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1 Introduction

Our understanding of symmetries in Quantum Field Theory (QFT) has seen a substantial
leap forward after the realization that any extended topological operator should be regarded
as a symmetry element [1]. This new paradigm includes the standard definition of symmetry
in QFT, but also considerably extends it. One convenient way to describe such generalized
symmetries, partially inspired by the anomaly inflow mechanism that describes ’t Hooft
anomalies [2, 3], is through the so-called Symmetry Topological Field Theory (Symmetry
TFT for short) [1, 4–7]. While (conventional) ’t Hooft anomalies are described through inflow
by symmetry protected topological (SPT) phases, also known as invertible TQFTs [8] —
which essentially are classical topological field theories of the background fields in one higher
dimension — the Symmetry TFT is a full fledged (i.e. possibly non-invertible) TQFT. As it
turns out, such a topological theory is capable of encoding all Renormalization Group (RG)
invariant data related to the symmetry of a QFT: the structure of the symmetry, its rep-
resentations [9–11], ’t Hooft anomalies [12–14], the set of “global variants” of the QFT
obtained by topologically gauging subsets of the symmetry [5], the classification of possible
gapped phases [15], and so on.

The Symmetry TFT has been mostly studied for the case of finite symmetries, but
recently proposals for the extension to continuous symmetries have been put forward as
well [16–19]. Other works on the Symmetry TFT include [20–29]. Symmetry-TFT-like
constructions in the context of string theory and holography include [30–45].

The description of the symmetry of a d-dimensional QFT works through a “sandwich”
construction. The Symmetry TFT is placed on a (d + 1)-dimensional slab between two copies
of the d-dimensional spacetime manifold, pictured in figure 1. On one boundary, referred to
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Figure 1. The prototype of a Symmetry TFT.

as the “physical” boundary, it is coupled to the QFTd of interest. On the other boundary,
referred to as the “topological” boundary, one imposes a topological boundary condition. On
general grounds, one expects the set of topological boundary conditions to be in one-to-one
correspondence with the global variants of the QFTd. The common lore is that specifying a
boundary condition corresponds to prescribing (in a consistent way) which bulk operators
of the Symmetry TFT can end on the topological boundary (green operator in figure 1),
and thus are trivialized at that boundary. Those operators constitute the set of charges
(or representations) of the symmetry. On the contrary, the bulk operators which can be
pushed to the boundary (red operator in figure 1), modulo the ones that are trivialized
there, constitute the set of topological symmetry defects of the QFTd. In this way, from
the fusion and the braiding between bulk operators, given a boundary condition, one is able
to reconstruct the structure of the symmetry of the QFTd and the possible charges carried
by its dynamical (non-topological) operators.

This construction, even in the simple case when the Symmetry TFT is Abelian, raises
a few puzzles. If the symmetry defects of the QFTd braid among themselves, how can
this be captured in the bulk of the Symmetry TFT that has one higher dimension? Given
two extended operators that braid in d dimensions, they do not braid in d + 1 dimensions.
A paradigmatic example is that of Yang-Mills-Chern-Simons (YM-CS) theories in d = 3
dimensions. They typically have some finite 1-form symmetry whose symmetry defects are
topological lines that braid among themselves.1 If those lines originate from lines of a putative
4d Symmetry TFT, how can the braiding be preserved in the bulk?

A natural way to construct the Symmetry TFT — at least when the symmetry is
invertible — is to start with the QFTd coupled to background fields that extend in one
higher dimension, as well as to the anomaly inflow Symmetry Protected Topological (SPT)
phase,2 and then to gauge the symmetry in d + 1 dimensions, namely to make the background
fields dynamical. This in general produces a nontrivial TQFTd+1.3 When applied to YM-CS

1The braiding phases, that depend on the Chern-Simons level, are the manifestation of an ’t Hooft anomaly
for the 1-form symmetry.

2An SPT phase is an invertible unitary TQFT, namely a TQFT with a one-dimensional Hilbert space on
any closed spatial manifold [8]. Its Euclidean partition function is a phase.

3For a generic non-invertible (categorical) symmetry C in two dimensions, the three-dimensional Symmetry
TFT corresponds to the TFT whose symmetry structure is the Drinfeld center of C (see e.g. [46]). This TFT can
be obtained from the Turaev-Viro construction [47], which gives an explicit formulation of its partition function
in terms of a state-sum formula (see e.g. [48] for a more physically-oriented discussion). For three-dimensional
QFTs with a symmetry described by a Modular Tensor Category (MTC), the Turaev-Viro construction
can be generalized to give rise to a 4d TQFT known as Crane-Yetter TQFT [49–51] (see also [52–54] for
further generalizations).
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Figure 2. Intersection/braiding of two-dimensional endable operators in the 4d bulk, as detected
by equivalent configurations. From left to right: intersecting disks (the intersection is marked by a
yellow dot); braiding semi-infinite cylinders; cylinders terminating on the topological boundary along
braiding lines; braiding boundary line operators. This reproduces the braiding between symmetry
defects (red circles) of the QFT3 of interest.

theories, that procedure yields a 4d TQFT that seems to lack the very line operators that
braid on the boundary. In some extreme cases (e.g. in SU(N)k with N, k coprime) the bulk
TQFT is still an SPT after gauging, and thus, naively, it does not have any topological
operator. This is related to a second puzzle: an invertible TQFT has a single state on any
spatial manifold and thus, if we regard the topological boundary conditions as states on the
boundary manifold, it should have a unique boundary condition. On the other hand, the
corresponding YM-CS theories can have multiple global variants (seemingly breaking the
one-to-one correspondence with boundary conditions).

With the goal of clarifying these issues, in this work we study the case of 3d Yang-Mills-
Chern-Simons theories in detail. In section 2, focusing for definiteness on the su(N) gauge
algebra, we conduct a field-theoretical analysis and confirm that, in fact, the gauged version
of the anomaly inflow SPT phase is the 4d Symmetry TFT for those theories. Even when
the latter is still an SPT, we notice that there can exist inequivalent sets of topological edge
modes one can couple it to at the topological boundary, hence re-establishing the one-to-one
correspondence with global variants of the 3d theories. It turns out that one can resolve both
puzzles by broadening the class of bulk topological operators under scrutiny (similarly to
the G-crossed braided tensor categories of [55]) to include “endable” operators, i.e. extended
operators in which one can cut a hole. In the language of higher categories, there exist
(possibly higher) morphisms between such operators and the identity operator. Exploiting
configurations in which the operators are placed along non-intersecting semi-infinite cylinders
(as in the middle left portion of figure 2) one can provide a good definition of braiding between
the boundaries of the holes. By smoothly closing the open semi-infinite ends of the cylinders
(figure 2 left) one realizes that such a braiding is equivalent to a contact interaction between
the endable operators, for instance placed on intersecting disks.

By including the behavior of such endable operators in the definition of topological
boundary conditions, one recovers the full classification that encompasses the inequivalent
edge modes. This can be formalized in terms of a generalized concept of Lagrangian algebra
that includes the endable operators. One could think of the semi-infinite cylinders as
terminating on a topological boundary (as in the middle right portion of figure 2). In this
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way, the braiding between holes is seen to capture the braiding between the edges of the
cylinders on the boundary (figure 2 right). Such edges are precisely the symmetry defects of
the QFT3 that braid among themselves, thus solving the first puzzle as well.4

In the second part of the paper we leverage holography in type IIB string theory to
verify our claims. At first glance this should not be expected since holography is a different
framework, in which a boundary QFTd is encoded in a (d + 1)-dimensional bulk and the bulk
theory has local dynamics (and it also includes gravity). It is possible, however, to single out
a topological sector of the bulk theory that describes the symmetry properties of the QFTd.
Due to the bulk background metric, at large r, i.e. in the near-boundary region, the bulk
field kinetic terms are suppressed and the bulk action is dominated by topological terms [56].
This is the region one should focus on to distill all RG-invariant properties of the dual gauge
theory, which are described by the Symmetry TFT. From a holographic point of view, the
(d + 1)-dimensional slab in figure 1 can then be thought of as describing a tiny portion of the
dual bulk, parametrically close to the holographic boundary [57]. All dynamical data — the
RG flow and the IR dynamics of the QFT — are instead encoded in the physical boundary.

The model we consider is based on a system of D3/D7-branes in type IIB string theory
compactified on a supersymmetry-breaking circle, proposed long ago in [58, 59] as a holographic
model of (the universality class of) SU(N)k YM-CS theory at large N . In section 3 we extract
its topological sector5 and verify that it agrees with the Symmetry TFT proposed in section 2.
We also provide a description of symmetry defects and charged operators associated to the
1-form symmetry of SU(N)k YM-CS theory in terms of string states (D-branes, fundamental
strings, and bound states thereof), and show that they behave as expected in terms of their
(non-)topological nature and braiding properties. Finally, section 4 contains a discussion
on how holography captures the way line operators of the UV YM-CS theory evolve along
the RG flow from being a set of topological / non-topological operators to becoming all
topological in the deep IR, where the full non-invertible 1-form symmetry of pure CS theory
is expected to be realized. In addition to providing an independent check of our field theory
analysis, these results provide further evidence that the holographic model of [58, 59] is
indeed in the same universality class as three-dimensional YM-CS theory (see e.g. [60–63]
for further results supporting this claim).

2 Symmetry TFT of su(N)k Yang-Mills-Chern-Simons theory

Three-dimensional Yang-Mills-Chern-Simons (YM-CS) theory with gauge algebra su(N)
and level k admits multiple global variants (or global forms), all related by “topological
manipulations”, i.e. by gauging some finite internal symmetry of the theory. As we recall in
appendix A, for given N and k the global variants have gauge group

(
SU(N)/Zp

)
k where p is

4We expect our construction to yield a 4d TQFT that is equivalent to the Crane-Yetter one [49]. Besides,
YM-CS theories enjoy infrared dualities originating from the exact level/rank dualities of the corresponding
pure Chern-Simons theories in the IR. For instance, SU(N)k is dual to U(k)−N so that both have a ZN 1-form
symmetry with the same anomaly. It follows that they also enjoy the same Symmetry TFT. This generalizes
to other groups.

5The analysis of global variants of the ABJM supersymmetric Chern-Simons-matter theories and of the
corresponding boundary conditions for a topological sector of the holographic dual in type IIA string theory
was performed in [31].
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= Bmm′

Um[γ] Um′ [γ′] Um[γ]

= θm
Um[γ]

Figure 3. Topological manipulations of GW operators that define the braiding Bmm′ and the spin θm.

a divisor of N that satisfies an extra condition. For bosonic theories, namely theories that do
not require the existence of a spin structure on the spacetime manifold, k must be a multiple of

kbos
0 =



p

gcd
(
p, N

p

) for p odd ,

2p

gcd
(
2p, N

p

) for p even .
(2.1)

For spin theories, namely theories that require and depend on a spin structure on spacetime,
k must be a multiple of

kspin
0 = p

gcd
(
p, N

p

) . (2.2)

This result can be obtained in (at least) two ways. One is to study for which groups the
level k Chern-Simons term is well defined (we review it in appendix A.1). The other way
is to start from the theory with simply-connected gauge group SU(N)k. This theory has
a ZN 1-form symmetry, implemented by topological Gukov-Witten (GW) operators Um[γ]
supported on one-dimensional lines γ and labeled by elements g = exp

(2πi
N m

)
, with m ∈ ZN ,

in the center of the gauge group. Among charged operators there are the non-topological
Wilson lines defined as

WR = TrR Pexp
(

i

∮
A

)
, (2.3)

where R is a representation of SU(N), A is the SU(N) gauge field, and Pexp is the path-
ordered exponential. Such lines have charge qR equal to the N -ality (number of boxes
in the Young diagram) of the representation R.6 The 1-form symmetry has an ’t Hooft
anomaly captured by the mutual braiding Bmm′ between GW operators and by the spin
θm, both taking values in U(1):

Bmm′ = exp
(2πik

N
mm′

)
, θm = exp

(
πik

N
m (N − m)

)
. (2.4)

They are determined by the manipulations in figure 3, and are related by [64]

Bmm′ = θm θm′

θm+m′
. (2.5)

6In the topological pure CS theory, the Gukov-Witten operators Um[γ] coincide with the Abelian Wilson lines
whose defining representation is labeled by a rectangular Young diagram with k columns and m rows. In the full
YM-CS theory, instead, all Wilson lines are non-topological and are distinct from the Gukov-Witten operators.
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One way to think of this anomaly is that the topological operators Um[γ] are both symmetry
defects and charged objects under the symmetry. As a consequence, they are not gauge
invariant under background gauge transformations when a background gauge field B ∈
H2(X3;ZN ) is turned on (here X3 is the spacetime manifold). In the bosonic case, writing
the spin as θm = exp

(
−πiℓ m2

N

)
[65], the anomaly is quantified by an integer ℓ ∈ Z2N that

is given by

ℓ =

k + N for k odd ,

k for k even .
(2.6)

Notice that Nℓ is always even. In the context of spin theories, instead, one identifies
ℓ ∼ ℓ + N [65], therefore if we regard SU(N)k as a spin theory then ℓ = k in ZN . The
anomaly inflow action for the 1-form symmetry is

Ainflow[B] = 2πiℓ

2N

∫
M4

P(B) , (2.7)

where M4 is a four-dimensional bulk manifold with ∂M4 = X3, whilst P is the Pontryagin
square operation. Because of the anomaly, the ZN 1-form symmetry cannot be gauged
in general. However, there can exist a Zp subgroup (generated by a subset of GW lines)
which is anomaly free and, upon proper gauging, leads to another global variant [66]. This
anomaly-free subgroup exists precisely when the conditions (2.1) and (2.2) are satisfied. Note
that the anomaly cancellation condition is different in the bosonic and spin cases [1]. See
appendix A.1 for details.

Our goal is to characterize the four-dimensional Symmetry TFT which describes all
global variants and topological manipulations of YM-CS theory with gauge algebra su(N)
and level k. If, as in our case, one starts from a theory with an invertible symmetry, a
constructive way to produce the Symmetry TFT is to couple the d-dimensional boundary
theory to a background gauge field B with (d+1)-dimensional anomaly inflow action and make
B dynamical. Placing the system on a (d + 1)-dimensional slab and imposing (topological)
Dirichlet boundary conditions for B on one boundary, one recovers the original theory on
the other boundary. Consequently, the Symmetry TFT emerges as the gauged version of the
anomaly inflow action Ainflow[B]. In our case, one obtains a ZN Dijkgraaf-Witten theory [67]
with twist ℓ, which admits a description in terms of U(1) one-form and two-form gauge fields
C and B, respectively, with Euclidean action [68–70]

SSymTFT =
∫
M4

[
iN

2π
B ∧ dC + iNℓ

4π
B ∧ B

]
. (2.8)

This theory has been studied in [70] (see also [71–73]). Let us review some properties of
the theory in (2.8). The gauge transformations are

B → B + dλB , C → C + dλC − ℓ λB , (2.9)

under which the action transforms by a local total derivative

δSSymTFT =
∫
M4

[
iN

2π
dλB ∧ dC − iNℓ

4π
dλB ∧ dλB

]
. (2.10)
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Recalling that gauge fields and transformations satisfy Dirac quantization conditions, this
variation is an integer multiple of 2π on generic (orientable) closed manifolds if Nℓ ∈ 2Z,
and on closed spin manifold for any Nℓ ∈ Z. Since these conditions are satisfied, the theory
is gauge invariant.

The gauge transformations and the equations of motion imply that the Wilson surface
of B on a closed surface Σ2,

WB[Σ2] = exp
(

i

∫
Σ2

B

)
, (2.11)

is gauge invariant and topological. On the contrary, the Wilson line of C, WC [γ] = exp (i
∫

γ C),
is not and needs to stay at the boundary of (WB)ℓ in order to be well defined. In other words

WC [D2] ≡ WC [γ] (WB)ℓ[D2] = exp
[
i

∫
D2

(
dC + ℓ B

)]
, (2.12)

where D2 is an open surface with ∂D2 = γ, is the correct gauge-invariant topological object.
Operators like WC [D2] are sometimes called non-genuine line operators because, as a matter
of fact, they explicitly depend on the surface D2 attached to the line γ. The equations of
motion obtained from the sum over gauge fluxes in (2.8) impose that

(WB)N [Σ2] = 1 ,
(
WC [γ] (WB)ℓ[D2]

)N
= 1 . (2.13)

They imply that (WC)N/g[γ], where

g = gcd(N, ℓ) = gcd(N, k) , (2.14)

is a genuine line operator which does not require an open surface D2. On the other hand, in
the language of section 1, the surface operator (WB)g and its powers are endable because
one can cut a topological hole in them by terminating them on suitable powers of WC .
Endable topological operators are often regarded as trivial, because one can cut holes in
them and shrink them to a point. As a consequence, in our case the standard lore would
be to consider as nontrivial bulk operators only the powers (WB)n and (WC)n N/g for n < g.
However, endable operators can have contact interactions with other operators (namely, their
correlation functions can be nontrivial if the operators cross each other), thus they are not
completely trivial. This will be important in the following.

2.1 Topological boundary conditions via Lagrangian algebras

We expect a one-to-one correspondence between topological boundary conditions of the
Symmetry TFT and global variants of the boundary theory. Let us then analyze such
boundary conditions. For Abelian TQFTs, the topological boundary conditions are in
correspondence with Lagrangian algebras, namely with maximal subsets of the topological
operators that are closed under fusion, have trivial braiding with each other, and in the
bosonic case have trivial spin, θ = 1.7 However, one has to be careful because when the TQFT

7In the spin case, the triviality of the spin means θ = ±1, which is already guaranteed by the triviality of
the braiding. In the bosonic case, we need to further impose θ = +1.

– 7 –



J
H
E
P
0
7
(
2
0
2
4
)
1
3
0

includes some SPT phases there are operators that couple via contact interactions rather than
by braiding. For instance, when g = 1 the TQFT in (2.8) is an SPT phase: all its operators are
either non-genuine or endable, meaning that the Hilbert space is one-dimensional. Therefore,
it seems that there is no nontrivial braiding to define. Indeed the theory has a unique state on
any spatial manifold (because, by the state/operator correspondence for TQFTs, only genuine
non-endable operators create nontrivial states), and identifying boundary conditions with
states one would conclude that there exists a unique boundary condition. Instead, it turns
out that an SPT phase can admit multiple inequivalent boundary conditions, corresponding
to the global variants of the boundary theory.

One way to understand this fact is to notice that if the Symmetry TFT is described by an
SPT phase, then the operators which implement the symmetry must be endable. They also
produce the nontrivial phases of the partition function when a network of them is inserted.
Correlation functions in this theory are all trivial, but for contact terms. In the presence of a
boundary, one can broaden the set of operators by including the open surfaces that terminate
on the boundary, as in the middle right of figure 2. Alternatively, by pushing the topological
boundary to infinity, one can think of them as non-intersecting semi-infinite cylinders, as
in the middle left of figure 2. In both presentations, such endable operators can now link
between each other without intersecting, and hence define a braiding.8 This reproduces the
usual braiding between the boundary lines, as in the right of figure 2. Notice that, instead of
letting the endable surfaces run to infinity, one can smoothly close them: then, the linking
number of their boundaries equals their intersection number, as in the left of figure 2. In this
way, we see that the contact interaction between endable surfaces, which captures the SPT
phase, is responsible for the braiding of the corresponding boundary lines. One is thus led
to specify boundary conditions in terms of a generalized definition of Lagrangian algebra,
as a maximal set of both genuine and non-genuine topological operators which do not braid
with each other (plus a condition on the spin in the bosonic case).

Let us apply this definition to the TQFT in (2.8). The full set of topological operators
is given by

(WB)m[Σ2] , (WC)r[D2] , with m, r ∈ ZN . (2.15)

They satisfy the following braiding relations

B
(
(WB)m, (WC)r

)
= exp

(2πi

N
mr

)
, B

(
(WC)r1 , (WC)r2

)
= exp

(2πiℓ

N
r1r2

)
. (2.16)

Notice that correctly, since an endable surface and a genuine line do not braid, the first
braiding is trivial when m is a multiple of g and r is a multiple of N/g, and the second
braiding is trivial when either r1 or r2 is a multiple of N/g. We can also associate a spin
to the operators (WC)r since their bulk has codimension 2:

θr = exp
(
−πiℓ

N
r2
)

. (2.17)

8Usually, braiding in a d-dimensional manifold is defined through the linking between two closed p- and q-
surfaces such that p + q = d − 1. In this case, we are considering two 2-surfaces in 4d. However, the presence
of a boundary allows for an extended definition of braiding between the non-intersecting endable operators: in
any slice parallel to the boundary, they braid according to the usual definition.
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Notice that the genuine line operators (WC)aN/g[γ] have spin θaN/g = ±1, consistently with
the fact that they have codimension 3. We construct a Lagrangian algebra with the subset
of operators {(WB)mi , (WC)ri}. The integers {mi, ri} take values in ZN . Triviality of the
first braiding in (2.16) and maximality impose that mi ∈ pZ, ri ∈ q Z for some integers
p, q such that N = pq. Triviality of the second braiding in (2.16) imposes that q2ℓ be a
multiple of N , namely

ℓ must be a multiple of p

gcd
(
p, N

p

) . (2.18)

In the bosonic case, triviality of the spin in (2.17) imposes the stronger constraint that
q2ℓ be a multiple of 2N , namely

ℓ must be a multiple of 2p

gcd
(
2p, N

p

) . (2.19)

In the spin case ℓ ∈ ZN and ℓ = k mod N . We immediately see that the condition on
ℓ in (2.18) is equivalent to the condition on k in (2.2). Also in the bosonic case, where
ℓ ∈ Z2N , one can verify with a little bit of algebra that the condition on ℓ in (2.19) is
equivalent to the condition on k in (2.1). Thus, the set of Lagrangian algebras is in one-to-one
correspondence with the global variants of the boundary theory. Indeed the topological
surface operators (WB)m[Σ2] modulo the Lagrangian algebra, when laid on the boundary,
become the symmetry defects of a Zp 0-form symmetry of the boundary theory that we
identify with the magnetic symmetry of SU(N)/Zp. We can thus identify the integer p

introduced here with the one introduced before. In the following we will sometime use the
notation Z[j]

# to indicate a j-form symmetry.
Not all of the Zp 0-form symmetry acts faithfully. In principle a monopole operator with

unit charge is the endpoint of (WC)q. However, the latter is in general not a genuine line. As
a consequence, the monopole operator is not genuine itself, i.e. it is not a gauge-invariant
operator of the theory on the physical boundary. The genuine lines that can end on the
topological boundary are (WC)rq with r ∈ p

gcd(p,ℓ) Z.9 It follows that only the monopoles
of charge multiple of p

gcd(p,ℓ) are gauge invariant, and thus the subgroup Zp/ gcd(p,ℓ) ⊂ Zp of
the 0-form symmetry does not act on anything.

Similarly, we can determine the electric 1-form symmetry of a global variant
(
SU(N)/Zp

)
k.

Its symmetry defects should be the topological operators (WC)r[D2] laid on the boundary,
modulo the Lagrangian algebra. This operation would seem to give a Zq 1-form symmetry for
the boundary theory, generated by the operators with r ∈ Zq. However, these operators also
depend on the surfaces of B they are attached to, which appear with the integer power rℓ. In
order for (WC)r to be a genuine boundary line, we have to trivialize its surface dependence
by requiring that (WB)rℓ is in the Lagrangian algebra. This imposes rℓ to be a multiple
of p, namely r = p

gcd(p,ℓ) s with s ∈ ZL, where10

L = q

p/ gcd(p, ℓ) = N gcd(p, k)
p2 , (2.20)

9The minimal charge of a genuine line that can end on the boundary is lcm(N/g, q) = N/ gcd(p, g) =
pq/ gcd(p, ℓ).

10The consistency conditions (2.18) or (2.19) guarantee that q is a multiple of p/ gcd(p, ℓ), see appendix A.2.
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where we used the fact that gcd(p, ℓ) = gcd(p, k). The defects (WC)
p

gcd(p,ℓ) s laid on the
boundary are the genuine lines realizing the ZL electric 1-form symmetry of the global variant(
SU(N)/Zp

)
k. Obviously, the whole ZL symmetry acts faithfully. The braiding between the

generating lines can be determined from (2.16) to be

B
(
(WC)

p
gcd(p,ℓ) s

, (WC)
p

gcd(p,ℓ) s′
)

= exp
[
2πi

ℓ

L gcd(p, ℓ) ss′
]

= exp
[
2πi

p2k

N gcd(p, k)2 ss′
]

.

(2.21)
These results precisely agree with the order of the symmetry and the braiding between
topological Abelian lines in

(
SU(N)/Zp

)
k CS theory (see appendix A.2), and in the special

case where p = 1 they reproduce (2.4).

2.2 Topological boundary conditions via edge modes

An alternative way to describe the inequivalent topological boundary conditions is in terms of
topological edge modes. When the theory in (2.8) is placed on a manifold M4 with boundary,
under the gauge transformations (2.9) the action transforms by a boundary term:

SSymTFT → SSymTFT +
∫

∂M4

[
iN

2π
λB ∧ dC − iNℓ

4π
λB ∧ dλB

]
. (2.22)

In order to make the theory gauge invariant, we need to impose boundary conditions which
trivialize such a variation. This can be achieved by either constraining the gauge fields and
their variations on the boundary, or introducing dynamical edge modes that couple to the
bulk fields and enforce boundary conditions. While the former method is conceptually more
straightforward, the latter makes it clearer what is the full list of boundary conditions and
elucidates the fate of bulk operators pushed to the boundary.

We introduce a boundary one-form degree of freedom ϕ (a standard U(1) gauge field)
with topological Chern-Simons action, coupled to the bulk (2.8) by the following action:

S3d/4d = SSymTFT +
∫

∂M4

[
iq

2π
ϕ ∧ dC − iy

4π
ϕ ∧ dϕ

]
, (2.23)

and with gauge transformation

ϕ → ϕ + dλϕ − p λB , (2.24)

which supplements (2.9). Here p, q, y are arbitrary integer parameters, although y is
constrained to be even for a bosonic edge mode. Taking into account that ∂M4 has no
boundary, the coupled 3d/4d system is gauge invariant if and only if

pq = N and yp = qℓ . (2.25)

In the spin case, this requires that p be a divisor of N and qℓ a multiple of p, which is equivalent
to (2.18) and in turn to (2.2). In the bosonic case where y has to be even, the requirement is
that p be a divisor of N and qℓ a multiple of 2p, which is equivalent to (2.19) and in turn
to (2.1). So we see that in both cases the set of topological edge modes is in one-to-one
correspondence with the global variants of the physical boundary theory. Notice that p = 1

– 10 –
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(WB)
np

Figure 4. Slab description of a Wilson line of 3d
(
SU(N)/Zp

)
k YM-CS theory (with N -ality np), as

an operator (WB)np stretched between the physical boundary on the left (where the QFT3 lives) and
the topological boundary on the right.

is always a solution for any N and k (or ℓ), because the global variant SU(N)k always exists
both as a bosonic and a spin theory. It is worth stressing that even when gcd(N, ℓ) = 1 so
that the Symmetry TFT is a four-dimensional SPT phase, there can be inequivalent boundary
conditions corresponding to different global variants of the physical boundary theory.11

The equations of motion give the following boundary conditions:

p B
∣∣
∂M4

= −dϕ , q dC
∣∣
∂M4

= y dϕ . (2.26)

The first one implies that a multiple of B is pure gauge on the boundary and is thus a (partial)
Dirichlet boundary condition. In the special case that p = 1 corresponding to SU(N)k YM-CS
theory, those are Dirichlet boundary conditions for B and free (Neumann) for C. As already
noticed above using the language of Lagrangian algebras, the bulk operators

(WB)m[Σ2] with m ∈ Zp (2.27)

remain nontrivial when laid on the 3d topological boundary and become the symmetry
defects of a Zp 0-form symmetry. On the contrary, the operators (WB)np get trivialized
at the boundary because of (2.26), but they can consistently be opened to terminate on
the Wilson lines of ϕ, since the operators

exp
[
in

(∫
D2

p B +
∫

∂D2
ϕ

)]
with n ∈ Z (2.28)

are gauge invariant. Here D2 is an open surface in the bulk, whose boundary ∂D2 ⊂ ∂M4.
In the picture of the Symmetry TFT on a slab one has the usual configurations of operators
stretched between the physical and the topological boundary, that represent non-topological
Wilson lines in the 3d physical YM-CS theory, see figure 4.

On the other hand, one can define genuine line operators stuck at the topological
boundary along a curve γ̂ ⊂ ∂M4, of the form

(
ŴC

)s[γ̂] = exp
[
i

s

L

∫
γ̂

(
q C − y ϕ

)]
with s ∈ ZL , (2.29)

11For instance, consider su(N)k with N = 16 and k odd. In the spin case, ℓ = k mod N therefore ℓ is
odd and gcd(N, ℓ) = 1. The spin global variants

(
SU(N)/Zp

)
k exist for p = 1, 2, 4. In the bosonic case,

ℓ = k + N mod 2N therefore ℓ is again odd and gcd(N, ℓ) = 1. The bosonic global variants exist for p = 1, 2.
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where
L = gcd(q, y) = q

p/ gcd(p, ℓ) = N gcd(p, k)
p2 . (2.30)

The order L of the group follows from the boundary equations of motion, i.e. from the
sum over boundary fluxes of ϕ which sets

∫
∂

(
qC − yϕ

)
∈ 2πZ. In expressing it, we used

the relations yp = qℓ, N = pq, and the fact that gcd(p, ℓ) = gcd(p, k). These boundary
line operators are the symmetry defects of a ZL electric 1-form symmetry, reproducing the
previous result in (2.20).

The equations of motion also determine the braiding between boundary line operators as

B
((

ŴC

)s
,
(
ŴC

)s′
)

= exp
[
2πi

ℓ

L gcd(p, ℓ) ss′
]

= exp
[
2πi

p2k

N gcd(p, k)2 ss′
]

, (2.31)

which, again, fully agrees with our findings in (2.21).
Unlike in more standard instances of Symmetry TFTs, most of the boundary lines do

not arise from bulk lines pushed to the boundary. Indeed, the bulk TQFT has g = gcd(N, ℓ)
topological line operators generated by (WC)N/g. These bulk lines cannot braid among
themselves for dimensional reasons, and they continue not to braid even when pushed to
the boundary. In fact, at the boundary they can be re-expressed as12

(WC)N/g = (ŴC)
p

gcd(p,ℓ)
L

gcd(L, ℓ/ gcd(p,ℓ)) . (2.32)

Note that the power of ŴC is such that the dependence on ϕ trivializes due to the sum
over boundary fluxes of C which sets q

∫
∂ ϕ ∈ 2πZ. The operator in (2.32) and its powers

are in general a subset of the boundary lines. By plugging the adequate power in the
expression (2.31), one can check that indeed they have trivial braiding among themselves.

On the other hand, if we try to extract a generic boundary line
(
ŴC

)s from the boundary
and move it into the bulk, it remains connected to the boundary through an attached
cylindrical surface

exp
[

is

L

(∫
γ

q C +
∫

T2
qℓ B −

∫
γ̂

y ϕ

)]
, (2.33)

where γ is a bulk line, γ̂ is a boundary line, and T2 is a cylindrical surface with ∂T2 = γ − γ̂.
In the special case of SU(N)k where p = 1 (and hence q = L = N , y = Nℓ), these are all the
operators (WC)s deformed to end on a line of ϕ at the boundary. Now, a configuration of
two cylinders attached to the boundary (similarly to the configuration of two semi-infinite
cylinders discussed in the context of Lagrangian algebras) can indeed braid in four dimensions,
as shown in figure 5.

Let us explore the relation between bulk and boundary lines more in detail. From (2.31),
the minimal exponent s∗ such that the boundary line

(
ŴC

)
s∗ has trivial braiding with all

other topological boundary lines is

s∗ = L

gcd
(
L , ℓ

gcd(p,ℓ)

) . (2.34)

12From the previous discussion, the exponent on the right-hand side is [N/g]
[
gcd(p, ℓ)/p

]
. This can

be rewritten as in (2.32) using two identities: g = gcd(p, ℓ) gcd
(
q, ℓ/ gcd(p, ℓ)

)
, and gcd

(
q, ℓ/ gcd(p, ℓ)

)
=

gcd
(
L, ℓ/ gcd(p, ℓ)

)
which follows from writing q = L · p/ gcd(p, ℓ).
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Ŵ
s
C

Ŵ
s′
C

=

W
s p

gcd(p,ℓ)

C

W
s′p

gcd(p,ℓ)

C

Figure 5. Braiding of boundary line symmetry defects of the ZL 1-form symmetry, and their
cylindrical-surface counterparts in the bulk. Left: Symmetry defects on the boundary. Right: When
the defects are pulled into the bulk, they become the boundaries of cylindrical bulk surface operators
connected to the boundary. In this way the braiding of boundary lines is reproduced in the bulk.

This is one of the fractions appearing in (2.32). The trivial boundary line has exponent
s = L which is a multiple of s∗. On the other hand, the minimal exponent sfree such that
the boundary line

(
ŴC

)
sfree is free to leave the boundary is13

sfree = L q

gcd
(
L q, y

) = q

gcd
(
q, ℓ

gcd(p,ℓ)

) = p

gcd(p, ℓ) s∗ . (2.35)

We see that sfree is a multiple of s∗, and more precisely the boundary line
(
ŴC

)
sfree coincides

with the genuine bulk line (WC)N/g[γ] discussed in (2.32). Thus we observe that for a
topological boundary line of the ZL 1-form symmetry, in order to be able to freely dive into
the bulk without an attached tube, it is not enough to have trivial braiding with all other
lines of ZL (that would be a generic line generated by

(
ŴC

)
s∗): it has to satisfy a stronger

constraint. This is because our Symmetry TFT also describes the Zp 0-form symmetry, and its
Zp/ gcd(p,ℓ) subgroup does not act on anything. This means that the corresponding symmetry
defects are endable, and if we cut them open, their boundaries provide new topological lines.
Only those lines of ZL that have trivial braiding also with the boundaries of the Zp/ gcd(p,ℓ)
endable symmetry defects14 can freely dive into the bulk as genuine lines. Such boundary
lines are precisely the ones generated by

(
ŴC

)
sfree .

The Zp 0-form symmetry and ZL 1-form symmetry realized by the symmetry defects on
the topological boundary, or equivalently by their cylindrical avatars in the bulk, are precisely
the symmetries of

(
SU(N)/Zp

)
k YM-CS theory, as reviewed in appendix A.2.

13Indeed sfree is the minimal positive integer such that the coefficient of ϕ in (2.29) is a multiple of q.
14The 3d braiding between symmetry-defect lines of Z[1]

L and boundaries of endable symmetry defects
of Z[0]

p is described by the first formula in (2.16), with the substitution ŴC = (WC)p/ gcd(p,ℓ) and setting
m = gm′ in order to select endable surfaces. Thus, if we restrict to mutually-transparent Z[1]

L lines by setting
r =

(
p/ gcd(p, ℓ)

)
s∗r′ and we require that the braiding trivializes for all m′, we find that r′ must be a multiple

of p/ gcd(p, ℓ).
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2.3 Global variants with unfaithful symmetries

As we just saw, the global variant
(
SU(N)/Zp

)
k has Zp 0-form symmetry and ZL 1-form

symmetry, with L given in (2.30). This shows that, in contrast with what typically happens
in theories with Abelian symmetries, the number of symmetry elements — i.e. of group
elements — is not the same across the various global variants. However, the total number of
symmetry defects is the same in all global variants once we include in the counting also the
non-genuine boundaries of endable defects.15 This essentially holds by construction, since
we specify the topological boundary conditions in terms of Lagrangian algebras in the bulk
theory — with the generalized definition of Lagrangian algebra: a Lagrangian algebra has a
number of elements equal to the square root of the total number of topological operators of
the bulk Symmetry TFT, and the symmetry defects of the boundary theory are the bulk
operators modulo the Lagrangian algebra.

From a three-dimensional boundary perspective, the reason for this atypical behavior is
that, in most variants of YM-CS theory, a subgroup of the 0-form symmetry Zp does not
act on anything. Indeed, as already discussed when analyzing the Symmetry TFT, when a
symmetry acts trivially, its topological symmetry defects are endable also in the boundary.
Consequently, one could independently count both the symmetry defects and their boundaries.
By employing this counting one can show, also from a purely boundary point of view, that the
number of symmetry defects is constant across all global variants of a given three-dimensional
theory. Let us see how this works in the case of su(N)k YM-CS theories.

The theory SU(N)k has a 1-form symmetry Z[1]
N . Among its lines, the ones that do not

braid with any other line form a subgroup Z[1]
g generated by UN/g (where g = gcd(N, k)).

These lines are special because they can terminate on a point, thus defining twisted sectors.
All other lines cannot be broken, because they carry some charge under Z[1]

N . Let us focus on
the subgroup Z[1]

p ⊂ Z[1]
N generated by the line UN/p. In this subgroup, the endable lines that

do not braid with any other line of Z[1]
N form a subgroup Z[1]

gcd(p,k) generated by UN/ gcd(p,k).
Going to the quotient, there are p/ gcd(p, k) classes of lines in Z[1]

p /Z[1]
gcd(p,k) such that the

trivial class contains the endable lines while the other classes contain the unbreakable lines.
When we gauge Z[1]

p in order to obtain the variant
(
SU(N)/Zp

)
k, a dual 0-form symmetry

Z[0]
p arises. Local operators charged under Z[0]

p are monopole operators, which before the
gauging were endpoints of the lines of Z[1]

p to be gauged. As discussed above, there is an
obstruction to the existence of gauge-invariant monopole operators with charge n ∈ Z[0]

p ,
because the corresponding line of Z[1]

p before gauging has to be in the trivial class. In
particular, there exist monopole operators only when the charge n is a multiple of p/ gcd(p, k).
This implies that the symmetry Z[0]

p does not act faithfully: its subgroup Z[0]
p/ gcd(p,k) does

not act on anything.
We conclude that the surface symmetry defects of the subgroup Z[0]

p/ gcd(p,k) ⊂ Z[0]
p are

endable, and hence we should count their boundaries as well. All in all we hence find

number of symmetry defects = L × p × p

gcd(p, k) = N . (2.36)

15Since we are dealing with invertible symmetries, it is enough to count the number of topological operators.
In the case of non-invertible symmetries there can be “multiplicities” in this counting, related to the quantum
dimensions of non-invertible lines.
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Electric 1-form Magnetic 0-form
or exp

(
i
∫

C
)

or exp
(
i
∫

B
)

# of nontrivial bulk operators N N

# of genuine/non-endable bulk operators gcd(N, k) gcd(N, k)

# of elements in Lagrangian algebra p q = N/p

# of boundary symmetry elements L = q

p/ gcd(p, k) p

# of faithfully-acting classes of
boundary symmetry elements L = q

p/ gcd(p, k) gcd(p, k)

# of total boundary symmetry defects L × gcd(p, k) ×
(
p/ gcd(p, k)

)2 = N

Table 1. Summary of the cardinality of various sets of operators in the global variant
(
SU(N)/Zp

)
k.

In the first three rows we count the bulk topological operators of the Symmetry TFT constructed
in (2.11), (2.12) and above (2.14), while the (generalized) Lagrangian algebra was defined below (2.17).
In the last three rows we count the symmetry defects of Z[1]

L and Z[0]
p in the boundary theory, keeping

into account that the defects of the Z[0]
p/ gcd(p,k) subgroup do not act on anything, are endable, and

thus their boundaries should be independently counted.

The first factor comes from Z[1]
L , the second factor from Z[0]

p , and the third factor from the
boundaries of the endable surfaces of Z[0]

p/ gcd(p,k) ⊂ Z[0]
p . For convenience, table 1 summarizes

the cardinality of the various sets of objects discussed in this section.

3 Symmetry TFT from holography

As we are going to show in the following, the Symmetry TFT for su(N)k YM-CS theories,
including the corresponding symmetry defects and charged operators, can also be derived
from a (fully top-down) holographic setup in type IIB string theory.

3.1 Holographic model

Three-dimensional SU(N) YM theory (we are not paying attention to the global structure
of the gauge group, for the time being) can be engineered in type IIB string theory placing
N D3-branes along the directions x0, . . . , x3, with x3 compact with period 2π/MKK [58].
Imposing anti-periodic boundary conditions for fermions and periodic for bosons on x3,
supersymmetry is explicitly broken and a mass of order MKK for both gaugini (at tree level)
and scalar fields (at one-loop) is generated, while the three-dimensional gauge bosons remain
massless. Therefore, the four-dimensional N = 4 SYM theory reduces at low energies (below
MKK) to pure SU(N) YM theory in three dimensions, with gauge coupling g2

YM = gsMKK , gs

being the string coupling constant. The dual type IIB supergravity background contains the
metric, the dilaton ϕ and the Ramond-Ramond (RR) five-form F5, and reads (in Lorentzian
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signature, which we will adopt in this section):

ds2 = r2

L2

(
ηµνdxµdxν + f(r)(dx3)2

)
+ L2

r2f(r)dr2 + L2ds2
S5 ,

eϕ = gs ,
1

(2πls)4

∫
S5

F5 = −N ,

(3.1)

where ds2
S5 is the metric on a unit five-sphere, µ, ν = 0, 1, 2 and

L4 = 4πgsNl4s , f(r) = 1 −
(

r0
r

)4
, r0 = MKKL2

2 , (3.2)

with ls the string length. We take ls = 1 from now on. The geometry is given by a flat
R2,1, a constant S5 and a cigar-shaped (r, x3) subspace, where the holographic coordinate r

goes from r = ∞ at the holographic boundary to r = r0 at the tip of the cigar. Here the
geometry smoothly ends, thus giving rise to a mass gap (glueballs get a mass of order MKK)
and to an area law for the fundamental Wilson loop (the holographic string tension scales
as (ΛM3

KK)1/2, where Λ = g2
YMN is the strong coupling scale). This implies that the theory

confines, and its 1-form global symmetry is unbroken.
In three spacetime dimensions a Chern-Simons term can be added to a gauge theory.

This can be implemented in the holographic setup following [59]. The D3-brane theory
admits a coupling with the RR axion C0

SC0 = 1
4π

∫
D3

C0 Tr(f ∧ f) = 1
4π

∫
R2,1×S1

Ω3(a) ∧ F1 , (3.3)

where a is the gauge field on the D3-branes, f is its field strength, and Ω3(a) is the CS form
in three dimensions. Assuming that a does not depend on x3 nor it has components along
S1, and choosing a background value for the RR flux F1 = dC0 such that∫

S1
F1 = k , (3.4)

a CS term at level k (which we take to be positive without loss of generality) for the D3
gauge field a is produced:

SC0 = k

4π

∫
R2,1

Ω3(a) . (3.5)

Since we are neglecting the backreaction of the axion field on the D3 background, strictly
speaking this description is only valid when k ≪ N . Note that this implies that the strong
coupling scale Λ = g2

YMN is much larger than the tree-level gluon mass mg = g2
YMk. Hence,

this theory is really the full YM-CS theory, and gluons cannot be integrated out at weak
coupling.

At strong coupling the stack of D3-branes is replaced by the cigar geometry. This is
topologically a disk, so the presence of a non-vanishing flux on the contractible S1 needs
to be supported by a magnetic source for C0. This is provided by k D7-branes wrapped
on S5, that are pointlike on the cigar and extend in the three dimensions of Minkowski
spacetime. To minimize their energy density, the D7-branes are located at the tip of the
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D7

Figure 6. The D7-branes which act as a source for the RR C0 potential around S1 are located at
the tip of the cigar geometry.

cigar, where the x3 circle shrinks to a point, see figure 6. In this situation, the worldsheet
of a string which is attached to a fundamental Wilson loop at the boundary can end on
the D7-branes at the tip of the cigar. This configuration is energetically favored, as it was
explicitly computed in [74], and it signals a perimeter law for the Wilson loop. This shows
that in the presence of a Chern-Simons term the theory does not confine. Equivalently, the
electric 1-form symmetry is spontaneously broken.

At energies below the S5 inverse radius, the D7-brane theory reduces to a three-
dimensional gauge theory with gauge group U(k). Note that the D7-branes are stuck
at the tip, in their vicinity the ambient space is locally flat, and the (low-energy effective)
theory described by the open strings ending on them is indeed U(k).

The presence of a background 5-form flux induces a Chern-Simons term at level −N

from the corresponding Wess-Zumino term in the D7-brane action

SC4 = 1
2(2π)5

∫
D7

C4 ∧ Tr(F ∧ F) = 1
2(2π)5

∫
R2,1×S5

Ω3(b) ∧ F5 = − N

4π

∫
R2,1

Ω3(b) , (3.6)

where b is the worldvolume gauge field on the D7-branes and F is its field strength. Note
that, because the level N is much larger than the rank k, the gluons of this theory can be
integrated out at weak coupling. Thus, at low energies all excitations on the D7-branes
decouple and we are left with a pure U(k)−N CS theory.

All in all, we started from an SU(N)k YM-CS theory with large N and fixed k in the
UV, and we ended up with a U(k)−N pure CS theory in the IR. By level/rank duality, this
is equivalent to an SU(N)k pure CS theory. Thus, this model describes the RG flow from a
YM-CS theory to a pure CS theory.16 We will come back to this RG flow in section 4.

Finally, let us clarify an issue related to the global structure of the gauge group. When we
consider the theory on the D3-branes, the gauge field a takes values in the Lie algebra u(N).
In order to get a theory with an SU(N) gauge group, we need to impose Dirichlet boundary
conditions on the NSNS 2-form B2 [56]. This implies that the RR 2-form C2 is free to vary

16Strictly speaking, this would require the presence of a regime where the UV theory is perturbatively
YM-CS. In the holographic regime, however, the theory in the UV is never decoupled from the tower of KK
modes, as in many other holographic RG-flow scenarios. We thus need to assume that the holographic theory
at hand and SU(N)k YM-CS are in the same universality class.
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on the boundary. From the point of view of the D3-branes, whose action contains the term

SC2 ∼
∫

D3
C2 ∧ Tr(f) ∼

∫
R2,1

C ∧ Tr(f) , (3.7)

the field C — which is the dimensional reduction of C2 on the circle — acts on the boundary
as a Lagrange multiplier that sets Tr(f) = 0 once we path-integrate over it, effectively
reducing the U(N) gauge field to its traceless SU(N) part [63]. Different boundary conditions
are possible, and they correspond to different global variants of SU(N), in a similar vein
as in section 2.

3.2 Topological action from type IIB supergravity

Let us now derive the four-dimensional topological sector of the supergravity theory discussed
above. As we are going to show, such sector captures the global symmetries of the boundary
YM-CS theory and provides the action of the Symmetry TFT. To do that, we compactify
the ten-dimensional equations of motion on S1 and S5, and then write down a 4d action
which reproduces them.

Let us start from the bosonic part of the action of type IIB supergravity in the string
frame, neglecting its gravity and dilaton parts:

SIIB ⊃ − 1
2(2π)7

∫ (
e−2ϕ H3∧⋆ H3 +F1∧⋆ F1 + F̃3∧⋆ F̃3 + 1

2 F̃5∧⋆ F̃5 +C4∧H3∧F3

)
, (3.8)

where H3 = dB2, Fp+1 = dCp and

F̃3 = F3 − C0H3 , F̃5 = F5 + 1
2 B2 ∧ F3 −

1
2 C2 ∧ H3 . (3.9)

The self-duality condition F̃5 = ⋆ F̃5 has to be imposed after the equations of motion are
derived. In the supergravity background of interest, we have

F1 = k ω1 , F5 = −(2π)4Nω5 , (3.10)

where ωi are the unit volume forms on S1 and S5. The equation of motion for C0 is

d ⋆ F1 + H3 ∧ ⋆ F̃3 = 0 , (3.11)

and it is automatically satisfied by the background in (3.10). This means that if B2 and
C2 fluctuate, they are forced to satisfy

H3 ∧ ⋆ F̃3 = 0 . (3.12)

The equation of motion for C4 is

d ⋆ F̃5 − H3 ∧ F3 = 0 , (3.13)

which can be easily shown to be equivalent to the Bianchi identity dF5 = 0 once the self-
duality condition is imposed. The most relevant equations for us are the ones for C2 and
B2, which read

d ⋆ F̃3 + H3 ∧ F̃5 = 0 , −g−2
s d ⋆ H3 + d

(
C0 ⋆ F̃3

)
+ F3 ∧ F̃5 = 0 . (3.14)
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Assuming that all fields but F5 do not have components along S5, the first equation is solved by

⋆ F̃3 = dC6 − B2 ∧ F5 . (3.15)

Taking B2 not to have components along S1,17 we have

⋆ H3 = (2π)4 h(r) (⋆4 H3) ∧ ω1 ∧ ω5 , (3.16)

where h(r) is a function of the radial coordinate only (whose precise expression is not needed)
and ⋆4 is the 4d Hodge star. Making the following Ansatz for the dimensional reductions
of C6 and C2,

C6 = (2π)5 C̃ ∧ ω5 , C2 = 2π C ∧ ω1 , (3.17)

and using (3.10), the second equation in (3.14) becomes[(
−g−2

s d
(
h(r) ⋆4 dB

)
+ k dC̃ + kN B − N dC

)
∧ ω1 + N C0 dB

]
∧ ω5 = 0 , (3.18)

where we normalized the B2 field as B2 = 2πB. Since dB does not have any component
along S1, this is equivalent to the two equations

k dC̃ + kN B − N dC = 0 , N dB = 0 . (3.19)

Note that the equation (3.12) is also satisfied. The equations in (3.19) can arise as the
equations of motion of the following four-dimensional action:

S4d =
∫ (

− N

2π
B ∧ dC + k

2π
B ∧ dC̃ + Nk

4π
B ∧ B

)
, (3.20)

where C and C̃ are not independent, but rather are related by the ten-dimensional Hodge
duality relation (3.15) which becomes

2π ⋆
(
dC ∧ ω1

)
= (2π)5(dC̃ + N B

)
∧ ω5 . (3.21)

Using the large r dependence of the background metric (3.1), one can translate this relation
to one that involves the 4d Hodge star:

dC̃ + N B ∼ 1
r

⋆4 dC . (3.22)

This means that for large values of r (i.e. near the holographic boundary) we have dC̃ = −NB.
All in all, close to the boundary the bulk theory is dominated by the following action:

S4d = −
∫ (

N

2π
B ∧ dC + Nk

4π
B ∧ B

)
, (3.23)

which is (after a Wick rotation to Euclidean signature) the Symmetry TFT action (2.8),
including the quadratic term in B which captures the ’t Hooft anomaly of the ZN 1-form
symmetry (recall that, by construction, in our top-down holographic setup we deal with
spin manifolds, so ℓ = k here).

17An S1 component of B2 would describe the background 1-form gauge field of the electric 0-form symmetry
associated to the circle compactification. We do not include this component because we are not interested in
such a symmetry, which is not present in the low-energy field theory.
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3.3 Symmetry defects from holography

Let us now see how the topological operators discussed in section 2 are described holo-
graphically. Let us start with the SU(N) global form. Under the ZN 1-form symmetry, the
minimally charged operator is a fundamental Wilson line supported on a curve γ′. This is
described by a fundamental string whose two-dimensional worldsheet Σ′

2 extends in the bulk
and ends on γ′ at the r = ∞ boundary of the geometry (3.1), as in ordinary holographic
constructions [75, 76]. Fundamental strings couple to the NSNS two-form B2 = 2πB as

SF1 =
∫

Σ′
2

B , (3.24)

where ∂Σ′
2 = γ′. The fundamental Wilson line hence reads WB[Σ′

2] = exp
(
i
∫

Σ′
2

B
)
. The

operator that measures the charge of such a Wilson line is a line operator of C, which
corresponds to a D1-brane with one direction wrapped on the circle and the other direction
extended along the boundary. Let us briefly recall why this is the case. Introducing a
fundamental Wilson line in the effective 4d topological action (3.23) leads to

S4d + SF1 = −
∫ (

N

2π
B ∧ dC + Nk

4π
B ∧ B

)
+

∫
B ∧ δ(2)(Σ′

2) , (3.25)

where δ(2) localizes the four-dimensional integral on the worldsheet. The equation of motion
for B and its restriction to the 3d boundary (where B = 0 due to the Dirichlet boundary
conditions) read, respectively:

N

2π
dC + Nk

2π
B = δ(2)(Σ′

2) ,
N

2π
dC

∣∣∣
r=∞

= δ(2)(γ′) . (3.26)

The latter is exactly the violation of the conservation of the electric 1-form symmetry current
Je in the presence of an electrically charged Wilson line, once we identify

⋆3 Je = N

2π
C
∣∣∣
r=∞

. (3.27)

We need C|r=∞ to be a freely-varying field, namely Neumann boundary conditions for C.
The symmetry defect of the electric ZN 1-form symmetry, supported on a line γ at the
boundary r = ∞, is thus given by the GW operator

Uα= 2πp
N

[γ] = exp
(

iα

∫
γ

⋆3 Je

)
= exp

(
ip

∫
γ

C

)
(3.28)

with integer p ∼ p+N . This is nothing but the (exponential of the) WZ action of p coincident
D1-branes wrapped on S1 and supported on a line γ on the 3d boundary. Indeed, using the
Ansatz (3.17), the WZ action for a D1-brane on the boundary (where B = 0) reads

SD1 = 1
2π

∫
γ×S1

(
C2 − 2πC0B

)
=

∫
γ

C . (3.29)

Hence, D1-branes at the boundary are associated with the ZN topological symmetry defects
of the 3d SU(N)k YM-CS theory.
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x3

D1

D1/k F1

k F1 k F1

D1

Figure 7. The stringy bound states describing bulk topological operators of SU(N)k YM-CS theory.
Left: a D1-brane (red) wrapping the circle direction x3 by Witten effect develops k units of F1-charge,
so that k F1-strings (green) are emitted in an orthogonal direction. Right: a D1-brane along a curve
γ (and wrapping x3, not drawn) must live at the boundary of k F1-strings.

If k = 0, a D1-brane describing a symmetry defect of the boundary YM-CS theory, whose
WZ action is (3.29), can be moved into the bulk and the operator WC [γ] = exp

(
i
∫

γ C
)

is
well defined even if γ does not lie on the boundary. If k ̸= 0, instead, this is not the case. We
learned, following the discussion in section 2, that when k ̸= 0 gauge invariance requires the
symmetry defect WC [γ] to be attached to a surface D2 whose boundary is ∂D2 = γ:

WC [∂D2] (WB)k[D2] = exp
(

i

∫
∂D2

C + ik

∫
D2

B

)
. (3.30)

This has a natural explanation in the holographic construction. When k ̸= 0, along the
circle S1 there is a varying background for C0 that solves (3.4), given by 2πC0 = kφ where
φ = x3MKK is the angular coordinate along the S1. Since the action (3.29) wraps the circle,
as we move from φ = 0 to φ = 2π an effective F1-charge builds up on the worldvolume of the
D1-brane (due to the Witten effect [77]), so that once we reach φ = 2π the brane looks like a
D1/k F1 bound state. This point however has to be glued to the point φ = 0, where there is
just a D1-brane, therefore k F1-strings have to come out along an orthogonal direction.18

This is pictured in figure 7 left. The net result is that a D1-brane wrapping S1 and placed
along a curve γ must live at the boundary of k F1-strings with worldsheet D2 such that
∂D2 = γ, as shown in figure 7 right (where the circle direction x3 is not drawn). This system
reproduces the operators (3.30), which are nothing but (2.12) (recall that ℓ = k here).

We conclude that our holographic model exactly reproduces the Symmetry TFT and all
symmetry defects and charged operators of SU(N)k YM-CS theory, including also endable
operators, which, as argued by the field theory analysis of section 2, are crucial to make
sense of the Symmetry TFT. The description of other global variants are obtained imposing
appropriate boundary conditions for the B and C fields at r = ∞. The discussion follows
verbatim the one in section 2 and we do not repeat it here.

It would seem that this agreement holds as a general rule, since the standard results
of [56]. However, in holography the (d + 1)-dimensional bulk is not topological, not even in

18Alternatively and more simply, the coupling
∫

dC0 ∧ A on the D1-brane involving the worldvolume gauge
field A creates k units of charge, and in order to avoid a tadpole, k F1-strings need to terminate on the D1.
We thank Oren Bergman for pointing this out to us.
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the near-boundary region where — as already emphasized — the correspondence with the
Symmetry TFT description is expected to hold. There can be instances where holography,
while still capturing the topological aspects of the dual gauge theory, does not reduce to the
Symmetry TFT. Natural candidates are gauge theories with U(1) factors, whose holographic
description requires dynamical boundary degrees of freedom and where bulk field boundary
conditions are not purely topological. This will be addressed in [78].

4 Holographic RG flow from YM-CS to pure CS

In this section we want to show how the bulk description encodes the RG flow that takes place
in the 3d theory. In field theory terms, what we are describing is an RG flow from a YM-CS
theory in the UV to a pure CS theory in the deep IR. This means, in particular, that some
line operators that are not topological in the UV should become topological along the flow.
Some other line operators, on the other hand, are expected to disappear from the IR theory.

In YM-CS theory Wilson lines are not topological, and they are labeled by irreducible
representations of the gauge group SU(N), which can be described in terms of Young diagrams.
The generators of the ZN 1-form symmetry are instead topological lines. When linking the
Wilson lines, they measure their ZN charge, which is given by the N -ality of the representation.
Hence, in the UV there is a clear distinction between symmetry defects and the objects which
they act on. As previously discussed, when the CS level k ̸= 0 the ZN 1-form symmetry is
anomalous and the topological lines are themselves charged, with charge multiple of k.

In the deep IR, i.e. at energies well below the strong coupling scale Λ = Ng2
YM, it is

widely believed that the theory flows to a pure SU(N)k CS theory.19 In pure CS theory,
there is only one kind of lines, the Wilson lines, and they are all topological. For k ̸= 0
Wilson lines are still labeled by irreducible representations of SU(N), but only representations
corresponding to Young diagrams with at most k columns lead to non-vanishing Wilson lines.
The N lines generating the ZN 1-form symmetry are the subset consisting of the Abelian lines,
corresponding to rectangular Young diagrams with m rows of k boxes, with m = 0, . . . , N − 1.
What distinguishes the Wilson lines that generate the ZN 1-form symmetry in the IR from
all others is that they fuse according to the ZN group law. Yet, also all other Wilson lines are
topological and can be considered as 1-form symmetry defects. The symmetry generated by
the full set of Wilson lines is the non-invertible 1-form symmetry of SU(N)k CS theory [79].

Remarkably, all these aspects can be seen from the dual holographic perspective.
We have already discussed Wilson lines in our setup. For gauge group SU(N) they

correspond to fundamental strings ending on the boundary, in agreement with the fact that
we impose Dirichlet boundary conditions on the NSNS field B2, which fundamental strings
couple to. Let us start focusing on Wilson lines in the fundamental representation. If we
take a line along the 3d boundary, then the worldsheet of the F1-string is an open 2d surface
“hanging” in the bulk along the radial direction, and whose boundary is the line at the
boundary. For a line that is a small loop, the 2d surface will have the topology of a disk, and
it will reach a minimal radius that is still well within the AdS region of the background. Hence,

19Remarkably, this is instead a prediction of the holographic model we are using. Indeed, on spin manifolds,
we have that U(k)−N ↔ SU(N)k as pure CS theories, by level/rank duality.
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the Wilson loop one-point function will have a scaling typical of its UV completion, namely 4d
conformal N = 4 SYM, for instance the potential between the probe quarks is Coulomb-like.

When the loop at the boundary grows, the minimal radius of the F1-string worldsheet
goes deeper into the bulk, until it reaches the tip of the bulk geometry. This corresponds to
a Wilson loop whose size is larger than the inverse of the strong-coupling scale Λ. When the
F1-string reaches the tip, it can end on the D7-branes that are located there, and which are
parallel to the boundary (we take here the bulk to be the four-dimensional manifold M4 we get
after the reduction on S5 and S1, so that D7-branes are effectively three-dimensional objects).
Hence, the worldsheet can open there, so that it has now the topology of a cylinder, with the
loop on the D7-branes being a sort of IR image of the loop at the boundary.20 For any k ̸= 0,
this configuration is actually energetically favored with respect to the disk topology, which for
a large Wilson loop would describe instead an area law and a confining phase [74]. We would
like to further argue that the dual bulk description gives evidence that the Wilson loop is in
fact topological in the deep IR. To see this, notice that the boundary conditions at the two
ends of the cylinder stretched between the boundary at r = ∞ and the D7-branes at the tip
are actually different. As usual for holographic Wilson loops, the conditions at the boundary
of M4 are of Dirichlet type [80]. At the other end of the worldsheet the boundary conditions
on the D7-branes are instead of Neumann type, from the very definition of what D-branes are.
This is an indication that the line living on the D7-branes is topological. Indeed, consider the
end of a string on the D7-branes as a probe quark in the theory defined on the worldvolume
of the D7-branes. This is charged under the gauge group of the latter. But, as we derived
earlier, the gauge theory on the D7-branes is nothing but a U(k)−N pure CS theory (the
YM term is suppressed already in the perturbative regime, because N ≫ k and gluons get a
mass and can be integrated out semiclassically). Hence probe quarks have worldlines that
are topological Wilson lines. We then establish that fundamental Wilson lines of the SU(N)k

YM-CS theory become topological in the IR by manifesting themselves as the fundamental
Wilson lines of the U(k)−N level/rank dual pure CS theory, which are obviously topological.

The above discussion can be extended to Wilson loops in other representations of SU(N).
Some of these operators should also become topological along the RG flow. These include
the operators that are topological in the UV, i.e. the symmetry defects (D1/k F1 bound
states in the holographic setup) which in the IR are identified with the Wilson lines in the
corresponding representation. In fact, one expects to have the possibility of creating networks
of surfaces in 4d that provide the putative Symmetry TFT for the full non-invertible 1-form
symmetry of the pure CS theory in the IR.

For 4d N = 4 SYM a precise recipe has been developed to describe line operators in
arbitrary representations as states of type IIB string theory in AdS5 × S5 [81–84]. Wilson
line operators are embodied by either D3- or D5-branes with some units of fundamental
string flux dissolved on their worldvolume and which end on lines at the boundary of AdS.
The units of F1-string flux equal the number of boxes for each given column (D5-brane)
or row (D3-brane) of the corresponding Young diagram. So, any given Young diagram can

20As already noticed in section 3.1, the expectation value of the Wilson loop satisfies a perimeter law typical
of a deconfined phase with a spontaneously broken electric 1-form symmetry. Indeed, the potential between
probe quarks is constant.
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be described in terms of bound states of D5- or D3-branes, whose solutions as defects in
AdS5 × S5 have also been found.

It would be very interesting to find analogous solutions in our setup, which is in one lower
dimension and, most importantly, with broken supersymmetry. This is beyond the scope
of the present paper, but we do not expect qualitative changes to what mostly concerns us
here. In fact, one can just think of configurations with a number of parallel F1-strings which
equals the number of boxes of the desired Young diagram. This holographically represents
a Wilson loop in a reducible representation, that contains the irreducible representations
corresponding to the Young diagrams of interest. The argument for their topological nature
once the strings open up on the D7-branes at the tip goes verbatim as for the F1-string
describing a Wilson loop in the fundamental representation. However, on the D7-branes there
are topological lines only in representations allowed for pure U(k)−N CS theory, which are
the same as those of the level/rank dual SU(N)k CS theory. In particular, they can have at
most N rows and k columns in terms of Young diagrams. Hence, only string configurations
which are compatible with those representations can end topologically on the D7-branes
at the tip. The other larger representations will just lie at the tip, and the corresponding
Wilson loops will display an area law. In other words, they vanish in the deep IR, i.e. they
are not operators of the IR pure CS theory.

We then see how the holographic model of [58, 59], which describes three-dimensional
SU(N)k YM-CS theory at large N (or, more precisely, is believed to belong to the same
universality class), correctly captures the way topological and non-topological operators
rearrange or disappear along the RG flow from the YM-CS regime in the UV to the CS
regime in the IR.
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A Aspects of su(N)k Chern-Simons theory

Here we review some aspects of the three-dimensional gauge theories with algebra su(N)
and Chern-Simons level k. In particular, we first review the quantization of the level and
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the possible global forms of the gauge group, and then the corresponding 1-form and 0-form
symmetries in each global variant.

A.1 Level quantization and global variants

Let us first review the quantization condition on the Chern-Simons level k in a three-
dimensional theory with gauge group SU(N)/Zp, where p is a divisor of N . We give two
alternative derivations.

3d Chern-Simons term as 4d second Chern class. The Chern-Simons term on a 3d
manifold X3 can be defined as the instanton density integrated on a 4d manifold M4 with
boundary, such that ∂M4 = X3:

SCS = ik

4π

∫
X3

Tr
(

A ∧ dA − 2i

3 A ∧ A ∧ A

)
= 2πik

8π2

∫
M4

Tr(F ∧ F ) . (A.1)

In order to have a well-defined 3d Chern-Simons term, this expression should not depend
on the choice of extension M4. Let us then consider two such extensions, M4 and M′

4, and
impose that the difference between the corresponding actions S′

CS −SCS takes values in 2πiZ,
for every possible bundle. By gluing M′

4 with M4 (where bar denotes orientation reversal)
along the common boundary X3, this can be rewritten as the integral of the instanton density
over the closed manifold M′

4 ∪ M4. Using the relation between the quantization of the
instanton number on closed manifolds and the magnetic flux (or second Stiefel-Whitney class,
or Brauer class) w2 ∈ H2(M4;Zp) of an SU(N)/Zp bundle, namely (see e.g. [85])

1
8π2

∫
Tr(F ∧ F ) = N(p − 1)

2p2

∫
P(w2) mod 1 , (A.2)

where P is the Pontryagin square, one obtains the condition
kN(p − 1)

2p2

∫
P(w2) ∈ Z , (A.3)

for every possible choice of w2.
On closed spin four-manifolds one has that

∫
P(w2) ∈ 2Z, hence the condition (A.3)

amounts to require that k is a multiple of

kspin
0 = p2

gcd
(
p2, N(p − 1)

) = p

gcd
(
p, N

p

) . (A.4)

Note that kspin
0 = 1 (and hence any k ∈ Z is allowed) if and only if p2 is a divisor of N (this

is trivially the case if p = 1, leading to the SU(N)k CS theories, but also if N = ap2 with
p > 1). On the other hand, if p and N/p are coprime then k has to be a multiple of p (this
happens for example when p = N , namely in a PSU(N)k gauge theory).

On non-spin manifolds one has that
∫
P(w2) ∈ Z, hence the condition (A.3) implies

that k must be a multiple of

kbos
0 = 2p2

gcd
(
2p2, N(p − 1)

) = 2p

gcd
(
2p, N

p (p − 1)
) =


p

gcd
(
p, N

p

) for p odd ,

2p

gcd
(
2p, N

p

) for p even .
(A.5)
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Spin of 3d Wilson lines. Wilson lines charged under the ZN 1-form symmetry of SU(N)k

CS theory transform with a charge equal to the number of boxes in the Young diagram of
the gauge representation used to define the line, i.e. the N -ality of the representation. The
topological line operators Um that implement the 1-form symmetry are themselves Wilson
lines in pure Chern-Simons theory, in particular the symmetry defect Um is the Abelian
Wilson line in representation Rmk whose Young diagram is a rectangle with m rows and
k columns, with m = 0, 1, . . . , N − 1. The spin of such Wilson lines can be read from the
conformal dimensions ∆ of the corresponding primary operators in the 2d su(N)k WZW
model, which are given by

∆(m) = C2(Rmk)
k + N

= km(N − m)
2N

, (A.6)

where C2(Rmk) is the quadratic Casimir of the representation Rmk,21 while the spin is
θm = e2πi∆(m). We attempt to gauge a Zp subgroup of the ZN 1-form symmetry. Let N = pq,
so that such a subgroup is implemented by the lines Um′q with m′ = 0, . . . , p− 1. From (A.6),
the spin of these lines follows from

∆(m′q) = kNm′(p − m′)
2p2 . (A.7)

In order to be able to gauge Zp within spin theories, we need to impose ∆(m′q) ∈ 1
2Z for all

m′. The most restrictive condition arises when m′ = 1, and it requires k to be a multiple of
kspin

0 in (A.4). In order to be able to gauge Zp within bosonic theories, we need to impose
∆(m′q) ∈ Z for all m′. Once again, the most restrictive condition arises when m′ = 1 and
it requires k to be a multiple of kbos

0 in (A.5).

A.2 Symmetries and anomalies

Let us discuss the 1-form symmetry of the global variants
(
SU(N)/Zp

)
k obtained by gauging

a Zp subgroup of the ZN 1-form symmetry of SU(N)k. Given the spin from (A.6) of the
lines Um implementing the ZN 1-form symmetry, their braiding is

B (m1, m2) = e2πi[∆(m1)+∆(m2)−∆(m1+m2)] = exp
(

2πi
k

N
m1m2

)
. (A.8)

The anomaly coefficient ℓ was defined in [65] by rewriting the spin (A.6) of the lines as

θ(m) = exp
(
−πiℓ

m2

N

)
, (A.9)

21The quadratic Casimir (in the physicists’ normalization) of the representation Rmk specified by the
rectangular Young diagram with m rows and k columns can be obtained using the general formula:

C2(Rmk) = (λ, λ + 2ρ)
2 ,

where ρ = [1, . . . , 1] and λ = [0, . . . , 0, k, 0, . . . , 0] (where k is at position m) are the (N − 1)-dimensional su(N)
Weyl vector and highest-weight vector of the representation Rmk, respectively, in terms of Dynkin labels. The
scalar product has matrix Gij = i(N − j)/N for i ≤ j, and Gij = Gji for i > j. We then get

C2(Rmk) = 1
2

N−1∑
i,j

Gij

(
δimδjmk2 + 2δimk

)
= 1

2

(
k2Gmm + 2k

N−1∑
j=1

Gmj

)
= km(N − m)(k + N)

2N
.
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which shows that for bosonic theories ℓ is defined mod 2N , and it is given by

ℓ =

k + N for k odd ,

k for k even .
(A.10)

Notice that Nℓ is always even in bosonic theories. For spin theories, instead, the anomaly
coefficient is defined mod N and hence ℓ = k for all values of k.

We now proceed to gauge the lines Um′q implementing the Zp subgroup of ZN , where
N = pq. Assuming that the quantization conditions on k described in appendix A.1 are
met, this is an allowed operation. After gauging, the lines that remain as genuine symmetry
defects are the ones which have a trivial braiding with the lines Um′q, modded out by the
identifications induced by fusion with Um′q [66]. The first requirement implies that the
surviving symmetry defects Um are labeled by m’s such that 1 = B(m, m′q) = exp

(2πik
p mm′)

for all m′ ∈ Z. This restricts m = ra, where

a ≡ p

gcd(p, k) (A.11)

and r is an integer. We then have to mod out this set by the action of fusion with the lines
of Zp, i.e. we identify lines Um whose labels differ by multiples of q. We are thus left with
the lines Ura labeled by r = 0, . . . , L − 1 which implement a ZL 1-form symmetry, where22

L ≡ q

gcd(q, a) . (A.12)

As a consistency check, note that if p = 1 then L = N (SU(N)k has a ZN 1-form symmetry),
if p = N then L = 1 (PSU(N)k does not have a 1-form symmetry), and if k = 0 then L = q

(SU(N)/Zp has a ZN/p 1-form symmetry).
Let us show that, for those k that satisfy the quantization conditions (A.4) or (A.5),

the identity gcd(q, a) = a holds and therefore

L = q

a
= N gcd(p, k)

p2 . (A.13)

Indeed, if k is a multiple of p/ gcd(p, q), we can pull this factor out in the following gcd:

gcd(p, k) = p

gcd(p, q) gcd
(

gcd(p, q) ,
k

p/ gcd(p, q)

)
. (A.14)

This allows us to write a as

a = gcd(p, q)
gcd

(
gcd(p, q) , k

p/ gcd(p,q)

) , (A.15)

which shows that q is a multiple of a and thus gcd(q, a) = a as sought. Similarly, if k is a
multiple of 2p/ gcd(2p, q), we can pull this factor out and write

2 gcd(p, k) = gcd(2p, 2k) = 2p

gcd(2p, q) gcd
(

gcd(2p, q) ,
2k

2p/ gcd(2p, q)

)
. (A.16)

22Indeed the smallest identification between values of m is by lcm(q, a) = qa/ gcd(q, a). This means that
the smallest identification between values of r is by L = lcm(q, a)/a.
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This allows us to write a as

a = gcd(2p, q)
gcd

(
gcd(2p, q) , 2k

2p/ gcd(2p,q)

) , (A.17)

which again shows that q is a multiple of a and thus gcd(q, a) = a as sought.
Using (A.6), the spin of the lines Ura that implement the ZL 1-form symmetry is given by

θ(ra) = exp
(

πi
k r (Lp − r)
L gcd(p, k)

)
, (A.18)

whereas their mutual braiding is

B(r1, r2) = exp
(

2πi
k

L gcd(p, k) r1r2

)
. (A.19)

We can compute the anomaly coefficient ℓp of a given
(
SU(N)/Zp

)
k global variant, which is now

defined as θ(ra) = exp
(
−πiℓp

r2

L

)
. For bosonic theories ℓp is defined mod 2L and is given by

ℓp =


k

gcd(p, k) + L for k and p odd ,

k

gcd(p, k) otherwise .

(A.20)

With some algebra and using (A.5) one can show that Lℓp is always even. For spin theories,
instead, ℓp is defined mod L and hence it is given by the latter case of the formula above for
all values of k and p. The result in (A.20) matches the one in (A.10) for p = 1.

Finally, let us discuss the magnetic 0-form symmetry in each global variant. When we
gauge the Zp electric 1-form symmetry, a dual Zp magnetic 0-form symmetry arises. However,
its Zp/ gcd(p,k) subgroup does not act on anything. Indeed, local operators with charge m under
the Zp 0-form symmetry are pointlike monopole operators, which can be identified as the
endpoints of the lines Umq of the Zp 1-form symmetry we gauged. The only gauge-invariant
monopole operators, though, are the ones with charge m such that the corresponding Umq

were trivial (endable) before gauging. This imposes 1 = B(m′, mq) = exp
(2πik

p mm′) for all
m′ ∈ Z, which restricts m to be a multiple of p

gcd(p,k) . Consequently, the Zp/ gcd(p,k) subgroup
of the magnetic 0-form symmetry does not act on the gauge-invariant monopole operators,
and only the quotient Zp/Zp/ gcd(p,k) ∼= Zgcd(p,k) acts faithfully.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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