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We study the Mott transition occurring for bosonic Hubbard models in one, two, and three spatial
dimensions, by means of a variational wave function benchmarked by Green’s function Monte Carlo
calculations. We show that a very accurate variational wave function, constructed by applying a
long-range Jastrow factor to the non-interacting boson ground state, can describe the superfluid-
insulator transition in any dimensionality. Moreover, by mapping the quantum averages over such
a wave function into the the partition function of a classical model, important insights into the
insulating phase are uncovered. Finally, the evidence in favor of anomalous scenarios for the Mott
transition in two dimensions are reported whenever additional long-range repulsive interactions are
added to the Hamiltonian.

PACS numbers: 74.20.Mn, 71.10.Fd, 71.10.Pm, 71.27.+a

I. INTRODUCTION

The recent advances achieved on cold atoms trapped
in optical lattices have generated an increasing interest in
the condensed matter community, since they allow exper-
imental realizations of simple lattice models.1,2 A great
advantage of these systems is the possibility to have a
direct control of the parameters, such as the width of the
bands and the strength of the interactions, that can be
manipulated by varying the depth of the optical poten-
tial.3 Therefore, cold atoms on optical lattices give the
unique opportunity to make a close contact with theoret-
ical models and to examine the origin of the fundamen-
tal physical phenomena that occur in crystalline materi-
als. In particular, one of the most spectacular example is
given by the superfluid-insulator transition in a system
of interacting bosons: The so-called Mott transition.2

In this paper, we consider the superfluid-insulator
transition in a bosonic system with different kinds of in-
teractions. The simplest model that contains the basic
ingredients of strong correlations is the Hubbard model

H = − t

2

∑

〈i,j〉

b†i bj + h.c.+
U

2

∑

i

ni(ni − 1), (1)

where 〈. . . 〉 indicates nearest-neighbor sites, b†i (bi) cre-

ates (destroys) a boson on the site i, and ni = b†ibi is the
local density operator. Here, we consider N particles on
a one-dimensional (1D) chain, a two-dimensional (2D)
square lattice, and a three-dimensional (3D) cubic lat-
tice with L sites and periodic-boundary conditions. At
zero temperature and integer densities ρ = N/L there
is a superfluid-insulator transition when the ratio be-
tween the kinetic energy and the on-site interaction is
varied. Otherwise, for non-integer fillings, the ground
state is always superfluid. In a seminal paper,4 by using
a field-theoretical approach, Fisher and coworkers pro-
posed that the transition of the d-dimensional clean sys-
tem belongs to the XY universality class in d + 1. This

scenario has been confirmed mostly in one and two di-
mensions by using different numerical techniques, such
as quantum Monte Carlo and density-matrix renormal-
ization group.5,6,7,8,9 In particular, it has been verified
that in one dimension at ρ = 1 there is a Kosterlitz-
Thouless transition and the estimation of the critical
value of the on-site interaction ranges between Uc/t ∼ 1.7
and Uc/t ∼ 2.3.5,7 Instead, a second-order phase transi-
tion is claimed to occur for Uc/t ∼ 8.5 in two dimen-
sions,9 and for Uc/t ∼ 14.7 in three dimensions.10. Ac-
curate estimations for the critical values can be also ob-
tained from a strong-coupling expansion.11,12

Besides the numerically exact techniques, important
insights into the various phases can be obtained by con-
sidering simplified variational wave functions. The sim-
plest example is given by the celebrated Gutzwiller state,
where the on-site correlation term allows for the suppres-
sion of the energetically expensive charge fluctuations.
Contrary to the fermionic case, when considering bosons,
it is possible to deal with this wave function without any
further approximation.13,14 Then, the Mott transition is
obtained with a reasonable estimate of the corresponding
critical value Uc/t, namely Uc/t = d(

√
nc+

√
nc + 1)2 for

integer fillings ρ = nc. The main drawback of this ap-
proach is that, similarly to what happens with fermions,
the transition is reached with a vanishing kinetic energy
and the insulating state completely lacks charge fluctua-
tions, namely all particles are localized, nc in each lattice
site. Of course, this leads to a wrong description of the
insulator, whenever the local interaction is finite.

Following the ideas of previous works on fermionic sys-
tems,15,16,17 in a recent paper18 we have shown that, in
order to correct this outcome and obtain a more accu-
rate description of the ground state, it is necessary to
include a long-range Jastrow factor, whose singular be-
havior at small momenta was shown to be able to turn a
non-interacting bosonic state into an insulator that still
contains density fluctuations. In this paper, we present
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a more detailed study of the properties of that Jastrow
wave function, as well as of its accuracy in comparison
with Green’s function Monte Carlo (GFMC) calculations,
which, because of the absence of the sign problem, pro-
vide numerically exact results.19,20

The same Jastrow wave function turns out to be also
very effective to describe Hamiltonians that contain long-
range interactions. This case has not been considered
much in the literature, and we will show that different
scenarios for the superfluid-insulator transition could oc-
cur. As a matter of fact, long-range interactions have
been studied mostly in the continuum, where a transition
between a charged bosonic fluid and a Wigner crystal has
been found by varying the density.21,22,23 In particular, in
the presence of a logarithmic repulsion, the 2D Bose liq-
uid was found to have no condensate fraction, due to the
predominance of long-wavelength plasmon excitations.21

In the last part of this paper, we generalize the Hubbard
model of Eq. (1) to

HLR = − t

2

∑

〈i,j〉

b†i bj + h.c.+
V

2

∑

i,j

Ω(Ri, Rj)ninj , (2)

where Ω(Ri, Rj) is a long-range potential that only de-
pends upon the relative distance |Ri − Rj | between two
particles and V represents its strength. In particular,
we will consider two possibilities for the long-range po-
tential. The first one is obtained by taking the Coulomb
interaction between (charged) bosons moving in a 2D lat-
tice embedded in a three-dimensional environment, which
leads to the following potential in reciprocal space

Ω(qx, qy) =
π

√

(cos qx + cos qy − 3)2 − 1
, (3)

with a small-q behavior Ω(q) ∼ 1/|q|. The second case
consists in directly considering the solution of the Poisson
equation in 2D:

Ω(qx, qy) =
1

2− (cos qx + cos qy)
, (4)

which for small momenta behaves like Ω(q) ∼ 1/q2,
leading to a logarithmic interaction in real space, i.e.,
Ω(r) ∼ − log(r). In both cases, a uniform background is
considered in order to cancel the divergent q = 0 compo-
nent of the potential.
The paper is organized as follow: In section II, we de-

scribe the variational wave function, in sections III, IV
and V, we show the results for the 1D, 2D and 3D short-
range models. Then, in section VI, we consider the
2D case with long-range interactions and finally, in sec-
tion VII, we draw our conclusions.

II. THE VARIATIONAL WAVE FUNCTION

A. The Jastrow wave function

The variational wave function is defined by applying
a density Jastrow factor to a state with all the bosons

condensed into the q = 0 state

|ΨJ〉 = exp







−1

2

∑

ij

vi,j(ni − 1)(nj − 1)







|Φ0〉, (5)

where |Φ0〉 = (
∑

i b
†
i )

N |0〉 is the non-interacting boson
ground state with N particles, (ni − 1) is the variation
of the on-site density with respect to the average value
ρ = 1, and vi,j are translationally invariant parameters
that can be optimized to minimize the variational en-
ergy.24 In order to get some physical insight from the
variational state, it is more instructive to consider the
Fourier transform of the Jastrow parameters vq. Indeed,
there is a tight connection between the small-q behavior
of vq and the nature of the ground state. In particular,
as we are going to discuss, vq ∼ 1/|q| implies the exis-
tence of sound modes in any dimensions, as expected in a
superfluid. On the contrary, to recover an insulating be-
havior a much more singular vq for q → 0 is required.18

The physical reason is that, in order to describe a re-
alistic Mott insulating wave function that does include
charge fluctuations, it is necessary to spatially correlate
the latters. This is accomplished by a sufficiently sin-
gular vq that favors configurations where opposite-sign
fluctuations, (ni−1)(nj−1) < 0, are close to each other,
while equal-sign ones, (ni− 1)(nj − 1) > 0, are far apart.

It should be mentioned that previous studies of
fermionic systems25 and more recent ones on the bosonic
Hubbard model,26 stressed the importance of a many-
body term containing holon-doublon interactions for
nearest-neighbor sites:

|Ψg,MB〉 = exp

(

−g
∑

i

n2
i + gMB

∑

i

ξi

)

|Φ0〉, (6)

where g and gMB are variational parameters and the
many-body operator is defined by

ξi = hi

∏

δ

(1 − di+δ) + di
∏

δ

(1 − hi+δ), (7)

where hi = 1 (di = 1) if the site i is empty (doubly occu-
pied) and 0 otherwise, δ = ±x,±y; therefore, ξi counts
the number of isolated holons (empty sites) and doublons
(doubly occupied sites). Even though this operator has
been originally introduced for fermionic systems, where
the maximum occupancy at each site is given by two
electrons, it is useful also for bosons, since in the limit of
large U/t the number of sites with an occupation larger
than two is negligible. However, within this framework,
the evidence for a true Mott transition is rather contro-
versial, and it is not clear if an insulating phase can be
stabilized in the thermodynamic limit.26

Combining together the variational Eqs. (5) and (6),
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we obtain the variational ansatz

|ΨJ,MB〉 = exp







−1

2

∑

i,j

vi,j(ni − 1)(nj − 1)

+ gMB

∑

i

ξi

}

|Φ0〉, (8)

containing both the long-range Jastrow factor and a
short-range many-body term. As it will be shown in the
next sections, the presence of the latter term is impor-
tant in 2D and 3D, mainly to increase the accuracy in the
strong-coupling regime. Instead, in 1D, the many-body
term does not improve the accuracy of the long-range
Jastrow state and there is no appreciable difference be-
tween the wave function (5) and (8). In any case, we
emphasize that, according to our calculations, the short-
range term alone cannot lead to an insulating behavior,
and the main ingredient to drive a superfluid-insulator
transition is the long-range Jastrow factor, parametrized
by vq.

B. Mapping onto a classical model

The variational calculation with the wave function (8)
can be shown to correspond to a classical problem at fi-
nite temperature. This correspondence provides many
insights into the properties of |ΨJ,MB〉. To prove the
mapping, let us denote a bosonic configuration by the po-
sitions {x} of the particles and a generic quantum state
by |Ψ〉. For all the operators θ diagonal in space coordi-
nates, the quantum average

〈θ〉 = 〈Ψ|θ|Ψ〉
〈Ψ|Ψ〉 (9)

can be written in terms of the classical distribution
|Ψ(x)|2 = |〈x|Ψ〉|2/∑x′ |〈x′|Ψ〉|2, as

〈θ〉 =
∑

x

〈x|θ|x〉|Ψ(x)|2 . (10)

Since |Ψ(x)|2 is a positive quantity, there is a precise cor-
respondence between the wave function and an effective
classical potential Vcl(x):

|Ψ(x)|2 = e−Vcl(x). (11)

The explicit form of the potential Vcl(x) depends upon
the choice of the Jastrow factor, while |Φ0〉 does not
contribute to it, since 〈x|Φ0〉 does not depend upon the
configuration |x〉. In particular, whenever there is only
the two-body potential (i.e., gMB = 0) Vcl(x) is Gaus-
sian, i.e., Vcl(x) =

∑

q 6=0 vqnq(x)n−q(x), being nq(x) the
Fourier transform of the local density of the configuration
|x〉. In this case, the variational problem becomes equiva-
lent to solve a classical model of oppositely charged parti-
cles (the holons and the doublons) mutually interacting

through a potential determined by vq. In the presence
of the short-range many-body term, Vcl(x) is no longer
Gaussian. However, when the density fluctuations are
suppressed at large U/t, the quadratic term gives the
most relevant contribution, hence the mapping onto a
classical model of interacting oppositely charged parti-
cle still holds with Vcl(x) ∼ ∑

q 6=0 v
eff
q nq(x)n−q(x), vq

being replaced by a slightly different effective potential
veffq . In spite of the differences, it is plausible that the

small-q behavior of veffq must follow the same singular
behavior of the Jastrow potential vq.
Let us now discuss in more details the connection be-

tween the form of vq and the low-energy excitation spec-
trum of the system. By means of the f -sum rule one can
show that18,27

Eq = −2
〈k〉
DNq

D
∑

i=1

sin2
(qi
2

)

=

∫

dω ωN(q, ω)
∫

dω N(q, ω)

, (12)

where N(q, ω) is the dynamical structure factor, Nq =
∫

dω N(q, ω) the static one, and 〈k〉 the hopping energy
per site. Eq can be interpreted as the average excitation
energy of density fluctuations at momentum q. Eq → 0
for q → 0 is a sufficient but not necessary condition for
the existence of gapless excitations. In particular, deep
inside the superfluid phase, Eq must coincide with the
energy dispersion of the Bogoliubov sound mode, which
carries most of the spectral weight. Although we can not
access directly dynamical properties by our variational
wave function, still we can provide a variational estimate
of Eq, in the same spirit of the Feynmann’s construction
in liquid Helium.28 This amounts to use the variational
values of 〈k〉 and of the static structure factorNq, defined
as

Nq =
〈Ψ|nqn−q|Ψ〉

〈Ψ|Ψ〉 , (13)

with nq the Fourier transform of the local density. Note
that the uncorrelated

N0
q =

〈Φ0|n−qnq|Φ0〉
〈Φ0|Φ0〉

(14)

is constant for any q 6= 0 at ρ = 1. Whenever a weak-
coupling approach in the Jastrow potential vq is possible,
the following relation holds:29

Nq =
∑

x

nq(x)n−q(x) e
−Vcl(x) ∼

N0
q

1 + 2N0
q vq

∼ 1

vq
,

(15)
the last equality following from the singular behavior of
vq that is expected both in the superfluid and in the
Mott insulating phases. Eq. (15) shows that vq ∼ 1/|q|
allows to recover the correct behavior of Nq ∼ |q| and
Eq ∼ |q| in the superfluid regime, which is what we in-
deed find, see following sections. In the insulating phase,
should Eq. (15) be valid, we would expect vq ∼ β/q2
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to get the expected behavior Nq ∼ q2 and Eq finite for
small q. This would correspond through Eq. (11) to a
classical Coulomb gas model (CGM) with effective tem-
perature Teff = π/β.30 In 1D, for any finite temperature,
the CGM is always in a confined phase where oppositely
charged particles are tightly bound in pairs, and with
exponential decaying correlation functions.31 This sug-
gests that the 1D CGM may indeed provide through the
mapping (11) a good description of a 1D Mott insulating
wave function.
In 2D the CGM undergoes a Berezinskii-Kosterlitz-

Thouless phase transition at TCGM
c ∼ 1/4, between a

confined phase (stable at low temperature) and a plasma
phase (stable at high temperature). Similarly to the 1D
case, one would argue that the confined phase should
correspond to the 2D Mott insulator. However, the 2D
confined phase of the CGM displays power-law decaying
correlations30 that would correspond to power-law decay-
ing equal-time correlations of the quantum ground state.
This is not compatible with a genuine Mott insulator,
which already suggests that the insulating wave function
must be characterized by a Jastrow potential vq more
singular than 1/q2 as q → 0, as indeed we find. In turns,
this implies that (15) must not be valid, since, in spite of
vq × q2 → ∞ for q → 0, we still expect Nq ∼ q2.
The breakdown of Eq. (15) becomes even more pro-

nounced in 3D, where a potential vq ∼ 1/q2 cannot de-
scribe at all an insulator since it is not sufficiently sin-
gular to empty the condensate fraction.32 In fact, we
find that the optimized variational wave function shows a
more diverging vq ∼ 1/|q|3 in the 3D insulator,18 though
Nq ∼ q2. The properties connected to the insulating
phase can be again uncovered within a classical 3D gas
with a 1/|q|3 potential, recently considered in Ref. 33.
Indeed, analogously to what happens in 2D, also in 3D a
system of charges interacting with a logarithmic poten-
tial in real space admits a high-temperature fluid regime
separated by a low-temperature dielectric phase. Within
this mapping, the 3D insulating state is found to cor-
respond to the low-temperature phase of this classical
model.
In the following, we will present our results obtained by

considering the quantum variational wave function and
we will use the classical mapping to gain insights into the
ground-state properties. Moreover, in order to verify the
accuracy of the variational calculations, we will perform
the numerically exact GFMC that allows one to obtain
ground-state properties.

III. THE 1D HUBBARD MODEL

Here, we consider a chain of L sites with periodic
boundary conditions and N = L bosons. First of all, in
Fig. 1 we compare the variational accuracy of the wave
functions (5), (6) and (8) for different values of U/t. Once
a long-range Jastrow factor is considered, the many-body
term of Eq. (7) is irrelevant and there is no appreciable

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  1  2  3  4

∆E
/E

0

U/t

Jastrow
Gutzwiller+MB

Jastrow+MB

FIG. 1: Accuracy of different variational wave functions as a
function of U/t for 60 sites and 60 bosons. ∆E = E0−EVMC ,
where EV MC is the variational energy and E0 is the ground-
state one, obtained by GFMC. The state of Eq. (5) is denoted
by “Jastrow”, the one of Eq. (6) by “Gutzwiller+MB”, and
the one of Eq. (8) by “Jastrow+MB”.

 0

 1
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 3

 4

 5

 6

π3π/4π/2π/40

v q
 x

 |q
|2

|q|

1D

U/t=2
U/t=2.4
U/t=2.5
U/t=3
U/t=4
U/t=6

FIG. 2: Jastrow parameters vq multiplied by q2 as a function
of |q| for 60 sites and 60 bosons.

difference between the wave functions (5) and (8), for all
the values of the on-site interaction. By contrast, the
Gutzwiller state, also when supplied by the many-body
term, is much less accurate by increasing U/t.

Therefore, in the following, we will consider the state
with long-range Jastrow factor (5) alone, since the many-
body term makes the algorithmmuch slower and does not
improve the quality of the variational state. In Fig 2, we
report the minimized Jastrow parameters vq multiplied
by q2 for different U/t: There is a clear difference in the
small-q behavior for U/t . 2.4, where vq ∼ α/|q| and for
U/t & 2.5, where vq ∼ β/q2. At the variational level, the
change of the singular behavior of the Jastrow parame-
ters for U/t ∼ 2.45 marks the superfluid-insulator tran-
sition. Indeed, as discussed in the previous paragraph,
vq ∼ α/|q| implies a gapless system, whereas vq ∼ β/q2

indicates a finite gap in the excitation spectrum. Let
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FIG. 3: Density structure factor Nq divided by |q| calculated
with variational Monte Carlo (left panel) and GFMC (right
panel) for different U/t and L = 60. From top to bottom
U/t = 1.6, 1.8, 2, 2.2, 2.4, 2.5, 3, and 4.

us now concentrate on the insulating phase. Here, the
Jastrow wave function (5) can be mapped onto the par-
tition function of an effective classical CGM and β plays
the role of the inverse classical temperature β = π/Teff .
In 1D the CGM is in the confined phase for any finite
temperature, with exponential correlations.31 This out-
come is consistent with the fact of having, in the quantum
model, a finite gap in the excitation spectrum. Remark-
ably close to the Mott transition in the insulating phase,
the value of β obtained from the optimized Jastrow po-
tential is very small and approaches to zero when U → Uc

from above. Since the correlation length of the 1D CGM
diverges for β → 0, our numerical outcome gives a strong
indication in favor of a continuous transition between the
superfluid and the Mott insulating phase.
Let us now analyze the transition by considering the

density structure factor Nq. In the small-q regime, we
can generally write that

Nq = γ1|q|+ γ2q
2 +O(q3), (16)

where γ1 and γ2 depend upon the Jastrow parameters.
In analogy with spin systems, we have that γ1 = vcχ,
with vc and χ the sound velocity and the compressibility,
respectively. The fact of having γ1 = 0 in the insulating
regime indicates that this state is incompressible (i.e.,
χ = 0). From Fig. 3, we obtain that γ1 has a very sharp
crossover from a finite value to zero across the transi-
tion, suggestive of a true jump in the thermodynamic
limit. This outcome is consistent with the fact that the
compressibility also has a finite jump in the 1D quantum
phase transition.34 Moreover, just above Uc in the insu-
lating regime, γ2 is very large for both the variational and
the GFMC calculations, indicating the peculiar character
of the 1D transition. By using the small-q behavior of the
density structure factor, the Mott transition can be lo-
cated at Uc/t ∼ 2.45±0.05 for the variational calculation,
whereas the GFMC approach gives Uc/t ∼ 2.1± 0.1.

 0
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 0  0.01  0.02

n 0
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 30

 40
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0 π/8 π/4
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U/t=2.5

FIG. 4: Variational results for the momentum distribution nk

in 1D for L = 60 (squares), 100 (circles), and 150 (triangles)
across the transition (U/t = 2.4 and 2.5). Inset: Size scaling
of the condensate fraction n0/L for U/t = 2.4 (upper curve)
and U/t = 2.5 (lower curve).
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FIG. 5: Superfluid stiffness Ds calculated by GFMC as a
function of U/t for different sizes in the 1D boson Hubbard
model. Lower inset: Size scaling of Ds for different U/t (same
values of the main panel, with U/t increasing from top to
bottom). Upper inset: Ds × L as a function of U/t. The
point where the different curves cross marks the transition
point.

The superfluid-insulator transition can be also easily
detected by considering the momentum distribution:

nk =
〈ΨJ |b†kbk|ΨJ〉

〈ΨJ |ΨJ〉
, (17)

where b†k is the creation operator of a boson of momentum
k. This quantity has a radically different behavior below
and above the transition: In the superfluid phase, it has
a cusp at k = 0, although there is no condensate fraction,
i.e., n0/L → 0 for L → ∞, while in the insulating phase
it is a smooth function of the momentum k, see Fig. 4.



6

Finally, we want to conclude the 1D part by consider-
ing the superfluid stiffness Ds. In analogy to what has
been done by Pollock and Ceperley at finite tempera-
ture,35 this quantity can be also calculated directly at
zero temperature by using the GFMC and the so-called
winding numbers (see Appendix)

Ds = lim
τ→∞

〈Ψ0|| ~W (τ)|2|Ψ0〉
D L τ

, (18)

where |Ψ0〉 is the ground-state wave function obtained by

GFMC, D is the dimension of the system and ~W (τ) =
∑

i[~ri(τ)−~ri(0)], ~ri(τ) being the position of the i-th par-
ticle after evolving it for a diffusion time τ from the initial
position ~ri(0). The diffusion process must be done with-
out considering periodic boundary conditions, namely by
increasing or decreasing the values of the coordinates of
a particle that crosses the boundaries of the cluster. In
this way, non-zero winding numbers across the lattice
can be detected. It should be stressed that, exactly at
zero temperature, Ds can only give information about
the presence of a gap in the excitation spectrum, and,
therefore, it can discriminate between conducting and
insulating phases. Our results show that Ds is finite and
large in the weak-coupling regime, whereas it vanishes
for U/t & 2.1, see Fig. 5. Again, in analogy with spin
systems and from general scaling arguments valid for 1D
boson models, we expect a jump at the transition, that
however is very hard to detect by considering finite clus-
ters.34 Nevertheless, an accurate value of the transition
point is obtained from the size scaling of Ds × L, see
Fig. 5.

IV. THE 2D HUBBARD MODEL

Let us now turn to the 2D Hubbard model and consider
square clusters with L = l × l sites and N = L bosons.
The accuracy of the three wave functions (5), (6) and (8)
are reported in Fig. 6. The situation is different from the
previous 1D case: The Gutzwiller state with the many-
body term, which in 1D is not accurate for large U/t, in
2D becomes competitive with the Jastrow wave function
for U/t & 14. Moreover, the presence of the many-body
term strongly improves the accuracy of the Jastrow state
as soon as U/t & 8. Then, in the following, we will
consider the state (8) for both the variational and the
GFMC calculations.
In Fig. 7, we show the behavior of the optimized vq as

a function of the interaction strength. Similarly to what
happens in the 1D system, we obtain that vq ∼ α/|q| for
U/t . 10.5, while vq is best fitted by vq ∼ − log(q)/q2 for
U/t & 10.5 (see Fig. 8), corresponding to the superfluid
and the Mott insulating phase, respectively. As we an-
ticipated in section II B, the Jastrow potential in the in-
sulating phase is more singular than 1/q2, suggestive of a
classical model with bound charges but presumably with-
out the power-law correlations displayed by the CGM
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in the confined phase. In reality, on the sizes available
to our numerical approach, we can not firmly establish
whether a classical potential − log(q)/q2 has indeed ex-
ponential decaying correlation functions. Nevertheless, it
is remarkable and very encouraging that the variational
optimization leads to such a singular vq.
The evidence that the change in behavior of vq does

correspond to the superfluid-insulator transition comes
also by the small-q limit of the structure factor Nq. In
Fig. 9, we show the results for the variational and the
GFMC calculations as a function of U/t. In both cases,
we find a different small-q behavior for large and small
couplings. In the variational calculations, for U/t . 10.3
the structure factor behaves as Nq ∼ γ1|q|, while for
U/t & 10.3 we get Nq ∼ γ2q

2. Therefore, at the varia-
tional level, the superfluid-insulator transition is located
around Uc/t ∼ 10.3 ± 0.1; this value is slightly smaller
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 0

 0.005

 0.01

 0.015

 0.02

0 π/4 π/2 3π/4 π

N
q/

|q
|

|q|

VMC

0 π/4 π/2 3π/4 π
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

|q|

GFMC
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8.6, and 8.8.

than the one obtained by the simple Gutzwiller wave
function, for which Uc/t ∼ 11.65.14 The critical value of
the on-site interaction is rather different within GFMC,
yielding Uc/t ∼ 8.5 ± 0.1, in close agreement with the
value found in the literature.9 Let us focus more deeply
on the behavior of the structure factor Nq. Approach-
ing the transition from the weak-coupling region, γ1 goes
smoothly to zero, in contrast with the results of the 1D
model, where we observed an abrupt jump. Also con-
trasting the 1D case, γ2 is found to be finite and continu-
ous across the transition. These results, based upon the
variational wave function, are confirmed by the GFMC
calculations, see Fig. 9. The vanishing linear coefficient
of Nq can be ascribed either to vs or to χ. In order
to clarify which one of these quantities goes to zero at
the transition, we extract the sound velocity vs from the
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FIG. 10: GFMC results for the sound velocity vc obtained
through a finite size scaling of the ground-state energy, see
Eq. (19). The line is a guide to the eyes.
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curve).

finite-size scaling of the exact ground-state energy by

ǫ0(L) = ǫ0(∞)− c0vs
l3

, (19)

where ǫ0(L) is the ground-state energy per site for a clus-
ter with L = l2 sites, ǫ0(∞) is the extrapolated value
in the thermodynamic limit, and c0 is a given model-
dependent constant. Our results, shown in Fig. 10,
clearly indicate that vs stays finite across the superfluid-
insulator transition, thus implying a vanishing compress-
ibility when approaching the insulator.
The fingerprint of this transition is also given by the

momentum distribution, see Fig. 11. For this quantity, a
striking difference is observed below and above Uc. In the
former case, a cusp-like behavior with a finite condensate
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fraction is found, whereas in the latter case a smooth
behavior is detected, with a vanishing n0/L. Notice that
a vanishing condensate fraction in the thermodynamic
limit immediately follows from Nq ∼ q2 by using the f-
sum rule derived in Ref. 36.

Finally, we report in Fig. 12 the stiffnessDs, calculated
by using GFMC. In 2D, we obtain a different behavior
with respect to the 1D case, where a finite jump is rather
clear at the superfluid-insulator transition. Indeed, the
evaluation of the stiffness for different sizes confirms the
absence of the jump in 2D, as expected for a second order
phase transition.9
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 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

0 π/4 π/2 3π/4

N
q/

|q
|2

3D
VMC

6x6x6
8x8x8
10x10x10
12x12x12

 0

 0.01

 0.02

 0.03

 0.04

0 π/4 π/2 3π/4

|q|

N
q/

|q
|2

β3D=20

0 π/4 π/2 3π/4
0e+00

5e-04

1e-03

|q|

β3D=55

FIG. 15: Upper panel: Variational results for the density
structure factor Nq for 3D and U/t = 20. Lower panels: Nq

for non-optimized wave functions with vq ∼ β3D/|q|3 for two
values of β3D.

V. THE 3D HUBBARD MODEL

Let us move now to the 3D case. Here, we mostly re-
strict our analysis to the variational method that allows
us to assess rather large sizes. We start by considering the
accuracy of the different variational states as a function
of the interaction U/t, see Fig. 13. It turns out that in
the large-U region the most accurate state contains both
the long-range Jastrow term and the many-body term,
as it occurs in 2D. Moreover, in analogy to 1D and 2D,
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the presence of a phase transition upon increasing U/t
is clearly signaled by the sudden change in the small-q
behavior of the Jastrow factor, see Fig. 14. Here, its
behavior changes drastically from vq ∼ α/|q| to a more
diverging vq ∼ 1/|q|3 in the insulating regime. In partic-
ular, the sudden change of behavior allows us to locate
the transition around Uc/t ≃ 18, which is close to the
critical value of recent Monte Carlo simulations.10

Focusing on the large-U region of the phase diagram,
let us discuss the implications of the singular vq ∼ 1/|q|3
Jastrow potential. First of all, following the same argu-
ments of Ref. 32, we can assert that the strong singular
character of the Jastrow potential is able to empty the
condensate, whereas a less singular vq ∼ 1/q2 would not
lead to n0 → 0 in the thermodynamic limit. Remarkably,
even though vq ∼ 1/|q|3, the structure factor in the in-
sulator has the correct Nq ∼ q2 behavior, see Fig. 15. In
turn, this implies that Eq. (15) does not hold. In order to
prove more firmly that vq ∼ β3D/|q|3 can indeed lead to
Nq ∼ q2, we have calculated the density structure factor
with a non-optimized wave function of the form (5) with
vq ∼ β3D/|q|3 and for different values of β3D. As shown
in Fig. 15, for small β3D we obtain Nq ∼ |q|3, implying
that Eq. (15) is qualitatively correct in this case. How-
ever, above a critical β∗

3D, the small-q behavior of the
density structure factor turns into Nq ∼ q2, signaling a
remarkable breakdown of Eq. (15). From Fig. 14 it turns
out that the optimal value of β3D that we get variation-
ally at the superfluid-insulator transition is larger than
β∗
3D, confirming that Nq ∼ q2 in the insulating phase.

Most importantly, the change of behavior as a function
of β3D is consistent with the binding-unbinding phase-
transition recently uncovered in a classical 3D gas with a
1/|q|3 potential.33 Once again, as in 1D and 2D, the Mott
insulating wave function in 3D is found to be closely re-
lated to the low-temperature confined phase of a classical
model, where opposite charges tightly bound.

VI. 2D SYSTEMS WITH LONG-RANGE

INTERACTION

In the previous paragraphs, we have shown that, in
the Hubbard model (1), the superfluid regime can be
described by a long-range Jastrow wave function with
vq ∼ α/|q|. By increasing the on-site interaction U ,
our variational approach describes a continuous transi-
tion to an insulating phase that corresponds to the con-
fined phase of a classical model of interacting particles
with opposite charge. In particular, we have found ev-
idences that the 2D Mott insulating wave function cor-
responds to a classical model with − log(q)/q2 potential
rather than to a 2D CGM with potential β/q2 in the
confined phase (β > β∗ ≥ 4π). This result, as we dis-
cussed, has a physical importance since the confined 2D
CGM has power-law correlations, not possible in a Mott
insulating phase. Nevertheless, it would be interesting to
search for bosonic Hamiltonians whose ground state can
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be described by the variational wave function (8) with a
Jastrow potential vq ∼ β/q2.
For that purpose, we consider the more general Hub-

bard model of Eq. (2) with a long-range interaction Ω(r).
Let us start by considering the realistic case of a Coulomb
potential, namely Ω(r) ∼ 1/r that in 2D leads to Eq. (3).
Then, we can vary its strength V to drive the system
across a superfluid-insulator transition. The small-q be-
havior of the optimized Jastrow parameters is shown in
Fig. 16. For V/t . 8, we obtain that vq ∼ 1/|q|3/2.
On the contrary, for larger values of the interactions, vq
becomes more singular and in particular is best fitted by
− log(q)/q2, just like what we found for short-range inter-
action. The structure factor in the weak-coupling phase
behaves as Nq ∼ |q|3/2, see Fig. 17, compatible with a
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superfuid phase with 2D plasmons. We mention that
a similar behavior has been found in continuum models
at high densities both analytically37 and numerically.38

In the strong-coupling regime, the insulating behavior
Nq ∼ q2 is recovered. These results are confirmed by
GFMC (not shown), though the critical V/t is slightly
decreased, i.e., Vc/t ∼ 7. In this case, as before with
short-range interaction, the optimized Jastrow never be-
haves as the potential of a CGM.

Therefore, let us turn to the more singular interaction
given by Eq. (4), leading to Ω(r) ∼ − log(r). In this
case the potential in q-space is given by Ω(q) ∼ 1/q2

and we expect, similarly to what happens in the contin-
uum for high density,21 that in the weak-coupling regime
also vq ∼ β/q2. Indeed, as shown in Fig. 18, this is the
case for V/t . 16. Above this value, vq becomes once
again of the form − log(q)/q2, just like in all previous
examples. We note that the values of β extracted in the
weak coupling phase seem to be all smaller than β∗ of
the 2D Berezinskii-Kosterlitz-Thouless phase transition,
although we can not exclude by the numerical data that

β → β∗ at the transition. This indicates that the CGM
that corresponds to the variational wave function is in the
plasma phase, with exponential decaying density-density
correlation functions. Indeed, the structure factor be-
haves like Nq ∼ q2 for all the coupling strengths V/t, see
Fig. 19. We believe that the weak-coupling phase has to
be identified with the algebraic long-range ordered phase
found at high density in the continuum model by Magro
and Ceperley.21 This phase is characterized by absence
of condensate but by a power-law decay of the single-
particle density matrix. On the contrary, the strong-
coupling phase with Jastrow potential vq ∼ − log(q)/q2

must correspond to a genuine Mott insulator with all cor-
relation functions decaying exponentially.

VII. CONCLUSIONS

We have shown that the long-range Jastrow wave func-
tion gives a consistent picture of the superfluid-insulator
transition of the bosonic Hubbard model in all spatial
dimensions and also in the presence of long-range inter-
action.
In one dimension the variational results are compatible

with a Berezinskii-Kosterlitz-Thouless phase transition
between the quasi-long-range ordered gapless phase and
the Mott insulator. From the point of view of the vari-
ational wave function, the gapless phase is characterized
by a Jastrow potential vq ∼ α/|q|, while the insulating
one by vq ∼ 1/q2.
In two dimensions we have evidences of a second-

order phase transition between a superfluid phase and
a Mott insulator. Here, the superfluid wave function still
has vq ∼ α/|q|, compatible with the existence of sound
modes, while the insulating wave function is character-
ized by a more singular vq ∼ − log(q)/q2. This singu-
lar behavior in the Mott phase does not change even if
long-range interaction is considered. For instance, for a
Coulomb interaction Ω(r) ∼ 1/r, the Jastrow potential in
the superfluid phase changes into vq ∼ 1/|q|3/2, compati-
ble with the existence of 2D plasmons, yet the insulating
wave function has still vq ∼ − log(q)/q2. For an interac-
tion Ω(r) ∼ log(r), we observe a transition between an
algebraic long-range ordered phase,21 characterized by
vq ∼ 1/q2, and a Mott insulating phase, once again with
vq ∼ − log(q)/q2.
In three dimensions, the Mott transition as revealed by

the behavior of the Jastrow potential becomes much more
evident. As usual, the superfluid phase has vq ∼ α/|q|. In
this case, however, the Mott insulating wave function has
a much more singular vq ∼ 1/|q|3, still with a structure
factor that correctly behaves as Nq ∼ q2.
This work was mainly focused on bosons, but a similar

variational wave function can be applied also to fermionic
models, with the same key ingredient, i.e., a long-range
Jastrow factor that drives the metal-insulator transition,
in spite of the uncorrelated wave function being metal-
lic.15,17 According to this picture, the Mott insulating
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state should be produced by a sufficiently long-range Jas-
trow potential able to bind opposite-charge fluctuations.
Based on the bosonic results, we may argue that a Jas-
trow potential vq ∼ 1/|q|D may work even for fermions in
any dimensions D > 2, D = 2 playing somehow the role
of the lowest critical dimension, vq ∼ − log(q)/q2. As
the interaction strength is decreased, an unbinding tran-
sition must takes place in the variational wave function,
turning the Mott insulator into a correlated metal and
providing a simple physical picture of the long-standing
but still actual and very attractive phenomena which is
the Mott transition.
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APPENDIX A: DETAILS FOR THE

CALCULATION OF THE STIFFNESS

In this Appendix, we give some details for the zero-
temperature GFMC calculation of the stiffness Ds. In
this respect, we consider the standard Peierls substitu-
tion and introduce an electromagnetic field in the Hamil-
tonian by replacing the hopping term between two sites
Ri and Rj by a suitable complex hopping:39

t → t exp

{

i

∫ Rj

Ri

dR A(R)

}

, (A1)

where we can consider A(R) = (Ax, 0). Then, the first
derivative of the energy E[A] with respect to this field
gives the charge current, containing both the paramag-
netic and diamagnetic contributions. This current must
vanish when Ax → 0, since the Hamiltonian is real. For a
bosonic system, the second derivative of the energy E[A]
represents the charge stiffness.40

Within GFMC it is possible to compute the ground-
state energy E[A] for arbitrary time-independent static
field Ax. Let us denote by HA and H the Hamiltonian in
presence and absence of the field, respectively and con-
sider:

Zτ [A] =
1

τ

〈Φ|e−τHA |Ψ0〉
〈Φ|e−τH|Ψ0〉

, (A2)

where |Ψ0〉 is the ground state of H, with E0 energy, and
|Φ〉 is the guiding wave function of the GFMC method.
In the large-τ limit, we have that

Zτ [A] ∼
1

τ

〈Φ|ΨA
0 〉〈ΨA

0 |Ψ0〉
〈Φ|Ψ0〉

e−τ(EA
0 −E0), (A3)

where |ΨA
0 〉 and EA

0 are the ground state eigenfunction
and eigenvalue of HA, respectively. By taking the second
derivative of Zτ [A] with respect to A and then consid-
ering A = 0, we obtain the charge stiffness (up to 1/τ
corrections).
This quantity can be obtained by sampling sta-

tistically the unperturbed Green’s function Gx′,x =
−Φx′Hx′,x/Φx = px′,xbx, where px′,x is a stochastic ma-
trix that defines the Markov chain and bx is a normal-
ization factor. In this way, the walker |x〉 is distributed
according to the variational distribution |〈x|Φ〉|2 and, in
order to obtain the true ground state, the weightGτ must
be considered. Then

Zτ [A] =
1

τ

∑

n G
τ
n[A]

∑

n G
τ
n

(A4)

where the index n indicates the Markov chain iteration,
that is defined by the transition probability px′,x, and

Gτ
n = exp

{
∫ τ

0

dτ ′eL[x(τ
′)]

}

(A5)

Gτ
n[A] = Gτ

n exp

{

i

∫ Rx(τ)

Rx(0)

dR A(R)

}

(A6)

are the correcting factors of the GFMC method; eL(x)
indicates the local energy and Rx indicates the site where
the particle moves within the GFMC algorithm. By con-
sidering the second derivative of Zτ [A] with respect to
Ax, we obtain Eq. (18). As usual, many walkers can
be considered with the branching technique in order to
reduce the variance of the correcting factors Gτ

n.
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