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De novo prediction of RNA-protein interactions with Graph

Neural Networks

Viplove Arora1 and Guido Sanguinetti1

1Data Science, Department of Physics, SISSA, Trieste, 34136, Italy

Abstract

RNA-binding proteins (RBPs) are key co- and post-transcriptional regulators of gene

expression, playing a crucial role in many biological processes. Experimental methods like

CLIP-seq have enabled the identification of transcriptome-wide RNA-protein interactions

for select proteins, however the time and resource intensive nature of these technologies

call for the development of computational methods to complement their predictions. Here

we leverage recent, large-scale CLIP-seq experiments to construct a de novo predictor of

RNA-protein interactions based on graph neural networks (GNN). We show that the GNN

method allows not only to predict missing links in an RNA-protein network, but to predict

the entire complement of targets of previously unassayed proteins, and even to reconstruct

the entire network of RNA-protein interactions in different conditions based on minimal

information. Our results demonstrate the potential of modern machine learning methods to

extract useful information on post-transcriptional regulation from large data sets.

1 Introduction

RNA-protein interactions are fundamental in the regulation of gene expression. RNA-binding

proteins (RBPs) are key in RNA splicing, processing, export, localization, and regulation of

translation. Despite their importance, RNA-protein interactions are still relatively understud-

ied, when compared with the DNA-protein interactions which are involved in the initiation and

regulation of transcription. Many proteins with previously unsuspected RNA-binding proper-

ties are still being discovered, and more than 2000 human proteins have been experimentally

determined to bind RNA (Brannan et al., 2016; Hentze et al., 2018; Liu et al., 2019). However,

due to the difficulty of experimentally determining interactions between individual proteins and
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individual transcripts, the number of RBPs for which the identity of their interaction partners

is known is much lower.

A major breakthrough in the study of RNA-protein interactions was the development of

high-throughput techniques such as CLIP-seq (cross-linking and immunoprecipitation followed

by next generation sequencing) (Licatalosi et al., 2008). CLIP-seq enables the isolation of RBPs

and the fragments of RNA which are bound to them, much in the way that ChIP-seq is used

to determine regions of DNA bound by transcription factor proteins. Thanks to improvements

in the technology such as the development of the eCLIP protocol (Van Nostrand et al., 2016),

huge numbers of RBP binding sites are being verified. Despite these advances, practical and

conceptual hurdles mean that we are still very far from a comprehensive mapping of the network

of RNA-protein interactions. First of all, such networks are intrinsically condition dependent (for

example, simply because specific transcripts might be present or absent in different conditions).

Secondly, the experimentally determined interactions are inevitably noisy, meaning that both

false positives and false negative results are likely. Thus, there is a need for computational

methods to complement experimental techniques by filtering noise and predicting interactions

for new conditions as well as new RBPs. Here, we consider the problem of predicting RNA-

protein interaction (RPI) pairs adopting a machine learning perspective, where a model is

trained on currently validated interactions, using RNA and protein sequences as inputs.

Most current predictive methods focus on the narrower problem of predicting binding sites

for a specific protein within RNAs, often combining sequence and secondary structure of the

target transcript (Maticzka et al., 2014; Kazan et al., 2010; Alipanahi et al., 2015; Uhl et al.,

2021). Due to the lack of large scale CLIP-seq datasets in the past, methods for predict-

ing RNA-protein interaction pairs have only been trained on small datasets (Pan et al., 2019,

Section 4.1). RPIseq (Muppirala et al., 2011) uses the sequence information of RNAs and pro-

teins to predict interactions using SVM and random forests as classifiers. catRAPID omics

(Agostini et al., 2013) uses the physiochemical properties of sequences to predict RNA-protein

interactions on a genome-wide scale. Deep learning-based methods were also proposed (e.g.

IPMiner (Pan et al., 2016), RPI-SAN (Yi et al., 2018), RPIFSE (Wang et al., 2019), RNAcom-

mender (Corrado et al., 2016), and ELM∗ (Wang et al., 2018)) but due to data paucity they were

not trained in an end-to-end way and usually relied on advanced feature engineering. As far as we

can tell, all models for RNA-protein interaction prediction, such as RPIseq (Muppirala et al.,

2011), IPminer (Pan et al., 2016), and recent models like NPI-GNN (Shen et al., 2021) have
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been designed for small datasets with a handful of proteins and targets (see Table S1). The

only method we found that was developed with large datasets in mind was RNAcommender

(Corrado et al., 2016) (which in the original paper was trained and tested on heterogeneous

data from different experiments).

In this paper, we propose to exploit new, large-scale eCLIP datasets (Van Nostrand et al.,

2020) to shift the problem of RNA-protein interaction prediction to the network level, i.e.

attempting to predict the whole network of RPI in an organism in a particular condition in

an end-to-end way. We use graph neural networks for predicting RPI, moving away from

the paradigm of predicting the targets of a single protein towards leveraging whole network

information. To achieve this, we curate a dataset of RNA-protein interactions in homogeneous

conditions using the high-throughput CLIP-seq data generated as part of the ENCODE project

(Van Nostrand et al., 2020) to train our models. We also show that the model can be used to

predict the interactions for previously unseen proteins as well as transfer the knowledge to a

network observed under different biological conditions. We achieve this by using the similarity

between the sequence-based features of proteins to elicit the embedding for a previously unseen

protein. The results show the superiority of our approach in the biologically more relevant task

of predicting interactions for proteins that were not encountered during training.

2 Results

2.1 Proposed Approach

Most RPI prediction tools start by assigning a feature representation to proteins and RNAs,

and then train a supervised machine learning algorithm on a set of annotated positive/negative

interactions. While this has been a successful strategy by and large, it does not explicitly lever-

age the network information: protein/RNA nodes are simply summarised as feature vectors,

and knowledge about shared targets/regulators is not directly incorporated in the prediction al-

gorithm. With the advent of large CLIP-seq data sets, this network-level information is likely to

play an increasingly relevant role in improving algorithmic performance. In this paper, we pro-

pose to adopt link prediction algorithms based on Graph Neural Networks (GNNs) to perform

network-based prediction of RPIs. In recent years, GNNs have become an indispensable tool for

applying neural networks to the graph domain (see Wu et al. (2020) and Zhou et al. (2020) for

recent reviews). GNNs use message passing between the nodes of a graph to non-linearly trans-
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form feature vectors and learn low dimensional embeddings for predicting interactions between

nodes. In a way, GNNs generalize the well-known convolution operation of neural networks to

graphs (Wu et al., 2020; Zhou et al., 2020). In this paper, we use Graph Convolutional Network

(GCN) (Kipf and Welling, 2017) with 2 convolutional layers as the GNN model.

Figure 1 illustrates the general workflow of our proposed framework. Briefly, CLIP-seq

data for a specific cell line is used to identify RNA-protein interactions, thus creating an RPI

network. Protein and RNA sequences are used to extract features for the nodes in the graph.

RNA-seq for the cell line is used to identify abundant RNAs, which is subsequently used to

identify highly likely negative interactions. The interactions and node features are then used

to train a GNN (or other machine learning model), which transforms the features to learn low

dimensional representations for the nodes and prediction interactions in different scenarios. In

this paper, we use the Graph Convolutional Network (GCN) of Kipf and Welling (2017) as the

encoder. Further details can be found in Section 4.

Our models were trained using the large-scale eCLIP datasets for RNA-protein interactions

extracted from the ENCODE project (see Section 4.1). We use RPIseq (Muppirala et al., 2011)

and RNAcommender (Corrado et al., 2016) as the baseline models to compare against our GNN-

based approach. RNAcommender is a recommender system capable of suggesting genome-wide

RNA targets for unexplored RBPs using interaction information available from high-throughput

experiments performed on other proteins. In our evaluations, we use sequence-based features in-

stead of the advanced feature engineering1 (protein domain composition and the RNA predicted

secondary structure) used in the original implementation of RNAcommender (Corrado et al.,

2016). RPIseq uses a random forest classifier with 20 trees to predict interactions. For GCN, we

consider the settings described in Section 4.2: (i) GCN in vanilla setting; (ii) Seq, GCN with

RNA-seq; (iii) SN, GCN with structured negative sampling; and (iv) Seq.SN, GCN with RNA-

seq and structured negative sampling. Other similar methods like IPMiner (Pan et al., 2016)

and NPI-GNN (Shen et al., 2021) fail to run on our datasets due to memory and computation

time issues.

The models are evaluated under three different scenarios: (i) we assume that some percentage

of the RNA-protein interactions are missing in Section 2.2; (ii) we perform leave-one-protein-

out experiments in Section 2.3, assuming the availability of full interaction information for the

1this was done because it was not possible to perform the feature engineering for all the RNAs and proteins
in our new dataset.
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Figure 1: Pictorial representation of the framework presented in this paper: The raw data is transformed

to obtain node features, positive and negative interactions, which serve as input for the GNN. The trained

model is used for making predictions as shown using the genome tracks.

remaining proteins; and (iii) transfer learning of RNA-protein interactions from a source cell

line to a target cell line in Section 2.4. In scenarios (ii) and (iii), we use the similarity between

the sequence-based features of proteins to elicit the embedding for a previously unseen protein.

Using machine learning terminology, we refer to scenario (i) as transductive learning (as the set

on which predictions are needed is part of the graph), scenario (ii) as inductive learning, and

scenario (iii) as transfer learning.

2.2 Transductive Link Prediction

For the first evaluation of the models, we consider the scenario when varying percentage of

positive edges are removed from the RPI network. An equal number of negative interactions,

as defined in Section 4.1.1, for the test set can be sampled either uniformly at random, or

proportional to the degree of each protein. The second setting is considerably harder in practice

because the network has to implicitly learn the degree information from training data. On the

other hand, the harder setting is likely to be more representative of true biological missing data.

We use the AUROC on the validation set to select the best model. We run all experiments 10
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times and report the average results and standard deviations, highlighting in boldface the best

results (determined using two sample t-tests) in tables.

0.650

0.675

0.700

0.725

0.750

3 5 10 20 30 40 50
Embedding Size

A
U

R
O

C

model

GCN

Seq

Seq.SN

Figure 2: Comparing the performance of various GCN settings while varying the size of the final embed-

ding. The test set contains 20% edges and the hidden embedding size is set to 50. The error bars show

the standard deviation on 10 independent trials.

A hyperparameter that needs to be tuned for GCNs is the dimension of the final embedding

of the nodes. In Figure 2, we plot the performance of three different variants of GCN as the

final embedding dimension is varied (the hidden dimension is kept constant at 50). While all

methods for all embedding dimensions provide results which are clearly better than random

predictors, the trend shows a clear peak at dimensions between 5 and 10 for all methods; we

therefore choose 10 as the final embedding size for all subsequent evaluations of GCN under

different settings.

Table 1: Comparing the AUROC for transductive learning setting in K562 cell line with varying percent

of edges in the test set (validation set contains 10% edges in all cases). The bold marker denotes the best

performing model(s) based on a t-test and ± denotes the standard deviation on 10 independent trials.

Test RNAcommender RPISeq GCN Seq Seq.SN

10% 0.604±0.003 0.778±0.003 0.751±0.002 0.768±0.004 0.759±0.003
20% 0.601±0.004 0.767±0.002 0.736±0.002 0.757±0.002 0.755±0.002
30% 0.595±0.004 0.759±0.002 0.717±0.002 0.74±0.002 0.739±0.002
40% 0.594±0.005 0.749±0.002 0.717±0.003 0.74±0.001 0.739±0.002
50% 0.586±0.005 0.74±0.002 0.709±0.003 0.73±0.002 0.73±0.001

The results in Table 1 and 2 show the performance of different models on the transductive

link prediction task for the ‘hard’ setting of negative interactions on the RPI networks of K562
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and HepG2 cells respectively. The tests are performed varying the percentage of edges in the test

set from 10% to 50% (full results can be found in the Supplementary information). Our results

show that our GCN-based models is comparable with RPISeq and consistently outperforms

RNAcommender in the task of transductive link prediction by a clear margin. As expected, the

performance drops as we increase the number of edges in the test set (thus decreasing the size

of the training set), however for all sizes of training set the performance of the GCN approach

(in all its variants) remains above 70% AUROC. Within the different GCN settings, we see that

using RNA-seq consistently improves the predictive performance of the model in all cases (this

effect is more pronounced when using word2vec based node features, as seen in Table S5).

Table 2: Comparing the AUROC for transductive learning setting in HepG2 cell line with varying percent

of edges in the test set (validation set contains 10% edges in all cases). The bold marker denotes the best

performing model(s) based on a t-test and ± denotes the standard deviation on 10 independent trials.

Test RPIseq GCN Seq Seq.SN

10% 0.808±0.003 0.771±0.003 0.798±0.003 0.779±0.003
20% 0.799±0.002 0.762±0.003 0.79±0.002 0.771±0.005
30% 0.791±0.001 0.748±0.004 0.78±0.002 0.765±0.003
40% 0.782±0.002 0.742±0.004 0.772±0.002 0.762±0.005
50% 0.773±0.001 0.734±0.001 0.763±0.002 0.758±0.002

Results for the simpler setting when negative test edges are selected at random are shown

in the Table 3. Here we see a significant improvement for all the approaches, with the GCN

achieving test accuracies surpassing 90% (in some cases substantially so). In this case, the GCN

outperforms RPIseq as well.

Table 3: Comparing the AUROC for transductive learning setting in K562 cell line in ‘easy’ setting while

varying the percent of edges in the test set (validation set contains 10% edges in all cases). The bold

marker denotes the best performing model(s) based on a t-test. The error bar ± denotes the standard

deviation of the test performance of 10 independent trials.

Test RNAcommender RPIseq GCN Seq Seq.SN

10% 0.855±0.003 0.868±0.002 0.926±0.002 0.920±0.002 0.839±0.005
20% 0.852±0.003 0.865±0.002 0.921±0.001 0.915±0.001 0.830±0.005
30% 0.846±0.002 0.861±0.001 0.911±0.002 0.903±0.001 0.817±0.003
40% 0.844±0.003 0.857±0.001 0.909±0.002 0.902±0.001 0.817±0.004
50% 0.841±0.005 0.854±0.001 0.904±0.001 0.897±0.001 0.808±0.004
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2.3 Inductive Link Prediction

The ability to make de novo predictions of RNA-protein interactions is one of the biggest moti-

vations for developing computational models for this problem. This is known as the problem of

inductive (or out-of-sample) link prediction in the GNN community. Such analysis is particularly

valuable as the model predictions can serve as a proxy for proteins for which high-throughput

data is not currently available. In this setting, we create a training network Ḡ by removing

interaction data for the test and validation proteins. The trained model then computes the em-

bedding for the new proteins using normalized feature similarity sim(xv,xu) (based on inverse

Euclidean distance or cosine similarity) to previously seen proteins:

zv =
∑

u∈P̄

sim(xv,xu)zu, (1)

where P̄ is the set of proteins in the training network Ḡ, while xu and zu are the features

and embeddings of node u respectively. We perform experiments with a single protein in the

test set (with all highly likely negative interactions as defined in Section 4.1.1). This can create

a potential class imbalance in the positive and negative interactions in the test and validation

sets. We therefore also use the AP metric introduced in Section 4.3, which is a better measure

for an imbalanced dataset. The protein with the highest feature similarity to the test protein

is chosen as the validation protein. This is justifiable from a biological standpoint as it allows

to reduce bias in the model predictions.
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Figure 3: Comparing the performance of various models for de novo prediction in K562 cell line. Each

box shows the distribution of mean AUROC (left) or average precision (right) over the entire set of

proteins when the model is tested for a single protein in the test set.

Figure 3 compares the performance of different models over the entire set of proteins in

the inductive link prediction setting. Each box plots the distribution of mean AUROC/AP

8

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.09.28.462100doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462100
http://creativecommons.org/licenses/by-nd/4.0/


Scale
chr1:

100 kb hg19

171,400,000 171,450,000 171,500,000 171,550,000 171,600,000 171,650,000
CLIP-seq BUD13

True positives

CLIP-seq DDX24

True positives

ENSG00000117523.11

ENSG00000117523.11

11.68 _

0.105225 _

9.21881 _

0.438991 _

(a) True positives (TP)

Scale
chr7:

20 kb hg19

102,950,000 103,000,000
CLIP-seq BUD13

True negatives

CLIP-seq DDX24

True negatives

ENSG00000105819.9

ENSG00000105819.9

0.947028 _

0.105225 _

1.31697 _

0.438991 _

(b) True negatives (TN)

0.0

2.5

5.0

7.5

FN FP TN TP

lo
g(

re
ad

s)

(c) BUD13

Scale
chr11:

10 kb hg19

65,260,000 65,265,000 65,270,000 65,275,000 65,280,000
CLIP-seq BUD13

False positives

CLIP-seq DDX24

False positives

ENSG00000251562.3

ENSG00000251562.3

4.20901 _

0.105225 _

3.95092 _

0.438991 _

(d) False positives (FP)

Scale
chr12:

50 kb hg19

56,150,000 56,200,000 56,250,000
CLIP-seq BUD13

False negatives

CLIP-seq DDX24

False negatives

ENSG00000205323.4

ENSG00000205323.4

35.7766 _

0.105225 _

14.4867 _

0.438991 _

(e) False Negatives (FN)

0

2

4

6

8

FN FP TN TP

lo
g(

re
ad

s)

(f) DDX24

Figure 4: The plots show representative genome tracks produced using the eCLIP data annotated by

predictions made by our model under four different outcomes. We consider two proteins, BUD13 and

DDX24, in the inductive link prediction task for the K562 cell line. Positive predictions are shown in

green and negative predictions in red. We also plot the distribution of reads (Figure 4c and 4f) for the

two proteins under the four outcomes.

for proteins in the K562 cell line (10 replications for each protein). The results show that on

average all variations of GCN outperform RNAcommender (labelled as RNAcom in the plots) in

the K562 cell line. More specifically, GCN with inverse distance-based similarity outperforms

RNAcommender on 93.33% and 87.5% of proteins on AUROC and AP, respectively. When

compared with RPIseq, GCN with inverse distance-based similarity is better on 85% of proteins

on both AUROC and AP. Among the different settings of GCN, we observe that the choice of

similarity function has very little impact on the model performance and even appending RNA-

seq to the final embeddings does not seem to substantially improve model performance (although

we do see some improvement in the HepG2 cell line, see Figure S2).

Figure 4 shows genome tracks annotated by the predictions of our model for two proteins,

BUD13 and DDX24, in the inductive link prediction task for the K562 cell line. Figures 4a

and 4b show example regions corresponding to predicted true positives and true negatives; as

expected, true positives correspond to regions with a strong binding signal, while true negatives

display a complete absence of signal. Figure 4d and 4e show examples of wrong predictions (false

positives and false negatives respectively): both examples show a modest amount of binding,

likely representing regions that are borderline cases in the peak calling procedure. This suggests

that the incorrect predictions by the model may correspond to potentially noisy regions. This
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point is illustrated globally using Figures 4c and 4f, which plot the distribution of reads per

transcript for the four outcomes. We observe that the true positive and true negative predictions

respectively have significantly higher and lower number of reads compared to the other cases,

whereas the false positive and false negative predictions by the model have intermediate amounts

of reads, potentially corresponding to noisy regions.

2.4 Transfer Learning

The ENCODE dataset (Van Nostrand et al., 2020) consists of 223 eCLIP experiments for 150

proteins across two different cell lines (K562 and HepG2). This provides an opportunity to

perform transfer learning, where a model learnt from the eCLIP data for a source cell line can

be used to predict the interactions in a target cell line. This is potentially the most interesting

aspect of our approach, as it would permit researchers to obtain a reasonable prediction of an

RPI network in new conditions based on minimal information about the target condition.

To train a model for transfer learning, we split the interactions from the source cell line by

assigning all interactions from a fixed percentage of randomly chosen proteins to the validation

set. Splitting the data in this way allows us to choose a model that has higher predictive

power on previously unseen proteins. For creating the test set using the target cell line, we

only consider interactions with RNAs that already exist in the source cell line. This allows

us to exclusively focus on transfer learning for proteins. Negative interactions in the test set

(same number as positive interactions) are sampled uniformly at random from the highly likely

negative interactions in the target cell line (‘easy’ setting in Section 2.2). This is a reasonable

assumption because to sample negative interactions proportional to a protein’s degree (‘hard’

setting), we need to have a priori knowledge about its interactions in the target cell line.

As in Section 2.3, we use Equation 1 to compute embeddings for the proteins in the test

and validation sets. We specifically focus on the use of RNA-seq in transfer learning as it can

provide information about RNA abundance in the target cell line. For transfer learning, we

append the TPM counts of the source cell line to the RNA embeddings during training, but

replace it with the TPM counts in the target cell line for making the final predictions.

The results in Tables 4 and 5 show that the GCN approach provides a good predictive

accuracy even in the transfer learning mode, with AUROC values over 70% in most of the

cases. Further, the best GCN variant also outperforms RPIseq in the transfer learning scenario.

It should be noted that these results should be compared to Table 3 as we use the ‘easy’ setting
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Table 4: Comparing the AUROC for transfer learning from K562 to HepG2 using various GCN settings.

We vary the percentage of proteins in the validation set of the source cell line, thus reducing the number

of interactions in the training network. The bold marker denotes the best performing model(s) based on

a t-test and ± denotes the standard deviation on 50 independent trials.

% val RPIseq GCN Seq Seq.SN

5 0.697±0.003 0.693±0.024 0.724±0.009 0.703±0.004
10 0.697±0.004 0.688±0.026 0.719±0.006 0.696±0.006
20 0.696±0.004 0.677±0.022 0.704±0.008 0.685±0.006
30 0.695±0.006 0.664±0.016 0.689±0.011 0.674±0.007

for negative edges in this section. Additionally, there appears to be a clear advantage of using

RNA abundance data in transfer learning as the Seq variant of GCN is the best performing

model in most cases. This is intuitively appealing, as it shows that the RNA-seq data clearly

conveys some information about the state of the cell which is relevant to the prediction of the

RPI network. Nevertheless, it is still very surprising that, even without RNA-seq information,

GCNs provide a good predictive performance. To contextualise this observation, in Figure 5 we

compare the ROC curve for the GCN with RNA-seq data to the prediction we would obtain

by just assuming the two RPI networks to be the same on the set of proteins/RNAs shared

by the two eCLIP experiments (naive transfer). Remarkably, the performance of this naive

transfer approach is only marginally better than random, and considerably worse than the GCN

prediction at the same false positive rate. This indicates that the GCN learns primarily robust

interactions that are seen in multiple different environments, which are presumably hard-wired

into the protein-RNA sequence features.

Table 5: Comparing the AUROC for transfer learning from HepG2 to K562 using various GCN settings.

We vary the percentage of proteins in the validation set of the source cell line, thus reducing the number

of interactions in the training network. The bold marker denotes the best performing model(s) based on

a t-test and ± denotes the standard deviation on 50 independent trials.

% val RPIseq GCN Seq Seq.SN

5 0.706±0.005 0.785±0.037 0.789±0.017 0.743±0.031
10 0.705±0.003 0.785±0.026 0.778±0.016 0.749±0.038
20 0.705±0.004 0.774±0.018 0.76±0.018 0.742±0.037
30 0.704±0.004 0.759±0.021 0.748±0.016 0.74±0.032

We also observe that the performance of GCN degrades as the size of the validation set is

increased. This implies that the model learns better by seeing more data from the source cell

line instead of just overfitting to the training data.

11

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.09.28.462100doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.28.462100
http://creativecommons.org/licenses/by-nd/4.0/


0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

(0.4005, 0.4865)

Receiver Operating Characteristic

ROC curve (area = 0.731)

Figure 5: ROC curve for transfer learning from K562 to HepG2 cell line for GCN with RNA-seq. Red

dot corresponds to the false positive and true positive rates if the edges from the source cell line are

directly transferred to target cell line.

3 Discussion

Experimental discovery of RPIs has been a major focus of research over the last ten years. After

a pioneering period where novel technologies were still being developed, the last few years have

seen an effort towards scaling and standardising the technology (Van Nostrand et al., 2016),

resulting in the publication of the first large-scale compendia of RNA-RBP interactions in

human cell lines (Van Nostrand et al., 2020).

These technological developments call for a change in the way RPI data are modelled.

Earlier approaches (reviewed in e.g. (Pan et al., 2019)) focused on predicting the targets (or the

binding sites) of individual RBPs, treating potential target transcripts as i.i.d. observations thus

enabling the deployment of machine learning approaches such as GNNs. Even when a network

of interactions was used (for example, in RPIseq Muppirala et al. (2011)), the datasets did not

consider genome-wide targets for proteins and were hence incomplete. Now, the availability of

binding data from hundreds of RBPs leads to hundreds of correlated prediction tasks, calling

for methods that can effectively leverage the network of interactions. In this spirit, our GNN

model transfers information between different RBPs binding data, translating the problem of

predicting the binding targets of an RBP to predicting the whole RPI network.

Our experiments demonstrate considerable promise in this attempt. While our GNN-based

approach is on-par or better than other competitors on the classical tasks of link prediction, it
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offers strong predictive performance in out-of-sample inductive predictions of the targets of an

unseen RBP. Additionally, we show empirically that the GNN approach is also able to perform

transfer learning, i.e. predict the RPI network in a different (related) condition starting from

RPI data from a well characterised condition, a task that was never attempted to our knowledge.

An intriguing outcome of our evaluations was the relatively strong performance of RPIseq,

a random forest classifier that only uses features and interaction pairs, in the transductive link

prediction task. The GNN, on the other hand, utilizes the entire network of RNA-protein

interactions along with the features, which potentially implies that the GNN is not completely

extracting the interaction information encoded in the sequence-based features. Further, a GNN

without feature information achieves an AUROC of 0.6 and 0.75 for the ‘hard’ and ‘easy’

cases respectively, whereas a random forest will essentially be random under such a setting,

thus showing the fundamental superiority of the GNN. These observations indicate that the

predictive performance of GNNs can be improved by devising alternative feature transformation

steps, which will be explored in the future.

While we believe GNNs hold much promise for the problem of RPI network prediction, a

number of areas for future improvement are clearly open. First of all, proteins (and transcript)

are characterised solely by their sequence and their binding partners in our approach, making

the task of predicting the full complement of binding partners for a new protein (inductive link

prediction) difficult. In principle, the availability of additional node information (for example

in the form of protein-protein interactions, or of ontological annotations) could be easily incor-

porated in the GNN framework, potentially leading to significant improvements. Another area

of great interest where improvements are certainly possible is transfer learning. Here the ques-

tion is to identify suitable covariates which can be used to measure the similarity of different

domains. In this paper, we show that the use of RNA-seq data helps in the transfer learning

task, presumably because it recapitulates some information on the state of the cell, nevertheless

more appropriate task descriptors might be found and integrated in the framework.

4 Materials and methods

4.1 Dataset

CLIP-seq experiments can provide genome-wide binding sites for RBPs. To retrieve these bind-

ing sites, the CLIP-seq reads are first mapped to a reference genome, followed by identification
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of the peaks of reads using peak calling softwares. These peaks correspond to RBP binding sites

based on a certain predefined cutoff, which can be used to identify the set of RNAs a protein

binds to.

To construct the benchmark datasets, we use the eCLIP dataset for two cell lines (HepG2

and K562) generated as part of the ENCODE project phase III (Van Nostrand et al., 2020).

We use the highly reproducible peaks identified from the two replicates of the eCLIP data using

the Irreproducibility Discovery Rate (IDR) framework (Li et al., 2011) to obtain the binding

regions. The gene corresponding to the binding site is obtained by using the bedtools intersect

function (with a pre-defined minimum overlap between genomic features, we use 50% in this

study) with the human genome (Gencode v19 is used). Repeating the procedure for each protein

in the eCLIP dataset we obtain a bipartite network G = (V,E,X) of RNA-protein interactions

for a particular cell line. The node set V = R∪P , where R is the set of RNAs and P is the set

of RBPs, and X is a matrix of node features (see Section 4.1.2 for further details).

The final graph for the K562 cell line consists of 14665 nodes (120 proteins and 14545 RNAs)

with 144527 interactions between proteins and RNAs. The mean (out) degree of proteins is

1204.39 with a standard deviation of 1304.64, while the mean and standard deviation of the RNA

(in) degree are 9.94 and 10.27, respectively. For the HepG2 cell line, the graph contains 15018

nodes (103 proteins and 14915 RNAs) and 145509 edges. The mean (out) degree of proteins

is 1412.71 with a standard deviation of 1380.69, while the mean and standard deviation of the

RNA (in) degree are 9.76 and 10.03, respectively. Figure S1 plots the distribution of protein

and RNA degrees for the RPI networks in the two cell lines. As far as we know, we are the first

ones to create a graph from a homogeneous dataset with hundreds of RBPs using the eCLIP

dataset of Van Nostrand et al. (2020).

4.1.1 Negative Interactions

CLIP-seq experiments provide information about binding sites from the peaks of reads, but

they do not provide any information about unbound sites. False negatives in a well-known

problem in CLIP-seq data because of absence or low concentration of transcripts in the cell line

used for experiments (Uhl et al., 2017; Maticzka et al., 2014). Appropriately defining negative

samples is important for training machine learning algorithms (Mikolov et al., 2013a). Negative

interactions play a crucial role in computation of the loss function, and recent work by Ying et al.

(2018) has shown that appropriately choosing the negative samples can boost the performance
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of a link predictor. This becomes even more important for bipartite networks where random

sampling two unconnected nodes can produce edge-types that do not exist in the data (RNA-

RNA for example).

To tackle this issue, the following two strategies have been commonly used to construct

negative samples from CLIP-seq data (Pan et al., 2019): (i) use the regions where no binding

sites are located as negative samples, or (ii) use randomly shuffled nucleotides in the positive se-

quences as negative samples. We augment the first strategy by utilizing the RNA-seq transcript

abundance data to identify RNAs that have transcripts per million (TPM) counts more than

the median value in the cell line but still do not have any peaks with the corresponding protein

to define negative samples. This strategy allows the model to learn from highly likely unbound

sites of real RNA sequences and alleviates the problem of false negatives described above. Using

RNA-seq we identify reliable non-interacting RNAs for each protein and consequently use these

negative samples to define the training and test sets.

4.1.2 Node Features

Node features are essential for training GNNs as they allow the neighborhood aggregation pro-

cess to capture the hierarchical non-linearities in the network data. The sequences of proteins

and RNAs can be encoded as numeric vectors for training machine learning models. To extract

features from RNAs, the k-mer representation is widely used for predicting RNA-protein inter-

action and they mainly have two forms of representation: (i) one-hot vector, which is a bit vector

that consists of all zeros except for a single dimension, and (ii) k-mer frequency vector, which

is a vector consisting of frequencies of all k-mers, similar to bag-of-words (BOW) in natural

language processing. We use the following feature extraction methods, which have been suc-

cessfully used by previous methods for predicting RNA-protein interactions (Muppirala et al.,

2011; Pan et al., 2016):

• Proteins: Conjoint triad descriptors (Shen et al., 2007) abstract the features of proteins

based on the classification of amino acids according to their dipoles and volumes of the side

chains. Each protein sequence is encoded using a normalized 3-gram frequency distribution

extracted from a 7-letter reduced alphabet representation.

• RNA: k-mer frequency distribution counts the frequency of individual k-mers (AAA,

AAC, ..., UUU are 3-mers) in a given RNA sequence. It is the simplest feature extraction
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method for RNAs, where k can be used as a hyperparameter. We use k = 6 for our

experiments.

Following the above feature extraction method, we obtain 73 = 343 and 46 = 4096 dimen-

sional feature vectors for proteins and RNAs respectively. For aggregating the features in a

GNN, node features should have the same dimensionality. To achieve this, we use the first 100

principal components of protein and RNA features to define the node features X for the network

G.

Features can also be extracted by treating RNA and protein sequences as a special kind of

language, where k-mers can be treated as words and sequences as sentences. Natural language

processing techniques such as word2vec (Mikolov et al., 2013b) can then be used to learn em-

beddings for protein and RNA sequences (Asgari and Mofrad, 2015). Results for this alternative

feature extraction scenario can be found in the Supplementary information.

4.2 Graph Neural Networks

The ability to learn from the entire network of RNA-protein interactions enables us to build

a single end-to-end model for predicting RNA-protein interactions. The GNN architecture

creates a non-linear permutation invariant transformation function on node, edge and graph

features, which can be optimized for performing downstream learning tasks. The neighborhood

aggregation process of GNNs allows us to capture the hierarchical non-linearities in network

data, thus learning low dimensional embeddings for the nodes of a graph. Further, the GNN

architecture facilitates the aggregation of information from distant neighbors such as other

proteins, thus learning better node representations. A lot of the existing GNN architectures

can be directly translated into the framework of message passing neural networks (Gilmer et al.,

2017), where each node sends and receives messages (using function Mk(·)) from its neighbors,

and subsequently updates (using function Uk(·)) its own node state:

h(k+1)
v = Uk(h

(k)
v ,

∑

u∈N(v)

Mk(h
(k)
v ,h(k)

u , . . . )), (2)

where h
(k)
v is the hidden representation of node v in layer k, Mk(·) and Uk(·) are functions

with learnable parameters, N(v) is the set of neighbors of node v, and . . . represent other

features (such as edge features) that can be added to the message passing process. Node

features, if available, can be used as the initial hidden representation h
(0)
v = xv for a node.
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After K message passing layers, node embedding zv is produced for each node v as the final

output, which can then be used for node, link, or graph level prediction tasks. The functions

Mk(·) and Uk(·) share parameters across nodes, but each node is associated with an individual

computation graph defined by its neighbors (Ying et al., 2019).

In this paper, we use Graph Convolutional Network (GCN) (Kipf and Welling, 2017) with

2 convolutional layers as the GNN model. GCN bridges the gap between spectral and spatial

approaches for performing convolution over graph-based data (Wu et al., 2020). The graph

convolution operation of GCN can be written as:

H(k+1) = σ(D̂−1/2ÂD̂−1/2H(k)Θ(k)), (3)

where Â = A + I is the adjacency matrix with self loops and D̂ is the diagonal degree

matrix corresponding to Â. H(k) is the matrix containing the hidden representation of nodes

at layer k with H(0) = X, Θ(k) are the model parameters at layer k, and σ(·) is an element-wise

activation function.Comparing Equations 2 and 3, for GCN the message and update functions

take the following form (Gilmer et al., 2017):

Mk(h
(k)
v ,h(k)

u ) = (deg(v)deg(u))−1/2Âvuh
(k)
v

Uk(h
(k)
v ,m(k+1)

v ) = σ(Θ(k)m(k+1)
v )

m(k+1)
v =

∑

u∈N(v)

Mk(h
(k)
v ,h(k)

u ).

Shchur et al. (2018) performed a comprehensive analysis of different GNN architectures and

found that there is no clear winner when it comes to choosing a GNN architecture, at least on

the benchmark datasets. This is why, we believe the simplest architecture should be chosen if

there is little difference between the performance of the architectures. To add some biological

context to the model, we consider the following different settings for GCN:

• RNA-seq experiments provide high resolution information about the presence and quantity

of all the RNAs in a given biological sample. RNA-seq can tell us which genes are turned

on in a cell, and what their level of transcription is (Ozsolak and Milos, 2011). Thus,

one would assume that RNA abundance would be a good indicator of an RNA’s ability of

being bound by a protein. In the Seq variant of GCN, we append log(1+TPM) to the final
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node embedding Z of RNAs (set to -1 for all proteins) obtained after GNN layers. The

modified embeddings are then used for computing the loss and predicting interactions.

• As described in Section 4.1.1, negative sampling plays an important role in the training

of machine learning models. In the default training regime for GCN, negative edges are

sampled uniformly at random from the set of possible negative interactions, which could

result in a case where more negative interactions are sampled for a protein with a low

degree. To deal with this issue, we consider structured negative (SN) sampling, where

negative interactions for a protein are sampled proportional to its degree.

4.3 Link Prediction and Evaluation Metrics

The current knowledge of interactions in biological networks is often incomplete, which makes

predicting missing interactions an important task (Muzio et al., 2020). Link prediction is often

framed as a semi-supervised learning problem, where the known links in a network are used

to predict additional interactions. Given the importance of RNA-protein interactions and the

challenges associated with experimental methods, predicting potential interactions using com-

putational models can compliment our current knowledge (Corrado et al., 2016). While most

existing studies focus on transductive link prediction (both nodes are in the graph), inductive

(or out-of-sample) link prediction can prove immensely valuable for new proteins.

In a GNN for link prediction, the message passing procedure described in Section 4.2 is used

to compute individual node representations zu, following which a function puv = f(zu, zv) can

be used to predict the probability of the link (u, v). In our implementation, we use the dot

product of the final embeddings as the function f(·) The model can be trained to maximize the

likelihood of reconstructing the true adjacency matrix A using the binary cross entropy loss:

L(u, v) = −Auv log(puv)− (1−Auv) log(1− puv). (4)

Splitting networks into training and test subnetworks is not trivial in link prediction prob-

lems. While performing the train-test split of edges, we need to make sure that every node in

the training network has a non-empty set of neighbors so that the GNN can learn appropriate

representations using the message passing process shown in Equation 2. To ensure this, test

edges are sampled for each RNA while making sure that it stays connected in the training

network.
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Link prediction is a binary classification task and the performance of an algorithm can

be evaluated using different metrics. These metrics can be divided into two broad categories:

fixed-threshold metrics and threshold curves (Yang et al., 2015). In research context, we gen-

erally do not have a reasonable threshold, which is why threshold curves and scalar measures

summarizing them are widely used in the literature (Davis and Goadrich, 2006; Clauset et al.,

2008; Lichtenwalter et al., 2010). In this paper, we use area under the receiver operating char-

acteristic (AUROC), and average precision (AP) to evaluate performance of different methods

on the link prediction task. The receiver operating characteristic (ROC) curve represents the

performance trade-off between true positives and false positives at different decision boundary

thresholds. AUROC reflects the probability that a randomly chosen positive instance appears

above a randomly chosen negative instance. AP summarises the precision-recall curve, and is a

better measure for a highly imbalanced dataset (Davis and Goadrich, 2006; Yang et al., 2015).

AP can be computed using the following formula:

AP =
∑

n

(αn − αn−1)βn,

where βn and αn are the precision and recall at the nth threshold.
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