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Introduction

Dubrovin-Frobenius manifolds were invented by Boris Dubrovin to geometrize the study of
certain 2D Topological Field Theories ([11],[12]). The primary free energy F of a family of
such theories satisfies the so called WDV V equations. Given a quasi-homogeneous solution
to these equations one constructs a Dubrovin-Frobenius manifold structure on the domain
of definition M of the solution.

The first condition a Dubrovin-Frobenius manifold must satisfy is that the tangent
sheaf TM carries OM -bilinear multiplication ◦ : TM × TM → TM , this multiplication is
required to be unital, associative and commutative. The multiplication is required to
satisfy an integrability condition (equation 1.1.1); a manifold satisfying this conditions is
called an F -manifold. This integrability condition ensures that, the decomposition of each
tangent space TpM into irreducible subalgebras extends to a local decomposition of M into
irreducible F -manifolds. Next up in the definition comes the Euler vector field E, a global
vector field required to satisfy LE◦ = ◦. Lastly one requires the existence of a flat metric
η compatible with the multiplication in the sense that for any vector fields u, v, w one has
η(u ◦ v, w) = η(u, v ◦ w) and such that LEη = (2− d)η for some complex number d called
the charge of the Dubrovin-Frobenius manifold.

As vector spaces, each tangent space TpM of a manifold is isomorphic to Cn, on a
Dubrovin-Frobenius manifold each tangent space is a C-algebra and as such it is no longer
necessarily isomorphic to Cn. If as algebras TpM ∼= Cn then the point p is called semisimple.
In this case there exists a neighborhood V of p such that all points in V are semisimple; in
V there exists n-linearly independent vector fields πi such that πi ◦πj = δijπi, these vectors
are called orthogonal idempotents. The points which are not semisimple form an hypersur-
face K (which can be empty) called the caustic. It is the purpose of this work to study
the structure of a Dubrovin-Frobenius manifold in a neighborhood of a non-semisimple
point p ∈ K. In particular we are interested in the restriction to the caustic of a family of
differential equations associated to the Dubrovin-Frobenius manifold.

Let us briefly recall some sources of examples of Dubrovin-Frobenius manifolds. We
start by some Dubrovin-Frobenius manifolds coming from isolated hypersurface singulari-
ties. Historically these where of the first examples where the Dubrovin-Frobenius manifold
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8 INTRODUCTION

was found but was not yet called that way (see [17], [18] and [19]). In these manifolds the
multiplication is easy to define but the flat metric η is more involved. These examples are
also useful for this work because the caustic is always non-empty.
Let f : (Cn+1, 0)→ (C, 0) be the germ of a holomorphic function and suppose that df |0 = 0.
Then the origin is said to be a singularity of f . If df |0 6= 0 then at least one of the partial
derivatives ∂f

∂xi
does not vanish at x = 0 and as such, it is invertible in the local ring

C{x0, . . . , xn}. Hence the C-algebra C{x0, . . . , xn} modulo the ideal

Jf =

(
∂f

∂x0
, . . . ,

∂f

∂xn

)
is the zero ring and as such has dimension zero. If the origin is a singularity of f then
this is no longer the case and the dimension µ of the algebra A0 = C{x}/Jf is called the
Milnor number of f . We can choose representatives ai(x) ∈ C{x}, i = 1, . . . , µ of a basis
of A0 and construct a new function F : (Cn+1 × Cµ, 0)→ (C, 0) by setting

F (x, t) := f(x) +

µ∑
k=1

ak(x)tk.

This function is called a “semiuniversal unfolding” of f and using it one can construct a
Dubrovin-Frobenius manifold structure on (M, 0) = (Cµ, 0). To define the multiplication
one considers first the critical space (C, 0) of the semiuniversal unfolding F which is defined
by

(C, 0) := { (x, t) ∈ (Cd ×M, 0) | ∂F
∂xi

(x, t) = 0, i = 1, . . . , d }.

Using the projection πC : C → M one gets an isomorphism TM,0
∼= (πC)∗OC,0 via u 7→

ũ(F )|(C,0) where ũ ∈ TCd×M,0 is any lift of u ∈ TM,0. This isomorphism induces an
associative, commutative and unital multiplication ◦ on TM,0 and the inverse image of
F |(C,0) under this isomorphism turns out to be an Euler vector field E for the multipli-
cation. The above construction makes (M, ◦, e, E) into an F -manifold with Euler vector
field. To get the metric one looks for another sheaf F with a non-degenerate bilinear
form and an isomorphism TM ∼= F . It turns out that this sheaf F is the pushforward
by the projection π : (Cn+1 ×M, 0) → M of the sheaf of relative differentials of the map
ϕ : (Cn+1 ×M, 0) → (C ×M, 0). Indeed, this sheaf is equipped with the Grothendieck
residue pairing and is a locally free OM -module of rank µ = dimM . It turns out that it
is also a free (πC)∗OC ∼= TM module of rank one. The choice of a generator induces an
isomorphism TM ∼= F . But in order that the induced metric is flat one needs to choose
special generators, these are the so called primitive forms (see [19]).

Another source of examples comes from the quantum cohomology of certain symplectic
manifolds X with H2k+1(X;C) = 0. In these examples the flat structure is easy to define,
the metric is just the Poincaré pairing in the ordinary cohomology ring of X and as such it is
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trivially flat. The multiplication is much more involved and to obtain it one must consider
the Gromov-Witten invariants of X. Using the Gromov-Witten invariants it is possible
to deform the cup-product of H•(X;C) and obtain an associative, commutative and uni-
tal multiplication. The first Chern class of X is an Euler vector field for this multiplication.

As mentioned before we are interested in a family of differential equations associated to
any Dubrovin-Frobenius manifolds. Let us explain how this family is constructed and why
the monodromy data of this family are so important for the Dubrovin-Frobenius manifold.
By definition, the Levi-Civita connection ∇ of the metric η of a Dubrovin-Frobenius mani-
fold is flat. Flatness of ∇, the associativity and commutativity of the multiplication ◦ and
a potentiality condition on ◦ (see section 2.2) allows us to define a 1-parameter family of
flat connections

∇z := ∇+ z ◦ , z ∈ C

on the tangent sheaf TM .

Furthermore, the conformal condition LEη = (2− d)η implies that the endomorphism
of TM given by

µ :=
2− d

2
Id−∇E

is η antisymmetric. Let πM : P1×M →M denote the projection. Using the endomorphism
µ and multiplication by the Euler vector field E, one can extend the 1-parameter family
of connections ∇z to a flat connection ∇̄ on the vector bundle π∗MTM over P1 ×M . The
covariant derivatives in the direction of vectors tangent to M are the same as the covariant
derivatives of ∇z. If z is a global coordinate on C then the covariant derivative in the
direction of ∂z is given by

∇̄∂zv :=
∂v

∂z
+ E ◦ v − 1

z
µv.

Once again the potentiality and the condition LE◦ = ◦ ensures that ∇̄ is a flat connection.

When looking for flat sections of ∇̄ we need to solve the overdetermined system of
partial differential equations

∇̄v = 0.

While doing this we can start by solving the differential equation on the z-variable. This
ordinary differential equation reads

dY

dz
=

(
1

z
µ− E◦

)
Y. (?)

In this way every Dubrovin-Frobenius manifold parametrizes a family of meromorphic or-
dinary differential equations on P1. All members of this family have a regular singularity
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at z = 0 and a Poincaré rank one singularity at z =∞.

Let us describe the monodromy data one associates to such differential equation. At
the regular singularity z = 0 one can find a local holomorphic Gauge transformation taking
the differential equation (?) to its “normal form” (see section 4.1). Then one is able to
write explicitly a fundamental matrix solution YLev in Levelt form in a neighborhood of
z = 0. The monodromy transformation takes the form

YLev(z) 7→ YLev(e
2πiz) = YLev(z)e

2πiµe2πiR

and is completely determined by the matrices µ and R. This two matrices are called the
monodromy data at z = 0.

In general, at the irregular singularity z =∞ one can only find a formal Gauge trans-
formation which takes the differential equation (?) to its “normal form” (see section 4.2).
Using this one can write a formal fundamental matrix solution YF and as before compute
a formal monodromy

YF (z) 7→ YF (e2πiz) = YF (z)e2πiB.

The matrix B is called the exponent of formal monodromy and is part of the monodromy
data at z =∞.
Since the solutions obtained by the formal procedure are in general not convergent, one
can ask if they in some sense approximate actual holomorphic solutions. This is indeed the
case and using a result from Sibuya one can get holomorphic fundamental matrix solutions
Yν , ν ∈ Z such that the asymptotic expansion of Yν as z → ∞ in certain sectors Sν is
precisely the formal fundamental matrix solution YF . As we leave the sector Sν and enter
the next sector Sν+1, the asymptotic expansion of Yν will no longer be given by YF . But
on the overlap Sν ∩ Sν+1 the two solutions will be related by a Stokes matrix Sν defined
by the relation:

Yν+1 = YνSν .

The Stokes matrices are also part of the monodromy data at z =∞.

Finally the solutions YLev and Y0 will be related by a central connection matrix

YLev = Y0C.

The matrices µ,R,B, Sν , C are called the monodromy data of the Dubrovin-Frobenius
manifold M . In the works [11] and [12] Dubrovin showed that on a sufficiently small neigh-
borhood W of a semisimple point p ∈M such that the eigenvalues of the endomorphism

Ep◦ : TpM → TpM
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are distinct; the monodromy data are constant and moreover, starting from the monodromy
data one can reconstruct the structure of a Dubrovin-Frobenius manifold on the neighbor-
hood W .
Recently on [7] Cotti, Dubrovin and Guzzetti extended this result to a small neighbor-
hood W of a semisimple point p but without any restrictions on the eigenvalues of the
endomorphism Ep◦. Their result is based on the extension of the theory of isomonodromy
deformations when the eigenvaluse at the irregular singularity coalesce [6], but the multi-
plication remains semisimple in a neighbourhood of the coalescence locus.

After the extension result by Cotti, Dubrovin and Guzzetti, two problems remained
open. The first one is to extend the isomonodromy deformation theory at a locus where
the eigenvalues of E◦ coalesce and the multiplication is no longer semisimple. That is,
extend the theory of isomonodromic deformations to the caustic. The second problem,
which is even more difficult, is to describe in a neighbourhood of a point belonging to the
caustic the transition between semisimple points of this neigbourhood and points of the
caustic. In this thesis, we make use of the geometry of a Dubrovin-Frobenius manifold to
obtain insight and possible solutions to these problems.

Main results: The most important results of this work are theorem 4.3.2 and proposi-
tion 6.1.2. The first of these theorems says that under some assumptions, after restricting
the family (?) to certain submanifolds L ⊂ K of the caustic, one is able to find isomon-
odromic fundamental matrix solutions of equation (?). The reason why we restrict ourselves
to this submanifolds is because the Jordan form of the endomorphism E◦ changes as we
approach the caustic. As a consequence, the fundamental matrix solutions computed out-
side the caustic become singular at the caustic. Proposition 6.1.2 says that after a suitable
renoramlization some of the columns of the formal fundamental matrix solution outside
the caustic have a well defined limit at the caustic and moreover, these columns coincide
with some of the columns of the formal fundamental matrix computed inside the caustic.

It is worth mentioning that while this work was under development, the theory of
isomondromic deformations of differential equations of the same type as (?) was stablished
independently by Guzzetti in [13]. Basicaly what it is shown in this work is that, under
some assumptions, by the restricting equation (?) to certain submanifolds of a Dubrovin-
Frobenius manifold, the hypothesis of [13] are realized.

The reason to start searching for isomonodromic fundamental matrix solutions of equa-
tion (?) restricted to certain submanifolds L ⊂ K is that, in a really over simplistic way,
one could say that the fact of the monodromy data are constant depends only on two facts

1. Being able to define a “normal form” near the singular points of the differential
equation (?) and compute the monodromy data of the corresponding solutions. In
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order to be able to compute the monodromy data for an open set W ⊂ M this
“normal” form should vary holomorphically as we move in W .

2. In order to get isomonodromic fundamental matrix solutions of differential equation
(?), one exploits the fact that our differential equation is part of an over determined
system of integrable partial differential equations.

More concretely, we will show that under some assumptions the restriction of the family
of differential equations (?) to certain submanifolds of the caustic is isomonodromic. For
our purpose, of the two steps mentioned above, only the first step represents a problem.
Indeed, flatness of the connection ∇̄ doesn’t depend on a point p ∈ M being semisimple
whereas the “normal form” of the differential equation (?) does depend on the point p
being semisimple or not. In our case the “normal form” will depend on the Jordan form
of the endomorphism E◦. Let us try to explain why the normal form will change at a
non-semisimple point.

On a neighborhood of a semisimple point there exists m-linearly independent vector
fields π1, . . . , πm. We can write any other vector field as v = v1π1 + · · · + vmπm. Thus
we immediately obtain v ◦ πi = viπi. As such, all the operators v◦ are diagonalizable in a
neighborhood of a semisimple point.
The set of non-semisimple points, the caustic, is an hypersurface K or the empty set
(proposition 1.1.4). At a point p ∈ K the endomorphism vp◦ might or might not be di-
agonalizable. In any case, since any neighborhood of p intersects the semisimple loci; the
basis that diagonalizes v◦ outside the caustic cannot be extended to the basis that puts v◦
in Jordan form inside the caustic. Indeed, outside the caustic the idempotents are a basis
of eigenvectors and by definition this vectors no longer exist on the caustic.

To get around this problem first we describe some multiplication invariant submanifolds
L ⊂ K (proposition 1.2.1). Along this submanifolds it is easy to describe the vector fields
v such that v◦ is diagonalizable along L; the endomorphism v◦ will be diagonalizable along
L if and only if v is tangent to L (proposition 1.2.2). This brings us to the first assumption
we will use throughout this work.

Assumption 1: The Euler vector field is tangent to the multiplication invariant sub-
manifolds L described in proposition 1.2.1.

By restricting ourselves to the submanifolds L we will almost get our desired “nor-
mal form”. Note that on the semisimple case, thanks to the compatibility of the metric
and the multiplication, the idempotents are orthogonal. Since the endomorphism E◦ is
η-symmetric and µ is η-antisymmetric, a convenient basis for writing the differential equa-
tion (?) is the basis consisting of the normalized orthogonal idempotents. In our case we
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make the following assumption.

Assumption 2: The restriction of the metric η to the multiplication invariant sub-
manifolds is non-degenerate.

A word of comment is due; on the complex numbers any symmetric bilinear form η
has null-vectors (i .e. vectors v such that η(v, v) = 0). Hence, even if η is non-degenerate,
the restriction of η to some subspaces might be degenerate and thus the reason for the
assumption we make. What we really want is that the normal space of the submanifolds
L is transversal to their tangent space.

With assumptions 1 and 2 one is able to get nice “normal forms” of the differential
equation (?) restricted to L and compute monodromy data for the corresponding funda-
mental matrix solutions. In order to get isomonodromic fundamental matrix solutions we
will need to make another assumption which is probably best to leave for later, let us
just mention that it is related with the exponent of formal monodromy B. We might just
add that, if at the caustic we only loose one idempotent then this third assumption is
not needed, it is always satisfied. The reason for this is that in this case the exponent of
formal monodromy totally determines the underlying F -manifold structure of M in a small
neighborhood of p ∈ K, and vice versa.

Let us at least explain how does the structure of the underlying structure of F -manifold
appears in the exponent of formal monodromy B. We will use two deep results by Hertling
that can be found in [14]. First is the fact that (see [14] theorem 2.11 or theorem 1.1.1 of
this work) if at p ∈M the tangent space decomposes as

TpM =

l⊕
k=1

(TpM)k

where each piece (TpM)k is an irreducible C-algebra then the germ (M,p) of the F -manifold
M at p decomposes as

(M,p) ∼= Πl
k=1(Mk, p)

where each (Mk, p) is an irreducible F -manifold.
If at the caustic K we only loose one idempotent then, since the only irreducible 2-
dimensional algebra is C[z]/z2, for p ∈ K we will have

TpM ∼= C[z]/(z2)⊕ Cm−2.

Correspondingly, the germ of M at p will decompose as

(M,p) ∼= F 2 ×Πm−2
k=1 A1
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where F 2 is the germ of a two-dimensional F -manifolds and A1 is the only germ of a
one-dimensional F -manifold. In this case the caustic will be a multiplication invariant
submanifold and the multiplication will be generically semisimple, we will often refer to
this case as the semisimple caustic case. Now we use the second result by Hertling which is
a classification of the germs of two-dimensional F -manifolds ([14] theorem 4.7). Essentially
it says that they are classified by a natural number n ∈ N≥2 (see example 1.1.5). In this
case, all the entries of the exponent of formal monodromy B will be zero except two of
them which will be (theorem 5.1.2)

±in− 2

n
.

In the semisimple case all the entries of the exponent of formal monodromy are zero.
Correspondingly the two dimensional germ of F -manifold appearing in the decomposition
of M will be I2(2) which is isomorphic two A1 × A1. Note that the above formula still
works in this case. Therefore, on the semisimple case and on the semisimple caustic case
the exponent of formal monodromy “knows” the underlying structure of F -manifold. We
expect that this is still true when we loose more idempotents when arriving at the caustic.
To study this it would be useful to have a classification of irreducible germs of F -manifolds,
but already on dimension 3 the classification is vast, recent and still incomplete (see [3]).

Let us describe the organization of this work. In chapter 1 we start studying F -
manifolds. The most important results are proposition 1.1.1 and theorem 1.1.1. The
proposition states that the product of two F -manifolds is again an F -manifold. The the-
orem says that the decomposition of TpM into irreducible algebras gives a local decompo-
sition of M into a product irreducible F -manifolds. Both of these results aren’t new and
can be found on [14]. Of crucial importance for this work are propositions 1.2.1 and 1.2.2.
The first of these propositions describes certain multiplication invariant submanifolds L to
which we will restrict when studying the monodromy data of the differential equation (?).
Proposition 1.2.2 says that the endomorphism vp◦ : TpM → TpM for p ∈ L is diagonaliz-
able if and only if vp ∈ TpL ≤ TpM . This proposition is the reason for assumption 1.

In chapter 2 we start studying Dubrovin-Frobenius manifolds. The definition we give
is not the original one but it is convenient for the purpose of this work. Here we also show
that under assumptions 1 and 2, the multiplication invariant submanifolds of proposition
1.2.1, with the induced structures, satisfy all the axioms of a Dubrovin-Frobenius manifold
except for the flatness of the metric. On a three-dimensional Dubrovin-Frobenius mani-
fold with a semisimple caustic, the caustic is always a Dubrovin-Frobenius manifold. This
results were previously noted by Strachan [21] but we provide different and coordinate
independent proofs.
Section 2.2 shows that the definition we use always gives a Dubrovin-Frobenius manifold
as were defined by Dubrovin. At the end of the chapter we introduce the most important
object of this work, the deformed connection ∇̄. It is also shown that this connection is
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flat. Nothing from this chapter is new and all of its contents can be found in [11],[12] and
[14].

In chapter 3 the real work of this thesis begins. Here, under assumptions 1 and 2, we
study the deformed connection when pulled back to the multiplication invariant submani-
folds L of proposition 1.2.1. To the best of our knowledge this was only done previously on
a neighborhood of a semisimple point. In this case assumptions 1 and 2 are always satis-
fied. Under assumptions 1 and 2 the connection ∇̄ when restricted to L satisfies analogous
properties to that of ∇̄ in the semisimple case (see equations (3.1.1), (3.1.2) and (3.2.2)).
In the semisimple case, using the endomorphism µ one can recover the connection matrices
of the Levi-Civita connection of the metric η (equation (3.1.2)). On a point of the caustic
we cannot do this anymore because the kernel of adE◦ are no longer only the diagonal
matrices. In spite of this, the parts of the Levi-Civita connection that we cannot recover
from µ give new flat connections πk ◦∇ on certain subbundles over L which are determined
by the irreducible algebra decomposition of TpM with p ∈ L. This facts are established in
propositions 3.2.1, 3.2.2 and theorem 3.2.1. Some other properties of the flat connections
πk ◦ ∇, analogous to the properties of ∇, are summarized in propositions 3.2.3 and 3.2.4.
Finally on proposition 3.2.5 we use these new flat connections to get a basis from which
the desired “normal form” of the differential equation (?) will be computed.

Chapter 4 is a central one: we establish the isomonodromy deformation theory along
the multiplication invariant submanifolds L. We identify the relevant monodromy data,
the flat sections at infinity, and prove isomonodromy. We start by studying the monodromy
data at z = 0. It was previously known (see [11] and [12]) that these monodromy data
are constant in a neighborhood of any point p ∈M . For completeness we write a proof of
this fact (theorem 4.1.1). Then in section 4.2 we go on to study the monodromy data at
z = ∞. Here the results of the previous chapter become crucial. First we make our third
assumption, it concerns the diagonal blocks of the matrix V of proposition 3.2.5.

Assumption 3: The eigenvalues bki of any diagonal block of the matrix V of propo-
sition 3.2.5 don’t differ by a non-zero integer. That is bki − bkj /∈ Z \ { 0 } for any
i, j ∈ { 1, . . . , dim(TpM)k }.

With this assumption we obtain a “normal form” for equation (?) from which we can
compute a formal solution YF . Proposition 3.2.5 immediately implies that the exponent of
formal monodromy of this solution is constant. In theorems 4.2.2 and 4.3.1, assumption 3
will also allow us to show that the corresponding Stokes matrices and central connection
matrix are constant. Thus under assumptions 1,2 and 3 we get that the monodromy data
of the differential equation (?) are constant.

On chapter 5 we apply the previous results to the case of a semisimple caustic. In
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particular we show that assumption 3 is not needed in this case and we compute explicitly
the exponent of formal monodromy in terms of the irreducible F -manifold decomposition
(theorem 5.1.2). In section 5.2 we compute the monodromy data along the semisimple
caustic of a large class of three dimensional Dubrovin-Frobenius manifolds.

Having established the constancy of the monodromy data one natural question arises.

Question: How does the monodromy data for different multiplication invariant sub-
manifolds L, L̃ are related? In particular, if L̃ = L̄ \ L is the (topological) boundary of L,
what can we say about solutions of equation (?) restricted to L as we approach L̃?

On chapter 6 we address this question and give a partial answer with proposition 6.1.2:
After an adequate Gauge transformation, the columns of the formal fundamental matrix
solution corresponding to blocks that don’t coalesce with other blocks as we move from L
to L̃ remain holomorphic on L̃.



Chapter 1

F -Manifolds

In this chapter we start preparing for the definition of a Dubrovin-Frobenius manifold.
Every Dubrovin-Frobenius manifold underlies an F -manifold structure and this chapter is
dedicated to studying their basic properties. Much of this material can be found in [14].
The tangent sheaf TM of any F -manifold carries a multiplication ◦. This multiplication
endows each tangent space TpM with the structure of a C-algebra. One of the most im-
portant results in F -manifold theory is that, the decomposition of TpM into irreducible
algebras induces a local decomposition of M into “simpler” F -manifolds (theorem 1.1.1).
Most of the results known in Dubrovin Frobenius manifolds are done in neighborhoods
where the algebras TpM contain no nilpotents ([11],[12]). For points p in such neighbor-
hoods TpM is a direct sum of 1-dimensional algebras and multiplication by any vector
vp ◦ TpM → TpM is diagonalizable.

In this work we will assume that generically the multiplication has no nilpotents but,
we will mainly focus on neighborhoods of points p ∈M such that TpM contains nilpotent
elements. In this case the set of nilpotent elements is an hypersurface K called the caustic
(proposition 1.1.4). Correspondingly, for a point p ∈ K not all of the operators vp◦TpM →
TpM will be diagonalizable.
On a neighborhood of a point p ∈ K the Jordan form of the endomorphism v◦ : TM → TM
might change from diagonalizable to non-diagonalizable. Proposition 1.2.2 tells us which
endomorphisms v◦ remain diagonalizable when we arrive at the caustic.
But even if v◦ is still diagonalizable at p ∈ K, the basis that diagonalizes it outside of K
cannot be extended to K. Hence the basis that diagonalizes v◦ outside of K is different from
the one that diagonalizes it inside K. For the purpose of the last chapter of this work, this
fact causes a lot of trouble and therefore we will restrict ourselves to certain multiplication
invariant submanifolds L ⊂ K in which the basis that diagonalizes the operators v◦ does
not change as we move on L. This submanifolds are described in proposition 1.2.1.

17
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1.1 General Theory

Let M be a connected complex manifold of dimension m then, each point p of M has
a vector space associated to it, namely its tangent space TpM . This collection of vector
spaces parametrized by the points of M varies holomorphically and; on any open set
U , multiplication by any local holomorphic function f ∈ OM (U) by a local vector field
v ∈ TM (U) := Γ(U, TM) is OM (U)-bilinear. One of the crucial ingredients is that on an
F -manifold the tangent spaces carry a multiplication ◦ : TM × TM → TM (the notation
means that we have such a map for any open set U ⊂ M), this multiplication is required
to be commutative, associative, with unit and OM -bilinear. As such, each tangent space
becomes a commutative, associative, unital finite-dimensional algebra over C.
Just for being a vector space over C each tangent space TpM is isomorphic to Cn; as
C-algebras this is no longer the case.

Example 1.1.1. Consider C2 with its canonical basis e1, e2, the formulas ei ◦ ej := δijei
define a structure of a commutative, associative algebra over C (the unit is e = e1+e2). This
algebra is the direct sum of two copies of the the only one-dimensional C-algebra. Note that
this algebra doesn’t posses nilpotent elements. The algebra C[z]/(z2) is two-dimensional
but z is a nilpotent element. Hence these two algebras cannot be isomorphic. It can be
shown that up to isomorphism this is the only irreducible two-dimensional C-algebra.

On a complex manifold any local chart induces a basis of TpM for any p ∈ M , hence
we obtain a vector space isomorphism TpM ∼= Cn. On an F -manifold we wish that the
decomposition of TpM into irreducible C-algebras (an algebra is irreducible if it is not
isomorphic to a direct sum of other two algebras) extends to a decomposition of the germ
(M,p) of M around p into “irreducible” F -manifolds (see proposition 1.1.1 and definition
1.1.3). This will be achieved with the following definition.

Definition 1.1.1. LetM be a complex manifold. Let ◦ : TM×TM → TM be a commutative,
associative, unital and OM -bilinear multiplication on TM . Denote by e ∈ TM (M) the global
vector field corresponding to the unit of the multiplication ◦. The triple (M, ◦, e) is called
an F -manifold if for any local vector fields u, v ∈ TM (U) we have that

Lu◦v(◦) = u ◦ (Lv◦) + v ◦ (Lu◦). (1.1.1)

Remark 1.1.1. Note that the expression

Lu◦v(◦)(w, z)− u ◦ Lv(◦)(w, z)− v ◦ Lu(◦)(w, z) (1.1.1)

is OM -bilinear in its four arguments and hence it defines a tensor. Condition (1.1.1) is
equivalent to the vanishing of the above tensor and by OM -bilinearity this only has to be
checked on a basis of TM .
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Example 1.1.2. Consider C with a local coordinate t. Define a multiplication by f(t)∂t ◦
g(t)∂t := f(t)g(t)∂t. Then ∂t ◦f(t)∂t = f(t)∂t and so ∂t is a unit for ◦. Condition (1.1.1) is
immediately true and thus we have defined a one dimensional F -manifold. We will denote
this F -manifold as A1

Example 1.1.3. Consider C2 with local coordinates (t1, t2) and let n ∈ N≥2. Define a
multiplication by ∂t1 = e, ∂t2◦∂t2 = tn−2

2 ∂t1 and then extend linearly. A simple computation
shows that L∂t1◦ = 0. With this we get

L∂t1◦∂t2 (◦) = L∂t2◦ = e ◦ (L∂t2◦) + ∂t2 ◦ (L∂t1◦).

To show that the above define an F -manifold we just need to show that

Ltn−2
2 ∂t1

(◦) = 2∂t2 ◦ (L∂t2◦).

But (Ltn−2
2 ∂t1

(◦))(∂t2 , ∂t2) = −2[tn−2
2 ∂t1 , ∂t2 ]◦∂t2 , where as (L∂t2◦)(∂t2 , ∂t2) = 2[∂t2 , t

n−2
2 ∂t1 ].

The remaining equalities are satisfied trivially. This two dimensional F -manifolds are de-
noted by I2(n) and correspond to the orbit spaces of the finite Coxeter groups I2(n) (see
[10]).

Fix a point p ∈ M . The family of operators Xp◦ : TpM → TpM with Xp ∈ TpM is
commutative. Hence there is a common eigenspace decomposition TpM = ⊕lk=1(TpM)k.

Lemma 1.1.1. Let (A, ◦, e) be a commutative, associative, unital C-algebra and let A =∑l
k=1Ak be the common eigenspace decomposition of all operators a◦, a ∈ A. Then each

Ak is a irreducible commutative, associative, unital C-algebra.

Proof. Since Ai ◦ Aj ⊂ Aj and Aj ◦ Ai ⊂ Ai then Ai ◦ Aj = 0 for i 6= j and Ai ◦ Ai ⊂ Ai.
This shows that ⊕i∈IAi is an ideal for any I ⊂ { 1, . . . , l }. Hence Ai ∼= A/ ⊕j=1,j 6=i Aj is
a commutative associative and unital C-algebra. Reducibility of any Ai would give a finer
eigenspace decomposition.

Remark 1.1.2. The proposition implies that each irreducible algebra Ai has an identity
πi ∈ Ai and e =

∑l
i=1 πi. The vectors πi will be called idempotents.

Now we define another global vector field which will be of crucial importance in the
future.

Definition 1.1.2. Let (M, ◦, e) be an F -manifold. A vector field E will be called Euler
vector field if one has

LE(◦) = ◦. (1.1.2)

Example 1.1.4. In the A1 F -manifold the vector field E := t∂t is an Euler vector field.
Indeed,

(LE◦)(∂t, ∂t) = −2[t∂t, ∂t] = ∂t = ∂t ◦ ∂t.
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For the F -manifolds I2(n) an Euler vector field is

E = t1
∂

∂t1
+

2

m
t2
∂

∂t2
.

We have [E, ∂t1 ] = −∂t1 and [E, ∂t2 ] = − 2
n∂t2 so

(LE◦)(∂t2 , ∂t2) = [E, tn−2
2 ∂t2 ]− 2[E, ∂t2 ] ◦ ∂t2

= E(tn−2
2 )∂t1 + tn−2

2 [E, ∂t1 ] +
4

m
∂t2 ◦ ∂t2 = (2n− 4− n+ 4)

tn−2
2

n
∂t1

= tn−2
2 ∂t1 = ∂t2 ◦ ∂t2 .

Equation (1.1.2) for the pairs (∂t1 , ∂t1) and (∂t1 , ∂t2) are easy to check.

As we mentioned before, condition (1.1.1) will allow us to decompose an F -manifold
into simpler F -manifolds. First we show that the product of two F -manifolds with Euler
vector fields is again an F -manifold with an Euler vector field.

Proposition 1.1.1. Let (M1, ◦1, e1) and (M2, ◦2, e2) be two F -manifolds. Then (M, ◦, e) =
(M1 ×M2, ◦1 ⊕ ◦2, e1 + e2) is an F -manifold. Moreover, if E1 and E2 are Euler vector
fields on M1 and M2 then E1 + E2 is an Euler vector field on M .

Proof. The fact that ◦ is commutative, associative, OM -bilinear and that e is a unit is
immediate. We only need to check that condition (1.1.1) holds and that the vector field E
satisfies (1.1.2). Let pi : M →Mi denote the projections. Recall that

TM = OM ⊗OM1
p−1

1 TM1 ⊕OM ⊗OM2
p−1

2 TM2 .

Condition (1.1.1) is equivalent to

Lu◦v(◦)(x ◦ y)− u ◦ Lv(◦)(x, y)− v ◦ Lu(◦)(x, y) = 0.

This expression is OM -linear in all of its arguments and therefore we only need to verify
it for vectors in p−1

1 TM1 ∪ p−1
2 TM2 . Take a, b ∈ p−1

1 TM1 ∪ p−1
2 TM2 and write them as

a = a1 + a2 and b = b1 + b2 with ai, bi ∈ p−1
i TMi . Since [a1, b2] = [a2, b2] = 0 we get

[a, b] = [a1, b1] + [a2, b2]. For u, v, x, y ∈ p−1
1 TM1 ∪ p−1

2 TM2 we have

Lu◦v(◦)(x, y) = [u1 ◦1 v1, x1 ◦1 y1]− [u1 ◦1 v1, x1] ◦ y − x ◦ [u1 ◦1 v1, y1]

[u2 ◦2 v2, x2 ◦2 y2]− [u2 ◦2 v2, x2] ◦ y − x ◦ [u2 ◦2 v2, y2]

But [p−1
i TMi , p

−1
i TMi ] ⊂ p

−1
i TMi and p−1

i TMi ◦ p
−1
j TMj = 0 for i 6= j so we can write

Lu◦v(◦)(x, y) = [u1 ◦1 v1, x1 ◦1 y1]− [u1 ◦1 v1, x1] ◦1 y1 − x1 ◦ [u1 ◦1 v1, y1]

+ [u2 ◦2 v2, x2 ◦2 y2]− [u2 ◦2 v2, x2] ◦2 y2 − x2 ◦2 [u2 ◦2 v2, y2]

= Lu1◦1v1(◦1)(x1, y1) + Lu2◦2v2(◦2)(x2, y2). (1.1.3)
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On the other hand

u ◦ Lv(◦)(x, y) = (u1 + u2)(Lv1(◦)(x, y) + Lv2(◦)(x, y))

but for i 6= j one has

Lvi(◦)(xi, yj) = 0 Lvi(◦)(xj , yj) = 0

so that

u ◦ Lv(◦)(x, y) + v ◦ Lu(◦)(x, y) = u1 ◦1 Lv1(◦1)(x1, y1) + u2 ◦2 Lv2(◦2)(x2, y2)

+ v1 ◦1 Lu1(◦1)(x1, y1) + v2 ◦2 Lu2(◦2)(x2, y2)

= Lu1◦v1(◦1)(x1, y1) + Lu2◦v2(◦2)(x2, y2).

Comparing this expression with (1.1.3) we get that ◦ satisfies (1.1.1).
Now suppose the F -manifolds M1 and M2 have Euler vector fields E1, E2. Condition (1.1.2)
is OM -bilinear so again we only need to verify it for x, y ∈ p−1

1 TM1 ∪ p−1
2 TM2 . Me have

LE(◦)(x, y) = LE1(◦)(x, y) + LE2(◦)(x, y)

But as before

LEi(◦)(x, y) = LEi(◦i)(xi, yi) = xi ◦i yi

so that

LE(◦)(x, y) = x1 ◦1 y1 + x2 ◦2 y2 = x ◦ y.

LE(◦)(x, y) = LE1(◦)(x, y) + LE2(◦)(x, y) = LE1(◦1)(x1, y1) + LE2(◦2)(x2, y2)

= x1 ◦1 y1 + x2 ◦ y2 = x ◦ y.

Definition 1.1.3. We will say that the F -manifold (M, ◦, e) is irreducible if it is not
isomorphic to a product of two F -manifolds of smaller dimension.

Example 1.1.5. The F -manifold I2(2) is reducible because it is isomorphic to the product
A1×A1. Using theorem 1.1.1 one can see that the germ of the F -manifold I2(n) is reducible
for any (t1, t2) with t2 6= 0. On the other hand, when n > 2 the germ of I2(n) at points of
the form (t1, 0) are irreducible. Indeed, on those points we have ∂t2 ◦∂t2 = 0 so T(t1,0)I2(n)
is isomorphic as an algebra to C[z]/z2; if the germ were reducible we would get that an
isomorphism of algebras between C × C and C[z]/z2. But this cannot happen because
C× C has no nilpotents.
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Take p ∈M . Let us exhibit some irreducible OM,p-algebras that are induced by the de-
compostion of TpM into irreducible C-algebras. In this work this algebras will be of the ut-
most importance. The C-algebra structure of TpM comes from the OM,p-algebra structure
of TM,p which in turn is obtained by the OM -algebra structure of the tangent sheaf TM . The
kernel of the evaluation map at p, evp : TM,p → TpM is the OM,p-submodule mM,pTM,p of
vector fields vanishing at p ∈M . The OM,p-linearity of the multiplication implies that the
kernel is also an ideal and this gives the natural algebra structure of TpM . The irreducible
C-algebra decomposition of TpM induces an irreducible OM,p-algebra decomposition of
TM,p = ⊕li=1(TM,p)i with (TM,p)i := ev−1

p (TpM)i. Therefore the irreducible C-algebra de-

composition of TpM gives a irreducible OM,p-algebra decomposition of TM,p = ⊕li=1(TM,p)i.
The integrability condition (1.1.1) gives nice properties of these subalgebras.

Lemma 1.1.2. Let (M, ◦, e) be an F -manifold and suppose that for p ∈M we have TM,p =
⊕li=1(TM,p)i with each (TM,p)i an irreducible OM,p-algebra with unit πi. Then

1. Lπi(◦) = 0.

2. [πi, πj ] = 0.

3. [πi, (TM,p)j ] ⊂ (TM,p)j.

4. [(TM,p)i, (TM,p)j ] ⊂ (TM,p)i ⊕ (TM,p)j.

Proof. Evaluating the integrability condition (1.1.1) on πi we get

Lπi(◦) = 2πi ◦ Lπi(◦).

Multiplying by πi we get πi ◦ Lπi(◦) = 2πi ◦ Lπi(◦) so that Lπi(◦) = 2πi ◦ Lπi(◦) = 0 . For
2; we have

0 = Lπi(◦)(πj , πj) = Lπi(πj)− 2πj ◦ Lπiπj .

Again multiplying by πj gives the result. For 3; fix i and j and take vj ∈ (TM,p)j , we have

0 = Lπi(◦)(πj , vj) = Lπivj − πj ◦ Lπivj .

Therefore Lπivj = πj ◦ Lπivj ∈ (TM,p)j . For the last part take u ∈ (TM,p)i and v ∈ (TM,p)j
then if i 6= k 6= j

0 = Lπk◦u(◦)(πk, v)

= πk ◦ ([u, πk ◦ v]− [u, πk] ◦ v − πi ◦ [u, v])

= −πk ◦ [u, v].

This means that the projection of [u, v] on (TM,p)k is zero unless k = i or k = j.
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Finally we have the desired decomposition theorem.

Theorem 1.1.1. Let (M,p) be the germ at p ∈ M of an F -manifold (M, ◦, e). Then the
common eigenspace decomposition TpM = ⊕lk=1(TpM)k into irreducible algebras extends
to a decomposition

(M,p) ∼= Πl
k=1(Mk, p) (1.1.4)

of the germ (M,p) into irreducible germs of F -manifolds (Mk, p). Moreover, an Euler
vector field E on M decomposes into a sum of Euler vector fields on the germs (Mk, p).

Proof. Consider the multiplication invariant subsheaves (TM,p)k, k = 1, . . . , l. By the last
item of the preceding lemma for any j we have that the subbundles

l⊕
k=1
k 6=j

(TM,p)k

are integrable. Indeed, l⊕
i=1
i 6=j

(TM,p)i,
l⊕

k=1
k 6=j

(TM,p)k

 =
l∑

i=1
i 6=j

l∑
k=1
k 6=j

[(TM,p)i, (TM,p)k]

⊂
l∑

i=1
i 6=j

l∑
k=1
k 6=j

(TM,p)i ⊕ (TM,p)k =
l⊕

i=1
i 6=j

(TM,p)i.

By the Frobenius integrability theorem we get a submersion fj : (M,p) → (Cdim(TpM)j , 0)
such that the fibers are the integral submanifolds of this subbundle. Since the image of a
direct sum of linear maps is the direct sum of the images of each map we get that the map
f := ⊕lj=1fj : (M,p)→ (CdimM , 0) is an isomorphism.
Consider the submanifolds

(Mk, p) := ((
⊕
j=1
j 6=k

fj)
−1(0), p).

Since the kernel of a direct sum of linear maps is the intersection of the kernels of all
the maps we have TMk,p = ι∗(TM,p)k where ι : (Mk, p) → (M,p) is the inclusion. Under
the isomorphism f the germ manifolds (Mk, p) get mapped to germs of transversal linear
subspaces of (CdimM , 0) and thus we get (M,p) ∼= Πl

k=1(Mk, p). Let us show that the
manifolds (Mk, p) are F -manifolds. Consider the projections pk : (M,p) → (Mk, p). The
projections are open maps so for any open set U ⊂M we have p−1

k TMk,p(U) = TMk,p(pk(U));
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therefore to define a multiplication on TMk,p it is enough to show that for u, v ∈ p−1
k TMk,p

we have u ◦ v ∈ p−1
k TMk,p. We have

TM,p
∼=

l⊕
k=1

OM,p ⊗OMk,p p
−1
k TMk,p =

l⊕
k=1

(TM,p)k.

Since the sheaves (TM,p)k are multiplication invariant we have that u◦v ∈ (TM,p)k whenever
u, v ∈ p−1

k TMk,p. Now u ◦ v ∈ p−1
k TMk,p if and only if for any j and any w ∈ (TM,p)j one

has [w, u ◦ v] ∈ (TM,p)j . Condition (1.1.1) gives

[w, u ◦ v]− [w, u] ◦ v − u ◦ [w, v] = Lπj◦w(◦)(u, v)

πj ◦ ([w, u ◦ v]− [w, u] ◦ v − u ◦ [w, v]).

But [w, u], [w, v] ∈ (TM,p)j and therefore

[w, u ◦ v] = πj ◦ [w, u ◦ v] ∈ (TM,p)j .

Condition (1.1.1) holds for all vector fields on M and therefore it follows for vector fields
in p−1

k TMk,p.
Finally suppose that (M, ◦, e) has an Euler vector field E. We will show that πk ◦ E ∈
p−1
k TMk,p and that πk ◦ E satisfies (1.1.2) for all u, v ∈ (TM,p)k. For any w ∈ (TM,p) we

have
[πk ◦ E,w] = Lπk◦E(◦)(πj , w) + [πk ◦ E, πj ] ◦ w + πj ◦ [πk ◦ E,w]

= πk ◦ πj ◦ w + [πk ◦ E, πj ] ◦ w + πj ◦ [πk ◦ E,w]

= πj ◦ (πk ◦ w + [πk ◦ E, πj ] ◦ w + [πk ◦ E,w]) ∈ (TM,p)j

because w ◦ πj = w. For the last part if u, v ∈ (TM,p)k then

Lπk◦E(◦)(u, v) = πk ◦ LE(◦)(u, v) = πk ◦ u ◦ v = u ◦ v.

Definition 1.1.4. A point p ∈M will be called semisimple if as algebras TpM is isomorphic
to Cm. An F -manifold (M, ◦, e) is called massive if it is generically semisimple. The set
of non-semisimple points is called the caustic and will be denoted by K.

Remark 1.1.3. If the point p ∈M is semisimple then by theorem 1.1.1 a small neighborhood
around p consist of semisimple points. The same does not hold true if the point p is not
semisimple. The decomposition (1.1.4) holds true in a neighborhood of p but for a point
q 6= p the decomposition of the germ (M, q) into irreducible F -manifolds may be finer.
For example on the I2(n) F -manifolds the whole t1 axis consists of non-semisimple points.
Hence any neighborhood of a non-semisimple point contains semisimple points. More
generally, if at p ∈M the tangent space TpM decomposes as a direct sum of lp irreducible
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algebras then, in a small neighborhood W of p, for all points q ∈ M we have that TqM
decomposes as a direct sum of lq algebras with lq ≥ lp. Indeed, by theorem 1.1.1 for any
point q ∈W we have that TqM is isomorphic to a direct sum of lp algebras. This algebras
may or may not be irreducible.

For the purpose of this work it will be important to recognize if a given point p ∈M is
semisimple or not. In this direction we have

Proposition 1.1.2. Let (M, ◦, e) be an F -manifold. Suppose that at a point p ∈M there
exists a vector v such that the operator v◦ has different eigenvalues. Then p is a semisimple
point

Proof. Let v◦ei = uiei then v◦(ei ◦ei) = ei ◦v◦ei = uiei ◦ei so that ei ◦ei is an eigenvector
of v◦ with eigenvalue ui. Since all eigenvalues are different we obtain ei ◦ ei = λiei and
πi := ei

λi
satisfies πi ◦ πi = πi. Now ui(πi ◦ πj) = v ◦ (πi ◦ πj) = uj(πi ◦ πj) but since ui 6= uj

we obtain πi ◦ πj = 0.

It may well happen that the operator vp◦ : TpM → TpM has repeated eigenvalues and
nevertheless the point p might still be semisimple. A trivial example of this is any scalar
multiple of the identity, multiplication by this element will have only one eigenvalue but it
will be diagonalizable for any point p ∈M . Later we will give less trivial examples of this
phenomena.
To identify a point in the caustic we use the following proposition.

Proposition 1.1.3. Let (M, e, ◦) be an F -manifold. If the point p ∈M is semisimple then
for all v ∈ TpM the operator v ◦ TpM → TpM is diagonalizable.

Proof. Write v = v1π1 + · · ·+ vmπm, then v ◦ πi = viπi so the basis π1, . . . , πm is a basis of
eigenvectors.

Example 1.1.6. On the F -manifold I2(n) on the basis ∂t1 , ∂t2 , multiplication by the vector
a∂t1 + b∂t2 has matrix (

a btn−2
2

b a

)
.

The eigenvalues of this matrix are a± bt
n−2

2
2 so at the caustic { t2 = 0 }, multiplication by

vector fields with b 6= 0 will not be diagonalizable. Later we will be more precise about
the vector fields whose multiplication operator is diagonalizable at a point p ∈ M (see
proposition 1.2.2)

We finish this section with a proposition about the non-semisimple points on a massive
F -manifold.

Proposition 1.1.4. Let (M, ◦, e) be a massive F -manifold. Then the caustic is either
empty or an hypersurface.
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Proof. First we show that the caustic is an analytic set so that its dimension is well defined.
Let W ⊂M be an open set. For any vector field v ∈ TM (W ) let pv◦ := det(v ◦ −λ) be the
characteristic polynomial of the endomorphism v◦. This defines a function pv◦ : W → Cm.
Now Kv := { q ∈W | pvq◦ has a repeated root } is the inverse image under pv◦ of the set of
polynomials with a repeated root and as such is an analytic set. Let us show that

K ∩W = ∩v∈TM (W )Kv.

If p ∈ K then by proposition1.1.2 the operators vp◦ all have repeated eigenvalues so we get
the inclusion ⊂. For the other inclusion note that at a semisimple point p there is always
a vector field v such that vp◦ has different eigenvalues so if vp◦ has repeated a repeated
eigenvalue for all v ∈ TM (U) then p cannot be semisimple.
Now take a semisimple point p ∈ M and consider the m = dimM idempotent vector
fields π1, . . . , πm. Suppose that dimK < dimM − 2 then for a sufficiently small open
set W such that W ∩ K 6= ∅ the set W \ K is simply connected. Since M is massive
we can take a semisimple point p ∈ W \ K and consider the m = dimM idempotent
vector fields π1, . . . , πm. The simply-connectedness of W \K implies that the vector fields
πi have no monodromy and therefore they extend to the whole neighborhood W . Now
e − (π1 + · · · + πm) = 0, πi ◦ πj = 0 and πi ◦ πi − πi = 0 all hold true on W \ K so
by continuity this relations hold in the whole neighborhood W . Therefore on the whole
neighborhood W we have m = dimM idempotents and hence K ∩W = ∅.

1.2 The Caustic and its Multiplication Invariant Submani-
folds

Suppose that at a point p ∈ M we have TpM ∼= ⊕lk=1(TpM)k with each (TpM)k an
irreducible algebra. By lemma 1.1.1 TpM has l idempotent vectors π1, . . . , πl. Theorem
1.1.1 says that this vectors extend to idempotent vector fields π1 . . . , πl on a neighborhood
of p. Thanks to lemma 1.1.2 we get that [πi, πj ] = 0. Therefore there exists a submanifold
L ⊂ M such that p ∈ L and the tangent space of L is generated by the idempotents
π1, . . . , πl. We will refer to L as the integral submanifold of the idempotents π1, . . . , πl
passing through p. In this section we will study some properties of these submanifolds.

Proposition 1.2.1. Let (M, ◦, e) be an F -manifold. Take p ∈M and suppose that TpM ∼=
⊕lk=1(TpM)k with each (TpM)k an irreducible algebra. Let L be the integral submanifold of
the idempotent vector fields π1, . . . , πl passing through p. Then, with the induced structures
(L, ◦, e) is a massive F -manifold.

Proof. We have πi ◦ πj = δijπi ∈ TL. This means that L is multiplication invariant. Since
e = π1 + · · ·πl the unit e is tangent to L. The condition (1.1.1) holds for all vector fields
on M in particular it holds for the vector fields tangent to L.
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Example 1.2.1. Take a semisimple point p ∈M then the integral submanifold is an open
set L ⊂M . If the caustic is empty then L = M if it is non-empty then since M is connected
and K is an hypersurface L = M \K.
Let p ∈ K be a regular point (non-singular point) of the caustic and suppose that TpM
has m− 1 idempotents, then L is the regular part of an irreducible component K̃ ⊂ K of
the caustic. Note that in this case the irreducible component of the caustic K̃ is a massive
F -manifold. We will refer to this case as the semisimple caustic case. Later we will see
examples of F -manifolds such that the tangent spaces of one irreducible component of the
caustic have less than m− 1 idempotents (see example 2.2.3).

Suppose that (M, ◦, e) is a semisimple F -manifold (all points of M are semisimple) then
proposition 1.1.3 says the operator of multiplication by any vector field v◦ : TM → TM is
diagonalizable. Note that in this case any vector field is trivially tangent to the integral
submanifold through any point p ∈ M . Now suppose that the caustic is non-empty. By
definition, the basis π1, . . . , πm that diagonalizes the operator of multiplication of any vector
field v ∈ TM ceases to exist on the caustic. Nevertheless it might happen that v◦TM → TM
is still diagonalizable for a point p ∈ K.
To eliminate the complications arising from the fact that the basis diagonalizing v◦ outside
the caustic cannot be extended holomorphically to the caustic, we restrict ourselves to the
integral submanifold of the idempotents passing through p. This is achieved by pulling
back the tangent bundle TM via the inclusion map i : L → M . Recall that the fiber of
i∗TM at a point p is equal to the fiber of TM at the point i(p). As such the multiplication
◦ on TM induces a multiplication on i∗TM , by abuse of notation we will denote this two
multiplications with the same symbol ◦. Just as in the semisimple case, the next proposition
says that the vector fields v such that v◦ is diagonalizable along L are the ones that are
tangent to L.

Proposition 1.2.2. Suppose that (M,p) ∼= Πl
k=1(Mk, p) with each Mk irreducible. Let L be

the integral submanifold of the idempotents π1, . . . , πl. Let i : L→M denote the inclusion.
Then for any v ∈ i∗TM the operator of multiplication v◦ : i∗TM → i∗TM is diagonalizable
if and only if v ∈ TL.

Proof. If v ∈ TL we can write v = v1π1 + · · ·+vlπl. Take w ∈ (TM )k then v◦w = vkw. This
means that on each irreducible algebra (TM,p)k the operator v◦ acts by multiplication by
vk and therefore is diagonalizable. Suppose now that v◦ : i∗TM → i∗TM is diagonalizable.
Since the irreducible algebras (TM,p)k are multiplication invariant the operator v◦|(TM,p)k is
also diagonalizable. On each of this algebras v◦ can have only one eigenvalue (otherwise we
would have more than l idempotents) say vk. This tells us that v ◦ |(TM,p)k = vkπk ◦ |(TM,p)k
and therefore v = v1π1 + · · ·+ vlπl ∈ TL.

We now obtain a special local coordinate system for the submanifolds L which will be
useful for later computations. Since the idempotent vector fields π1, . . . , πl ∈ TL commute
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there exists a coordinate system u1, . . . , ul such that

πi =
∂

∂ui
.

Definition 1.2.1. Let L ⊂M be the integral submanifold of the idempotent vector fields
π1, . . . , πl. The local coordinates (u1 . . . , ul) on L such that ∂ui = πi are called canonical
coordinates.

Proposition 1.2.3. Let L be the integral submanifold of the idempotents π1, . . . , πl and
let (u1, . . . , um) be canonical coordinates on L. Suppose that the Euler vector field E is
tangent to L. Then

E =
l∑

s=1

(us + cs)πs

for some constants cs. In particular, the eigenvalues of the endomorphism E◦ : i∗TL → i∗TL
are (us + cs) s = 1 . . . , l.

Proof. Write E =
∑l

s=1E
sπs. For i 6= j the integrability condition (1.1.1) gives

0 = (LE◦)(πi, πj) = (πiE
j)πj + (πjE

i)πi.

Hence Ei = Ei(ui). But
πi = (LE◦)(πi, πi) = (πiE

i)πi

so that Ei = ui + ci.



Chapter 2

Dubrovin Frobenius Manifolds

In this chapter we start by defining a Dubrovin-Frobenius manifold. This definition is
not the original one. In this work we want to study Dubrovin-Frobenius manifolds near
points that are not semisimple. Theorem 1.1.1 gives a good starting point for studying
non-semisimple points and that is why we choose this alternative definition. In section 2.2
we show that this definition is equivalent to the original definition by Dubrovin. In the
last section we introduce the most important object of this work, namely the deformed
connection ∇̄. This connection is constructed by first defining a 1-parameter family of
flat connections on a Dubrovin-Frobenius manifold M and then extending it to a flat
connection on a certain vector bundle over P1×M . The study of the deformed connection
on a neighborhood of a non-semisimple point is the topic of next chapter. The deformed
connection also induces a family of ordinary meromorphic differential equations on P1. The
monodromy data of this family is the topic of subsequent chapters of this work. All the
material of this chapter can be found in [14],[11] and [12].

2.1 General Theory

We start with the most important definition.

Definition 2.1.1. A Dubrovin-Frobenius manifold is a quintuple (M, ◦, e, E, η) where
(M, ◦, e, E) is an F -manifold with Euler vector field E and η ∈ Sym2T ∗M is a metric such
that

1. For all vector fields u, v, w we have η(u ◦ v, w) = η(u, v ◦ w) (Compatibility of the
multiplication and the metric).

2. The Euler vector field satisfies LEη = (2− d)η for some d ∈ C (Conformality).

3. The unit is e flat, namely ∇e = 0 where ∇ is the Levi-Civita connection of η.

29
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4. The metric η is flat.

Example 2.1.1. On the F -manifold A1 we can define a Dubrovin-Frobenius manifold
structure of charge d = 0 by setting η(∂t, ∂t) = 1. All the axioms of a Dubrovin-Frobenius
manifold are verified immediately.
Consider I2(n) F -manifold with the Euler vector field

E = t1∂t1 + 2
n t2∂t2 .

Define a metric η by η(∂t1 , ∂t1) = η(∂t2 , ∂t2) = 0 and η(∂t1 , ∂t2) = 1. For the compatibility
of the multiplication and the metric, the only non-trivial thing we need to check is

η(∂t1 ◦ ∂t2 , ∂t2) = 0 = tn−2
2 η(∂t1 , ∂t1) = η(∂t1 , ∂t2 ◦ ∂t2).

To check conformality note that (LEη)(∂t1 , ∂t1) = (LEη)(∂t2 , ∂t2) = 0 and

(LEη)(∂t1 , ∂t2) = −η([E, ∂t1 ], ∂t2)− η(∂t1 , [E, ∂t2 ]) = 1 +
2

n
.

Thus we see that LEη = (2 − d)η with d = n−2
n . Since on the coordinate vector fields

∂t1 , ∂t2 the metric is constant we get that η is flat and ∂t1 = e is ∇-flat.
More generally, on C2 given d ∈ C \ { 1 } we can define an associative multiplication by

∂t1 = e

∂t2 ◦ ∂t2 = t
2d/(1−d)
2 .

If we let E = t1∂t1 + (1− d)t2∂t2 and η the same as before, then we get a two dimensional
Dubrovin-Frobenius manifold of charge d. Note that the multiplication is not defined on
{ t2 = 0 } unless 2d

1−d ∈ N in which case we recover the Dubrovin-Frobenius manifolds I2(n)

defined above. In other words, if 2d
1−d /∈ N then the caustic of the above Dubrovin-Frobenius

manifolds is empty.

The following lemma will be useful.

Lemma 2.1.1. Let M be a manifold with metric η and Levi-Civita connection ∇. A vector
field e is flat if and only if Leη = 0 and the 1-form η(e,−) is closed.

Proof. For any vector fields u, v we have

(Leη) (u, v) = e(η(u, v))− η([e, u], v)− η(u, [e, v]).

By the compatibility of the metric ∇η = 0, we get e(η(u, v)) = η(∇eu, v) + η(u,∇ev) so
that

(Leη) (u, v) = η(∇eu, v) + η(u,∇ev)− η([e, u], v)− η(u, [e, v]).
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Since the connection ∇ is torsionless we get ∇e = ∇e+ [e,−] so

(Leη) (u, v) = η(∇ue, v) + η(u,∇ve). (2.1.1)

We also have

d(η(e,−))(u, v) = u(η(e, v))− v(η(e, u))− η(e, [u, v]),

again by the compatibility and torsionless of ∇ we get

d(η(e,−))(u, v) = η(∇ue, v)− η(u,∇vu). (2.1.2)

Now suppose ∇e = 0, then equalities (2.1.1) and (2.1.2) imply Leη = 0 and d(η(e,−)) = 0.
Conversely adding up (2.1.1) and (2.1.2) we get η(∇ue, v) = 0 for all vector fields u, v.
Since η is non-degenerate we conclude ∇ue = 0 for all vector fields u so that ∇e = 0 and
e is flat.

Proposition 1.2.1 says that the integral submanifolds of the idempotents are massive
F -manifolds. Note that if the Euler vector field E is tangent to L and the metric η
when restricted to L is non-degenerate, then (L, ◦, e, E, η|L) satisfies all the axioms of a
Dubrovin-Frobenius manifold but the last one.

Corollary 2.1.1. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold and suppose that p ∈
M we have TpM = ⊕lk=1(TpM)k where each (TpM)k is an irreducible algebra. Let L be the
integral submanifold of the idempotents π1, . . . , πl passing through p. Then (L, ◦, e, E, η|L)
satisfies all the axioms of Dubrovin-Frobenius manifold except possibly for the flatness of
i∗η. Moreover, if M is 3-dimensional and the caustic K is generically semisimple then
(K, ◦, e, E, η|K) is a Dubrovin-Frobenius manifold.

Proof. The only thing that needs to be proven is the statement about the 3-dimensional
Dubrovin-Frobenius manifold. Let g = η|K and let ∇̃ denote the Levi-Civita connection
of g. Since ∇̃e = 0 by the previous lemma we get Leg = ∇̃eg = 0. Call ∂1 = e and
pick a vector field ∂2 such that [∂1, ∂2] = 0. Then Leg = 0 implies ∂1gij = 0 so that the
components of the metric in this basis are constant in the direction of the unit vector field.
Since the Christoffel symbols are functions of the metric and its derivatives they are also
constant along the unit vector field. Now [∇̃∂1 , ∇̃∂2 ] = 0 because ∇̃e = 0. Finally

[∇̃∂1 , ∇̃∂2 ] = ∂1Γ1
22∂1 + ∂1Γ2

22∂2 = 0.

Example 2.1.2. Let us consider the Dubrovin-Frobenius manifold M associated with the
singularity An. This manifold consists of the polynomials of the form

F (a; z) = zn+1 + an−1z
n−1 + · · ·+ a1z + a0
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where a = (a0, . . . , an−1) ∈ Cn. This manifold is an affine space modeleled on the vector
space of polynomials of degree at most n− 1. This means that we can identify the tangent
space to any point a ∈ M with the space of polynomials of degree at most n − 1. Given
two polynomials f, g ∈ TaM the multiplication is defined by

f ◦ g := fg mod
∂F

∂z

∣∣∣
a
.

If we write ∂F
∂z = (n+ 1)Πn

i=1(z − αi) then one can easily check that the polynomials

ei :=
1

z − αi
∂F

∂z

satisfy ei ◦ ej = δijλiei and therefore they are multiples of the orthogonal idempotents.
Therefore the caustic K consist of the points a such that the polynomial ∂F

∂z has a double

root. The set of points where ∂F
∂z has only a double root and all other simple is an open

set inside the caustic. In this open set the polynomials ei, with αi a simple root, still are
multiples of orthogonal idempotents πi; we have n − 2 of them, say π3, . . . , πn. But we
have another orthognal idempotent given by e − π3 − · · · − πn. By proposition ??, the
caustic is a massive F -manifold. Note that we can apply the proposition again, indeed, the
caustic contains the locus of points K̃ such that the polynomial ∂F

∂z has a triple root and

all the other roots simple. The same argument as before shows that along K̃ we have n−2
orthogonal idempotents. Continuing in this way we arrive at a 2-dimensional F -manifold,
the locus of points where ∂F

∂z has a root of multiplicity n − 1 and a simple root. By the
corollary this surface is a Dubrovin-Frobenius manifold.

2.2 Potentiality and Dubrovin’s Definition

In this section we show that the definition of a Dubrovin-Frobenius manifold always gives
a Dubrovin-Frobenius manifold as Dubrovin defined them. The converse is also true (see
[14]).

Lemma 2.2.1. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold and consider the ten-
sor A(u, v, w) = η(u ◦ v, w). Then ∇A is symmetric in its four arguments.

Proof. Let us look back at condition (1.1.1)

Lu◦v◦ = u ◦ (Lv) ◦+v ◦ (Lu◦).



2.2. POTENTIALITY AND DUBROVIN’S DEFINITION 33

Using the torsion freeness of the connection ∇ we can write

(Lu◦v◦)(w, z) = Lu◦v(w ◦ z)− (Lu◦vw) ◦ z − w ◦ (Lu◦vz)
= ∇u◦v(w ◦ z)−∇z◦w(u ◦ v)− (∇u◦vw −∇wu ◦ v) ◦ z
= −w ◦ (∇u◦vz −∇zu ◦ v)

= ∇u◦v(w ◦ z)− (∇u◦vw) ◦ z − w ◦ (∇u◦vz)
−∇z◦w(u ◦ v) + (∇wu ◦ v) ◦ z + w ◦ (∇zu ◦ v)

= ∇ ◦ (u ◦ v, w, z)−∇z◦w(u ◦ v) + (∇wu ◦ v) ◦ z + w ◦ (∇zu ◦ v) .

Similarly

(u ◦ (Lv))(w, z) = u ◦ [∇v(w ◦ z)−∇w◦zv
− (∇vw −∇wv) ◦ z − w ◦ (∇vz −∇zv)] (2.2.1)

(v ◦ (Lu))(w, z) = v ◦ [∇u(w ◦ z)−∇w◦zu
− (∇uw −∇wu) ◦ z − w ◦ (∇uz −∇zu)] (2.2.2)

Hence the torsion freeness of ∇ allows us to write the integrability condition (1.1.1) as

0 = (Lu◦v ◦ −u ◦ (Lv◦)− v ◦ (Lu◦))(w, z) =

∇ ◦ (u ◦ v, w, z)− u ◦ ∇ ◦ (v, w, z)− v ◦ ∇ ◦ (u,w, z)

−∇ ◦ (w ◦ z, u, v) + w ◦ ∇ ◦ (z, u, v) + z ◦ ∇ ◦ (w, u, v). (2.2.3)

Compatibility of the metric gives

∇A(u, v, w, z) = uη(v ◦ w, z)− η(∇uv ◦ w, z)− η(v ◦ ∇uw, z)− η(v ◦ w,∇uz)
= η(∇u(v ◦ w)−∇uv ◦ w − v ◦ ∇uw, z) = η(∇ ◦ (u, v, w), z).

Using this and taking the inner product of (2.2.3) with the unit vector field e gives

0 = ∇A(u ◦ v, w, z, e)−∇A(v, w, , z, u)−∇A(u,w, z, v)

∇A(w ◦ z, u, v, e) +∇A(z, u, v, w) +∇A(w, u, v, z). (2.2.4)

But compatibility of ∇ and flatness of e give

∇A(x, y, z, e) = xη(y, z)− η(∇xy, z)− η(y,∇xz) = 0.

Therefore we conclude

∇A(z, u, v, w)−∇A(v, w, z, u) = ∇A(w, u, v, z)−∇A(u,w, z, v).
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The tensor A is symmetric so that ∇A is symmetric in the last three entries. Hence the
left hand side is symmetric in u and w. On the other hand

∇A(w, u, v, z)−∇A(u,w, z, v) = η(∇ ◦ (w, u, z)−∇ ◦ (u,w, z), v)

= −η(∇ ◦ (u,w, z)−∇ ◦ (w, u, z), v)

= −(∇A(u,w, v, z)−∇A(w, u, z, v)).

So that the left hand side is antisymmetric in u,w. Thus both sides must vanish and we
have

∇A(u,w, v, z) = ∇A(w, u, z, v) = ∇A(w, u, v, z).

Remark 2.2.1. Consider some flat coordinates (t1, . . . , tm) on an open set u ⊂ M and let
∂ti ◦ ∂tj =

∑
k c

k
ij∂tk and define cijk :=

∑
s c
s
ijηsk. Then

∇A(∂tl , ∂ti , ∂tj , ∂tk) =
∂cijk
∂tl

.

By the symmetry of ∇A we get

∂cijk
∂tl

=
∂cijl
∂tk

=
∂cilk
∂tj

.

Moreover, if ηαβ denote the components of the inverse matrix of η we have ckij =
∑

s cijsη
sk

but then
∂ckij
∂tl

=

m∑
s=1

∂cijs
∂tl

ηsk =

m∑
s=1

∂cils
∂tj

ηsk =
∂ckil
∂tj

.

Now

∇ ◦ (∂tl , ∂ti , ∂tj ) =
m∑
k=1

∂ckij
∂tl

∂tk

so we conclude that the tensor ∇◦ is symmetric in its three arguments.

Lemma 2.2.2. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold of charge d. For any
vector fields u, v, w let A(u, v, w) = η(u ◦ v, w) then

LEA = (3− d)A.

Proof. We have

(LEA)(u, v, w) = Eη(u ◦ v, w)− η([E, u] ◦ v, w)− η(u ◦ [E, v], w)− η(u ◦ v, [E,w])

= (LEη)(u ◦ v, w) + η([E, u ◦ v]− [E, u] ◦ v − u ◦ [E, v], w)

= (2− d)η(u ◦ v, w) + η((LE◦)(u, v), w) = (3− d)η(u ◦ v, w)

= (3− d)A(u, v, w).



2.2. POTENTIALITY AND DUBROVIN’S DEFINITION 35

Proposition 2.2.1. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold then

∇∇E = 0.

Proof. On flat coordinates (t1, · · · , tm) the components ηij of the metric are constant.
Writing E =

∑
sE

s∂ts the conformal condition LEη = (2− d)η reads

(LEη)(∂ti , ∂tj ) =
m∑
s=1

∂tiE
sηsj + ∂tiE

sηsi = (2− d)ηij .

Setting Eα :=
∑

sE
sηsα (so that Eβ =

∑
sEsη

sβ where ηrs are the components of the
inverse matrix of η) and taking the derivative with respect to tk gives

∂tk∂tiEj = −∂tk∂tjEi.

This equation holds for any indices i, j, k, hence

∂tk∂tjEi = −∂tk∂tiEj = −∂ti∂tkEj = ∂ti∂tjEk = ∂tj∂tiEk = −∂tj∂tkEi.

Therefore ∂tk∂tjEi = 0 and since Ei is a C-linear combination of the Ej we get ∂tk∂tjE
i = 0.

In flat coordinates we have

∇∇E =
∑
p,r,s

∂tp∂trE
sdtp ⊗ dtr ⊗ ∂ts = 0.

Theorem 2.2.1. Let (M, ◦, e, E, η) be a Frobenius manifold of charge d and let (t1, . . . , tm)
be flat coordinates on a simply connected open set U ⊂ M with ∂t1 = e. Let ∂ti ◦ ∂tj =∑

k c
k
ij∂tk and cijk =

∑
s c
s
ijηsk. Then there exists a holomorphic function F : U → C such

that

1. cijk = ∂3F
∂ti∂tj∂tk

2. ηij = c1ij.

3. ckij =
∑m

s=1 cijsη
sk where ηαβ are the components of the inverse matrix of η.

4. E(F )− (3− d)F is a quadratic polynomial.

Proof. By the preceding remark

∂cijk
∂tl

=
∂cijl
∂tk

=
∂cilk
∂tj

,
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since U is simply connected there exists functions bij such that

∂bij
∂tk

= cijk.

But
∂bij
∂tk

= cijk = cjik =
∂bji
∂tk

and hence we can choose functions bij such that bij = bji. Now

∂bij
∂tk

= cijk = cikj =
∂bik
∂tj

so we can find functions ai such that

∂ai
∂tj

= bij .

By the above choice
∂ai
∂tj

= bij = bji =
∂aj
∂ti

so we can find a function F such that

∂F

∂ti
= ai.

By construction
∂3F

∂ti∂tj∂tk
=

∂2ai
∂tj∂tk

=
∂bij
∂tk

= cijk.

This proves the first item. For the second one note that

∂t1 ◦ ∂ti =
m∑
s=1

csij∂ts = ∂ti

and therefore cs1i = δsi . Hence

c1ij =
m∑
s=1

cs1iηsj = ηij .

For the third part we have

m∑
s=1

cijsη
sk =

m∑
s=1

m∑
r=1

crijηrsη
sk =

m∑
r=1

crijδ
k
r = ckij .
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For the last part write E =
∑

sE
s∂ts . In flat coordinates the condition ∇∇E = 0 is simply

∂ti∂tjE
s = 0. Using this one gets

∂ti∂tj∂tkE(F ) =
m∑
s=1

Es∂tscijk + (∂tiE
s)cjks + (∂tjE

s)ciks + (∂tkE
s)cijs.

Computing (LEA)(∂ti , ∂tj , ∂tk) we get ∂ti∂tj∂tkE(F ) = (LEA)(∂ti , ∂tj , ∂tk). We also have
A(∂ti , ∂tj , ∂tk) = cijk. Using lemma 2.2.2 we get

∂ti∂tj∂tkE(F ) = (3− d)A(∂ti , ∂tj , ∂tk) = (3− d)∂ti∂tj∂tkF.

Therefore
∂ti∂tj∂tk(E(F )− (3− d)F ) = 0.

The function F will be called potential of the Dubrovin-Frobenius manifold.

Example 2.2.1. Let us write down the potential for the two-dimensional Dubrovin-
Frobenius manifolds of example 2.1.1 when d 6= −1, 1, 3. We have that

c1
11 = 1 c1

12 = 0 c1
22 = t

2d/(1−d)
2

c2
11 = 0 c2

12 = 1 c2
22 = 0.

From the equality ∂3F
∂i∂j∂k

= cijk =
∑

s ηisc
s
jk we get

∂3F

∂t1∂t1∂t1
= 0

∂3F

∂t1∂t1∂t2
= 1

∂3F

∂t1∂t2∂t2
= 0

∂3F

∂t2∂t2∂t2
= t

2d/(1−d)
2 .

From the two equalities of the first line we get

∂F

∂t1
= t1f(t2) + g(t2)

for some functions f, g. From the two equalities of the second line we get

∂F

∂t2
=

(1− d)2

2(1 + d)
t
2/(1−d)
2 + h(t1).

Comparing the last two equations we conclude f(t2) = t2, h(t1) =
t21
2 and we can put g = 0.

Putting this together we arrive at

F (t1, t2) =
1

2
t21t2 +

(1− d)3

2(1 + d)(3− d)
t
(3−d)/(1−d)
2 .
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In particular for the I2(n) Dubrovin-Frobenius manifolds we get

F (t1, t2) =
1

2
t21t2 +

1

(n+ 1)n(n− 1)
tn+1
2 .

When d = 3 an identical procedure yields

F (t1, t2) =
1

2
t21t2 +

1

2
log(t2).

For d = −1 we obtain

F (t1, t2) =
1

2
t21t2 +

t22
2

log(t2)− t22,

but note that the functions cijk and therefore ckij don’t chance if we add a polynomial of
degree at most two. Hence, when d = −1 we can take

F (t1, t2) =
1

2
t21t2 +

t22
2

log(t2)

as the potential. When d = 1 the potential

F (t1, t2) =
1

2
t21t2 + et2

defines a Dubrovin-Frobenius manifold. Indeed, the metric η is the same as before, the
multiplication is given by ∂t2 ◦ ∂t2 = et2∂t1 . The Euler vector field must be of the form
E = t1∂t1 + f(t1, t2)∂t2 . Imposing that E(F )− F must be a polynomial of degree at most
two we get f(t1, t2) = 2. With this one gets

(LEη)(∂t1 , ∂t2) = η(∂t1 , ∂t2) = (2− 1)η(∂t1 , ∂t2).

We now find a normal form for the potential F similar to the one found in the previous
example. We suppose that the eigenvalues of the operator ∇E are simple.

Proposition 2.2.2. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold of charge d and
suppose that the eigenvalues of ∇E are simple. Then there is a flat coordinate system
(t1, . . . , tm) with e = ∂t1 such that the potential F is written

F =
1

2
t21tm +

t1
2

m−1∑
k=2

tktm+1−k + f(t2, . . . , tm)

if d 6= 0 or η(e, e) = 0 and

F =
c

6
t31 +

t1
2

m−1∑
k=2

tktm+1−k + f(t2, . . . , tm)

if d = 0 and η(e, e) = c 6= 0.
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Proof. Since ∇∇E = 0 the eigenvalues and eigenvectors of the endomorphism ∇E are
∇-flat. For the eigenvalues this just mean that they are constant. Let ∂t1 , . . . , ∂tm be a
basis of eigenvectors with ∇∂tiE = di∂ti . On this basis we must have

E =

m∑
s=1

(diti + ri)∂ti ,

and [E, ∂ti ] = −di∂ti . From conformality we obtain

(2− d)ηij = (LEη)(∂ti , ∂tj ) = (di + dj)ηij .

Therefore, if di + dj 6= ηij then ηij = 0.
The metric η is non-degenerate so given an eigenvector ∂ti of ∇E there must exist at least
another eigenvector ∂tj such that ηij 6= 0; since the eigenvalues of ∇E are simple there
exists at most one of them, namely the eigenvector with eigenvalue 2− d− di.
Since e = (LE◦)(e, e) = −[E, e] and ∇eE = [e, E] we get that the unit vector field is always
an eigenvector of ∇E. We set e = ∂t1 .
Now suppose d 6= 0. Conformality gives

(2− d)η(e, e) = 2η(e, e)

and hence we conclude that η(e, e) = 0. We can now order and normalize the eigenvectors
∂ti in such a way that the matrix of the metric η is antidiagonal (there exists at most one
eigenvector ∂ti such that η(∂ti , ∂ti) 6= 0) i .e.

η(∂ti , ∂tj ) = δi,m+1−j .

We have that
1 = η1m = ∂t1∂t1∂mF

so ∂t1∂t1F = tm + h(t1, . . . , tm−1). For i 6= m we have

0 = η1i = ∂t1∂t1∂tiF = ∂ih

and hence h(t1, . . . , tm−1) is a constant which we take to be zero. Thus, ∂t1∂t1F = tm and
∂t1F = t1tm + f1(t2, . . . , tm). Now for all i > 1 we have

0 = ηjm = ∂t1∂tj∂tmF1jm = ∂tj∂tmf1.

Hence the function ∂tmf1 is a constant which we take to be zero and thus f1 = f1(t2, . . . , tm−1)
and

F1 = t1tm + f1(t2, . . . , tm−2).

We now have
1 = η2m−1 = ∂t1∂t2∂tm−1F = ∂t2∂tm−1f1



40 CHAPTER 2. DUBROVIN FROBENIUS MANIFOLDS

so ∂t2f1 = tm−1 + f2(t2, . . . , tm−2). But for 1 < i < m− 1 we have

0 = η2i = ∂t1∂t2∂ti = ∂ti∂t2f2

so ∂t2f2 is a constant which we again take to be zero. Hence ∂t2f1 = tm−1, f1 = t2tm−1 +
f2(t3, . . . , tm−2) and ∂t1F = t1tm + t2tm−1 = f2(t3, . . . , tm−1). For 2 < i we have

0 = ηim−1 = ∂t1∂ti∂tm−1F = ∂ti∂tm−1f2

so just as before we can take f2 = f2(t3, . . . , tm−2) and

∂t1F = t1tm + t2tm−1 + f2(t3, . . . , tm−2).

Continuing in the same way we get

F1 = t1tm +
1

2

m−1∑
k=2

tktm+1−k

so that

F =
1

2
t21tm +

t1
2

m−1∑
k=2

tktm+1−k + f(t2, . . . , tm).

For the other case we would have c = ∂t1∂t1∂t1F so ∂t1∂t1F = ct1 + g(t2, . . . , tm) but since
η1i = 0 for i > 1 we get ∂t1∂t1F = c

2 t
2
1 + f1(t2, . . . , tm). Reasoning as before we get the

desired result.

On dimension 3 and when the charge d 6= 0 the potential is

F =
1

2
t21t2 +

1

2
t1t

2
2 + f(t2, t3).

The multiplication table is given by

∂t2 ◦ ∂t2 = f,223∂t1 + f,222∂t2 + ∂t3

∂t2 ◦ ∂t3 = f,233∂t1 + f,223∂t2

∂t3 ◦ ∂t3 = f,333∂t1 + f,233∂t2 ,

where f,ijk denotes the third partial derivative of f with respect to the variables ti, tj , tk.
For associativity to hold the equations

(∂t2 ◦ ∂t2) ◦ ∂t3 = ∂t2 ◦ (∂t2 ◦ ∂t3)

∂t2 ◦ ∂t3 ◦ ∂t3 = ∂t2 ◦ ∂t3 ◦ ∂t3

must hold. Both of these equalities lead to the partial differential equation(
∂3f

∂t2∂t2∂t3

)2

=
∂3f

∂t2∂t2∂t2

∂3f

∂t2∂t3∂t3
+

∂3f

∂t3∂t3∂t3
.
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Example 2.2.2. The potentials

FA =
1

2
x2z +

1

2
xy2 − 1

16
y2z2 +

1

960
z5

FB =
1

2
x2z +

1

2
xy2 +

1

6
y3z +

1

6
y2z3 +

1

210
z7

FH =
1

2
x2z +

1

2
xy2 +

1

6
y3z2 +

1

20
y2z5 +

1

3960
z11

(2.2.5)

define massive Dubrovin-Frobenius manifolds. These Dubrovin-Frobenius manifolds come
from the orbit spaces of the Coxeter groups A3, B3 and H3 (see [10]). The corresponding
Euler vector fields are

EA = x
∂

∂x
+

3

4
y
∂

∂y
+

1

2
z
∂

∂z

EB = x
∂

∂x
+

2

3
y
∂

∂y
+

1

3
z
∂

∂z

EH = x
∂

∂x
+

3

5
y
∂

∂y
+

1

5
z
∂

∂z
.

(2.2.6)

Later we will analyze the caustic of these Dubrovin-Frobenius manifolds.

Example 2.2.3. The following family of examples exhibit three-dimensional Dubrovin-
Frobenius manifolds such that at one irreducible component of the caustic K, the tangent
space consists of only one irreducible algebra. That is, along this component we loose two
idempotents and therefore the caustic is not semisimple. Instead the caustic is foliated
by the integral curves of the unit vector field e which is the only idempotent along this
component of the caustic. The potential is the function

F (x, y, z) =
1

2
x2z +

1

2
xy2 + y4f(z)

for some function f of one variable. The Euler vector field is

E = x
∂

∂x
+

1

2
y
∂

∂y
.

The multiplication table is given by

∂y ◦ ∂y = 12y2f ′(z)∂x + 24yf(z)∂y + ∂z

∂y ◦ ∂z = 4y3f ′′(z)∂x + 12y2f ′(z)

∂z ◦ ∂z = y4f ′′′(z)∂x + 4y3f ′′(z)

Notice that along y = 0 we have ∂z ◦∂z = 0 so y = 0 is contained on the caustic. Along this
component E = x∂x and so the Euler vector field is tangent to { y = 0 }. The vector ∂z is
also tangent to this component of the caustic and so this component is a globally nilpotennt
F -manifold. Note that the Euler vector field is tangent to the integral submanifolds of the
only idempotent π1 = e. But since η(e, e) = 0, the metric restricted to this submanifolds
is degenerate. More about this examples can be found on [11] appendix C or [4].
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Remark 2.2.2. The associativity of the multiplication ◦ implies that the function F must
satisfy a highly overdetermined system of partial differential equations known as the WDVV
equations (Witten-Dijkgraaf-Verlinde-Verinde). Indeed, for all vector fields u, v, w we must
have

η((u ◦ v) ◦ w,−) = η(u ◦ (v ◦ w),−).

In terms of the flat vector fields ∂ti , i = 1, . . . ,m and the function F the above equality
becomes ∑

r,s

∂3F

∂ti∂tj∂tr
ηrs

∂3F

∂ts∂tk∂tl
=
∑
r,s

∂3F

∂tj∂tk∂tr
ηrs

∂3F

∂ts∂ti∂tl

2.3 The Deformed Connection

In this section we introduce one of the most important objects one can associate to a
Dubrovin-Frobenius manifold, the deformed connection. In this section we merely state
and proof its most important property, namely its flatness. In the next chapter we will
study in detail the consecuences of its flatness. This was already done by Dubrovin on the
semisimple loci, the novelty of the next chapter is that we drop the semisimple hypothesis.

Definition 2.3.1. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold of dimension m
and Levi-Civita connection ∇. We define a 1-parameter family of connections ∇z in the
following way: for each z ∈ C set and any vector fields u, v set

∇zuv := ∇uv + z(u ◦ v). (2.3.1)

Proposition 2.3.1. For any z ∈ C the connection ∇z is flat.

Proof. Fix a coordinate system (x1, . . . , xm). The connection matrices of the deformed
connection are

ωzi = ωi + z∂xi◦

where the matrices ωi are the connection matrices of the flat connection ∇. We have

∂ωzi
∂xj
−
∂ωzj
∂xi

=
∂ωi
∂xj
− ∂ωj
∂xi

+ z (∂xj (∂xi◦)− ∂xi(∂xj◦))

and [
ωzi , ω

z
j

]
= [ωi, ωj ] + z([ωi, ∂xj◦] + [∂xi , ωj ]) + z2[∂xi , ∂xj ]

= [ωi, ωj ] + z([ωi, ∂xj◦] + [∂xi , ωj ])

because the multiplication ◦ is associative and commutative. Since the connection ∇ is
flat, flatness of the connection ∇z is equivalent to the equations (see appendix A):

∂xj (∂xi◦)− ∂xi(∂xj◦) = [ωi, ∂xj◦] + [∂xi , ωj ].
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On flat coordinates (t1, . . . , tn) the connection matrices ωi vanish and therefore we only
need to verify

∂tj (∂ti◦)− ∂ti(∂tj◦) = 0.

We have

∂ti◦ = cβiαdt
α ⊗ ∂tβ and ∂tj◦ = cβjαdt

α ⊗ ∂tβ

Be we just need to verify

∂cβiα
∂tj

=
∂cβjα
∂ti

= 0.

But as lemma 2.2.1 and remark 2.2.1 show, this is always true on a Dubrovin-Frobenius
manifold.

We now extend the 1-parameter family of connections ∇z to a meromorphic flat con-
nection on a certain vector bundle over P1 ×M . We start by defining an endomorphism
µ : TM → TM which will be of crucial importance.
Since the Euler vector field is conformal, LEη = (2 − d)η, we get that the endomorphism
of the tangent sheaf

µ :=
2− d

2
Id−∇E (2.3.2)

is η-antisymmetric. Indeed, compatibility and torsion freeness of ∇ imply (see equation
(2.1.1))

(2− d)η(u, v) = (LEη) (u, v) = η(∇uE, v) + η(u,∇vE),

hence

0 = η

(
2− d

2
u−∇uE−, v

)
+ η

(
u,

2− d
2

v −∇vE
)

= η(µu, v) + η(u, µv).

Proposition 2.2.1 says that ∇∇E = 0 thus we get:

Proposition 2.3.2. The endomorphism µ is flat i .e. ∇µ = 0.

Consider the projection πM : P1 ×M → M . The importance of the endomorphism µ
is that it allows us to define a flat connection ∇̄ on the bundle π∗MTM → P1 ×M . This
connection extends the family of flat connections (2.3.1) on TM →M .
The multiplication ◦, the endomorphism µ and the connection ∇ induce the same kind
of objects on π∗MTM which should be denoted by π∗M◦, π∗Mµ and π∗M∇. Abusing notation
we will denote them by ◦, µ and ∇. Recall that TP1×M ∼= π∗P1TP1 ⊕ π∗MTM and π∗MTM ∼=
OP1×M ⊗OM π−1

M TM . Let z be a global coordinate on C.
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Definition 2.3.2. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold with Levi-Civita
connection ∇. The deformed connection is defined in the following way: for u ∈ π∗MTM ≤
TP1×M and v ∈ π∗MTM set

∇̄uv := ∇uv + zu ◦ v.

The covariant derivative in the ∂z direction is defined as

∇̄∂zv := ∂zv + E ◦ v − 1

z
µv.

Proposition 2.3.3. The deformed connection ∇̄ on the vector bundle π∗MTM over P1×M
is flat.

Proof. Let (t1, . . . , tm) be flat coordinates on a neighborhood U ⊂ M . The connection
matrix ω̄ of ∇̄ is

ω̄ =

m∑
i=1

ω̄idt
i + ω̄zdz,

where
ω̄i = z∂ti◦

ω̄z = E ◦ −1

z
µ.

Thanks to proposition 2.3.1 we only need to check that

∂ω̄i
∂z
− ∂ω̄z

∂ti
= [ω̄i, ω̄z].

Proposition 2.3.2 says that on flat coordinates ∂tiµ = 0 and since µ = 2−d
2 Id−∇E we need

to verify that
∂ti◦ = ∂ti(E◦) + [∂ti ,∇E].

Evaluating LE◦ = ◦ on ∂ti we get

∂ti◦ =
∑
β,γ

(∑
α

Eα
∂cβiγ
∂tα
− cαiγ

∂Eβ

∂tα
+ cβαγ

∂Eα

∂ti
+ cβiα

∂Eα

∂tγ

)
dtγ ⊗ ∂tβ .

We also have

∂ti(E◦) =
∑
β,γ

(∑
α

Eα
∂cβαγ
∂ti

+ cβαγ
∂Eα

∂ti

)
dtγ ⊗ ∂tβ

[∂ti◦,∇E] =
∑
β,γ

(∑
α

cβiα
∂Eα

∂tγ
− cαiγ

∂Eβ

∂tα

)
dtγ ⊗ pβ.

On flat coordinates we have
∂cβαγ
∂ti

=
∂cβiγ
∂tα
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(see lemma 2.2.1 and remark 2.2.1). Using this and comparing the previous equations we
get the result.

The flat connection ∇̄ is of fundamental importance. As shown by Dubrovin, on a
small enough semisimple neighborhood W , the monodromy data (which will be defined in
chapter 4) of the connection ∇̄ are constant and they determine the Dubrovin-Frobenius
manifold structure on W . In the next chapter we will study the restriction of ∇̄ to the
submanifolds L described in proposition 1.2.1. Except for the semisimple case we won’t
be able to recover the Dubrovin-Frobenius manifold structure on L but we will show that
under some mild conditions the monodromy data are still constant.





Chapter 3

The Deformed Connection

In this chapter we describe some geometric properties of the deformed connection ∇̄ when
restricted to the multiplication invariant submanifolds L of the caustic K (see proposition
1.2.1). We will always assume that the Euler vector field is tangent to this submanifolds
and that the metric η, when restricted to these submanifolds is non-degenerate. In this
case proposition 1.2.2 tells us that the endomorphism of multiplication by the Euler vector
field is diagonalizable along these submanifolds. To warm up we start with the semisimple
loci, this is the case that was originally studied by Dubrovin (see [11], [12]). Then we start
studying the deformed connection when restricted to the submanifolds L ⊂ K. Many of the
properties of ∇̄ remain the same but now the deformed connection induces flat connections
on the irreducible algebras ι∗(TM,p)k. These flat connections will play an important role in
the next chapter.

3.1 The Semisimple locus

Suppose that the point p ∈M is semisimple. Since the caustic (the non-semisimple locus)
is an hypersurface (see proposition 1.1.4) there is an open neighborhood W ⊂ M which
consists only of semisimple points. Therefore, in W there exists π1, . . . , πm vector fields
which satisfy

πi ◦ πj = δijπi.

Since the metric satisfies η(u◦v, w) = η(u, v◦w) we obtain that the idempotents π1, . . . , πm
are orthogonal. We also have that the metric is non-degenerate so that |πi| = η(πi, πi) 6= 0
and we can define the normalized orthogonal idempotents as

fi :=
πi
|πi|

.

Let (u1, . . . , um) be canonical coordinates around p ∈M so that ∂ui = πi. Using the basis
f1, . . . , fm of π∗MTM and the coordinate system (z, u1, . . . , um) of P1×M , let us write down

47
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the equations of flatness of the deformed connection ∇̄. First we compute the connection
matrices,

m∑
s=1

(ω̄i)
s
jfs = ∇̄πifj = ∇πifj + zπi ◦ fj =

m∑
s=1

(ωi)
s
jfs + zδijfi

and
m∑
s=1

(ω̄z)
s
jfs = ∇̄∂zfj = E ◦ fj −

1

z
µfj .

We have that πi◦fj = δijfi so that the matrix of πi◦ on the basis f1, . . . , fm is (Ei)
α
β = δαi δ

i
β.

The condition η(E ◦ v, w) = η(v,E ◦ w) says that the endomorphism E◦ : TM → TM is η-
symmetric and as we have seen the endomorphism µ is η-antisymmetric. Therefore on the
basis f1 . . . , fm the matrix U representing the endomorphism E◦ is symmetric (the matrix
of E◦ is actually diagonal U = diag(u1, . . . , um) where ui are the canonical coordinates) and
the matrix V representing the endomorphism µ is antisymmetric. Moreover, compatibility
of the Levi-Civita connection ∇ of η says that in this basis the connection matrices ωi of
∇ are antisymmetric. Hence we have

ω̄i = ωi + zEi

ω̄z = U − 1

z
V.

The equations of flatness

∂ω̄i
∂uj
− ∂ω̄j
∂ui

= [ω̄i, ω̄j ]

gives

[Ei, ωj ] = [Ej , ωi] (3.1.1)

because the connection ∇ is flat and [Ei, Ej ] = 0. Since [Ei, U ] = 0 the equation

∂ω̄i
∂z
− ∂ω̄z
∂ui

= [ω̄i, ω̄z]

gives

∂V

∂ui
= [V,Ei]

[U, ωi] = −[Ei, V ].

(3.1.2)

In the next section we will see that on the non-semisimple loci we also have equalities
analogous to the ones above.
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3.2 The Caustic

For a point p ∈ K on the caustic the algebra TM,p has less than m = dimM idempotents.
Correspondingly, the decomposition of TpM = ⊕lk=1(TpM)k into irreducible algebras has
at least one algebra of dimension at least two. Let us introduce some notation that will be
useful in the following. First we order the algebras (TpM)k in some way. Then we define
numbers ki with k ∈ { 1, . . . , l } and i ∈ { 1, . . . , dim(TpM)k } by

ki =
k−1∑
j=1

dim(TpM)j + i.

We also define subsets (k) ⊂ { 1, . . . ,m } by

(k) =

 ki ∈ N
∣∣∣ k−1∑
j=1

dim(TpM)j < ki ≤
k∑
j=1

dim(TpM)j

 .

Let L be the integral submanifold of the idempotent vector fields π1, . . . , πl passing
through p and let ι : L→M denote the inclusion. As proposition 1.2.1 shows this manifolds
are multiplication invariant. We will assume that the metric ι∗η|L is non-degenerate.
This means that the normal bundle NL of the submanifold L is transverse to TL and
ι∗TM = TL ⊕ NL. Since the bundles ι∗(TM,p)k are orthogonal between each other we can
choose a unitary basis nki of NL (i > 1) such that

nki ∈ ι
∗(TM,p)k ∩NL.

Introducing the normalized idempotents

fk :=
πk
|πk|

, k = 1 . . . , l,

we obtain an orthonormal basis of ι∗TM . We order this orthonormal basis in the following
way:

fk1 := fk fki := nki for i > 1.

For example, in this orthonormal basis multiplication by πk◦ has a matrix Ek which on
the diagonal block with indices belonging to (k) has an identity matrix of size #(k) =
dim(TpM)k and all other entries are zero.

We will also assume that the Euler vector field E is tangent to the manifold L. In this
case proposition 1.2.2 guarantees that the endomorphism E◦ : ι∗TM → ι∗TM is diagonaliz-
able. Let u1 . . . , ul be canonical coordinates of L around p. Then, after a translation (see
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proposition 1.2.3)

E =

l∑
k=1

ukπk.

We have that E ◦ nik = uknik so that the matrix U representing the endomorphism
E◦ : ι∗TM → ι∗TM on this orthonormal basis is diagonal.
By η-antisymmetry, the matrix V representing the endomorphism µ : ι∗TM → ι∗TM is an-
tisymmetric.

Using the inclusion (id × ι) : P1 × L → P1 ×M , we will now pullback the deformed
connection ∇̄ on π∗MTM to (πM ◦(id×ι))∗TM . Since the connection ∇̄ is flat the connection
(id×ι)∗∇̄ is also flat. The connection matrices in the orthonormal basis of (πM ◦(id×ι))∗TM
we just constructed and the local coordinates (z, u1, . . . , ul) of P1 × L are

ω̄i = ωi + zEi

ω̄z = U − 1

z
V.

(3.2.1)

Flatness of (id× ι)∗∇̄ gives

[U, ωi] = −[Ei, V ]

[Ei, ωj ] = [Ej , ωi]

∂V

∂ui
= [V, ωi].

(3.2.2)

Lemma 3.2.1. We have

(ωi)
pα
qβ

= 0 if (p) 6= (q) and (p) 6= (i) 6= (q)

(ui − up)(ωi)iαpβ = V iα
pβ

if (p) 6= (i)

(ωi)
iα
jβ

= −(ωj)
iα
jβ
.

(3.2.3)

Proof. The first two equations follow from the first equation of (3.2.2) and the last one
follows from the second one.

As we can see from equations (3.2.3) the flatness of the connection ∇̄ does not give any
information about the diagonal blocks (ωi)

kα
kβ

of the connection matrices of the connection

∇. In the following proposition we show that the partial differential equation satisfied
by the matrix V consists of l + 1 uncoupled systems of partial differential equations. Of
these l+ 1 systems, l consists of the l diagonal blocks of V and the last one consists of the
off-diagonal entries of V . To write down the system of partial differential equations for the
off-diagonal blocks first we need to solve the diagonal blocks. Theorem 3.2.1 gives a more
geometrical interpretation of this fact.



3.2. THE CAUSTIC 51

Proposition 3.2.1. For any i, k = 1, . . . , l and any α, β = 1, . . . dim(TpM)k we have

∂V kα
kβ

∂ui
=

∑
ks∈(k)

ks 6=kα,kβ

V kα
ks

(ωi)
ks
kβ
− (ωi)

kα
ks
V ks
kβ
. (3.2.4)

Let i, j, k ∈ { 1, . . . , l } with i 6= j 6= k 6= i. Then for any α ∈ { 1 . . . , dim(TpM)i } and
β ∈ { 1, . . . , dim(TpM)j } we have

∂V iα
jβ

∂uk
=
∑
js∈(j)
js 6=jβ

V iα
js

(ωk)
js
jβ
−
∑
is∈(i)
is 6=iα

(ωk)
iα
is
V is
jβ

+
∑
s∈(k)

ui − uj
(ui − uk)(uj − uk)

V iα
s V s

jβ
.

∂V iα
jβ

∂ui
=
∑
is∈(i)
is 6=iα

(
V iα
is

uj − ui
− (ωi)

iα
is

)
V is
jβ

+
∑
js∈(j)
js 6=jβ

(
(ωi)

js
jβ
−

V js
jβ

uj − ui

)
V iα
js

−
∑

rs /∈(i)∪(j)

V iα
rs V

rs
jβ

ur − ui
.

(3.2.5)

Proof. The last equation of (3.2.2) says

∂V kα
kβ

∂ui
=

m∑
s=1

V kα
s (ωi)

s
kβ
− (ωi)

kα
s V

s
kβ
.

Suppose (k) 6= (i), then we can split the sum in the indexes s ∈ (k) and s /∈ (k). When
s /∈ (k) the first equation of (3.2.3) tell us that the functions (ωi)

s
kβ

and (ωi)
kα
s are zero

unless s ∈ (i). So when (k) 6= (i) then

∂V kα
kβ

∂ui
=

m∑
s∈(i)∪(k)

V kα
s (ωi)

s
kβ
− (ωi)

kα
s V

s
kβ
.

The second equation of (3.2.3) gives

V kα
is

(ωi)
is
kβ
− (ωi)

kα
is
V is
kβ

= (uk − ui)(ωi)kαis (ωi)
is
kβ

+ (ui − uk)(ωi)kαis (ωi)
is
kβ

= 0

therefore only the summands with s ∈ (k) survive. The restriction ks 6= kα, kβ comes from
antisymmetry of the matrices V and (ωi). The other case i = k is similar.
For the second equation we have

∂V iα
jβ

∂uk
=

m∑
s=1

V iα
s (ωk)

s
jβ
− (ωk)

iα
s V

s
jβ
.
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But s /∈ (j) ∪ (k) implies (ωk)
s
jβ

= 0 and s /∈ (i) ∪ (k) gives (ωk)
iα
s = 0 so

∂V iα
jβ

∂uk
=
∑
js∈(j)
js 6=jβ

V iα
js

(ωk)
js
jβ
−
∑
is∈(i)
is 6=iα

(ωk)
iα
is
V is
jβ

+
∑
ks∈(k)

V iα
ks

(ωk)
ks
jβ
− (ωk)

iα
ks
V ks
jβ
.

The first equation of (3.2.3) gives

(ωk)
ks
jβ

=
V ks
jβ

uj − uk
(ωk)

iα
ks

=
V iα
ks

ui − uk
and this implies∑

ks∈(k)

V iα
ks

(ωk)
ks
jβ
− (ωk)

iα
ks
V ks
jβ

=
∑
ks∈(k)

ui − uj
(ui − uk)(uj − uk)

V iα
ks
V ks
jβ
.

Finally, for the last equation we have

∂V iα
jβ

∂ui
=

m∑
s=1

V iα
s (ωi)

s
jβ
− (ωi)

iα
s V

s
jβ
.

If s /∈ (i) ∪ (j) then (ωi)
iα
s = 0 so we can write the previous equation as

∂V iα
jβ

∂ui
=
∑
is∈(i)

V iα
is

(ωi)
is
jβ
− (ωi)

iα
is
V is
jβ

+
∑
js∈(j)

V iα
js

(ωi)
js
jβ
− (ωi)

iα
js
V js
jβ

=
∑

rs /∈(i)∪(j)

(ωi)
iα
rsV

rs
jβ
.

But

(ωi)
is
jβ

=
V is
jβ

uj − ui
(ωi)

iα
js

=
V iα
js

uj − ui
and

(ωi)
iα
rs =

V iα
rs

ur − ui
so we get

∂V iα
jβ

∂ui
=
∑
is∈(i)
is 6=iα

(
V iα
is

uj − ui
− (ωi)

iα
is

)
V is
jβ

+
∑
js∈(j)
js 6=jβ

(
(ωi)

js
jβ
−

V js
jβ

uj − ui

)
V iα
js

−
∑

rs /∈(i)∪(j)

V iα
rs V

rs
jβ

ur − ur
.
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Corollary 3.2.1. Suppose #(k) = 2. Then V k1
k2

= −V k2
k1

is a constant.

If we have a two dimensional irreducible algebra ι∗(TM,p)k in the decomposition of
ι∗TM,p then there is essentially one choice for the unitary normal nk2 to L that lie on

NL ∩ ι∗(TM,p)k. Correspondingly there is not too many freedom on the constant V k1
k2

. On
theorem 5.1.2 (with a slight change of notation) we will compute explicitly this constant.
We now show that each diagonal block of the curvature form Ω of the connection ∇ only
depends on the entries of the same diagonal block of the connection matrices ωi of the
connection ∇.

Proposition 3.2.2. Let (u1, . . . , ul) be canonical coordinates around p ∈ L and consider
the orthonormal basis fk1 = fk, fki = nki of ι∗TM . Let Ω be the curvature form of the
connection ι∗∇ written down on these coordinates and this basis. Then for any i, j, k ∈
{ 1, . . . , l } and α, β ∈ { 1, . . . , dim(TpM)k } we have

(Ωij)
kα
kβ

=
∂(ωi)

kα
kβ

∂uj
−
∂(ωj)

kα
kβ

∂ui
−
∑
ks∈(k)

(ωi)
kα
ks

(ωj)
ks
kβ
− (ωj)

kα
ks

(ωi)
ks
kβ
. (3.2.6)

Proof. The block diagonal entries of the curvature form Ω are

(Ωij)
kα
kβ

=
∂(ωi)

kα
kβ

∂uj
−
∂(ωj)

kα
kβ

∂ui
−

m∑
s=1

(ωi)
kα
s (ωj)

s
kβ
− (ωj)

kα
s (ωi)

s
kβ
.

Suppose (i) 6= (k) 6= (j) and divide the last sum in s ∈ (k) and s /∈ (k). When s /∈ (k) and
(ωi)

kα
s , (ωi)

s
kβ
6= 0 then s ∈ (i) 6= (j) but then (ωj)

s
kβ
, (ωj)

kα
s = 0 and the result follows.

Now suppose (i) = (k) 6= (j), then

(Ωij)
iα
iβ

=
∂(ωi)

iα
iβ

∂uj
−
∂(ωj)

iα
iβ

∂ui
−

m∑
s=1

(ωi)
iα
s (ωj)

s
iβ
− (ωj)

iα
s (ωi)

s
iβ
.

In the last sum let us look at the indices s /∈ (i). Then (ωj)
s
iβ
, (ωj)

iα
s = 0 unless s ∈ (j).

But then the last equation of (3.2.3) gives

(ωi)
iα
s (ωj)

s
iβ
− (ωj)

iα
s (ωi)

s
iβ

= −(ωj)
iα
s (ωj)

s
iβ

+ (ωj)
iα
s (ωj)

s
iβ

= 0

so again the result follows.

Equation (3.2.6) has an incredible geometric consequence. First note that the function
πk ◦∇ : ι∗(TM,p)k → Ω1

L⊗ ι∗(TM,p)k (here πk◦ : Ω1
L⊗ ι∗(TM,p)k → Ω1

L⊗ ι∗(TM,p)k is defined
as id⊗ πk◦) define connections on the vector bundles ι∗(TM,p)k. Indeed, for v ∈ ι∗(TM,p)k
and f ∈ OL we have

(πk ◦ ∇)fv = πk ◦ (df ⊗ v + f∇v)

= df ⊗ πk ◦ v + fπk ◦ ∇v
= df ⊗ v + fπk ◦ ∇v
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because πk ◦ v = v for v ∈ ι∗(TM,p)k. Equation (3.2.6) says that these connections are flat.

Theorem 3.2.1. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold with Levi-Civita
connection ∇. Assume that at p ∈ M we have TpM ∼= ⊕lk=1(TpM)k where each (TpM)k
is an irreducible algebra. Let L be the integral submanifold of the idempotents π1, . . . , πl
passing through p and denote ι : L→M the inclusion. Suppose that

1. The Euler vector field E is tangent to L.

2. The inner product ι∗η|TL ∈ Sym2T ∗L is non-degenerate.

Then for each k = 1, . . . , l the connections πk ◦ ∇ : ι∗(TM,p)k → Ω1
L ⊗ ι∗(TM,p)k are flat.

Proof. Consider the orthonormal basis fk1 = πk
|πk| , fkα = nkα . We have

∇fkα =
m∑
s=1

l∑
i=1

(ωi)
s
kαdui ⊗ fs

so that

πk ◦ ∇fkα =
∑
ks∈(k)

l∑
i=1

(ωi)
ks
kα
dui ⊗ fks .

Let kωi be the connection matrices of πk ◦ ∇ then the above computation gives

(kωi)
kα
kβ

= (ωi)
kα
kβ
.

Let Ωk be the curvature form of πk ◦∇ and Ω the one of ∇. Proposition (3.2.2) and flatness
of ∇ give

(Ωk
ij)

kα
kβ

=
∂(kωi)

kα
kβ

∂uj
−
∂(kωj)

kα
kβ

∂ui
−
∑
ks∈(k)

(kωi)
kα
ks

(kωj)
ks
kβ
− (kωj)

kα
ks

(kωi)
ks
kβ

=
∂(ωi)

kα
kβ

∂uj
−
∂(ωj)

kα
kβ

∂ui
−
∑
ks∈(k)

(ωi)
kα
ks

(ωj)
ks
kβ
− (ωj)

kα
ks

(ωi)
ks
kβ

= (Ωij)
kα
kβ

= 0.

Consider now the projection πL : P1×L→ L. We now define a 1-parameter family of flat
connections on the bundles ι∗(TM,p)k and flat connections on the bundles (ι ◦ πL)∗(TM,p)k.
This connections are analogous to the connections ∇z and ∇̄ defined on the previous
chapter.
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Proposition 3.2.3. For every z ∈ C the connection (πk ◦∇)z := πk ◦∇+z◦ on the bundle
ι∗(TM,p)k is flat.

Proof. First note that since the bundle ι∗(TM,p)k is multiplication invariant, the expression
(πk ◦ ∇)z does indeed define a connection. Let kωi denote the connection matrices of the
connection πk ◦∇. Then the connection matrices kω

z
i of the connection (πk ◦∇)z are given

by

kω
z
i =

{
kωi if i 6= k

kωk + zId if i = k.

where Id is an dim(TpM)k × dim(TpM)k identity matrix. Since the partial derivatives
of the identity matrix are zero and the identity commutes with any matrix, flatness of
(πk ◦ ∇)z follows from flatness of πk ◦ ∇.

Definition 3.2.1. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold and suppose that
at p ∈ M we have TpM ∼= ⊕lk=1(TpM)k with each (TpM)k an irreducible algebra. Let
πL : P1 × L → L be the projection and let z be a global coordinate on C. We define a
connection πk ◦ ∇ on (ι ◦ πL)∗(TM,p)k in the following way: for u ∈ π∗LTL ≤ TP1×L and
v ∈ (ι ◦ πL)∗TM set

πk ◦ ∇uv := (πk ◦ ∇)uv + zu ◦ v.

The covariant derivative in the ∂z direction is defined as

πk ◦ ∇∂zv := ∂zv − E ◦ v −
1

z
πk ◦ µv.

Proposition 3.2.4. The connections πk ◦ ∇ are flat.

Proof. Let eki , i = 1, . . . , dim(TpM)k be a flat basis of the connection πk ◦ ∇ and let

kω̄j , j = 1 . . . , l and kω̄z denote the connection matrices of the connection πk ◦ ∇. We have

kω̄j =

{
0 if j 6= k

zId if j = k

and since on (TM,p)k multiplication by E◦ is just scalar multiplication by uk,

kω̄z = ukId−
1

z
Vk

where Vk is the k-th diagonal block of the matrix V . Since eki is πk ◦ ∇-flat the previous
proposition says that Vk is a constant matrix. Hence

∂kω̄z
∂uj

=

{
0 if j 6= k

Id if j = k
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and
∂kω̄j
∂z

=

{
0 if j 6= k

Id if j = k.

In all cases we get
∂kω̄z
∂uj

− ∂kω̄j
∂z

= 0.

On the other hand since scalar multiplication commutes with all matrices

v[kω̄z,k ω̄j ] = 0.

We finish this chapter with a proposition that will help us find “normal forms” for a cer-
tain family of differential equations associated to a Dubrovin-Frobenius manifold. Consider
a πk ◦ ∇-flat basis eki for each algebra (TM,p)k. The metric ι∗η|(TM,p)k is compatible with
the connection πk ◦∇ and therefore the components of the metric in this basis are constant.
Without loss of generality we can suppose that the basis eik of ι∗TM is orthonormal. Since
E ◦|(TM,p)k is just multiplication by uk the matrix of E◦ in this basis is diagonal. The oper-
ators of multiplication by πk have the same matrix Ek. Therefore equations (3.2.3) remain
valid. But now since 0 = (ωi)

kα
kβ

= (ωi)
kα
kβ

equation (3.2.4) says that for all i = 1, . . . , l

∂V kα
kβ

∂ui
= 0.

Summarizing we have the following

Proposition 3.2.5. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold with Levi-Civita
connection ∇. Assume that at p ∈ M we have TpM ∼= ⊕lk=1(TpM)k where each (TpM)k
is an irreducible algebra. Let L be the integral submanifold of the idempotents π1, . . . , πl
passing through p and denote ι : L→M the inclusion. Suppose that

1. The Euler vector field E is tangent to L.

2. The inner product ι∗η|TL ∈ Sym2T ∗L is non-degenerate.

Then there exists a η-orthonormal frame eki of ι∗TM,p such that

1. eki ∈ ι∗(TM,p)k.

2. The matrix U of the endomorphism E◦ : ι∗TM → ι∗TM is diagonal and E◦eki = ukeki.

3. The matrix V of the endomorphism µ : ι∗TM → ι∗TM is antisymmetric and the block
diagonal entries V kα

kβ
are constant.



Chapter 4

Isomonodromic Deformations
Inside the Caustic

In the previous chapters we saw that from any Dubrovin-Frobenius manifold (M, ◦, e, E, η)
we can construct a meromorphic flat connection ∇̄ on the vector bundle π∗MTM over P1×M
(πM : P1×M →M). Take a point p ∈M and consider the inclusion ιp : P1×{ p } → P1×M .
Since the composition ιp ◦ πM maps P1 to the point p ∈ M we get that the vector bundle
(ιp ◦ πM )∗TM is trivial. So by pulling back ∇̄ via ιp we obtain a trivial vector bundle
with flat meromorphic connection over P1. But this kind of object is nothing more than
a meromorphic differential equation on P1 (see [8]). Indeed, for each point p ∈ M the
corresponding differential equation reads

dY

dz
=

(
1

z
µp − Ep◦

)
Y. (4.0.1)

Hence, from any Dubrovin-Frobenius manifold we get a family of meromorphic ordinary
differential equations on P1. This family is parametrized by the points of the Dubrovin-
Frobenius manifold and reads

dY (z, p)

dz
=

(
1

z
µ(p)− E(p)◦

)
Y (z, p). (4.0.1)

It has a Fuchsian singularity at z = 0 and a Poincaré rank 1 singularity at z = ∞. The
existence and unicity theorem for ordinary differential equations says that, on a neighbor-
hood of any non-singular point, the solution to equation (4.0.1) exists and once we fix an
initial condition it is unique. Moreover this theorem also asserts that if the differential
equation depends holomorphically on additional parameters, then the solutions will also
be holomorphic in these additional parameters.
In this chapter we study the monodromy data of this family. This monodromy data con-
sists of the exponents µ,R of the monodromy transformation Y (z) 7→ Y (e2πiz) at z = 0 of

57
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a particular class of fundamental matrix solutions YLev, an exponent of formal monodromy
associated to the monodromy transformation at z =∞ of a formal fundamental matrix so-
lution YF near z =∞, Stokes matrices Sν which codify how the asymptotics when z →∞
of certain fundamental matrix solutions Yν , ν ∈ Z changes as we change certain sectors Sν
and a central connection matrix C relating the fundamental matrix solutions YLev and Y0.

The principal part at z = 0 of equation (4.0.1) (the endomorphism µ) is ∇-flat so that
its eigenvalues and Jordan form are constant along the Dubrovin-Frobenius manifold. This
no longer is true for the principal part at z = ∞ (the endomorphism E◦) so that the
Jordan form of E◦ may change as we move on the Dubrovin-Frobenius manifold. This fact
makes it difficult to find formal solutions in neighborhoods W ⊂ M in which the Jordan
form of E◦ changes. Therefore we will restrict ourselves to the integral submanifolds L of
the idempotents π1, . . . , πl passing through a point p ∈M (see proposition 1.2.1). We will
also suppose that the metric η when restricted to these submanifolds is non-degenerate
and that the Euler vector field is tangent to them. Proposition 1.2.2 says that the Euler
vector field E is tangent to L if and only if E◦ is diagonalizable along L.

4.1 Monodromy Data at z = 0

At z = 0 the differential equation (4.0.1) has a Fuchsian singularity. In this section we
study the monodromy transformation Y (z, p) 7→ Y (e2πiz, p) on a neighborhood W of any
point p ∈ M . We will show that we can find a solution Y (z, p) such that the monodromy
transformation is independent of q ∈W .

Recall that on a Dubrovin-Frobenius manifold we have a 1-parameter family of flat
connections (proposition 2.3.1)

∇z = ∇+ z ◦ .

Note that this connection depends holomorphically on z and therefore the solutions will
also be holomorphic in z. By flatness, the space of ∇z-flat sections is m-dimensional.
Let (t1, . . . , tm) be flat coordinates on a neighborhood W of p and choose any basis of
TM (W ) and let

ω̄t :=

m∑
i=1

ω̄idt
i

be the connection matrix of ∇z. Let Φ = Φ(z, t) : C ×W → GL(m,C) be a fundamental
matrix solution of ∇zv = 0. This means that the columns of Φ are ∇z-flat sections of
TM (W ) and as such, Φ satisfies the partial differential equation

dtΦ = −ω̄tΦ
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where dt denotes the differential with respect the variables ti. Consider now the deformed
flat connection ∇̄ on the vector bundle π∗MTM . Let z be a global coordinate on C; on the
chosen coordinates and basis for M and TM the connection matrix of ∇̄ is

ω̄ = ω̄t + z−1(A0 +A1z)dz =: ω̄t + ω̄zdz,

where A0, A1 are the matrices representing −µ and E◦ in the chosen basis. Recall that ∇̄
is also flat (proposition 2.3.3) so that in particular we have

∂ω̄z
∂ti
− ∂ω̄i

∂z
− [ω̄z, ω̄i] = (4.1.1)

which we can write compactly as

dtω̄z = dzω̄t + [ω̄t, ω̄z]. (4.1.1)

Proposition 4.1.1. Let (M, ◦, e, E, η) be Dubrovin-Frobenius manifold. Let Φ be a funda-
mental matrix solution of ∇z = 0. Then

dt(Φ
−1ω̄zΦ + Φ−1dzΦ) = 0. (4.1.2)

In particular, after the Gauge transformation Y = ΦX we have dtX = 0 and dX
dz does not

depend on the variables ti.

Proof. We have

dt(Φ
−1ω̄zΦ) = −Φ−1(−ω̄tΦ)Φ−1ω̄zΦ

+ Φ−1(dzω̄t + [ω̄z, ω̄t])Φ + Φ−1ω̄z(−ω̄tuΦ) = Φ−1(dzω̄t)Φ.

and
dt(Φ

−1dzΦ) = −Φ−1(−ω̄tΦ)Φ−1dzΦ + Φ−1dzdtΦ

= Φ−1(ω̄tdzΦ− (dzω̄t)Φ− ω̄tdzΦ)

= −Φ−1(dzω̄t)Φ.

Since Φ = Φ(z, t) is holomorphic on the variable z we can expand

Φ(z, t) = Φ0 +

∞∑
k=1

Φk(t)z
k.

Plugging this into ∇zΦ = 0 we get

∇Φ0 = 0. (4.1.3)
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That is, the columns of Φ0 are ∇-flat vector fields for the Levi-Civita connection of η.
Recall that ∇µ = 0 (proposition 2.3.2) so the basis that puts µ in Jordan form consists
of ∇-flat vector fields. In particular we can choose the columns of Φ0 to be the basis that
puts µ in its Jordan form which we will also denote by µ and by simplicity we will assume
that it is diagonal.

Let us now show that there is a fundamental matrix solution of ∇̄Y (z, t) = 0 such that
the monodromy transformation Y (z, t) 7→ Y (e2πiz, t) is constant.
By the last proposition after the Gauge transformation Y (z, t) = Φ(z, t)X(z, t) we have

dtX = 0

dX

dz
= z−1

(
µ+

∞∑
k=1

Ākz
k

)
X.

Since µ+
∑∞

k=1 Ākz
k = Φ−1ω̄zΦ + Φ−1dzΦ, equality (4.1.2) says that the matrices Āk are

constant. Given that the matrix valued function Φ(z, t) is holomorphic on C ×W it is a
univalued function of the variable z and as such Φ(e2πiz, t) = Φ(z, t) so the monodromy
transformation of Y (z, t) = Φ(z, t)X(z) can only come from the matrix X(z). But this
matrix does not depend on t so its monodromy transformation is t-independent. Let us be
more explicit on this point.

We do a Gauge transformation

X =

(
Id+

∞∑
k=1

Tkz
k

)
Z

where the matrices Tk are to be found. We put

dZ

dz
=

(
µ+

∞∑
k=1

Rkz
z

)

where the matrices Rk are also to be found. Substituting we get the recursive relations

[µ, Tk]− kTk = Rk +

k−1∑
s=1

Tk−sRs − Ā1Tk−1. (4.1.4)

We can solve the above equations by putting

(Tk)
i
j =

{
1

µi−µj−k

(∑k−1
s=1(Tk−sRs)

i
j − Ā1Tk−1

)
if µi − µj 6= k

0 if if µi − µj = k
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and

(Rk)
i
j =

{
0 if µi − µj 6= k

(Ā1Tk−1)ij −
∑k−1

s=1(Tk−sRs) if µi − µj = k.

Since the matrix Φ is holomorphic on z = 0 the series
∑

k=1 Ākz
k is holomorphic at

z = 0, but the equation satisfied by X has a Fuchsian singularity at z = 0 and therefore the
Gauge transformation just found T = Id+

∑
k=1 Tkz

k will be convergent on a neighborhood
of z = 0 (see [5]). In the end we obtain a system

dZ

dz
= z−1 (µ+R1z + · · ·+Rpz

p)Z

where p is the maximum integer difference of the eigenvalues of µ. In particular (Rk)
i
j may

not be zero only if µi − µj = k. Let

R := R1 + · · ·+Rp (4.1.5)

Theorem 4.1.1. Equation (4.0.1) has a holomorphic fundamental matrix solution YLev
such that on any compact subset of C we have

YLev(z, t) = Φ(z, t)T (z, t)zµzR (4.1.6)

and the monodromy transformation of this solution is constant and equal to

YLev(e
2πiz) = YLev(z)e

2πiµe2πiR. (4.1.7)

Moreover if Φ is ∇z-flat then YLev is ∇̄-flat.

Proof. The only things we need to check is that

dzµzR

dz
= z−1(µ+R1z + · · ·+Rpz

p)zµzR

and that the monodromy transformation of zµzR is e2πiµe2πiR. We have that

dzµzR

dz
= z−1µzµzR + z−1zµRzR = z−1(µ+ zµRz−µ)zµzR.

Since µ is diagonal we have that (zµRz−µ)αβ = zµα−µβRαβ =
∑p

k=1 z
µα−µβ (Rk)

α
β . But if

(Rk)
α
β 6= 0 then µα − µβ = k and therefore (zµRz−µ)αβ =

∑p
k=1(Rk)

α
βz

k and zµRz−µ =
R1z + · · ·+Rpz

p. Now we compute the monodromy transformation. First we have that

[e2πiµ, R]αβ =

p∑
k=1

(Rk)
α
β(e2πiµα − e2πiµβ ) =

p∑
k=1

(Rk)
α
β(e2πi(µα−µβ) − 1)e2πiµβ .
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But again (Rk)
α
β 6= 0 gives µα − µβ = k ∈ Z and therefore e2πi(µα−µβ) = 1. Hence

[e2πiµ, R] = 0 and from this we immediately get [e2πiµ, zR] = 0. Thus,

(e2πiz)µ(e2πiz)R = zµe2πiµzRe2πiR = zµzRe2πiµe2πiR.

The solution (4.1.6) of equation (4.0.1) is said to be in Levelt form. Its monodromy
transformation is e2πiµe2πiR. The matrices µ and R are called monodromy data of equation
(4.0.1) at z = 0.

4.2 Monodromy Data at z =∞
We now study the monodromy data of equation (4.0.1) at z = ∞. This data consists of
Stokes matrices and an exponent of formal monodromy. Since the connection ∇z is not
holomorphic at z = ∞ we cannot use it to argue as in the past section. Instead we will
start by finding formal solutions to equation (4.0.1). Then we will use a theorem from
Sibuya’s to get holomorphic solutions on certain sectors whose asymptotic expansions on
these sectors are the formal solutions that we found. There is some freedom on the formal
solutions that we will find and we will show that these formal solutions can be chosen in
such a way that they are ∇̄-flat. Finally, using ∇̄-flatness we will show that the Stokes
matrices are constant and, under some conditions the exponent of formal monodromy will
also be constant.

From now on we will use the notation for the indices ki that was established at the
beginning of chapter 3 section 3.2. Suppose that at p ∈ M we have TpM ∼= ⊕lk=1(TpM)k
where each (TpM)k is an irreducible algebra. Let L be the integral submanifold of the
idempotent vector fields passing through p, let ι : L → M denote the inclusion and let
u1 . . . , ul be canonical coordinates on L around p.
Suppose that the Euler vector field E is tangent to L, then (L, ◦, e, E) is an F -manifold
with Euler vector field and the endomorphism E◦ is diagonalizable along E (see proposi-
tions 1.2.1 and 1.2.2).
If we further suppose that the restriction of the metric η to L is non-degenerate then
proposition 3.2.5 shows that we can find an orthonormal basis eki of ι∗TM such that the
matrix U representing E◦ is diagonal with E ◦ eki = ukeki , the matrix V representing µ
is antisymmetric and the block-diagonal entries V kα

kβ
are constant. We now write equation

(4.0.1) in this basis and start looking for a formal solution.

We start by doing a formal Gauge transformation

Y (z, u) =

(
Id+

∞∑
k=1

Gk(u)z−k

)
Ȳ (z, u) =

( ∞∑
k=0

Gkz
−k

)
Ȳ . (4.2.1)
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where the matrices Gk are to be determined. Setting

dȲ

dz
=

(
−U +

∞∑
k=1

Bk(u)z−k

)
Ȳ , (4.2.2)

where the matrices Bk are also to be determined, we get the recursive relations

−[U,Gk] + (k − 1)Gk−1 + V Gk−1 −
k−1∑
s=1

Gk−sBs = Bk for k ≥ 1. (4.2.3)

So if we already now G1 . . . , Gk−1 and B1, . . . , Bk−1 we can try to solve the above equation
and obtain Gk and Bk. We do this in the following way. For k = 1 we need to solve

−[U,G1] + V = B1.

Taking the entry on the iα row and the jβ column of the above equation we get

−(ui − uj)(G1)iαjβ + (V )iαjβ = (B1)iαjβ . (4.2.4)

So if i 6= j we can put

(G1)iαjβ =
(V )iαjβ
ui − uj

(B1)iαjβ = 0.

If i = j then ui = uj so we can put (G1)iαiβ = 0 but we are forced to put

(B1)iαiβ = (V )iαiβ .

In particular note that the matrix B1 is constant.
Analogously, for k > 1 and i 6= j we can put

(Gk)
iα
jβ

=
1

ui − uj

(
(k − 1)Gk−1 + V Gk−1 −

k−1∑
s=1

Gk−sBs

)iα
jβ

(Bk)
iα
jβ

= 0.

For i = j we put

(Gk)
iα
iβ

= 0

(Bk)
iα
iβ

=

(
(k − 1)Gk−1 + V Gk−1 −

k−1∑
s=1

Gk−sBs

)iα
iβ

.
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By construction the matrices Bk are block diagonal i .e. (Bk)
iα
jβ

= 0 when i 6= j.
We now do the Gauge transformation

Ȳ = e−UzŶ ,

we get (
−U +

∞∑
k=1

Bkz
−k

)
e−UzŶ = e−Uz

(
−UŶ +

dŶ

dz

)
.

But the matrices U and Bk have the same block-diagonal structure and on each block e−Uz

acts by multiplication by e−uiz. Therefore we get

dŶ

dz
=

( ∞∑
k=1

Bkz
−k

)
Ŷ . (4.2.5)

This equation is a direct sum of l formal local Fuchsian systems of dimension dim(TpM)k.
The matrices H that we will define in the following have the same block structure of this
direct sum. We now take H0 = H0(u) a matrix diagonalizing the matrix

(B1)kαkβ = V kα
kβ
.

We will call the matrix
B := H−1

0 B1H0 (4.2.6)

the exponent of formal monodromy . We will see that if we choose the k-th block of
H0(u) consisting of flat sections of πk ◦ ∇ then, a solution having a prescribed asymptotic
expansion, depending on H0, will also be ∇̄-flat i , e by solving recursively the equation for
the z-component we get a solution for the whole system. For k > 1 let

B̂k = H−1
0 BkH0. (4.2.7)

Then after the Gauge transformation Ŷ = H0X̂ we get

dX̂

dz
=

(
Bz−1 +

∞∑
k=2

B̂kz
k

)
X̂.

Remark 4.2.1. In the following we make the assumption that each of the blocks of the
matrix B are non-resonant. At present, except for the semisimple caustic case, when B is
always non-resonant (see section 5.1) , there is no geometrical or algebraic interpretation
for the block diagonal entries of V .

We can now find a formal Gauge transformation (it is formal because it depends on the
formal series of the B̂k)

X̂ =

(
Id+

∞∑
k=1

Hkz
k

)
X̄.
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The non-resonance condition implies that by solving recursively the equations (having
found H0, . . . ,Hk−1 and B1, . . . , Bk)

Hk = −1

k

(
Bk+1 +

k−1∑
l=1

Bk+1−lHl

)
(4.2.8)

we can write a formal solution of equation (4.0.1) in the following form

YF =

(
Id+

∞∑
k=1

Gkz
−k

)
e−UzH0

(
Id+

∞∑
l=1

Hlz
−l

)
zB.

Since on each block of the Hk the matrix e−Uz is acts by scalar multiplication, we can
write the above as

YF = (H0 + (H0H1 +G1H0)z−1 +O(z−2))e−UzzB. (4.2.9)

We now discuss the sectors in which certain holomorphic solutions to equation (4.0.1) will
have the above formal series as asymptotic expansion.

The gauge transformation (4.2.1) is usually divergent, but there are certain sectors Sν of
the z-plane in which this formal power series is the asymptotic expansion of a holomorphic
gauge transformation which takes equation (4.0.1) to the block diagonal equation (4.2.2).

Definition 4.2.1. A line ` through the origin of the z-plane is called admissible for the
system (4.0.1) if for all z ∈ ` \ { 0 } we have that Re(z(ui− uj)) 6= 0 whenever u1− uj 6= 0.
Let φ be the oriented angle between the positive real axis and an admissible line `. For ε
sufficiently small, N sufficiently big and ν ∈ Z we define sectors Sν of opening angle π+ 2ε
by

S0 :={ z ∈ C|arg(z) ∈ (φ− π − ε, φ+ ε), |z| > N }
Sν :=eiνπS0.

Note that the intersection of two subsequent sectors has opening angle 2ε.

On the following u denotes a parameter on a small domain W ⊂ Cl, for the applications
we have in mind u = (u1, · · · , ul) are the coordinates on a neighborhhod of the point p ∈ L.

Theorem 4.2.1. (Sibuya [20])Let A(z, u) =
∑∞

k=0Ak(u)z−k with Ak ∈ Matn(OCl) be
holomorphic on { z ≥ N0 > 0 } × { |u| ≤ ε0 } such that A0(u) = Λ(u) = Λ1 ⊕ · · · ⊕ Λl is
diagonal with l ≤ n distinct eigenvalues where each matrix Lambdak is diagonal with only
one eigenvalue. Then, for any proper subsector S̄(α, β) of Sν there exists positive numbers
N ≥ N0, ε ≤ ε0 and a matrix G(z, u) with the following properties:

1. G(z, u) is holomorphic in (z, u) for |z| ≥ N , z ∈ S̄(α, β) and |u| ≤ ε.
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2. G(z, u) has uniform asymptotic expansion for |u| ≤ ε with holomorphic coefficients
Gk(u),

G(z, u) ∼ Id+
∞∑
k=1

Gk(u)z−k, z →∞, z ∈ S̄(α, β),

where the matrices Gk are computed from (4.2.3)

3. The gauge transformation Y (z, u) = G(z, u)Ỹ (z, u) reduces the system dY
dz = AY to

block diagonal form

dỸ

dz
= B̃(z, u)Ỹ , B̃(z, u) = B̃1(z, u)⊕ · · · ⊕ B̃s(z, u)

and B̃ has uniform asymptotic expansion for |u| ≤ ε with holomorphic coefficients
Bk(u)

B̃(z, u) ∼ Λ(u) +
∞∑
k=1

Bk(u)z−k, z →∞, z ∈ S̄(α, β).

Now we apply this theorem to the matrix A = −U+V z−1 of system (4.0.1) restricted to
the submanifold L. We get that the formal gauge transformation of (4.2.1) is asymptotic,
in proper sectors Sν , to a holomorphic gauge transformation Gν that takes system (4.0.1)
to the block diagonal form (4.2.2). Hence, on each sector there is a holomorphic matrix
Gν and a fundamental matrix solution of system (4.0.1) of the form

Yν = GνHe
−UzzB = Ŷνe

−UzzB (4.2.10)

with asymptotic expansion on the sector Sν

Yν ∼ YF .

Stokes matrices are defined in the usual way. On the overlap of two adjacent sectors
Sν ∩ Sν+1 we have that

Yν+1(z;u) = Yν(z;u)Sν(u).

The matrix Sν is called Stokes matrix . Now we proceed to show that the matrices Sν(u)
are independent of the parameter u. We need some preliminaries.

So far we have constructed solutions Yν(z, u) of equation (4.0.1) with some prescribed
asymptotic expansion on certain sectors Sν . Now we come back to flat sections of the
connection ∇̄ on the vector bundle (πM ◦ (id× ι))∗TM over P1 × L. If Y is a fundamental
matrix of ∇̄-flat sections then

dY = −ω̄Y

where ω̄ is the connection form of ∇̄. In particular the differential equation (4.0.1) is
satisfied for all p ∈ W ⊂ L. Therefore there exist GL(n,C)-valued functions Dν(u) such
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that Y (z, u) = Yν(z, u)Dν(u). In the following two lemmas we show that if we choose
H0(u) in an appropriate way we can make Dν to be independent of u ∈ W . Recall that
the connections πk ◦ ∇ on i∗(TM,p)k are flat so that the connection ⊕lk=1πk ◦ ∇ on ι∗TM,p

is flat. Let ω∆ denote its connection matrix.

Lemma 4.2.1. There exists a matrix H0(u) whose columns are a basis for the ⊕lk=1πk ◦∇-
flat sections and such that H−1

0 B1H0 is the exponent of formal monodromy.

Proof. Let H0 be a matrix of ⊕lk=1πk ◦ ∇-flat sections of ι∗TM,p. Then

d(H−1
0 B1H0) = −H−1

0 (−ω∆)B1H0 +H−1
0 dB1H0 +H0B1(−ω∆)H0

= H−1
0 (dB1 + [ω∆, B1])H0.

Now recall that B1 is block diagonal and (B1)kαkβ = (V )kαkβ . But by proposition 3.2.1

dB1 = [B1, ω
∆]. Therefore the matrix H−1

0 B1H0 is a constant matrix. Let C be a constant
matrix diagonalizing H−1

0 B1H0. Then H0C still consists of ⊕lk=1πk ◦ ∇-flat sections and
B = C−1H−1

0 B1H0C.

Lemma 4.2.2. Let Y (z, u) be a fundamental matrix of ∇̄-flat sections and let Yν(z, u) be
a solution of equation (4.0.1) with asymptotic behavior (4.2.9) on the sector Sν . Then Yν
is ∇̄-flat if and only if the blocks of H0 are πk ◦ ∇-flat.

Proof. Let du denote the differential with respect to the ui variables and let ω̄u be the part
of the connection form of ω̄ disregarding the dz-component (not that since the matrices
Gk.Hk and Dν don’t depend on z we have duHk = dHk). First

duY · Y −1 − duYν · Y −1
ν = YνdDν ·D−1

ν Y −1
ν .

On the sector Sν we have

duYν ∼ (dH0 + d(H0H1 +G1H0)z−1 +O(z−2))e−UzzB

− (H0dUz + (H0H1 +G1H0)dU +O(z−1))e−UzzB

Y −1
ν ∼ z−BeUz(H−1

0 − (H1H
−1
0 +H−1

0 G1)z−1 +O(z−2)).

Using that the matrix dU which is diagonal with entries dui commutes with the matrices
Hk we have

duYν · Y −1
ν ∼ −zdU + dH0 ·H−1

0 + [dU,G1] +O(z−1).

Since duY · Y −1 = −ω̄u on the sector Sν we have

−ω̄u + zdU − [dU,G1]− dH0 ·H−1
0 +O(z−1) ∼ Yν(dDν ·D−1

ν )Y −1
ν .
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Let us now compute −ω̄u + zdU − [dU,G1]. Recall that (see equation (3.2.1))

ω̄u =

l∑
k=1

(ωk + zEk)duk

= zdU +

l∑
k=1

ωkduk

where ωk are the connection matrices of ι∗∇. The block diagonal entries of [dU,G1] are
zero. Writing dU =

∑
k Ekduk, then from equation (4.2.4) we get

[Ekduk, G1]kαjβ = V kα
jβ

duk
uk − uj

.

but from equation
[U, ωk] = −[Ēk, V ] (3.2.2)

we obtain

(ωk)
kα
jβ
duk = −V kα

jβ

duk
uk − uj

.

For i 6= j 6= k 6= i we also have

(ωk)
iα
jβ
duk = [Ekduk, G1]iαjβ = 0.

In the end we obtain that
−ω̄u + zdU − [dU,G1]

is the connection matrix of ⊕kπk ◦ ∇. Hence, the blocks H0 are πk◦-flat if and only if on
the sector Sν

Yν(dDν ·D−1
ν )Y −1

ν ∼ O(z−1)

Let us write

YνdDν ·D−1
ν Y −1

ν ∼
∞∑
k=1

Fkz
−k =: Fν .

Using (4.2.10) on Sν we have

e−zUzBdDν ·D−1
ν z−BeUz ∼ Ŷ −1

ν Fν Ŷν . (4.2.11)

Note that since the matrix Ŷν is holomorphic on z = ∞, the term Ŷ −1
ν Fν Ŷν vanishes as

z−1 when z →∞.
In the following let us denote by A[i,j] the block of the matrix A consisting of the entries

Aiαjβ with iα ∈ (i) and jβ ∈ (j). The off-diagonal blocks of the left hand side of (4.2.11) are
of the form

e(uj−ui)zzB[i,i](dDν ·D−1
ν )[i,j]z

B[j,j] .
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Since the sector Sν has opening angle bigger than π this sector intersects the line Re((ui−
uj)z) = 0. On one side of this line the function e(ui−uj)z diverges when z → ∞. But the
above expression must vanish as z−1 when z →∞ so we conclude

(dDν ·D−1
ν )[i,j] = 0.

The block diagonal entries of the left hand side of (4.2.11) are of the form

z
biα−biβ (dDν ·D−1

ν )iαiβ .

For α = β we obtain that (dDν ·D−1
ν )iαiα vanishes as z−1 when z →∞ and therefore (dDν ·

D−1
ν )iαiα = 0. When α 6= β then since we supposed that the diagonal blocks of the matrix

B are non resonant, the above expression can be O(z−1) if and only if (dDν ·D−1
ν )iαiβ = 0.

Hence we conclude that the blocks of H0 are πk ◦ ∇-flat if and only if dDν = 0 and this is
true if and only if Yν is ∇̄-flat.

Now we can prove

Theorem 4.2.2. There exists holomorphic solutions Yν(z, u) of equation (4.0.1) such that

Yν(z, u) ∼ (H0 + (H0H1 +G1H0)z−1 +O(z−2))e−UzzB for z ∈ Sν ,

and the corresponding Stokes matrices Sν are u-independent.

Proof. By the last lemma we can choose Yν in such a way that

duYν · Yν = −ωu

for all ν ∈ Z. On the overlap Sν ∩ Sν+1 we have

−ωu = duYν+1 · Y −1
ν+1 = duYν · Y −1

ν + YνdSν · SνY −1
ν

= −ωu + YνdSν · SνY −1
ν .

4.3 The Central Connection Matrix

Up till now we have seen that on a neighborhood W of p ∈ L, differential equation (4.0.1)
admits a solution YLev that locally around zero is written as (4.1.6) and whose monodromy
data (µ,R) don’t depend on u ∈W . We have also seen that there are certain solutions Yν
that on sectors Sν near z =∞ have asymptotic expansion (4.2.9) and whose Stokes matrices
and exponent of formal monodromy are constant. The last part of the monodromy data
that one associates to the meromorphic differential equation (4.0.1) is a central connection
matrix C defined by

YLev(z, u) =: Y0(z, u)C(u). (4.3.1)
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Theorem 4.3.1. The central connection matrix is constant.

Proof. By theorem 4.1.1 and lemma 4.2.2 the fundamental matrix solutions YL and Y0 of
equation (4.0.1) can be chosen to be ∇̄-flat. Hence

−ωu = dYL · Y −1
L = dY0 · Y −1

0 + Y0dC · C−1Y −1
0 = −ωu + Y0dC · C−1Y −1

0 .

Putting together theorems 4.1.1,4.2.2 and 4.3.1 we obtain

Theorem 4.3.2. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold and suppose that at
p ∈ M we have TpM = ⊕lk=1(TpM)k where each (TpM)k is an irreducible algebra. Let
L be the integral submanifold of the idempotents π1, . . . , πl passing through p and denote
ι : L→M the inclusion. Suppose that:

1. The Euler vector field E is tangent to L.

2. The inner product ι∗η|TL ∈ Sym2T ∗L is non-degenerate.

Let eki be the orthonormal basis of ι∗TM of proposition 3.2.5 and suppose further that:

3. The eigenvalues of any of the diagonal blocks of the matrix V representing the endo-
morphism µ : ι∗TM → TM on the basis eki don’t differ by a non-zero integer.

Then there exists holomorphic fundamental matrix solutions YLev, Yν , ν ∈ Z and a formal
fundamental matrix solution YF of equation 4.0.1 such that the corresponding monodromy
data are constant.

Let us now obtain a relation between all the monodromy data (µ,R, S0, S1, C). By con-
struction, whenever w ∈ S2 the fundamental matrix solution Y2 has asymptotic expansion
YF = (H0 +O(w−1))e−UwwB (see equation 4.2.9) so when z ∈ S0 then

Y2(e2πiz) ∼ (H0 +O(z−1))e−UzzBe2πiB.

But then the fundamental matrix solutions Y0(z)e2πiB and Y2(e2πiz) have the same asymp-
totic expansion on the sector S0. Arguing as in lemma 4.2.2, since the sector S0 contains
a basic set of Stokes rays, we conclude

Y2(e2πiz) = Y0(z)e2πiB.

The definition of the Stokes matrices immediately gives

Y2(e2πiz) = Y0(e2πiz)S1S2.

Using this last to equation we get

Y0(e2πiz) = Y0(z)e2πiB(S1S2)−1 (4.3.2)

The fact that E◦ is η-symmetric and µ is η-antisymmetric will give us a relation between
consecutive Stokes matrices. First we have
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Lemma 4.3.1. Let Yα(z, u) and Yβ(z, u) be two solutions of equation (4.0.1). Then

d

dz
η
(
Yα(e±πiz), Yβ(z)

)
= 0

Proof. We have

η(dzYα(−z), Yβ) = η(−(−E ◦ −z−1µ)Yα(−z), Yβ(z))

= η(Yα(−z), (E ◦ −z−1µ)Yβ).

and
η(Yα(−z), dzYβ(z)) = η

(
Yα(−z), (−U + z−1µ)Yβ

)
.

Let us now apply this to the three consecutive solutions Y0, Y1 and Y2. By the previous
lemma we have

η(Y1(−z), Y0) = P1

η(Y2(−z), Y1) = P2

for some constant matrices Pi. Using the defining relations of Stokes matrices we have

P2 = η(Y2(−z), Y1)

= η(Y1(−z)S1, Y0(z)S0)

= ST1 P1S0.

So that
ST1 = P2S

−1
0 P1.

Let us now obtain a relation between the matrix H0 and the exponent of formal monodromy
B. If z ∈ S0 then eπiz ∈ S1 so that

Y0(z) ∼ (H0 +O(z−1))e−UzzB

Y1(eπiz) ∼ (H0 +O(z−1))eUzzBeπiB.

Therefore
P1 = η(Y1(eπiz), Y0(z))

∼ eπiBzBη(H0, H0)zB + eπiBzBeUzO(z−1)e−UzzB.

In particular the term ∼ eπiBzBη(H0, H0)zB must be z independent so that taking its
derivative with respect to z we obtain

BHT
0 H0 +HT

0 H0B = 0.

We can summarize the above in the following propostion
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Proposition 4.3.1. Consider the holomorphic fundamental matrix solutions Y0, Y1 and
Y2 of equation (4.0.1) then

ST1 = P2S
−1
0 P1

where
η(Y1(−z), Y0) = P1

η(Y2(−z), Y1) = P2

and
P1 = eπiBzBη(H0, H0)zB.



Chapter 5

The Semisimple Caustic Case

5.1 The case of a semisimple Caustic

Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold of dimension m. By definition the
caustic K ⊂ is the set of points p ∈ M such that TpM has less than m idempotents.
Proposition 1.1.4 says that the caustic is an hypersurface which we will suppose non-empty.
We will assume that, generically, for p ∈ K the algebra TpM has exactly m−1 idempotents.
In this case the integral submanifold L of the m − 1 idempotents passing through p will
be an irreducible component of the regular points of K. For any point p ∈ L the germ of
the F -manifold M at p will decompose as a product of one 2-dimensional F -manifold and
m − 2 one-dimensional F -manifolds. Up to isomorphism there is only one 1-dimensional
germ of F -manifold which we denote by A1. Germs of 2-dimensional F -manifolds were
classified by Hertling. Up to isomorphism they are classified by a natural number n ≥ 2
and the corresponding germ is denoted by I2(n). Let V be the matrix of the endomorphism
µ restricted to L. In this section we will show that if at p ∈ L we have

(M,p) ∼= I2(n)×Πm−2
k=1 A1

and (TpM)1 is the only two-dimensional irreducible subalgebra of TpM then

V 1
2 = −V 2

1 = ± i
2

n− 2

n
.

Correspondingly, the exponent of formal monodromy of YF (see equation (4.2.9)) has all
diagonal blocks equal to zero except for the first one which is

B[1,1] =

(
n−2
2n 0
0 −n−2

2n

)
.

This means that we can read of the structure of F -manifold of the germ (M,p) only from
the exponent of formal monodromy. To begin let us state the classification by Hertling of
germs of two-dimensional massive F -manifolds

73
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Theorem 5.1.1. (Hertling [14] theorem 4.7) Up to isomorphism the only germs of two-
dimensional massive F -manifolds are the germs I2(n) = ((C2, 0), ◦, e) with n ∈ N≥2. On
some coordinates t, u2 the multiplication is given by

∂u2 = e ∂t ◦ ∂t = tn−2∂u2 .

An Euler vector field is

E =
2

n
t∂t + u2∂u2 ,

and the caustic has equation t = 0.

This theorem gives us a useful coordinate system on an open neighborhood W ⊂ M
around a point p ∈ K. Indeed, the germ of M at p is a product of one I2(n) manifold and
m − 2 A1 manifolds so around p we can use the functions (t, u2, . . . , um) as a coordinate
system. In these coordinates the Euler vector field is

E =
2

n
t∂t +

m∑
k=2

uiπi.

Proposition 5.1.1. Let (M, ◦, e, E) be an F -manifold with Euler vector field. Suppose
that an irreducible component K̃ ⊂ K of the caustic is semisimple. Then the Euler vector
field is tangent to the regular part of K̃.

Proof. On the coordinates (t, u2, . . . , um) around a point p ∈ K̃ we have that K̃ = { t = 0 }
and the tangent space to K̃ is generated by the vector fields πi = ∂ui i = 2, . . . ,m. But on
t = 0 we have

E =

m∑
k=2

uiπi.

Since the Euler vector field is tangent to K̃, proposition 1.2.2 tells us that E◦ is diag-
onalizable along K̃.
Now let us look at the form of the metric η on the basis ∂t, πi, i = 2, . . . ,m. Since the
algebras (TpM)k are orthogonal between themselves and η(∂t, ∂t) = tn−2η(π2, π2) we have
that (here we assign the index 1 to the variable t)

tn−2η22 η12 0 . . . 0
η21 η22 0 . . . 0

0 0 η33
...

...
. . .

0 0 . . . ηmm
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In the case we are dealing the component K̃ of the caustic K has a well defined normal
direction, so after choosing one side and noting that at the caustic η11 = 0 we get that a
unitary normal to the caustic is

N = −i
√
η22

η12
∂t +

i
√
η22

π2.

Now consider the orthonormal basis consisting of the normal vector N and the normalized
idempotents

fi :=
πi
|πi|

.

Theorem 5.1.2. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold with non-empty
caustic K and suppose that for a point p ∈ K the germ of M at p as an F -manifold is
isomorphic to I2(n)× (A1)m−2 with n ≥ 3. Then the only non-zero entries of the exponent
of formal monodromy are ± i

2
n−2
n .

Proof. We need to compute

V 2
1 = η(f2, µN) = −η(f2,∇NE).

We have

∇E =
2

n
dt⊗ ∂t +

m∑
s=2

dus ⊗ πs +
2

n
t∇∂t +

m∑
s=2

us∇πs.

Therefore using the Christoffel symbols Γkij of the basis ∂t, πi, i = 2 . . . ,m gives

∇∂tE =

(
2

n
+

2

n
tΓ1

11 +
m∑
s=2

usΓ
1
1s

)
∂t +

(
2

n
tΓ2

11 +
m∑
s=2

usΓ
2
1s

)
π2 + · · · ,

∇π2E =

(
2

n
tΓ1

21 +

m∑
s=2

usΓ
1
2s

)
∂t +

(
1 +

2

n
tΓ2

21 +

m∑
s=2

usΓ
2
2s

)
π2 + · · · .

With this we get

V 2
1 = i

n− 2

n
+

2

n
t

[
i

η22

(
Γ1

21η12 + Γ2
21η22

)
− i

η12

(
Γ1

11η12 + Γ2
11η22

)]
+

m∑
s=2

us

[
i

η22

(
Γ1

2sη12 + Γ2
2sη22

)
− i

η12

(
Γ1

1sη12 + Γ2
1sη22

)]
.

Now using the form of the metric and the fact that, on the caustic { t = 0 }, we have
η22,s = 0 for s ≥ 2 (f,s denotes the partial derivative of the function f with respect to the



76 CHAPTER 5. THE SEMISIMPLE CAUSTIC CASE

s-th coordinate) we get

i

η22

(
Γ1

22η12 + Γ2
22η22

)
=
i

2

η22,2

η22

− i

η12

(
Γ1

12η12 + Γ2
12η22

)
= − i

2

η22,1

η12
,

and for s ≥ 3

i

η22

(
Γ1

2sη12 + Γ2
2iη22

)
=
i

2

η22,s

η22

− i

η12

(
Γ1

1sη12 + Γ2
1sη22

)
= − i

2

η12,s

η12
.

So on the caustic

V 2
1 = i

[
n− 2

n
+

1

2

(
u2

(
η22,2

η22
− η22,1

η12

)
+

m∑
s=3

us

(
η22,s

η22
− η12,s

η12

))]

= i

[
n− 2

n
+

1

2

(
m∑
i=s

us

(
η22,s

η22
− η12,s

η12

)
+
u2

η12
(η12,2 − η22,1)

)]
.

Along the caustic we have E =
∑m

s=2 uiπi and the condition LEη = (2 − d)η implies
E(η22)− dη22 and E(η12) = (−d+ n−2

n )η12. This gives

V 2
1 =

i

2

(
n− 2

n
+
u2

η12
(η12,2 − η22,1)

)
.

On this coordinates we also have η(e,−) = η12dt +
∑m

i=2 ηiidui but by lemma 2.1.1 this
form is closed and therefore η12,2 − η22,1 = 0.

Remark 5.1.1. The germ of F -manifold I2(2) is isomorphic to A1 × A1 and as such is not
irreducible. If we suppose that at p the canonical coordinates u1 and u2 are equal but p
is semisimple, an analogous computation would show that η(f2, µ

π1
|π1|) = 0. On the work

[7] it is shown that under this conditions, one can extend the isomonodromic fundamental
matrix solutions of equation (4.0.1) on a semisimple point p such that Ep◦ has different
eigenvalues, to semisimple points q such that Eq◦ has repeated eigenvalues.

Example 5.1.1. Let us compute the matrix P1 of proposition 4.3.1. The matrix (H0)[1,1]

diagonalizing the block B[1,1] is of the form

(H0)[1,1] =

(
r(u) s(u)
ir(u) −is(u)

)
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hence

HT
0 H0 =

(
0 2rs

2rs 0

)
This gives

(P1)[1,1] = eπiB[1,1]zB[1,1]HT
0 H0z

B[1,1] =

 0 2rseπi
n−2
2n

2rse−πi
n−2
2n 0

 .

Let us use theorem 5.1.2 to compute the F -manifold decomposition for the three-
dimensional Dubrovin-Frobenius manifolds of example 2.2.2. We will do this explicitly for
the FH potential, the others being analogous and simpler.
From the potential FH of example 2.2.2 we get that on the basis ∂x, ∂y, ∂z the operator of
multiplication by the Euler vector field has the form x 7

10yz(2y + z3) 1
20(12y336y2z3 + z9)

3
5y x+ yz2 + 1

5z
5 7

10yz(2y + z3)
1
5z

5 3
5y x


Since the canonical coordinates are the eigenvalues of this matrix (proposition 1.2.3) the
caustic is contained in the locus where at least two of these canonical coordinates coincide.
This locus is described by the discriminant of the characteristic polynomial of this matrix
which in this case is a multiple of the polynomial

y2(y − z3)5(27y + 5z3)3.

We can divide the zeroes of this polynomial in two components: the semisimple coalescence
locus, where the multiplication remains semisimple and the caustic. To identify each of
these components we use propositions 1.1.2 and 1.1.3. For example, along the first com-
ponent of this surface y = 0 multiplication by ∂y has three different eigenvalues and thus
y = 0 belongs to the semisimple coalescence locus. Along the components y = z3 and
y = − 5

27z
3 the operator of multiplication by ∂y is not diagonalizable and therefore the

caustic is the union of this two components.

The component y = z3 is parametrized by x = r, y = s3, z = s and the tangent space
to this surface is generated by ∂r = e and ∂s = 3s2∂y + ∂z. In this basis multiplication by
∂s has matrix (

0 175
4 s8

1 9s4

)
.

The eigenvectors of this matrix are e2 = −25
2 s

4∂x+3s2∂y+∂z and e3 = 7
2s

4∂x+3s2∂y+∂z.
Along the caustic the tangent space decomposes as the direct sum of a two-dimensional
and a one-dimensional algebra. To identify the unit in each of this algebras we use the
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Euler vector field. In our previous notation, the eigenvalue associated with π2 must have
multiplicity two and that of π3 has multiplicity one. Thus we obtain e = π2 + π3 =
− 1

16s2
e2 + 1

16s2
e3 so the square norms of π2 and π3 are − 1

16s4
and 1

16s4
respectively. The

unitary normal is the vector N = −3s2∂x + ∂y and therefore an orthonormal basis along
this component of the caustic consists of the vectors

N = −3s2∂x + ∂y

f2 = i4s2π2

f3 = 4s2π3.

On the basis ∂x, ∂y, ∂z the endomorphism µ has matrix diag(−2
5 , 0,

2
5) and this gives

µ12 = η(N,µf2) = i
3

10
.

Therefore, along the component y = z3 we have

n = 5.

We can parametrize the other component y = − 5
27z

3 by x = r, y = − 5
27s

3, z = s. An
identical procedure now gives

n = 3.

The cases of B3 and A3 are analogous and simpler. On the B3 Dubrovin-Frobenius mani-
fold the matrix of the endomorphism µ is diag(−1

3 , 0,
1
3) and the bifurcation diagram has

equation
y2(2y − 3z2)4(2y + z2)3.

Again y = 0 corresponds to the semisimple coalescence locus and the other two components
conform the caustic. On the component { 2y − 3z2 = 0 } we have n = 4 and on the
component { 2y+z2 = 0 } we have n = 3. Finally the A3 manifold has bifurcation diagram

y2(27y2 + 8z2)

Once again y = 0 is the semisimple coalescence locus and on the other component we have
n = 3.

5.2 Three-dimensional Dubrovin-Frobenius manifolds

In this section we compute the exponent of formal monodromy, Stokes matrices and cen-
tral connection matrix of system (4.0.1) when restricted to a semisimple component of the
caustic K of a three-dimensional Dubrovin-Frobenius manifold M of charge d 6= 0.
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Let (M, ◦, e, E, η) be a three dimensional Dubrovin-Frobenius manifold of charge d 6= 0
and suppose that at p ∈M we have

(M,p) ∼= I2(n)×A1.

Then p belongs to the caustic K. Let π2 ∈ TI2(n), π3 ∈ TA1 be the unit vectors and sup-
pose that the metric η restricted to K is non-degenerate (for three-dimensional Dubrovin-
Frobenius manifolds of dimension 3 and charge d 6= 0 this is always true).

Proposition 5.2.1. Let (M, ◦, e, E, η) be a three dimensional Dubrovin-Frobenius manifold
of charge d 6= 0 with non-empty caustic K. Suppose that for a point p in the regular part
of an irreducible component of K we have

(M,p) ∼= I2(n)×A1.

Then on the basis
N, f2 =

π2

|π2|
, f3 =

π3

|π3|
The matrix V representing the endomorphism µ is

V =

 0 −in−2
2n

n−2
2n

in−2
2n 0 id2
−n−2

2n −id2 0

 .

Proof. Evaluating LE◦ = ◦ on (e, e) we obtain [E, e] = −e. Evaluating LEη = (2− d)η on
(e, e) and since ∇e = 0 we get (2− d)η(e, e) = 2η(e, e). Since d 6= 0 we get η(e, e) = 0. At
the caustic we have e = π2 + π3 and therefore

|π3| = i|π2|.

Hence we obtain e = |π2|e2 + |π3|e3 = |π2|(e2 + ie3). On the other hand we have µe =
2−d

2 e − ∇eE = −d
2e so that the vector (0, 1, i)T is an eigenvector of the matrix V with

eigenvalue d
2 . Thus we obtain

−d
2

0
1
i

 =

 0 V 1
2 V 1

3

−V 1
2 0 V 2

3

−V 1
3 −V 2

3 0

0
1
i

 .

From this we get the equations V 1
3 = iV 1

2 and V 2
3 = id2 . But by theorem 5.1.2 we now that

the entry V 1
2 is − i

2 t
n−2
2n .

We now start the computation of the Stokes matrices and the central connection matrix.
Let a = id2 and b = V 1

2 . The differential equation (4.0.1) is

dY

dz
=

−u2 0 0
0 −un 0
0 0 −u3

+
1

z

 0 b ib
−b 0 a
−ib −a 0

Y. (5.2.1)
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Using the Gauge transformation Y = eu2zỸ we get a new system

dỸ

dz
=

0 0 0
0 0 0
0 0 u2 − u3

+
1

z

 0 b ib
−b 0 a
−ib −a 0

 Ỹ .

Next we do the change of variables z = (u2 − u3)w and obtain

dY

dw
=

0 0 0
0 0 0
0 0 1

+
1

w

 0 b ib
−b 0 a
−ib −a 0

Y. (5.2.2)

By doing the formal Gauge transformation (4.2.1) we get a block diagonal system dỸ
dw =

(−U +B1w
−1 +B2w

−2 + · · · )Ỹ with

B1 =

 0 b 0
−b 0 0
0 0 0

 B2 =

−b2 iab 0
iab a2 0
0 0 b2 − a2

 G1 =
1

u2 − u3

0 0 ib
0 0 a
ib a 0

 .

This matrices are obtained from the equations (4.2.3).We now do the usual transformation
Y = eA0Y with A0 = diag(0, 01) to cancel the matrix A0. A matrix that diagonalizes the
matrix B1 is

H0 :=

1 1 0
i −i 0
0 0 1

 .

Then we perform the Gauge transformation Ỹ = (Id +
∑∞

k=1Hkw
−k)Ŷ to obtain the

system dŶ
dw = B

w Ŷ with B = diag(ib,−ib, 0). We have

H1 =

 b2−a2
2 − i(a−b)2

4b−2i 0
i(a+b)2

4b+2i
b2−a2

2 0

0 0 a2 − b2


and H1 is computed from the equation (see equation (4.2.8))

[B,H1] +H1 + B̂2 = 0.

Putting all together we obtain that a formal fundamental matrix solution of system (5.2.2)
is given by

YF = (H0 + (H0H1 +G1H0)w−1 +O(w−2))eA0wwB

For the computation of the Stokes matrix we will need the first row of this matrix which
consists of the following series

Y11 = wib +O(w−1) Y12 = w−ib +O(w−1) Y13 = ibeww−1 +O(w−2). (5.2.3)
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The differential system (5.2.2) consists of the equations

ẏ1 = b
y2 + iy3

w

ẏ2 = −by1 − ay3

w

ẏ3 = y3 −
iby1 + ay2

w
.

(5.2.4)

To compute the Stokes matrix we will use the third order scalar ordinary differential equa-
tion satisfied by y1. One can check that this equation is

...
y +

2− w
w

ÿ +
a(a− i)− w

w2
ẏ1 −

b2

w2
y = 0. (5.2.5)

The general solution to this equation is

α2F2

( −ib ib
1+ia −ia ;w

)
+ βeaπw−ia2F2

(
−i(a+b) i(b−a)

1−ia −2ia
;w
)

+

γe−aπw1+ia
2F2

(
1+i(a−b) 1+i(a+b)

2+ia 2+2ia
;w
)

=: αF1 + βF2 + γF3. (5.2.6)

The constants α, β and γ are chosen according to the solutions provided by the first row
(5.2.3) of a formal solution of the system (5.2.2), we now give more details. First let us
write down the asymptotic expansion of the general solution (5.2.6), we have that on the
sector −(2+ε)π2 < arg(w) < (2−ε)π2 , with ε±1, the function 2F2 has asymptotic expansion
(see [9])

2F2

( α1 α2
β1 β2 |w

)
∼ Γ(β1)Γ(β2)

Γ(α1)Γ(α2)
[ewwα1+α2−β1−β2+

Γ(α1)Γ(α2 − α1)

Γ(β1 − α1)Γ(β2α1)
(eεπiw)−α1+

Γ(α2)Γ(α1 − α2)

Γ(β1 − α2)Γ(β2 − α2)
(eεπiw)α2 ](1 +O(w−1)) (5.2.7)

which we will write as

2F2

( α1 α2
β1 β2 |w

)
∼ [Rie

wwα1+α2−β1−β2 + Si(e
επiw)−α1 + Ti(e

επiw)−α2 ](1 +O(w−1))

The subindices of Ri, Si, Ti will correspond to the three solutions F1, F2, F3 of (5.2.6). In
this way we obtain that on the sector −(2 + ε)π2 < arg(w) < (2− ε)π2 the functions Fi have
asymptotic expansion

F1 ∼ (R1e
ww−1 + S1e

−επbwib + T1e
επbw−ib)(1 +O(w−1))

F2 ∼ (R2e
πaeww−1 + S2e

(1−ε)πae−επbwib + T2e
(1−ε)πaeεπbw−ib)(1 +O(w−1))

F3 ∼ (R3e
−πaeww−1 − S3e

(ε−1)πae−επbwib − T3e
(ε−1)πaeεπbw−ib)(1 +O(w−1)).

(5.2.8)
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With this, on the sectors −(2 + ε)π2 < arg(w) < (2 − ε)π2 , the general solution (5.2.6) of
equation (5.2.5) has asymptotic expansion

[(αR1 + βR2e
πa + γR3e

−πa)eww−1+

(αS1e
−επb + βS2e

(1−ε)πaeεπb − γS3e
(ε−1)πae−επb)wib+

(αT1e
επb + βT2e

(1−ε)πaeεπb − γT3e
(ε−1)πaeεπb)w−ib](1 +O(w−1)). (5.2.9)

We now compute the Stokes matrix. According to Sibuya’s theorem on the sectors S(ε) :=
{w ∈ P1| − (2 + ε)π2 < arg(w) < (2 − ε)π2 } ∩ {w|R < |w| }, with ε = ±1 and R >> 0

there exists solutions y
(ε)
1 , y

(ε)
2 , y

(ε)
3 of equation (5.2.5) which have the asymptotic expansion

Y11, Y12, Y13 of (5.2.3). To compute the Stokes matrix we need to write the solutions

y
(−1)
i as linear combinations of the solutions y

(1)
i . To do this we use the solutions Fi

given by (5.2.6) of equation (5.2.5); we will write (F1, F2, F3) = (y
(1)
1 , y

(1)
2 , y

(1)
3 )P and

(y
(−1)
1 , y

(−1)
2 , y

(−1)
3 ) = (F1, F2, F3)Q so that (y

(−1)
1 , y

(−1)
2 , y

(−1)
3 ) = (y

(1)
1 , y

(1)
2 , y

(1)
3 )PQ and

the Stokes matrix is S = PQ.
In order to do this note that since the sectors S(ε) contain a complete collection of Stokes
rays, the solutions having a prescribed asymptotic expansion on each sector are unique.
Comparing (5.2.9) with (5.2.8) we get

F1 = S1e
−πby

(1)
1 + T1e

πby
(1)
2 −

i

b
R1y

(1)
3

F2 = S2e
−πby

(1)
1 + T2e

πby
(1)
2 −

i

b
R2e

πay
(1)
3

F3 = S3e
−πby

(1)
1 + T3e

πby
(1)
2 −

i

b
R3e

−πay
(1)
3

so the matrix P is S1e
−πb S2e

−πb −S3e
−πb

T1e
πb T2e

πb −T3e
πb

− i
bR1 − i

bR2e
πa − i

bR3e
−πa

 . (5.2.10)

To obtain the matrix Q we need to find the constants α, β, γ such that (5.2.9) has the
asymptotic expansion of (5.2.3). That is we need to solve the following systems of linear
algebraic equations R1 R2e

πa R3e
−πa

S1e
πb S2e

2πaeπb −S3e
−2πaeπb

T−πb1 T2e
2πae−πb −T3e

−2πae−πb

αβ
γ

 =

0
1
0

 ,

0
0
1

 ,

ib0
0

 .

The solutions can be obtained with the help of a computer software. The matrix Q has
as columns the solutions (α, β, γ)T and again, using a computer software, and substituting
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the values of Ri, Si, Ti which can be obtained from (5.2.7) we get that the Stokes matrix
S = PQ is

S =

1 0 2bπΓ(2ib)
Γ(i(b−a))Γ(1+ib)Γ(1+i(a+b))

0 1 2bπΓ(−2ib)
Γ(1−ib)Γ(1+i(a−b))Γ(−i(a+b))

0 0 1

 (5.2.11)

We now compute the central connection matrix relating the solutions YL and Y0. We
want to find solutions of system (5.2.2) around z = 0. First we diagonalize V via the
transformation Y = T0Ỹ with

T0 =

0 a 2ab
1 ib −i(a2 + b2)
i b b2 − a2

 .

We obtain a new system

dỸ

dw
=

 1

w

ia 0 0
0 0 0
0 0 −ia

+
1

a2

a2−b2
2

ib(b2−a2)
2

i(a2−b2)2

2
ib b2 b3 − a2b

− i
2 − b

2
a2−b2

2


 Ỹ

=:
(µ
w

+A1

)
Ỹ

For simplicity we now assume 2ia 6∈ Z and therefore there exists a holomorphic Gauge

transformation Ỹ = (Id+
∑∞

k=1 Tkw
k)Ŷ which takes the previous equation to dŶ

dw = µz−1Ŷ .
The matrices Tk can be computed from equation (4.1.4). In particular we have

T1 =
1

a2


a2−b2

2
b(b2−a2)
2(a+i) − a2+b2

2(2a+i)
b

a−1 b2 i b(b
2−a2)
a+i

1
2(i−2a)

ib
2(a−i)

a2−b2
2


and the fundamental matrix solution in Levelt form of (5.2.2) is Y = T0(Id+

∑∞
k=1 Tkz

k)zV .
In particular the first row of this matrix has expansion

y1 =
b

a(2a− 3i)− 1
w1+ia + · · ·

y2 = aw +
b2

a− i
w2 + · · ·

y3 = w−ia(2ab+
b(a2 − b2)

a+ i
w + · · · )

(5.2.12)

Now recall that the first component y1 of the system (5.2.2) satisfies the third order dif-
ferential equation (5.2.5). A basis of the solutions consists of the functions F1, F2, F3 of
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(5.2.6). To compute the central connection matrix we follow the same procedure as for the
Stokes matrix: The matrix P of (5.2.10) expresses the solutions Fi as a linear combina-

tion of the solutions y
(1)
i having asymptotic expansion (5.2.3) on the sector S(1), now we

compute a matrix D expressing the solutions yi of (5.2.12) as linear combinations of the
solutions Fi. The connection matrix will be C = PD.
The hypergeometric function 2F2 appearing in the solutions Fi is a holomorphic at z = 0
so at this point this solutions have the expansion (see [9])

F1 = w +
b2

a(a− i)
w2 + · · ·

F2 = eaπw−ia(1 +
a2 − b2

2a(a+ i)
w + · · · )

F3 = e−aπw1+ia(1 +
1 + 2ia− (a2 − b2)

4 + 6ia− 2a2
w + · · · ).

(5.2.13)

Comparing with (5.2.12) we get

D =

 0 a 0
0 0 2e−aπab

eaπb
a(2a−3i)−1 0 0

 .

Again, with the help of a computer software we get that the central connection matrix C
is
−2a2be(a−b)πΓ(ia)Γ(2ia)Γ(2ib)

Γ(1+ib)Γ(1+i(a+b))2
i2−1+2ibae−bπ

√
πcsch(aπ)Γ(

1
2 +ib)

Γ(−i(a−b))Γ(1+i(a+b))
2abe−(a+b)πΓ(1−ia)Γ(−2ia)Γ(2ib)

Γ(−i(a−b))2Γ(1+ib)

−2a2be(a+b)πΓ(ia)Γ(2ia)Γ(−2ib)
Γ(1−ib)Γ(1+ia−ib)2

i2−1−2Ibaebπ
√
πcsch(aπ)Γ(

1
2−ib)

Γ(1+i(a−b))Γ(−i(a+b))
2abe(−a+b)πΓ(1−ia)Γ(−2ia)Γ(−2ib)

Γ(1−ib)Γ(−i(a+b))2

− 2aΓ(1+ia)Γ(2ia)
Γ(1+i(a−b))Γ(1+i(a+b)) a csch(aπ)sinh(bπ) − 2a2Γ(−ia)Γ(−2ia)

Γ(−i(a−b))Γ(−i(a+b))

 .



Chapter 6

Open Problem: Changing Strata

6.1 Changing Strata

Let p ∈ M with TpM ∼= ⊕lk=1(TpM)k and let L ⊂ M be the integral manifold of the
idempotents π1, . . . , πl passing through p. We have seen that the points of the Dubrovin-
Frobenius manifold parametrize a family of meromorphic ordinary differential equations on
P1. By restricting ourselves to a neighborhood W ⊂ L of p we have seen that it is possible
to construct solutions YLev, Yν such that the corresponding monodromy data (µ,R,B, S,C)
are constant. The natural question now is how this monodromy data changes as we move
to further substrata.

For example, if the caustic is non-empty then the boundary of the semisimple locus is
the caustic. When writing the solutions of equation (4.0.1) outside the caustic, one uses
the basis of idempotents. At the caustic this basis no longer exists and as such, some of
these solutions will “diverge” as we approach the caustic. Nevertheless let us argue that
there should be a relation between the solutions outside and inside the caustic.
Take z0 ∈ C∗ and a point p0 ∈ K. Since the differential equation (4.0.1) is holomorphic in
a small neighborhood of (z0, p0), the existence theorem for ordinary differential equations
states that there exists a small neighborhood T×W ⊂ P1×M such that equation (4.0.1) has
a fundamental matrix solution YNS and moreover this solution depends holomorphically on
(z, p) ∈ T ×W . Since the caustic is an hypersurface and W ⊂M is open then W \K 6= ∅.
Applying again the existence theorem to a point (z0, q0) with q0 ∈ W \ K we get a new
open set T̃ × W̃ ⊂ P1 ×M and a new fundamental matrix solution YS of equation (4.0.1).
Notice that (z0, q0) ∈ (T ×W ) ∩ (T̃ × W̃ ). Since on the open (T ×W ) ∩ (T̃ × W̃ ) set YNS
and YL are both fundamental matrix solutions of equation (4.0.1), there exists a matrix C
such that

YS = YNSC.

Note that this relation allows to extend the fundamental matrix solution YS to points on
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the caustic. Indeed for (z, p) ∈ (P1 ×K) ∩ (T ×W ) we can set

YS(z, p) := YNS(z, p)C.

We now give a partial answer to the problem of finding the matrix C. Let L̃ := L̄ \ L
be the topological boundary of L. First we have

Proposition 6.1.1. Suppose L̃ 6= ∅. If p ∈ L with TpM ∼= ⊕lpk=1(TpM)k and q ∈ L̃ with

TqM ∼= ⊕
lq
k=1(TqM)k then lq < lp. That is, as we move to further substrata the dimensions

of the irreducible algebras in which the tangent space decomposes can only grow.

Proof. If at a point q ∈ M the tangent space TqM has l idempotents then theorem 1.1.1
says that in a neighborhood of this point this l we have at least l idempotent vector fields.
Since every neighborhood of a point q ∈ L̃ intersects L we get lq ≤ lp. But equality would
imply q ∈ L.

So as we pass from a point p ∈ L to a point q ∈ L̃ the irreducible algebras in which TM
is decomposed grow in dimension and as a consequence we loose some idempotents and
some canonical coordinates ui of L coalesce.
Let YLev, Yν , ỸLev, Ỹν be the isomonodromic solutions of family (4.0.1) restricted to L and
L̃ respectively. The basis used to construct the solution YLev of equation (4.0.1) doesn’t
depend on the multiplication structure and as such we have

YLev|L̃ = ỸLev.

On the other hand, the basis used to construct the solutions Yν used the decomposition
of TpM into multiplication invariant subspaces. In particular the formal solution YF (see
(4.2.9)) of equation (4.0.1) have terms of the form 1

ui−uj and therefore the asymptotic

expansions cease to have meaning for points in L̃. In this section we show that, after
a proper Gauge transformation, the columns of YF corresponding to blocks whose corre-
sponding canonical coordinate uk does not collide with any other canonical coordinate,
coincide with some of the columns of the formal solution ỸF .

Let q ∈ L̃ and suppose that TqM ∼= ⊕
lq
k=1(TqM)k where each (TqM)k is an irreducible

algebra. By Hertling’s decomposition (1.1.1) we have that

(M, q) ∼= Π
lq
k=1(Mk, q).

Now take p ∈ L ∩ (M, q), by the above we have TpM ∼= ⊕lqk=1TpMk where each TpMk is
an algebra but not necessarily irreducible. Suppose that out of these lq algebras n of them
are reduible. We order the algebras TpMk in such a way that for k ≤ n the algebras TpMk

are reducible and for k > n they are irreducible.
The algebras TpMk for k ≤ n decompose as a direct sum of the lk irreducible algebras
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(TpM)ki . For each of these irreducible algebras we have a canonical coordinate uki on the
manifold L. When we move to L̃ the canonical coordinates uki coalesce to a single function
ũk which is a canonical coordinate on the manifold L̃. On the other hand, for k > n the
algebras TpMk are irreducible and on the limit p→ q they remain irreducible. Correspond-
ingly the canonical coordinates uk don’t coalesce with any other canonical coordinate and
on the limit we have uk = ũk which again is a canonical coordinate on the manifold L̃.
This ordering induces a block decomposition on the matrices we are about to compute. In
the following we will use the partition of the set { 1, . . . ,m } by the sets (k) given by the
decomposition of TqM into irreducible algebras. The symbol A[i,j] will denote the block
consisting the entries with rows in the set (i) and columns in the set (j).
Take a point q ∈ L̃ and let W ⊂ (M, q) be a sufficiently small open neighborhood of q.
Let ẽki be the basis of ι̃∗TM of proposition 3.2.5. Since the decomposition of (M, q) into
irreducible F -manifolds holds true in the open set W and the metric η is holomorphic, we
can extend this basis to an orthonormal basis of TW .
Since L̃ is the (topological) boundary of L then W ∩ L 6= ∅. Applying again proposition
3.2.5 we get an orthonormal basis eki of ι∗TM . If the open set W is small enough then
we can extend the basis eki to an orthonormal basis of TW\L̃. The reason why we cannot
extend the basis eki to the whole neighborhood W is that some elements of the basis eki
no longer exists on L̃. For example, according to our ordering on the first k ≤ n algebras
(TM,p)k with p ∈W ∩L, as we move to q ∈ L̃ the idempotents πk ∈ (TM,p)k no longer exist
at q.
Now let Q be the matrix whose columns are the vectors ẽki written as linear combinations
of the vectors eki (i .e. [ẽ1, . . . , ẽm] = [e1, . . . , em]Q). The matrix Q is holomorphic on
W \ L̃. By the compatibility of the metric and the multiplication Q is a block diagonal
matrix with blocks Qi := Q[i,i] for i ≤ n and Qi = Id for i > n. We consider the familiy of
differential equations (4.0.1) restricted to L

dY

dz
=

(
1

z
V − U

)
Y (6.1.1)

and to L̃

dỸ

dz
=

(
1

z
Ṽ − Ũ

)
Ỹ . (6.1.2)

The above change of basis induces a Gauge transformation Y = QX from which we obtain

Ṽ[i,j] =


Q−1
i V[i,j]Qj i, j ≤ n

Q−1
i V[i,j] i ≤ n < j

V[i,j]Qj j ≤ n < i

V[i,j] i, j > n,

(6.1.3)
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where the right hand side is evaluated at L̃. We also have

[
Ũ , T

]
[i,j]

=

lq∑
s=1

Ũ[i,s]T[s,j] − T[i,s]Ũ[s,j]

= Ũ[i,i]T[i,j] − T[i,j]Ũ[j,j] = (ũi − ũj)T[i,j]

because the diagonal blocks Ũ[i,i] have only one eigenvalue. On the other hand, since the
diagonal blocks of U may have more than one eigenvalue we only get

[U, T ][i,j] = U[i,i]T[i,j] − T[i,j]U[j,j]

but when we evaluate at points of L̃ the eigenvalues of U[i,i] become equal and we recover

[U, T ][i,j] = (ui − uj)T[i,j] = (ũi − ũj)T[i,j].

Recall the recursive equations (4.2.3) used to compute the formal solutions YF and ỸF . We
can now show

Lemma 6.1.1. With the above notations, for all k we have

(G̃k)[i,j] = Q−1
i (Gk)[i,j] (B̃k)[i,j] = (Bk)[i,j] = 0

when i ≤ n < j and

(G̃k)[i,j] = (Gk)[i,j] (B̃k)[i,j] = (Bk)[i,j]

when i, j > n and the right hand sides of the equalities is evaluated at L̃.

Proof. We proceed by induction, all the quantities without ˜ are evaluated at L̃. For k = 1
and i ≤ n < j we have

(ũi − ũj)(G̃1)[i,j] = Ṽ[i,j] = Q−1
i V[i,j] = (ui − uj)Q−1(Gk)[i,j].

and if i, j > n then

(ũi − ũj)(G̃1)[i,j] + (B̃k)[i,j] = Ṽ[i,j] = V[i,j] = (ui − uj)(G1)[i,j] + (Bk)[i,j]

so if i = j then (B1)[i,j] = (B̃1)[i,j] = V[i,j] and (G1)[i,j] = (G̃1)[i,j] = 0. If i 6= j then

(B1)[i,j] = (B̃1)[i,j] = 0 and (G1)[i,j] = (G̃1)[i,j]. Now we make the induction step, we have
that

[Ũ , G̃k] + B̃k = (k − 1)G̃k−1 + Ṽ G̃k−1 −
k−1∑
s=1

G̃k−sB̃s.
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Suppose i ≤ n < j then we can write

(Ṽ G̃k)[i,j] =

lq∑
s=1

Ṽ[i,s](G̃k)[s,j]

=
∑
s≤n

Ṽ[i,s](G̃k)[s,j] +
∑
s>n

Ṽ[i,s](G̃k)[s,j]

=
∑
s≤n

Q−1
i V[i,s]QsQ

−1
s (Gk)[s,j] +

∑
s>n

Q−1
i (V[i,s]Gk)[s,j]

= Q−1
i (V Gk)[i,j].

In the same way

(G̃k−sB̃s)[i,j] =

lq∑
t=1

(G̃k−s)[i,t](B̃k)[t,j] =
∑
t>n

(G̃k−s)[i,t](B̃k)[t,j]

=
∑
t>n

Q−1
i (Gk−s)[i,t](Bk)[t,j]

= Q−1
i (Gk−sBs).

Putting these last two equations we get

(ũi − ũj)(G̃k)[i,j] = ((k − 1)G̃k−1 + Ṽ G̃k−1 −
k−1∑
s=1

G̃k−sB̃s)[i,j]

= Q−1
i ((k − 1)Gk−1 + V Gk−1 −

k−1∑
s=1

Gk−sBs)[i,j]

= (ui − uj)Q−1
i (Gk)[i,j].

The induction step for the blocks i, j > n is done analogously.

Observe that after applying the Gauge transformation G followed by e−Uz we obtain
the block diagonal system (4.2.5). Since (Bk)[i,j] = (B̃k)[i,j] for i, j > n we get that

(Hk)[i,j] = (H̃k)[i,j]. This observation and the previous lemma immediately imply

Proposition 6.1.2. Let (M, ◦, e, E, η) be a Dubrovin-Frobenius manifold. Suppose that at

p ∈M we have TpM ∼= ⊕
lp
k=1(TpM)k where each (TpM)k is an irreducible algebra. Let L be

the integral submanifold of the idempotents π1, . . . , πl passing through p and suppose that
L̃ := L̄ \ L 6= ∅. Let q ∈ L̃ and suppose that as germ of F -manifolds

(M, q) ∼= Π
lq
k=1(Mk, q),
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with each (Mk, q) irreducible. Order the algebras TpMk in such a way that for k ≤ n the
algebra TpMk is reducible and for k > n we have TpMk = (TpM)k. Let Q be the matrix
of change of basis on the open neighborhood W ⊂ (W, q) between the basis eki and ẽki of
proposition 3.2.5 applied to L and L̃ respectively. Let YF and ỸY be the formal solutions
of equations (6.1.1) and (6.1.2) respectively.
Then the last m−

∑n
k=1 dimTpMk columns of ỸF are the last columns of Q−1YF |L̃



Conclusions

The most important result of this work is theorem 4.3.2. In a certain sense in it paves
the way for the study of non-generic isomonodromic deformations. To put this result in
context, let us briefly recall the history of isomonodromic deformations of meromorphic
ordinary differential equations over P1.

The study of isomonodromic deformations of meromorphic ordinary differential equa-
tion goes back to Riemann. In the case of regular singularities he already posed the problem
in its full generality: To construct a system of functions with regular singularities that has
the prescribed monodromy data. This problem, in the non-resonant case, was solved by
Schlesinger, Fuchs and Garnier and can be summarized in the Schlesinger equations. This
are a system of non-linear partial differential equations that the matrices defining the fam-
ily of ordinary differential equations must satisfy in order that the family has constant
monodromy data.

For a long time the interest in isomonodromic families of meromorphic ordinary dif-
ferential equations receded and it was until the work of Jimbo, Miwa and Ueno that the
study of isomonodromic deformations regained interest. In the seminal paper [15], Jimbo,
Miwa and Ueno studied monodromy deformations of “generic” families of meromorphic
ordinary differential equations. In particular they studied systems that not only had regu-
lar singularities. Part of the genericness assumption is that the eigenvalues of the leading
term at the poles of the differential equation have different eigenvalues. In the case of
Dubrovin-Frobenius manifolds this means that we should restrict ourselves to the subset
of semisimple loci such that the endomorphism of multiplication by the Euler vector fields
has different eigenvalues.

On recent years Cotti, Dubrovin and Guzzetti studied isomonodromic deformations of
meromorphic differential equations of the form

dY

dz
=

(
Λ(t) +

A1(t)

z

)
Y (6.1.4)

where Λ is a diagonal matrix. In [6] theorem 1.1 they showed that, if t varies in an open
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domain W which contains a subset ∆ where some of the eigenvalues of Λ coalesce and if
the entries of the matrix A1 corresponding to the eigenvalues that coalesce at ∆ vanish at
∆ (i .e. if λi(t) − λj(t)|∆ = 0 then (A1)ij |∆ = 0), then certain fundamental matrix solu-
tions (holomorphic and formal) of equation (6.1.4) defined outside the coalescence loci ∆
can be holomorphically continued in the parameter t to the coalescence loci. Moreover, if
the fundamental matrix solutions were isomonodromic then their extension to ∆ remains
isomonodromic. In particular this means that one can compute the monodromy data of
the family (6.1.4) on a point of the coalescence loci ∆.

As we have seen, on the caustic of a Dubrovin-Frobenius manifold the vanishing condi-
tion of theorem 1.1 of [6] is not necessarily satisfied. As a consequence one cannot extend
the isomonodromic fundamental matrix solutions outside the caustic to points inside the
caustic. Nevertheless if the coefficients of equation (6.1.4) are holomorphic on the coales-
cence loci ∆ then the existence theorem for ordinary differential equations guarantees that
fundamental matrix solutions of equation (6.1.4) exist for points t∆ ∈ ∆ and they depend
holomorphically on a small open neighborhood W̃ ⊂W .

Basically our result says that, thanks to the geometric properties of a Dubrovin-
Frobenius manifold, the fundamental matrix solutions computed in the coalescence loci
(the multiplication invariant submanifolds L ⊂ K) can also be taken to be isomonodromic.
The obvious and really hard question is how these two sets of isomonodromic fundamental
matrix solutions (outside and inside the coalescence) are related.

Our second important result, proposition 6.1.2 gives a partial answer to this question,
namely, after a proper renormalization (the matrix Q) some of the columns of the formal
fundamental matrix solutions outside the coalescence loci and in a neighborhood of z =∞,
have a well definde limit in the coalescence loci ∆ and moreover, when evaluated at ∆ they
are equal to some of the columns of the formal fundamental matrix solutions inside the
coalescence loci in a neighborhood of z =∞.

Notice that again we used the geometric properties of a Dubrovin-Frobenius manifold
to cook up the matrix Q which renormalizes some of the columns of the formal fundamental
matrix solution outside the coalescence loci. In a more general setting getting the correct
renormalization matrix may be much more harder.

Understanding completely (even in the examples provided by Dubrovin-Frobenius man-
ifolds) how the holomorphic fundamental matrices solutions are related remains an open
question which deserves further investigation.

Finally let us make some remarks about the flat connections πk ◦ ∇ that played a
fundamental role in the construction of the isomonodromic fundamental matrix solutions
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inside the coalescence loci. In recent years interest has grown in studying weaker structures
than that of a Dubrovin-Frobenius manifold. In particular lots of interesting results have
been found on the so called flat F -manifolds (see [1] and [2]). A flat F -manifold is just
an F -manifold M with a flat and torsionless connection ∇ on the tangent sheaf TM such
that ∇e = 0. Just as in the case of a Dubrovin-Frobenius manifold, one can construct a
1-parameter family of flat connections ∇z on TM . Although the bundles ι∗(TM,p)k over the
multiplication invariant submanifolds L are not the tangent bundle and the unit of these
algebras is not necessarily flat; they posses a multiplication and are also equipped with the
flat connection πk ◦ ∇ and can be extended to a 1-parameter family of flat connections.
This connections were of fundamental importance for this work but their 1-parameter
extensions were nowhere used. Further study of these families of connections might give
more insight as to what parts of the Dubrovin-Frobenius manifold we can recover from
family of meromorphic differential equations associated to it.





Appendix A

Flat Connections

A.1 Flat Connections

Let M be a complex manifold of dimension m, let TM be the sheaf of holomorphic vector
fields and let Ω1

M be the sheaf of holomorphic 1-forms. Consider a holomorphic vector
bundle π : V →M and denote its sheaf of holomorphic sections by V.

Definition A.1.1. A connection on the vector bundle π : V →M is a C-linear map

∇ : V → Ω1
M ⊗ V

which satisfies the Leibniz rule: For any open set U and any f ∈ OM (U), v ∈ V(U) one
has

∇fv = df ⊗ v + f∇v.

Let r be the rank of the vector bundle π : V →M and suppose that the local sections
e1, . . . , er ∈ V(U) are a local frame. We can write

∇ej =

r∑
s=1

ωsj ⊗ es

for some ωsj ∈ Ω1
M (U). The matrix of 1-forms ω = (ωαβ ) is called the connection matrix

associated to the frame ej .
If (x1, . . . , xm) is a local coordinate system on some open neighborhood U of M then we
can write

ωαβ =
m∑
s=1

(ωs)
α
βdx

s

where (ωs)
α
β ∈ OM (U). The matrices ωs = (ωs)

α
β are called the connection matrices

associated to the frame ei and the local coordinates xj .
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Example A.1.1. Suppose V is the tangent bundle and ei = ∂i is the frame associated to
some local coordinates (x1, . . . , xm). We have

∇∂k∂j =
m∑
s=1

Γskj∂s

where Γskj are the Christoffel symbols associated to the frame ∂i. Then

∇∂j =
m∑
s=1

(
n∑
k=1

Γskj dx
k

)
⊗ ∂s.

Therefore in this example we have

ωsj =
m∑
k=1

Γskj dx
k.

Any section s ∈ V(U) can be written as a OM (U)-linear combination of the sections ei,
by the Leibniz rule we obtain

∇s = ∇

 r∑
j=1

f jej

 =

r∑
j=1

df j ⊗ ej + f j∇ej

=
r∑
s=1

df s +
n∑
j=1

f jωsj

⊗ es.
We can write this conveniently as

∇s = d

f
1

...
fn

+ ω

f
1

...
fn


Given a vector bundle with a connection one could ask about the flat sections VF ≤ V.
By definition this sections satisfy ∇s = 0. If we are given a local frame ei with connec-
tion matrix ω, finding a flat section amounts to solving the system of partial differential
equations

df = −ωf (A.1.1)

where f = (f1, . . . , fn)T . This is a system of n× (dimM) partial differential equations for
the n unknowns f i, hence unless dimM = 1 we don’t expect this system to have a solution.
Suppose we can find n linearly independent flat sections sj =

∑
fsj es and let F := (fsj ) be

the matrix whose columns consist of these flat sections. Then from equation (A.1.1) we
get

0 = ddF = −d(ωF ) = −(dω + ω ∧ ω)F,
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(here we used that for 1-forms η we have d(η ∧ ξ) = dη ∧ ξ − η ∧ dξ). Since the sections sj
are linearly independent the matrix F is invertible and therefore

Ω := dω + ω ∧ ω = 0. (A.1.2)

It turns out that this condition is also sufficient for the existence of n linearly independent
flat sections of V (see [16]). On a local system of coordinates (x1, . . . , xm) equation (A.1.2)
becomes

∂ωi
∂xj
− ∂ωj
∂xi

= [ωi, ωj ].

The End(V)-valued two-form Ω is known as the curvature form or curvature tensor of the
connection ∇

A.2 Compatible metrics

Suppose that on our vector bundle we have a metric g ∈ Sym2(V∗). Using the connection
we can define the total covariant derivative of g in the usual way:

(∇g)(u, v) := d(g(u, v))− g(∇u, v)− g(u,∇v).

We will say that g is compatible with ∇ if ∇g = 0.

Proposition A.2.1. Let π : V → M be a vector bundle with connection ∇. Suppose
that the metric g is compatible with ∇. Then for any local coordinate system (x1, . . . , xm)
on U ⊂ M and any orthonormal frame e1, . . . , er ∈ V(U), the corresponding connection

matrices are antisymmetric i .e, (ωi)
α
β = −(ωi)

β
α for any i = 1, . . . ,m and α, β = 1, . . . , r.

Proof. By compatibility and orthonormality we have

0 = g(∇eα, eβ) + g(eα,∇eβ).

Evaluating at ∂xi we get

0 =

r∑
s=1

g((ωi)
s
αes, eβ) + g(eα, (ωi)

s
β)

= (ωi)
β
α + (ωi)

α
β .
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A.3 Pullback Connection

Let π : V →M be a vector bundle with a connection∇ and let f : L→M be a holomorphic
function. Using the function f and the vector bundle π : V → M we can construct the
pullback vector bundle π̄ : f∗V → L. The sheave of sections of f∗V can be described in the
following way. Given an open set U ⊂M and a section s ∈ V(U) by precomposing with f
we get a section f∗s ∈ f∗V(f−1(U)); sections of f∗V over f−1(U) are OL(f−1(U))-linear
combinations of sections of the form f∗s with s ∈ V(U). For general open set W ⊂ L, to
compute f∗V(W ) we first take the direct limit of the vector spaces V(U) where U ⊂M is
open and W ⊂ f−1(U) (the direct limit is computed using the restriction maps) and then
take OL-linear combinations.
We can also pullback the connection ∇ to f∗V. For sections of the form f∗s we set

(f∗∇)f∗s := f∗(∇s)

and for general sections we extend using the Leibniz rule.

Proposition A.3.1. Let π : V → M be a vector bundle with flat connection ∇ and let
f : L → M be a holomorphic function. Then the connection f∗∇ on the vector bundle
π̄ : f∗V → is flat.

Proof. Note that both vector bundles have the same rank r. It ∇ is flat then we can find
s1, . . . , sr ∈ V linearly independent sections such that ∇si = 0. But then (f∗∇)f∗s =
f∗(∇s) = 0 so that f∗V has r-linearly independent flat sections and therefore f∗∇ is
flat.
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