
level refinement. The results show clear convergence to the analytical solutions and the deviation for each nd is reduced
after refinement. Figure 7 shows the vibration modes for the 1st, 6th, and 13th nonzero eigenvalues which corresponding
to nd = 2, 3, and 4, respectively.

6.2 Validation using a piezoelectric beam

The following example analyses a one-dimensional piezoelectric beam so as to validate the proposed piezoelectric
Kirchhoff–Love shell formulation. Figure 8 shows the geometric configuration of the simply supported piezoelectric
beam. A Lead Zirconate Titanate material PZT-H5 is chosen. This is an anisotropic crystalline piezoelectric material
polarizing in the thickness direction. The geometric and material properties are shown in Table 4. The equivalent elastic
modulus for the beam is computed from the fourth-order elastic tensor using the stress relaxations approach in the y and
z directions. The resulting equivalent elastic modulus b is 60.39 GPa. For this choice of material and geometric prop-
erties, the analytical solution61 of the displacements for a simply supported beam with uniform load in the absence of a
piezoelectric effect, the displacement at mid-span is 2.156 × 10−4 m. The elastic stiffness of the beam will be increased by
the piezoelectric effect with the effective elastic modulus62 given by

̂b = b +
[e311

b ]2

𝜅

33
b

. (85)

The equivalent piezoelectric coefficient can also be computed using stress relaxations, as e311
b = −16.53 C/m2. The equiv-

alent dielectric coefficient 𝜅33
b = 25.84 × 10−9 C∕m2. Thus, with the ‘piezoelectric stiffening effect’ accounted for, the

effective elastic modulus ̂b is enhanced to 70.97 GPa. The analytical solution of the maximum deflection (uz)max in the
piezoelectric case is 1.835 × 10−4m. The numerical test approximates this problem as the bending of a rectangular shaped
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T A B L E 3 Comparison of numerical results with analytical solutions and experimental results58,59

Numerical results

f (Hz)

nd

Mean
experimental
fe(Hz)

Analytical
solutions
fa(Hz)

Nonzero
eigenvalue number

Initial
mesh

First
refinement

Second
refinement

2 5088 5078 1 5092.80 5082.37 5079.23

2 5092.80 5082.37 5079.23

3 5093.05 5082.41 5079.24

4 5093.05 5082.41 5079.24

5 5093.05 5082.41 5079.24

3 6028 6005 6 6015.79 6008.71 6006.26

7 6015.79 6008.71 6006.26

8 6015.79 6008.71 6006.26

9 6025.04 6010.95 6006.81

10 6025.04 6010.95 6006.81

11 6025.04 6010.95 6006.81

12 6036.72 6013.93 6007.57

4 6379 6378 13 6388.13 6381.75 6379.38

14 6389.03 6381.94 6379.42

15 6389.03 6381.94 6379.42

16 6389.03 6381.94 6379.42

17 6392.17 6382.62 6379.59

18 6392.17 6382.62 6379.59

19 6410.58 6387.35 6380.78

20 6410.58 6387.35 6380.78

21 6410.58 6387.35 6380.78

nd = 2 nd = 3 nd = 4

x
yz

1st nonzero eigenmode 6th nonzero eigenmode 13th nonzero eigenmode

x
y

F I G U R E 7 Examples of the vibration modes of the elastic spherical shell for nd = 2, 3, and 4, respectively. The color represents the
magnitude of the displacement |u|.
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5 kN/m

L = 2 m
x

z

z
y

h = 0 .2 m

b = 0 .12 m

F I G U R E 8 The geometric configuration of a simply supported piezoelectric beam subject to transverse mechanical loading, together
with its cross-section

T A B L E 4 Geometric and material parameters of the piezoelectric beam

Name PZT-5H

Geometry

Length L 2 m

Height (thickness) h 0.2 m

Width b 0.12 m

Material

Elastic constants
̃C1111

,
̃C2222 126 GPa

̃C1122
,
̃C2211 79.1 GPa

̃C3333 117 GPa
̃C1133

,
̃C3311

,
̃C2233

,
̃C3322 83.9 GPa

̃C1212
,
̃C1221

,
̃C2121

,
̃C2112 23 GPa

Piezoelectric constants

ẽ311
, ẽ322 −6.5 C∕m2

ẽ333 23.3 C∕m2

Permittivity

𝜅̃

11
, 𝜅̃

22 15.05 × 10−9 C2/ (Nm2)

𝜅̃

33 13.02 × 10−9 C2/(Nm2)

shell. A coarse mesh of 10 × 4 elements is initially used for the numerical test and the convergence is studied using three
levels of uniform refinement. Figure 9 shows the numerical prediction of the deflection and potential coefficients for the
mid-surface of the beam, while Figure 10 shows that the numerical results converge to the analytical solution.

6.3 Piezoelectric effects on the vibration of a Scordelis-Lo roof

The following numerical example is a Scordelis-Lo roof, which is commonly used as a benchmark problem for shell
formulations. The Scordelis-Lo roof is a simple geometry which only requires a structured quadrilateral mesh without
extraordinary vertices. It can be considered as a plate curved in one direction. Figure 11 shows the geometry of the roof
which can be defined using a length L, a radius R and an angular parameter 𝜃. We note here that for the well-known
benchmark problem,63 the units of the parameters are omitted. The geometry parameters are set to L = 50, R = 25 and
𝜃 = 40◦. The two curved edges of the roof are simply supported. The roof has a thickness h = 0.25 and a self-weight of 90 is
applied as a uniformed load in negative z direction. The Young’s modulus E for the benchmark problem is 4.32 × 108 and
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x
yz

x
yz

(A) (B)

140,000

120,000

100,000

80,000

60,000

40,000

F I G U R E 9 Numerical result of (A) the displacement component uh
z and (B) the quadratic potential coefficient 𝜑 are plotted on the

mid-surface of the piezoelectric beam meshed with 20 × 8 elements. The displacement is magnified 500 times.

0.01

0.02

0.03

0.04

0.05

0.06

10 20 40 80

|(uh
z )max − (uz )max |

|(uz )max |

No. of elements in x direction

F I G U R E 10 The plot of the point-wise error of the maximum deflection versus number of elements in the x-direction for the
piezoelectric beam. The result converges toward the analytical solution.

LL

2θ
R

F I G U R E 11 Scordelis-Lo roof geometry. Simply supported boundary condition are applied on the curved edges.

Poisson’s ratio 𝜈 = 0. The reference solution of the Scordeli-Lo roof shell is given by the mid-point vertical displacement
uz of the two free edges and is equal to 0.3024. Our results converge to 0.3006. Such a minor difference is also observed in
other IGA shell literature.33

The material parameters for the piezoelectric elastic shell are also given in Table 5. The benchmark adopted an
isotropic material, but the piezoelectric material considered henceforth is anisotropic. The chosen material BaTiO3 has a
hexagonal crystalline system with 6mm point group (Hermann–Mauguin notation).64 The piezoelectric tensor e has five
nonzero components when expressed in Voigt notation,65 are e31

, e32
, e33

, e15, and e24. However, since the shell formula-
tion adopts the Kirchhoff–Love and linear elastic assumptions, the components of the strain tensor S13, S23 are zero and
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T A B L E 5 Geometric and material parameters of the Scordelis-Lo roof

Name BaTiO3

Geometry

Length L 0.5 m

Radius R 0.25 m

Thickness h 2.5 × 10−3m

Angle 𝜃 20◦, 40◦, 60◦

Material

Crystalline system Hexagonal (6 mm)

Mass density 𝜌 5800 kg∕m3

Elastic constants
̃C1111

,
̃C2222 166 GPa

̃C1122
,
̃C2211 77 GPa

̃C3333 162 GPa
̃C1133

,
̃C3311

,
̃C2233

,
̃C3322 78 GPa

̃C1212
,
̃C1221

,
̃C2121

,
̃C2112 45 GPa

Piezoelectric constants

ẽ311
, ẽ322 −4.4 C∕m2

ẽ333 18.6 C∕m2

Permittivity

𝜅̃

11
, 𝜅̃

22 11.2 × 10−9 C2/(Nm2)

𝜅̃

33 12.6 × 10−9 C2/(Nm2)

stress relaxation is used to determine the elastic, piezoelectric and dielectric tensors. The only contributing components
in the modified piezoelectric tensor are e311 and e322 in the ordinary tensor notation. Figure 12 shows the first 6 eigen-
modes of a piezoelectric roof-like structure. The magnitude of the displacement and the electric potential functions𝜓 and
𝜑 distribution on the piezoelectric shell are plotted. Compared with purely elastic shells, the modal displacements do not
exhibit notable change, but the coupling effect will increase the eigenmode frequencies which is known as “piezoelectric
stiffening”.44 Table 6 shows the frequency increase of each eigenmode of the short-circuited and unelectroded shells. The
increase is more significant for unelectroded shells due to the consideration of the additional linear potential term along
the thickness direction.

The coupling effect on the piezoelectric shell with different curvature is also investigated. The arc length Larc = 2R𝜃 is
held constant. Another two roof-like structure with 𝜃 = 20◦(1∕9𝜋) and 60◦(1∕3𝜋) are chosen to compare with the original
Scordelis-Lo roof. All meshes contain 256 (16 × 16) elements and no extraordinary vertices. The corresponding results are
also shown in Table 6. The shells with larger curvature have higher frequencies, whereby the rise in frequency is more
pronounced for some eigenmodes than for others.

6.4 Free vibration of a piezoelectric speaker

The final example considers a potential application to a piezoelectric speaker made from a single shell. The geome-
try considered is regenerated from a CAD model of a piezoelectric speaker. It is imported into Autodesk Maya66 for
removal of extraneous geometry. A quadrilateral control mesh for the geometry is shown in Figure 13A. A model based
on Catmull–Clark subdivision surface can directly evaluate the smooth limit surface in Figure 13B using the control
mesh. The limiting surface is smooth everywhere. Figure 13C,D are the top and front view of the geometry. The mini-
mum bounding box for this model is defined by [xmin

i , xmax
i ]3 = [−0.0694, 0.0694] × [0, 0.0711] × [−0.0694, 0.0694]m3. The

geometry is axisymmetric about the y-axis. The thickness of the shell is 0.002 m. The eigenvalue analysis with no boundary
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F I G U R E 12 First six vibration modes of the piezoelectric Scordeli-Lo roof structure. The magnitude of displacements and the potential
functions are plotted on the deformed mid-surface. Note, the magnitude of the displacement |u| is a scale in the range of [0,|umax|], while 𝜓
and 𝜑 can be positive or negative. 𝜁𝜓 is the linearly varying electric potential that takes a maximum magnitude on the top and bottom
surfaces of the shell, while [𝜁2 − h2∕4]𝜑 is a parabolic potential function which has maximum value on the mid-surface of the shell.

constraint is performed for this example and the material BaTiO3 as introduced in the previous example is chosen. The
unelectroded condition is used.

Figure 14 shows the first four modes of this structure. Modes 1 and 3 are axisymmetric. Mode 2 corresponds to two
identical eigenvalues which are the second and third. Similarly, mode four also relates to the fifth and sixth eigenvalues,
which are also identical. Table 7 compares the eigenmode frequency of the piezoelectric shell against a pure elastic shell
with approximately a 4% rise in the frequencies for the first four modes.

7 CONCLUSIONS

An isogeometric Galerkin method for the vibration analysis of piezoelectric thin shells has been proposed. The shell
formulation follows the Kirchhoff–Love hypothesis. Hamilton’s variational principle has been adopted to formulate the
weak form of the governing equations for the coupled problem and Catmull–Clark subdivision bases have been used
for discretizing the geometry and physical fields. A Galerkin method has been implemented using the finite element
library deal.II. Assuming the piezoelectric shell vibrates harmonically, the problem renders an eigenvalue problem for
the system matrix. The vibration of a purely elastic shell has been verified first with a spherical shell benchmark. The
piezoelectric shell formulation has also been verified with a one-dimensional beam example. Then the electromechanical
coupling effects of piezoelectric shells with different curvature have been evaluated and compared using curved plates. In
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T A B L E 6 Eigenmode frequencies for the elastic and the piezoelectric roof-like shells with different curvatures

f (𝜽 = 20◦, R = 50)(Hz) f (𝜽 = 40◦, R = 25)(Hz) f (𝜽 = 60◦, R = 50∕3)(Hz)

Mode Elastic SC UE Elastic SC UE Elastic SC UE

1 82.32 82.45 83.68 125.31 127.85 128.62 143.64 145.89 147.27

2 109.49 111.95 112.39 133.59 134.33 136.42 170.50 172.88 174.91

3 214.49 217.09 218.57 283.21 285.42 288.56 334.96 339.55 342.36

4 229.78 231.52 233.90 293.62 297.83 299.95 343.63 347.06 350.77

5 275.65 276.81 282.35 336.33 346.90 348.83 377.23 385.11 389.34

6 311.73 324.00 324.45 470.41 475.82 479.50 545.56 551.02 556.07

7 369.39 373.67 376.50 477.89 482.63 486.82 551.55 558.05 562.57

8 382.86 387.51 390.19 493.33 494.79 504.94 554.37 576.33 577.58

Abbreviations: SC, short-circuited shell; UE, unelectroded shell.

F I G U R E 13 A piezoelectric buzzer geometry. (A) is a mesh of the shell with 12,288 elements. (B) is the limit subdivision surface
constructed using (A). (C) is the top view of the shell and (D) represents both the front and side view of the axisymmetric geometry.

general, the natural frequencies of the piezoelectric structure are higher than those of the structure in the absence of the
piezoelectric effect. This “piezoelectric stiffening” effect is particularly significant for certain modes. Finally, an example
has been presented to demonstrate the capability of the proposed method in the design and analysis of piezoelectric shells
with complex geometry.

The effect of piezoelectric coupling for thin shell structures with arbitrary geometries, as applicable to realistic appli-
cations generated from CAD, can clearly be described using the isogeometric method presented. It has been observed
from the numerical examples that piezoelectric effect stiffens the shell structure thereby raising the natural frequency.
In addition, the natural frequency of a piezoelectric shell as a function of its curvature can be accurately represented
using the proposed approach. This will provide valuable guidance for the design of piezoelectric energy harvesters.
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F I G U R E 14 First four vibration modes of the piezoelectric speaker structure. The magnitude of displacement |u| and the potential
functions 𝜓 and 𝜑 are plotted on half of the deformed mid-surface of the structure. It is apparent that the linear potential function 𝜓 is
coupled to the membrane strain and that the quadratic function 𝜑 is related to bending.

T A B L E 7 Eigenmode frequencies for the elastic and the piezoelectric speaker

nd

Eigenvalue
no.

Elastic
f (Hz)

Coupled
f (Hz)

Difference
(%)

1 1 769.4 800.8 4.08

2 2,3 987.4 1032.0 4.52

3 4 1001.3 1045.5 4.41

4 5,6 1876.8 1959.0 4.38
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The method allows for the straightforward incorporation of relevant electrical boundary conditions, these include
no-electrodes, prescribed voltage and short-circuited. The relationship between the strain and electric potential has been
made clear. For transversely isotropic piezoelectric shells polarized in the thickness direction, a linearly varying potential
is generated by membrane stretching, while the bending of the shell generates a parabolic electric potential through the
thickness.

In future work, the proposed method will be extended to account for large deformation and instabilities of thin shell
structures made of electroelastic polymers.67
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