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Grazie a Diego, per la sua sicerità e la sua mancanza di filtri, a volte spiazzanti, ma
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Abstract

The renormalization group has a crucial role in modern physics, however some of its
features have not been completely understood yet. While its perturbative realization in
2-derivative theories in d = 4 spacetime has been widely studied, other classes of theories
can still hide some subtleties.

Higher derivative theories, and in particular quadratic gravity, could furnish a UV
completion to general relativity within the framework of quantum field theory. For this
reason, a detailed study of the renormalization group of this class of theories is of great
importance and is the main object of this thesis.

Higher derivative theories suffer from the Ostrogradskij instability at the classical level,
which translates into ghost particles in the spectrum at the quantum level, with related
problems with unitarity and negative norm states. In recent years many solutions to this
pathology have been suggested in order to obtain a well-defined quantum theory and we
review some of them.

Then, we study the nonperturbative renormalization group of a higher derivative shift-
invariant scalar model. In the theory space, we find an interesting region where the
renormalization group trajectories flow between the two free Gaussian fixed points corre-
sponding respectively to the 2- and 4-derivative kinetic term.

From the perturbative point of view, the fourth power of transferred momentum in the
propagator reduces the degree of UV divergence of Feynman diagrams, but at the same
time it introduces new off-shell IR divergences. We notice that not all renormalization
prescriptions are sensible to this type of infrared effects, potentially leading to running
couplings that do not resum all the large logarithms of momenta in scattering amplitudes.
We define a “physical” prescription using a momentum subtraction renormalization scheme
and we apply it to various higher derivative theories.

In particular, we focus on the higher derivative scalar toy model already studied non-
perturbatively and on some quantum field theories in curved spacetime. We find that shift
invariance seems to protect the universality of one-loop beta functions from IR effects and
that quadratic gravity, according to its physical running, has an asymptotically free sector
without tachyonic particles, in contradiction with older results which predict asymptotic
freedom only in the presence of a scalar tachyon.

Finally, we observe that the same type of IR effects can also emerge in 2-derivative
theories in d = 2 spacetime. For this reason, we study the renormalization group of the
CP (1) non-linear sigma model (NLSM). We observe that in this case the symmetries of
the theory seem to protect the running of couplings from IR effects, preserving one-loop
universality.
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Chapter 1

Introduction

It is well known that the same physical system can be described in different ways at differ-
ent scales. An ensemble of molecules can be treated as independent particles interacting
with each others or, at a larger distance, as a continuous medium obeying laws of hydro-
dynamics. Quarks can be described as single particles whose interactions become weaker
and weaker with the increase of energy, but below the ΛQCD scale they become strongly
interacting and form bound states as baryons and mesons. In particle physics there are
many examples of light particles interacting with heavy ones with an effective description
in terms of light particles only below the heavy mass threshold. This effective field theory
contains all possible nonrenormalizable interactions.

The fundamental interactions between microscopic states manifest themselves via new
effective interactions between low-energy degrees of freedom. Above and below the thresh-
old, the scale dependence of the theory can be described by a continuous modification of
its parameters (coupling constants, masses, wave function renormalization constants,...).
Such a scale dependence is described by the renormalization group. This idea has proven
to be one of the most revolutionary, powerful and effective of modern physics, reaching
great successes in many areas, from quantum to classical physics, from solid state to high-
energy physics, from fundamental particles to atoms, passing trough phase transitions.
This flow between different scales is well defined going from the microscopic scale to the
macroscopic one, but the same is not true in the inverse process. It is generally not possi-
ble to reconstruct the information about the microscopical system lost during the coarse
graining process.

In high-energy physics one is often interested in guessing the UV completion of a known
theory. As in the examples described above, this UV completion typically contains new
degrees of freedom, that are unobservable below the energy scale of their masses. This
new particle content is usually added by introducing new fields. An alternative, that we
extensively discuss in this thesis, consists in writing higher derivative kinetic terms for
the existing ones. This kind of UV completion gained some popularity in gravitational
theories, since Einstein general relativity is nonrenormalizable as a quantum field theory
and including operators quadratic in curvatures in the action makes gravity renormalizable
by introducing a higher derivative kinetic term for metric fluctuations.

On the other hand, higher derivative theories suffer from problems related to the
fact that the new degrees of freedom are actually ghost particles. Moreover, they have
peculiar features from the point of view of the renormalization group, in particular in
how the running of couplings (namely their dependence on the energy scale) emerges from
quantum loop corrections. This particular behaviour will be the main object of this thesis.

Going more into details, in Chapter 2 we review how the renormalization group has
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been defined in different ways in the context of high energy physics. We compare momen-
tum subtraction and minimal subtraction schemes, as defined in perturbation theory, with
the cutoff running of the Wilsonian renormalization group and of the functional renormal-
ization group. We consider couplings that run either as logarithms or powers of the energy
scale and we describe how infrared divergences are treated in theories with 2-derivative
kinetic terms in d = 4 spacetime dimensions. We observe that the same arguments cannot
be applied to higher derivative theories or standard 2-derivative theories in d = 2.

In Chapter 3, we briefly describe the intrinsic pathologies that affect higher derivative
theories. At the classical level, if the Lagrangian depends on the second or higher rank
time derivative of its argument, the associated Hamiltonian turns out to be unbounded
from below. This effect is known as the Ostrograskij instability. At the quantum level, it
produces either a quantum Hamiltonian with infinite negative energy states, or states with
negative norms, implying problems with unitarity and the notion of transition probability.
In the second part of the chapter we review some of the most popular approaches to solve
these problems without losing the good features of higher derivative theories with respect
to renormalization.

In Chapter 4, we start investigating the features of the renormalization group flow of
higher derivative theories. From the nonperturbative point of view, the presence of more
than one free Gaussian fixed points opens the possibility of a nontrivial flow between two
different Gaussian theories, giving rise to a theory free both in the IR and in the UV. As
a toy model, we study a higher derivative shift invariant scalar model. The theory shows
an interesting flow in the coupling’s space, linking the two Gaussian fixed points and a
third interacting one.

In Chapter 5, we study the perturbative renormalization group of the same scalar
theory via its two-point function and the 2 → 2 scattering amplitude. We match the
higher derivative theory with the low-energy effective field theory where the quartic kinetic
term is suppressed. We compute the beta functions and the anomalous dimension of the
field with different renormalization prescriptions and compare them with the one-loop
approximation of the exact renormalization group equation. We observe that, since the
tadpole diagram is logarithmically divergent, some unexpected discrepancies between the
momentum subtraction scheme and other prescriptions emerge. We observe something
similar happening in the higher derivative ϕ4 theory. This motivates us to study the
problem in a more systematic way. It turns out that off-shell IR divergences, absent in
two derivative theories in d = 4, can contribute to the running of couplings in scattering
amplitudes, but not all renormalization prescriptions are sensitive to them.

In Chapter 6, we study the same phenomenon in higher derivative theories in curved
spacetime. In this case, the beta functions are extracted from the form factors in the one-
loop quantum effective action. We consider a scalar field theory non-minimally coupled
to the background metric, quadratic gravity and Weyl conformal gravity. In the scalar
field, we observe a discrepancy between different prescriptions that disappears when the
theory is shift invariant. Quadratic gravity surprisingly shows asymptotic freedom also
without tachyonic particles, in contradiction with old beta functions computed using only
UV contributions. In conformal gravity the coefficient of the new beta function is slightly
different from the one already present in literature, however no qualitative changes are
produced in this case.

2-derivative theories in d = 2 spacetime dimensions share some features with 4-
derivative theories in d = 4. In particular, off-shell infrared logarithmic divergences could
be generated. In Chapter 7, we consider the well-known CP (1) NLSM. We explicitly
compute some of its scattering amplitudes and extract from them the beta functions of
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the theory using the same procedure introduced for higher derivative theories. We observe
that the running of coupling is universal in this case, even if it is generated by different
diagrams in different schemes. This happens because, unlike in higher derivative gravity,
all IR effects cancel out in the quantum corrections, removing the discrepancy between
various renormalization prescriptions.

Finally, in Chapter 8, we resume the main results and we discuss their implications
and possible further developments.
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Chapter 2

Many faces of the renormalization
group

In theoretical physics, there exist different definitions of Renormlaization Group (RG) and
running couplings. The Renormalization Group appeared for the first time in the context
of high-energy physics, where the problem of UV divergences was preventing physicists
from obtaining experimental predictions from Quantum Field Theory computations. An-
other possible approach is the formalism introduced by Wilson [1] in the 1970s in the
context of statistical physics. Here an artificial cutoff is introduced in the energy spec-
trum of the theory as a way to reproduce the finite resolution of an experiment testing
physics at a given energy scale. We will see that these two conceptions are strictly related,
however, when we move to spacetime dimensionalities different from 4 or consider higher
derivative theories, the connection becomes less trivial, and the two definitions can even
give different results and predictions.

2.1 The renormalization group in scattering amplitudes

In Quantum Field Theory, the standard procedure of regularization and renormalization
permits us to hold under control infinities coming out of perturbative computations if the
theory taken in account is renormalizable. By means of a redefinition of a finite set of
parameters of the bare Lagrangian in such a way as to reproduce the experimental results
of some measurement processes, one can make predictions on the expectation value of all
n-point functions of the theory. Unfortunately, this process introduces an arbitrariness in
the choice of the experimental tests used to fix the parameters of the theory. Moreover,
logarithms of the ratio between the energy scale of the correlation function that is be-
ing computed and the energy of the experiments that were used to fix the renormalized
couplings start to plague the results. These logarithms in the Green functions can grow
arbitrarily large with energy up to the failure of perturbativity of the loop expansion, even
if the renormalized couplings are small. In this section, we will review how the arbitrari-
ness intrinsic in the process of renormalization can be used to tame these large logs. We
will mainly follow the discussions in [2, 3].

A typical example used to explain the properties of the renormalization group is the
scalar λϕ4 theory

L = −1

2
ZB∂µϕ∂

µϕ− 1

2
m2
Bϕ− 1

4!
λBϕ

4 , (2.1.1)

where the subscript B stands for bare quantities. At one loop, the quantum correction to
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the two point function computed with a cutoff regularization is

Γ(2) = ZBp
2 +m2

B +
λ

32π2

[
Λ2 +m2

B log

(
m2
B

m2
B + Λ2

)]
(2.1.2)

The common “physical” renormalization prescription consists in fixing the field normal-
ization in such a way that the pole in the propagator is at the measured rest mass of the
particle m and the related residue has value one. These two conditions,

Γ(2)|p2=−m2 = 0, ∂2pΓ
(2)|p2=−m2 = 1 , (2.1.3)

can be easily fulfilled by introducing the counterterm δm2 = m2
B −m2 and setting simul-

taneously

δm2 = − λ

32π2

[
Λ2 +m2

B log

(
m2
B

m2
B + Λ2

)]
(2.1.4)

and ZB = 1. With such a choice, the one-loop contribution is completely reabsorbed in
the bare mass and canceled by the mass counterterm δm. This is possible because the
related Feynman integral is independent of the particle momentum pµ and therefore the
one-loop correction is just a constant shift.

However, things are trickier when considering the four-point amplitude for the 2 → 2
scattering process. In this case, the one-loop corrected amplitude explicitly depends on
the momenta of ingoing and outgoing particles pµ1 , p

µ
2 , p

µ
3 and pµ4 via the Mandel’stam

variables

s = −(p1 + p2)
2 , (2.1.5)

t = −(p1 + p3)
2 , (2.1.6)

u = −(p1 + p4)
2 . (2.1.7)

Indeed we have

M = λB −
λ2B
32π2

∫ 1

0
dx

{
log

[
m2 − sx(1− x) + Λ2

m2 − sx(1− x)

]
− Λ2

m2 − sx(1− x) + Λ2

}
+(s→ t) + (s→ u) +O(λ3) ,(2.1.8)

that can be approximated with

M = λB −
λ2B
32π2

∫ 1

0
dx

{
log

[
Λ2

m2 − sx(1− x)

]
+ log

[
Λ2

m2 − tx(1− x)

]
+ log

[
Λ2

m2 − ux(1− x)

]
− 3

}
+O(λ3) , (2.1.9)

since we chose the cutoff Λ much bigger than the mass m and momenta s, t and u. If one
tries to impose a renormalization prescription, for example requiring

M = λ|pi=0 (2.1.10)

to match the low energy limit of the amplitude with the static classical interaction λ, one
easily finds λB = λ+ δλ with

δλ =
3λ2B
32π2

[
log

(
Λ2

m2

)
− 1

]
, (2.1.11)
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while the renormalized amplitude becomes

M = λ− λ2

32π2

∫ 1

0
dx

{
log

[
m2

m2 − sx(1− x)

]
+ log

[
m2

m2 − tx(1− x)

]
+ log

[
m2

m2 − ux(1− x)

]}
+O(λ3) . (2.1.12)

At this point, the renormalized amplitude is finite, because the Λ dependence has been
canceled by the counterterm, but it does not behave well in the high energy limit: if s, t
or u grow larger than m2, the amplitude reduces to

M ∼ λ+
λ2

32π2

[
log

(
−s
m2

)
+ log

(
−t
m2

)
+ log

(
−u
m2

)
− 6

]
(2.1.13)

and λ log
(−s,t,u

m2

)
can grow bigger than one and break the weak coupling perturbative

expansion. Such large logs emerge every time the diverging loop integrals depend on
external momenta and cannot be avoided by any smart choice of renormalization scheme.

A way around was suggested in the context of QED by Gell-Mann and Low [4]: the
energy scale used to define the renormalized coupling does not have to be equal to the
on-shell masses of the particles in the theory or other physical observables; indeed, the
renormalization point can be taken as close as desired to the energy scale of the experiment,
avoiding the occurrence of large logs. The relation between the effective high-energy
coupling and the results of classical low-energy measurements will be established by means
of the so-called renormalization group.

Let us see it explicitly in the λϕ4 case: one can take as renormalization condition

M = λ(µR)|s,t,u=µR (2.1.14)

defining as λ(µR) the coupling at the unphysical symmetric point s, t, u = −µR ≫ m2.
With this choice the amplitude is

M = λ(µR)−
λ(µR)

2

32π2

∫ 1

0
dx

{
log

[
m2 + µ2Rx(1− x)

m2 − sx(1− x)

]
+ log

[
m2 + µ2Rx(1− x)

m2 − tx(1− x)

]
+ log

[
m2 + µ2Rx(1− x)

m2 − ux(1− x)

]}
+O(λ3) .

(2.1.15)

and, if s, t and u are of the same order of magnitude of µR, the logs remain of order unity
and no breakdown of the perturbative expansion occurs, as far as λ(µR) ≪ 1. However,
a careful reader will immediately notice that requiring λ(µR) to be small at µR ≫ m is a
very strong constraint. By comparing the last expression with the amplitude in terms of
the classical coupling λ written a few lines above (2.1.13), one can see that the relation
between the two is

λ(µR) ∼ λ+
3λ2

32π2
log

(
µ2R
m2

)
, (2.1.16)

So λ(µR) gets large with growing µR. Up to now, we are just moving the large logarithm
from one place to another. Instead of making one big leap and defining λ(µR) from λ, an
alternative method consists of considering many successive redefinitions of the coupling

λ(µR) at nearby scales µR and µ′R, such that log
(
µR
µ′R

)
∼ 1. In this way, both λ(µR) and

λ(µ′R) are kept small, preserving perturbativity, and a resummation of the effects of small
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change of scale can be done at a later stage. Physical amplitudes must be independent of
the chosen renormalization scale, so we can exploit this property to find how the couplings
must change with the scale µR. If the shift from λ(µR) to λ(µ

′
R) has to leave the amplitude

(2.1.15) unchanged, λ(µR) and λ(µ
′
R) must respect the relation

λ(µ′R) = λ(µR)−
3λ(µR)

2

32π2

∫ 1

0
dx log

[
m2 + µ2Rx(1− x)

m2 + µ′2Rx(1− x)

]
(2.1.17)

and one can define the beta function of λ as the logarithmic derivative of the coupling
with respect to the scale µR

βλ := µR
d

dµR
λ(µR) . (2.1.18)

In this case we have

βλ =
3λ(µR)

2

16π2

∫ 1

0
dx

µ2Rx(1− x)

m2 + µ2Rx(1− x)
. (2.1.19)

Now the beta function can be integrated back to obtain the effect of a finite shift in µR:
in the approximation µR > m, the beta function simplifies to

βλ =
3λ2

16π2
, (2.1.20)

that gives

λ(µR) ∼
λ

1− 3λ
16π2 log

(µR
m

) . (2.1.21)

Notice that λ(µR) can remain small even when λ log
(µR
m

)
is of order one, hence the

renormalization group and the definition of running couplings via beta functions permit
to extend the perturbative regime with respect to the naive approach of (2.1.16).

The prescription we used here, consisting in fixing the value of renormalized couplings
using the expressions of scattering amplitudes at particular values of external momenta, is
part of a larger family of renormalization schemes called Momentum Subtraction Schemes
(MOM). We will often call the running couplings defined using these schemes “physical”,
because they are defined using explicitly the dependence of scattering amplitudes on exter-
nal momenta, which are the physical observables of scattering processes. In the following,
we will see other schemes where the running of coupling constants is defined using the de-
pendence of correlation functions or their generating functionals on unphysical parameters
introduced by hand in the theory.

2.1.1 The Callan-Symanzik equation

The statement that physical observables, such as Green functions or scattering amplitudes,
must be invariant with respect to changes of the renormalization point, is formalized in
the Callan-Symanzik equation [5, 6], which allows one to compute beta functions and
anomalous dimensions of fields and couplings that appear in a given observable. Let’s
consider a connected n-point Green function

GnB(x1, ..., xn,Λ, λB) = ⟨Ω|TϕB(x1)...ϕB(xn) |Ω⟩ . (2.1.22)

We can define the renormalized Green function in terms of the renormalized fields and
couplings as

Gn(x1, ..., xn, µR, λ(µR)) = ⟨Ω|Tϕ(x1)...ϕ(xn) |Ω⟩ = Z−n/2(µR)G
n
B(x1, ..., xn,Λ, λB) .

(2.1.23)
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The renormalized Green function depends both explicitly and implicitly (via the running
coupling λ(µR)) on the renormalization scale µR and also the field normalization Z(µR)
depends on the choice of the renormalization conditions. However, the bare Green function
GnB is independent of µR, so

µR
d

dµR
Gn =

n

2
η , (2.1.24)

where

η = −µR
d

dµR
logZ (2.1.25)

is the anomalous dimension of the field, and we can conclude that[
µR

∂

∂µR
+ βλ

∂

∂λ
− n

2
η

]
Gn(x1, ..., xn, µR, λ(µR)) = 0 . (2.1.26)

This is called the Callan-Symanzik equation and can be easily extended to theories with
many different fields ϕj and couplings gi just by defining their respective beta functions
βgi and anomalous dimensions ηj and adding to the equation as many terms of the type
βgi

∂
∂gi

and
nj

2 ηj as needed, where nj is the number of fields ϕj in the Green’s function
Gn1,...,nj . Hence, by substituting in it a good set of n-particles correlators computed in
perturbation theory, one can obtain the RG flow of couplings and field normalizations of
a given theory.

2.2 The Wilsonian renormalization group

The Wilsonian method [1] comes from statistical mechanics and the theory of critical
phenomena. As well known in fluid dynamics and thermodynamics, it is not always
necessary to keep track of all the microscopic degrees of freedom of a system, in order
to give a good description of it. A reduced number of effective variables could be good
enough to describe the observed physics. Suppose to have a statistical system composed
by a lattice of spins with spacing L, such that the system shows the same macroscopic
behaviour until its total extension is bigger than ξ ≫ L, while below that size the collective
behaviour is lost and a microscopic description of the degrees of freedom is needed. The
length scale ξ is called correlation length. The partition function can be computed from
the local microscopic Hamiltonian H1, however one can also introduce a new reduced
lattice with spacing 2L and Hamiltonian H2 describing the same collective behaviour via
local interactions between the new spin variables. This process, as suggested by Kadanoff
[7], can be repeated over and over until arriving to a a macroscopic description in term
of extended degrees of freedom of size 2nL ∼ ξ interacting via the Hamiltonian Hn.
In this context, the renormalization group describes the relations between the various
Hamiltonians Hi, all leading to the same partition function via differently coarse grained
variables. Now we would like to translate this idea to theories with an infinite number of
continuous degrees of freedom, like field theories. The partition function of a statistical
field theory is

Z =

∫
Dϕe−SE [ϕ]/T , (2.2.1)

where the Hamiltonian is now called SE . This peculiar naming is due to the fact that we
are actually interested in quantum field theories and the associated path integral assumes
precisely the from of a partition function of a statistical field theory after Wick rotating to
the imaginary axis the time coordinate. After this process the Euclidean action takes the
role of the Hamiltonian of the statistical system and many notions, as the renormalization
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group itself, can be transferred quite easily. In a continuous theory there is nothing like
a lattice scale that we can change to reduce the number of effective degrees of freedom,
however one can observe that on a lattice the Fourier space is periodic with 0 < p <
2π/L. Hence, increasing the lattice spacing by a factor b corresponds to multiplying by
the inverse 1/b the domain of periodicity of the Fourier space. We can reproduce the
step of neglecting microscopic degrees of freedom by introducing a cutoff over momenta:
the collective degrees of freedom of size L will be described only by Fourier modes with
|p| < 2π/L. If we are interested in physics at energy scales below a given scale Λ, the
modes with |p| > Λ are not strictly necessary to describe it, in the same way as not all the
spins in the lattice were necessary, if the correlation length was larger than the spacing L.
That means we can just adopt an effective theory that uses only the modes with |p| < Λ
and automatically embodies all the effects of high energy modes. To define it, we can
decompose ϕ(p) in heavy and light modes

ϕL(p) = θ(Λ− |p|)ϕ(p), ϕH(p) = θ(|p| − Λ)ϕ(p) ,

and rewrite the partition function as

Z =

∫
DϕHDϕLe

−SE [ϕH+ϕL]/T . (2.2.2)

Since in the end we are interested only in correlators between light fields, we can do the
functional integral over ϕH , obtaining

Z =

∫
DϕLe

−SEFF
E [ϕL,Λ]/T . (2.2.3)

Here SEFFE [ϕL,Λ] is the new effective action that permits to describe the physics at energies
below Λ just in terms of light fields. The Wilsonian renormalization group describes how
the effective action changes if the cutoff is lowered to Λ′ < Λ. All we have to do is
integrating over all modes with Λ′ < |p| < Λ and find SEFFE [ϕL,Λ

′]. Obviously the
effective action will change in such a way that the correlators of fields at energies below
Λ′ are exactly the same as if they were computed using the old cutoff Λ and effective
action SEFFE [ϕL,Λ]. If S

EFF
E is a local action, it can be expanded on a complete basis of

operators which are spatial integrals of monomials of light fields and their derivatives at
coincident points

SEFFE [ϕL,Λ] =
∑
i

gi(Λ)Oi(ϕL) (2.2.4)

with

Oi(ϕ) =

∫
ddx

∏
n

(∂nϕ(x))mn (2.2.5)

with both n and m > 0, or equivalently, in momentum space,

Oi(ϕ) =
∏
n

(∫
ddp1...

∫
ddpmn

)
δd(
∑
n

mn∑
k=1

pk)
∏
n

mn∏
jn=1

pnjnϕ(pjn) . (2.2.6)

We want to establish a relation between gi(Λ) and gi(Λ
′), however to do it we have to

bring SEFFE [ϕL,Λ] and SEFFE [ϕL,Λ
′] in a comparable form. First of all, we rescale the

integrated momenta in SEFFE [ϕL,Λ
′] by Λ′/Λ in such a way as to have integrals ranging

from zero to Λ in both actions. After that, there is still a certain degree of arbitrariness

10



in the definition of the coefficients gi. For example, one has to fix the normalization of the
field. Wilson, in its work, reabsorbs the Λ dependence in the operator

1

2
Z(Λ)

∫
ddx (∂µϕ)

2 (2.2.7)

in the field via the redefinition ϕ→ Z− 1
2ϕ, in such a way that the kinetic term in the action

has always the coefficient 1
2 in front. The new field depends on Λ, so its transformation

under the RG is not determined only by its classical mass dimension, but it acquires also
a non-zero anomalous dimension. There are also other couplings that can be fixed by
a redefinition of the field; they are called redundant or inessential and their behaviour
does not affect the physics of the system. Now that the two effective actions have the
same structure, the RG flow of the theory can be calculated via infinitesimal changes
of Λ and described in terms of the beta functions of the dimensionless couplings γi =
Λ−∆iZ− 1

2
(ni+mi)gi

βγi = Λ
d

dΛ
γi(Λ) , (2.2.8)

where ∆i is the mass dimension of gi. In the Wilsonian picture, one does not actually have
to start from a bare action S, as in standard perturbation theory, and subsequently find
SEFFE by integrating out heavy modes. In fact, all measures and observations actually
give some information which is meaningful at a particular energy scale and permits only
to estimate the couplings of the effective theory that describe the system at that scale.
Hence, what the physicist has to do to understand the behaviour of the same system at
a different scale is to integrate out shells of momenta and see how the effective couplings
change, without caring of the UV divergences of the bare theory and its regularization.
Obviously, this procedure of integrating over momentum shells can be very tricky: it can be
done via a diagrammatic computation as in [1], however, it can become very complicated
from a technical point of view and it works only in the perturbative regime. Moreover,
the use of a hard cutoff in momentum space usually leads to a breakdown of covariance
and is not gauge invariant in theories with local symmetries. Despite these limitations,
the Wilsonian conception of the renormalization group inspired many successive attempts
to find a simpler way to describe how the effective description of a system changes at
different scales [8, 9]. One of these is the Functional Renormalization Group (FRG) [10,
11], a nonperturbative technique that permits to compute directly the dependence of a
new type of effective action on a cutoff over the spectrum of the kinetic operator. We will
briefly review this tool in the next section, following the discussion of [12].

2.2.1 The Functional Renormalization Group

The main object of the functional renormalization group is the Effective Average Action
(EAA). Let’s consider the partition function of a quantum field theory describing a scalar
field ϕ associated with an external source J

Z[J ] =

∫
Dϕe−SE [ϕ]+

∫
dDxϕJ . (2.2.9)

In order to reproduce the Wilsonian idea of integrating over heavy modes, i.e. those with
momenta above a given cutoff, we add to the action an infrared regulator ∆Sk[ϕ] built as

∆Sk[ϕ] =
1

2

∫
ddxϕRk(∆)ϕ , (2.2.10)
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where k is an energy scale and ∆ is the Laplace operator. If Rk is chosen in such a way
that the weight in the functional integration of modes with momentum below k becomes
exponentially suppressed, the new partition function Zk[J ] defined using S + ∆Sk as
bare action will look very similar to the effective action SEFFE [ϕL,Λ] defined before with
Λ = k. The Laplace operator has a complete basis of eigenfunctions λi, with associated
eigenvalues zn, so we can define Rk as acting on this basis as a scalar function Rk(z). The
implementation of the cutoff over the spectrum of the Laplace operator and the use of the
Heat Kernel, that we will introduce in section 6.1.2, will permit us to preserve spacetime
covariance and gauge symmetries. In the particular case of Euclidean flat space, the
eigenvalues of ∆ are simply z = p2. To obtain the suppression discussed above and have
some good properties that will be useful in the followings, we require the cutoff function
Rk to:

• be monotonically decreasing with z at fixed k;

• be monotonically increasing with k at fixed z;

• go to 0 ∀ z in the limit k → 0;

• go to zero at least exponentially when z > k2;

• satisfy Rk(0) = k2.

By the introduction of the cutoff, no new interactions are added to the theory, only the
bare propagator is modified. In fact the new propagator is

G(z) =
1

z +Rk(z)
. (2.2.11)

In this way the eigenmodes of the Laplacian with eigenvalue above k2 remain unchanged
in their propagation, while modes with z ≪ k2 acquire a fictitious mass of order k which
suppresses their propagation length and their contribution in loops. From the k-dependent
partition function, one can define all the other generating functionals used in standard
QFT. So we proceed as usual by introducing the free energy Wk[J ] as

Wk[J ] = logZk[J ] . (2.2.12)

This functional is the generator of connected n-points functions and can be used to com-
pute the expectation value of the field with a given external source J via the relation
φ = δWk[J ]

δJ . At this point we can define a quantum effective action Γ̃k[φ] via a Legendre
transform

Γ̃k[φ] = −Wk[Jφ] +

∫
dDxφJφ , (2.2.13)

where Jφ is obtained by inverting the relation used before to write φ as a function of J . At
the end, we arrive at the Effective Average Action after subtracting from the k-dependent
effective action the regulator, giving

Γk[φ] = Γ̃k[φ]−∆Sk[φ] . (2.2.14)

Thanks to the particular features of the regulator, the EAA has the nice property of
interpolating between the bare action S and the full quantum effective action Γ, which is
the generating functional of 1-point irreducible (1PI) correlation functions. Indeed it is
trivial to see that, in the limit k → 0, the regulator can be neglected and we have the full
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effective action, while, in the limit k → ∞, all modes are exponentially suppressed by an
infinite factor, hence there is no integration at all and the EAA is equal to the bare action.

The Effective Average Action obeys a simple exact renormalization group equation:
the Wetterich-Morris equation. The one-loop approximation of the quantum effective
action can be written as

Γ1 = S +
1

2
Tr log

δ2S

δϕδϕ
(2.2.15)

and this expression can easily be used to find a one-loop approximation of the EAA: Γ̃k
is just the effective action given by the bare action S +∆Sk, so its one-loop expansion is
the same as Γ, while to obtain Γk we just have to subtract the regulator. Hence,

Γ1
k = S +∆Sk +

1

2
Tr log

δ2(S +∆Sk)

δϕδϕ
−∆Sk = S +

1

2
Tr log

(
δ2S

δϕδϕ
+Rk

)
. (2.2.16)

What we are actually interested in is the dependence of the EAA on k, so we act with a
logarithmic derivative dt = k d

dk on both sides of the last expression, obtaining

dtΓ
1
k =

1

2
Tr

(
δ2S

δϕδϕ
+Rk

)−1

dtRk , (2.2.17)

since the k-dependence in the right hand side comes only from Rk. Up to this point, we
have an equation that contains both the bare action and the one-loop EAA, however it is
possible to make it a closed exact equation of only Γk. Let us return to the free energy
Wk, its derivative turns out to be

dtWk = −
∫
Dϕe−SE [ϕ]−∆Sk[ϕ]+

∫
dDxϕJdt∆Sk[ϕ]

Zk

= −dt⟨∆Sk⟩ = −1

2
Tr⟨ϕϕ⟩dtRk , (2.2.18)

where we have introduced the expectation value with respect to the partition function Zk
defined as

⟨O⟩ =
∫
Dϕe−SE [ϕ]−∆Sk[ϕ]+

∫
dDxϕJO

Zk
. (2.2.19)

Hence, we immediately have dtΓ̃k = −dtWk, since the two functionals are related by the
Legendre transform (2.2.13). The derivative of the full EAA is

dtΓk[φ] = −dtWk − dt∆Sk[φ] =
1

2
Tr (⟨ϕϕ⟩ − ⟨ϕ⟩⟨ϕ⟩) dtRk , (2.2.20)

because φ = ⟨ϕ⟩ by definition. Notice that ⟨ϕϕ⟩ − ⟨ϕ⟩⟨ϕ⟩ is the connected two-point
function and Wk is the generator functional of this type of correlators, then we can write

dtΓk[φ] =
1

2
Tr
δ2Wk

δJδJ
dtRk . (2.2.21)

Due to the properties of the Legendre transform (2.2.13), the external source J written as

a function of φ is equal to δΓ̃k
δφ , so we can write, respectively,

δ2Γ̃k
δφδφ

=
δJ

δφ

δ2Wk

δφδφ
=
δφ

δJ
, (2.2.22)
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that implies

δ2Wk

δφδφ
=

(
δ2Γ̃k
δφδφ

)−1

. (2.2.23)

Using the last relation, one obtains the Wetterich-Morris equation or Exact Renormaliza-
tion Group Equation (ERGE) [10, 11]

dtΓk[φ] =
1

2
Tr

(
δ2Γk
δφδφ

+Rk

)−1

dtRk . (2.2.24)

What we have done is basically an “RG improvement” of the approximate eq (2.2.17),

since we have substituted both the one-loop EAA Γ
(1)
k and the bare action S with the

full EAA. That means that the one-loop structure of the ERGE is preserved, and we can
diagrammatically represent the equation as in figure 2.1.

dtΓk[φ] =
1
2

Figure 2.1: Diagrammatic representation of the ERGE: the line represents the full propa-

gator
(
δ2Γk
δφδφ +Rk

)−1
, while the crossed insertion represents the derivative of the regulator

dtRk.

As in the case of the Wilsonian RG, arrived at this point we can forget of the existence
of a bare action and start the computations from an ansatz for the EAA at a given scale
k. Moreover, despite Rk being introduced as an infrared regulator, the Wetterich-Morris
equation is free of UV divergences. This is ensured by the fact that the regulator decreases
at least exponentially when z > k, thus the contribution of UV modes in the functional
trace is suppressed by dtRk → 0. From a qualitative point of view, the derivative with
respect to t of Γk can be seen as the difference between two EAAs that differ only by a
small change in k. Modes with z ≫ k2 are almost unaffected by the regulators in both
terms of the subtraction, and hence their contributions cancel each other. At the same
time, modes with eigenvalues well below k are suppressed by the cutoff itself, thus only
modes with z ∼ k2 really contribute to the scale derivative of the average effective action.
Thanks to this feature, the ERGE really resembles the integration over momentum shells
of the Wilsonian RG.

At this point, there are two ways to use the ERGE: one corresponds to exploiting the
property of the Average Effective Action to interpolate between the bare action S and
the full 1PI generating functional Γ. Choosing a “quasi-bare” action at a very high k,
preferably close to a UV attractive fixed point of the RG flow of the theory, and integrating
the Wetterich-Morris equation down to k = 0, one can obtain a nonperturbative expression
for Γ. From this point of view, the FRG turns out to be a tool to compute the quantum
effective action of a theory without stumbling in all the UV divergences that usually
emerge in perturbation theory. Although feasible in some simple cases [13], this approach
turns out to be extremely hard from a technical point of view in theories like Gravity and
only in recent years some steps have been made in this direction [14, 15]. The alternative
path consists of considering k as a good proxy for the energy dependence of the theory, as
happens with Λ in the Wilsonian case, and using the k running to predict the changes in

14



physical observables at different energy scales. One takes an ansatz for Γk at a fixed scale,
usually expands it in terms of local operators of fields and derivatives of the field (2.2.5) and
finds the beta functions βγi = k d

dkγi(k), where γi = k−∆igi are the dimensionless couplings
and ∆i represents the mass dimension of gi. In the FRG, the coupling Z is usually treated
at the same level as any other coupling gi, leaving the fields independent of k. The only
difference with respect to other couplings is that the anomalous dimension η = −dt logZ
is usually used in spite of βZ to describe its flow. So we have obtained a very promising
non-perturbative equation that describes the dependence of the average effective action
on the cutoff scale k and permits to extract the beta functions of the theory; however, this
powerful tool also comes with a price. The basis of local operators has infinite cardinality
and at every new step of the FRG flow all these operators could potentially have a nonzero
beta function. This makes the ERGE practically impossible to handle. What is usually
done is to reduce the theory space, the space of local operators taken in to account, to
a finite-dimensional space by means of a truncation and compute the flow of the theory
restricted to this subspace. Hence, whether the predictions of experimental observable
obtained from FRG calculations match or not with measurements of real physical systems
depends equally on the choice of the starting EAA and of the truncation of the theory
space.

The Wilsonian RG and other techniques inspired by it, such as the FRG, are very
powerful tools capable of giving insights on non-perturbative effects in QFT and describing
the RG flow of a theory even far away from the perturbative (small coupling) regime, where
the standard approach in terms of Feynman diagrams cannot be applied. On the other
hand, these realizations of the renormalization group are based on the dependence of the
effective theory on an artificially introduced cutoff. While in condensed matter physics
this cutoff can be easily related to a characteristic scale of the molecular structure of the
system, as the spacing of a crystal lattice, below which the effective description in terms of
excitations is not faithful, in high-energy physics, due to Poincarè invariance, there are no
such physical cutoffs. In these cases, usually physicists try to relate the cutoff scale with
the energy scale of the experiment, which was used to define the RG in Section 2.1, and
then compare it with the masses of the particles in the spectrum of the theory. However,
this identification sometimes turns out to be not unique. In the next Section we will discuss
the relation between different definitions of the renormalization group in the particular
case of QFTs with 2 derivatives in the kinetic term in four spacetime dimensions.

2.3 Universality in the renormalization group

Differences and analogies between various definitions of the Renormalization Group have
been widely discussed in the literature in the standard case of 2 derivative theories in 4
spacetime dimensions. In this discussion, we will distinguish two cases: the logarithmic
running and the power-law running. We will see that, while the logarithmic part, under
certain conditions, is a universal feature of the RG, that means it produces the same beta
functions at one-loop for all definitions of the RG or renormalization schemes, the power-
law running of coupling has been object of fierce discussions along the years and there
seems not to exist a universal notion of it.

2.3.1 The logarithmic running

A first hint of the universality of logarithmic running can already be found in the example
of section 2.1. To define the physical running, we used the dependence of the amplitude on
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the kinematical variables to calculate the beta functions, however, in aWilsonian approach,
we can consider the bare parameters appearing there as the Λ dependent parameters of
the effective theory at scale Λ. Hence, to extract the beta functions, we have to impose
the independence of M on Λ and apply the same machinery introduced with the Callan-
Symanzik equation (2.1.26) to the cutoff instead of the renormalization scale µR. The
result is

βλB = −Λ
∂

∂Λ
M =

3λ2B
16π2

(2.3.1)

One can immediately see that this expression is identical to the high-energy (s, t, u≫ m2)
limit of the physical beta function (2.1.20). This should not be surprising, after looking
at the one-loop amplitude (2.1.9) in the same limit, that is simply

M ∼ λB +
λ2B
32π2

[
log

(
−s
Λ2

)
+ log

(
−t
Λ2

)
+ log

(
−u
Λ2

)]
. (2.3.2)

Notice that the logarithms of the kinematical variables s, t and u are all coupled with
logarithms of the cutoff Λ, hence they have the same coefficients in front. This is not a
coincidence, but a general property of one-loop Feynman diagrams of 2-derivative theories
in 4 spacetime dimensions, where large logarithms in momentum variables always come
with the regulator of UV divergences in the high-energy limit. A good intuition of why
this is true can be obtained by looking at a generic one-loop Feynman diagram as the one
depicted in fig. 2.2.

p3

pn

p2

p1
q

q + p1

q + p1 + p2

q + p1 + ... ...

Figure 2.2: a generic 1-loop diagram. Doubled external lines mean that they do not
necessarily correspond to single particles, in fact they can stand also for 2 or more fields
interacting at the same point with total momentum pi.

Let us start considering a theory where there are no intrinsic scales as masses or
dimensionful couplings. In this case, the integral related to the loop looks like∫ Λ

k
d4q

N(q, pi)

q2(q + p1)2 × · · · × (q + p1 + · · ·+ pn−1)2
, (2.3.3)

where N is a generic polynomial in q and pi and the integral is regulated in the UV by the
cutoff Λ and in the infrared by k. The external momenta pi and the two cutoffs are the
only dimensionful quantities, so if we take Λ ≫ pi ≫ k, the logarithms that a priori can
be produced have the structures log f(pi)

Λ , log f(pi)
k , log f(pi)

g(pi)
and log Λ

k , where f(pi) and

g(pi) are generic functions of mass dimension 1 of the external momenta. Logs containing
Λ come from UV divergences, while those with k are the results of the regularization of
IR divergences. Notice that, in the limit q ≪ pi ∀ i, the integrand reduces to

N(0, pi)

q2(p1)2 × · · · × (p1 + · · ·+ pn−1)2
, (2.3.4)
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if none of the sums of external momenta is equal to zero, i.e. virtual particles in loops
are not on-shell. Hence, the integral is IR finite in 4 dimensions and k does not appear
in any log in the result, because the limit k → 0 must be regular. We will discuss the
on-shell IR divergences later on, for the moment, it is enough to know that the RG is
not needed to handle them. If we choose a renormalization point where all the relevant
kinematical variables f and g in the amplitude have similar magnitudes, log f(pi)

g(pi)
will be

of order 1, hence the only remaining source of large logs dangerous for the perturbativity
of the series expansion will be terms like log f(pi)

Λ , exactly as we have seen in our example.
The direct consequence is that we can be sure that, in massless theories with an ordinary 2
derivative kinetic term in 4 spacetime dimensions, large logs of large momenta in one-loop
amplitudes always have the same coefficient as logs of the UV regulator, hence the physical
running is equivalent to the logarithmic Wilsonian running. Concerning the k-running in
the FRG, since it substantially realizes the Wilsonian idea of integration over momentum
shells, we expect it to produce results compatible with the Wilsonian RG. Moreover, when
one computes an n-point function from the EAA, it turns out that the sums of external
momenta in the denominator of (2.3.3) act as effective masses for the propagators in a
way similar to the cutoff Rk, so it is natural to obtain amplitudes that depend in the same
way on the cutoff scale k and the typical energy scale of external momenta E [16, 17].

Dimensional regularization

The relation between large logs and UV divergences holds independently of the regular-
ization method used to avoid infinities, then other techniques are often preferred to cutoff
regularization. A very popular one, due to its property of preserving gauge symmetries,
is dimensional regularization (dim reg) [18], where the momentum integral is analytically
extended to d ∈ C spacetime dimensions. In this way all loop integrals are reduced to
euclidean integrals of the form

µ4−d
∫

ddq

(2π)d
q2l

(q2 +∆)n
=

1

(4π)d/2
d(d+ 2) . . . (d+ 2(l − 1))

2l
Γ
(
n− d

2 − l
)

Γ(n)
∆l+ d

2
−n ,

(2.3.5)
where µ is a mass parameter introduced to preserve the overall dimensionality of the
integral. The singular behaviour of the integral is now totally enclosed in the Euler
gamma function in the numerator of the right hand side, which has poles in the complex
plane in correspondence to 0 and negative integer numbers. Near zero we have

Γ(x) =
1

x
− γE +O(x) , (2.3.6)

where γE is the Eulero-Mascheroni constant. The Laurent expansion near the other poles
can be calculated from the latter using the well-known property of the gamma function

Γ(x− 1) =
Γ(x)

x− 1
, (2.3.7)

thus

Γ(x) =
(−1)n

n!

(
1

x+ n
− γE + 1 + · · ·+ 1

n
+O(x+ n)

)
(2.3.8)

for x ∼ −n. If the integral was divergent before the analytical continuation, d = 4 will
correspond to a pole of the Γ function in the numerator and, taking d = 4− 2ε with small
ϵ, we will obtain

µ2ϵ
∫

d4−2εq

(2π)4−2ε

q2l

(q2 +∆)n
= a0∆

l−n−2

(
1

ε
− γE + log 4π + log

(
µ2

∆

))
+O(ε) , (2.3.9)
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where a0 is a constant number. In the particular case of the λϕ4 theory we have considered
up to now, the one-loop amplitude regulated with dim reg is

M ∼ λB +
λ2B
32π2

[
−1

ε
+ γE − log 4π + log

(
−s
µ2

)
+ log

(
−t
µ2

)
+ log

(
−u
µ2

)]
(2.3.10)

at high energies. Using the so-called MS renormalization scheme, the divergent part 1
ε

and the finite terms γE and log 4π are reabsorbed in the definition of the renormalized
coupling λ(µ). So, the renormalized amplitude is

M ∼ λ(µ) +
λ(µ)2

32π2

[
log

(
−s
µ2

)
+ log

(
−t
µ2

)
+ log

(
−u
µ2

)]
, (2.3.11)

that is free of large logs that break the perturbative expansion, as far as we take µ2 ∼ s, t, u.
Even in this case, the physical amplitude has to be independent of the arbitrary parameter
µ, then the coupling λ(µ) must cancel the explicit dependence on it. That means we can
find its beta function with a Callan-Symanzik-like equation, exactly the same way we
defined the cutoff beta function in eq. (2.3.1):

βµλ = −µ ∂

∂µ
M =

3λ(µ)2

16π2
. (2.3.12)

Again, we recover the same beta function, since different regularization procedures are just
different way to identify the same logarithmic divergences. During the rest of this thesis, we
will often call the running of coupling induced by MS or similar renormalization schemes
µ-running, from the standard name given to the unphysical energy scale introduced by
dimensional regularization.

The general integral of (2.3.5), regulated with an UV cutoff, would be∫ Λ d4q

(2π)4
q2l

(q2 +∆)n
= aiΛ

2l−2n+4 + ai−1∆Λ2l−2n+4−2 + . . . a0∆
l−n−2 log

(
Λ2

∆

)
+O(1) .

(2.3.13)
Notice that only the logarithmic divergence was already there in the result of dim reg,
while the coefficients in front of power-law divergences are automatically set to zero by the
analytical extension procedure. This discrepancy will have a crucial role in the discussion
of power-law divergences later on, however, if we limit ourselves to logarithmic divergences,
the two regularizations give the same coefficient a0 and the same beta function.

One-loop universality of beta functions

In general, it can be shown that all alternative definitions of the running coupling g that
grant perturbativity of the scattering amplitudes at small renormalized coupling end up
giving the same beta function at leading and subleading order in g itself [3]. Let us consider
two renormalized couplings g(µ) and g̃(µ), defined with different prescriptions. If they are
both parametrically small and allow us to reabsorb all the large logs, one can be written
in terms of the other in the following way

g̃(g) = g + ag2 +O
(
g3
)
, (2.3.14)

or equivalently

g(g̃) = g̃ − ag̃2 +O
(
g̃3
)
, (2.3.15)
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On the other hand, also the beta functions can be perturbatively expanded in g:

βg = bg2 + cg3 +O
(
g4
)

= bg̃2 + (c− 2ab)g̃3 +O
(
g̃4
)
, (2.3.16)

while, from the chain rule

βg̃ = µ
d

dµ
g̃ =

dg̃

dg
βg . (2.3.17)

So, putting all together,

βg̃ =
[
1 + 2ag̃ +O

(
g̃2
)] [

bg̃2 + (c− 2ab)g̃3 +O
(
g̃4
)]

= bg̃2 + cg̃3 +O
(
g̃4
)
, (2.3.18)

implying that the coefficients b (given by the one-loop corrections) and c are independent
of the renormalization scheme. However, the same cannot be said of subsequent terms in
the small g expansion.

massive theories

In the case of theories containing massive particles, the picture is more complicated. The
presence of another energy scale m different from the external momenta permits us to
construct new logarithms such as log Λ

m and log f(pi)
m . Moreover, the so-called threshold

effects emerge when the energy scale of the scattering process falls below m.

Figure 2.3: The tadpole diagram contributing to the self energy in scalar λϕ4 theory

When a virtual massive particle propagates in loops, the tadpole diagram (fig. 2.3),
associated to the integral ∫

d4q
1

q2 +m2
, (2.3.19)

acquires a logarithmic UV divergent term, as in the case of the one-loop two-point func-
tion (2.1.4). As observed in that case, such an infinite one-loop correction to the bare
propagator does not require introducing a physical running for the mass, since there is
no dependence on the particle’s four-momentum in the logarithm and the divergence can
be reabsorbed once for all energy scales in the renormalized mass. However, if we would
have used instead a different definition of the RG, as the Wilsonian one or dimensional
regularization with MS prescription, we would have found a running mass. Following the
Wilsonian recipe of section 2.2, we require the independence of the two point function
(2.1.4) from the cutoff, obtaining

Λ
dm2

B

dΛ
= − λ

16π2
Λ4

Λ2 +m2
B

, (2.3.20)

then we introduce the dimensionless coupling m̃2(Λ) = Λ−2m2
B and calculate the beta

function of m̃2

βm̃2 = −2m̃2 − λ

16π2
1

1 + m̃2
. (2.3.21)
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On the other hand, the FRG and the Wetterich equation with the optimized or Litim
cutoff Rk(z) = (z − k2)θ(k2 − z) [19] gives [12]

βm̃2 = −2m̃2 − λ

32π2
1

(1 + m̃2)2
. (2.3.22)

In dim reg the one-loop two-point function is

Γ(2) = p2 +m2
B −

λm2
B

32π2

[
1

ε
− γE + log 4π + log

(
µ2

m2
B

)]
, (2.3.23)

so the dimensionless renormalized coupling m̃2(µ) = µ−2(m2
B − δm2) is defined in MS by

setting

δm2 =
λm2

B

32π2

[
1

ε
− γE + log 4π

]
. (2.3.24)

Again the beta function is defined via the Callan-Symanzik equation for µ, so we get

βµ
m̃2 = −2m̃2(µ) +

λm̃2(µ)

16π2
. (2.3.25)

In this case, we had a power-law divergence together with the logarithmic one. We have
already anticipated that the running produced by powers of the cutoff is not universal, still
the logarithmic part of the running, namely the term proportional to λm̃2, is a common
feature of all these schemes. In fact, it is present at subleading order in the small mass
expansion of (2.3.21) and (2.3.22). This term comes from logarithms of the type log Λ

m or
log µ

m , hence it has no equivalent in the physical running, because no external momenta
can enter in the tadpole integral and then no large logarithms of kinematical variables
can be generated. This kind of running is unphysical in the sense that it cannot be
observed by comparing the outcome of scattering experiments at different energy scales.
That could seem a threat to the universality of logarithmic running, but it is important
to notice that, in the small coupling limit, the dominant term in both beta functions is
the classical contribution −2m̃2 given by the classical dimension of the mass. Since it
is negative, in the UV the renormalized dimensionless mass becomes small as far as we
remain in the perturbative regime. So, the quantum corrections are negligible and we can
consider the massless case discussed before as a good high-energy approximation in all
renormalization schemes. In general, all logarithmic divergences coming from tadpoles are
multiplied by positive powers of m, since they are produced by subleading terms in the
q2 ≫ m2 expansion of (2.3.19); thus, the logs are actually suppressed in the high-energy
limit equivalent to m → 0. This result is strictly related to the property of 2-derivative
theories in 4 dimensions of not having off-shell large logarithms containing the IR cutoff:
sending the mass to zero in a logarithm not suppressed by powers of the mass would
produce exactly that type of IR divergences we have excluded before.

The other typical phenomenon of massive theories is the presence of mass thresholds.
When the energy of the scattering process is much above the mass scales of the theory,
the RG flow inherits trivially the universality observed in the massless case: the large
logarithms and UV divergences are all generated in the large q part of the loop integral
and in this region all the propagators can be rewritten as their massless versions up to
O(mq ) corrections. Hence, in the high-energy limit the beta functions are the same as
those of massless theories and universal. On the other hand, if we look at the physical
beta function of λϕ4 theory 2.1.19 in the low energy limit, i.e. µ2R < m2, we notice
that it simply goes to zero. This is a physical feature related to the decoupling of massive
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particles. When the energy scale of the process is below the mass of a particle, the external
momenta pi in loop propagators of this kind of particle can be neglected, since

1

(q + p)2 +m2
∼


1
q2

+O
(
p
q

)
, if q2 ≥ m2 ;

1
m2 +O

(
p2

m2

)
, if q2 < m2 ;

(2.3.26)

so the loop integral becomes independent of external momenta. This means the energy of
the process is too low to efficiently generate virtual excitations of this kind of particles,
which stop to contribute significantly to quantum corrections. Thus, we expect the physical
beta functions to go to zero in the limit p2i ≪ m2, as we observed above in our toy model.
The freezing out of heavy modes below the energy scale of their mass is reproduced also
in the Wilsonian RG. If we naively take the expression (2.1.9) for the amplitude and we
extract from it the dependence on the cutoff, we find the constant result (2.3.1) and we
miss the decoupling process, but the correct implementation of the Wilsonian RG requires
to integrate shells of momenta until we arrive to energy scales close to the experiment.
Hence, we have to take Λ < m, a region where the amplitude (2.1.9) is not correct. If we
start instead from eq (2.1.8), the dependence of the regularized amplitude on the cutoff
disappears in the limit m ≫ Λ > s, t, u. The cancellation of beta functions below mass
thresholds is even more clear when the Wilsonian RG is implemented via the FRG: in this
case the beta function of λ is [12]

βλ =
3λ

16π2
1

(1 + m̃2)3
, (2.3.27)

that goes to zero as m̃2 = m2/k2 → ∞. From a more technical point of view, when the
cutoff scale k goes below the mass of the particle, the action of Rk in propagators is already
outperformed by the much bigger physical mass. In this way the cutoff becomes ineffective
and the effective action stops to run. On the other hand,MS and other mass-independent
schemes usually used together with dimensional regularization completely miss the mass
threshold: the beta function (2.3.12) remains constant independently of masses and other
scales of the theory. A more physical example can be found in QED, where the vacuum
polarization correction involving a top quark loop yields the correction

Π(p2) =
α

3π

[
1

ϵ
− γ + log 4π − log

m2
t

µ2
+

p2

5m2
t

+ ...

]
(2.3.28)

at low energy. However, despite the dependence on logµ, this does not imply that the top
quark loop contributes to the running of the electric charge at low energy. The top quark
makes a contribution to the running of α only at energies above mt, where the logarithmic
factor involves log p2 instead of logm2

t . On the other hand, the high energy version of the
same process is

Π(p2) =
α

3π

[
1

ϵ
− γ + log 4π − log

m2
t

µ2
− log

−p2

m2
t

+ ...

]
. (2.3.29)

Asymptotically the mass cancels out, and we could have performed the renormalization
using a mass-independent scheme. However, since we previously chose to renormalize the
electric charge at low energy, absorbing the logm2

t /µ
2 factor into the coupling, the latter

logarithm is potentially a large logarithm and should be resummed in a running coupling
constant. The top quark contribution to the electric charge is constant at low energy and
runs at high energy.
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The only way to take in account the process of decoupling of heavy modes using these
types of prescriptions consists in defining an effective action below the mass scale and
match the coefficients of the two theories at µ = m [20]. We well see an example of this
procedure in higher derivative theories later on.

IR divergences

We have shown how UV divergences are strictly related to large logarithms emerging
in off-shell momenta configurations. However, we have not yet discussed the particular
kinematical configurations in which at least one of the sums of external momenta in the
numerator of (2.3.3) goes to zero. In these cases, at least one more 1

q2
factor remains

in the q ≪ pi sector of the integral, causing an IR divergence regulated by k and the
appearance of log f(pi)

k or log Λ
k terms in the amplitude. These IR divergences are even

more frequent in Lorentzian signature, where on-shell external massless particles have 0
squared momentum. In massive theories, the propagators in (2.3.3) acquire a mass term
that avoids IR divergences, but it becomes singular in the small mass limit, that is actually
equivalent to the high-energy regime. The crucial idea used to treat this type of divergences
is that, in a theory containing massless modes, states with an arbitrary number of massless
particles with very low-energy (soft) or moving all in the same direction (collinear) cannot
be distinguished by real detectors with a finite energy sensitivity and angular resolution.
If the total energy of soft particles is too low or the angular separation of collinear ones
is too small, they will not be detected. That means the transition probabilities of all
these indistinguishable states must be summed to describe the probability of physically
meaningful processes, where single-particle in and out states are replaced by jets of high-
energy particles surrounded by an arbitrary number of soft and collinear massless particles.
Surprisingly, it turns out that the amplitudes describing the emission of these massless
particles are IR divergent too, but in such a way that, when summed with IR divergent
loop diagrams, all divergences cancel out order by order in perturbation theory [3]. Thus,
transition probabilities between inclusive states, which are the only meaningful states from
an operational point of view, are IR safe. A general theorem that shows this cancellation
was formulated by Kinoshita [21] and independently by Lee and Nauenberg [22]. Consider
a generic quantum mechanical system with a Hamiltonian H = (H0 + gH1) such that
it is diagonalized via the action respectively on the left and on the right of two unitary
matrices U− and U+ in the following way

U †
−(H0 + gH1)U+ = E , (2.3.30)

with E and H0 diagonal matrices. In this theory the scattering matrix is given by

S = U †
−U+ (2.3.31)

and the transition probability from an asymptotic state a to another asymptotic state b
is given by ∑

i,j

[(U−)
∗
ib(U−)jb]

[
(U+)ia(U+)

∗
ja

]
. (2.3.32)

For small g, we can apply perturbation theory to the time evolution operators U± and
write

(U±)ij = δij + g
(1− δij)(H1)ij
Ej − Ei ± iϵ

+O(g2) , (2.3.33)

where ϵ is a small positive quantity. Infrared divergences emerge when there are degenerate
states in the spectrum, in such a way that the denominator becomes singular. Thus, also
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(2.3.32) suffers of IR divergences when the states i and j in the sum are degenerate with
a or b. In order to have a better grasp on the problem, let’s insert in the Hamiltonian a
parameter µ that breaks the degeneracy, like a small artificial mass. We call D(Ei) the
set of states that have energy Ei in the µ→ 0 limit. The theorem shows that the quantity∑

D(Ea)

UiaU
∗
ja (2.3.34)

is finite in the limit µ → 0 order by order in g both for U+ and U−. So, if instead of the
transition between single states a and b we consider the inclusive transition probability
between the sums over all in and out states respectively in D(Ea) and D(Eb)

∑
i,j

 ∑
D(Eb)

(U−)
∗
ib(U−)jb

 ∑
D(Ea)

(U+)ia(U+)
∗
ja

 , (2.3.35)

the result is well-behaved in the limit µ→ 0, hence IR finite.

2.3.2 The power-law running

In the high-energy limit, when the mass scales of the theory are negligible, logarithmic
running of couplings has a universal behaviour. Universality means that the related beta
function is, up to next to leading order in perturbative expansion, equal in all renormal-
ization schemes and that the same renormalized coupling fits to all processes involving its
interaction vertex. When divergences are of the power-law type, both these universalities
fail. We already observed that dimensional regularization automatically removes power-
law divergences. A simple proof of this can be derived from the prototypical dimensionally
regularized integral (2.3.5). A pure power-law UV divergent integral has a structure like∫

ddq

(2π)d
1

q2n
(2.3.36)

with d/2 − n > 0. This integral corresponds to the limit ∆ → 0 of the left hand side of
(2.3.5) with l = 0, so it is quite simple to see that the same limit of the right hand side is
power-law suppressed when d/2− n > 0. We already observed how this blindness of dim
reg with respect to power-law divergences manifests itself in the calculation of the mass
beta function in λϕ4 theory. Moreover, even the Wilsonian RG showed a dependence of
the part of the beta function containing powers of the cutoff on the way this cutoff is
imposed, as can be seen, for example, by comparing (2.3.21) and (2.3.22).

There is also an intrinsic problem in the definition of a power-law running coupling
[23]. The peculiar properties of logarithms allow us to define a universal running coupling
capable of reabsorbing loop corrections of all processes where this coupling appears, up to
finite terms. On the other hand, one can try to reabsorb in a renormalized coupling the
powers of kinematical variables appearing in one-loop corrections to a given scattering am-
plitude in an analogous way to the definition of the physical running, but this new running
coupling will describe in an efficient way only one particular process. Other amplitudes, for
example those corresponding to a crossing of external states, can depend polynomially on
different kinematical variables or have quantum corrections with the opposite sign. Thus,
such a definition would be practically useless and the power-law quantum corrections must
be interpreted as the generation of some new higher dimensional operator containing more
derivatives of the fields [24, 25].
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A power-law running coupling is meaningful only in the Wilsonian sense [26], where
a cutoff is inserted and all couplings end up depending on it. Beta functions containing
powers of the cutoff cannot be trivially related to scattering amplitudes, however they are
necessary to describe the non-perturbative RG flow in systems close to criticality. The non-
universality of power-law divergences has as an effect the non-universality of the position
of fixed points in theories’ space; anyway, the RG flow close to fixed points permits one
to extract the universal observables that are used to describe phase transitions, as critical
exponents.

2.3.3 Higher derivative theories and different dimensions

In the discussion of universality of one-loop beta functions in the high-energy limit, the
observation that there are no IR divergences in off-shell loop integrals had a crucial role.
However, this statement is not true anymore if we consider different spacetime dimen-
sionalities or theories with a higher number of derivatives in the kinetic term. In higher
derivative theories with 1

q4
propagators, the integral related to the diagram 2.2 is∫ Λ

k
d4q

N(q, pi)

q4(q + p1)4 × · · · × (q + p1 + · · ·+ pn−1)4
, (2.3.37)

that, in the integration region near q = 0, reduces to∫ λ′≪pi

k
d4q

N(0, pi)

q4(p1)4 × · · · × (p1 + · · ·+ pn−1)4
. (2.3.38)

This integral is at least logarithmically divergent independently of the particular kine-
matical configuration, being it on-shell or off-shell. The result is the appearance of terms
containing log(k) in scattering amplitudes, potentially capable of disrupting the correspon-
dence between UV divergences and large logs of external momenta. A similar phenomenon
occurs in theories with ordinary 2-derivative kinetic terms in 2d spacetimes, where the in-
tegrand (2.3.4) turns out to be logarithmically divergent in the IR with generic external
momenta. In the rest of this thesis we will discuss how different definitions of the RG
flow behave in these particular cases and how to extract the actual high-energy behaviour
of scattering amplitudes. While in d = 2 the unitarity of well-behaved QFTs allows us
to apply the Kinoshita-Lee-Nauberg (KLN) theorem and find IR safe scattering ampli-
tudes, in the higher derivative case unitarity is not ensured for the degenerate massless
theories, resulting in some cases in a discrepancy between the physical running and other
implementations of the renormalization group.
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Chapter 3

Higher derivative theories and the
ghost

Since the formulation of the second principle of Newtonian dynamics

F = m
d2x

dt2
, (3.0.1)

the laws of nature have been written in terms of equations of motion which are second
order differential equations in time. However, one could be interested in seeing what
happens when considering a Lagrangian depending on time derivatives of order larger
than one of the coordinates. It was shown in 1850 by Michail Ostrogradskij [27] that
any classical theory described by a nondegenerate higher derivative Lagrangian is plagued
by the presence of negative energy modes, so it is linearly unstable. Any attempt to
canonically quantize them leads to the presence of a pathological class of particles called
ghosts in the spectrum of the Hamiltonian, which can be seen equivalently as negative
norm or negative energy states [28].

On the other hand, higher derivative quantum field theories are power counting much
less divergent in the UV compared to two derivative theories and this feature comes to
be very attractive when dealing with renormalization. The most important case is quan-
tum gravity: when one tries to quantize Einstein general relativity (GR) as a standard
quantum field theory, it turns out to be non-renormalizable, at two loops in the case of
pure gravity [29], already at one loop when coupled with matter [30]. Loops in quantum
GR generate new terms in the action with more and more powers of curvature tensors;
however, if we consider a bare action containing also terms quadratic in curvatures, the
theory becomes higher derivative and, more important, it is renormalizable [31]. In fact,
operators with more than two curvatures are no longer generated by quantum corrections,
so this modification of Einstein theory, usually known as quadratic gravity (QG) or higher
derivative gravity (HDG), is a possible UV completion to general relativity and a potential
solution to the problem of quantum gravity.

All these good features of quadratic gravity would be useless without fixing the Os-
trogradskij instability. There is the possibility that the quantization process could remove
the issue. Often classical instabilities disappear when looking in the quantum, the most
famous example of it being the infinite well in the classical potential of the hydrogen atom
compared to the spectrum bounded from below of the quantum Hamiltonian. Moreover,
history of physics teaches us that the same quantization prescription does not fit to all par-
ticles, as one can see from the quantization of spin 1

2 particles: the classical Hamiltonian
has an infinite sea of negative energy states and canonical quantization with commutation
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relations gives an Hamiltonian unbounded from below, only quantization conditions writ-
ten in terms of anticommutation rules return a well behaved theory. In this chapter, we
will see how the Ostrogradskij instability emerges in classical theories and how different
approaches tried to solve the problems related to ghost particles in the quantum world.
Then, in the last section, we will expand the discussion of the effects of infrared diver-
gences on the beta functions of higher derivative theories already introduced in the final
part of chapter 2 and discuss other features of the renormalization group of this class of
models.

3.1 Classical and quantum Ostrogradskij instability

As we anticipated, the naive treatment of higher derivative theories leads to problems
both at classical and quantum level. We will see that the classical instability discovered
more than 150 years ago produces in the canonically quantized theory an unbounded
Hamiltonian or, equivalently, a nonunitary time evolution. We will see how these features
manifest themselves in a simple quantum mechanical toy model and in quantum field
theories using both canonical and path integral quantizations.

3.1.1 Classical instability

In the discussion of the classical instability of nondegenerate higher derivative theories we
will follow [28]. In a classical mechanical system describing a point particle moving in a
one-dimensional space, the standard Lagrangian depends only on the coordinate of the
particle and its first derivative, namely L = L(x, ẋ). The equation of motion is given by

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 (3.1.1)

and, if the Lagrangian is not degenerate, that means ∂2L
∂ẋ2

̸= 0, it takes the form of a
second order differential equation corresponding to the second Newton law (3.0.1). Like
all second order differential equations, a solution x(t) is determined by two boundary
conditions, which are usually chosen to be be the initial values of x(t = 0) and ẋ(x = 0).
Thus, the phase space is actually two-dimensional and the canonical choice of coordinates
is

X = x and P =
∂L

∂ẋ
. (3.1.2)

In a nondegenerate theory, one can write the velocity ẋ in terms X and P by inverting
the definition of P and introduce the Hamiltonian via a Legendre transform with respect
to ẋ

H(X,P ) = Pẋ(X,P )− L(X,P ) . (3.1.3)

The Hamilton equations governing the motion in phase space are

Ẋ =
∂H

∂P
, (3.1.4)

Ṗ = −∂H
∂X

(3.1.5)

and they are equivalent to the Euler-Lagrange equation of motion (3.1.1). The Hamiltonian
generates time evolution and, if it has no explicit dependence on time, it is a conserved
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quantity, hence it is usually identified with the energy of the system. If the starting
Lagrangian has the usual nondegenerate structure

L =
1

2
mẋ2 − V (x) , (3.1.6)

where V (x) is a potential bounded from below, the corresponding Hamiltonian is

H =
P 2

2m
+ V (X) (3.1.7)

with P = mẋ and is bounded from below by the minimum of the potential.

On the other hand, if we take a higher derivative Lagrangian L(x, ẋ, ẍ) that is nonde-

generate in ẍ, i.e. ∂2L
∂ẍ2

̸= 0, the Euler-Lagrange equation reads

∂L

∂x
− d

dt

∂L

∂ẋ
+
d2

dt2
∂L

∂ẍ
= 0 . (3.1.8)

In this case the equation of motion can be rewritten as

....
x = F (x, ẋ, ẍ,

...
x ) , (3.1.9)

a very different structure with respect to the Newton equation (3.0.1). Being a fourth
order differential equation, four initial conditions are necessary to identify a particular
solution. To these initial data correspond four canonical coordinates, and the set chosen
by Ostrogradskij is

X1 = x , P1 =
∂L

∂ẋ
− d

dt

∂L

∂ẍ
, (3.1.10)

X2 = ẋ , P2 =
∂L

∂ẍ
. (3.1.11)

Again, thanks to nondegeneracy, the acceleration ẍ can be considered as a function of X1

X2 and P2 by inverting the definition of P2 itself, and one can define the higher derivative
Hamiltonian by a double Legendre transformation

H(X1, X2, P1, P2) = P1ẋ+ P2ẍ(X1, X2, P2)− L(X1, X2, P2) . (3.1.12)

Even in this case the Hamilton equations

Ẋi =
∂H

∂Pi
, (3.1.13)

Ṗi = − ∂H

∂Xi
(3.1.14)

contain the time evolution of the system and H is a conserved quantity if it does not
depend explicitly on time, so it provides a good notion of energy. However, since P1

appears only linearly in the Hamiltonian, the energy can reach arbitrary negative values,
hence the Hamiltonian is not bounded from below and the theory is unstable. Notice that
the only request needed to obtain this result was the Lagrangian to be nondegenerate.
The expected consequence of this instability is the presence of runaway trajectories in the
configuration space and the impossibility of stable localized trajectories.
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3.1.2 Quantization of the higher derivative harmonic oscillator

The harmonic oscillator is one of the first models to be quantized in all quantum mechanics
courses, so we will start our discussion of higher derivative quantum theories from the
higher derivative Pais-Uhlenbeck oscillator [32]. Its simplest version is the higher derivative
harmonic oscillator with Lagrangian

L = −1

2
q

(
d2

dt2
+ ω2

1

)(
d2

dt2
+ ω2

2

)
q

= −1

2
q̈2 +

ω2
1 + ω2

2

2
q̇2 − ω2

1ω
2
2

2
q2 , (3.1.15)

where ω1 and ω2 are real parameters. The associated Euler-Lagrange equation is

....
q + (ω2

1 + ω2
2)q̈ + ω2

1ω
2
2 q̇ , (3.1.16)

while the phase space coordinates in Ostrogradskij analysis are defined as

x1 = q , p1 = (ω2
1 + ω2

2)q̇ +
...
q , (3.1.17)

x2 = q̇ , p2 = −q̈ . (3.1.18)

The corresponding Hamiltonian reads

H = p1x2 −
1

2
p22 −

ω2
1 + ω2

2

2
x22 +

ω2
1ω

2
2

2
x21 (3.1.19)

and, as expected, it is linear in p1, thus it is not bounded from below. Assuming ω1 > ω2,
we can define a smart change of coordinates [33, 34]

X1 =
1

ω1

p1 − ω2
1x2√

ω2
1 − ω2

2

, P1 = ω1
−p2 + ω2

2x1√
ω2
1 − ω2

2

, (3.1.20)

X2 =
−p2 + ω2

1x1√
ω2
1 − ω2

2

, P2 =
p1 − ω2

2x2√
ω2
1 − ω2

2

, (3.1.21)

such that the Hamiltonian reduces to the more familiar form

H = −P
2
1 + ω2

1X
2
1

2
+
P 2
2 + ω2

2X
2
2

2
. (3.1.22)

It corresponds to two harmonic oscillators with opposite signs in front. Notice that the
canonical transformation (3.1.21) becomes singular when ω1 = ω2, while it is well defined
if ω1 < ω2, since the initial Pais-Uhlenbeck oscillator was symmetric in ω1 and ω2 and
we can just exchange the roles of the two frequencies. In the degenerate case, another
canonical transformation allows us to write the quantum Hamiltonian as the energy of
two free point particles plus the difference between their angular momenta [32, 35].

Returning to the nondegenerate case, the two oscillators are completely decoupled
from each other, so the sign in front of their Hamiltonian is irrelevant: it does not enter
in the equations of motions at classical level, while in the quantum theory there is no
dynamics, hence the sign of the energy has no relevance. A proof of the fact that the free
Pais-Uhlenbeck oscillator is actually well defined can be seen in the fact that there exists
another coordinate transformation that gives a positive definite Hamiltonian where the
two harmonic oscillators are summed together and not subtracted [36]

H =
P 2
1 + ω2

1X
2
1

2
+
P 2
2 + ω2

2X
2
2

2
. (3.1.23)
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However, if we add an interaction V (q) to the Lagrangian (3.1.15) and to the two Hamil-
tonians (3.1.22) and (3.1.23), only the former gives equations of motion equivalent to the
Lagrangian ones. In fact, the presence of an interaction between the two harmonic oscil-
lators allows positive energy states to decay in negative energy states and makes manifest
the difference between a positive definite Hamiltonian and an indefinite one.

Canonical quantization

Starting from the Hamiltonian (3.1.22), canonical quantization can be easily implemented
separately in the two harmonic oscillators. We promote Pi to P̂i = −i∂Xi and impose
the canonical commutation relations [Xi, Pj ] = δiji, [Xi, Xj ] = 0 and [Pi, Pj ] = 0. It is

convenient to introduce, as usual, creation and annihilation operators, respectively a†i and

ai, which commute as [ai, a
†
j ] = δij and act on the vacuum state |0⟩ as ai |0⟩ = 0. The

quantum Hamiltonian, written in terms of these operators, takes the form

H = −ω1(a
†
1a1) + ω2(a

†
2a2) +

1

2
(ω2 − ω1) . (3.1.24)

Since the Hilbert space is the direct sum of the Hilbert spaces of two harmonic oscilla-
tors, the eigenfunctions of the Hamiltonian will be a product of eigenfunctions of the two
harmonic oscillators with labels n1 and n2. So, the energy eigenvalues associated to the
eigenstates

|n1, n2⟩ =

(
a†1

)n1

√
n1!

(
a†2

)n2

√
n2!

|0⟩ (3.1.25)

are

En1,n2 = ω2

(
n2 +

1

2

)
− ω1

(
n1 +

1

2

)
. (3.1.26)

Hence, the spectrum of H is discrete and not bounded from below, due to the minus sign in
front of the oscillator with frequency ω1. On the other hand, the degenerate case ω1 = ω2

has a continuous spectrum summed with discrete steps ranging from −∞ to +∞ due
to the quantized eigenvalues of angular momenta. The result is an infinitely degenerate
spectrum with non-normalizable eigenfunctions [37].

To avoid an energy spectrum unbounded from below, a different quantization prescrip-
tion can be used in the nondegenerate case, leading to a positive definite Hamiltonian at
the price of a breakdown of unitarity [31]. By defining a new ground state |0̄⟩ such that
it obeys the relations

a2 |0̄⟩ = 0 = a†1 |0̄⟩ , (3.1.27)

one can invert the roles of creation and annihilation operators in the harmonic oscillator
with a minus sign in front. This vacuum state is non-normalizable [28]: its wave function
can be calculated and turns out to be

ψ(x1, x2) = exp

[
−x21ω1ω2 + x2

2
(ω1 + ω2)− ix1x2ω1ω2

]
(3.1.28)

and the integral over x2 of |ψ|2 is divergent. Anyway, it is still possible to formally
introduce the new set of eigenstates

|n1, n2⟩ =

(
a†2

)n2

√
n2!

an1
1√
n1!

|0̄⟩ (3.1.29)
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with the associated positive spectrum

En1,n2 = ω1

(
n1 +

1

2

)
+ ω2

(
n2 +

1

2

)
. (3.1.30)

Unfortunately, this comes with a price: the commutation relations have not been changed,
so the norm of states (3.1.30) is

⟨n1, n2|n1, n2⟩
⟨0̄|0̄⟩

=
⟨0̄| [a2, a†2]n2 [a†1, a1]

n1 |0̄⟩
⟨0̄|0̄⟩

= (−1)n1 , (3.1.31)

that is negative if n1 is odd. These negative norm states are usually called ghosts in the
literature.

The Copenhagen interpretation of quantum mechanics as a probabilistic theory re-
quires physical states to have a positive norm, in order to define a consistent notion of
probability. In particular, we are going to show that the usual notion of probability in
the measurement process in quantum mechanics and the requirement of total probabilities
summing up to one are in contradiction in presence of negative norm states. Consider a
theory with a complete orthogonal basis that can be divided in a subset U of states |ui⟩
normalized to 1 and another subset V of states |vj⟩ normalized to −1. The indefinite inner
product allows us to introduce the completeness relation

1 =
∑
U

|ui⟩ ⟨ui| −
∑
V

|vj⟩ ⟨vj | . (3.1.32)

It is quite trivial to check that it works well with the elements of the basis. Imagine now
that it is possible to construct an experimental apparatus that measures an observable A
having this basis as eigenstates. As usual, we would like to define the probability to obtain
from a measurement on a system prepared in the state |ϕ⟩ the result ak associated with
the eigenstate |ak⟩ belonging to U or V . In standard quantum mechanics this probability
is given by the Born rule

Pϕ,ak =
| ⟨ϕ|ak⟩ |2

⟨ϕ|ϕ⟩ ⟨ak|ak⟩
. (3.1.33)

Obviously, if one of ϕ or ak is a negative norm state, we will obtained negative probability,
which is inadmissible. An alternative way could be defining the probability as

Pϕ,ak =
| ⟨ϕ|ak⟩ |2

| ⟨ϕ|ϕ⟩ ⟨ak|ak⟩ |
, (3.1.34)

however, if we take as ϕ a positive norm state normalized to 1 and we introduce a resolution
of the identity in its norm, we find

1 = ⟨ϕ|ϕ⟩ =
∑
U

⟨ϕ|ui⟩ ⟨ui|ϕ⟩ −
∑
V

⟨ϕ|vj⟩ ⟨vj |ϕ⟩ =
∑
U

Pϕ,ui −
∑
V

Pϕ,vj . (3.1.35)

This implies that, if the overlap between |ϕ⟩ and at least one negative norm state vi is
non zero, the total probability ∑

U

Pϕ,ui +
∑
V

Pϕ,vj (3.1.36)

is bigger than one. Thus, in order to have a sensible definition of probability, we have
to exclude negative norm states from the physical spectrum. Nevertheless, if interactions
allow an overlap between the time evolution of a positive norm state and a ghost, the total
probability associated to the subspace U cannot be conserved, so the time evolution is not
unitary.
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Path integral quantization

As an alternative to canonical quantization, one can define a path integral for the Pais-
Uhlenbeck oscillator. We introduce the auxiliary variable r and we rewrite the action
(3.1.15) as

L =
ω2
1 + ω2

2

2
q̇2 − ω2

1ω
2
2

2
q2 + rq̈ +

1

2
r2 . (3.1.37)

the equation of motion of r is r = −q̈, hence on-shell we recover the initial Lagrangian.
With the redefinitions

X1 =
1√

ω2
1 − ω2

2

(
ω2
2q − r

)
, (3.1.38)

X2 =
1√

ω2
1 − ω2

2

(
ω2
1q − r

)
, (3.1.39)

and their inverse expressions

q =
X2 −X1√
ω2
1 − ω2

2

, (3.1.40)

r =

(
X2

ω2
1

− X1

ω2
2

)
ω2
1ω

2
2√

ω2
1 − ω2

2

, (3.1.41)

also the action (3.1.37) can be written as two harmonic oscillators with opposite signs:

L =
1

2

(
Ẋ2

2 − ω2
2X

2
2

)
− 1

2

(
Ẋ2

1 − ω2
1X

2
1

)
. (3.1.42)

The transition amplitudes between an initial state |x1(i), x2(i)⟩ at time ti and a final state
|x1(f), x2(f)⟩ at time tf is defined in path integral quantization as

⟨x1(f), x2(f)| ηeiH(tf−ti) |x1(i), x2(i)⟩ =
∫ xj=xj(f)

xj=xj(i)

Dx1Dx2e
i
∫ tf
ti

dtL . (3.1.43)

To make it convergent, we have to add a small imaginary part to the Lagrangian, and
there are two ways to do it. If we send ω2

2 → ω2
2− iϵ and ω2

1 → ω2
1+ iϵ in (3.1.42), the path

integral is convergent. The Lagrangian can be analytically extended to imaginary time by
Wick-rotating the time variables of the two harmonic oscillators in different directions in
the complex plane (t2 → −iτ2 and t1 → iτ1), the result is the Euclidean Lagrangian

LE =
1

2

(
X ′2

2 + ω2
2X

2
2

)
+

1

2

(
X ′2

1 + ω2
1X

2
1

)
, (3.1.44)

where primes stand for derivatives respect to τi. Notice that the action built from it
is positive definite, however such independent rotation is possible only in noninteracting
theories. If the two oscillators interact with each other, there is only one time coordinate,
so a simple rotation of t to the imaginary axis without including any poles in the contour
integral is impossible. Moreover, the direct consequence of the different regularization
prescriptions between the two oscillators is that causality relations are inverted in the two
systems. Hence, the price to pay for a converging functional integral is that the arrow of
time is inverted for the harmonic oscillator with frequency ω1 respect to the one with ω2

[38]. This is equivalent to the presence of negative energies in the spectrum, exactly as in
canonical quantization with vacuum annihilated by both ai operators.
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On the other hand, with the different prescriptions ω2
2 → ω2

2− iϵ and ω2
1 → ω2

1− iϵ, the
path integral of the oscillator with frequency ω1 does not converge, so the path integral is
not well defined. This occurrence is equivalent to the nonrenormalizabilty of the vacuum
state defined as (3.1.27). With this convention, there exists a unique analytical Wick
rotation allowed, that is the usual t→ −iτ and leads to the euclidean action

LE =
1

2

(
X ′2

2 + ω2
2X

2
2

)
− 1

2

(
X ′2

1 + ω2
1X

2
1

)
. (3.1.45)

At first sight it might seem that in this case the Euclidean path integral is not convergent,
since the two harmonic oscillator have opposite signs. However, writing it in terms of q
one finds

LE =
1

2
q′′2 +

ω2
1 + ω2

2

2
q′2 +

ω2
1ω

2
2

2
q2 , (3.1.46)

the result of the same Wick rotation acting on (3.1.15). This expression is a sum of squares
of real variables, hence positive.

3.1.3 Higher derivative quantum field theory

The Ostrogradskij construction can be easily extended to quantum field theory [39]. Start-
ing from a Lagrangian density L(ϕ, ∂µϕ, ∂µ∂νϕ) depending in a nondegenerate way on the
second time derivative of the field, the Euler-Lagrange equation

δL
δϕ

− ∂

∂xµ
δL
δ∂µϕ

+
∂2

∂xµ∂xν
δL

δ∂µ∂νϕ
= 0 (3.1.47)

is a partial differential equation containing the fourth order time derivative of the field.
So, we need 4 fields to identify a trajectory in the phase space. Hence, we introduce two
fields

ϕ1 = ϕ , (3.1.48)

ϕ2 = ϕ̇ (3.1.49)

and their conjugated momenta

π1 =
∂L
∂ϕ̇

− d

dt

∂L
∂ϕ̈

, (3.1.50)

π2 =
∂L
∂ϕ̈

. (3.1.51)

Thanks to the nondegeneracy of the Lagrangian, we can invert the last definition and
write ϕ̇2 = ϕ̈ as a function of ϕ1, ϕ2 and π2. With these canonical variables we construct
the Hamiltonian density by a double Legendre transform

H(ϕ1, ϕ2, π1, π2) = π1ϕ̇1 + π2ϕ̇2(ϕ1, ϕ2, π2)− L(ϕ1, ϕ2, π2) . (3.1.52)

The resulting Hamilton equations

ϕ̇i =
δH
δπi

, (3.1.53)

π̇i = − δH
δϕi

(3.1.54)

are equivalent to the field equation (3.1.47). Again, H is linear in π1, so we have an
instability.
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Free field canonical quantization

If we consider the free higher derivative scalar Lagrangian

L =
1

2

[
−(m2

1 +m2
2)∂µϕ∂

µϕ−m2
1m

2
2ϕϕ−□ϕ□ϕ

]
, (3.1.55)

canonical quantization proceeds in a way similar to 2-derivative QFTs: one has to impose
canonical commutation relations

[ϕi, πj ] = iδ3(x⃗)δij , [ϕi, ϕj ] = 0 , [πi, πj ] = 0 (3.1.56)

on the canonical variables

ϕ1 = ϕ , π1 = (m2
1 +m2

2)ϕ̇+□ϕ̇ , (3.1.57)

ϕ2 = ϕ̇ , π2 = −□ϕ , (3.1.58)

that is equivalent to replace the momenta πi with −i δ
δϕi

. Then we can observe that, if we
write the field ϕ in terms of its spatial Fourier transform as

ϕ(x⃗, t) =

∫
d3p

(2π)3
eip⃗x⃗ϕ(p⃗, t) , (3.1.59)

the Euler-Lagrange equation[
m2

1m
2
2 − (m2

1 +m2
2)□+□2

]
ϕ = 0 (3.1.60)

reduces to[
m2

1m
2
2 − (m2

1 +m2
2)p⃗

2 + p⃗ 4 − (m2
1 +m2

2 + 2p⃗ 2)∂2t + ∂4t
]
ϕ = 0 , (3.1.61)

that is the equation of motion of a free Pais-Uhlenbeck oscillator (3.1.16) with fancy
frequencies. After the spatial Fourier transform, in standard 2-derivative theories the
equation of motion coincides for each mode p⃗ with a harmonic oscillator, and quantization
proceeds by introducing a set of creation and annihilation operators for each of them.
Analogously, here we will have two harmonic oscillators with opposite signs and two couples
of creation and annihilation operators for each value of spatial momentum, the one with
negative energy creating and destructing ghost particles. That means that the discussion
about the negative spectrum of the Hamiltonian and unitarity can also be applied to
higher derivative QFT.

The unitarity of time evolution in a quantum field theory is usually rephrased in terms
of unitary of the S-matrix and this feature translates in the well-known optical theorem.
If we write the scattering matrix as

S = 1 + iT , (3.1.62)

requiring S to be unitary, i.e. S†S = 1, implies that T−T † = T ∗T . If we focus on diagonal
matrix elements of the interacting part of the S-matrix ⟨i|T |i⟩, with i a physical state
of the theory, their imaginary part must be equal to the sum over all physical states |f⟩
states of the modulus square of the transition amplitude between |i⟩ and |f⟩, namely [2]

2 Im ⟨i|T |i⟩ =
∑
f

| ⟨f |T |i⟩ |2 . (3.1.63)
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This equation can be diagrammatically depicted as

2 Im

i i

 =
∑
f

∫
dΠf

∣∣∣∣∣∣i f

∣∣∣∣∣∣
2

, (3.1.64)

where Πf is the integration measure of the phase space integral of the state f and the
summation runs over the particle content of the state.

This theorem is usually exploited via the so-called Cutkosky rules, which state that
the imaginary part on the left can be computed in three simple steps:

• separate loop diagrams in two disconnected pieces not mixing in and out states via
a cut through internal lines that allows the cut propagators to be simultaneously
on-shell;

• substitute cut lines with on-shell Dirac delta via the rule 1
p2+m2−iϵ → 2πiδ(p2 +m2)

and perform the loop integrals;

• sum over all the possible ways to execute such cut.

For example, in the λϕ4 scalar theory considered in chapter 2, the Cutkosky rules for the
2 → 2 scattering can be diagrammatically depicted as

2 Im

  = =

∫
dΠ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.1.65)

The result of this procedure matches with the right hand side of the optical theorem if,
for each cut, the state composed by on-shell particles from cut propagators is an element
of the set of physical states over which the sum in the right hand side is carried on. As
stated before, if we use a quantization prescription that admits negative norm ghosts, we
have to exclude these states from the Hilbert space of physical states. However, if on-shell
ghosts are generated inside loops on the left hand side, the matrix element will acquire
a virtual part that cannot be produced on the right hand side, since such intermediate
states are absent from the summation. So, the optical theorem is violated in presence of
negative norm ghosts. In mathematical terms, if we separate the states |j⟩ into positive
norm states |j+⟩ and negative norm states |j−⟩ and we reduce the space of physical states
to |j+⟩, the optical theorem would require

2 Im ⟨i+|T |i+⟩ =
∑
f+

| ⟨f+|T |i+⟩ |2 . (3.1.66)

Nevertheless, what we obtain from Cutkosky rules and explicit calculations of the left
hand side is

2 Im ⟨i+|T |i+⟩ =
∑
f+

| ⟨f+|T |i+⟩ |2 +
∑
f−

| ⟨f−|T |i⟩ |2 , (3.1.67)

hence the S-matrix is not unitary.
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Path integral quantization

In quantum field theory the path integral quantization is often preferred to the canonical
one, due to its explicit covariance and the possibility to properly quantize gauge theories.
The Lorentzian path integral associated with the Lagrangian (3.1.55) is

Z[J ] =

∫
Dϕei

∫
d4x [L+ϕJ ] . (3.1.68)

Also in this case we expect to need two fields to properly describe the theory, so, analo-
gously to the quantum mechanical path integral, we want to introduce an auxiliary field
η that, when integrated out, gives back the starting Lagrangian [39]. The action

S[ϕ, η] =

∫
d4x

[
−1

2
(m2

1 +m2
2)∂µϕ∂

µϕ− 1

2
m2

1m
2
2ϕ

2 − η□ϕ+
1

2
η2
]

(3.1.69)

performs the requested task, so we can build with it the equivalent partition function

Z[J ] =

∫
DϕDη eiS[ϕ,η]+i

∫
d4xϕJ . (3.1.70)

With a redefinition in the field variables

ϕ =
χ− ψ√
m2

1 −m2
2

, (3.1.71)

η =

(
χ

m2
1

− ψ

m2
2

)
m2

1m
2
2√

m2
1 −m2

2

(3.1.72)

and J → J
√
m2

1 −m2
2, the path integral reduces to the product of the partition functions

of two free particles with opposite signs in front of the relative actions

Z[J ] =

∫
Dχei

∫
d4x [− 1

2
∂µχ∂µχ− 1

2
m2

2χ
2+χJ]

×
∫
Dψ e−i

∫
d4x [− 1

2
∂µψ∂µψ− 1

2
m2

1ψ
2+Jψ] . (3.1.73)

At this point we have to introduce a small imaginary mass to make the integral convergent
and impose a contour prescription to the propagators. Similarly to the quantum mechani-
cal case, it is exactly at this stage that the analogue of the choice between a positive definite
spectrum and a unitary time evolution we had to make in canonical quantization comes
into play. If we add a term iϵϕ2 to the Lagrangian (3.1.55), or equivalently iϵ(χ2 −ψ2) to
the path integral (3.1.73), the functional integral converges, but the field ψ, correspond-
ing to the ghost particle, has a different causal direction. If we add an interaction that
prevents us from factorizing the two functional integrals, there is a unique time variable
and the ghost has negative energy modes propagating forward in time and positive energy
modes propagating backward. This choice is equivalent to allowing negative energy states
in the spectrum. On the other hand, if we use the same prescription for both particles, i.
e. we add iϵ(χ2 + ψ2), the partition function for ψ diverges and the ghost has a negative
pole in the propagator, equivalent to a negative norm.

This can be made even clearer by looking at the propagators [40]. The propagator of
(3.1.55) can be decomposed in two partial fractions

−i
p4 + (m2

1 +m2
2)p

2 +m2
1m

2
2

=
−i

(p2 +m2
1)(p

2 +m2
2)

=
−i

m2
1 −m2

2

[
1

p2 +m2
2

− 1

p2 +m2
1

]
,

(3.1.74)

35



p0ℑ

ℜ

p0ℑ

ℜ

Figure 3.1: Poles structure with prescription (3.1.75) on the left and with prescription
(3.1.76 on the right in the complex p0 plane. Poles of the normal particle are represented
by simple circles, while Ghost poles are represented by crossed circles.

the first part corresponding to the positive energy mode and the second corresponding to
the ghost. The prescription iϵϕ gives

−i
m2

1 −m2
2

[
1

p2 +m2
2 − iϵ

− 1

p2 +m2
1 + iϵ

]
, (3.1.75)

so the pole of the ghost propagator in the complex energy plane with negative real part
sits below the real axis, while that with positive real part stands above the real axis, as
depicted in the picture on the left of figure 3.1. That means that if we do a time Fourier
transform, negative frequency modes contribute to the retarded propagator, while those
with positive energy contribute to the advanced one, the opposite of normal particles with
Feynman prescription. The second prescription iϵ(χ2 + ψ2) is equivalent to use the usual
Feynman prescription for both particles:

−i
m2

1 −m2
2

[
1

p2 +m2
2 − iϵ

− 1

p2 +m2
1 − iϵ

]
. (3.1.76)

The pole structure in this case is depicted in the picture on the right of figure 3.1. With
this choice, all positive energy modes propagate forward in time, however the price to pay
is a negative residue associated with the poles in the ghost propagator. The norm of a
one-particle state |p⟩ is proportional to this residue, hence in this prescription ghost states
have negative norms, with all the issues related to unitarity already discussed.

Moreover, it must be stressed that the good properties of higher derivative theories
concerning renormalization are, from a technical point of view, the result of a cancellation
between the two propagators in the high-energy limit, where m2

i ≪ p2, that leaves 1
p4

as
the leading term. This cancellation takes place in the Euclidean version of the theory,
however the former prescription (3.1.75) is not an analytical continuation of the Euclidean
theory because of poles in the first quadrant of the complex plane for p0. Only the latter
choice (3.1.76) can be analytically Wick rotated and vice versa, hence it is necessary to
obtain also in Lorentzian signature the goal for which higher derivative theories are usually
introduced, namely to improve the UV behaviour of a nonrenormalizable theory. This can
be also seen in the following way [34]: if we assign two different prescriptions ϵ and ϵ′ to
the two partial propagators, the total propagator can be written as

−i
m2

1 −m2
2

[
1

p2 +m2
2 − iϵ

− 1

p2 +m2
1 − iϵ′

]
=

−i
(p2 +m2

1 − iϵ)(p2 +m2
2 − iϵ)

− πδ

m2
1 −m2

2

(p2 +m2
1)[sign(ϵ

′)− sign(ϵ)] , (3.1.77)
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where we have added and subtracted −i
m2

1−m2
2

1
p2+m2

1−iϵ
to the left hand side and used the

well-known relation

lim
ϵ→0

1

x− iϵ
= P

1

x
+ iπδ(x) , (3.1.78)

with P denoting the principal value. To have a quartic propagator we need to remove the
Dirac delta, hence we need sign(ϵ′) = sign(ϵ).

Massless case

In quantum field theory, the degenerate limit m1 = m2 ̸= 0 is not much interesting, since
the main reason of interest in higher derivative quantum field theories is gravity, and the
graviton is massless. Hence we will briefly discuss only the m1 = m2 = 0 case, that can
be seen as a toy model for conformal gravity. The massless version of (3.1.55) is

L = −1

2
□ϕ□ϕ (3.1.79)

and the associated equation of motion is

□2ϕ = 0 . (3.1.80)

By a spatial Fourier transform it can be written as

(∂4t + 2p⃗ 2∂2t + p⃗ 4)ϕ = 0 , (3.1.81)

so one obtains a degenerate Pais-Uhlenbeck oscillator for each mode p⃗. On the other hand,
in coordinate space, it has two family of solutions:[41, 42]

ϕk = eikµx
µ

and ϕ′k,N = xµNµe
ikµxµ (3.1.82)

where Nµ is a generic vector and k2 = 0. It could seem that the family of solutions ϕ′k,N
is much wider than ϕk, because of the freedom in the choice of N , but actually a solution
ϕ′k is linearly independent of the plain wave solutions only if Nµkµ ̸= 0. This can be easily
seen from the fact that

ϕ′k,N = Nµ∂kµϕk = lim
ϵ→0

ϕk+ϵN − ϕk
ϵ

(3.1.83)

The last expression is a linear combination of two solutions ϕk, ϕk′ with k
′ = k+ ϵN only

if k′2 = 0, that implies, at linear order in ϵ, Nµkµ = 0. The space of vectors orthogonal to
a light-like vector has dimension three, hence we can choose Nµ non zero only in the time
direction.

ϕ(x) =

∫
d3k⃗

(2π)3
ckϕk + c′kϕ

′
k with now ϕ′k = teikµx

µ
(3.1.84)

One could be tempted to remove the modes ϕ′ from the space of physical states [43],
since they grow linearly with time, so they are not well defined asymptotic states. This is
equivalent to consider only scattering processes between bunches of ϕk modes. However,
this would provoke problems with unitarity and, even worse, ϕk and ϕ′k are not scalars
under Poincarè group because they are mixed up by non-purely spatial transformations
[41][42]. Considering a superposition of static and growing modes, it is possible to define a
Poincarè invariant subspace that could furnish a good space of physical states [42], but the
free theory (3.1.79) has a gauge symmetry ϕ→ ϕ+Λ with □Λ = 0 that does not leave this
reduced space invariant. That means that the free massless higher derivative theory does
not contain any meaningful physical state [42, 44, 45]. By introducing interactions that
break the symmetry, one could a priori obtain a meaningful theory, however this would
require a nonperturbative approach. There is the possibility that such a field can never
exists as an asymptotic state, but only as a virtual particle inside interaction diagrams.
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3.2 Beyond Ostrogradskij

Considering all these problems, one could be tempted to discard higher derivative theories
from the landscape of physically viable theories. However, in recent years, it has been
shown both numerically and analytically that the interacting Pais-Uhlenbeck oscillator
can have stable trajectories in the presence of particular potentials. In fact, some models
admit islands of stability, which are regions of the phase space where trajectories remain
confined [36, 37], while others have been shown analytically to be globally stable [46].
Moreover, quadratic gravity itself seems to be classically metastable below the Planck scale
[47]. These surprisingly good features of some classical higher derivative theories despite
of Ostrogradskij theorem motivated physicists in the quest for a consistent formulation of
the quantum version of higher derivative theories. In this Section we will briefly present
two possible general approaches to solve the related problems of the unbounded spectrum
of the Hamiltonian and the ill-defined notion of probability.

3.2.1 Imaginary variables

The first approach consists in complexifying canonical variables in order to remove negative
energies from the spectrum of the Hamiltonian. This modification can be introduced
alternatively as an attempt to apply in a meaningful way the ideas of quantum mechanics
to spaces with an indefinite inner product, or as a particular case of the implementation
of quantum mechanics in theories with a non-Hermitan, but PT symmetric, Hamiltonian.

Pauli-Dirac quantization

The Pauli-Dirac quantization is a quantization prescription different from the canonical
one introduced by Pauli [48] as a prosecution of a previous work by Dirac [49] and later
developed in [34, 50, 51]. This prescription is meant to treat theories with an inner
product admitting negative norm states, as the Pais-Uhlenbeck oscillator quantized with
the vacuum defined in (3.1.27). The main criticalities that emerged in that case were the
non-normalizable wave function of the vacuum and the absence of a well-defined notion of
probability. Pauli-Dirac quantization admits Hermitian operators with purely imaginary
spectrum. Consider a generic operator x̂ with

x̂ |x⟩ = ix |x⟩ (3.2.1)

with x real, we will have ⟨x′| x̂ |x⟩ = ix ⟨x′|x⟩. At the same time, we want x̂ to be
Hermitian, hence ix ⟨x′|x⟩ = ⟨x| x̂ |x′⟩∗ = −ix′ ⟨x′|x⟩, that can be reduced to the condition
(x+ x′) ⟨x′|x⟩ = 0. Up to an arbitrary normalization, this equation is solved by

⟨x′|x⟩ = δ(x+ x′) . (3.2.2)

We can introduce the operator η that acts on the eigenstates as η |x⟩ = |−x⟩ and use it to
write the resolution of the identity in terms of the eigenstates of this imaginary operator∫

dx |x⟩ ⟨−x| = 1 =

∫
dx |x⟩ ⟨x| η and

∫
dx |x⟩ ⟨x| = η . (3.2.3)

In order to preserve the canonical commutation relations, also the conjugated variable p̂
must have purely imaginary eigenvalues and must be quantized à la Pauli-Dirac. It acts
on the wavefunction ϕ(x) = ⟨x| η |ϕ⟩ as d

dxψ(x) and we have

p̂ |p⟩ = ip |p⟩ , ⟨p′|p⟩ = δ(p′ + p) ,

∫
dp |p⟩ ⟨p| = η . (3.2.4)
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Summarizing, this new prescription is equivalent to applying the canonical transformation
x→ ix and p→ −ip on variable quantized as usual. With this new tool, we can return to
the Pais-Uhlenbeck oscillator. We observed that the vacuum defined in (3.1.27) cannot be
normalized to one, since the modulus square of its wave function (3.1.28) is divergent in
x2; nevertheless, if we use Dirac-Pauli quantization on x2 and its conjugated momentum
p2 and the canonical prescription on x1 and p1, the vacuum wave function becomes

ψ(x1, x2) = exp

[
−x21ω1ω2 − x2

2
(ω1 + ω2) + x1x2ω1ω2

]
(3.2.5)

and is now normalizable, as can be seen by solving simple Gaussian integrals in x1 and
x2.

This is not a completely arbitrary prescription, since it is coherent with the properties
of canonical variables under time reversal symmetry T , that sends t → −t. While x1 is
even, i.e. Tx1T

−1 = x1, x2 = q̇ is odd, that means Tx2T
−1 = x2, because it contains

a time derivative. On the other hand, being T anti-unitary, x2 = iq̇ is even under time
reversal like x1.

In a theory with purely imaginary operators, one can define also a meaningful Euclidean
path integral starting from a newly defined transition amplitude

⟨x1(f), x2(f)| ηe−H(τf−τi) |x1(i), x2(i)⟩ (3.2.6)

and introducing as usual a large number of identities 1 =
∫
dx |x⟩ ⟨x| η at infinitesimal

time steps. In the continuous limit, thanks to the η insertions, one finds

⟨x1(f), x2(f)| ηe−H(τf−τi) |x1(i), x2(i)⟩ =
∫
Dx1Dx2Dp1Dp2e

∫
dτ ip1x′1+ip2x

′
2−H̄ , (3.2.7)

where

H̄ =
⟨p1, p2|H |x1, x2⟩
⟨p1, p2|x1, x2⟩

= ip1x2 +
1

2
p22 +

ω2
1 + ω2

2

2
x22 +

ω2
1ω

2
2

2
x21 (3.2.8)

is a new Hamiltonian different from the one defined by Ostrogradskij (3.1.19). We will
briefly discuss how to write this complex Hamiltonian in the form (3.1.23) later on. Now
we can solve the functional integral in p1, that forces via a Dirac delta x2 = x′1, and also
the one in p2, that can be done exactly too, hence we obtain∫

Dq e−
∫
dτLE (3.2.9)

with

LE =
1

2
q′′2 +

ω2
1 + ω2

2

2
q′2 +

ω2
1ω

2
2

2
q2 . (3.2.10)

The latter is the Euclidean Lagrangian (3.1.46) and defines a finite euclidean path integral.
It is important to stress that a potential V (q = x1) can be inserted in the action without
major issues concerning the reality of the spectrum of the Hamiltonian, since it depends
only on the real operator x̂1. This is not true if one complexifies the variable X1 and P1

instead of x2 and p2, as suggested in [52], since in this case the appearance of a complex
part in the potential cannot be excluded in general. In fact, the inverse transformation of
(3.1.21) for x1 is

q = x1 =
X2 − P1/ω1√

ω2
1 − ω2

2

, (3.2.11)
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so a generic potential V (q = x1) would acquire an imaginary part if P1 were taken complex.
With this choice in quantization, requiring a real spectrum for the Hamiltonian would
impose a strict constraint on admissible interactions.

In Pauli Dirac quantization of higher derivative theories, the Lorentzian path integral
is defined as the standard Wick rotation of the Euclidean one, i. e. τ → it, which returns
the starting Lagrangian (3.1.15) and leads to the prescription (3.1.76) in propagators.
Moreover, in the classical limit that corresponds to first order in stationary phase approx-
imation, one recovers the classical equation of motion (3.1.16). The Hamilton equations
can also be extracted from the action in equation (3.2.8) by minimizing it with respect to
pi, xi and x

′
i. If we consider the variation with respect to p2 we get

ix′2 =
∂H̄

∂p2
(3.2.12)

and, by imposing x2 = x′1, it becomes

−x′′1 = −q′′ = ∂H̄

−i∂p2
. (3.2.13)

If we now return to real time, we have x2 = −iq̇ and the new Hamilton equation is

q̈ =
∂H̄

−i∂p2
, (3.2.14)

consistently with the complexification of x2 and p2. For an extension to quantum field
theories and in particular to quadratic gravity, see [51].

Up to this point, we are still missing a proper notion of probability. For a generic
observable associated to an operator U with a complete set of eigenstates ui such that
sign(U |ui⟩) = sign(⟨ui|ui⟩) and none of its degenerate eigenspaces contains mixed norm
states, we can uniquely define the Hermitian operator PU via the matrix elements

⟨ui|PU |uj⟩ = δij (3.2.15)

and use it to introduce the positive definite inner product

⟨ϕ1|ϕ2⟩U = ⟨ϕ1|PU |ϕ2⟩ . (3.2.16)

The new Born rule given by this product

Pϕ,ui =
| ⟨ϕ|ui⟩U |2

⟨ϕ|ϕ⟩U ⟨ui|ui⟩U
(3.2.17)

is hence positive definite and probabilities sum up to one:

∑
i

| ⟨ϕ|ui⟩U |2

⟨ϕ|ϕ⟩U ⟨ui|ui⟩U
=

⟨ϕ|PU√
⟨ϕ|ϕ⟩U

(∑
i

|ui⟩ ⟨ui|Pa
⟨ui|PU |uj⟩

)
|ϕ⟩√
⟨ϕ|ϕ⟩U

= 1 (3.2.18)

because ∑
i

|ui⟩ ⟨ui|Pa
⟨ui|PU |uj⟩

= 1 . (3.2.19)

Despite this promising definition, it must be stressed that not all operators respect the
requirements necessary to introduce PU . For example x̂2 does not admit a well-defined
measure of probability in this sense, since the norm of its eigenstates is zero. However, in
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this particular case it has been suggested in [34] to use the inner product ⟨.|.⟩η = ⟨.| η |.⟩.
With it, one has

⟨x′1, x′2| η |x1, x2⟩ = δ(x′1 − x1)δ(x
′
2 − x2) (3.2.20)

and it can be used to define the probability of a measure of x̂1 ⊗ x̂2. On the other hand,
if the eigenspace of a particular eigenvalue is degenerate and contains both states with
positive and negative norm, the associated inner product is not unique. It remains to be
clarified whether this should be seen as a limit of the quantization method or a constraint
on physical observables [53]. With such a notion of probability, we do not need anymore
to exclude negative norm states from the set of physical states, hence the time evolution
is unitary.

PT symmetric quantization

An alternative approach also leading to the complexification of x2 and p2 is the so-called
PT -symmetric quantization, see [54] for a review for the general definition of quantum me-
chanics with non-Hermitian Hamiltonians, [40, 55] for its application to higher derivative
theories and [56] for a particular focus on quadratic gravity. One starts from the observa-
tion that the commutation relation [xi, pi] = i is meaningful only when the commutator
acts on states, however we know that with the prescription (3.1.27) the vacuum state is
non-normalizable and the same holds for the complete tower of states (3.1.29). Anyway,
we have already seen that the wave function (3.1.28) has a converging norm if x2 and p2
take purely imaginary values via the similarity transformation

x2 → e
π
2
p2x2x2e

−π
2
p2x2 = ix2 , p2 → e

π
2
p2x2p2e

−π
2
p2x2 = −ip2 , (3.2.21)

that preserves canonical commutation relations. The starting Hamiltonian (3.1.19) is
Hermitian in the sense that H = H∗T and PT -symmetric. After the complexification,
expression (3.2.8) is no more Hermitian, but can be shown to be still PT -symmetric:
since the time reversal and parity operators must also be transformed accordingly to
(3.2.21) before acting on H̄, the Hamiltonian holds this invariance [57]. It has been shown
that non-Hermitian but PT -symmetric operators admit a complete basis of left and right
eigenstates, respectively ⟨nL| and |nR⟩, with real eigenvalues. Moreover, a positive definite
metric can be associated to these eigenstates. Up to a null measure set of singular theories,
there always exists an Hermitian operator Q such that

⟨mL| e−Q |nR⟩ = δm,n ,
∑
n

|nR⟩ ⟨nL| e−Q = 1 . (3.2.22)

Moreover, an Hermitian Hamiltonian H̄ can be associated to the non-Hermitian one via
the transformation

H̃ = e−Q/2H̄eQ/2 . (3.2.23)

In the Pais-Uhlenbeck oscillator, the new Hamiltonian H̃ can be put in the form of two
harmonic oscillators [40]

H̃ = ω1(ã
†
1ã1) + ω2(ã

†
2ã2) +

1

2
(ω2 + ω1) (3.2.24)

thanks to a new set of creation and annihilation operators with eigenstates |ñ⟩ related
to those of H̄ via the identity |ñ⟩ = e−Q/2 |nL⟩. Notice that the positive definite inner
product introduced above (3.2.22) is the standard inner product for states |ñ⟩ and is
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basically identical to the measure introduced in the Pauli-Dirac formalism (3.2.16) in the
particular case where U is the Hamiltonian [53].

The PT -symmetric quantization in the degenerate limit of the Pais-Uhlenbeck oscil-
lator was described in [58], and gives a radically different result: the complexification of
canonical variable is still possible, however the complex Hamiltonian H̄ cannot be diago-
nalized, since Q is singular in this limit. Since the Hamiltonian is not diagonalizable, the
two sets of eigenstates, one for the oscillator with frequency ω1 and one for the oscillator
with frequency ω2, reduce to only one set eigenstates of an anharmonic oscillator with
doubled energy and a set of nonstatic solutions of the Schrödinger equation. The eigen-
states correspond to the degenerate limits of sums of eigenstates of both the oscillators, so
they all have zero norm. These nonstationary solutions are the PT quantized versions of
the growing modes that we observed in the discussion of the purely quartic quantum field
theory in Section 3.1.3. Also in this case, a meaningful notion of probability can be recov-
ered only when considering as asymptotic states a superposition of both stationary and
nonstationary solutions of the Schrödinger equation, however the physical implications of
these mixtures are not clear.

3.2.2 Reduced physical Hilbert space

The second idea we are going to present aims to reduce the space of physical states to
positive norm states on both sides of the identity in the optical theorem, allowing for a
well-defined Born rule and a unitary time evolution. While in gauge theories the exclusion
of Faddeev-Popov ghosts from the space of physical asymptotic states is obtained via the
BRST cohomology [59, 60], there are no symmetries allowing to do the same with ghosts in
higher derivative theories. Ghosts can be removed from the asymptotic Fock space either
by switching on an interaction that forces ghosts to decay in short time or by introducing
a new ad-hoc prescription in ghosts propagators that makes them purely virtual particles.
Both of these ideas can be realized only if the ghost has a nonzero mass bigger that the
mass of the healthy mode, because this separation is necessary both to have a decay of
the ghost and to separate the two propagators via the partial fraction decomposition.

Lee-Wick quantization

In the introduction of this Section we discussed how some interactions permit to avoid
runaway trajectories that seemed to be unavoidable in the free theory. The Lee-Wick
quantization [61, 62] is based on the idea that interactions could heal the ghost also at
quantum level. If the two harmonic oscillators in the Pais-Uhlenbeck model quantized
with the prescription (3.1.27) interact with each other, the ghost modes, which are related
to higher energy levels with respect to the positive norm ones, can decay in the eigenstates
of the oscillator with frequency ω2 < ω1. That means that all states with negative norm
forms couples of eigenstates with complex conjugated eigenvalues which are no more part
of the real part of the spectrum of the interacting Hamiltonian. When the same idea
is applied to quantum field theories for each Pais-Uhlenbeck oscillator associated to a 3-
momentum configuration, the would be negative norm asymptotic states corresponding
to free propagating massive ghosts disappear from the space of eigenvectors with real
eigenvalues, and we remain with a Hilbert space composed only by the massless (or lighter)
positive norm states. Hence, thanks to the decay of massive ghosts, negative norm states
disappear spontaneously from the space of asymptotic physical states used to define the S-
matrix. In the optical theorem (3.1.67), due to the nonzero decay rate of massive ghosts,
|f−⟩ cannot be the final state of a scattering process, implying ⟨f−|T = 0. Thus, the
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equation reduces to

2 Im ⟨i+|T |i+⟩ =
∑
f+

| ⟨f+|T |i+⟩ |2 , (3.2.25)

that is equal to the desired expression (3.1.66). So, the time evolution in presence of
unstable ghosts is unitary.

The same idea of considering an interacting theory instead of its ill-defined free version
has been recently applied to path integral quantization [39, 63, 64]. We start from the
propagator 3.1.74 and add to the theory an interaction with normal particles with mass
m, such that m2 ≪ m ≪ m1. The propagator will receive quantum corrections, that we
can resum as a self-energy insertion Σ(p2) in the denominator

iD(p2) =
−i

p4 + (m2
1 +m2

2)p
2 +m2

1m
2
2 +Σ(p2)

. (3.2.26)

Suppose that, due to the decay of the ghost in two of these particles, above the energy
4m2 the self-energy acquires an imaginary part and can be written in the form

Σ(p2) = (m2
1 −m2

2)
[
δM2(p2) + iθ(q2 − 4m2)γ(q2)

]
, (3.2.27)

where δM2 real and γ(q2) > 0. The positivity of the imaginary part γ is a consequence
of the optical theorem, that is problematic in higher derivative theories, however we will
see that this assumption permits to satisfy the optical theorem at all loops in Lee-Wick
theories, hence it is consistent. The propagator has a pole at

p2 = −M2
2 = −1

2

{
m2

1 +m2
2 −

√
(m2

1 −m2
2)
[
m2

1 −m2
2 − δM(M2

2 )
2
]}

, (3.2.28)

that reduces to M2
2 ∼ m2

2 + δM(M2
2 )

2 if m2
1 ≫ δM2, as expected in the weak coupling

regime. So we can write the momentum square as p2 = −M2
2 + (M2

2 + p2) and find

iD(p2) ∼ −i
m2

1(p
2 +M2

2 − iϵ)
, (3.2.29)

that is the standard pole corresponding to the light particle with an added −iϵ term which
implements the Feynman prescription. The real part of the other pole is at

Re(p2) = −M2
1 = −1

2

{
m2

1 +m2
2 +

√
(m2

1 −m2
2)
[
m2

1 −m2
2 − δM(M2

1 )
2
]}

∼ m2
1−δM(M2

1 )
2 .

(3.2.30)
Near the pole, i.e. taking p2 = −M2

1 + (M2
1 + p2), the propagator looks like

iD(p2) ∼ i

m2
1[p

2 +M2
1 + iγ(M2

1 )]
. (3.2.31)

Notice that there are two sign differences with respect to the low energy pole (3.2.29):
the overall sign in the numerator and the sign in front of the imaginary term in the
denominator. That means that we are in a situation similar to prescription (3.1.75), with
the ghost propagating backward in time [38, 64]. However, contrary to the free theory,
the imaginary part is given by γ, not by ϵ, hence it remains there even in the limit ϵ→ 0.
Consequently, ghost modes associated to this pole have an exponential decay instead
of a purely oscillatory behaviour and should not be considered as asymptotic states in
an interacting theory. Moreover, the propagator cannot go on-shell in loops with real
kinematical variables. In 1963 Veltman [65] showed that, in a theory containing normal
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Figure 3.2: Lee-Wick contour. Poles of the normal particle are represented by simple
circles, while Ghost poles are represented by crossed circles.

(non-ghost) unstable particles, their propagator should not be cut in Cutkosky rules to
respect the optical theorem. The logic is the following: the cutting rules work because the
imaginary part of loop diagrams is generated by on-shell propagators via relation (3.1.78).
Anyway, when the particle is unstable, the imaginary part of the loops comes from γ, that
is proportional to a power of the coupling constant associated to the interaction vertex
responsible of the decay of the particle. That means that its contribution to the imaginary
part will be of higher order in the small coupling expansion with respect to the contribution
of a cut through a stable particle. In fact, if one considers the higher order diagram where
a self-energy loop is inserted in the unstable propagator, a cut through stable particles
that can be produced by the decay process exactly reproduces the contribution to the
imaginary part due to γ. Hence, order by order in loop expansion, only cuts through
stable particles must be taken in account. The imaginary part due to unstable particle
propagators enters in the optical theorem at higher order in loop expansion, when the self-
energy loop of stable particles that produced γ in the unstable propagator is cut through.
The same argument can be applied to unstable ghosts [63] and permits to verify the optical
theory and show the unitarity of the S-matrix.

When the decay rate is small with respect to the time scale taken in account, the
unstable particle can be seen as a stable particle in the so-called narrow width (NW)
approximation [66, 67]. In this case γ is treated as the ϵ of stable particles and long lasting
resonances are added to the asymptotic states and are cut through in the optical theorem.
If one wants to reproduce the NW approximation in Lee-Wick theories, something peculiar
happens. One would be tempted to use as a propagator for the long-lasting ghost the
expression (3.2.31) with the substitution γ → ϵ

iD(p2) ∼ i

m2
1[p

2 +M2
1 + iϵ]

, (3.2.32)

that would lead to prescription (3.1.75). However, by doing explicit computations, the
γ → 0 limit of amplitudes between stable states is recovered in NW approximation only
via a peculiar integration contour called Lee-Wick contour (see figure 3.2). It consists in
passing above the pole with positive real and imaginary part in the q0 integral in loops
and is essentially equivalent to adopting prescription (3.1.76). In this limit, the problems
related to negative norm states and transition probabilities come back, however, since
ghost modes propagate backward in time, it seems logical to expect to lose the concept of
conditional probability usually adopted in quantum physics at the time scale where the
ghost can be seen as a stable particle. Only at larger scales, at which the ghost cannot
survive, the notion of causality, and hence of transition probability, can emerge.
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Figure 3.3: Fakeon poles structure and Lee-Wick contour

While being well-defined at one loop, Lee-Wick contour can become much more con-
volute at higher loops and a good definition within this framework is still missing.

Purely virtual particles

Another way to reduce the Hilbert space of physical states and recover both unitarity and
a well-defined probability consists in introducing a new type of purely virtual particles
called fakeons. Instead of using prescription (3.1.75), that does not allow the cancellations
necessary for renormalizability of higher derivative theories, or (3.1.76), that produces a
ill-defined notion of probability or equivalently a violation of unitarity, one can take a
free-particle propagator

∓i
p2 +m2

= ∓i p2 +m2

(p2 +m2)2
(3.2.33)

and avoid the singularity on the real axis via the new prescription [68, 69]

∓i p2 +m2

(p2 +m2)2 − ε4
=

1

2

(
∓i

p2 +m2 − iε2
+

∓i
p2 +m2 + iε2

)
. (3.2.34)

This new propagator vanishes on-shell, namely at p2 = −m2, hence it does not represent
a proper propagating particle. These purely virtual particles are also called fakeons. At
tree level this prescription is equivalent to use only the principal value of the propagator
and drop the on-shell pole

∓i
p2 +m2

→ P
∓i

p2 +m2
, (3.2.35)

however the full expression (3.2.34) is necessary in loop integrals [70]. To do calculations,
one has to evaluate Feynman diagrams with fakeons propagators in place of ghosts’ in
Euclidean time, and then analytically continue the result to real time. Due to the presence
of poles in the first quadrant of the complex plane for q0, the Wick rotated result does not
correspond to the Lorentzian integral along the real axis, but is actually equal to do the
integration along the Lee-Wick contour (see figure 3.3). At this point, the final amplitude
can be found by sending ϵ → 0 in standard propagators and, at a later time, ε → 0 in
fakeon propagators.

Since the propagator of a purely virtual particle does not have a pole along the real
axis, no imaginary part is produced by loop integrals when the propagator goes on-shell.
That means fakeon propagators must not be cut in computing the imaginary part of the
left hand side of the optical theorem and, if one sums only over positive norm states on
the right hand side, the identity is respected, similarly to what happens with unstable
ghosts in Lee-wick quantization.
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Also with this prescription, the price to pay for unitarity is a violation of causality on
time scales smaller than the mass of the virtual particle [69]. In presence of pure virtual
particles, the classical theory must be defined as the classical limit of the renormalized
quantum theory. Following this procedure, due to violation of microcausality by fakeons,
the effective classical theory is expected to differ from the theory identified by the ini-
tial bare Lagrangian. In particular, nonlocal effects at scales similar to that of acausal
behaviours emerge in the classical limit of the quantum effective action. In the partic-
ular case of quadratic gravity, such modifications could potentially generate observable
corrections to general relativity [71, 72].
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Chapter 4

Nonperturbative flow between
Gaussian theories

Perturbative methods are powerful tools to study the properties of quantum or statistical
field theories in the neighborhood of a fixed point (FP), but they do not say much about
the global properties of the theory space. For example, one would like to know which
FP can be joined by an RG trajectory to another FP. Such questions can sometimes
be answered, for example by the c-theorem in two dimensions or the a-theorem in four.
Another possibility is to simply solve the RG equations. This is impossible in the full
theory space, but it can be done within approximations. For example, in the Z2-invariant
scalar theory in three dimensions, one can find trajectories that join the (free) Gaussian
FP in the UV to the Wilson-Fisher (WF) FP in the IR.

In higher derivative theories, a peculiar situation arises when trying to visualize the
theory space: to each kinetic term there corresponds a different noninteracting Gaussian
theory that is a fixed point of the RG flow. More generally, one can think of infinitely
many Gaussian FP’s corresponding to the Lagrangians ϕ□nϕ. We will refer to them as
GFPn. Each of them can be viewed as sitting in the origin of theory space, but then all
the others are nowhere to be seen. Which GFP we see is related to which GFP we take
as the starting point of a perturbative expansion, and hence to the canonical dimension
of the field. For example (in four dimensions) GFP1 is in the origin of a theory space for
a field of canonical dimension one, GFP2 in the origin of theory space when the field is
dimensionless. In this way it would almost seem that for each choice of field dimension we
have a different theory space, and that these spaces are unrelated to each other. There is
some physical basis for this point of view, because different GFP’s have different numbers
of propagating degrees of freedom. One could view the theory space where a given GFP
is in the origin as describing the interactions of a particular set of physical degrees of
freedom. For example, whereas in Minkowski space GFP1 describes a single propagating
scalar degree of freedom, GFP2 describes two. When GFP2 is infinitesimally deformed by
adding a term of the form ϕ□ϕ, one of the two fields is massive and the other is massless.
By integrating out the massive degree of freedom one remains with the free massless one.
Thus there should be an RG trajectory joining GFP2 in the UV to GFP1 in the IR.

There is one obvious trajectory that does this: it consists of “generalized free theo-
ries”[73, 74] with Lagrangians of the form 1

1

2
ϕ
(
Z1□+ Z2□

2
)
ϕ . (4.0.1)

1This type of RG flows has been considered before in [75, 76].
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In the RG one has to parametrize the theory space with dimensionless coordinates. If we
choose for example the field to have canonical dimension of mass, Z1 is already dimen-
sionless, and the other direction is parametrized by Z̃2 = Z2k

2, where k is some external
“renormalization group scale”, that in the present situation we can identify with the mo-
mentum p. In these free theories, Z1 and Z2 do not run, so Z̃2 is negligible at low energy,
but dominant at high energy. Note that choosing a different dimension for the field does
not change this conclusion. For example, if the field is dimensionless, Z2 is already dimen-
sionless and the other direction has to be parameterized by Ẑ1 = Z1/k

2. So, again, Z1 is
dominant at low energy and negligible at high energy. In both cases, this “classical RG”
just tells us that the four derivative term dominates over the two-derivative term at high
energy.

The independence of the physical implications of the RG flow from the convention
adopted for the field dimensionality is expected to hold also in interacting theories. Indeed,
the fact that the physical predictions of the FRG are in general independent of the choice
of the mass dimension of the field can be shown in the following way. Assume that the
effective action is a quasi-local functional of the field of the form:

Γk[ϕ] =
∑
i

giOi(ϕ) (4.0.2)

For the sake of power counting, the operators Oi have the general form

Oi(ϕ) =

∫
ddx ∂miϕni , (4.0.3)

where the integrand stands for any scalar constructed with mi derivatives and ni fields.
Assuming that the field has dimension [ϕ] = dϕ, Oi has dimension [Oi] = −d+mi+nidϕ ≡
−di and the coupling gi has dimension di.

Now let us change variable from ϕ to a new field ϕ′ of dimension d′ϕ:

ϕ′ = ϕk∆dϕ , (4.0.4)

with ∆dϕ = d′ϕ− dϕ. The effective action of the new field is related to that of the old field
by

Γ′
k[ϕ

′] = Γk[ϕ] . (4.0.5)

This means that, while the two functionals have numerically the same values when the
fields are related as in (4.0.4), Γ′

k is a different functional of its argument from Γk. In
particular, writing

Γ′
k[ϕ

′] =
∑
i

g′iOi(ϕ
′) , (4.0.6)

we find that

g′i = gik
−ni∆dϕ . (4.0.7)

At this point, it is important to understand that once the functional Γ′
k has been

defined by (4.0.5), we are free to attribute all the k-dependence to the couplings g′i and to
think of the field ϕ′ as being k-independent. If we do so, we can use (4.0.7) as a change
of coordinates, but not to calculate the k-dependence of g′i. In fact, when we extract the
beta functions from the generating functionals ∂tΓk and ∂tΓ

′
k, where t = log k, in both

cases we will keep the field fixed. In this way, we arrive at the following relation between
the beta functions:

∂tg
′
i = ∂tgik

−ni∆dϕ . (4.0.8)
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The apparent contradiction with (4.0.7) is due to our keeping ϕ′ fixed. Thus the missing
contribution is compensated by the fact that at the same time we also ignore the k-term
in (4.0.4). Equation (4.0.8) expresses the fact that the calculation of the loop corrections
is the same, for any dimension of the field, up to an overall factor of k that accounts for
the different dimensions.

In the discussion of RG flows and fixed points we must use the dimensionless variables

g̃i = gik
−di , g̃′i = g′ik

−d′i . (4.0.9)

However, using (4.0.8), one finds that the beta functions of these dimensionless variables
are different, namely

∂tg̃
′
i = ∂tg

′
ik

−d′i − d′ig̃
′
i = ∂tg̃i + ni∆dϕg̃i . (4.0.10)

This does not happen if we properly take into account the normalization of the field.
Among the couplings gi there is the wave function renormalization constant Z or Z ′, that
has dimension dZ = d− 2− 2dϕ or d′Z = d− 2− 2d′ϕ respectively. Let us therefore define

g̃i = giZ
−ni/2k−di+nidZ/2 , g̃′i = g′iZ

′−ni/2k−d
′
i+nid

′
Z/2 . (4.0.11)

Note that

−d′i + nid
′
Z/2 = −d+mi + ni

d− 2

2
= −di + nidZ/2 , (4.0.12)

and then, if we use (4.0.7), g̃′i = g̃i. Equation (4.0.8) implies that ∂tZ
′ = ∂tZk

−2∆dϕ and
therefore

∂t logZ
′ = ∂t logZ . (4.0.13)

So, using the preceding formulae,

∂tg̃
′
i = ∂tg

′
iZ

′−ni/2k−d
′
i+nid

′
Z/2 +

(
−d+mi + ni

d− 2− ∂t logZ
′

2

)
g̃′i

= ∂tgiZ
−ni/2k−di+nidZ/2 +

(
−d+mi + ni

d− 2− ∂t logZ

2

)
g̃i = ∂tg̃i .

(4.0.14)

Thus the flows of the dimensionless and canonically normalized couplings is the same,
independently of the dimension of the field. This underlines the importance of including
the redundant wave function renormalization constants in the definition of the coordinates
on theory space.

In the following, we will analyze the nonperturbative RG flow of some simple higher
derivative scalar theories using the functional renormalization group equation and we will
try to map the flow between different Gaussian fixed points and other eventual interacting
fixed points.

For most of the rest of this thesis we will ignore the issue of the ghosts and study the
renormalization of Euclidean theories. When considering scattering amplitudes in Chapter
5, we will assume the prescription (3.1.76), that is the result of the usual Wick rotation
of the euclidean amplitude.
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4.1 The shift invariant scalar model

In this Section we will focus on a shift-symmetric (ϕ → ϕ + constant) and Z2-symmetric
scalar field. These symmetries restrict the Euclidean free energy, or effective action, to
have the form

Γ[ϕ] =

∫
d4x

[
1

2
Z1(∂ϕ)

2 +
1

2
Z2(□ϕ)

2 +
1

4
g((∂ϕ)2)2 + . . .

]
, (4.1.1)

that is power counting renormalizable despite the derivative interaction term. The higher
derivative interactions are similar to those which appear in gravitational theories, moreover
the inclusion of both two and four derivatives in the kinetic energies is typical of many
applications of the FRG in which operators of different dimensions appear. The restriction
over possible interaction vertices due to shift symmetry is crucial in order to have a
renormalaizable theory, since, with a field with zero canonical dimension, operators with
infinite powers of the field can be associated with a marginal or even relevant coupling.
That means power counting is not a sufficient criterion for renormalizability, because the
number of parameters to be experimentally fixed can be infinite even in a theory without
irrelevant operators. In a theory that contains only one scalar field and a finite number
of operators polynomial in the field and its derivatives, shift invariance is a necessary
condition for the theory to be renormalizable [77], while in more complicated theories
other symmetries can constrain the theory space in an efficient way, as does, for example,
diffeomorphism invariance in quadratic gravity. Superficially, this theory appears to be
pathological. First, theories with higher derivative kinetic energies contain a ghost with
squared mass m2 = Z1

Z2
. This can be seen from the propagator in the full theory with Z1

normalized to 1 and hence Z2 = 1/m2)

iD(p2) =
−i

p2 + p4

m2

= −i
[
1

p2
− 1

p2 +m2

]
. (4.1.2)

The signs in the original Lagrangian have been chosen to have the massive pole at timelike
momentum, because the opposite sign would have the pole being tachyonic. Second, as
we shall discuss, the theory is asymptotically free, in the sense that the coupling runs
logarithmically to zero in the UV limit, but only for negative coupling. In this it is
reminiscent of Symanzik’s observation that ordinary λΦ4 theory is asymptotically free for
λ < 0 [78]. In spite of this, we can study the renormalization of this model and draw from
it some useful lessons.

Besides being an interesting case study for several aspects of renormalization theory,
our model is also of independent interest and has appeared recently in various different
contexts. Without the higher derivative kinetic term, it is a textbook example of Effective
Field Theory (EFT), being the low energy description of a U(1)-invariant linear sigma
model in the Higgs phase [79, 80]. With the higher derivative kinetic term, it is the
low energy EFT for the higher derivative version of the same model. As a CFT, the
higher-derivative model has been discussed in [81]. In the context of Asymptotic Safety,
it has been presented as a type of matter interaction that would necessarily have to be
present if gravity has a nontrivial fixed point [82, 83]. Finally, it has been studied recently
by Tseytlin [43] and by Holdom [84], who found evidence that the model may be less
pathological than would first appear.

In perturbation theory, one normally decides to normalize the field either with Z1

or Z2 and treats the other kinetic term as a perturbation. The limiting cases Z1 = 0
and Z2 = 0 have been discussed recently in [81] as elements of an infinite family of shift
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invariant theories, while in Section 5.1 we will study the perturbative behaviour of the
theory with a mixed propagator. Beyond perturbation theory, the action (4.1.1) and its
generalizations containing higher derivative terms, are part of a single “theory space”,
where all terms can be present simultaneously. One is then interested in understanding
the mutual relations between different fixed points. In particular, the question we shall
investigate is whether there exist nontrivial RG trajectories joining them.

The tool we shall use is the Wetterich-Morris form of the non-perturbative RG equation
for the 1-PI effective action, a.k.a. the effective average action (EAA) discussed in Section
2.2.1. The EAA is a functional of the fields depending on an external scale k that acts
as an IR cutoff. By making an ansatz for the EAA of the form (4.1.1), the constants
Z1, Z2 and g become k-dependent running couplings. Inserting the ansatz in the RG
equation one can read off the beta functions and anomalous dimensions. As usual in FRG
computations, we will consider quantum field theories in Euclidean signature, so we will
not care of problems related to unitarity and ghosts in general.

We shall calculate the RG flow based on two different choices of field dimension, which
are in turn related to different Gaussian FP’s, and show how these flows are related by a
coordinate transformation in theory space. This yields a global picture of the flow where
both GFP’s are simultaneously present.

In the neighborhood of a Gaussian fixed point, the anomalous dimension must be
small. If, following the RG flow, we end at another FP, we can in principle calculate the
anomalous dimension of the field at this endpoint. Such calculations are always based on
some approximations and therefore the calculated anomalous dimension is generally not
exact. Remarkably, we shall see that in the case of flows between Gaussian FPs the result
is exact, in the following sense: the canonical dimension of the field at the UV FP plus
the calculated anomalous dimension gives exactly the canonical dimension of the field at
the IR FP.

4.1.1 The flow from GFP2 to GFP1.

Implicit in the definition of free particle states is the choice of a Gaussian FP. Then, it is
natural to give the field the canonical dimension that pertains to that free theory. When
one contemplates flows interpolating between different FP’s, the choice of dimension of the
field is no longer so natural. In this section we will discuss flows joining GFP1 and GFP2,
where the fields have canonical dimension one and zero respectively. We will therefore
exhibit the flow equations in both cases. The power counting in the two cases is very
different, but the calculation of the loop contributions via the Wetterich-Morris equation
is essentially the same. The differences arise from the choice of dimensionless coordinates
for theory space, that come natural in the neighborhood of each FP. For each GFPi
(i = 1, 2) we will therefore define a chart, consisting of an open subset of theory space Ui
and suitable coordinate functions. We will then discuss the transformation between the
two charts and give a global picture of the RG flow.

In order to write an explicit RG equation we have to choose a form for the cutoff (or
“regulator”) function Rk that suppresses the low momentum modes in the path integral.
We choose:

R
(24)
k = Z1(k

2 − q2)θ(k2 − q2) + Z2(k
4 − q4)θ(k4 − q4) . (4.1.3)

The presence of the couplings Z1 and Z2 makes it an “adaptive” cutoff (in contrast to a
“non-adaptive” or “pure” cutoff [85]). Normally only one of the two terms is considered,
but for our purposes this choice is preferable, because it treats the two possible kinetic
terms on an equal footing. Additionally, it leads to the simplest beta functions, among
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the choices we have tried. We discuss in Appendix A different choices of the cutoff.

Dimensionful field and the chart U1

If in the action (4.1.1) we choose the term with two derivatives to define the propagator,
the field ϕ has canonical dimension of mass. Then Z1 is dimensionless, Z2 has dimension
of inverse mass squared and g of inverse mass to power 4. the power counting is that of
a non-renormalizable theory. The flows of g, Z1 and Z2 are extracted from the functional
RG equation [10, 11]

k
dΓk
dk

=
1

2
Tr

(
δ2Γk
δϕδϕ

+Rk

)−1

k
dRk
dk

(4.1.4)

by inserting the Ansatz (4.1.1) for Γk, evaluating the functional trace Tr (which for a
scalar in flat space is a momentum integral) and extracting from it the coefficients of the
three operators (∂ϕ)2, (□ϕ)2 and ((∂ϕ)2)2. the beta functions are

∂tZ1 = −(8− η1)Z1 + 16k2Z2

128π2(Z1 + k2Z2)2
gk4 , (4.1.5)

∂tZ2 = 0 , (4.1.6)

∂tg =
(10− η1)Z1 + 20k2Z2

64π2(Z1 + k2Z2)3
g2k4 . (4.1.7)

It is natural to parametrize theory space by

g̃ =
gk4

Z2
1

, Z̃2 =
Z2k

2

Z1
. (4.1.8)

The powers of k make the couplings dimensionless and the powers of Z1 are such that if
these definitions are inserted in the action, Z1 can be set to one by rescaling the field. This
makes it clear that Z1 is a redundant coupling. The anomalous dimension η1 = −∂t logZ1

(where t = log(k/k0)) and the beta functions of g̃ and Z̃2 are obtained from equations
(4.1.5), (4.1.6) and (4.1.7).

We find

η1 =
8g̃
(
1 + 2Z̃2

)
g̃ + 128π2(1 + Z̃2)2

(4.1.9)

and

βg̃ ≡ ∂tg̃ = (4 + 2η1)g̃ +
10 + 20Z̃2 − η1

64π2(1 + Z̃2)3
g̃2 . (4.1.10)

where (4.1.9) has to be used. The beta function of the dimensionful Z2 (4.1.6) vanishes,
which implies

βZ̃2
≡ ∂tZ̃2 = (2 + η1)Z̃2 . (4.1.11)

These beta functions have some nontrivial zeroes. We see from (4.1.11) that βZ̃2
can

vanish in two ways: one is by having Z̃2 = 0, the other by η1 = −2. Besides GFP1 there
are two FPs of the first type, occurring at g̃ = 128π2(2

√
6− 5) and g̃ = 128π2(−2

√
6− 5)

and one FP of the second type at Z̃2 = −3/5, g̃ = −512π2/5. The properties of these FPs
are summarized in Table 4.1. Some of these FPs had already been observed in [82, 83,
86].

We note that the beta functions have singularities for g̃ = −128π2(1 + Z̃2)
2 and for

Z̃2 = −1. The fixed points GFP1, NGFP1 are on one side of the singularities, while the
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FP Z̃2∗ g̃∗ η1∗ θ1 θ2

GFP1 0 0 0 -4 -2
NGFP1 0 -127.6 -0.90 4.40 -1.10
NGFP2 0 -12505 8.90 43.60 -10.90
NGFP3 -0.6 -1011 -2 -13.84 10.84

Table 4.1: Properties of the finite FPs seen with dimensionful field. The second and third
columns give the values of the couplings (4.1.8), the fourth the anomalous dimension and
the last two the scaling exponents.

other two are on the other side. Thus for the purpose of studying the flows that can
start/end at GFP1, the area with Z̃2 < −1 or g̃ < −128π2(1 + Z̃2)

2 is unphysical.

One can get a general overview picture of the flow in the chart U1 by defining

Z̃2 = tanu (4.1.12)

g̃ = 128π2(2
√
6− 5) tan v . (4.1.13)

The rescaling factor has been chosen in such a way that NGFP1 is at u = 0, v = π/4,
while the singularity of the flow is at u = −π/4. The result is depicted on the left side of
figure (4.1).

If we study the function η1 in the bottom right quadrant, we find that the condition
η1 = −2 is satisfied asymptotically for Z̃2 → ∞ and

g̃ ∼ −16π2Z̃2 . (4.1.14)

This leads us to suspect the existence of another FP in the bottom right corner, outside
the domain of this chart. We also note the existence of a “separatrix”: the RG trajectory
that arrives at NGFP1 from the irrelevant direction, corresponding to the eigenvector with
components (

5(11
√
6− 27)

256π2(505
√
6− 1237)

ϵ,−ϵ

)
≈ (0.0143ϵ,−ϵ) . (4.1.15)

This trajectory can be found numerically and it has the asymptotic behavior (4.1.14).
In fact all other trajectories in the fourth quadrant that end at GFP1 have this same
asymptotic behavior, as we shall show later. If we follow these trajectories in the sense of
increasing k or t, those trajectories that emerge from GFP1 at a steeper angle reach this
behavior sooner, while those that come out nearly horizontally only reach this regime at
higher k. We shall discuss the meaning of these facts later.

Dimensionless field and the chart U2

We start again from (4.1.1), but we assume that the propagator is given by the four
derivative kinetic term, so the field is canonically dimensionless. In order not to confuse
the couplings of this case with those of the previous section, we shall use a different
notation for the effective action:

F [φ] =

∫
d4x

[
1

2
ζ1(∂φ)

2 +
1

2
ζ2(□φ)

2 +
1

4
γ((∂φ)2)2 + . . .

]
(4.1.16)
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Figure 4.1: The flow in the chart U1 (left) and in the chart U2 (right). The black dot (on
the left) and the dashed black line (on the right) mark GFP1, the red dot marks GFP2,
the blue square marks NGFP1. The separatrix is the green flow line. The continuous red
lines are singularities of the flow.

It can be obtained from (4.1.1) by changing the dimension of the field and redefining the
couplings

ϕ = kφ , Z1 = k−2ζ1 , Z2 = k−2ζ2 , g = k−4γ . (4.1.17)

Now the wave function renormalization constant ζ2 is dimensionless, while ζ1 has dimension
of mass squared, and the coupling γ is dimensionless. The power counting is that of
a renormalizable theory, with ζ1 having the meaning of a mass. As mentioned in the
introduction to this chapter, the beta functions of the original, generally dimensionful,
parameters in the Lagrangian are related as in (4.0.7). This is because the calculation
of the loop contributions is the same, up to a redefinition of the dimensions. We can see
this explicitly in the case of the shift-symmetric theory. So, with dimensionless field and
action (4.1.16), the dimensionful beta functions are the same of equations (4.1.5), (4.1.6)
and (4.1.7), with the replacements Zi → ζi, g → γ, and we can use these equations to find
the RG flow of the parameters of this map of the theory space.

The natural variables for the parametrization of theory space are

ζ̂1 =
ζ1
ζ2k2

, γ̂ =
g

ζ22
. (4.1.18)

Inserting these definitions in the action, we see that ζ2 is a redundant coupling, because
it can be set to one by a field rescaling.

As in the previous section, ∂tζ2 = 0, so the anomalous dimension η2 = −∂t logZ2 is
trivial

η2 = 0 , (4.1.19)

while the beta functions are

βζ̂1 = −2ζ̂1 −
8γ̂(2 + ζ̂1)

γ̂ + 128π2(1 + ζ̂1)2
(4.1.20)
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FP ζ̂1∗ γ̂∗ η2∗ θ1 θ2

GFP2 0 0 0 2 0
NGFP3 -1.67 -2807 0 -13.84 10.84

Table 4.2: Properties of the finite FPs seen with dimensionless field. The second and third
columns give the values of the couplings (4.1.18), the fourth the anomalous dimension and
the last two the scaling exponents.

and

βγ̂ =
(2 + ζ̂1)(γ̂ + 640π2(1 + ζ̂1)

2)

32π2(1 + ζ̂1)3
(
γ̂ + 128π2(1 + ζ̂1)2

) γ̂2 . (4.1.21)

The fixed points of these beta functions are listed in Table 4.2. We note that the nontrivial
FP has the same scaling exponents as NGFP3 and has been labeled accordingly. We shall
soon understand this identification better.

By expanding the beta functions in ζ̂1 and γ̂, and demanding that they form in the
(ζ̂1, γ̂) plane a vector pointing towards the origin, we find that the only direction by which
one can tend to GFP2 is (ϵ,−16π2ϵ).

Now we can introduce a new set of coordinates analogous to (4.1.12) and (4.1.13) in
order to compactify the configuration space. The result is the right hand side of figure
(4.1). Also in this case in the fourth quadrant there is a separatrix. It distinguishes curves
for which ζ̂1 tends to infinity in the limit k → 0 from those for which ζ̂1 reaches a maximum
and then turns down again. For large ζ̂1 the separatrix has the asymptotic form

γ̂ = −128π2(2
√
6− 5)ζ̂2 . (4.1.22)

This limit corresponds to GFP1.

Global properties of the flows

We shall now show that the two flows described in the previous subsections are merely
coordinate transformation of each other, outside the two Gaussian FP’s, and derive various
physical properties of the system.

The chart U1 contains GFP1 but not GFP2, and vice-versa. In order to understand
the flows from one Gaussian FP to the other, we must understand that in each chart “the
other” FP is a limiting set. To this end, we need the coordinate transformation. From
the relations (4.1.8), (4.1.17) and (4.1.18) the two sets of coordinates for theory space are
related by

ζ̂1 =
1

Z̃2

, γ̂ =
g̃

Z̃2
2

or conversely g̃ =
γ̂

ζ̂21
. (4.1.23)

From here we see that in the chart U2, taking the limit ζ̂1 → ∞ for any fixed and finite γ̂,
gives Z̃2 = 0 and g̃ = 0. Therefore, all these limit points correspond to GFP1. Conversely
in the chart U1, if we take the limit Z̃2 and g̃ → ∞ with relation (4.1.14), we find ζ̂1 = 0,
γ̂ = 0, which corresponds to GFP2. While mathematically clear, these statements may
sound a bit puzzling: from the point of view of the chart U2, how can it be that the theory
becomes free in the IR even as the coupling γ̂ remains constant? Even more dramatically,
from the point of view of the chart U1, how can it be that the theory becomes free in the UV
even as the coupling g̃ diverges? We shall gain a better understanding of these statements
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by studying the properties of the RG trajectories. After the picture in dimensionless
variables has been clarified, we will discuss the picture in dimensionful variables.

In the chart U2, Z1 is a mass squared and therefore there is an obvious mass threshold
located where ζ̂1 = 1, with the UV located to its left and the IR to its right. By the same
token, in the chart U1 the mass threshold is at Z̃2 = 1, with the IR to its left and the
UV to its right. It is somehow natural to use the chart U2 for energy scales above the
threshold and the chart U1 for energy scales below it, even though the validity of both
charts extends far below this point.

We have shown in Section 4.1.1 that all trajectories emerge from GFP2 with γ̂ =
−16π2ζ̂1. Applying the transformation (4.1.23) this implies that in the chart U1 all the
trajectories have the asymptotic behavior (4.1.14), as mentioned in Section 4.1.1.

Next note that the lines with g̃ = 0 (in the chart U1) and γ̂ = 0 (in the chart U2)
correspond to the classical trajectory (4.0.1), joining GFP2 in the UV to GFP1 in the IR,
and consisting entirely of free theories. At the other extreme, the separatrix is in some
sense the “strongest interacting” trajectory. In the chart U1 it consists of two segments:
first the line going from GFP2 in the UV to NGFP1 in the IR, and then the trajectory
with Z̃2 = 0, joining NGFP1 in the UV to GFP1 in the IR. 2 We will be interested in the
infinitely many trajectories that are contained between these two extremes, see Figure 4.1.

There are trajectories that remain entirely in the perturbative domain, i.e. are close
to the classical trajectory. This is not obvious when one works in a fixed chart, because
both g̃ and γ̂ do not go to zero at both ends of the trajectory. Flowing out of GFP2 in
the chart U2 they are the ones for which γ̂ is small at least down to the mass threshold
ζ̂1 = 1. Eventually, if one proceeds further towards the IR, γ̂ remains constant. However,
around ζ̂1 = 1, one can change chart: at that point g̃ = γ̂ is small and following the flow
towards the IR in the chart U1, the coupling g̃ tends to zero. The qualitative behavior of
the trajectories is the same also when the coupling in mid-flow is strong.

We can now see the automatic change of dimensionality of the field along the flow. In
the chart U1, that is more appropriate to describe the low energy physics, the field has
dimension of mass and Z1 is dimensionless. Near GFP1 the anomalous dimension is small
and negative. However, if we follow any RG trajectory towards the UV, as discussed in
Sect 4.1.1, the anomalous dimension grows and eventually tends to −2. Recalling that the
canonically normalized field

ϕ̃ =
√
Z1ϕ (4.1.24)

has scaling dimension (d− 2 + η1)/2, this means that the field is effectively dimensionless
in the UV limit. This is indeed the natural choice for the field at GFP2 in the chart U2.
We observe that this automatic adjustment of the dimension is a consequence of the form
(4.1.11) of the beta function of Z̃2. The fact that in the UV limit η1 ≈ −2 also means
that the wave function renormalization constant scales like Z1 ∼ k2 in that limit. Thus in
going from GFP1 to GFP2, Z1 gets multiplied by an infinite factor.

One can arrive at the same conclusions in the chart U2. Here the RG equation to be
observed is not the one for the anomalous dimension η2, which is identically zero, but the
running of the mass ζ̂1. In fact eq. (4.1.20) can also be written in the form

βζ̂1 = −(2 + η1)ζ̂1 , (4.1.25)

where

η1 =
8γ̂(2 + ζ̂1)

γ̂ + 128π2(1 + ζ̂1)2
1

Z1
. (4.1.26)

2Strictly speaking this should be seen as two separate trajectories, since each one takes infinite RG
time, but it can be seen as the limit of trajectories joining directly GFP2 to GFP1.
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and one recovers η1 = −2 in the fixed point GFP2.

The picture in dimensionful variables

Even though the charts U1 and U2 are defined only for the dimensionless coordinates on
theory space, when we consider the flow in the dimensionful parameters appearing in the
Lagrangian, there is still a vestige of these coordinates in the choice of the dimension of
the field.

Because terms with fewer derivatives dominate at low energy, it is natural to describe
the IR physics in terms of the dimensionful field ϕ with two-derivative kinetic term. In
the limit k → 0 both Z1 and g become constants, see Equations (4.1.5,4.1.7), and recall
that Z2 is also a constant. Therefore the effective action is (4.1.1) with arbitrary fixed
coefficients. This does not look like a free theory, but if we identify the scale k with a
characteristic external momentum p, by mere momentum counting the first term is the
dominant one in the IR limit. The interaction is of order gp4 and goes to zero much faster,
and the same happens for the higher-derivative kinetic term. 3 It is noteworthy that in
order to identify the k → 0 limit as a free theory it is necessary to identify k as a physical
momentum scale.

On the other hand, using the asymptotic behavior (4.1.14), and solving the flow equa-
tion for Z̃2, we find that the behavior for large k is Z̃2 ∼ 11

4 log k and therefore 4

Z1 =
4Z2k

2

11 log k
, (4.1.27)

where Z2 is fixed and arbitrary. Then using (4.1.14) one obtains

g = −64π2Z2
2

11 log k
. (4.1.28)

Thus for k → ∞, g goes to zero and we remain with a free theory. Identifying again k with
the momentum in the two-point function, the four-derivative kinetic term has an overall
momentum-dependence p4 whereas the two-derivative one goes like p4/ log p. Thus in the
UV limit the four-derivative kinetic term is the dominant one, but only logarithmically.

For large momentum it is natural to redefine the field as in (4.1.17), thus absorbing in
the field the power in the running of Z1 at high energy. Then we find that ζ̂1 = 4/(11 log k)
and

ζ1 =
4ζ2k

2

11 log k
, (4.1.29)

where ζ2 is an arbitrary dimensionless constant that can be set to one. Thus the “mass
squared” ζ1 has the expected power behavior, with a logarithmic correction. For the
coupling γ we get

γ = − 64π2ζ22
11 log k

, (4.1.30)

which is the expected behavior of a renormalizable coupling and demonstrates asymptotic
freedom at high energy.

If we now look at the IR limit using the field φ we find that ζ1, ζ2 and γ become all
constants and we recover the previous statement that the (free) two-derivative term is
the dominant one. Once again, the understanding of this limit as a free theory hinges on
identifying the RG scale k with a characteristic external momentum p.

3The identification k = p is unambiguous for the two point function, but may require further qualifica-
tions for more complicated physical processes.

4This gives the anomalous dimension −2 + 1/ log k.
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The mass of the ghost

In this section we think of the theory in Minkowski space, where the classical action differs
from (4.0.1) by an overall sign. It describes two propagating particles: a normal massless
scalar and a massive scalar ghost with mass m2

gh = Z1/Z2 (Notice that this statement
is independent of the dimension of the field). If g = 0, Z1 and Z2 do not run and the
statement holds verbatim also at the quantum level. If we now switch on g, the value of
the physical (pole) mass will receive quantum corrections. The two-point function of the
theory is defined as the limit for k → 0 of the two point function of the EAA. In general,
the dependence of the n-point functions on the external momenta and on the parameter k
are not interchangeable, but in the case of the two-point function, given that the external
momentum p has the effect of an IR cutoff in the integrations over the loop momenta, the
k-dependence is a good proxy for the p-dependence. We can therefore reliably calculate
the pole mass from the running of the parameters Z1 and Z2 with the cutoff scale k.

In the presence of a running (renormalized) mass m2
R(k), the pole mass can be defined

by
m2
pole = m2

R(k = mpole) (4.1.31)

and corresponds to the threshold discussed in the previous section. There is an old argu-
ment that if mR grows sufficiently fast, there may be no pole at all. 5 This would remove
the unwanted ghost state.

Working in the chart U1, the location of the pole is defined by

Z̃2 = 1 . (4.1.32)

Since all the trajectories run from Z̃2 = ∞ to Z̃2 = 0, they inevitably hit the pole and the
argument mentioned above cannot apply. However, the pole may be shifted to arbitrarily
high scale.

To see this we start by setting Z1 = 1 in the IR limit. Then on the “classical” RG
trajectory (4.0.1), Z1 = 1 everywhere and the pole mass is at

k2P =
Z1

Z2
=

1

Z2
. (4.1.33)

Let us now switch on the interaction. The anomalous dimension η1 is negative and there-
fore Z1 becomes larger than one. Thus the pole is shifted to a larger value, compared to
the “classical” trajectory. This effect becomes stronger as one considers trajectories that
are further away from the classical one. In the limit, consider a trajectory that is close to
the separatrix. Already for small k, g̃ becomes quickly very negative, until one gets close
to NGFP1. There the running of g̃ almost stops, but Z1 grows like

Z1(k) ∼ k0.90 . (4.1.34)

This behavior can last for many orders of magnitude of k. By the time the RG trajectory
finally leaves the vicinity of NGFP1 and reaches Z̃2 = 1, Z1 can be arbitrarily large. Thus
the mass of the ghost grows continuously from 1/

√
Z2 to infinity as one moves from the

classical RG trajectory to the separatrix.

Redundant couplings and the essential RG

One says that a coupling in the Lagrangian is “redundant” or “inessential” at a specified
FP, if it can be removed from the Lagrangian by means of a local field redefinition [88,

5See e.g. [87].
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89]. There has been recently an interesting discussion of the “essential RG”, which is a
way of simplifying the RG flow by eliminating all redundant couplings [90].

The prime example of a redundant coupling is the wave function renormalization: the
parameter Z1 is redundant at GFP1 and ζ2 is redundant at GFP2, because they can be
fixed to 1 by rescaling the field. We have already taken this into account by putting
suitable powers of Z1 or ζ2 in the definition of the coordinates in theory space. It has
been shown before that doing so is necessary if we demand that the beta functions are
independent of the dimension of the field.

However, also the parameter Z2 is redundant at GFP1. Indeed, if Z̃2 is infinitesimal,
it can be removed by an infinitesimal field redefinition of the form

δϕ =
Z2

2Z1
□ϕ . (4.1.35)

One could therefore eliminate also Z2 and get the essential flow equation for the single (in
our approximation) coupling g̃: in Figure 4.1, left panel, it would be a flow in the vertical
direction only, and would lead to different properties of NGFP1. Similar considerations
can be used to prove, in a much more general setting than a mere scalar theory, that if the
kinetic term is the standard one containing two derivatives, then in perturbation theory
one will never generate higher-derivative kinetic terms [91].

On the other hand when one considers GFP2, ζ1 is not redundant there because it
cannot be removed by a local field redefinition. We conclude that by studying only the
essential RG at GFP1 we would not realize the possibility of flowing to GFP2 in the UV,
which would imply an increase in the number of propagating degrees of freedom, but we
would still have the possibility of flowing to the non-Gaussian FP [90].

4.1.2 Discussion

We now review our main findings and then comment on possible extensions.

The general theory space contains all possible kinetic terms and none of them plays an
a priori preferred role. It is only when one considers the perturbative expansion around
a Gaussian fixed point that the corresponding kinetic term acquires a special meaning.
One then has a clear choice for the canonical dimensionality of the field. 6 Otherwise,
the choice of the dimension of the field is essentially arbitrary: physical conclusions are
independent of this choice. However, the picture of the flow that follows from different
choices can be quite different. For a fixed n ≥ 0 the choice of kinetic term Znϕ□nϕ
dictates that the field has canonical dimension (d − n)/2 and this fixes the dimension of
all the couplings gi in the Lagrangian. When suitably rescaled by powers of n and Zn,
these couplings define coordinates on an open subdomain Un of theory space. Thus theory
space is a manifold covered by infinitely many charts. In the origin of the chart Un there
sits GFPn, while all the other Gaussian FPs are outside this chart, but in its closure.

We have discussed mainly the RG trajectories joining GFP2 to GFP1. They describe
the unfamiliar situation of interacting theories that are free both in the UV and in the
IR. 7 Starting in the perturbative regime near GFP1 at low energy, the coupling g̃ grows
without bound as one goes towards the UV. Superficially one may conclude that the
theory does not have a good UV limit. However, one has to take into account the infinite
amount of running of the wave function renormalization constants: while g̃ increases, Z̃2

also increases at a similar rate, in such a way that the combination γ̂ goes to zero, as

6In the case of “generalized free theories” (4.0.1), this is not the case.
7For examples of gauge couplings in semisimple gauge theories that have this behavior see [92].
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seen from (4.1.23). At the same time, the anomalous dimension also becomes large and
tends to −2, which is a sign that the scaling dimension of the field becomes exactly zero,
as appropriate to GFP2. Thus, at some point, it becomes natural to move to the chart
U2 where one sees again a perturbative theory, this time governed by the four-derivative
kinetic term.

It is natural to conjecture the existence of flows between GFPn and GFPℓ with n > ℓ.
However, theories with large n have negative canonical field dimension and infinitely many
relevant couplings, a problematic situation. In spacetime dimension d = 4 this already
occurs for n = 3, and this is the reason why this case has not been discussed here. One may
think of restricting the number of relevant operators by imposing higher order symmetries
of the form

δ(n)ϕ = c0 + c1µx
µ + . . . cn−1

µ1...µn−1
xµ1 . . . xµn−1 , (4.1.36)

which is the symmetry of the kinetic term ϕ□nϕ, for n > 0. More generally, this will
be a symmetry for Lagrangians where every field appears under at least n derivatives.
By choosing the cutoff appropriately one can obtain flows that respect the symmetry
and therefore remain in the symmetric subspaces of theory space, which would acquire
a complicated stratified structure. However, in the last chapter we stated that, in the
purely quartic scalar theory, due to gauge invariance under shifts in the field by harmonic
functions, no physical content remains to be observed. So, a similar situation could be
found also here, after imposing such symmetries.

All theories with n > 1 have ghosts at perturbative level, but we have shown that in
this case the mass of the ghost mode depends on the trajectory and there are trajectories
where it is arbitrarily high. The limiting case is the trajectory connecting GFP1 in the
IR to NGFP1 in the UV, which is free of ghosts. Another pathology is that the coupling
must be negative, leading to negative interaction energy. This was already well known in
the case of Symanzik’s asymptotically free scalar theory, and it is generally agreed that in
spite of the coupling going asymptotically to zero, this is an unphysical feature [93]. Thus
these theories are probably not very useful, even as statistical models, but we think that
they still offer some interesting lessons in quantum field theory.

Finally, let us discuss the limitations of our analysis, starting in the chart U1. We have
found that when we run the RG towards the UV, all the trajectories above the separatrix
in the fourth quadrant tend to GFP2. However, going beyond the truncation (4.1.1),
infinitely many other irrelevant terms will be turned on. For generic initial conditions near
GFP1, these couplings will go to infinity in the UV, signaling that these are just effective
field theories. It is only for a very special subset of trajectories that UV completeness
can be achieved. This is best seen by running the RG in the other direction, starting
from GFP2. Also in this case all other couplings compatible with the symmetries will be
generated when one looks beyond linear order. As an example, working in the chart U2,
one can consider the coupling γ2 that multiplies the six-derivative operator (□ϕ)2(∂ϕ)2.
The beta function of the dimensionless γ̂2 = γ2k

2/ζ22 is

∂tγ̂2 = 2γ̂2 +
1024γ̂2(2 + ζ̂1)

3(1 + ζ̂1)(γ̂ + 128π2(1 + ζ̂1)2)
+O(γ̂22) . (4.1.37)

As soon as γ̂ is turned on, this beta function becomes nonzero and γ̂2 starts to grow.
However, assuming that γ̂2 does not change too much the behavior of the other two
couplings, in the IR ζ̂1 goes to infinity and suppresses the loop term, while the classical
term remains. Thus γ̂2 is expected to go again to zero in the IR. This is confirmed by
numerically solving the equations. Similarly, all the other local couplings will be generated,
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but they are irrelevant for GFP2 and even more so for GFP1. Thus, one expects that they
all go to zero as one flows towards the IR.

In the recent paper [86], the shift-invariant scalar theory has been studied in a trun-
cation involving potentially infinitely many terms, all powers of (∂ϕ)2. This gives more
insight in the flow along the axis Z̃2 = 0, in particular on the properties of NGFP1. How-
ever, we observe that the term (□ϕ)2 will be generated by quantum fluctuations: first,
one loop effects of the coupling g̃ will generate the coupling γ2 as indicated above (this
happens independently of the form of the kinetic term and of the cutoff) and then one
loop effects involving γ2 will give a nonzero beta function for Z2.

8 Since all the additional
terms ((∂ϕ)2)n, n > 2, are irrelevant at GFP2, our conclusions will not be modified by the
inclusion of such terms in the truncation, except for changes in the properties of the tra-
jectories at strong coupling, and in particular near the fixed point NGFP1. Another work
[95], suggested that the NGFP1 is not physical, but just an effect of the finite truncation.
It could be interesting to explore whether the same is true even after the inclusion of the
higher derivative kinetic term.

4.2 ϕ4 theory

Now we will consider the case of a theory with an action of the form

S =

∫
d4x

[
1

2
Z2(□ϕ)

2 +
1

2
Z1(∂ϕ)

2 +
1

2
Z0ϕ

2 +
1

4!
λϕ4 + ...

]
. (4.2.1)

There are two potential terms that do not have shift symmetry. The coefficient of the
quadratic term without derivatives, that is normally viewed as a mass squared, has been
called Z0 since it is a member of the family of free Lagrangians. If we momentarily set
Z2 = 0, we have the well known ϕ4 scalar theory, so we will start our analysis precisely
from this particular case.

4.2.1 The flow from GFP1 to GFP0

We have already discussed the λϕ4 theory in our general overview of the renormalization
group, however we would like to reconsider it from a different point of view. The action is

S =

∫
d4x

[
1

2
Z1(∂ϕ)

2 +
1

2
Z0ϕ

2 +
1

4!
λϕ4

]
(4.2.2)

and the theory is power counting renormalizable. As in the case of the shift symmetric
theory, there are two natural choices of coordinates. In the standard approach the field
is assigned dimension of mass, in which case the wave function renormalization Z1 is
redundant and the coordinates on theory space are

Z̃0 =
Z0

k2Z1
, λ̃ =

λ

Z2
1

. (4.2.3)

This is the same chart U1 considered above, extended to a shift-non-invariant interaction,
and it has GFP1 in the origin. Using the cutoff Rk(z) = Z1(k

2 − z)θ(k2 − z), the beta

8If one gives up Z2 symmetry, Z2 is generated by quantum fluctuations involving the interaction
∂µϕ∂νϕ∂

µ∂νϕ [94].
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functions have the familiar form

βZ̃0
= −2Z̃0 −

λ̃

32π2(1 + Z̃0)2
, (4.2.4)

βλ̃0 =
3λ̃2

16π2(1 + Z̃0)3
. (4.2.5)

The beta function of Z1 is zero, and so is the anomalous dimension η1 = −∂t logZ1. There
are no FPs in this chart except for GFP1. Using the rescaling u = tan(Z̃0) and v = tan(λ̃),
the flow lines have the form shown in Figure 4.2. We recognize that λ is asymptotically
free for λ < 0, as was noticed by Symanzik [78]. The fact that the flow lines asymptote
horizontally is due to the decoupling effect of the denominators: for sufficiently small k,
the running of λ stops whereas Z̃0 continues to run due to the classical term.

●● Z
˜
0

λ
˜

●●

■■ Z1

λ

Figure 4.2: The flow in the chart U1 (left) and in the chart U0 (right). Flow lines in the
lower right quadrant go from GFP1 (black) to GFP0 (green). The vertical red lines are
singularities of the flow.

Another chart U0 is centered on the fixed point GFP0, that is a free conformal field
theory where the field ϕ has canonical dimension of mass squared. This is sometimes
called a trivial fixed point, because in Minkowski signature it has no propagating degrees
of freedom, whereas in the Euclidean theory the correlation length at the fixed point is
zero. In this case the “squared mass” Z0 is actually dimensionless and redundant, Z1 is
an irrelevant coupling of dimension −2 while λ has dimension −4. The coordinates on
theory space are

Z̄1 =
Z1k

2

Z0
, λ̄ =

λk4

Z2
0

. (4.2.6)

The running of Z0 is described by the anomalous dimension

η0 = −∂t logZ0 = − λ̄Z̄1

32π2(1 + Z̄1)2
(4.2.7)
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whereas the beta functions are

∂tZ̄1 = (2 + η0)Z̄1 , (4.2.8)

∂tλ̄ = (4 + 2η0)λ̄+
3λ̄2Z̄1

16π2(1 + Z̄1)3
. (4.2.9)

Again, there are no nontrivial finite fixed points. The beta function of Z̄1 can vanish either
because Z̄1 = 0, or because η0 = −2, which is satisfied asymptotically for λ̄ ∼ −64π2Z̄1

and Z̄1 → ∞. These asymptotes correspond to GFP1.

We note that, aside from the absence of other FP’s, the picture of the flow is very
similar to the one of the shift-symmetric theory. In the chart U1, the origin GFP1 is the
source of all flow lines with λ̃ < 0 and GFP0 corresponds to all points with λ̃ < 0 finite
and Z̃0 → ∞, so all the RG flow lines that are visible in the fourth quadrant joint GFP1

to GFP0. The same lines are visible in the chart U0, where GFP1 is in the bottom right
corner and GFP0 in the center.

The coordinate transformation between the charts U0 and U1 is

Z̄1 =
1

Z̃0

, λ̄ =
λ̃

Z̃2
0

or conversely λ̃ =
λ̄

Z̄2
1

. (4.2.10)

and the beta functions transform as vectors under this transformation.

We observe that also in this case the kinetic term of the UV fixed point (GFP1),
which gives rise to a propagating degree of freedom, is a redundant operator from the
point of view of the IR fixed point (GFP0), where nothing propagates. In fact, every local
perturbation of GFP0 is redundant.

4.2.2 The higher derivative theory

After this curious exercise, we would like to move to the higher derivative theory, from
which we could learn something new. If we consider also the □2 kinetic term, in the map
centered in GFP1, we can reintroduce the rescaled coordinate Ẑ2 as in (4.1.8) and use the
FRG equation. With the cutoff R(24) from (4.1.3), the β functions are

βẐ2 = 2Ẑ2 (4.2.11)

βλ̂ =
3λ2(8Ẑ2 + 4)

128π2
(
Ẑ0 + Ẑ2 + 1

)3 (4.2.12)

βẐ0
= − λ(2Ẑ2 + 1)

64π2
(
Ẑ0 + Ẑ2 + 1

)2 − 2Ẑ0 (4.2.13)

while the anomalous dimension η1 is zero.

In the U2 map the field is dimensionless and the potential is marginal. The running is
driven by the following β functions:

βZ̃1
= −2Z̃1 (4.2.14)

βZ̃0
= − λ̃(Z̃1 + 2)

64π2
(
Z̃0 + Z̃1 + 1

)2 − 4Z̃0 (4.2.15)
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βλ̃ =
λ̃2(12Z̃1 + 24)

128π2
(
Z̃0 + Z̃1 + 1

)3 − 4λ̃ (4.2.16)

with η2 = 0.
The perturbative version of the beta functions written here will furnish us an interesting

example for our discussion in next chapter.
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Chapter 5

Perturbative renormalization
group of higher derivative theories

In the last chapter we were able to analyze the nonperturbative renormalization group flow
of a simple scalar theory, resulting in an intriguing scenario where asymptotic freedom is
recovered both in the UV and in the IR by moving between two different Gaussian fixed
points. In this chapter we will study to what extent this picture is physically meaningful
and compare how the choice of a renormalization scheme affects the RG flow in higher
derivative theories.

The perspective that a flow between free theories could happen also in some more
complicated renormalizable theory as quadratic gravity is very attractive, however we
concluded Chapter 2 with a big question mark concerning universality of the renormal-
ization group in presence of a quartic kinetic term. Before spending time and energies
in attempting to map the complicated structure of the nonperturbative RG flow of grav-
itational theories, it would be wise to fully understand whether the beta functions from
the FRG actually reproduce the momentum dependence of correlation functions in higher
derivative theories. We will start analyzing the two simple theories considered in Chapter
4, and than we will try to extract a general rule. Then, in Chapter 6, we will consider
theories living in a curved space, including gravitational ones.

5.1 The shift invariant scalar model

As a first example, we return to the shift invariant model. In this section, we will assume
that the field ϕ has mass dimension one, which is the natural choice when we interpret the
two-derivative term as defining the propagator. Then, Z2 and g have dimension of inverse
mass to power 2 and 4 respectively. It is thus natural to consider the Lagrangian

L = −Z1

2
∂µϕ∂

µϕ− Z1

2m2
□ϕ□ϕ− Z2

1g

4M4
(∂µϕ∂

µϕ)(∂νϕ∂
νϕ) (5.1.1)

as a reparametrization of the Ansatz (4.1.1), wherem2 = Z1
Z2

. We have defined the coupling
constant with an explicit factor of the mass M in order to make g dimensionless. The
value of this somewhat redundant notation is that it facilitates the use of dimensional
analysis by showing the mass factors explicitly. The notation is natural when one views
this as the low energy limit of the U(1) linear sigma model, in which case the masses m
and M are parametrically independent. Even though here we shall consider the theory
as being potentially UV complete in itself, without the radial mode, we shall retain this
notation. One can set M = m without loss of generality.
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In order to see this as a toy model for gravity, we recall that the action of Quadratic
Gravity is schematically of form m2

PR + 1
ξC

2 (with C the Weyl tensor), so if we rescale

the metric fluctuation by mP ∼ 1/
√
G, the action contains, among other terms,

(∂h)2 +
1

ξm2
P

(□h)2 +
1

ξm4
P

(∂h)4 .

Recalling that the mass of the ghost is m = ξm2
P , this becomes essentially the same as

(5.1.1) with Z1 = 1, M = m and g = ξ. We will discuss the gravitational case in more
detail in Section 6.3.

Irrespective of the notation, it is important to keep in mind that the Lagrangian
contains two mass scales: the mass of the ghost, m, and the scale M/ 4

√
g at which tree

level unitarity is violated and above which one would appear to be in a strongly interacting
regime, due to the E4 derivative interaction. In this paper we will always assume that
m < M/ 4

√
g, in such a way that the massive ghosts can propagate and still be weakly

interacting. Depending on the characteristic scale of the process, we thus have three
energy regions which have different behaviors. Let us name these:

• Low Energy (LE): This region is defined by energies small compared to the ghost
mass m. The heavy ghost is not dynamically active and can be integrated out.

• Intermediate Energy (IE): This corresponds to energies above the mass m, but
below the apparent strongly-interacting regime. Here the heavy ghost is dynamically
active. We will also briefly comment on an intermediate case where s ∼ −u ≫ m2

but t≪ m2.

• High Energy (HE): This occurs when the energy is high enough that gE4/M4 > 1.
At these energies, perturbation theory would seem to break down.

In this paper we will study the scattering amplitude of this theory in the first two
regimes. The four-point vertex in momentum space is

−2ig2

M4
[(p1 · p2)(p3 · p4) + (p1 · p3)(p4 · p2) + (p1 · p4)(p3 · p2)] , (5.1.2)

hence at tree level the 2 → 2 amplitude between massless on-shell particles is given by

−1

2
g(s2 + t2 + u2) , (5.1.3)

where we have used the Mandel’stam variables introduced in (2.1.7). At low energy, quan-
tum corrections generate new effective interactions with six or eight derivatives. This is
the expected behavior of a nonrenormalizable theory, treated with standard EFT methods.
Somewhat unexpectedly, the higher dimension operators cancel above the mass threshold
for the production of ghosts, leaving us with a theory that looks renormalizable, with a
logarithmically running coupling.

By comparing the loop corrections with the two- and four-point amplitudes, we will
identify the physical running (or lack of running) of the parameters. The results differ in
general from those given by other methods, but agree in some limits.

We will proceed as follows. We begin by describing the model in the absence of the
higher derivative kinetic term. It is useful to have this description because the full theory
reduces to this EFT in the low energy limit. Then, the calculation of the two-point function
and the four-point scattering amplitude in the full theory are presented. The final results
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are given in Eq. (5.1.14) for the two point quantum correction, and in Eq (5.1.20) for the
full four point correction. We will see how to match the four-point amplitude at low energy
to the previously obtained EFT results, and also consider the remarkable simplifications
that occur in the high energy limit, Eqs. (5.1.28) and (5.1.33). Finally, we compare the
physical beta functions derived from the amplitude to the beta functions obtained from
the FRG and other definitions.

5.1.1 Effective Field Theory at Low Energy

Figure 5.1: The diagrams giving corrections to the two- and four-point functions.

In generating an Effective Field Theory (EFT) one needs to know the low energy
degrees of freedom and the symmetries. The massless mode is the only one which is
dynamical at low energy. The symmetry is the same as that of the full theory, which
in this case consists of the shift and reflection symmetry. One then writes out a normal
theory with only the massless particle, consistent with these symmetries. In general this
may have higher derivative nonrenormalizable interactions. By this procedure we arrive
at the Lagrangian

L = −1

2
∂µϕ∂

µϕ− g

M4
(∂µϕ∂

µϕ)(∂νϕ∂
νϕ) + L6 + L8 + ... . (5.1.4)

Here L6 and L8 are Lagrangians with six and eight derivatives, which will be described
more fully below. In principle one might consider a notation where the coupling strength g
differs from that of the original theory. However we will see that the coupling in the effec-
tive theory is identified with the coupling of the full theory when the latter is renormalized
at low energy.

At one loop, wavefunction renormalization would arise from the tadpole diagram with
two external legs, as shown in the two-point diagram of Figure 5.1. However this vanishes,
because the tadpole integral ∫

ddk

(2π)d
kµkν
k2

(5.1.5)

is a scale-less integral which vanishes in dimensional regularization. This sets Z1 = 1 in
the effective field theory limit.

For the scattering amplitude, the one loop amplitude arises at order E8 or equivalently
it is described by a Lagrangian with eight derivatives. This can be seen dimensionally
from the factor of g2/M8 which arises from two factors of the fundamental interaction.
In dimensional regularization there are no other mass scales in the theory, and so the
numerator factors arising from the one loop amplitude must be powers of the external
energies. There will be a divergence in this amplitude and the coefficients at order E8 will
need to be renormalized. Along with the renormalization will come the usual logs, and
because this is a mass independent renormalization, these must be factors of log s/µ2 or
similar logarithms. This tells us that the coefficients at order E8 can be interpreted as
“physically running” couplings. These logarithms will be finite and are predictions of the
effective field theory.
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In contrast, there will be no renormalization of the coefficients at order E4 or E6, as
seen by the power counting described in the previous paragraph. This implies that there
also will not be any logarithms generated. The couplings at order E4 and E6 will not be
running in the physical sense.

Let us see this in explicit detail. In ϕ+ϕ→ ϕ+ϕ scattering, there are a limited number
of kinematic invariants involved consistent with the symmetry under the exchange of iden-
tical bosonic particles of the amplitude. This limits the number of effective Lagrangians
involved. At dimension six and eight, these can be taken to be

L6 =
g6

4M6
∂µϕ∂

µϕ□ (∂νϕ∂
νϕ) +

g′6
4M6

∂µϕ∂νϕ□ (∂µϕ∂νϕ)

L8 = − g8
4M8

∂µϕ∂
µϕ□2 (∂νϕ∂

νϕ)− g′8
4M8

∂µϕ∂νϕ□
2 (∂µϕ∂νϕ) (5.1.6)

We have calculated the one loop scattering amplitude in this theory. From the explicit
calculation, the s channel gives

δMs =
ig2s2

(
41s2 + t2 + u2

)
1920π2M8ϵ

−
ig2s2

(
15(log( −s

4πµ2
) + γE)

(
41s2 + t2 + u2

)
− 1301s2 − 46t2 − 46u2

)
28800π2M8

+O
(
ϵ1
)
,

(5.1.7)

while channels t and u can be found thanks to crossing symmetry. Channel t is given by
the substitution s → t and t → s and u corresponds to the cyclic permutation s → u,
t→ s, u→ t. the total one-loop quantum correction to the four-point amplitude is

δM =
g2
(
41(s4 + t4 + u4) + 2(s2t2 + t2u2 + u2s2)

)
1920π2M8ϵ

− g2

28800π2M8

{
15

[
s2
(
41s2 + t2 + u2

)
log

(
−s
4πµ2

)
+t2

(
s2 + 41t2 + u2

)
log

(
−t

4πµ2

)
+ u2

(
s2 + t2 + 41u2

)
log

(
−u
4πµ2

)]
−(1301− 615γE)(s

4 + t4 + u4)− 2(46− 15γ)(s2t2 + t2u2 + u2s2)

}
+O

(
ϵ1
)
(5.1.8)

Because the field here is massless, the logarithms can only involve kinematic factors of
s, t, u.

The divergence in this expression can be absorbed into the renormalization of the
dimension 8 coefficients in the effective Lagrangian. When renormalized at a scale s =
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t = u = µ2R, the amplitude has the form

M = − g

2M4
(s2 + t2 + u2)

+
g6

2M6
(s3 + t3 + u3) +

g′6
4M6

(s2t+ s2u+ t2u+ t2s+ u2s+ u2t)

−g8(µR)
2M8

(s4 + t4 + u4)− g′8(µR)

2M8
(s2t2 + s2u2 + t2u2)

− g2

1920π2M8

[
41s4 log

(
−s
µ2R

)
+ 41t4 log

(
−t
µ2R

)
+ 41u4 log

(
−u
µ2R

)
+ s2(t2 + u2) log

(
−s
µ2R

)
+ t2(s2 + u2) log

(
−t
µ2R

)
+ u2(t2 + s2) log

(
−u
µ2R

)]
(5.1.9)

The values of g6, g
′
6, g8(µR), g

′
8(µR) are not predictions of the effective field theory and

must be determined by either measurement or by matching to the full theory. We will
explicitly perform the matching below, using the amplitude of the full theory.

The “physical” beta functions of the various couplings can be read off from the ampli-
tude. These are

βg = 0

βg6 = 0

βg′6 = 0

βg8 =
41g2

480π2

βg′8 =
g2

240π2
(5.1.10)

These beta functions are predictions of the effective field theory.

The expected maximum limit of the effective field theory treatment of this matrix
element occurs when

gE4

M4
∼ 1 (5.1.11)

where E4 here represents any of the kinematic invariants E4 ∼ s2, t2, u2. At these
energies the interaction strength becomes large and the EFT treatment fails. All of the
terms in the derivative expansion become relevant, with unknown coefficients. The actual
limit of the EFT will either be when new degrees of freedom become dynamically active
or at the energy implied by Eq. (5.1.11), which ever is lower.

The key elements of this section are that in the effective field theory treatment: 1) The
original coupling g is not renormalized and does not run in the physical sense and 2) We
need to renormalize the couplings of the eight derivative Lagrangian, and these couplings
are running couplings.

5.1.2 The higher derivative theory

In this section, we continue to use the notation of Eq. (5.1.1). The Feynman rules are
given by the propagator

− i

p2 + 1
m2 p4

(5.1.12)
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At one loop, the quantum corrections to the two point function are given by the (tadpole)
integral

− g

Z1M4
µ4−d

∫
ddq

(2π)d
1

q2 + 1
m2 q4

[
p2q2 + 2(p · q)2

]
(5.1.13)

In the absence of the four-derivative kinetic term (i.e. for m → ∞) this is quartically
divergent and is zero in dim reg.

In the general case, setting d = 4− 2ϵ, it is equal to

i
3

2

g

Z1

(m
M

)4
p2

1

(4π)2

(
1

ϵ
+ log 4π − γ − log

m2

µ2
+

7

6
+O(ϵ)

)
(5.1.14)

At one loop, only Z1 receives quantum corrections, since there are no terms proportional
to p4. However, the µ-dependence in (5.1.14) does not correspond to a logarithmic p-
dependence of the 2-point function. This means the µ dependence of the field renormal-
ization can be reabsorbed once for all without producing any large logs with the physical
energy scale of the scattering process. For example setting µ = m the logarithm disappears
altogether.

Let us now compute the corrections to the four point function. In this case, one has
to consider three Feynman diagrams that correspond to the s, t and u, channels. These
are related by crossing symmetry. In the s channel, the integral one has to evaluate is

2g2µ4−d

Z2
1M

8

∫
ddq

(2π)d
N

(q2 + 1
m2 q4)((q + p)2 + 1

m2 (q + p)4)
(5.1.15)

where p = p1 + p2 and the numerator is

N = [(p1 · p2)(q · (q + p)) + (p1 · q)(p2 · (q + p)) + (q · p2)(p1 · (q + p))]

× [(p3 · p4)(q · (q + p)) + (p3 · q)(p4 · (q + p)) + (q · p4)(p3 · (q + p))] ,

(5.1.16)

The other channels only differ by permutations of the external momenta.
Using (4.1.2), the fourth order propagators in the integral can be decomposed in a

massless second order propagator and a massive ghost propagator. This is equivalent to
replacing the quartic propagators in the diagrams either with the massless or the massive
ones, and summing over all the possible combinations. In this way, for each channel the
correction to the scattering amplitude becomes

δM = M1 −M2 −M3 +M4 ,

where M1 contains only the contributions of the massless particles, M4 that of the mas-
sive ghosts and the other two mixed contributions with one massive and one massless
propagator. In each partial amplitude we introduce a Feynman parameter, such that the
denominators become (for the s channel)

1

q2(q + p)2
=

∫ 1

0
dx

1

(q′2 +∆1)
2 with ∆1 = x(1− x)p2 ;

1

q2[(q + p)2 +m2]
=

∫ 1

0
dx

1

(q′2 +∆2)
2 with ∆2 = x(1− x)p2 + xm2 ;

1

(q2 +m2)(q + p)2
=

∫ 1

0
dx

1

(q′2 +∆3)
2 with ∆3 = (1− x)(xp2 +m2) ;

1

(q2 +m2)[(q + p)2 +m2]
=

∫ 1

0
dx

1

(q′2 +∆4)
2 with ∆4 = x(1− x)p2 +m2 .
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and q′ = q + xp. After some manipulations the numerators can be written as

N = N0 +N1(q
′)2 +N2(q

′)4 ,

where

N0 = x2(1− x)2s4 ,

N1 = −1

d

[
(6 + d)(x2 − x) + 1

]
s3 ,

N2 =
1

4d(d+ 2)

[
(d2 + 6d+ 12)s2 + 4(t2 + u2)

]
. (5.1.17)

Thus the partial corrections to the amplitude in d dimensions are

Mℓ = 2g2
1

Z2
1

∫
ddq′

(2π)d

∫ 1

0
dx

N

((q′)2 +∆ℓ)2

=
1

(4π)d/2
2g2

Z2
1

∫ 1

0
dx
[
Γ
(
2− d

2

)
∆

(d−4)/2
ℓ N0

+d
2Γ
(
1− d

2

)
∆

(d−2)/2
ℓ N1 +

d(d+2)
4 Γ

(
−d

2

)
∆
d/2
ℓ N2

]
. (5.1.18)

Finally performing the x-integration, we obtain for the s channel, without making any
assumptions on the relative size of s, m, M ,

δMs =
g2m4

(
13s2 + t2 + u2

)
192πM8ϵ

− g2

5760π2s3M8

{
− 3s5

(
41s2 + t2 + u2

)
log

(
−m

2

s

)
−6m4(−s+m2)3

[(
s2 + t2 + u2

)
− 2

s

m2

(
−9s2 + t2 + u2

)
+
s2

m4

(
41s2 + t2 + u2

)]
log

(
m2

m2 − s

)
+s2m6

[
− 2

s

m2

(
352s2 + 37(t2 + u2)− 15γE

(
13s2 + t2 + u2

))
−3
(
−31s2 + 9

(
t2 + u2

))
+ 6

m2

s

(
s2 + t2 + u2

) ]
+6s5/2m4

√
4m2 − s

(
16(6s2 + t2 + u2)− 8

s

m2
(16s2 + t2 + u2) +

s2

m4
(41s2 + t2 + u2)

)
× arccot

√
4m2

s
− 1− 30s3m4

(
13s2 + t2 + u2

)
log

(
4πµ2

m2

)}
. (5.1.19)

In this expression we can find a diverging contribution to the (∂ϕ)4 operator, but again
the scale parameter µ appears only in logs divided by the ghost mass m, hence the most
convenient choice is to set µ = m for each value of the kinematic variables s, t and u.
The scattering amplitude gains an imaginary part both from the on-shell loops of the

massless modes thanks to log
(
−m2

s

)
and from the on-shell ghosts in loops when s > m2

in log
(

m2

m2−s

)
.

The total quantum correction to the four point amplitude is
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5g2m4
(
s2 + t2 + u2

)
64π2M8ϵ

+
g2

5760π2M8

{

+
m4

s2

[
− 6m4

(
s2 + t2 + u2

)
+ 3sm2

(
−31s2 + 9

(
t2 + u2

))
+2s2

(
(352− 195γE)s

2 − (15γE − 37)
(
t2 + u2

)) ]
+6s−1/2m4

√
4m2 − s

[
16m4(6s2 + t2 + u2)

−8sm2(16s2 + t2 + u2) + s2(41s2 + t2 + u2)
]
arccot

√
4m2

s
− 1

+
m4

t2

[
− 6m4

(
s2 + t2 + u2

)
+ 3tm2

(
−31t2 + 9(s2 + u2)

)
+2t2

(
(352− 195γE)t

2 − (15γE − 37)
(
s2 + u2

)) ]
+6t−1/2m4

√
4m2 − t

[
16m4(s2 + 6t2 + u2)

−8tm2(s2 + 16t2 + u2) + t2(s2 + 41t2 + u2)
]
arccot

√
4m2

t
− 1

+
m4

u2

[
− 6m4

(
s2 + t2 + u2

)
+ 3m2

(
−31u2 + 9

(
s2 + t2

))
+2u2

(
(352− 195γE)u

2 − (15γE − 37)
(
s2 + t2

)) ]
+6u−1/2m4

√
4m2 − u

[
16m4(s2 + t2 + 6u2)

−8um2(s2 + t2 + 16u2) + u2(s2 + t2 + 41u2)
]
arccot

√
4m2

u
− 1

+3s2
(
41s2 + t2 + u2

)
log

(
−m

2

s

)
+3t2

(
s2 + 41t2 + u2

)
log

(
−m

2

t

)
+3u2

(
s2 + t2 + 41u2

)
log

(
−m

2

u

)
+
6(u−m2)3

u3
log

(
m2

m2 − u

)[
m4
(
s2 + t2 + u2

)
− 2um2

(
s2 + t2 − 9u2

)
+ u2

(
s2 + t2 + 41u2

)]
+
6(t−m2)3

t3
log

(
m2

m2 − t

)[
m4
(
s2 + t2 + u2

)
− 2tm2

(
s2 − 9t2 + u2

)
+ t2

(
s2 + 41t2 + u2

)]
+
6(s−m2)3

s3
log

(
m2

m2 − s

)[
m4
(
s2 + t2 + u2

)
− 2sm2

(
−9s2 + t2 + u2

)
+ s2

(
41s2 + t2 + u2

)]
+450m4

(
s2 + t2 + u2

)
log

(
4πµ2

m2

)}
(5.1.20)

The arccots can be rewritten as logs, using

arccot
√
x− 1 =

i

2

[
log

(
1− i√

x− 1

)
− log

(
1 +

i√
x− 1

)]
. (5.1.21)

The Z1 = 0 case

It will be instructive to consider the case when there is no two-derivative kinetic term.
Clearly in this case we cannot assume the canonical normalization Z1 = 1. In fact, we
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want to consider the limit when Z1, m and M all go to zero at the same rate. As in the
previous section, by defining the dimensionless field φ and the coupling γ by

Z1

m2
ϕ2 = φ2 ,

Z2
1

M4
ϕ4 = γφ4 ,

the action (5.1.1) becomes

L =
1

2
m2∂µφ∂

µφ− 1

2
□φ□φ− γ

4
(∂µφ∂

µφ)(∂νφ∂
νφ) (5.1.22)

where the field is now canonically normalized with respect to the four-derivative kinetic
term. Now we can simply set m = 0.

The calculation of the amplitude follows the steps of the general case but is much
simpler. The s channel brings the following quantum correction:

δMs =
γ2
(
13s2 + t2 + u2

)
192π2ϵ

+
γ2
(
3
(
13s2 + t2 + u2

) (
log
(
4πµ2

−s

)
− γE

)
+ 32s2 + 5

(
t2 + u2

))
576π2

+O
(
ϵ1
)
.

(5.1.23)

Defining the renormalized coupling at the scale s = t = u = µ2R by the formula

γ(µR) = γ − γ2

16π2

[
5

2

(
1

ϵ
+ log

(
4πµ2

µ2R

)
− γE

)
+

7

3

]
, (5.1.24)

(where the couplings in the r.h.s. are the bare ones) and exploiting crossing symmetry, we
obtain the complete 4-point amplitude

M = −γ(µR)
2

(
s2 + t2 + u2

)
+

γ2

192π2

[
log

(
µ2R
−s

)(
13s2 + t2 + u2

)
+ log

(
µ2R
−t

)(
s2 + 13t2 + u2

)
+ log

(
µ2R
−u

)(
s2 + t2 + 13u2

) ]
+O

(
ϵ1
)
.

(5.1.25)

This agrees with [43].
In this case the µR-dependence is always associated to the dependence on the kinematic

variables s, t, u, hence the physical beta function is

µR
∂γ

∂µR
=

5γ2

16π2
. (5.1.26)

Understanding the General Amplitude

We will study the scattering amplitude in this theory and identify the physical running (or
lack of running) of the parameters. The results differ from those given by usual methods.
The amplitude calculation is also an instructive example of effective field theory when
treated at low energy. Finally we identify a novel (as far as we know) phenomenon of the
disappearance of certain operators as one increases the energy.

Here we will discuss the general case where we start with Z1 and Z2 in principle
different from zero. For this section, we will revert to the notation of Eq. 5.1.1, where
Z2 = 1/m2 and g is rescaled by a factor of M4.
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At one loop there is no renormalization of Z2 = 1/m2, as the one loop tadpole diagram
only has two factors of the external momentum. We have seen in (5.1.14) that the one-
loop contribution to Z1 is independent of the momentum. Therefore we can renormalize
to Z1 = 1, and this result will be valid for all energies. From this we see that Z1 is not a
running parameter in the amplitude analysis and therefore

βZ1 = 0 (5.1.27)

for all energies. For the rest of this section we set Z1 = 1.

The full result simplifies in the low energy limit. The logarithms involving mass factors
can be Taylor expanded in the momentum, so that the only logarithms remaining are of
the form log−s, log−t, log−u.

For Z2s≪ Z1, we find that the quantum correction is given by

δM =
5g2m4

(
s2 + t2 + u2

)
64π2M8ϵ

− g2

11520π2M8

{
− 900m4

(
s2 + t2 + u2

)
log

(
4πµ2

m2

)

+30(30γE − 11)m4
(
s2 + t2 + u2

)
+ 6

[
s2
(
41s2 + t2 + u2

)
log

(
−s
m2

)

+t2
(
s2 + 41t2 + u2

)
log

(
−t
m2

)
+ u2

(
s2 + t2 + 41u2

)
log

(
−u
m2

)]

−3
(
79(s4 + t4 + u4) + 6(s2t2 + t2u2 + u2s2)

)
−760m2(s3 + t3 + u3)

}
(5.1.28)

One can see that the logarithm which is proportional to the original interaction, i.e.
s2+t2+u2, involves log(µ2/m2) and is independent of the kinematic variables. This means
that we can define a renormalized value of the coupling g by collecting all of the factors
which multiply the invariant s2+ t2+u2 and identifying it with the coupling measured at
low energy using the fundamental interaction. Then, we find

g(µ) = gB − 5g2m4

32π2M4

[
1

ϵ
− γE − log

(
4πµ2

m2

)
+

11

30

]
. (5.1.29)

Here gB is the original unrenormalized coupling. Now, if we define the beta function by
the usual recipe of deriving with respect to µ we find

βµg = µ
∂g(µ)

∂µ
=

5g2m4

16π2M4
. (5.1.30)

However, g does not depend on the energy so the physical beta function is

βg = 0 (5.1.31)

in the LE region.

The remainder of the amplitude involves powers of energy at order E6 ∼ s3, s2t, ...
and at order E8 ∼ s4, s2t2. Those of order E6 do not involve any logarithms, while there
are logarithms at order E8. A bit of inspection shows that the amplitude is exactly that
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of the effective field theory given in Eq. 5.1.9, with the identification

g = g

g6 = − 53g2m2

384π2M2

g′6 = − 7g2m2

516π2M2

g8(µR) =
79g2

1920π2
+

41g2

960π2
log

µ2R
m2

g′8(µR) =
3g2

320π2
+

g2

480π2
log

µ2R
m2

. (5.1.32)

Whereas in the effective field theory by itself these parameters were unknown, here we see
that they are predicted by the full theory. This procedure is referred to as matching the
EFT to the full theory.

We see that in this region the heavy ghost is not dynamically active and the one loop
calculation amounts to integrating it out of the full theory to one loop order. The result
is described by an effective field theory, with specific values of the coupling. This is an
instructive example of effective field theory reasoning.

On the other hand, if all of the kinematic invariants are greater that m2 in magnitude,
i.e. (s, |t|, |u|) ≫ m2, another limit is recovered. If we use the definition (5.1.29) of the
renormalized coupling defined below the mass threshold, the amplitude is finite and can
be written in the form

M = − g

2M4

[
1− 17gm4

192π2M4

]
(s2 + t2 + u2)− g2m4

192π2M8

[
log

(
−s
m2

)
(13s2 + t2 + u2)

+ log

(
−t
m2

)
(s2 + 13t2 + u2) + log

(
−u
m2

)
(s2 + t2 + 13u2)

]
. (5.1.33)

We can instead define the coupling at the (off-shell) renormalization point s = t = u =
µ2R by making the finite renormalization

ḡ(µR) = g +
5g2m4

32π2M4

[
log

(
µ2R
m2

)
−17

30

]
, (5.1.34)

in which case the amplitude becomes

M = − ḡ(µR)
2M4

(s2 + t2 + u2)− ḡ2m4

192π2M8

[
log

(
−s
µ2R

)
(13s2 + t2 + u2)

+ log

(
−t
µ2R

)
(s2 + 13t2 + u2) + log

(
−u
µ2R

)
(s2 + t2 + 13u2)

]
. (5.1.35)

It agrees with the one calculated in the limit Z1 = 0, eq. (5.1.25). This is understand-
able because at high energy the quartic terms in the propagator will dominate over the
quadratic terms, and simply ignoring the quadratic terms yields the correct result.

There are a couple of striking observations which can be made from this result. The first
is that all of the terms of order E8 and E6 have disappeared from the result. Because the
general amplitude of Eq. (5.1.20) has many such terms, this requires special cancellations
which we will discuss below. The second is that here we can define a running coupling
which removes the potentially large logarithms of the form log s/m2. We consider the
(off-shell) renormalization point s = t = u = µ2R.
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For (s, |t|, |u|) ≫ m2 this captures an important part of the quantum correction.
There are still logarithms left over, but they are not large. This corresponds to a beta
function

βḡ =
5ḡ2m4

16π2M4
. (5.1.36)

The 17/30 in the formula for Eq. (5.1.34) amounts to an optional threshold correction
matching the amplitude above and below the threshold.

The disappearance of the E8 and E6 terms appears initially surprising. There are many
such terms with factors such as s4, t4, ... and s3, t3, ... in the general result. However,
we can begin to see that there are cancelations by looking at the logarithmic type terms
which arise at the highest order, E8. We recall the result of Passarino and Veltman that
all one loop diagrams can be expressed in terms of factors of the scalar tadpole, bubble,
triangle and box diagrams. Here only the tadpoles and bubbles contribute. The tadpoles
do not depend on the external momenta and do not give kinematic logs. These kinematic
factors inside the logarithms come from the scalar bubble diagrams, which have the form

I2(m1, m2, p
2) =

1

16π2

[
1

ϵ
+ γ − log 4π −

∫ 1

0
dx log

(
xm2

1 + (1− x)m2
2 − p2x(1− x)

µ2

)]
.

(5.1.37)
The logarithmic integral has the form∫ 1

0
dx log

(
xm2

1 + (1− x)m2
2 − p2x(1− x)

µ2

)
=

= log

(
− p

2

µ2

)
− 2 , m1 = m2 = 0

= log
m2

µ2
+

(
1− m2

p2

)
log

(
1− p2

m2

)
− 2 , m1 = 0, m2 = m

= log
m2

µ2
+

√
1− 4m2

p2
log

(√
1− 4m2/p2 + 1√
1− 4m2/p2 − 1

)
− 2 , m1 = m2 = m .

(5.1.38)

The reader can see these logarithmic factors in the general amplitude. Moreover, one
can see that there are common factors preceding these logs and the result involves the
combination

I2(0, 0, p
2)− 2I2(0, m, p

2) + I2(m, m, p
2) . (5.1.39)

The divergences and the factor of log µ2 cancel with this combination leaving a finite
result as observed. In the low energy region, the latter two components of this expression
go to constants, and only I2(0, 0, p

2) gives kinematic logarithms. This leads to the log
dependence found in the LE/EFT limit in Eq. 5.1.9. However at high energy each of
the components involves equal factors of log(−p2), and the leading energy dependence
of this combination will cancel. This leads to the vanishing of the terms of order E8 at
high energy. It requires detailed work to verify that the remaining terms of order E6 also
cancel, but the general idea is the same. The amplitude that starts out containing orders
E4, E6, E8 at low energy ends up at order E4 only at high energy.

The latter results hold for all energy scales such that the mass can be ignored. However,
at the beginning of Section 5.1 we distinguished an intermediate from a high energy scale.
In the high energy region a puzzling situation now presents itself. From equations (5.1.26)
or (5.1.36) one sees that for g < 0 the coupling is asymptotically free (in agreement with
earlier calculation [43]). However, it appears that a focus on the coupling constant is
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insufficient. Even if the coupling constant is running logarithmically to an asymptotically
free fixed point, the amplitude itself is blowing up with energy.

At high enough energy, the one-loop scattering amplitude will become greater than
unity. This occurs when the kinematic invariants s, t, u ∼ E2 are of order

g(E)E4

M4
∼ 1 . (5.1.40)

A logarithmic decrease in the coupling is not enough to offset the power-law growth. This
behavior puts the notion of asymptotic freedom in question. A solution to this problem
concerning the definition of asymptotic safety could be given by considering inclusive
initial and final states [84]. In a process with only the stable massless mode as asymptotic
states, the total tree level cross section goes like gs/m4, hence a logarithmic decrease
in the coupling does not imply a noninteracting high energy limit. However, it could
be that actual very high-energy processes happen between off shell virtual quanta of the
full field ϕ, similar to what we see in the parton model in QCD. These processes can be
represented, as a first approximation, as scattering processes between on-shell initial and
final inclusive states which are a superposition of massless and ghost particles. In such
cross sections, other cancellations take place between the sum over external single particle
states at fixed transferred momentum s and scattering angle θ, thanks to the negative
norm of the ghosts. Surprisingly, the final result is still a positive cross section, but the
first two orders in s are suppressed, leaving a total cross section proportional to gm2/s.
Using a generalized version of the one-loop scattering amplitude (5.1.20) that admits ghost
particles as external states, we managed to show the same cancellation also at one-loop.
In fact, at leading order, the effect of quantum corrections reduce to the substitution of
the coupling with its renormalized version. So, these inclusive scattering processes are
asymptotically free at one-loop.

Another point of view on the problem of asymptotic freedom in theories with derivative
interactions start from the idea that the actual higher derivative theory we are interested
in is quadratic gravity, a gauge theory due to diffeomorphisms invariance. Hence, both
the graviton and the ghost are gauge dependent states and cannot be proper physical
asymptotic states, in the same way as no one expects to directly observe a gluon. Since
matter in quadratic gravity interacts with a mixture of the massless graviton and the
spin 2 ghost (the analogue of the field ϕ in our toy model), the same cancellations could
take place in all interactions involving internal gravitons. A clear example of how this
mechanism could work is given by the gravitational scattering between two scalar particles
in quadratic gravity, that has a constant scattering amplitude in the high energy limit,
and so its total cross section goes like 1/s [96, 97].

Peripheral scattering

The peripheral scattering limit is that of large s and t ∼ 0. In this case, the s and u
channels give the similar contributions to the scattering amplitude, since on shell u = −s
and the Mandel’stam variables appear only quadratically or in the Log in the dominant
terms in the high-energy limit

7g2m4s2

48M8π2ϵ
+

g2m4

576M8π2

{
(74− 84γE)s

2 + 42s2
[
log

(
4πµ2

s

)
+ log

(
−4πµ2

s

)]}
+O

(
ϵ1
)
.

(5.1.41)
On the other hand, the t channel is a bit more subtle, since the terms with powers of t in
the denominator could give some divergences. However, if we expand (5.1.19) with t and
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s exchanged at small t, all the divergent terms are actually zero and we obtain

g2m4s2

96π2M8ϵ
+
g2m4s2

[
6 log

(
4πµ2

m2

)
− (6γ − 5)

]
576π2M8

+
g2m2st

96π2M8ϵ
+
g2m2st

[
7s+ 12m2 log

(
4πµ2

m2

)
+ 2m2(−6γ + 5)

]
1152π2M8

+
7g2t2m4

96π2M8ϵ
+
g2t2

[
−6s2 log

(
− t
m2

)
+ 9s2 + 35m2s+ 420m4 log

(
4πµ2

m2

)
−m4(420γ + 140)

]
5760π2M8

+O
(
t3
)
. (5.1.42)

The first line is clearly dominant, hence the one loop quantum corrections in peripheral
scattering are

δM =
5g2m4s2

32π2ϵM8
+

g2m4s2

576M8π2
{(79− 90γE)

+42

[
log

(
4πµ2

s

)
+ log

(
−4πµ2

s

)]
+ 6 log

(
4πµ2

m2

)}
+O (t) . (5.1.43)

After renormalization, the amplitude has the form

M =
gs2

M4

[
1 +

7gm4

96π2M4

(
log

(
−s
m2

)
+ log

( s

m2

))
+

79gm4

576π2M4

]
+O(st) (5.1.44)

in the present notation. For this process one can defined a running coupling

g̃(µR) = g +
7g2m4

48π2M4
log

µ2R
m2

+
79g2m4

576π2M4

when renormalizing at the scale s = µ2R, where again the 79/576π2 factor is optional. This
removes the potentially large logarithms, and carries the beta function

βg̃ =
7g2m4

24π2M4
.

It is interesting that one can define a physical beta function in this region, yet it is different
from that found when all the kinematic variables are large.

We can understand this in the following way. The universal beta functions that one
calculates from perturbation theory are only universal as long as one considers processes
that depend on a single momentum scale. This is the case, for example, for 2 → 2
scattering at a fixed angle: the ratios of the Mandel’stam variables are fixed and the
amplitude depends just on s. In the case of peripheral scattering we are changing the
scattering angle together with the energy, and the amplitude is not a function of s alone.
While there is no guarantee that a running coupling can be defined in this setting, it
appears possible in the one loop calculation.

5.1.3 Comparing different definitions of running parameters

Here we return to our introductory point that there are different flavors of renormalization
group techniques. In turn, we address the three which we highlighted: the physical running
the cutoff or µ-running and the FRG.

To make the comparison meaningful, some clarification concerning the beta functions
produced by the FRG needs to be done. In Section 4.1 the Lagrangian was parametrized
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as in (4.1.1) and the running of Z1, Z2 and g was calculated using the full FRG. The
coupling then depend on a scale k that has the meaning of an IR cutoff. This calculation
goes beyond the one loop approximation, because the couplings in the r.h.s. of the FRG
equation are treated as running couplings. This kind of “RG improvement” amounts to
a resummation of infinitely many diagrams. In order to compare with the amplitude
calculation, we have to downgrade those results to the one loop approximation. This is
easily achieved by neglecting the RG improvement.

Assuming that the field has dimension of mass, one arrives at the following beta func-
tions for the dimensionful couplings

k∂kZ1 = − Z1 + 2k2Z2

16π2(Z1 + k2Z2)2
gk4 (5.1.45)

k∂kZ2 = 0 (5.1.46)

k∂kg =
5(Z1 + 2k2Z2)

32π2(Z1 + k2Z2)3
g2k4 (5.1.47)

With dimensionless field the beta functions are the same, but of course the dimension of
the couplings is different and so are the powers of k in the r.h.s. These one loop beta
functions differ from the full ones of Section 4.1, but the qualitative features of the RG
flow remain the same.

We are now ready to compare the physical running with the results of the FRG and
the µ-running.

We begin by comparing the physical running of g to the µ-running. We will see that
this coupling shows the typical threshold behaviour discussed in Section 2.3.1. At low
energy, below the mass m, the amplitude does not give a physical running for g:

βg = 0, E ≪ m . (5.1.48)

This is in disagreement with the log µ derivative approach, which predicts a logarithmic
running, see eq.(5.1.30). This β function comes out from the logm2/µ2 in (5.1.29). Here µ
is an unphysical parameter which disappears from all physical reactions after renormaliza-
tion. The apparent running of the coupling g arises from taking the negative logarithmic
derivative of correction (5.1.29) with respect to µ. This often is appropriate in other
settings because in mass independent renormalization schemes the logarithmic factor is
log p2/µ2 (where p is some kinematic energy factor) so that taking the derivative with
respect to µ reveals the dependence of the amplitude on the kinematic variables log p2.
However here there is no dependence on any kinematic variable. If we perform renormal-
ization at any kinematic scale below the mass threshold, it remains that value as long as
the ghosts stay frozen. Of the two definitions of running given in dimensional regulariza-
tion, the physical one matches the results from the EFT, where we did not observe any
quantum corrections to the coupling g.

On the other hand, there is agreement in the running of g in the high energy region
for energies above the mass m. Here the beta function describing the running coupling in
the amplitude is

βg =
5g2m4

16π2M4
, E ≫ m . (5.1.49)

This indeed agrees with equation (5.1.30), and does not change if we add a finite piece as
in (5.1.34).
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We now compare the physical running of g to the FRG results. At low energy the
FRG running is power-law:

βg =
5(Z1 + 2k2/m2)

32π2(Z1 + k2/m2)3
g2k4

M4
→ 5g2k4

32π2M4
, for k ≪ m . (5.1.50)

This beta function rapidly runs to zero at lower energies, asymptoting to the constant
value of g found in the amplitude calculation.

On the other hand, at high energy the FRG gives

βg =
5(Z1 + 2k2/m2)

32π2(Z1 + k2/m2)3
g2k4

M4
→ 5g2m4

16π2M4
, k ≫ m . (5.1.51)

which agrees both with the physical running and the µ-running.
Between these two limits, the behavior of the amplitude is more complicated, and if

one tries to define a running coupling as in (5.1.34), namely isolating the coefficient of
s2 + t2 + u2 in the full amplitude (5.1.20) and setting s = t = u = µ2R, it turns out to be
impossible to unambiguously identify it. Hence the definition of a physical running is only
meaningful in the asymptotic regions, where different power-laws are clearly separated.
The standard, conventional way of joining them is to assume that g does not run all the
way up to the mass m and to match this to the high-energy logarithmic behavior (5.1.35)
via (5.1.34). This is shown by the black dashed line in Fig.5.2.

We note that whereas the beta function becomes universal (scheme-independent) at
high energy, the relation between the low-energy value of the coupling and its high-energy
behavior is not. By choosing a different constant in the bracket in (5.1.34) we can change
the offset between the low- and high-energy parts of the curve in Fig.5.2 and shift up or
down the part of the curve above the threshold k/m = 1.

The same effect can also be obtained by using a different renormalization point. In
the UV, the non-polynomial dependence on the kinematical variables of the terms of the
amplitude proportional to s2, t2 and u2 is given by log(−s/µ), log(−t/µ) or log(−u/µ).
Thus, if we choose to renormalize at s = at = bu = µ2R with a and b fixed constants, the

coupling gets shifted by − log(ab), at the price of having log
(
−ta
µ2R

)
and log

(
−ub
µ2R

)
in eq.

(5.1.35). In this work we have used the symmetric point a = b = 1 and the definition
(5.1.34), because these best capture the behavior of the amplitude and are best suited for
comparison to the FRG, but we stress that these are arbitrary choices.

In on-shell configurations, choosing the parameters a and b is equivalent to fixing the
scattering angle. This angle should be held fixed along the running from the IR to the UV
regime, otherwise one could observe different beta functions and consequently different
runnings of the coupling. If one allows the scattering angle to also depend on s, the
amplitude is no longer described by the universal running coupling, as demonstrated by
the example of peripheral scattering.

The FRG gives a continuous interpolation for the running of the quartic coupling, and
can separately account for the six- and eight-derivative couplings that will inevitably be
generated.

In order to compare the RG trajectory of the coupling in the FRG with the trajectory
of the physical coupling, we have to make an identification of the argument of the former,
which is an arbitrary cutoff scale k, with the argument of the latter, which at the symmetric
point is

√
s. If we just put k2 = s, and we adjust the initial conditions so that the two

trajectories have the same IR limit g(0), then in the UV limit they differ by a small offset.
This can be fixed by choosing k =

√
s/ξ, where ξ = e25/40−17/60 ≈ 1.4. This is illustrated

again in Fig.5.2.

80



Figure 5.2: The running coupling calculated from the FRG (blue continuous curve) and
the one obtained by matching the low- and high-energy physical running (black dashed).
They have been calculated here for the same low energy limit g = 0.01.

Summarizing, at low energy the power-law running of g found in the FRG is not
directly observed in the amplitude. It is an aspect of the threshold behavior, interpolating
between a constant in the IR limit and the logarithmic behavior at the high energy. The
threshold behavior of the couplings in FRG is not universal, and in any case there is no
definition of physical running to compare with in that regime.

At high energy, the dependence on log k2 mirrors correctly the dependence of the
amplitude on logE2, and gives the correct beta function. This is due to the fact that for
fixed ratios t/s and u/s, and in the limit when m/s→ 0, the amplitude depends only on
a single mass scale s, which enters in the denominators of the loop intergrals in a way
that is reminiscent of an IR cutoff. Thus, in this regime, the k-dependence of the running
coupling correctly reflects the s-dependence of the amplitude. At energies close to m,
the amplitude becomes a complicated function of s and m and no RG calculation exactly
reproduces the amplitude.

The other running parameter within the FRG is Z1. In the notation of this section,
the general expression was

βZ1 = − Z1 + 2k2/m2

16π2(Z1 + k2/m2)2
gk4

M4
. (5.1.52)

This is in disagreement with the amplitude calculation, for which Z1 does not run at all
energies

βZ1 = 0 (5.1.53)

If we had defined the running of Z1 not by the dependence on energy or on renormal-
ization scale, but by the dependence of the counterterm on the unphysical parameter µ
which appears in dimensional regularization, we would have identified

βµZ1
=

3

16π2
gm4

M4
. (5.1.54)
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We noted that the asymptotic form at large k of the FRG result was

βZ1 =
gm2k2

M4
+

3

16π2
gm4

M4
+ ... (5.1.55)

which, if one disregards the power-law running, would agree on the logarithmic part with
the µ-running. So in this case the issue concerning the proper definition of the beta
function is not limited to a given kinematical domain, but whether considering Z1 a
physically running coupling at all.

The one-loop correction to the kinetic energy term was found to be

3gm4

16π2M4
p2
[
1

ϵ
− γ + log 4π − log

m2

µ2
+

7

6

]
. (5.1.56)

The portion to focus on is again the logm2/µ2 and what is going on is very similar to
the low energy regime of g. If we perform wavefunction renormalization at any kinematic
scale, setting Z1 = 1, it remains that value at any other scale. Taking the derivative with
respect to µ does not give us physical information in this case.

This is not a significant issue, since, if we choose the field to be dimensionless, probably
a more fitting description for the high-energy limit, Z1 becomes the massm and its positive
classical dimension will overcome any quantum correction in the UV limit of the weakly
interacting theory, exactly as observed for the mass of the ϕ4 theory in Chapter 2.

The other issue is that of power-law corrections found within the FRG. At one-loop,
in the case of Z1 this is a less significant issue than for g, since Z1 is a redundant coupling
and is not associated directly with any scattering process. Another way to say this is that
in a two-point function the only invariant scale is p2, which on shell is just equal to the
pole mass m2. Nevertheless, we can interpret the difference between the beta functions
computed here and those coming from the FRG as follows. We have perturbed around a
generic free theory containing both kinetic terms, which is not a fixed point in general:
only the theories with Z1 = 0 or Z2 = 0 are fixed points. There is a trivial running with
p that goes from the one to the other, since the quartic term dominates in the UV and
the quadratic one dominates in the IR, but the dimension of the field remains fixed and
does not enter in any of our conclusions. However, the canonical dimension of the field
at a free fixed point is fixed: it is one at the two-derivative fixed point and zero at the
four-derivative one. In the FRG this is correctly taken into account. Within the context
of the FRG, the power running of Z1 with scale k is necessary to correctly interpolate
between the low-energy and high-energy Gaussian fixed points.

In conclusion, the scattering amplitude reveals what we are calling the “physical”
running, as it describes the running parameters seen in physical processes. This differs
from some other definitions of running couplings using different methods, and we have
used explicit calculations to illustrate these differences.

Some of the lessons from this example can be summarized as follows:

1. Physical running couplings can only be defined far from mass thresholds, and there
are different patterns of running above and below the threshold. In our case, the
coupling g does not run below the threshold and runs logarithmically above it.
Effective Field Theory is useful in understanding the low energy region.

2. Power-law running is not seen in the physical amplitudes. Instead, in the EFT
regime, the effects which depend on higher powers of the kinematic invariants are
organized as higher order operators in an effective Lagrangian. These higher order
operators disappear altogether above the mass threshold (operator “melting”).
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3. Alternate methods of defining running couplings using Λ ∂
∂Λ , k ∂

∂k or µ ∂
∂µ (where

Λ, k, µ refer to UV cutoffs, IR cutoffs or the dimensional regularization auxiliary
scale) sometimes yield running behavior which is not seen in physical processes. This
happens for the coupling Z1. The culprit is factors of logm

2/Λ2 etc, which does not
involve any of the kinematic invariants and hence does not change with the energy
scale of the physical reaction.

The disappearance of the higher order operators of the low energy EFT is expected
when the model is UV completed in a linear U(1) sigma model, but surprisingly also
happens when the four-derivative kinetic term becomes important. This offers a glimpse
of how, in a derivatively coupled theory, one could transition from the low energy EFT
regime to an asymptotically free (and possibly asymptotically safe) regime. In principle,
this could provide an alternative UV completion to the U(1) linear sigma model, mentioned
in the Introduction.

This kind of behavior may be extended also to gravitational theories. For example,
it raises the possibility that at least some of these higher order operators, such as those
of order R3 should not be used above certain thresholds, because the coefficients of the
higher order operators vanish.

Our model seems to enter a strong coupling regime at very high energy. This is
because the powers of momentum of the interaction overwhelm the logarithmic decrease
of the coupling. We have briefly discussed here how proper asymptotic freedom could be
recovered in scattering processes with inclusive asymptotic states, or gauge invariant ones
in the case of gauge theories.

5.2 ϕ4 theory

For the higher derivative version of ϕ4 scalar theory, we can study the one-loop self-
energy correction and the 2 → 2 scattering amplitude and compute the contribution of
this interaction vertex to its own beta function and to those of Zi. The calculation is
quite similar to the one described for the shift invariant model, so we will go directly
to the results. The tadpole diagram is logarithmically divergent because of the quartic
propagator and is equal to

λ

32π(m2
1 −m2

2)

[
m2

1 log

(
µ2

m2
1

)
−m2

2 log

(
µ2

m2
2

)]
, (5.2.1)

where we have introduced the masses of the ghost and the healthy mode in analogy with
Section 3.1.3, i. e. Z0/Z2 = m2

1m
2
2 and Z1/Z2 = m2

1+m
2
2. This diagram gives a correction

to the mass therm Z0, since the result does not contain powers of the transferred momen-
tum. It induces a cutoff or µ-running in this coupling even if there is no corresponding
physical running, because tadpole diagrams cannot produce logarithms of momenta. At a
first glance the renormalization of the mass seems very similar to the 2-derivative theory,
since in both cases we expect the classical running induced by the positive mass dimension
of the mass term to prevail over quantum corrections at high energies. However, in this
case the divergence is purely logarithmical instead of power-law, so the quantum correc-
tion in dim reg does not arrive from a subleading term in the m2

i /p
2 ≪ 1 expansion and it

is not multiplied by positive powers of the mass. On the other hand, the bubble integral
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is not divergent and the s channel is

− λ2
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√
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(5.2.2)

The other channels can be easily found using crossing symmetry. In the high energy limit
s≫ m2

i , the total amplitude reduces to

M = λ+ λ2
m2

2 log
(

−s
m2

2

)
−m2

1 log
(

−s
m2

1

)
16(m2

1 −m2
2)π

2s2
+ (s→ t) + (s→ u) , (5.2.3)

while, with s below m2
1, the ghost freezes out and we recover the amplitude (2.1.9) with

m1 acting as the UV cutoff of the EFT instead of Λ. Whereas in the low-energy regime
we observe exactly what we expected, the high-energy limit is quite surprising: despite
the absence of UV divergences, there are logarithms of the external momenta. Luckily,
they are harmless at large s thanks to the s2 in the denominator, so there are no problems
involving perturbativity in this case.

Using the functional renormalization group, the one-loop version of the β functions of
the dimensionful couplings with [ϕ] = 1 are

k∂kZ0 = − λ(2k2Z2 + Z1)

64π2k2 (k−2Z0 + k2Z2 + Z1)
2 , (5.2.4)

k∂kZ1 = 0 , (5.2.5)

k∂kZ2 = 0 , (5.2.6)

k∂kλ =
3λ2(8k2Z2 + 4Z1)

128π2 (k−2Z0 + k2Z2 + Z1)
3 . (5.2.7)

As in the µ-running, the only operator quadratic in the field to run is Z0 in the FRG beta
functions. In the high-energy limit the classical scaling prevails over quantum corrections,
as can be seen from the powers of k in the numerator. Hence, the gap with respect to the
physical scheme is closed at high-energies.

In the picture where the field has dimension one, we can set Z1 = 1 and consequently

Z2 =
1

m2
1 +m2

2

, Z0 =
m2

1m
2
2

m2
1 +m2

2

. (5.2.8)

So, when we consider the running of λ, we observe three phases:

• when k ≫ m1, the beta function is dominated by the k2Z2 terms and the running
is suppressed by a k4 in the denominator;

• when k is comprised between m1 and m2, both k
2Z2 and k−2Z0 are small and the

part proportional to Z1 gives the beta function of the theory with the 2-derivative
kinetic term;
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• at low energies, k ≪ m2, there is no running because k−2Z0 in the denominator kills
the beta function.

In the end, also in this case the overall behaviour mimics quite well the physical running,
so, there seems not to be a problem for the universality of the renormalization group.

5.3 Non-universality of perturbative beta functions

Despite of the reassuring conclusion of the analysis of the ϕ4 theory, in its one-loop quan-
tum corrections we can observe two features that can become dangerous in other more
general cases: on one hand, the tadpole diagram is logarithmically divergent without need-
ing any mass, so it is no more granted in general that at high energies the logarithms of the
cutoff from these diagrams affect only relevant couplings, as in two derivative theories. On
the other hand, the bubble diagram shows large logarithms of the kinematical variables
not related to the UV regulator, which is not there at all, since the integral is finite. Such
an effect is related to the fact that the massless version of the higher derivative bubble
integral is infrared divergent in ϕ4 theory, hence masses act as infrared regulators and
come in logs with momenta. Since the interaction is a pure potential, the vertex cannot
produce additional powers of the momenta in the amplitude. Thus, the tadpole ends up
renormalizing a relevant operator negligible in the UV, while in the bubble (5.2.3) an
s2 term in the numerator overcomes the large logarithms, so high-energy universality is
restored.

One might wonder whether a marginal derivative interaction could break this fragile
equilibrium and lead to a failure in the one-loop universality of the renormalization group.
It turns out that the only marginal interactions containing four fields in a theory with
only one higher derivative scalar field are [77]

((∂µϕ)
2)2 , (∂µϕ)

2ϕ□ϕ , (ϕ□ϕ)2 . (5.3.1)

We have already studied the first vertex in the shift invariant model and it gave a good
matching between the different running in the high energy limit, since shift invariance
protects from infrared divergences. The other two are equal to zero on-shell in the same
regime, because the □ operator is zero when acting on external legs. One can consider only
the diagrams where the□ acts exclusively on internal lines. If we focus on 2 → 2 scattering,
in the case of (ϕ□ϕ)2 these diagrams are IR finite as in the shift invariant case, because
there is at least one □ operator acting on each virtual particle, while with the vertex
(∂µϕ)

2ϕ□ϕ there is one diagram potentially divergent in the IR, the one schematically
depicted in figure 5.3.

□ □ ∂µ∂ν

∂µ∂ν

Figure 5.3: the infrared divergent bubble diagram with the interaction vertex (∂µϕ)
2ϕ□ϕ.

Derivatives are placed on the propagators of particles they act on.

We notice from the disposition of partial derivatives over the external legs that, sum-
ming this diagram with its cross-symmetric equivalents in channels u and t, the total
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result is proportional to the tree level shift invariant interaction. In the massless limit, the
propagator of the internal line over which the two box operators act is exactly canceled,
so we remain with a tadpole integral:∫

d4q
q4

q4(q + p)4
=

∫
d4q

1

q4
. (5.3.2)

As already stated, it depends on the UV cutoff, but at the same time it is independent of
the transferred momentum s, t or u. The one-loop quantum correction from these three
diagrams in a cutoff renormalization scheme is

1

8π2
(
s2 + t2 + u2

)
log

(
Λ2

k2

)
, (5.3.3)

hence they contribute to the beta function of g, but they cannot produce any physical
running. This is a serious threat to RG universality and we are going to discuss this issue
from a more general point of view in the coming pages.

We have already hinted how infrared divergences can disrupt RG universality in higher
derivative theories in the end of chapter 2. Now we will resume that discussion and describe
how different regularization methods behave in such a situation.

The IR behaviour of the generic one-loop integral in higher derivative theories presented
in Section 2.3.3 ∫ Λ

k
d4q

N(q, pi)

q4(q + p1)4 × · · · × (q + p1 + · · ·+ pn−1)4
(5.3.4)

actually depends on the numerator N . If the bare action is local in fields and their
derivatives, N can be written as a sum of monomials of entire positive powers of momenta
running on internal propagators forming the loop and powers of momenta of external
particles (notice that some pi can be associated to a vertex with more than one incoming
external particle, meaning pi =

∑
j pi,j)

N(q, pi,j) =
∑
α

aα

n∏
m=1

(
q +

m∑
i=1

pi−1

)bα,m∏
j

p
cα,m,j

m,j , (5.3.5)

where by convention p0 = 0. The integral associated to one of these monomials has a
logarithmic divergence in q = −

∑m
i=1 pi−1 if bα,m is zero. Hence, integral (5.3.4) is IR

finite for arbitrary off-shell external momenta only if bα,m ̸= 0 ∀m. This is the case, for
example, of shift invariant theories.

To better understand where these divergences come from and how they are treated in
different renormalization schemes, we will focus on the tadpole and the bubble diagrams
built with a generic interaction vertex O, equivalent respectively to the case n = 1 and
n = 2 of (5.3.4). We will start from the purely quartic propagator and only at a later time
we will include the two derivative kinetic term and a mass.

O O
−pp

q + p

q

O
p = 0

q

Figure 5.4: The bubble Diagram (on the left) and the tadpole diagram (on the right)
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The tadpole integral is simply ∫
d4q

O
q4

, (5.3.6)

with p =
∑
kj = 0 due to overall momentum conservation. If O is independent of mo-

menta, the integral is divergent both in the UV and the IR. If O is a derivative interaction,
derivatives acting on the virtual particle running in the loop regularize the IR and make
the UV diverge with a power-law. Also in higher derivative theories, tadpoles cannot
produce a physical running, because the total momentum entering in the loop is zero. On
the other hand, the bubble integral is∫

d4q
O2

q4(q + p)4
. (5.3.7)

This diagram is convergent in the UV ifO is less than quadratic in q, since the denominator
is q8 in the high energy limit, but, if q(q + p) cannot be factorized out of O2, it is IR
divergent. In fact, in the q ≪ p and q → −p limits, it reduces to

O2

p4

∫
d4q

1

q4
. (5.3.8)

With a cutoff regularization, Λ in the UV and k in the IR, and O independent of q, the
tadpole diagram is

O
∫ Λ

k
d4q

1

q4
= 2π2O log

(
Λ

k

)
, (5.3.9)

while the bubble gives

O2

∫ Λ

k
d4q

1

q4(q + p)4
=

2π2O2

p4

[
log

(
p2

k2

)]
+ . . . , (5.3.10)

where dots stand for finite terms. One can immediately see that the tadpole can potentially
contribute to the Wilsonian running, however there cannot be any contribution to the
physical beta function. In the bubble integral, on the contrary, there are no logarithms
of the UV cutoff that can generate a Wilsonian running, however we have large logs of
the momentum p coupled with logarithms of the infrared cutoff k that can be relevant in
the physical scheme. If O is a potential term, i.e. it is independent of momenta, the 1

p4

factor in front of the logarithms ends up suppressing the contribution of this diagram in
the high-energy limit, so the effect of the infrared large logarithm is negligible; however, if
O ∼ p4, the loop correction can potentially contribute to the physical running of O itself,
since

O2

p4
∼ O (5.3.11)

in terms of power counting. Thus, in higher derivative theories the Wilsonian beta func-
tions in general can be inequivalent to the physical ones and can introduce a dependence
of the running coupling on the cutoff that does not reflect the true behaviour of the scat-
tering amplitudes and does not allow us to reabsorb all large logarithms of momenta in
the high energy limit.

If we use dimensional regularization andMS prescription instead of cutoffs, the tadpole
integral is automatically set to 0, since it does not contain any dimensionful parameter
(this can also be seen from 2.3.5 by continuing the dimension to d = 4+2ε instead of 4−2ε
and taking the limit ∆ → 0). This is in accordance with the physical scheme. Moving to
the bubble integral, we observe that, while dimensional regularization is usually exploited
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to regularize the UV part of momentum integrals, by simply changing the analytical
continuation to d = 4 + 2ε we can regularize the IR divergent part of the integral. If we
wait until the last step in the calculation before taking the limit ε→ 0, we obtain

−2π2O2

p4ε
+

2π2O2

p4

[
−1 + γE − log(4π) + log

(
p2

µ2

)]
. (5.3.12)

The logarithm of the momentum is associated to logµ, hence also in this case the MS
scheme will give a beta function consistent with the physical scheme at high energy. From
this rapid overview, MS prescription continues to be a good proxy for the logarithmic
dependence of scattering amplitude on external momenta in the massless case.

We have already observed that the massless limit is problematic from the point of view
of the definition of the free theory. Moreover, the presence of these IR divergences is a big
threat to the definition of the low-energy limit of the theory, that should match in some
sense with our everyday experience. So we will add to the propagator a two derivative
kinetic term,

1

q4
→ 1

q4 +m2q2
. (5.3.13)

In this way the infrared divergences are substituted by terms like log
(
p2+m2

m2

)
that give the

same large logs as before in the limit p2 ≫ m2, but go to zero below the mass threshold.
In the high-energy limit, the only effect of the mass with cutoff regularization is that m
substitutes k in expressions (5.3.9) and (5.3.10). On the other hand, in dim reg, the new
mass will regulate the infrared part of the integral instead of ε. As a result, the tadpole
integral will give something like

O
∫
d4q

1

q4 +m2q2
∼ 2π2O

[
1

ε
+ γE − log(4π) + log

(
µ2

m2

)]
, (5.3.14)

since the new mass is the dimensional parameter needed for a nonzero result. The fact that
the purely quartic tadpole is zero in dim reg can be seen as an exact cancellation between
the UV divergence and the IR one. If one of the two is missing due to other regularization
mechanisms, the integral starts to depend on µ in the same way as the cutoff regulated
integral depends on Λ. On the other hand, the bubble will be independent of the parameter
µ, because it is UV finite and the IR part of the momentum integral is regulated by the
mew mass parameter. So the limit ε→ 0 is smooth and no traces of µ remain in the final
result∫

d4q
O2

(q4 + q2m2) [(q + p)4 +m2(q + p)2]

p2≫m2

−−−−→ 2π2O2

p4
log

(
p2

m2

)
. (5.3.15)

In the end, in the presence of a mass scale regulating the infrared part of the integral, MS
regularization scheme ends up having the same problems of the Wilsonian one.

The failure of one-loop universality of the logarithmic running of couplings can be
schematically described in the following way. Consider a hypothetical amplitude of the
form

M(p) = λ(µ) + aλ2(µ) log

(
m2

µ2

)
+ bλ2(µ) log

(
p2

µ2

)
+ cλ2(µ) log

(
p2

m2

)
, (5.3.16)

where µ comes from dimensional regularization and m is either a mass that is present
in the theory or an IR regulator. Such an amplitude could arise, for example, from the
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application of the MS scheme. The first term represents the contribution of the tadpole,
the other two are the contributions of the UV and IR part of the bubble. We can also
rewrite the amplitude as

M(p) = λ(µ) + (a− c)λ2(µ) log

(
m2

µ2

)
+ (b+ c)λ2(µ) log

(
p2

µ2

)
. (5.3.17)

From the µ-independence of the amplitude we obtain the “µ-beta function”, as we did in
equation (2.3.12),

βλ(µ) ≡ µ
d

dµ
λ(µ) = 2(a+ b)λ2 . (5.3.18)

In this way the µ-dependence of the coupling contains a spurious part (the one proportional
to a) that does not reflect a momentum dependence in the amplitude, and misses the
momentum dependence of the term proportional to c. This mismatch has the effect that
this definition of running coupling does not solve the problem of the large logarithms that
arises when p becomes large, which is the main reason for the use of the renormalizaton
group in perturbation theory. Indeed, if we choose µ ≈ p in order to make the second
logarithm in (5.3.17) small, the first logarithm will generically be large: with this choice,
we can rewrite the amplitude as

M(p) = λ(p) + (a− c)λ2(p) log

(
m2

p2

)
. (5.3.19)

The problem is solved by using the physical scheme, where we define the renormalized
coupling by identifying it with the measured interaction strength at the scale µR

λ(µR) = M(µR) = λ(µ) + (a− c)λ2(µ) log

(
m2

µ2

)
+ (b+ c)λ2(µ) log

(
µ2R
µ2

)
. (5.3.20)

In this way, we absorb the first logarithm of (5.3.17) and all the µ dependent part of the
amplitude in the definition of the renormalized coupling

λ(µ) → λ(µR) = λ(µ)− (a− c)λ2(µ) log

(
m2

µ2

)
− (b+ c)λ2(µ) log

(
µ2R
µ2

)
, (5.3.21)

so the amplitude reads

M(p) = λ(µR) + (b+ c)λ2(µR) log

(
p2

µ2R

)
. (5.3.22)

From the requirement that this must be µR-independent, one gets what we call the physical
beta function

βλ ≡ µR
d

dµR
λ(µR) = 2(b+ c)λ2 . (5.3.23)

Now the µR-dependence of the coupling faithfully tracks the momentum-dependence of
the amplitude, and with this definition of running the problem of the large logarithms is
solved. That Green functions could exhibit different dependence on µ and on momentum,
when higher derivatives are present, has been observed also in [98] and the possibility of
large IR enhancements far from the soft region in higher derivative theories was already
suggested in [99].

The introduction of mass scales in the propagator does not only permit us to have a
low energy limit free of off-shell infrared divergences, but also allows us to shed more light
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on the origin of such infrared large logarithms. Via partial fraction decomposition, higher
derivative loops can be recast as sums of diagrams with two-derivatives propagators, as
we already did to calculate the scattering amplitudes of the shift invariant theory. At
first glance, there seems to be a contradiction, since in chapter 2 we stated that in two
derivative theories there are no off-shell large logarithms regulated by infrared regulators
like, for example, a mass, however a sum of loops with two derivatives propagators produces
such terms in higher derivative theories. Let us take the decomposed propagator (3.1.74)
and call I2(ma,mb, p) the bubble diagram with two derivatives propagators with different
masses, the higher derivative bubble will be

I4(m1,m2, p) = (m2
1−m2

2)
2 [I2(m1,m1, p)− I2(m1,m2, p)− I2(m2,m1, p) + I2(m2,m2, p)] .

(5.3.24)
The integral I2 is a slight variation of the bubble integral that gives the one-loop correction
to the four point function in the scalar λϕ4 theory. In the relevant limits of large and small
momentum p, it is

I2(m1,m2, p) ∼



2O2

[
log

(
− p2

Λ2

)
+
∑
i

m2
i

p2
log

(
−mi

p2

)
+
m2

1m
2
2

p4

∑
i

log

(
−mi

p2

)
+O

(
p4

m4
i

)] if p2 ≫ m2
i ;

−1 +
2m2

2(logm1−logm2)

m2
1−m2

2
+ log

(
m2

1
Λ2

)
+O

(
p
mi

)
if p2 ≪ m2

i .

(5.3.25)

As expected, the integral is UV divergent. Infrared divergences in two derivative theories
can arrive only from the small momentum square limit, but in this case it is finite. We

notice that, at leading order in the high energy limit, we recover the well-known log
(
p2

Λ2

)
,

however in the subleading terms log
(
p2

m2
i

)
starts to appear. When we move to I4, the

leading and subleading terms of the high energy limit cancel with each other and we
remain with

I4(m1,m2, p) ∼


O2 1

m2
1−m2

2

∑
i(−1)i

m2
i

p2
log
(
mi
p2

)
+O

(
p4

m4
i

)
if p2 ≫ m2

i ;

2− 2
m2

1+m
2
2

m2
1−m2

2
log
(
m1
m2

)
+O

(
p
mi

)
if p2 ≪ m2

i .
(5.3.26)

It is exactly thanks to these type of cancellations that the E8 and E6 orders disappeared in
the high energy scattering amplitude of the shift invariant theory and higher derivative the-
ories in general have a better UV behaviour than standard ones. However, if a 2-derivative
diagram is not divergent “enough”, the cancellations will produce a IR divergent higher
derivative diagram. The infrared large logarithms in higher derivative theories do not ac-
tually come from infrared divergences regulated by the masses in the two-derivative terms
of the sum (5.3.24), but form their sub-subleading terms in the high-energy limit. The
peculiar way these infrared logarithms emerge in the massive theories and the nontrivial
limit between them and the massless case, (which could actually be ill-defined), explains
why the Kinoshita-Lee-Nauberg theorem fails in higher derivative quantum field theories.

In renormalizable higher derivative theories with only one scalar field, such infrared
divergences are impossible, because shift symmetry is a necessary condition in this class
[77]. However, including more fields with various spins, a new landscape of possibilities
opens in front of us. In the next chapter we will study the effects of these new large
logarithms in higher derivative theories in curved spacetime.
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Chapter 6

Higher derivative theories in
curved spacetime

6.1 Technical tools

In the last chapter we have discussed how different renormalization schemes can lead to
different beta functions in higher derivative theories and not all of them are capable of
reproducing the high-energy behaviour of scattering amplitudes. We already mentioned
in chapter 3 that the most interesting application of higher derivative theories is related
to gravity, hence in this chapter we will see the effects of such a scheme dependence in a
higher derivative quantum field theory in curved spacetime and in gravitational theories.

To do this, we first have to introduce some fundamental concepts and tools that are
very useful to do RG computations in curved space. In this chapter we will mainly think
in terms of dimensional regularization and consider spaces with Euclidean signature.

6.1.1 The quantum effective action

The renormalization of quantum field theories in curved spacetime is usually studied from
the point of view of the effective action, since it permits to deal with manifestly covariant
expressions, while, in order to define a scattering amplitude, we always have to choose
a preferred reference frame and a set of coordinates. We already quickly introduced the
effective action in Section 2.2.1, however, to use it on a curved background and in presence
of gauge symmetries, as in the case of gravity, we need to put more attention on how this
object is introduced and on some of its features. In doing this excursus, we will mainly
base our discussion on the book by Buchbinder, Odintsov and Shapiro [100].

We start from the partition function

Z[J ] =

∫
Dϕe−S[ϕ]+

∫
dxϕ(x)J(x) , (6.1.1)

that generates the n-point Green functions of the theory through the relation

Gn(x1, x2, ..., xn)|J =
1

Z[J ]

δnZ[J ]

δJ(x1)δJ(x2)...δJ(xn)
. (6.1.2)

From it, one can define the generating functional of the connected Green functions, the
free energy W [J ], as

Z[J ] = eW [J ] . (6.1.3)
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The expectation value of the field, or mean field, is given by the relation

φ(x) =
δW [J ]

δJ
=

1

Z[J ]

δZ[J ]

δJ(x)
(6.1.4)

and depends on the external source configuration J . This relation can be inverted to write
the source as a functional of the mean field, namely J(x) = Jφ(x). Using this expression,
the effective action is introduced as the Legendre transform of the free energy with respect
to φ and J

Γ[φ] = −W [J ] +

∫
dxφ(x)Jφ(x) . (6.1.5)

This new functional is the generator of 1-point irreducible Green functions

Gn1PI(x1, x2, ..., xn) =
δnΓ[φ]

δφ(x1)δφ(x2)...δφ(xn)
. (6.1.6)

Its first variation with respect to the mean field

δΓ[φ]

δφ
= J (6.1.7)

really resemble the classical equation of motion of a field theory coupled with an external
source, where the role of the classical action has been taken by the effective action. More-
over, in the same way as functional derivatives of the classical action generate classical
interaction vertices to be inserted in Feynman diagrams, the 1-point irreducible Green
functions generated by Γ[φ] are interpreted as the effective interaction vertices in the full
quantum theory. Thus, this functional plays, for the expectation value of the quantum
field, the same role of the classical action in a classical field theory, already incorporating
all quantum corrections. This is the reason why it is usually named quantum effective
action.

The effective action in general is a complicated nonlocal functional, but it can be
rewritten as a perturbative expansion in ℏ around the classical action S. By reintroducing
the Planck constant in (6.1.1) and (6.1.5), we find

e−
1
ℏΓ[φ]−

1
ℏ
∫
dxφ(x)J(x) =

∫
Dϕe−

1
ℏS[ϕ]+

1
ℏ
∫
dxϕ(x)J(x) . (6.1.8)

Now, we redefine the integration variable as ϕ→ φ+ ϕ, where ϕ represents the quantum
fluctuation and φ is the mean field that acts as an external field on ϕ, so we obtain

e−
1
ℏΓ[φ] =

∫
Dϕe

− 1
ℏS[φ+ϕ]+

1
ℏ
∫
dxϕ(x)

δΓ[φ]
δφ(x) . (6.1.9)

We expand S around the mean field by introducing the quantities

S(n)[φ]ϕ
n =

∫
dx1dx2...dxn

δnS

δϕ(x1)ϕ(x2)...ϕ(xn)

∣∣∣∣
ϕ=φ

ϕ(x1)ϕ(x2)...ϕ(xn) (6.1.10)

and analogously

ϕΓ(1) =

∫
dxϕ(x)

δΓ[φ]

δφ(x)
, (6.1.11)

so, after a rescaling of ϕ as ϕ = ℏ1/2ϕ, we end up with

e−
1
ℏΓ[φ] = e−

1
ℏS[φ]

∫
Dϕe

− 1
2
S(2)[φ]ϕ

2−
∑∞

n=3
ℏ
n
2 −1

n!
S(n)[φ]ϕ

n+ 1√
ℏ
ϕ(Γ(1)[φ]−S(1)[φ]) . (6.1.12)
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The functional integral on the right hand side is equal to the logarithm of the difference
between the effective action and the classical action and can be expanded in powers of ℏ,
so we can write

Γ[φ]− S[φ] =

∞∑
n=1

ℏnΓn−loop[φ] , (6.1.13)

where we have observed that the ℏ expansion coincides with the loop expansion1. By
substituting this expression in the latter, we recover the one-loop approximation of the
effective action written in (2.2.15):

e−
1
ℏΓ

1[φ] = e−
1
ℏS[φ]−Γ1−loop[φ] = e−

1
ℏS[φ]

∫
Dϕe−

1
2
S(2)[φ]ϕ

2
, (6.1.14)

that implies, after a Gaussian integration,

Γ1−loop[φ] =
1

2
log detS(2)[φ] =

1

2
tr logS(2)[φ] . (6.1.15)

In this way the calculation of one-loop corrections of the effective action is reduced to the
calculation of the functional trace of the logarithm of the Hessian of the classical action
S2.

Effective action in gauge theories

Up to now, we have considered a simple scalar field, however things get more involved
when we try to define the effective action of a gauge theory.

Let us consider a generic field ϕi transforming as ϕi → ϕi + δϕi with

δϕi = Riαξ
α (6.1.16)

under the action of an element of a Lie group G with infinitesimal parameter ξα. The
theory defined by the classical action S[ϕ] has a gauge symmetry with gauge group G if
it is invariant off-shell under the action of elements of the group, i.e.

δξS[ϕ] =
δS[ϕ]

δϕi(x)
Riαξ

α(x) = 0 ∀ ξα(x) , (6.1.17)

that implies
δS[ϕ]

δϕi(x)
Riα = 0 . (6.1.18)

If one tries to define a partition function for this theory as in (6.1.1), one will incur in an
overcounting of field configurations, since the entire orbit determined by the action of G
on a field configuration ϕ(x) corresponds to only one physical state. For this reason, one
would like to have a way to count only once each inequivalent field configuration. The
problem is overcome by the Faddeev-Popov procedure, which permits to integrate over
fields after having fixed a particular section over the orbits of the gauge group.

Suppose there exists a functional χα[ϕ], called gauge, such that the hypersurface

χα[ϕ]− lα = 0 (6.1.19)

1this equivalence is true only if the classical action is taken independent of ℏ, however it is not the only
possible convention [101]. Sometimes this particular choice is not the right one in order to recover classical
results in the ℏ → 0 limit [102]. Anyway, the loopwise expansion is independent of which parameters are
taken dependent or independent of ℏ, so the identification 6.1.15 is true in general.
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is crossed only once by the G orbit of all inequivalent field configurations. In order to
count only once physical configurations, we introduce the identity

1 = Ψ[ϕ]

∫
Dg δ(χα[gϕ]− lα) , (6.1.20)

where the integration is done over elements of the gauge group g and gϕ is the action of g
on ϕ. It can be shown that the functional Ψ[ϕ] not only exists, but is also gauge invariant
and equal to det∆gh, with

∆gh
α
β = δβχ

α =
δχα[ϕ]

ϕi
Riβ . (6.1.21)

Inserting this peculiar form of the identity in the formal functional integral we get∫
Dϕe−S[ϕ] =

∫
DgDϕe−S[ϕ]δ(χα[gϕ]− lα)det∆gh . (6.1.22)

Via a change of variable ϕ→ g−1
ϕ, the integrand becomes independent of g∫

Dϕe−S[ϕ] =

∫
Dϕe−S[ϕ]δ(χα[ϕ]− lα)det∆gh

∫
Dg , (6.1.23)

hence the integral over the gauge group simply gives a multiplicative factor. One gets∫
Dg = VolG, that is the volume of G, and it can be removed by an overall normalization.

Moreover, the delta function in (6.1.23) grants that only one field configuration for each
orbit of G is accounted for in the functional integration, as we desired.

Now we would like to rewrite the integrand in a more familiar exponential form, so
we proceed in two steps: first we introduce a Gaussian integral over the chosen gauge
condition lα through the identity

1 = det
1
2Yαβ[ϕ]

∫
Dl e−

1
2
lαYαβ [ϕ]l

β
, (6.1.24)

where the spatial integral over x in the exponent is implicit for brevity, and we get∫
Dϕe−S[ϕ]−

1
2
χαYαβ [ϕ]χ

β
det∆ghdet

1
2Y . (6.1.25)

As second step, we introduce three anticommuting fields C̄α, C
β and bα to rewrite the

determinants as Gaussian integrals over Grassmann variables. The final expression is∫
DϕDC̄DCDb e−S[ϕ]−

1
2
χα[ϕ]Yαβ [ϕ]χ

β [ϕ]−C̄α∆gh
α
βC

β− 1
2
bαYαβ [ϕ]b

β

. (6.1.26)

The fields C̄α and Cβ are known as Faddeev-Popov ghosts, while b is usually known as
the third ghost or Nakanishi-Lautrup ghost. These fields have negative norms, however
they do not gives problems related to unitarity like ghosts particles of higher derivative
theories because they are excluded from the Hilbert space of physical states by BRST
cohomology [59, 60]. In fact, they are necessary to remove from the left hand side of
the optical theorem (3.1.63) the loop contributions containing pure gauge virtual modes,
which are absent from the sum over intermediate physical states on the right hand side.
This functional integral can be used to introduce a partition function for a gauge theory
as

Z[J ] =

∫
DϕDC̄DCDb e−S[ϕ]−Sgf [ϕ]−Sgh[ϕ,C̄,C,b]−

∫
dxϕi(x)Ji(x) . (6.1.27)
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Notice that only the fields ϕi have received an external source, since they are the only
physical particles that can appear in a Green function. In many gauge theories Yαβ[ϕ] is
taken equal to δαβ, in order to avoid the third ghost, however, a nontrivial choice turns
out to be useful in higher derivative theories and in particular in quadratic gravity, so we
will keep it.

To define the partition function we had to choose a gauge functional χα[ϕ], so one
could wonder how this decision affects the resulting functional. Without introducing the
auxiliary fields, the partition function defined in the gauge χ is

Zχ[J ] =

∫
Dϕe−S[ϕ]−

∫
dxϕi(x)Ji(x)δ(χα[ϕ]− lα)Ψχ[ϕ] . (6.1.28)

If we take J = 0, we have the starting integral∫
Dϕe−S[ϕ] , (6.1.29)

which is manifestly independent of χ. To explicitly show this, we can introduce another
identity (6.1.20) written in term of another gauge functional χ′

1 = Ψχ′ [ϕ]

∫
Dg δ(χ′α[gϕ]− l′α) , (6.1.30)

so we obtain

Zχ[0] =

∫
DgDϕe−S[ϕ]δ(χα[ϕ]− lα)δ(χ′α[gϕ]− l′α)Ψχ[ϕ]Ψχ′ [ϕ] . (6.1.31)

Via the change of variables ϕ → g−1
ϕ and g−1 → g, only the delta function containing χ

depends on g, hence we can use relation (6.1.20) to write

Zχ[0] =

∫
DgDϕe−S[ϕ]δ(χ′α[gϕ]− l′α)Ψχ′ [ϕ] = Zχ′ [0] . (6.1.32)

Thus, with zero source, the partition function is independent of the gauge fixing. However,
the same cannot be done with J ̸= 0: in this case the field ϕ in the source term also depends
on g after the change of variable, so the integral over G does not factorize. In fact, the
partition function with nonzero source depends on the gauge choice, and the same holds
for the Green functions it generates. The independence from the gauge is recovered only
in on-shell S-matrix elements.

From the partition function (6.1.27), one can construct a free energy functional and

an effective action via a Legendre transform with respect to the mean field φi = δW [J ]
δJi ,

e−Γ[φ] =

∫
DϕDC̄DCDb e

−S[φ+ϕ]−Sgf [φ+ϕ]−Sgh[φ+ϕ,C̄,C,b]−
∫
dxϕi(x)

δΓ[φ]

δφi(x) (6.1.33)

An expansion in ℏ analogue to the one accomplished for the simpler case considered before
leads to

Γ[φ]− S[φ]− Sgf [φ] =
∞∑
n=1

ℏnΓn−loop[φ] (6.1.34)

and

Γ1−loop[φ] =
1

2
tr log

δ2(S[φ] + Sgf [φ])

δφiδφj
− tr log∆gh[φ]−

1

2
tr log Y [φ] , (6.1.35)
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that can be used to find the one-loop beta functions of the theory.
The effective action (6.1.33) inherits the dependence on the gauge choice from the

partition function. It can be shown that, when the gauge functional is linear in ϕ (χα =
tαi ϕ

i with t independent of ϕ), its dependence on Y and t can be expressed as

δΓ[φ]

δYαβ
=
δΓ[φ]

δφi
⟨Riγ∆−1

gh
γ
δY

δ(αt
β)
j ϕ

j⟩ , (6.1.36)

δΓ[φ]

δtαi
=
δΓ[φ]

δφj
⟨Rjβ∆

−1
gh

β
αϕ

i⟩ . (6.1.37)

Clearly both these expressions are zero on-shell, when δΓ[φ]
δφi = 0. Even worse, Γ in general

is not even invariant under gauge transformations of φi. To avoid this inconvenience, we
can use the dependence of the effective action on the gauge fixing parameters to define
a G invariant effective action without affecting the S-matrix, that is independent of the
gauge choice.

If we restrict ourself to gauge Lie groups which act linearly on the field, namely δ2Ri
α

δϕjδϕk
=

0, there exists a class of gauges, called background field gauges, that allow to define an
effective action invariant with respect to transformations of φi [103]. Instead of writing
the effective action as in (6.1.33), where the gauge fixing and ghost terms depend only on
the combination ϕ + φ, we introduce a background field φ̄ and take a gauge functional
χα[φ̄, φ, ϕ] = tαi [φ̄](φ

i + ϕi) and an operator Yαβ depending only on φ̄ and such that they
transform under gauge transformations of the background field δφ̄i = Riα[φ̄]ξ

α as

δtαi =

(
fαβγt

γ
i − tαj

δRjβ[φ̄]

δφ̄i

)
ξβ , (6.1.38)

δYαβ = −
(
Yαδf

δ
γβ + Yδβf

δ
αγ

)
ξγ , (6.1.39)

where fαβ,γ are the structure constants of the Lie group. The effective action takes the
form

e−Γ[φ,φ̄] =

∫
DϕDC̄DCDb

×e−S[φ+ϕ]−
1
2
(φi+ϕi)tαi [φ̄]Yαβ [φ̄]t

β
j [φ̄](φ

j+ϕj)−C̄αtα[φ̄]Ri
β [φ+ϕ]C

β− 1
2
bαYαβ [φ̄]b

β−ϕi δΓ[φ̄,φ]

δφi .

(6.1.40)

This effective action depends on two fields in general, φ and φ̄, but we can choose φ̄ = φ
and rename Γ[φ, φ̄]|φ̄=φ = Γ[φ]2. It can be shown that, in this particular gauge depending
only on the mean field, the quantity

Γ̃[φ] = Γ[φ]− 1

2
φitαi [φ]Yαβ[φ]t

β
j [φ]φ

j = Γ[φ]− Sgf [φ] (6.1.41)

is invariant under gauge transformations of the background or mean field. Hence, all
terms in the loop expansion are also invariant thanks to eq. (6.1.34), since the classical
action S is gauge invariant from the beginning. The background gauge assures us that
all possible local divergences emerging from loop corrections can be reabsorbed in bare
couplings associated to covariant terms in the classical Lagrangian. Γ̃[φ] is called the
gauge invariant effective action, but from now on we will call it simply effective action and
refer to it as Γ[φ] when discussing gauge theories.

2In the EAA one cannot simply remove the dependence on one of the two fields in this way, because
the regulator ∆Sk depends on φ̄ and (φ+ ϕ) in different ways [12].
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Different runnings from the effective action

In general, the regularized effective action can be written as the classical bare action plus
a finite part and a UV divergent one

Γ = S + Γdiv + Γfin (6.1.42)

The divergent part, proportional to 1
ϵ in dimensional regularization, is always local if the

theory contains an energy scale m regulating the infrared, so, in a renormalizable theory,
it can be reabsorbed as usual by a redefinition of bare quantities in the classical action.
What remains, is a renormalilzed effective action

Γren = Γloc + Γnl , (6.1.43)

where Γloc is the local part and Γnl the nonlocal one. Γloc is composed by all the local
operators of the classical action associated to renormalized couplings, while Γnl produces
all the terms nonanalytical in momenta that appear in effective vertices via nonlocal
operators, even the large logarithms that forced us to introduce the physical running.

In momentum space, the nonlocal part of the effective action can be expanded in a
sum of monomials of mean fields multiplied by functions of their momenta, usually called
form factors∫
ddp1

∫
ddp2...

∫
ddpnφ1(p1)φ2(p2)...φn(pn)f(p1, p2, ..., pn−1, µ,m)δ(p1 + p2 + ...+ pn) .

(6.1.44)
When the scales of the theory are well separated, i.e. m2 ≪ p2, we can expand the

part analytical in momenta of form factors in a power series

f =
∑
i

fi(p1, p2, ..., pn−1, µ,m)
n−1∏
r=1

p
γi,r
r , (6.1.45)

with fi representing the residual nonanalytical part. If we sum each term of the series
with the renormalized coupling gi in Γloc associated with the same powers of momenta
and fields, we obtain a high-energy expansion of the 1-point irreducible n-point functions.
As already stated, the latter must be independent of the scale µ, hence the renormalized
couplings gi must depend on the unphysical scale µ to cancel the dependence of fi on it.
The general structure is usually reduced to

gi(µ) + fi(p
2;µ2,m2) = gi(µ) + bi log(µ

2/m2) + ci log(p
2/m2) , (6.1.46)

that is analog to (5.3.17). Hence, all the reasoning concerning the physical running and
the µ running in scattering amplitudes can be applied to this expression. The coefficients
of the two logarithms in µ and p are generally different, ci ̸= bi, so the integration of the
µ-running, given by bi, does not resum the large logarithms in p2, unless bi = ci. If ci ̸= bi,
in order to have a running that resums the large logarithms, the term with bi in (6.1.46)
can be absorbed in g through a finite subtraction. The result is a coupling renormalized
at the scale m that is independent of µ, since the absorbed logarithm removes the old
dependence. The residual form factor depends only on momenta and masses, in this case
through log(p2/m2). After that, by moving the renormalization point again from m to p̄
close to p, we can carry out the desired task. Identifying p = |p| with the scale of some
physical process, the logarithmic derivative with respect to p of (6.1.46) gives the physical
running, which, by construction, depends only on ci.
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Effective action in curved spacetime

In the discussion of renormalization and running couplings in the effective action of quan-
tum field theories in curved spacetime, we will distinguish two main cases: theories of
matter in a curved background described by an external metric and quantum field theo-
ries of gravity, where the metric itself is treated as a quantum dynamical field.

In the former case, the effective action will have the form Γ[ḡµν , φ
A], where φA repre-

sents a generic matter field with arbitrary spacetime and internal indices, and ḡµν is the
background metric. In the following, a bar always indicates a geometric quantity calcu-
lated from the background metric. If we start from a covariant classical action, as required
by general relativity, we can write

δS

δḡµν
Rµν,α +

δS

δϕA
RAα = 0 , (6.1.47)

where Rµν,α is the generator of coordinate transformations acting on the metric tensor
and RAα the one acting on the matter field ϕA. For an infinitesimal change of coordinates
xµ → xµ + ξµ(x), we have

Rµν,αξ
α = (ḡµα∂ν + ḡνα∂µ + ∂αḡµν) ξ

α (6.1.48)

for the metric, while the matter transformation has the general structure RABαϕ
B with

RABα dependent on the type of matter field but such that
δRA

Bα

δϕC
= 0.

With these conditions, the free energy defined by

eW [ḡµν ,J ] =

∫
Dϕe−S[ḡµν ,ϕ]+ϕ

AJA (6.1.49)

transforms as

eW [ḡµν+δḡµν ,J ] =

∫
Dϕe−S[ḡµν ,ϕ]+ϕAJA+RA

Bαϕ
BJA (6.1.50)

under diffeomorphisms, then the effective action

Γ[ḡµν , φ] = −W [ḡµν , J ] + φAJA , (6.1.51)

with φA = δW
δJA

, is diffeomorphism invariant like the classical action.

One can compute the perturbative expansion in loops of the effective action in the
same way as in the flat spacetime case and quantum corrections at all loops orders will
be covariant. Loops contributions will take the form of all the scalar objects that can be
built up with the field φA, the metric, the covariant derivative and the curvature tensors
associated with the metric itself, compatibly with power counting and other symmetries
of the theory. The local UV divergences will be of three types: the covariantized ver-
sion of divergences already present in flat spacetime, where partial derivatives have been
replaced by covariant one, nonminimal couplings between matter fields and curvature ten-
sors, which are zero in flat spacetime, and divergent terms containing only the background
metric, totally independent of the field φ. In a power counting renormalizable theory in 4
spacetime dimensions, the only admissible local and covariant UV divergences that can be
generated at one loop in the vacuum effective action, namely Γ[ḡµν ] = Γ[ḡµν , φ]|φ=0, are

Γ[ḡµν ]div ∼ µd−4

∫
d4x

√
g
{
a1 + a2R̄+ a3R̄

2 + a4C̄
µνρσC̄µνρσ + a5Ē + a6□̄R̄

}
,

(6.1.52)
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where

C̄µνρσ = R̄µνρσ − 1

2

(
ḡµρR̄νσ − ḡµσR̄νρ − ḡνρR̄µσ + ḡνσR̄µρ

)
+

1

6
R̄(ḡµρḡνσ − ḡµσ ḡνρ)

(6.1.53)
is the Weyl tensor and

Ē = R̄2
µναβ − 4R̄2

µν + R̄2 (6.1.54)

is the Euler density scalar, which is a topological term in d = 4. Due to this kind of
divergences, we are forced to add the same terms depending only on the background
metric in the bare action, in order to reabsorb infinities with counterterms

Sext[ḡµν ] =

∫
d4x

√
g

{
ΛB −GN,BR̄+

1

ξB
R̄2 +

1

2λB
C̄µνρσC̄µνρσ −

1

ρB
Ē + τB□̄R̄

}
.

(6.1.55)

On the other hand, when we consider gravity as a dynamical field, we have to treat the
metric as the gauge field associated to diffeomorphisms invariance. Since Rµν,α is linear
in gµν , as can be seen from (6.1.48), all the discussion around the effective action of gauge
theories can be applied to gravity. Hence, we can split the metric in a background part
and a quantum fluctuation hµν via gµν = ḡµν + hµν , use the background gauge to obtain
a covariant effective action and finally compute one-loop corrections by calculating the
functional traces in (6.1.35). In pure gravity we will produce a partition function Γ[ḡµν ]
similar to the vacuum effective action of the matter case, while in a theory describing
both matter and gravity we will find Γ[ḡµν , φ], potentially containing all pure matter, pure
gravity and non-minimal gravity-matter terms. Unfortunately, we do not inherit from the
discussion of gauge theories only the machinery necessary to not overcount gauge degrees
of freedom, but also the problem of the dependence of the effective action on the gauge
fixing. Only the part of the effective action that survives on-shell is gauge independent
and it must be checked case by case in different gravitational theories. For example, in
pure Einstein gravity, the one-loop divergences computed in [30] are zero on-shell, and
in fact there exists a particular gauge such that the off-shell divergences are zero too
[104]. A gauge invariant notion of effective action was suggested by Vilkovisky in [105]
and later on analysed and modified by De Witt in [106, 107], where a set of Riemaniann
normal coordinates is introduced in the space of field configurations and used to define a
unique effective action. However, the so-called supermetric [108] on the space of metric
configurations

Gµναβ =
√
ḡ
(
ḡµαḡνβ + ḡναḡµβ + aḡµν ḡαβ

)
(6.1.56)

has a degree of arbitrariness due to the free parameter a, so even the “unique” effective
action is not actually unique in gravity.

In an asymptotically flat spacetime, in the hypothesis ∇∇R̄ ≫ R̄2, the leading non-
trivial pure gravity form factors are [109]

Γnl =

∫
d4x

√
ḡ
{
C̄µναβfλ(□̄;µ2,m2)C̄µναβ

+ R̄fξ(□̄;µ2,m2)R̄+O(R̄3)
}
,

(6.1.57)

and we will focus on them in the rest of the chapter. It is known also through explicit com-
putations that two-derivative scalars and vectors, as well as spinorial fields, give effective
actions in curved space for which the dependence on µ of the gravitational form factors
is a good proxy of their dependence on momenta, in the same way as in flat spacetime.
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See for example Refs. [110] and references therein. However, the same may not be true in
higher derivative theories.

In higher derivative theories without irrelevant operators, the leading terms at high-
energy in the gravitational local effective action are

Γloc =

∫
d4x

√
ḡ
{ 1

2λ
C̄2 +

1

ξ
R̄2
}

(6.1.58)

at all loops, due to power counting, while the high-energy expansion of the nonlocal
effective action looks like

Γnl[ḡ] = bλ log

(
µ2

m2

)
C̄µνρσC̄µνρσ + bξ log

(
µ2

m2

)
R̄2

+cλC̄
µνρσ log

(
□̄
m2

)
C̄µνρσ + cξR̄ log

(
□̄
m2

)
R̄ . (6.1.59)

The µ-running of the couplings is

βµλ = 2λ2µ
dfλ
dµ

= 4λ2bλ , βµξ = ξ2µ
dfξ
dµ

= 2ξ2bξ , (6.1.60)

while the coefficients cλ and cξ induce the physical running of the couplings λ and ξ in
the vacuum effective action (6.1.55). The associated beta functions are

βλ = −4λ2cλ , βξ = −2ξ2cξ . (6.1.61)

Once assessed how to treat properly the RG flow of quantum field theories in curved
spacetime, in order to compute the one-loop beta functions we just have to understand
how to treat functional traces like those appearing in equations (6.1.15) and (6.1.34).

6.1.2 Computing functional traces

The most popular technique to compute functional traces of quadratic differential oper-
ators is the Heat Kernel (HK). It was originally introduced in physics by Schwinger and
DeWitt [111, 112] and there are many textbooks and reviews approaching the subject, see
for instance [12, 100, 113–117]. We will briefly review how it works and then we will study
its application to fourth order operators. We will see that it is not suitable to compute
the physical running of higher derivative theories and then we will propose an alternative
method.

The heat kernel

The heat kernel permits to isolate the divergent part of functional traces of differential
operators while keeping manifest covariance throughout the whole procedure.

Let us consider a self-adjoint differential operator acting on a given field ϕA

O = −□̄+ E , (6.1.62)

where the covariant derivatives in □̄ can contain both spacetime and gauge connections,
while E is an endomorphism in the space of field configurations. Suppose that O is the
Hessian with respect to the field ϕA of the action of a particular theory and we are
interested in its one-loop quantum corrections, hence we need the quantity

tr lnO . (6.1.63)
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To study this object, it is convenient to introduce the heat kernel

K(t, x, y;O) = ⟨x| e−tO |y⟩ , (6.1.64)

which is a formal expression for the solution of the heat diffusion equation with respect to
a new auxiliary proper time coordinate t

(∂t +O)K(t, x, y;O) = 0 (6.1.65)

with initial conditions
K(0, x, y;O) = δ(x, y) . (6.1.66)

Being O an Hermitian operator, it has a complete basis of eigenfunctions ϕAn with eigen-
values λn and we can rewrite the trace (6.1.63) as

tr logO =
∑
n

log λn . (6.1.67)

Using the well known relation log x = − d
dsx

−s|s=0, we can write it as a derivative of the
zeta function of the operator O

ζO(s) =
∑
n

λ−sn , (6.1.68)

a generalization of the Riemann’s zeta function ζR(s) =
∑∞

n=1 n
−s. In fact we have

tr logO =
∑
n

− d

ds
λ−s|s=0 = − d

ds
ζO(s)|s=0 . (6.1.69)

On the other hand, the heat kernel in the eigenstates basis is

K(t, x, y;O) =
∑
n

ϕ†An (x)ϕAn(y)e
−tλn , (6.1.70)

hence its trace at coincident points reduces to

trKO(t) =

∫
ddx

√
gKO(t, x, x;O) =

∑
n

e−tλn . (6.1.71)

The trace of the heat kernel is related to the zeta function via a Mellin transform

ζO(s) = Γ(s)−1

∫ ∞

0
dt ts−1trKO(t) . (6.1.72)

The last relation can be shown with the help of the integral representation of the Euler
gamma function

Γ(s) =

∫ ∞

0
dt ts−1e−t , (6.1.73)

that permits to write the identity

λ−s = Γ(s)−1

∫ ∞

0
dt ts−1e−λt (6.1.74)

for each eigenvalue of the differential operator. Putting together expressions (6.1.69) and
(6.1.72), we manage to express the trace of the logarithm of O in terms of its heat kernel

tr logO = − d

ds

[
Γ(s)−1

∫ ∞

0
dt ts−1trKO(t)

]
s=0

=

∫ ∞

0
dt t−1trKO(t) , (6.1.75)
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where in the last step we have used the fact that Γ(s)−1 ∼ s for s → 0. In general, such
an integral can be divergent both in the limiting regions t→ 0 and t→ ∞, where the first
one corresponds to the sum over UV modes, and the latter to the sum over those in the
IR.

The reason why this expression is useful is that the heat kernel KO(t) has a very nice
series expansion at small t. If the infrared divergences are regularized either by an upper
cutoff T over the proper time or by a mass term m2 in O that introduces an exponential
suppression at large t via a factor e−tm

2
in (6.1.75), all divergences determining the cutoff

or µ-running can be extracted thanks to such local, or small proper time, expansion.
In flat spacetime, with O = −∂µ∂µ, the heat kernel is exactly

K(t, x, y;−∂µ∂µ) = (4πt)−
2
n e−

(x−y)2

4t . (6.1.76)

Since all differentiable manifolds are locally flat, the behaviour at t = 0 of the trace of
K(t, x, y;−∂µ∂µ) is common to all covariant operators of the type (6.1.62) and one can
expand the heat kernel at coincident points y = x as

K(t, x, x,O) = K(t, x, x,−∂µ∂µ)[1 + tb2(x) + t2b4(x) + ...] . (6.1.77)

Here bi are all covariant local polynomials of the background metric, other background
fields and their derivatives. These coefficients have been computed for large classes of
operators and can be found in the literature [112, 114, 118–120].

In this local expansion, the one loop correction to the effective action is

Γ1−loop =
1

2
tr logO =

1

2

1

(4π)d/2

∫
ddx

√
g

∫ ∞

0
dt
[
t−

d
2
−1 + b2t

− d
2 + · · ·+ bdt

−1 + . . .
]
.

(6.1.78)
Contributions from bi with i > d are finite, while those with i ≤ d can be regularized by
means of any procedure: an hard cutoff t = 1/Λ in the t integral, dimensional regulariza-
tion, or the introduction of a infrared cutoff in the operator O as in the FRG. To each
of these regularization methods obviously corresponds different renormalization schemes
and beta functions, as discussed in Chapter 2.

The heat kernel of higher derivative operators

The same approach can be applied also to higher derivative operators, as explained in
[114]: the functional trace of the logarithm of an operator □̄2 + A can be approximated
by

tr log
(
□̄2 +A

)
≈ tr

[
2 log □̄+A

1

□̄2
− 1

2
A

1

□̄2
A

1

□̄2
+ · · ·

]
(6.1.79)

and, in the quite general case

O = □̄2I+ Vµν∇̄µ∇̄ν + Nµ∇̄µ + U , (6.1.80)

the logarithmic divergences, or equivalently the 1/ϵ poles in dimensional regularization,
are proportional to

1

2

1

(4π)2

∫
ddx

√
gb4 =

1

32π2

∫
d4x tr

[ I
90

(
R̄2
ρλστ − R̄2

ρλ +
5

2
R̄2

)
+

1

6
RρλRρλ

−
R̄ρλVρλ − 1

2R̄V
ρ
ρ

6
+

VρλVρλ + 1
2V

ρ
ρVλλ

24
− U

]
, (6.1.81)
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where boundary terms have been neglected and Rρλ is defined as the action of the commu-
tator [∇ρ,∇λ] on ϕ

A. From these divergences one can define the µ-running of the effective
action as explained in section (6.1.1). We would like to understand if the µ-beta functions
match with the physical running given by the part nonanalytical in momenta of the form
factors.

The operator (6.1.80) has the same structure of the one acting on the scalars in the
higher derivative sigma models discussed in [121], so also its analysis is quite similar. The
terms in the first line of (6.1.81) are the ones that we would get for O = □̄2. Using the
formula Tr log □̄2 = 2Tr log □̄, one can conclude that the µ-running generated by these
divergences has a counterpart in the physical running, since in second order operators the
two schemes are equivalent.

On the other hand consider trU. This contribution comes from the functional trace
TrU/□̄2 in the second term of the right hand side of (6.1.79). Clearly the most divergent
part of this expression, that is present even with the flat propagator, is a tadpole. If U
is quadratic in curvature, it will contribute to the µ beta functions of operators quadratic
in curvatures, however, as already observed with tadpoles in flat space, there is no way to
produce a nonlocal term like those in (6.1.59) from trU.

Thus, we cannot rely on the µ-running to deduce the high-energy behaviour of n-point
functions. The latter can only be obtained from the nonlocal finite part of the one-loop
corrections to the effective action, however the local expansion is blind with respect to
this nonlocal part, since the coefficients bi are all local. Some attempts have been made
in the literature to resum the local expansion in order to reproduce the nonlocal part of
the effective action [109, 122–126], however they apply only to second order operators of
the form (6.1.62). Hence, if we want to obtain all the contributions of the form (6.1.59) in
Γ1−loop for an higher derivative theory, we need a method different from the heat kernel.

An alternative approach

In flat space, we were able to compute the full nonanalytical part of scattering amplitude
thanks to integrals over momenta. However, in curved space, the eigenfunctions of the
free propagator do not have in general a simple representation in Fourier space. In order
to use Feynman diagrams with momentum integrals in non-flat space, we have to consider
all interactions between the fields and the background metric that induce the curvature of
the manifold as perturbations of the free theory in flat space. This idea corresponds to go
back to the first perturbative approaches to the problem of renormalization of gravity by
t’Hooft-Veltman [30] and Julve-Tonin [127], however, while they focused only on the UV
divergent parts, we will take in account the complete loop integral, like in Section 5.3. We
assume that the background metric is a small deformation of flat space ḡµν = δµν + fµν .
In this way, the Christoffel symbol can be written as a power series in fµν with the leading
order linear in the perturbation. The same holds for curvature tensors, so, in detail

Γ̄λµν =
1

2
δλρ(∂µfρν + ∂νfρµ − ∂ρfµν) +O(f2) (6.1.82)

R̄µνρσ =
1

2
(∂µ∂σfρν − ∂µ∂ρfσν − ∂ν∂σfρµ + ∂ν∂ρfσµ) +O(f2) , (6.1.83)

R̄µν =
1

2
(−∂ρ∂ρfµν + ∂µ∂ρf

ρ
ν + ∂ν∂ρf

ρ
µ − ∂ν∂µf

ρ
ρ) +O(f2) , (6.1.84)

R̄ = −∂µ∂µfρρ + ∂µ∂νf
µν +O(f2) . (6.1.85)

Expanding around flat space, the operator (6.1.80) takes the form

O = ⊡2 +Dµνρσ∂µ∂ν∂ρ∂σ + Cµνρ∂µ∂ν∂ρ + V µν∂µ∂ν +Nµ∂µ + U , (6.1.86)
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where ⊡2 stands for the free propagator in flat space and all operators D,C, V,N and U
are at least linear in fµν or other background fields. The functional trace of the logarithm
of the operator O that contributes to Γ1−loop is expanded as

tr log (O) ≈ tr log
(
⊡2
)
+ tr

[
(Dρλαβ∂

ρ∂λ∂α∂β + · · · ) 1

⊡2
−

1

2
(Dρλαβ∂

ρ∂λ∂α∂β + · · · ) 1

⊡2
(Dρλαβ∂

ρ∂λ∂α∂β + · · · ) 1

⊡2
+ · · ·

]
. (6.1.87)

In the background gauge the effective action is covariant at all loop orders and C̄µνρσC̄µνρσ
and R̄2 are the only covariant expressions that contain terms with 2 metric perturbations
and 4 momenta and are not total derivatives. So, the coefficients in (6.1.59) are unequiv-
ocally determined by the terms containing two fluctuations f and four momenta in the
Fourier transform of the expansion around flat space of Γ1−loop and they can be read from
the two-point function of the background fluctuation fµν . This correlation function is en-
tirely given by the first two terms in the expansion (6.1.87) represented graphically by the
diagrams in Figure 6.1, because terms with more vertices are at least cubic in background
fields.

p p
q + p

q
p p

q

Figure 6.1: Diagrams contributing to the two-point function: bubbles (left) and tadpoles
(right). The thin line represents the propagator of a quantum particle, the thick line is
the f propagator, with momentum p.

Contributions from bubbles are built up with the part of D, C, V , N and U linear
in the metric perturbation, while for the tadpole to contribute to the two-point function
one has to expand the vertices to second order in f . Being logarithmically divergent, the
tadpole contributes to the µ-running, but not to the p-dependence that we are interested
in. Thus, the bulk of the calculation of the physical beta functions consists of working
out the Feynman integrals for each of the 15 possible bubble diagrams that one can build
with the Fourier transforms of the interaction vertices D,C, V,N and U , which differ from
each other only by the numerator. The contribution from bubble diagrams to the one-loop
effective action can be schematically written as

UU+NN+V V +CC+DD+2(UV +UN+UC+UD+NV +NC+ND+V C+V D+CD).
(6.1.88)

Once we have computed them in the high energy limit, we have to reconstruct the covariant
form of the nonlocal effective action. The leading order in fµν of C̄µνρσC̄µνρσ is

C̄µνρσC̄µνρσ =
1

2
p4fµνf

µν − 1

6
p4fµµf

ν
ν − p2fµ

νfνρp
µpρ

+
1

3
p2fµνfρρp

µpν +
1

3
fµνfρσp

µpνpρpσ +O(f3) , (6.1.89)

where pµ is the external momentum of the background metric perturbation, while the
expansion of R̄2 gives

R̄2 = p4fµµf
ν
ν − 2p2fµνfρρp

µpν + fµνfρσp
µpνpρpσ +O(f3) . (6.1.90)
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We have just to replace these expressions with the covariant one to identify the contri-
butions to the form factors fλ and fξ respectively. In particular, the part proportional
to log p2 will produce the physical running. All the considerations concerning the higher
derivative bubble diagrams we did in Section 5.3 hold also in this case. In dimensional
regularization, the logµ terms always appear together with the 1/ϵ pole, so the µ-running
just traces the logarithmic divergences of the theory. in presence of a mass or a 2 derivative
kinetic term, we have checked that putting together all the bubble and tadpole diagrams
one reconstructs the covariant expression (6.1.81). If we just drop the tadpoles, the result-
ing function of f is not the linearization of a covariant expression. Thus, there are other
contributions responsible of the difference between the physical and the MS schemes,
namely the infrared logarithms from the bubbles. There are then two ways to find them.
One is removing all mass scales from the flat propagator ⊡ and continue to use dimensional
regularization to regulate also the IR divergences. In this case all the logs are again of the
form log p2/µ2, but in addition to the UV logs there are now also IR logs, that change the
beta function. Alternatively, one can keep the existing masses or introduce one by hand
as an IR regulator if ⊡2 = (∂µ∂

µ)2. The presence of the regulator mass leads to terms of
the form log p2/m2 and log µ2/m2, and we have to collect all the log p2 effects. Of course,
there are various way one can introduce a mass in the flat propagator, the most general
one being

1

p4
→ 1

p4 +m1p2 +m4
2

. (6.1.91)

In the outcome, the coefficients of the log(p2) contributions to the form factors are inde-
pendent of the particular choice of mi. We have checked that both procedures lead exactly
to the same result.

The IR divergences always appear with powers of the external momentum p in the
denominator (see Section 5.3) and therefore they apparently give rise to nonlocal covariant
terms containing 1/□ or 1/□2. However, as can be deduced from (6.1.82-6.1.85), many
of the interaction vertices involving only one background metric perturbation as external
fields contain derivatives. Thus, negative powers of the derivatives can be offset by an
equal number of powers of p in the numerator. Let us see how it happens in detail. In the
high-energy limit we can neglect all couplings with a positive mass dimension. Since all
terms in (6.1.86) have mass dimension 4, the vertices are schematically, at linear order in
f in Fourier space,

U ∼ p4f , N ∼ p3f , V ∼ p2f , C ∼ pf , D ∼ f . (6.1.92)

On the other hand, the generic bubble integral with 4-derivative propagators and two of
these vertices has mass dimension 4. In the two-point function there is only one background
momentum the result of the loop integral can depend on, so all operators generated by
off-shell infrared divergences with negative powers of momenta are actually of the type

p8f2

p4
= p4f2 . (6.1.93)

The simplification is always possible, since f2 has only 4 indices that can be nontrivially
contracted with momenta, leaving always at least 4 momenta in the numerator contracted
with each others. Notice that the right hand side is local and has the same structure of
the linearizations of C̄2 (6.1.89) and R̄2 (6.1.90).

Such a localization process, that happens spontaneously at order f2 in the one-loop
effective action, in the covariant form of the loop corrections is due to differential relations
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such as

∇̄µ∇̄νR̄
µνρσ∇̄α∇̄βR̄

αβ
ρσ = R̄µν□̄

2R̄µν − 1

4
R̄□̄2R̄+O(R̄3) , (6.1.94)

Which are a consequence of the Bianchi identities. The importance of similar identities in
the definition of running couplings in gravitational theories was already noticed in [128].
In this way also the logs of infrared origin can affect the running of local operators. It
is important to highlight that the IR logarithms found in this way are not in general by
themselves the linearization of a covariant expression, in the same way the UV logarithms
from bubbles, given by the total UV divergences (6.1.81) minus the tadpoles, were not
assured to be covariant. It is only when one adds the two together that they give rise to a
covariant expression as in (6.1.59). Both types of logs, UV and IR, are physical and both
are needed to maintain general covariance.

After this general discussion on running couplings in higher derivative theories in
curved space, we will consider some concrete examples and study their physical perturba-
tive RG flow.

6.2 Higher-derivative scalar field

In this section, we regard the metric as a nondynamical field, which could be seen simply
as the source of the energy-momentum tensor. For this reason, we will temporarily omit
the bar distinguishing between the dynamical metric g and the background one ḡ. The
most general quadratic action of a dimensionless scalar field coupled to the metric in four
dimensions is

Shds[ϕ] =
1

2

∫
d4x

√
gϕD4ϕ , (6.2.1)

D4ϕ = □2ϕ+∇µ

((
ξ1R

µν + ξ2g
µνR

)
∇νϕ

)
+ Eϕ ,

E = λ1C
2 + λ2RµνR

µν + λ3R
2 + λ4□R ,

where C2 = CµνρθC
µνρθ is the square of Weyl tensor. The differential operator D4 is

written in such a way that it is manifestly self-adjoint. In the limit λi = 0 the action
Shds[ϕ] is shift-invariant, i.e., invariant under ϕ→ ϕ+ c for constant c, which can be seen
easily integrating by parts the first two terms. Another relevant limit is λi = 0, ξ1 = 2 and
ξ2 = −2

3 , for which D4 becomes the Weyl covariant Paneitz operator and the action itself
becomes conformal invariant [129–131]. In the following, the action with this particular
choice of coefficients will be called Sc. In the conformal limit, the trace of the classical
variational energy-momentum tensor of Shds[ϕ] is zero when one goes on-shell with the
equations of motion of ϕ (i.e., D4ϕ = 0), in agreement with the Noether identities of Weyl
symmetry.

The vacuum effective action is obtained by integrating ϕ in the path integral. The
effective action depends only on the metric and at one loop it is

Γ = Shds +
1

2
tr log

δ2Shds
δϕ2

. (6.2.2)

Since ϕ appears quadratically in Shds[ϕ], the Hessian can be trivially read off from the
action (6.2.1) and has the structure (6.1.80) with

Vµν = ξ1R
µν + ξ2g

µνR , (6.2.3)

Nν = ∇µ (ξ1R
µν + ξ2g

µνR) , (6.2.4)

U = E . (6.2.5)
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The explicit computation of the form factors can be performed in two equivalent ways.
The first approach is the one discussed in the former section, in which the background
metric is expanded as gµν = δµν + fµν and the covariant expression of Γ is reconstructed
from its perturbative expansion at O(f2). We report in table B.1 the high-energy limit of
the part proportional to log(p2) in all the possible bubble diagrams in (6.1.88) for a scalar
field. The terms with powers of momentum in the numerator are the new potential large
logarithms produced by infrared effects.

A second approach follows a different strategy, used in Ref. [126] for a similar compu-
tation, and involves the comparison of the one-loop graviton-graviton two point function

Γ1−loop
(2) = −1

2

{
2 −

}
(6.2.6)

with the projection of the second variation of (6.1.57) using the decomposition in spin-
projectors in momentum space. Denoting the transverse spin-1 projectors as Pµν = δµν −
p−2 pµpν , we define the transverse-traceless (TT ) and scalar spin-2 projectors in d = 4 as

Hαβ
µν = Pα(µP

β
ν) −

1

3
PµνP

αβ , Sαβµν =
1

3
PµνP

αβ . (6.2.7)

The complete decomposition includes two more projectors that we do not need for this
presentation [31]. The second variation of (6.2.2) with respect to the metric in the flat
space limit and in momentum space is expressed using the projectors as

δ2Γ

δgµνδgαβ

∣∣∣∣
flat

= 2fλHµναβ + 12fξSµναβ + · · · , (6.2.8)

where the dots hide the other spin-projectors. It follows that Eq. (6.2.8) can be compared
with the explicit computation of Eq. (6.2.6) to extract the form factors fλ and fξ as
functions of p2. The comparison allows for the separate determination of the coefficients
of the dimensional poles bi as well as the ci that multiply the log(p2) terms in (6.1.59).

6.2.1 Beta functions

The renormalized couplings of Eq. (6.1.58) can be arranged to resum either the log(µ2) or
the log(p2) logarithms, but not both. As a consequence, we have the two different notions
of RG running, defined by relations (6.1.60) and (6.1.61). The difference between the two
runnings can only be due to the operators λi. This has two explanations: on the one
hand, the tadpole diagram is logarithmically divergent only if there are no derivatives of
the fluctuating field in the interaction vertex; on the other hand, infrared divergences in
the bubble integral occur only if in the numerator there are no powers of the momentum
carried by both propagators. These two conditions for the appearance of log(m2) terms
in the one-loop corrected effective action are equivalent to require U ̸= 0 in (6.1.86) and
consequently E ̸= 0 in the action (6.2.1), because the covariant derivative of a scalar is
equal to its partial derivative, hence the expansion near flat space is trivial and cannot
produce any endomorphism term. The operators related to λ1, λ2 and λ3 are quadratic
in curvatures, so they can contribute at quadratic order in the metric fluctuation only to
the µ-running via a tadpole diagram. In contrast, □R is linear in curvature, so it can
contribute via bubbles to the physical running, but, if inserted in a tadpole, it will give a
total derivative. Then, E = 0 means that the fluctuating field has no effective mass and
in this case no discrepancy in the two definitions of running coupling is expected.
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The explicit computation is consistent with the above expectations. It reveals for the
µ-running

(4π)2βs,µλ = −λ2
[
1

30
+
ξ1
24

(ξ1 − 4)− 2λ1 − λ2

]
,

(4π)2βs,µξ = −ξ2
[
1

18
+
ξ1
18

+
5ξ21
72

+
ξ2
3

+
ξ1ξ2
3

+ ξ22 −
2λ2
3

− 2λ3

]
,

(6.2.9)

which agrees with Ref. [114], and for the physical running

(4π)2βsλ = −λ2
[
1

30
+
ξ1
24

(ξ1 − 4)

]
, (6.2.10)

(4π)2βsξ = −ξ2
[
1

18
+
ξ1
18

+
5ξ21
72

+
ξ2
3

+
ξ1ξ2
2

+ ξ22 − 2λ24

]
.

A consistency check shows that the difference between the two runnings is always equal
to the logarithmic derivative with respect to the regulating mass m2, in agreement with
the expression given in Eq. (6.1.46).

6.2.2 Conformal limit and the trace-anomaly

The variational energy-momentum tensor of the conformal action Sc is defined as Tµν =
− 2√

g
δSc
δgµν

. Using the equation of motion D4ϕ = 0 of the scalar, it is easy to show that

diffeomorphisms invariance implies that it is conserved, ∇µT
µν = 0. In the conformal

limit, λi = 0, ξ1 = 2 and ξ2 = −2
3 , the variational energy-momentum tensor of Sc is also

traceless, T = Tµµ = 0. Quantum mechanically we have that the path integral induces an
anomaly which in d = 4 has the general form

⟨T ⟩ = 1

(4π)2

{
bC2 + aE

}
, (6.2.11)

as dictated by the Wess-Zumino integrability condition [132, 133]. This implies, for exam-
ple, that there is no independent R2 term, besides the one in E. In the above formula, we
have discarded a “trivial” □R anomaly, which can be eliminated by including R2 in Shds
when the metric is not dynamical and there are no self-interactions of the field ϕ.

Using the Callan-Symanzik equation of Γ and the fact that ⟨Tµν⟩ = − 2√
g
δΓ
δgµν

for

either RG scale, a general argument relates the coefficients of the anomaly with the beta
functions of the couplings [132]. We expect that, in the conformal limit,

⟨T ⟩ = 1

2
β 1

λ
C2 + β 1

ξ
R2 +

a

(4π)2
E , (6.2.12)

where β 1
λ
and β 1

ξ
are equal respectively to − 1

λ2
βλ and − 1

ξ2
βξ and the coefficient a is not

determined by our computation, given that we are working with two-point functions in
asymptotically flat spacetime.

The expressions (6.2.11) and (6.2.12) for ⟨T ⟩ should be compatible in the overlapping
regimes of validity. Taking into account the fact that we compute the RG on asymptotically
flat spacetimes, that is, E = 0, we have that compatibility requires that β 1

ξ
= 0 in the

conformal limit. Fortunately, this is verified by both the µ-running and the physical beta
functions given above in Eqs. (6.2.9) and (6.2.10), respectively.

Furthermore, the trace anomaly is an observable, in the sense that we can construct
identities among renormalized n-point functions that are constrained by the form of ⟨T ⟩.
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Since the anomaly is an observable, it may be tempting to ask whether the observable
coefficients should be determined by the µ-running or by the physical beta functions,
given that the Callan-Symanzik equation can be formulated with either.

The answer is actually simpler: in the conformal limit, the µ-running and the physical
running do coincide, in agreement with the expectation that the conformal limit should
be completely scaleless. In fact,

(4π)2βs,conf1
λ

= − 2

15
, (4π)2βs,conf1

ξ

= 0 . (6.2.13)

Combining everything together we have that the conformal higher derivative scalar has
the anomaly

⟨T ⟩ = 1

(4π)2

{
− 1

15
C2 + aE

}
, (6.2.14)

where the so-called b-anomaly coefficient of C2 agrees with the literature [134, 135], while
the a-anomaly coefficient is not determined by our procedure.3 In order to compute a from
physical correlators, it would be necessary to use either 3- or 4-point functions, depending
on the approach [132, 136]. However, we know already that a = 7

90 from standard covariant
methods using the heat-kernel expansion [134].

One final observation is that the µ- and physical runnings given in Eqs. (6.2.9) and
(6.2.10) do coincide in the more general limit λi = 0 in which the higher derivative ac-
tion (6.2.1) is shift-invariant [81]. Notice that the action requires an integration by parts
in order to be manifestly shift-invariant (i.e., to depend only on ∂ϕ). These models ad-
mit shift-invariant interactions and, while naively nonunitary, they have received renewed
attention in attempts to generalize the notion of unitarity [43, 84]. Furthermore, shift-
symmetry plays a role in the construction of a natural virial current which is a signature
of a theory that is scale-but-not-conformal invariant [137], which could explain why the
running coincide.

6.3 Quadratic gravity

Quadratic gravity is an extension of Einstein’s theory whose action contains terms quadratic
in curvature [12, 31, 34, 100, 138–141]. To discuss its general properties, we will momentar-
ily go to Lorentzian signature, however we will return to a Riemaniann manifold later on to
study its renormalization. In signature (−,+,+,+), the most general local gravitational
action containing up to mass dimension 4 operators reads

Sqg =

∫
d4x
√

|g|
[
m2
P

2
(R− 2Λ)− αR2 − βRµνR

µν − γRµνρσR
µνρσ − τ□R

]
, (6.3.1)

where mP = 1/
√
8πGN is the reduced Planck mass and Λ is the cosmological constant.

Notice that the last term is a total derivative, so we will ignore it from now on. This is
not the unique way it can be written. thanks to the identity

CµνρσC
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2 (6.3.2)

3In fact, in the flat space limit and for nondynamical metric Eq. (6.2.6) is precisely renormalizing∫
d4x⟨Tµν(x)Tαβ(0)⟩eip·x, where Tµν is seen as the composite operator sourced by gµν . The coefficients of

the anomaly can be related to it in both broken and unbroken phases of conformal symmetry [136].
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and the definition of the Euler density (6.1.54), it can be recast in the alternative basis

Sqg =

∫
d4x
√

|g|
[
m2
P

2
(R− 2Λ)− 1

2λ
C2 − 1

ξ
R2 +

1

ρ
E − τ□R

]
. (6.3.3)

The couplings in the two basis are related via the transformations

λ =
1

β + 4λ
, ρ =

2

β + 2γ
, ξ =

3

3α+ β + γ
(6.3.4)

and their inverses

α = −1

ρ
+

1

ξ
+

1

6λ
, β =

4

ρ
− 1

λ
, γ = −1

ρ
+

1

2λ
. (6.3.5)

We will call (6.3.1) the Riemann frame and (6.3.3) the Weyl frame. Since E is locally a
total derivative, we observe that only two couplings actually affect the equations of motion.

The Euler-Lagrange equations are

m2
P

2

(
Rµν −

1

2
gµνR+ gµνΛ

)
− αE(1)

µν − βE(2)
µν − γE(3)

µν = 0 , (6.3.6)

where

E(1)
µν = 2RRµν − 2∇µ∇νR+ gµν

(
2□R− 1

2
R2

)
, (6.3.7)

E(2)
µν = 2RµλR

λ
ν − 2∇λ∇(µRν)λ +□Rµν +

1

2
gµν (□R−RρσRρσ) , (6.3.8)

E(3)
µν = 2RµρλσRν

ρλσ + 4∇(ρ∇λ)Rµ
ρ
ν
λ − 1

2
gµνRλτρσR

λτρσ . (6.3.9)

Taking Λ = 0 and considering a perturbation with respect to a flat background gµν =
ηµν + hµν , they reduce to[

Hµναβ

(
m2
P

8
−
(
β

4
+ γ

)
□

)
□+ Sµναβ

(
−
m2
P

4
+ (3α+ β + γ)□

)
□

]
hαβ = 0 ,

(6.3.10)
where the spin projectors (6.2.7) are now written in the coordinate space in terms of partial
derivatives. As expected, it actually depends on only two combinations of the couplings
α, β and γ and, if we use the Weyl basis, we get[

Hµναβ

(
m2
P

8
− 1

4λ
□

)
□− Sµναβ

(
m2
P

4
+

3

ξ
□

)
□

]
hαβ = 0 . (6.3.11)

The higher derivative nature of the theory is now manifest and we see that the dynamical
degrees of freedom of the theory are given by a spin two part, whose higher derivative
kinetic term is given by C2, and a spin zero part, whose dynamics is generated by the R2

term. To write a propagator for the gravitational perturbation we have to fix a gauge,
since the vector and the second scalar modes are pure gauge and are in the kernel of the
Hessian of the action. Anyway, we can write the propagators for the physical sectors. For
the spin-2 we have

−i4λ
p4 + 1

2p
2m2

pλ
=

−i8
m2
p

(
1

p2
− 1

p2 + 1
2λm

2
p

)
, (6.3.12)
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where we see the massless graviton of general relativity plus a spin-2 ghost with mass 1
2λm

2
p

that becomes a tachyon if λ < 0. In the scalar sector identified by the Sµνρσ projector,
the propagator is

ξ

3

i

p4 − 1
12p

2m2
pξ

=
−i4
m2
p

(
− 1

p2
+

1

p2 − 1
12ξm

2
p

)
. (6.3.13)

In this case we have a massless ghost, which can be gauged away as in GR, hence does not
actually propagate [12], and a massive scalar with mass − 1

12ξm
2
p. The latter is a tachyon

if ξ > 0.
The theory is power counting renormalizable, unlike general relativity, and this can be

schematically shown in the perturbative regime around flat spacetime. Since the theory
is nonlinear, in GR we have schematically

SHE ∼
m2
P

4

∫
d4x

[
−1

2
(∂h)2 + h(∂h)2 + h2(∂h)2 + . . .

]
, (6.3.14)

were fluctuations hµν and partial derivatives can be variously contracted. To have a
canonically normalized kinetic term, we redefine the field as h → h′ = mph/2 and we
obtain

SHE ∼
∫
d4x

[
−1

2
(∂h′)2 +

2

mp
h′(∂h′)2 +

4

m2
p

h′2(∂h′)2 + . . .

]
. (6.3.15)

all the interaction terms with more that two gravitons acquire a coupling constant with
negative mass dimension, hence they produce a power counting nonrenormalizabe theory.
In quadratic gravity, the dominant terms in the UV are

Sqg ∼ 1

2λ

∫
d4x

[
−1

2
(□h)2 + h(□h)2 + h2(□h)2 + . . .

]
+
1

ξ

∫
d4x

[
−1

2
(□h)2 + h(□h)2 + h2(□h)2 + . . .

]
. (6.3.16)

The canonically normalized field is now only divided by
√
λ or

√
ξ, which are dimension-

less parameters, so the metric perturbations remain dimensionless. After the rescaling,
all interaction vertices are multiplied by half-integer powers of the couplings ξ and λ,
so when they go to zero we have a free theory. Moreover, all vertices generated by op-
erators quadratic in curvatures have mass dimension 4, hence they are marginal in this
parametrization, while those generated by the Einstein-Hilbert action are relevant, because
of the factor m2

p in front. Thus, the theory is power counting renormalizable, that means
only operators with mass dimension ≤ 4 are generated at all orders in loop expansion.

In the background gauge, all loop corrections are covariant. That implies the theory is
multiplicatively renormalizable, because divergent terms can only assume the form of the
operators already included in the classical action (6.3.3). Multiplicative renormalizability
in arbitrary gauge can be shown tanks to Slavonov-Taylor identities (the Ward-Takahashi
identities produced by the global BRST symmetry common to all gauge theories) as ex-
plained in [31, 100, 142].

6.3.1 Physical running of couplings in quadratic gravity

To calculate the RG flow of the theory we move to Euclidean space. The Euclidean
action is equal to the one written in (6.3.1) and (6.3.3), up to a global minus sign. The
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first attempt to compute beta functions for this theory was made by Julve and Tonin in
[127], but that work missed the contribution of the Nakanishi-Lautrup ghosts. This was
corrected in [143] and then, with some further corrections, in [144].

Calculations of the beta functions so far have been based on the background field
method, expanding gµν = ḡµν + hµν around a general background ḡ.

The effective action of quadratic gravity is hence obtained by integrating out hµν in
the path integral. At one loop it is given by

Γ1 = Sqg[ḡ] +
1

2
tr logSqg+gf (2)|ḡ − tr log∆gh −

1

2
tr log Y , (6.3.17)

in accordance with (6.1.35). The second variation of the Einstein Hilbert action gives [12]

m2
P

4

∫
d4x

√
ḡhµν

[
− 1

2
ḡµαḡνβ□̄+ ḡνβ∇̄µ∇̄α − ḡµν∇̄α∇̄β +

1

2
ḡµν ḡαβ□̄+ ḡµνR̄αβ

−ḡµαR̄νβ − R̄µανβ +
2Λ− R̄

2

(
1

2
ḡµν ḡαβ − ḡµαḡνβ

)]
hαβ , (6.3.18)

while the second variation of terms quadratic in curvature in the Riemann basis gives [145,
146]

α

∫
d4x

√
ḡhµν

[
∇̄µ∇̄ν∇̄α∇̄β − 2ḡµν□̄∇̄α∇̄β + ḡµν ḡαβ□̄

2 − ḡνβR̄∇̄µ∇̄α

−2R̄µν∇̄α∇̄β + ḡµνR̄∇̄α∇̄β + 2ḡµνR̄αβ□̄+
1

2
(ḡµαḡνβ − ḡµν ḡαβ)R̄□̄

−ḡµνR̄R̄αβ −
1

4
JµναβR̄

2 + ḡνβR̄R̄µα + R̄µνR̄αβ + R̄R̄µανβ

+2ḡµν□̄R̄αβ + 2ḡµν∇̄α∇̄βR̄− ḡνβ∇̄µ∇̄αR̄+
1

4
(3ḡµαḡνβ + ḡµν ḡαβ) □̄R̄

+ḡνβ∇̄µR̄∇̄α + 4ḡµν∇̄ρR̄αβ∇̄ρ + 2ḡµν∇̄αR̄∇̄β

]
hαβ, (6.3.19)

from the Riemann scalar square,

β

∫
d4x

√
ḡhµν

[1
2
∇̄µ∇̄ν∇̄α∇̄β −

1

2
ḡµν□̄∇̄α∇̄β −

1

2
ḡνβ∇̄µ□̄∇̄α +

1

4
(ḡµαḡνβ + ḡµν ḡαβ)□̄

2

+
1

2
R̄µα∇̄ν∇̄β − 2ḡνβR̄

ρ
µ∇̄ρ∇̄α + ḡµνR̄

ρ
α∇̄ρ∇̄β + R̄µανβ□̄+

1

2
JµναβR̄

ρλ∇̄ρ∇̄λ

+
1

2
ḡνβR̄µρR̄

ρ
α +

1

2
R̄µαR̄νβ + R̄ρµR̄ρανβ − ḡµνR̄

ρσR̄ρασβ + R̄ρµσνR̄
ρ
α
σ
β −

1

4
JµναβR̄ρλR̄

ρλ

+
1

2
ḡµν□̄R̄αβ +

1

2
ḡµν∇̄α∇̄βR̄+

1

8
Jµναβ□̄R̄+ 2ḡνβ∇̄µR̄αρ∇̄ρ − ḡνβ∇̄ρR̄µα∇̄ρ

+∇̄αR̄µν∇̄β −
1

2
∇̄µR̄νβ∇̄α + (∇̄αR̄µβ − ∇̄µR̄αβ)∇̄ν +

1

2
ḡµν∇̄αR̄∇̄β + ḡµν∇̄ρR̄αβ∇̄ρ

]
hαβ.

(6.3.20)
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from the Ricci square and

γ

∫
d4x

√
ḡhµν

[
∇̄µ∇̄ν∇̄α∇̄β − 2ḡνβ∇̄µ□̄∇̄α + ḡµαḡνβ□̄

2 + 3R̄µανβ□̄− 2ḡνβR̄µα□̄

−2ḡµνR̄αρβσ∇̄ρ∇̄σ + 2ḡνβR̄µρασ∇̄ρ∇̄σ + 4R̄αµρν∇̄ρ∇̄β + 4R̄µα∇̄ν∇̄β − 4ḡνβR̄µρ∇̄ρ∇̄α

+ḡµαḡνβR̄ρσ∇̄ρ∇̄σ − ḡµνR̄αλρσR̄β
λρσ + 2R̄µαR̄νβ − 2ḡνβR̄µρR̄

ρ
α + 2ḡνβR̄µλρσR̄α

λρσ

−1

4
JµναβR̄ρσλτ R̄

ρσλτ + 5R̄µρασR̄ν
ρ
β
σ − 4R̄µαρσR̄νβ

ρσ − 3R̄µρνσR̄α
ρ
β
σ + 3R̄µρR̄να

ρ
β

+8(∇̄αR̄µν − ∇̄µR̄αν)∇̄β + 8∇̄α(∇̄βR̄µν − ∇̄µR̄βν) + 3∇̄ρR̄µανβ∇̄ρ + 2∇̄αR̄βµρν∇̄ρ

+2ḡνβ∇̄µR̄αρ∇̄ρ − 4ḡνβ∇̄ρR̄αµ∇̄ρ +
1

2
ḡµαḡνβ∇̄ρR̄∇ρ

]
hαβ. (6.3.21)

from the Riemann tensor square, where the tensor J is defined by

Jµναβ = δµν,αβ −
1

2
ḡµν ḡαβ , (6.3.22)

with

δµν,αβ =
1

2
(ḡµαḡνβ + ḡµβ ḡνα) ≡ I (6.3.23)

being the identity in the space of symmetric tensors.
We choose the background gauge

χµ = ∇̄λhλµ + b∇̄µh , (6.3.24)

where h = hµµ, and enforce it by adding to the action the gauge fixing term and the action
of the Faddeev-Popov ghost Cµ

Sgf+FP = − 1

2a

∫
d4x

√
ḡ
{
χµY

µνχν

+iC̄µY
µν [ḡνρ□̄+ (2b+ 1)∇̄ν∇̄ρ + R̄νρ]C

ρ
}
. (6.3.25)

With this choice,

∆gh = −δµν □̄− (2b+ 1)∇̄µ∇̄ν − R̄µν . (6.3.26)

In higher derivative theories it is more convenient to use a higher derivative gauge-fixing
condition, so we take

Yµν = −ḡµν□̄− c∇̄µ∇̄ν + d∇̄ν∇̄µ . (6.3.27)

The fourth order part of the kinetic term of the graviton can be reduced to the minimal
form □̄2 by a smart choice of gauge fixing parameters [145]

a =
1

β + 4γ
, b = − 4α+ β

4(γ − α)
, c =

2(γ − α)

β + 4γ
, d = 1 . (6.3.28)

leading to an order h2 expansion of the action

Sqg+gf (2)h
2 =

∫
d4x
√

|ḡ|hαβHαβ,γδhγδ (6.3.29)

such that the propagation of gravitons has the form (suppressing the indices),

H = □̄2K+ Jµν∇̄µ∇̄ν + Lµ∇̄µ +W (6.3.30)
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and K, J, L, W are matrices in the space of symmetric tensors, depending on R̄ and its
covariant derivatives. In particular

K =
1

4λ
Ptl +

9

4(3ξ − 2λ)
Ptr (6.3.31)

where Pαβ,γδtr = 1
4 ḡ
αβ ḡγδ is the projector on the trace part and Ptl = I− Ptr the projector

on the traceless part. In flat space, K can be viewed as a tensorial wave function renor-
malization constant that gives different weights to the spin-2 and spin-0 components of h.
As usual, it is convenient to canonically normalize the fields by redefining h →

√
K−1h,

so that the action can be rewritten as

Sqg+gf (2)h
2 =

∫
d4x
√

|ḡ|hαβOαβ,γδhγδ , (6.3.32)

with structure (6.1.80) and V =
√
K−1J

√
K−1 etc. Now V contains terms proportional to

R̄ and m2
P , N contains terms proportional to ∇̄R̄, whereas U contains terms proportional

to R̄2, ∇̄2R̄, m2
P R̄ and m2

PΛ.

Using the formula (6.1.81) with

RρλRρλ = −6R̄µνρσR̄
µνρσ (6.3.33)

for a spin 2 field in 4 dimensions, and adding to it the ghosts’ contributions

tr log Y [ḡ]div =
1

(4π)2

∫
d4x

√
ḡ
[
− 1

15
R̄µνρλR̄

µνρλ +
29

60
R̄µνR̄

µν − 1

8
R̄2
]
, (6.3.34)

tr log∆gh[ḡ]div =
1

(4π)2

∫
d4x

√
ḡ
[
− 1

15
R̄µνρλR̄

µνρλ +
67 + 44b− 8b2

34560(b+ 1)2
R̄2
µν

+
41 + 86b+ 100b2 + 40b3

144(b+ 1)2(2b+ 1)
R̄2
]
, (6.3.35)

the final result gives the following beta functions

(4π)2βλ = −133

10
λ2 , (6.3.36)

(4π)2βξ = −5(72λ2 − 36λξ + ξ2)

36
, (6.3.37)

These expressions have been confirmed in several calculations using different techniques
[147–151].

The flow lines around the free fixed point λ = ξ = 0 are shown in Figure 6.2. The flow
of λ is independent of ξ and the fixed point λ = 0 is attractive for λ > 0 and repulsive
for λ < 0. Hence, asymptotic freedom is possible only in the sector of the theory without
spin 2 tachyons. The flow for ξ is more complicated: there are three separatrices, along
which the motion is purely radial. Getting close to the line λ = 0 from positive λ, the
point ξ = 0 is UV attractive for ξ > 0 and UV repulsive for ξ < 0; the line s1 is defined by

ξ ≈ 131λ (6.3.38)

and is attractive for λ > 0 and repulsive for λ < 0. The line s2 is defined by

ξ ≈ 0.548λ (6.3.39)
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Figure 6.2: Flowlines of the beta functions (6.3.46,6.3.47). The red dashed line corre-
sponds to (6.3.38) and the green line to (6.3.39). Initial points in the shaded area are
asymptotically free. In the two left quadrants the massive spin 2 state is a tachyon, in the
two upper quadrants the massive spin 0 state is a tachyon.

and is repulsive for λ > 0 and attractive for λ < 0. Thus the region that is attracted
towards the free fixed point is totally included in the upper right quadrant. Recall that
absence of tachyons requires λ > 0 and ξ < 0, so, With these beta functions, full asymp-
totic freedom can only be obtained for the case of a tachyonic coupling ξ > 0.

The beta functions (6.3.36,6.3.37) give the dependence of the renormalized λ and ξ on
the renormalization scale µ. We called this the µ-running. However, what one is really
interested in is the dependence of the running couplings on external momenta, that we
called physical running. We observe that with our choice of gauge, both the Faddeev-Popov
ghost operator and the third ghost operator are of second order in derivatives, hence none
of these can produce a discrepancy between the two runnings. So, their contribution can
be taken from traditional heat kernel calculations. On the other hand, O is a fourth order
differential operator and U ̸= 0 (the parts of O relevant for the µ-running can be found
in [145, 147]), this is enough to conclude that the standard beta functions (6.3.36) and
(6.3.37) may be different from the physical ones.

To find the physical running we follow the procedure described in the last part of
Section 6.1.2. O expands to

O = ⊡2I+Dµνρσ∂µ∂ν∂ρ∂σ + Cµνρ∂µ∂ν∂ρ + Vµν∂µ∂ν +N µ∂µ + U (6.3.40)

and the contribution from bubble diagrams to the one-loop effective action reads

UU +NN +VV+CC+DD+2(UV+UN +UC+UD+NV+NC+ND+VC+VD+CD),
(6.3.41)

Now each vertex A in (6.3.40) has 4 indices to be contracted with quantum metric fluctua-
tions. We introduce a generalized index notation for symmetric rank-2 tensors, hA := hµν
and I = δAB. With this notation, the operator O and all its terms look like e.g. VµνAB.
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As a check for the procedure, taking as O the operator □2 expanded at first order in
f with respect to the perturbed metric ḡµν = δµν + fµν , one finds

− 11

48π2
R̄µνR̄µν +

7

96π2
R̄2 . (6.3.42)

Since tr log(□2) = 2tr log□, we would expect the result to be equal to

2
1

16π2
b4(□) = −R

µνRµν
144π2

− RµνρσRµνρσ
18π2

+
5R2

288π2
(6.3.43)

(where b4 is the heat kernel coefficient). This expression is indeed equal to (6.3.42) if one
takes RµνρσRµνρσ = 4RµνRµν −R2, which is true, up to a total derivative term.

The actual calculation can be simplified by neglecting the terms proportional to mP , if
we are interested only in leading terms in the p2 ≫ m2

p expansion. This is justified in the
UV limit, as seen explicitly in the case of the simple shift-invariant scalar model in Section
5.1. Such a simplification allows us to choose between regulating the massless theory with
dimensional regularization both in the UV and in the IR, or introducing an artificial mass
via a simpler two derivative kinetic term hµνm2∂µ∂µhµν , which gives the same mass to each
component of the metric fluctuation and avoids the complex tensorial structure of (6.3.18).
They correspond respectively to taking ⊡2 = (∂µ∂µ)

2 or ⊡2 = (∂µ∂µ)
2 −m2∂µ∂µ and in

both cases the calculation of the relevant Feynman integrals becomes straightforward.
The terms proportional to log p2 from each of the possible bubble diagrams are reported
in Table B.2.

How different schemes get contributions from different types of vertices can be seen
easily by considering the vertex U. As in the scalar higher derivative model, it enters the
heat kernel calculation linearly, see (6.1.81), corresponding to a tadpole. It is only the
part of U quadratic in curvature that contributes to the beta functions (6.3.36), (6.3.37)
describing µ running, since a term ∇̄∇̄R̄ contributes with a total derivative to the one-
loop effective action. By contrast, in our calculation we need two powers of U to build a
bubble diagram and hence only the part proportional to ∇̄∇̄R̄ contributes at order f2.
These U-U bubbles are UV finite but contain log p2/m2 contributions coming from the IR
region. These come with a factor p4 in the denominator, from the propagators, but also
p4 in the numerator from the vertices, thanks to derivatives acting on curvatures. It is
always possible to make these powers of momenta cancel each other up to nonlocal term at
least cubic in curvature thanks to Bianchi identities and relations like (6.1.94) descending
from them. Thus they also contribute to the coefficients ci in (6.1.59).

Something similar happens with the operator Nµ: from dimensional analysis we know
that the only divergence it can produce in the µ running is ∇µNµ, that is a total derivative,
so it is usually neglected. On the other hand, in the physical running, Nµ represents
an important component of N µ and from Table (B.2) we see that there is a new large
logarithm that potentially arises from the bubble NU . Even in this case, the p4 factor in
the denominator is canceled by an equal factor in the numerator.

The part proportional to log(p2) and quadratic in fµν of the trace of logO can be

116



covariantized in the expression

−
[
−6α3 + α2(4β + 34γ) + α

(
17β2 + 182βγ + 438γ2

)
+6β3 + 73β2γ + 246βγ2 + 206γ3

] R̄µνR̄
µν

48π2(3α+ β + γ)(β + 4γ)2

−
[
2496α3 + 52α2(49β + 52γ) + α

(
877β2 + 1812βγ + 704γ2

)
+99β3 + 275β2γ + 104βγ2 − 144γ3

] R̄2

384π2(3α+ β + γ)(β + 4γ)2

+
3(7β + 32γ)R̄µνρσR̄

µνρσ

128π2(β + 4γ)
(6.3.44)

Putting it together with the ghosts’ contributions, our final result is

Γ1 ⊃ 1617λ− 20ξ

5760π2λ
C̄µνρσ log(□̄)C̄µνρσ − 2520λ2 + 36λξ − λξ2

1152π2λξ2
R̄ log(□̄)R̄ , (6.3.45)

that leads to the beta functions in the Weyl basis

(4π)2βλ = −(1617λ− 20ξ)λ

90
, (6.3.46)

(4π)2βξ = −ξ
2 − 36λξ − 2520λ2

36
, (6.3.47)

The flowlines around the free fixed point λ = ξ = 0 are shown in Figure 6.3.

Figure 6.3: Flowlines of the beta functions (6.3.46) and (6.3.47). The red dashed line
corresponds to (6.3.48) and the green line to (6.3.49). Initial points in the shaded area
are asymptotically free. In the two left quadrants the massive spin 2 state is a tachyon,
in the two upper quadrants the massive spin 0 state is a tachyon.

Now both beta functions depend on both couplings. There are again three separatrices,
along which the motion is purely radial. The line λ = 0 is now UV repulsive for ξ > 0 and
UV attractive for ξ < 0; the line s1 is defined by

ξ =
569 +

√
386761

15
λ ≈ 79.4λ (6.3.48)
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and is attractive for λ > 0 and repulsive for λ < 0, while the line s2 is defined by

ξ =
569−

√
386761

15
λ ≈ −3.53λ (6.3.49)

and has moved to the second-fourth quadrants. It is repulsive for λ > 0 and attractive for
λ < 0. Thus, the region that is attracted towards the free fixed point is the upper right
quadrant, plus a triangular slice of the lower right quadrant that lies above the separatrix
s2.

There is a unique trajectory that is asymptotically free and lies entirely in the tachyon-
free area: it is the separatrix s2. This behavior is to be contrasted with the flow given by
µ running in Eqns. (6.3.36) and (6.3.37), for which the analog of the separatrix s2 (6.3.39)
delimits the asymptotically free trajectory region, but with a positive slope, with the
result that the asymptotic free sector lies entirely in the tachyonic region. Conversely, the
physical running couplings allow asymptotic freedom without tachyons. Moreover, there
may be an additional possibility. One can have asymptotically free trajectories where the
coupling ξ changes sign, as long as it is negative at the momenta where the pole in the
propagator occurs, thus avoiding a tachyonic state. One can see these trajectories that
lie above s2 and thus have ξ > 0 in the far UV but eventually cross into ξ < 0 when one
goes towards the IR. For these, it could be sufficient to demand that ξ < 0 at momenta
corresponding to the poles of the propagators.

Up to now, we did not discuss about the gauge dependence of beta functions in
quadratic gravity. It is well known [142, 152] that the µ-beta functions of λ, ξ, ρ and
τ are gauge independent, however the same is not true for the dimensionful couplings mp

and Λ. In fact, there exists a particular gauge where the Newton constant does not run
at all. The gauge dependence of the physical running has not yet been studied. We hope
to address this problem in a future work.

Another aspect that should be stressed, is that the computation method adopted here
needs an asymptotically flat background to be consistent. That means the result could
be different in presence of a cosmological constant. On the other hand, we observed that
the general structure of momentum logarithms generated in the infrared is not affected by
the particular choice of the infrared regulator. Hence, this result could be unaffected by
Λ ̸= 0.

6.4 Higher-derivative conformal gravity

In this Section, we study the physical beta functions of conformal gravity. In this theory,
the graviton is the only field taken into account and the action reads

Scg[gµν ] =

∫
d4x
√

|g|
{
− 1

2λ
C2 +

1

ρ
E
}

(6.4.1)

in (−,+,+,+) signature, which is the most general gravitational action invariant under
Weyl transformations. In the Riemann basis, it is equivalent to take 3α + β + γ = 0.
Unlike quadratic gravity, only the transverse-traceless (TT ) part of the metric fluctuations
propagates here, because there is no R2 to give a dynamics to hµµ.

To define a quantum effective action, we follow the same procedure outlined for
quadratic gravity in the last section. The only difference is that the gauge arbitrari-
ness due to Weyl invariance can be explicitly fixed by projecting the quantum fluctuation
on its traceless part. Then, we have to treat the gauge freedom coming from diffeomor-
phisms invariance. A convenient set of gauge parameters that reduce the kinetic part of
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the graviton fluctuation to the minimal form is

a = λ , b = −1

4
, c = −2 , d = 1 . (6.4.2)

The µ-running of conformal gravity was originally calculated in Refs. [153], and it
results in

(4π)2βcg,λ
µ = −199

15
λ2 , (4π)2βcg,ρ

µ =
137

60
ρ2 . (6.4.3)

With the gauge (6.4.2), the beta function of ξ is equal to zero, since that choice falls into
the class of conformal background gauges [143, 154]. However, this is not true in general:
a gauge fixing that does not preserve the conformal invariance of the theory will introduce
divergences proportional to R̄2 at one-loop. Due to non-zero beta functions, we expect the
conformal symmetry to be broken and the theory to be multiplicatively nonrenormalizable
at higher loops [155]. Anyway, this model can still be regarded as a good approximation
of a hypothetical high-energy regime [154].

Moving to the physical running, since the structure of the gauge fixing and Faddeev-
Popov ghost terms is the same as in quadratic gravity, also in this case the operators
∆gh and Y are second order, hence their effect on the physical running coincides with the
µ-running. On the other hand, in this gauge Scg+gf (2)|ḡ has the structure (6.1.80) with I
replaced by Ptl. It is a higher derivative operator, so we expect a difference between its
contribution to the two runnings. We calculate the one-loop corrections to the two-point
functions of the background metric perturbation fµν and match them with the second
order perturbation of C2 around flat spacetime to reconstruct the covariant structure of
the one-loop effective action. The physical beta function for λ turns out to be

(4π)2βcgλ = −93

5
λ2 . (6.4.4)

One can immediately see that in this case, despite the conformal symmetry, the two
runnings are different, but their qualitative behavior is preserved. In particular, we have
asymptotic freedom for λ > 0, which depends only on the sign of the beta function.

6.4.1 Further properties of the physical running

It was observed for the first time in Ref. [153] that the difference in the µ-running of λ
between quadratic gravity and conformal gravity is equal to the contribution of two free
scalar field or, equivalently, of one higher derivative free scalar. This discrepancy is due to
the conformal mode of the graviton, which is not dynamical in conformal gravity [156]. The
difference may be seen also as coming from a partial gauge fixing of Weyl invariance [157,
Sect. V]. Comparing the result (6.4.4) with the physical running of quadratic gravity given
by equations (6.3.46) and (6.3.47), one immediately sees that the difference is no longer
equal to the contribution of two free scalar fields. In fact, βλ receives more contributions
from infrared large logarithms. For example, the mixed diagram containing one traceless
and one scalar fluctuation generates corrections to the term C̄2 independent of ξ in the
beta function, schematically

∆β 1
λ

∣∣∣
ξ=0

log(p2/m2) ⊂

hTT
µν

hµµ

, (6.4.5)
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which explains why the difference is actually expected.
Moving on to another point, recall that the trace-anomaly as considered in Sect. 6.2.2

is well-defined only for a nondynamical metric which acts as a source to the energy-
momentum tensor, in which case the anomaly has to satisfy appropriate integrability
conditions [132]. In the case of a dynamical metric for the conformal invariant theory, there
is no natural notion of energy-momentum tensor, unless one considers a pseudotensor.
Using SU(N) Yang-Mills gauge theories as guidance, in practice we need to ensure that
there is no anomaly at RG fixed points, or else the gauge-invariance of the theory is broken
by quantum effects other than the RG. In the case of conformal gravity, we have that
λ → 0+ is an asymptotically free fixed point for either runnings (6.4.3) and (6.4.4). We
thus expect that the theory is conformal in the UV, similarly to gauge theories, and argue
that there is no inconsistency between (6.4.3) and (6.4.4), as long as both runnings result in
asymptotic freedom. Notice that, in the case of gauge theories, to formally prove conformal
invariance it is necessary to work with local couplings, or with the parametrization of the
action such that the asymptotically free coupling appears as interaction, rather than as
global normalization of F 2

µν [158]. We may expect the same for conformal higher derivative
gravity, with the additional complication of having to deal with an energy-momentum
pseudotensor.
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Chapter 7

Renormalization and running in
d = 2

A phenomenon similar to what we observed in higher derivative theories in d = 4 can
potentially happen also in d = 2 with ordinary rank 2 kinetic terms. The general one-loop
integral depicted in 2.2 is∫ Λ

k
d2q

N(q, pi)

q2(q + p1)2 × · · · × (q + p1 + · · ·+ pn−1)2
, (7.0.1)

that, in the integration region near q = 0, reduces to∫ λ′≪pi

k
d2q

N(0, pi)

q2(p1)2 × · · · × (p1 + · · ·+ pn−1)2
, (7.0.2)

that is potentially IR divergent for k → 0. Hence, all the discussion in Section (5.3) can be
easily readapted. However, if the theory is unitary and well defined, there must be a set
of IR safe observables the theory can be described in terms of. In this case, we expect the
infrared divergences to cancel in quantum corrections to expectation values of quantities
built up with these observables.

As an example, we calculate the scattering amplitude in the two dimensional CP (1)
model in a regularization scheme independent approach. The physical running of the
coupling with renormalization scale arises from a UV finite Feynman integral in all regu-
larizations. Even though the pathway to obtaining the beta function can be different in
different renormalization schemes, we always reproduce the usual result with asymptotic
freedom.

7.1 CP (1) model

The two dimensional CP (1) nonlinear sigma model 1 is defined by the Lagrangian

L =
∂µϕ

∗∂µϕ

(1 + g2

2 ϕ
∗ϕ)2

. (7.1.1)

1A few words on terminology. Historically, the CP (1) model was formulated with two complex scalars
and a U(1) gauge invariance. Indeed, early references for CP(N − 1) models talk about this formula-
tion [159–167]. In this work we will use the formulation as given in Ref. [168]. In the end such formulations
must be equivalent because CP (1)= S2. Indeed, what we do here – the sphere in stereographic coordinates
– can legitimately be called CP (1) model, but long before that it was also referred to as O(3) model [169].
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Despite its nonlinear nature, with the Lagrangian containing all powers of the fields, it
is renormalizable. In fact, renormalizing the two particle scattering amplitude renormal-
izes all amplitudes due to the integrability of the theory, a feature which also implies
that the scattering should be elastic [170]. It is also interesting because the coupling is
asymptotically free.

Our focus here is the regularization scheme dependence. Previous calculations have
been done using cutoffs, with the tadpole loop diagram playing a prominent role in obtain-
ing asymptotic freedom. However, the tadpole diagram vanishes in dimensional regular-
ization, which initially appears puzzling. Moreover, the tadpole diagram does not contain
any momentum dependence, so it is not initially clear how the scattering amplitudes of
the theory would manifest asymptotic freedom in their kinematic dependence. Therefore
we will calculate a scattering amplitude in various regularization schemes. The result has
some interesting features. Because the calculation itself is relatively simple, we will use
this introduction also as a summary of the main features of the result.

When naively using a cutoff regularization, one finds loop effects which violate the
symmetry of the theory. For example, with the scattering diagrams shown in Figure 7.1,

the tadpole diagram is obtained from the interaction 3g4

4 ∂µϕ
∗∂µϕ(ϕ∗ϕ)2. The contraction

of the two fields involving derivatives leaves behind an interaction with no factors of
momentum which is different from any term in the original Lagrangian. Moreover it
involves the quadratically divergent integral∫ Λ d2p

(2π)2
p2

p2 + iε
∼ Λ2 (7.1.2)

In Section 7.1.1 we describe the origin of Feynman rules following from the path integral
measure which have the effect of removing these symmetry violating quadratic divergences
from the theory. This modification is not required in dimensional regularization because
the scaleless integral of Eq. 7.1.2 is set equal to zero.

When renormalizing the theory one is confronted with both UV divergences and IR
divergences. Somewhat surprisingly, in all 2d sigma models with O(N) symmetry, includ-
ing the CP (1) model, O(N) invariant observables are known to be IR finite [171]. While
the result in Ref [171] refers to O(N) invariant observables and we are calculating a spe-
cific process, both are governed by the same coupling constant. In Sec. 7.1.2, we use the
background field method to renormalize the 4-point vertex of this theory and to show the
IR finiteness of our particular observable.

Figure 7.1: Diagrams associated with one-loop scattering.

The calculation of the amplitude is given in Sec 7.1.3. We use the Passarino-Veltman
reduction method to calculate the scattering amplitude for the reaction ϕ1+ϕ1 → ϕ2+ϕ2
using real fields defined by ϕ = (ϕ1 + iϕ2)/

√
2. In any renormalization scheme we find

M = g20s−
g40s

4
[I(t) + I(u)]

+
g40
4
(u− t)[I(t)− I(u)] (7.1.3)
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where I(q2) is a specific combination of the scalar tadpole and scalar bubble diagrams

I(q2) = 2T − q2B(q2) (7.1.4)

with the two dimensional tadpole and bubble diagrams defined by

T = −i
∫

d2p

(2π)2
1

p2 + iε

B(q2) = −i
∫

d2p

(2π)2
1

[p2 + iε][(p− q)2 + iε]
. (7.1.5)

The combination I(q2) is the unique combination of the scalar tadpole and the scalar
bubble diagrams which is IR finite. Given the IR finiteness of the coupling, this must be
the combination which appears in all amplitude calculations.

If we define the coupling at the renormalization point s = t = u = µ2R, we can define
the renormalized coupling as

g2r (µR) = g20 −
g40
2
I(µ2R) . (7.1.6)

In any renormalization scheme we have

I(q2)− I(µ2R) =
1

2π
log(µ2R/q

2) (7.1.7)

so that the renormalized amplitude becomes

M = g2r (µ
2
R)s−

g4r s

8π

(
log(−t/µ2R) + log(−u/µ2R)

)
)− g4r

8π
(t− u) log(t/u) . (7.1.8)

This form implies the beta function

βg = µR
∂gR(µR)

∂µR
= − g3

4π
, (7.1.9)

which is the usual answer implying asymptotic freedom.
While this result is satisfying and perhaps not surprising, the way that this emerges

in specific schemes is remarkably different. We here discuss three possible schemes.

• Cutoff regularization. In this scheme the tadpole diagram has both UV and IR
sensitivity

T = − 1

4π
log

Λ2

k2
, (7.1.10)

where Λ is a UV cutoff and k is an IR cutoff. The scalar bubble diagram is UV finite

q2B(q2) = − 1

2π
log

−q2

k2
. (7.1.11)

• Dimensional regularization. Here the tadpole diagram is scaleless and hence vanishes

T = 0 . (7.1.12)

The scalar bubble diagram is again UV finite but has an IR divergence. It becomes
convergent in d < 2. with the result

q2B(q2) =
1

2π

[
1

ϵ
− log

−q2

µ2

]
, (7.1.13)

where ϵ = (2− d)/2.
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• Hybrid regularization. Here we use an IR cutoff k, but use dimensional regularization
in the UV. In this case the tadpole is convergent if ϵ > 0 and it gives

T = − 1

4π

[
1

ϵ
− log

k2

µ2

]
. (7.1.14)

On the other hand, the bubble diagram is the same as in the cutoff regularization

q2B(q2) = − 1

2π
log

−q2

k2
. (7.1.15)

Notice that, both in the cutoff and in the hybrid regularization, an artificial mass term
can be equivalently used as an infrared cutoff instead of k. One simply has to replace k2

with m2 in the expressions for T and B.

In calculations in the literature (see e.g. [168]), the running has been calculated using
cutoff regularization by following the UV cutoff Λ. We can call this cutoff running. In the
amplitude for the process ϕ1 + ϕ1 → ϕ2 + ϕ2 the bubble is finite and Λ appears uniquely
in the tadpole diagram. In contrast, in dimensional regularization the tadpole diagrams
vanish. The UV divergence of the tadpole is replaced by a factor of 1/ϵ of IR origin in
the bubble diagram, with the accompanying factor of log µ. In the hybrid scheme, the
UV divergence of 1/ϵ reappears in the tadpole diagram. In these cases, one can follow
the running by following log µ, which can be called µ running. Again, since both Λ and µ
disappear from renormalized amplitudes, the running that is observed in practice involves
the behavior of the amplitudes with the kinematic variables. We show how all schemes
lead to the same physical running.

For this theory, the equivalence of all schemes is basically due to dimensional analysis.
There are no explicit dimensional factors in the Lagrangian, and it is also important that
there is no sensitivity to a potential infrared cutoff. Therefore the logarithms must involve
log(Λ2/E2) or log(µ2/E2) (where E is a common energy scale in the amplitude), and the
Λ or µ behavior tracks the physical running.

A somewhat surprising aspect of this result is that the running of the amplitude with
the physical momentum comes from the UV finite bubble diagram in all schemes. In four
dimensions with mass-independent renormalization, we are used to have the bubble dia-
gram providing both the UV divergence and the related factor of logE2 which produces
the physical running. In two dimensions the bubble is still the only source of the depen-
dence on the physical momenta, but it is UV finite and IR sensitive. A focus only on
the divergent diagrams may be dangerous unless a full calculation is performed. We have
found this lesson also in our treatment of physical running in Quadratic Gravity 6.3.1.

7.1.1 Regularization scheme and Feynman rules

In theories with Goldstone bosons, the symmetry requires that the interaction terms in-
volve derivatives. This forbids mass terms and also enforces the Adler zeroes for scattering
amplitudes. However in such theories, there can be loops where the derivatives act on the
loop particles leaving no momentum factors for the external particles. Besides the example
given in the introduction, the CP (1) theory could generate a mass term from the interac-
tion ∂µϕ

∗∂µϕ(ϕ∗ϕ) if the two fields with derivatives are contracted in a tadpole loop. This
problem was known for sigma models in the 1960’s and the resolution is a contribution to
the Feynman rules from the path integral measure, which cancels the offending diagrams
and preserves the symmetry[172, 173]. For our purposes the simplest way to obtain this
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factor is to follow the derivation of the Lagrangian of Eq. (7.1.1) from the constrained
O(3) version. The CP (1) model describes a spin system in 2d

S =
1

2g2

∫
d2x ∂µS(x) · ∂µS(x) (7.1.16)

with S = (S1, S2, S3), subject to the constraint

S(x) · S(x) = 1 . (7.1.17)

In order to change to the unconstrained version, one identifies

S1 =
gϕ1

1 + g2

4 (ϕ
2
1 + ϕ22)

,

S2 =
gϕ2

1 + g2

4 (ϕ
2
1 + ϕ22)

,

S3 =
1− g2

4 (ϕ
2
1 + ϕ22)

1 + g2

4 (ϕ
2
1 + ϕ22)

, (7.1.18)

which reproduces the Lagrangian of Eq. 7.1.1 with ϕ = (ϕ1 + iϕ2)/
√
2. However, the

transformation has a Jacobian Jij [ϕ] =
δSi
δϕj

, where i runs over two of the three components

of S chosen as independent. So, the path integrals in the two coordinate frames are related
by ∫

[dS]eiS[S] =

∫
[dϕ]detJ [ϕ]eiS[ϕ] . (7.1.19)

Following Honerkamp and Meetz [172] (see also [173–178]) we are led to the invariant
measure ∫

[dϕ]detJ [ϕ] =

∫
[dϕ]

1 + g2

2 ϕ
∗ϕ

. (7.1.20)

This can be converted into an interaction by exponentiation

eδ
2(0)

∫
d2x log(1+ g2

2
ϕ∗ϕ) . (7.1.21)

The leading δ2(0) vanishes in dimensional regularization because it is a scaleless integral.
However, in cutoff regularization this cancels the Λ2 contributions found in the Feynman
diagrams, preserving the symmetry. Note that one can also obtain the invariant measure
in a somewhat more cumbersome way using canonical quantization through a modification
in the canonical momenta in theories with higher derivatives [173].

7.1.2 Background field renormalization and IR finiteness

In this section we use a hybrid renormalization scheme to renormalize the four-point vertex
in the background field method. This will show the infrared finiteness of the vertex and we
will obtain the running coupling using what we refer to as µ running. The renormalization
scheme uses an infrared cutoff during intermediate steps, and regularizes the UV physics
with dimensional regularization. This feature permits to easily distinguish the two types
of divergences.

Let’s consider a generic NLSM in Euclidean space of dimension d = 2

S[φ] =
1

2g2

∫
d2xh(φ)αβ∂µφ

α∂µφβ . (7.1.22)
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The background field method applied to NLSM has been widely discussed in literature
[179–181]. The second variation of the action can be put in a covariant form with respect
to coordinate transformation in the target space using a nonlinear split. The quantum
field ξα(x) is a vector field, related to the total field φα(x) and the background field φ̄α(x)
by the exponential map

φ(x) = expφ̄(x)(ξ(x)) . (7.1.23)

With this choice, the action up to order ξ2 is

S[φ̄]+
1

g2

∫
d2xh(φ̄)αβ∂µφ̄

αDµξ
β+

1

2g2

∫
d2x ξα

(
−h(φ̄)αβDµD

µ + ∂µφ̄
γ∂µφ̄δRαγβδ

)
ξβ ,

(7.1.24)
where the covariant derivative Dµξ

α is defined as

Dµξ
α = ∂µξ

α + ∂µφ̄
γΓγ

α
βξ
β (7.1.25)

and Γ and R are respectively the Christoffel symbols and the Riemann tensor of the metric
hαβ(φ̄) on the target space. The linear term gives the classical equations of motion

∂µ∂
µφα + ∂µφ

γ∂µφβΓγ
α
β = 0 , (7.1.26)

while the quadratic term can be written as 1
2g2

∫
ξαOαβξ

β and used to compute the one-
loop correction to the quantum effective action

Γ[ϕ̄] = S[ϕ̄] +
1

2
tr logO . (7.1.27)

The propagator in (7.1.24) has a nonstandard form due to the metric hαβ(φ̄), that forbids
an easy Fourier transform and diagrammatic computations. A way around consists in
defining the vielbein eaα, the vector field ξa = ξαeaα and the spin connection ωγ

ab. The
new covariant derivative is

Dµξ
a = ∂µξ

a + ∂µφ̄
γωγ

a
bξ
b (7.1.28)

and the second order term in the ξ expansion of the action turns into

S(2) =
1

2g2

∫
d2x ξa

(
−DµD

µδab + ∂µφ̄
γ∂µφ̄

δRaγbδ

)
ξb , (7.1.29)

with Raγbδ = Rαγβδea
αeb

β. In this way O can be written in the form

Oab = δab∂µ∂
µ +N µ

ab∂µ + Uab . (7.1.30)

If N and U are small with respect to the kinetic term, one can perturbatively expand
tr logO and find

1

2
tr logO =

1

2
tr

[
U
□

− 1

2

(
1

□
U 1

□
U +

1

□
N∂

1

□
N∂ + 2

1

□
U 1

□
N∂

)]
, (7.1.31)

where 1
2
N∂ has been neglected because it contributes only with a boundary term. In the
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hybrid renormalization scheme,

tr
U
□

= − 1

4π
Uaa

[
−1

ϵ
+ log

(
µ2

m2

)]
, (7.1.32)

tr
1

□
U 1

□
U = − 1

4π
(Uab + Uba) log

(
− □
m2

)
1

□
Uab , (7.1.33)

tr
1

□
U 1

□
N∂ = − 1

4π
(Uab + Uba) log

(
− □
m2

)
1

□
∂µN µab , (7.1.34)

tr
1

□
N∂

1

□
N∂ =

1

16π
Nµab

(
−1

ϵ
− log

(
− □
µ2

))(
N µab −N µba

)
+

1

8π
Nµab log

(
− □
m2

)
∂µ∂ν
□

N νab , (7.1.35)

up to finite terms. U is symmetric in vielbein indices, while N is antisymmetric, hence
the UN bubble is identically zero.

In the particular case of the CP (1) nonlinear sigma model the metric is simply

hαβ =
δαβ

[1 + 1
4(φ

αφα)]2

with indices running from 1 to 2. The curvatures tensors and connections can be computed
using standard differential geometry. Notice that with a simple rescaling ϕ = 1

gφ we get
exactly the action (7.1.1).

Since we are interested in the one loop correction to the four point function, we can
use the small ϕ expansion

S[ϕ] =
1

2

∫
d2x δαβ∂µϕ

α∂µϕβ
[
1− g2

2
ϕγϕγ +

3g4

16
(ϕγϕγ)2

]
+O(ϕ8). (7.1.36)

The classical equations of motion are

∂µ∂
µϕα =

g2

2
∂µϕ

γ∂µϕβ(δαβϕγ + δαγ ϕβ − δγβϕ
α) +O(ϕ5) (7.1.37)

and we just need

N µ
ab = −g2∂µϕ̄γ(δaγ ϕ̄b − δbγϕ̄

a) +O(ϕ̄4) (7.1.38)

Uab = g2∂µϕ̄
γ∂µϕ̄δ(1− g2

2
ϕ̄γϕ̄γ)(δabδγδ − δaδδbγ) +

g2

4
ϕ̄α∂µϕ̄

α(ϕ̄a∂
µϕ̄b + ϕ̄b∂

µϕ̄a)

−g
2

4
∂µϕ̄a∂

µϕ̄bϕ̄
αϕ̄α − g2

4
∂µϕ̄

α∂µϕ̄αϕ̄aϕ̄b +O(ϕ̄6) (7.1.39)

to compute (7.1.31) at order ϕ̄4. So the bubble contributions are

tr
1

□
U 1

□
U ≈ − g4

2π
∂µϕ̄

γ∂µϕ̄
δ log

(
− □
m2

)
1

□
∂ν ϕ̄

γ∂ν ϕ̄
δ (7.1.40)

tr
1

□
N∂

1

□
N∂ ≈ g4

4π

[
ϕ̄α∂µϕ̄

β

(
−1

ϵ
− log

(
− □
µ2

))
(ϕ̄α∂µϕ̄

β − ϕ̄β∂µϕ̄
α)

]
+
g4

4π

[
ϕ̄α∂µϕ̄

β log

(
− □
m2

)
∂µ∂ν
□

(ϕ̄α∂ν ϕ̄
β − ϕ̄β∂ν ϕ̄

α)

]
. (7.1.41)
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In this approximation, thanks to the equations of motions, we can write

□(ϕ̄αϕ̄β) = 2∂µϕ̄
α∂µϕ̄β +O(ϕ̄4) (7.1.42)

and the bubble diagrams reduce to

tr
1

□
U 1

□
U ≈ − g4

4π
ϕ̄γϕ̄δ log

(
− □
m2

)
∂µϕ̄

γ∂µϕ̄
δ (7.1.43)

tr
1

□
N∂

1

□
N∂ ≈ g4

4π

[
ϕ̄α∂µϕ̄

β

(
−1

ϵ
− log

(
− □
µ2

))
(ϕ̄α∂µϕ̄

β − ϕ̄β∂µϕ̄
α)

]
. (7.1.44)

By an integration by parts we can move the partial derivative from one side to the other
of log (−□), obtaining

tr
1

□
U 1

□
U + tr

1

□
N∂

1

□
N∂ ≈ g4

2π
ϕ̄α∂µϕ̄

β log(−□)ϕ̄β∂µϕ̄
α +

g4

4π
log(m2)ϕ̄α∂µϕ̄

αϕ̄β∂µϕ̄
β

+
g4

4π

[
−1

ϵ
+ log

(
µ2
)] (

ϕ̄αϕ̄α∂µϕ̄
β∂µϕ̄

β − ϕ̄α∂µϕ̄
αϕ̄β∂µϕ̄

β
)
.

(7.1.45)

On the other hand, the tadpole at order ϕ̄4 is

tr
U
□

≈ − g2

4π

[
∂µϕ̄

β∂µϕ̄β(1− g2ϕ̄αϕ̄α) +
g2

2
(ϕ̄α∂µϕ̄

α)2
] [

−1

ϵ
+ log

(
µ2

m2

)]
, (7.1.46)

then

1

2
tr logO ≈− g2

8π
∂µϕ̄

β∂µϕ̄β(1− g2

2
ϕ̄αϕ̄α)

[
−1

ϵ
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+
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8π
∂µϕ̄

β∂µϕ̄β(1− g2ϕ̄αϕ̄α) log
(
m2
)
− g4

8π
ϕ̄α∂µϕ̄

β log(−□)ϕ̄β∂µϕ̄
α .

(7.1.47)

Again, the equations of motion implies on-shell

ϕ̄α∂µ∂
µϕ̄α ≈ −g2∂µϕ̄β∂µϕ̄βϕ̄αϕ̄α , (7.1.48)

so the term proportional to logm2 in (7.1.47) can be set to zero via integration by parts.
That is the clear sign that IR divergences cancel out in the four-point amplitude. At the
same time, the rest of the one-loop correction to the effective action reduces to

1

2
tr logO ≈ − g4

16π
∂µϕ̄

β∂µϕ̄βϕ̄αϕ̄α
[
−1

ϵ
+ log

(
µ2
)]

− g4

8π
ϕ̄α∂µϕ̄

β log(−□)ϕ̄β∂µϕ̄
α .

(7.1.49)
Comparing the last expression with (7.1.36), one can renormalize the coupling in the
following way

g2(µ) = g2B −
g4B
4π

log
(
µ2
)
, (7.1.50)

from which we recover the µ-running

βµ(g) = − 1

4π
g3 . (7.1.51)

The term containing log(−□) generates at tree level the one loop amplitude (7.1.3), hence
the physical running of the four-point function is equal to the µ-running.
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From [171], the expectation value of L should be independent of log(m2). However,
the well known expression in the literature for the one loop effective action [168]

L0 + L1−loop = 2

[
1

g20
− 1

4π
log

(
Λ2

m2

)]
∂µϕ

∗∂µϕ

(1 + ϕ∗ϕ)2
(7.1.52)

clearly depends on m. In the small coupling (or small field) expansion ⟨L⟩ should be
independent of m order by order, but the tree level four-point amplitude from (7.1.52) is

s

[
1

g20
− 1

4π
log

(
Λ2

m2

)]−1

. (7.1.53)

The usual solution consists in identifying m with the running scale µ and forget about
the actual origin of log(µ) terms. In our calculation we have seen that this substitution
is a nontrivial effect due to the presence of non-local operators in the one-loop effective
action. These terms, generated by the p ≪ q regions of Feynman integrals, cancel all
m dependence from the four-point amplitude and allow us to reproduce at tree level the
correct momentum structure near the renormalization point.

The generalization to the O(N) NLSM for any N does not require much effort. The
only change is that δαα = N − 1, because there are N − 1 active particles, giving

tr
1

2
U 1

2
U ≈ − g4

4π

[
(N − 3)ϕ̄αϕ̄α log

(
− 2
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)
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(
− 2

m2

)
∂µϕ̄

γ∂µϕ̄
δ
]

(7.1.54)
and
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U
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[
∂µϕ̄
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2
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+ log
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(7.1.55)
Also in this case, the part proportional to log(m2) is equal to zero on-shell at order ϕ̄4.

7.1.3 Passarino-Veltman reduction and the scattering amplitude

In two dimensions, the Passarino-Veltman reduction technique says that all one loop inte-
grals can be reduced to momentum dependent factors times the scalar bubble and tadpole
diagrams, given in Eq. (7.1.5). In calculating the amplitude, we need only one such
example, which is the tensor bubble diagram given by

Bµν(q) = −i
∫

ddp

(2π)d
pµpν

[p2 + iϵ][(p− q)2 + iϵ]

=
2T

4(d− 1)

(
ηµν +

(d− 2)qµqν

q2

)
− q2B(q)

4(d− 1)

(
ηµν − d

qµqν
q2

)
(7.1.56)

in any dimension and any renormalization scheme. Only the scalar bubble carries momen-
tum dependence. This reduction makes it simple to calculate the scattering amplitude.

Let us first give the calculation for ϕ1+ϕ1 → ϕ2+ϕ2 in pure dimensional regularization.
The tadpole diagram vanishes because it is scaleless. The relevant amplitudes are

−iM(ϕ1(p1)ϕ1(p2) → ϕ2(p3)ϕ2(p4)) = ig20[p1 · p2 + p3 · p4] → ig20s (7.1.57)

and

− iM(ϕ1(p1)ϕ1(p2) → ϕ1(p3)ϕ1(p4)) =

ig20[p1 · p2 + p3 · p4 + p1 · p3 + p2 · p4 + p1 · p4 + p3 · p2] → ig20[s+ t+ u] = 0 ,

129



where the second form in each case is the on-shell amplitude. When combining these into
loop amplitudes of Fig 1, we find that the s-channel loop vanishes, while the t-channel
and u-channel loops are non-vanishing 2 . Using the reduction technique, we find

M = g20s+
g40s

4
[tB(t) + uB(u)]− g40

4
(u− t)[tB(t)− uB(u)] (7.1.58)

in terms of the scalar bubble diagram. The renormalization and running of this amplitude
is analyzed in the Introduction. We also note that this amplitude can be constructed
directly using unitarity based methods, in which the cuts are calculated in all channels
and the logarithms are related to the value of the on-shell cut amplitude. The vanishing
of the s-channel loop is directly related to the vanishing of Eq. (7.1.58) on-shell.

Unitarity methods also make it simple to generalize to the O(N) case. In that situation
the case of similar particles vanishes on shell as in Eq. (7.1.58) and 2 → 2 amplitudes with
three or more types of particles are zero. Hence, the only relevant process is ϕi + ϕi →
ϕj + ϕj with i ̸= j and those related to it via crossing symmetry. In the t-channel and
u-channel only bubble loops with both virtual particles having index k = i or k = j
are non-zero, so they give the same contribution calculated in the CP (1) model. In the
s-channel, the new N − 3 bubbles with both virtual particles having index k ̸= i, j are
non-zero and give the contribution

(N − 3)
g40s

2
sB(s) . (7.1.59)

In the symmetric point, the three channels lead to an overall factor of (N − 2) in the beta
function of g, which is the dual Coxeter number for O(N) as identified in Ref. [182].

We can readily convert these results to any renormalization scheme by using the knowl-
edge that the result is independent of an infrared regulator, as confirmed in the previous
section. This is because the only combination of the scalar tadpole and scalar bubble
which is IR independent is the combination (7.1.4). The complete result is then of the
form of Eq. (7.1.3).

In the early days of quantum field theory, Landau, Pomeranchuk and collaborators
studied the running couplings in many theories and concluded that all quantum field
theories have Landau poles – i.e. are not asymptotically free [183–185]. This was famously
overcome by the proof of asymptotic freedom in Yang-Mills theory, and this is often
attributed to the extra degrees of freedom found in the non-Abelian gauge theory. The 2d
CP (1) model is another interesting counterexample to the Landau argument: The CP (1)
model shows that non-gauge theories may also exhibit asymptotic freedom.

2Here and throughout this chapter we are focusing only on the divergences and the logarithms, and
hence drop terms of order ϵ
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Chapter 8

Conclusions and outlooks

Higher derivative theories could furnish the simplest renormalizable UV completions to
many nonrenormalizable theories, the most relevant one being gravity. Quadratic gravity is
renormalizable and, thanks to the R2 term, could potentially include Starobinsky inflation,
one important inflationary model compatible with experimental observations.

However, it is still not clear whether this class of theories is actually well-defined. This
is due to Ostrogradskij instability and related problems with negative energy states and
unitarity emerging in the quantization process. We reviewed some of the most popular
attempts to address this problem. More in detail, we saw that the possible approaches
can be separated in two classes, one introducing complex variables in the canonical space,
in order to make positive definite the spectrum of the quantum Hamiltonian and preserve
at the same time a meaningful concept of probability; the other consisting in removing
ghost states from the Hilbert space of physical states.

Since higher derivative theories are mainly interesting as UV completions of 2-derivative
nonrenormalizable effective actions, a full understanding of how the renormalization group
works in this kind of theories is crucial.

We reviewed how the renormalization group is usually introduced in high-energy
physics and in other branches of theoretical physics. We noticed that these definitions
have a good degree of universality in quantum field theories with two derivatives in the
kinetic term in 4 spacetime dimensions, however that is not always true in other situations,
including higher-derivative theories in d = 4.

We studied the nonperturbative RG flow of a shift-invariant higher derivative scalar
theory. We observed that, because of the presence of two free field theories in the theory
space, it cannot be completely mapped by only one chart with values in Rn. Since the field
normalization is a redundant coupling, physical information can be extracted only from
the couplings adequately rescaled. In presence of more than one free fixed point, we have
different possible choice for the field normalization. Which one is the most suitable can
change in different regimes. In the presence of nonperturbative fixed points, a complicated
structure connecting it with different free theories can emerge in the RG flow. Moreover,
it is possible to avoid the ghost pole in the propagator if the fixed point value of the
ratio between the dimensionless coupling associated with the two-derivative kinetic term
and the one associated with the four-derivative term is larger than one. In this way, the
value of the pole grows like p2 and is never reached in the UV. This mechanism could
explain how the ghost could not manifests itself near the Reuter fixed point [186], even
when higher derivative operators are taken into account in the truncation of the effective
average action, as, for example, in [145, 148, 187].

At the perturbative level, different implementations of the renormalization group give
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inequivalent beta functions. In scattering amplitudes of higher derivative theories, large
logarithms containing physical momenta are not produced only by UV divergences, but
also at the threshold scale determined by the ghost mass. If this mass were sent to zero, the
logarithms of momenta would be associated to IR divergences. It is important to observe
that these “IR” effects that emerge above the ghost mass are off-shell. This feature clearly
distinguishes them from the usual IR divergences in massless 2-derivative theories like QED
or QCD. In those cases IR divergences emerge only in soft or collinear on-shell momenta
configurations and can be removed by considering IR-safe inclusive observables as initial
and final states. Only momentum subtraction renormalization schemes take in account
these new contributions and produce what we have called the physical beta functions. The
universality of the one loop beta functions with respect of the renormalization scheme is
recovered in shift-invariant theories, where such IR threshold effects cannot occur.

Moving to quantum field theories in curved spacetime, we have discussed three four-
derivative models that corroborate the idea that the physical RG running differs from
what we have called the µ-running.

The first model that we have considered is a general quadratic scalar coupled to a
nondynamical metric, which could be regarded as a toy-model that is simple to dissect. In
this model, it is possible to discuss with relative simplicity the role of each interaction in
shaping the difference between the two runnings. We have also confirmed the fact that in
the conformal limit, in which the action becomes Weyl invariant, the infrared divergences
cancel [188, 189], making the two runnings coincide and produce the standard charges
when used to determine the trace anomaly. One interesting feature that we have noticed
is that the two runnings coincide for a more general, shift-invariant, subset of theories also
in presence of a curved background. If this is a manifestation of a general fact, it would
be interesting to explore the general implication that shift-invariance has in ensuring that
different notions of RG are the same at one-loop. A possible route would be to explore
the “trace-anomaly” of a nonconformal theory in the sense discussed in Refs. [190–192].

The second model we considered is quadratic gravity. In this case the metric is dy-
namical and the theory has a gauge symmetry, given by diffeomorphisms invariance. We
find that the form factors associated to the Weyl tensor square and to the Riemann scalar
square in the one-loop quantum effective action have a different dependence on the Lapla-
cian than on the UV regulator. In particular, the physical running defined using form
factors suggests the presence of a UV asymptotically free sector of the theory space free of
tachyonic modes, in contradiction with the beta functions obtained with the heat kernel,
which predict asymptotic freedom only in presence of a scalar tachyon.

The third one is Weyl invariant gravity, in which only the transverse-traceless spin-2
mode is propagating. In this case, we have observed that, although different, both runnings
have negative beta functions and lead to asymptotic freedom. Importantly, From the fact
that the conformal anomaly is not well defined in presence of a dynamical metric, we have
argued that the two runnings can be different, even if the gravitational theory is Weyl
invariant, as long as they both give rise to asymptotic freedom.

In conclusion, our findings strengthen the position of quadratic gravity as a possible
UV completion of Einstein general relativity, with a behaviour in the far UV that could be
better understood via an analogy with QCD, as suggested in [138], thanks to the common
feature of asymptotic freedom.

However, there are still open questions related to the results presented in this thesis.
To substantiate our findings in gravitational theories, it would be important to verify
whether the physical beta functions are actually gauge-independent. A possible approach
could be to repeat the computation with free gauge parameters. This would imply losing
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the minimal structure (6.1.80) in the Hessian of the action with respect to the metric
fluctuations. Even if this implies an increase in the computational complexity of the
problem, it does not seem to be an insuperable problem. Another possibility consists
in integrating the quantities (6.1.37) and (6.1.36) along a path in the space of gauge
parameters, and track back the changes in the physical running, as done in [152] for the
beta functions obtained from the heat kernel.

Scheme dependent beta functions similar to those just described in higher derivative
theories can potentially emerge also in 2-derivative theories in d = 2. However, if the
massless theory is well-defined and unitary, the NLK theorem applies and it is possible
to define a set of IR safe observables which are not affected by infrared divergences. We
explicitly saw that, in the CP (1) or O(3) NLSM, due to the absence of IR divergences,
a = c in equation (5.3.17), when applied to the 2 → 2 scattering amplitude. The logarithms
of the energy variables can be found by taking the unitarity cuts in all channels. The
analysis using either cutoff regularization or dimensional regularization is consistent with
the physical running.

At this point, one could wonder whether a set of IR safe observables, that do not
coincide with the n-point functions of the quantum field could exists also in higher deriva-
tive theories. If pure 4-derivative theories without any mass parameters, as, for example,
conformal gravity, would be shown to be unitary, we expect from the NLK theorem the
existence of such infrared safe observables, and all their correlation functions should de-
pend on the energy scale in the way suggested by the µ-running, with all the IR effects
contributing to our physical running canceling out in a nontrivial way. On the other hand,
most of the approaches described in Chapter 3 to solve the problems related to Ostrograd-
skij instability require a non-zero ghost mass to work. If the scaleless theory is intrinsically
ill-defined and non-unitary, the NLK theorem would not hold and there would not be any
IR safe observables in the high-energy limit. In this scenario, higher derivative theories
make sense only in presence of a nonzero ghost mass that regulates IR divergences. Below
this mass scale, we recover all the good features of the corresponding 2-derivative effective
field theory, with only eventual soft and collinear divergences that can be treated as usual.
Above the ghost mass, the threshold large logarithms we discussed in this thesis appear
and affect the high-energy behaviour of scattering amplitudes, producing physical beta
functions different from those determined by the µ-running.

A possible way to discriminate between these two alternatives in quadratic gravity
could be to consider on-shell matrix elements of the S-matrix, because in this way we
include only the large logarithms that are actually relevant for physics and remove all
possible gauge dependencies from the beta functions extracted from the effective action.
The tree level basic scattering amplitudes in quadratic gravity can be found in many
references, for example [193–195], but a proper computation of their one-loop version is
still missing. Moreover, the graviton itself is gauge dependent as an asymptotic state, so it
does not furnish a good physical gauge invariant initial and final state. The computation of
the one-loop cross section of the gravitational scattering of two scalar particles minimally
coupled to quadratic gravity via a 2-derivative kinetic term could give the correct answer
to this question.

The same process could give a hint on the problem of asymptotic freedom in presence
of derivative interactions. Even if a dimensionless coupling goes to zero logarithmically, it
does not ensures in general that all cross sections of processes mediated by that coupling
vanishes in the UV. This happens in Yang-Mills theories, where the three point vertex and
the ghost vertex contain one derivative, however it is not sure in Quadratic gravity, where
interaction vertices can contain up to four derivatives. We observed that at tree level the
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exceeding powers of momenta cancel out in this particular cross section [96, 97], so, if the
only effect of quantum corrections is a renormalization of λ and ξ, the couplings going to
zero logarithmically would be enough for asymptotic freedom. However, the cancellations
we referred to before must extend up to the fourth order in the high-energy expansion
of the cross section, hence subleading finite terms absent in the classical action must be
taken into account together with the dominant C2 and R2 terms.

For these reasons, the computation of one-loop physical scattering amplitudes and
cross sections will be a crucial step in the understanding of quadratic gravity and higher
derivative theories in general.

In this thesis, we furnished a method to compute the physical running in higher deriva-
tive theories in asymptotically flat spacetimes. However, we know that our universe is in
an accelerated expansion phase at the moment, driven by what really resembles a cosmo-
logical constant. For this reason, it would be very useful a technique allowing to define a
physical running also if Λ ̸= 0. A possible way consists in extending the nonlocal resumma-
tion of the heat kernel [109, 122–126] to higher derivative operators. The bigger difficulty
in this path is the fact that the free heat kernel in flat space does not have anymore a
Gaussian structure like (6.1.76), but is given by a much more complicated expression [196].

Finally, it would be interesting to study at a deeper level the relation between the
physical running and the FRG, and in particular whether the integration of k to zero
produces an effective action that depends on momenta as predicted by the physical running
and whether there exists a modification of the FRG capable of reproducing the physical
RG in a way similar to how the k running is obtained.

134



Appendix A

Other cutoffs

We considered also cutoffs different from R
(24)
k in (4.1.3): either the two-derivative cutoff:

R
(2)
k = Z1(k

2 − q2)θ(k2 − q2) , (A.0.1)

which is the standard choice, or the four-derivatives cutoff:

R
(4)
k = Z2(k

4 − q4)(k4 − q4) , (A.0.2)

which is sometimes used when the kinetic term has four derivatives.

A.1 Dimensionful fields and two-derivative cutoff

With the field dimension set to 1 and the cutoff R
(2)
k , we find

η1 =
−6Z̃2 + 6

√
Z̃2(1 + Z̃2) arctan(

√
Z̃2)

(1 + Z̃2)
(
64π2Z̃2

2 + 3g̃
√
Z̃2 arctan(

√
Z̃2)− 3g̃ log(1 + Z̃2)

) g̃ , (A.1.1)

while the beta function is

βg̃ = (4+2η1)g̃+

5
(
4Z̃2

2 − (3 + 5Z̃2 + 2Z̃2
2 )η1

)
128π2Z̃2

2 (1 + Z̃2)2
+

15η1

128π2Z̃
5/2
2

arctan

√
Z̃2

 g̃2 . (A.1.2)
where (A.1.1) has to be used. These are real only if Z̃2 ≥ 0, hence this set of flow equation
has a restricted domain. Concerning the beta function of Z2, we have ∂tZ2 = 0, hence the
equation is independent of the cutoff and we ave again

βZ̃2
≡ ∂tZ̃2 = (2 + η1)Z̃2 . (A.1.3)

In the limit Z̃2 → 0, we recover the same nontrivial NGFP1 and NGFP2 of the cutoff

R
(24)
k , while NGFP3 is in the half-plane where the RG equations are complex. In the right

half-plane the condition η1 = −2 is satisfied on the curve

g̃ = −64

3
πZ̃

3/2
2 . (A.1.4)

The separatrix is not a straight line anymore, but we still have γ̂ = 0 after the coordinate
transformation from U1 to U2, hence a region with a flow between GFP1 and GFP2 exists
also with this cutoff.
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A.2 Dimensionful field and four-derivative cutoff

If we use the cutoff (A.0.2), the anomalous dimension is

η1 =
3g̃Z̃2

(
1 + 2Z̃2

)
8π2(1 + Z̃2)

− 3g̃Z̃2
2

4π2
log

(
1 + Z̃2

Z̃2

)
. (A.2.1)

and the beta function is

βg̃ = 4g̃ +
16 + 21Z̃2(3 + 2Z̃2)

8π2(1 + Z̃2)2
g̃2Z̃2 −

42

8π2
g̃2Z̃2

2 log

(
1 + Z̃2

Z̃2

)
. (A.2.2)

where (A.2.1) has been used. The beta function of Z2 is still given by (A.1.3). The

log
(
1+Z̃2

Z̃2

)
is ill-defined or complex in the region −1 < Z̃2 ≤ 0, therefore the nontrivial

FPs can not be found and the only finite FP of these beta functions is GFP1.

The beta functions are influenced by the logs on Z̃2 = 0, but, up to a small neigh-
borhood of this axis, the general behaviour of the RG flow in the fourth quadrant is very
similar to the one described in section 4.1.1. The condition η1 = −2 is satisfied for

g̃ ≈ −16π2Z̃2 . (A.2.3)

giving exactly the same asymptotic behaviour as R
(24)
k .

A.3 Dimensionless field and two-derivative cutoff

The dimensionless field with the cutoff R
(2)
k gives

βζ̂1 = −2ζ̂1 +
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The beta function of γ̂ is

βγ̂ =

5γ̂2
√
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[
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(A.3.2)

while the anomalous dimension, which does not receive any contributions from one loop

diagrams, is still zero, as in section 4.1.1. Also with [φ] = 0, the cutoff R
(2)
k introduces

some

√
ζ̂1 that reduce the domain of reality of the beta functions to the half plane ζ̂1 ≥ 0.

Moreover now there are also some logs which may give problems in the interval −1 < ζ̂2 ≤
0. The qualitative behaviour in the bottom right quadrant is the same of the regulator

R
(24)
k , with a separatrix leading to FP1 at ζ̂1 → ∞ and delimiting the attractive basin of

GFP1. The main difference is its trajectory near to GFP2, which is not linear, as could
be expected from the different asymptotic behaviour observed in U1 for large Ẑ2.
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A.4 Dimensionless field and four-derivative cutoff

Using R
(4)
k , we have again η2 = 0. Then,

βζ̂1 = −2ζ̂1 +
3γ̂

8π2ζ̂31

[
− ζ̂1(2 + ζ̂1)

1 + ζ̂1
+ 2 log(1 + ζ̂1)

]
(A.4.1)

βγ̂ =
5γ̂2

8π2ζ̂41

[
ζ̂1(6 + 9ζ̂1 + 2ζ̂21 )

(1 + ζ̂1)2
− 6 log(1 + ζ̂1)

]
(A.4.2)

The terms log(1 + ζ̂1) becomes complex for ζ1 < −1, so these beta functions are real only

in the region ζ1 > −1. The RG flow is similar to R
(24)
k near GFP2, but the behaviour for

large ζ̂1 is different: one can still observe a region where there is a flow from GFP2 in the
UV to GFP1 at infinity in the IR, however there is no clear separatrix, because with this
regulator there is no NGFP1 in the chart U1.

A.5 Vanishing regulator

We may put a prefactor a in front of the regulator (4.1.3):

R
(24)
k = aZ1(k

2 − q2)θ(k2 − q2) + aZ2(k
4 − q4)θ(k4 − q4) .

The beta functions of dimensionful couplings in the action depend on this parameter, but
the qualitative features of the flow are the same for a large range of values of a. For our
discussion the main point to observe is that the value of g̃ at NGFP1 decreases when a
increases, and increases when a decreases.

The limit of vanishing regulator a→ 0 is interesting because it is related to dimensional
regularization [197, 198]. In this limit NGFP1 goes to −∞, the point in the middle of the
bottom side in Figure 1, and the separatrix also disappears at infinity. The trajectories we
have been discussing now fill up the bottom right quadrant and the conclusions regarding
the mass of the ghost remain valid.
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Appendix B

Loop integrals

vertices numerator log(p2) term
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ν
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µνρ
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µ
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ρ σ
ρ σ
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σ

8

−3pµpνVρσDµνρσ
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ν ρ
ν ρ

16 +
p2VµνD

µνρ
ρ

4

)
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2C

µνρCσλδqµqνqρ×
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(
CµνρCµνρp2
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3Cµ ν

ν C ρ
µ ρp

2

4 +

3pµpνC
µρσCνρσ +

3pµpνC
µρ

ρC
νσ

σ

2 − 9pµpρC
µρ

νC
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σ
2

)
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− i

2C
λδαDµνρσqµqνqρqσ×
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ρ σ
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)
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140π2
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1024

)
Table B.1: Scalar bubble loops.
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vertices numerator log(p2) term
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Table B.2: Bubble loops for the graviton field.

140



Bibliography

[1] K. G. Wilson and John B. Kogut. “The Renormalization group and the epsilon
expansion”. In: Phys. Rept. 12 (1974), pp. 75–199. doi: 10.1016/0370-1573(74)
90023-4.

[2] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field
theory. Reading, USA: Addison-Wesley, 1995. isbn: 978-0-201-50397-5, 978-0-429-
50355-9, 978-0-429-49417-8. doi: 10.1201/9780429503559.

[3] Steven Weinberg. The Quantum Theory of Fields. Cambridge University Press,
1996.

[4] M. Gell-Mann and F. E. Low. “Quantum Electrodynamics at Small Distances”. In:
Phys. Rev. 95 (5 Sept. 1954), pp. 1300–1312. doi: 10.1103/PhysRev.95.1300.
url: https://link.aps.org/doi/10.1103/PhysRev.95.1300.

[5] Curtis G. Callan Jr. “Broken scale invariance in scalar field theory”. In: Phys. Rev.
D 2 (1970), pp. 1541–1547. doi: 10.1103/PhysRevD.2.1541.

[6] Kurt Symanzik. “Small distance behaviour in field theory and power counting”. In:
Communications in Mathematical Physics 18 (1970), pp. 227–246.

[7] Leo P. Kadanoff. “Scaling laws for ising models near Tc”. In: Physics Physique
Fizika 2 (6 June 1966), pp. 263–272. doi: 10.1103/PhysicsPhysiqueFizika.2.
263. url: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.2.
263.

[8] Franz J. Wegner and Anthony Houghton. “Renormalization group equation for crit-
ical phenomena”. In: Phys. Rev. A 8 (1973), pp. 401–412. doi: 10.1103/PhysRevA.
8.401.

[9] Joseph Polchinski. “Renormalization and Effective Lagrangians”. In: Nucl. Phys.
B 231 (1984), pp. 269–295. doi: 10.1016/0550-3213(84)90287-6.

[10] Christof Wetterich. “Exact evolution equation for the effective potential”. In: Phys.
Lett. B 301 (1993), pp. 90–94. doi: 10.1016/0370- 2693(93)90726- X. arXiv:
1710.05815 [hep-th].

[11] Tim R. Morris. “The Exact renormalization group and approximate solutions”. In:
Int. J. Mod. Phys. A 9 (1994), pp. 2411–2450. doi: 10.1142/S0217751X94000972.
arXiv: hep-ph/9308265.

[12] Robert Percacci. An Introduction to Covariant Quantum Gravity and Asymptotic
Safety. Vol. 3. 100 Years of General Relativity. World Scientific, 2017. isbn: 978-
981-320-717-2, 978-981-320-719-6. doi: 10.1142/10369.

[13] Alessandro Codello et al. “Computing the Effective Action with the Functional
Renormalization Group”. In: Eur. Phys. J. C 76.4 (2016), p. 226. doi: 10.1140/
epjc/s10052-016-4063-3. arXiv: 1505.03119 [hep-th].

141

https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1201/9780429503559
https://doi.org/10.1103/PhysRev.95.1300
https://link.aps.org/doi/10.1103/PhysRev.95.1300
https://doi.org/10.1103/PhysRevD.2.1541
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.2.263
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysRevA.8.401
https://doi.org/10.1103/PhysRevA.8.401
https://doi.org/10.1016/0550-3213(84)90287-6
https://doi.org/10.1016/0370-2693(93)90726-X
https://arxiv.org/abs/1710.05815
https://doi.org/10.1142/S0217751X94000972
https://arxiv.org/abs/hep-ph/9308265
https://doi.org/10.1142/10369
https://doi.org/10.1140/epjc/s10052-016-4063-3
https://doi.org/10.1140/epjc/s10052-016-4063-3
https://arxiv.org/abs/1505.03119


[14] Jan M. Pawlowski and Manuel Reichert. “Quantum Gravity from dynamical metric
fluctuations”. In: (Sept. 2023). arXiv: 2309.10785 [hep-th].

[15] Benjamin Knorr, Chris Ripken, and Frank Saueressig. “Form Factors in Asymptot-
ically Safe Quantum Gravity”. In: 2024. doi: 10.1007/978-981-19-3079-9_21-1.
arXiv: 2210.16072 [hep-th].

[16] C. Wetterich. “Fundamental scale invariance”. In:Nucl. Phys. B 964 (2021), p. 115326.
doi: 10.1016/j.nuclphysb.2021.115326. arXiv: 2007.08805 [hep-th].

[17] M. Reuter and H. Weyer. “Renormalization group improved gravitational actions:
A Brans-Dicke approach”. In: Phys. Rev. D 69 (2004), p. 104022. doi: 10.1103/
PhysRevD.69.104022. arXiv: hep-th/0311196.

[18] John C. Collins. Renormalization. Vol. 26. Cambridge Monographs on Mathe-
matical Physics. Cambridge: Cambridge University Press, July 2023. isbn: 978-0-
521-31177-9, 978-0-511-86739-2, 978-1-009-40180-7, 978-1-009-40176-0, 978-1-009-
40179-1. doi: 10.1017/9781009401807.

[19] Daniel F. Litim. “Optimized renormalization group flows”. In: Phys. Rev. D 64
(2001), p. 105007. doi: 10.1103/PhysRevD.64.105007. arXiv: hep-th/0103195.

[20] Marco Serone. “Notes on Quantum Field Theory”. In: (2020).

[21] Toichiro Kinoshita. “Mass Singularities of Feynman Amplitudes”. In: Journal of
Mathematical Physics 3.4 (July 1962), pp. 650–677. issn: 0022-2488. doi: 10.1063/
1.1724268.

[22] T. D. Lee and M. Nauenberg. “Degenerate Systems and Mass Singularities”. In:
Phys. Rev. 133 (6B Mar. 1964), B1549–B1562. doi: 10.1103/PhysRev.133.B1549.
url: https://link.aps.org/doi/10.1103/PhysRev.133.B1549.

[23] John F. Donoghue. “A Critique of the Asymptotic Safety Program”. In: Front.
in Phys. 8 (2020), p. 56. doi: 10.3389/fphy.2020.00056. arXiv: 1911.02967
[hep-th].

[24] Mohamed M. Anber and John F. Donoghue. “On the running of the gravitational
constant”. In: Phys. Rev. D 85 (2012), p. 104016. doi: 10.1103/PhysRevD.85.
104016. arXiv: 1111.2875 [hep-th].

[25] John F. Donoghue. “Nonlocal partner to the cosmological constant”. In: Phys.
Rev. D 105.10 (2022), p. 105025. doi: 10.1103/PhysRevD.105.105025. arXiv:
2201.12217 [hep-th].

[26] Alfio Bonanno et al. “Critical reflections on asymptotically safe gravity”. In: Front.
in Phys. 8 (2020), p. 269. doi: 10.3389/fphy.2020.00269. arXiv: 2004.06810
[gr-qc].
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