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Quantum approximate optimization algorithm applied to the binary perceptron
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We apply digitized quantum annealing (QA) and quantum approximate optimization algorithm (QAOA) to a
paradigmatic task of supervised learning in artificial neural networks: the optimization of synaptic weights for the
binary perceptron. At variance with the usual QAOA applications to MaxCut, or to quantum spin-chains ground-
state preparation, here the classical cost function is characterized by highly nonlocal multispin interactions.
Yet, we provide evidence for the existence of optimal smooth solutions for the QAOA parameters, which are
transferable among typical instances of the same problem, and we prove numerically an enhanced performance
of QAOA over traditional QA. We also investigate on the role of the classical cost-function landscape geometry
in this problem. By artificially breaking this geometrical structure, we show that the detrimental effect of a gap-
closing transition, encountered in QA, is also negatively affecting the performance of our QAOA implementation.
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I. INTRODUCTION

Quantum optimization is a very active branch of quantum
computation [1], which started with quantum annealing (QA)
[2–6] and adiabatic quantum computation (AQC) [7,8], by
now well established and implemented in analog dedicated
hardware [9].

New research directions are currently pursuing the design
of parameterized quantum circuits and variational quantum
algorithms [10]. Among the early proposals in this class
are the variational quantum eigensolver (VQE) [11] and the
quantum approximate optimization algorithm (QAOA) [12],
hybrid quantum-classical variational optimization schemes
[13] designed for quantum ground state preparation, and clas-
sical combinatorial optimization, respectively. In particular,
QAOA has rapidly gained popularity, with new theoretical
understanding [14–18] and successful implementations on ex-
perimental platforms [19].

From a broader perspective, a number of variational quan-
tum algorithms have been proposed and applied beyond
classical combinatorial optimization [20,21], conceptually
generalizing QAOA [22] or VQE [23], or focusing on realistic
quantum hardware setups [24,25]. These algorithms constitute
a rich playground for short-term implementations on exist-
ing and near-future noisy intermediate-scale quantum devices
[26], aiming for some type of quantum speedup [27].

The quantum Hamiltonian of a physical system typically
consists of a sum of local terms, each involving only a small
subset of quantum degrees of freedom. On the contrary, in
order to apply QA or QAOA to a classical optimization prob-
lem, an embedding into a quantum setup [28] is first required.
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In this second case, the standard strategy is to start from a
classical cost (or energy) function E (σ1, . . . , σN ) depending
on N binary variables σ j = ±1, and to map them to quantum
spin-1/2 Pauli operators σ̂ z

j , in the so-called base encoding.
Hence, the initial cost function is mapped to a quantum
Hamiltonian that is diagonal, by construction, in the standard
computational basis of quantum computation [1],

E (σ1, . . . , σN ) → Ĥz
(
σ̂ z

1 , . . . , σ̂ z
N

)
. (1)

Nevertheless, in contrast to the Hamiltonians of physical
quantum systems, the embedding Hamiltonian Ĥz can be ar-
bitrarily difficult to implement, possibly including nonlocal
multispin interactions, thus proving intrinsically hard to sim-
ulate exactly [29] on a quantum device.

Remarkably, some specific combinatorial optimization
problems admit a natural embedding into a 2-local Ising spin-
glass Hamiltonian, such as MaxCut on random graphs [12],
or a few other model-specific applications [30]. As a matter of
fact, many interesting classical optimization problems do not
admit such a simple reformulation in terms of a 2-local (or
k-local, for any k � N) Hamiltonian.

An interesting example—of paramount importance in ma-
chine learning—is offered by the training process required
in supervised learning for artificial neural networks (ANNs):
this is naturally formulated as a minimization problem of a
suitable cost function [31], which is, however, nonlocal in
terms of its variables (network weights and biases) due to
nonlinear activation functions. An intriguing question is to
explore if and how quantum computation might provide more
efficient algorithms to train ANNs, while potentially offering
some deeper theoretical understanding on their effectiveness
in classification tasks. From a complementary perspective, re-
cent years have witnessed the rise of an emerging field known
as quantum machine learning [32] and different proposals
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have been put forward to perform machine learning tasks
by developing quantum versions of neural networks: interest-
ingly enough, parameterized quantum circuits themselves can
be regarded as alternative machine learning models [33].

In this paper, we aim at investigating the potential appli-
cability of variational quantum algorithms such as QAOA in
the realm of hard nonconvex classical optimization problems,
yielding highly nonlocal Hamiltonians, beyond the usual 2-
local models. As a working example, we focus on the problem
of learning random patterns in a single-layer neural network
with binary weights, the so-called binary perceptron. Our
work stems from the results obtained in Ref. [34], where the
authors provided analytic and simulation evidence of expo-
nential speed-up of quantum annealing vs classical simulated
annealing for the training process of the binary perceptron.
The exponential speedup arises from the geometric structure
of the solution space of the problem: the presence of rare
and yet dense regions of solutions allows quantum annealing
to converge efficiently despite the presence of an exponen-
tial number of local minima traps. This property appears to
be present even in more complex, highly overparameterized
neural networks such as the so-called deep neural networks
[35]. Quantum algorithms could thus be highly efficient also
for this kind of models, which define the state of the art in
contemporary machine learning.

Here, we focus on a digitized version of quantum annealing
and QAOA: in particular, we provide numerical evidence on
how QAOA, by efficiently exploiting optimized quantum fluc-
tuations among classical states, systematically outperforms
standard QA. As in Ref. [34], these results are expected to
generalize for more complex ANN architectures. Moreover,
we show the emergence of smooth optimal QAOA parameters
[16,18,36], which seem to be independent of the details of
the training problem. This finding allows us to develop an
effective heuristic procedure to speed up the convergence of
QAOA, in a similar fashion to previous results for 2-local
models. In fact, one of the most promising research lines
in variational quantum algorithms deals with reducing or
removing the need for a classical optimization loop [37],
by leveraging concentration effects in the variational energy
landscape for different problem instances of the same class
[38–40], or for different sizes N of the same instance [41,42].
In our paper, we give numerical evidence of similar findings,
beyond the usual 2-local models previously analyzed.

Finally, we enquire into the role of the classical cost-
function landscape geometry [43] in the effectiveness of
digitized-QA vs QAOA for our model. This is done by ar-
tificially permuting the classical energies associated to each
spin configuration: despite the spectrum and the number of
classical solutions being the same, a gap closure on the adi-
abatic path appears [34], which has well-known detrimental
effects on QA performance. We show that also our QAOA
implementation is affected by this gap closure, even though it
still offers some advantages compared to digitized-QA.

The rest of the article is organized as follows: In Sec. II
we review the formulation of digitized-QA and QAOA, and
introduce the model Hamiltonian for the binary perceptron.
In Sec. III we discuss our numerical results on the compari-
son of these two algorithms, along with the aforementioned
qualitative features of the optimal solutions, such as smooth-

ness and mild dependence on the training set. In Sec. IV we
analyze the role of the classical landscape geometry, while in
Sec. V we discuss possible extensions and generalizations of
our paper.

II. PROBLEM AND METHODS

A. Digitized-QA and QAOA

In this section we summarize the main ingredients of
digitized-QA [44,45] and QAOA, as a variational quantum
algorithm [16].

In standard QA/AQC framework [8] one constructs an
interpolating Hamiltonian Ĥ (s) = sĤtarg + (1 − s)Ĥx, where
Ĥtarg is the problem (or target) Hamiltonian—which depends
on spin-1/2 Pauli operators and whose ground state we wish
to find—while Ĥx = −�0

∑
j σ̂

x
j is a transverse field term,

allowing for quantum fluctuations. For a classical minimiza-
tion problem, as in the case we are investigating, Ĥtarg = Ĥz is
simply built from σ̂ z terms as in Eq. (1), thus it is diagonal
in the computational basis [1], and its ground states encode
the classical solutions; in contrast, for the case of quantum
state preparation, Ĥtarg contains further nondiagonal quantum
fluctuation terms. An adiabatic dynamics is then pursued by
slowly increasing s(t ) from s(0) = 0 to s(τ ) = 1 in a large to-
tal annealing time τ , starting from the easily-prepared ground
state of Ĥx,

|+〉⊗N =
( |↑〉 + |↓〉√

2

)⊗N

, (2)

where |↑〉 and |↓〉 denote the spin up/down eigenstates of σ̂ z.
The difficulty in the QA/AQC scheme is usually associated

with the growing values of the annealing time τ required to
adiabatically follow the instantaneous ground state of Ĥ (s),
possibly diverging in the thermodynamic limit, if the system
crosses a critical point or, even worse, a first-order phase
transition [46]. While in principle the annealing schedule s(t )
can be chosen with some freedom, in practice optimizing the
s(t ), by “slowing down” close to points where the spectral gap
of Ĥ (s) closes, requires knowing such spectral information, a
notoriously difficult problem [47]. Very often, a linear sched-
ule s(t ) = t/τ is assumed.

The digitalization of the continuous-time QA/AQC dy-
namics is a very natural idea, conceptually relying on the
Trotter split-up of noncommuting exponentials. For the case
of a classical combinatorial optimization problem, Ĥtarg = Ĥz,
we would simply write

e−i �t
h̄ Ĥ (s) = e−iβĤx e−iγ Ĥz + O((�t )2), (3)

with β = (1 − s)�t/h̄ and γ = s�t/h̄ to lowest order in the
Trotter splitting. Similarly, if Ĥtarg is a combination of a σ̂ z-part
Ĥz and a σ̂ x-part Ĥx—as for the ground-state preparation of
an Ising model (or Ising spin glass) in a transverse field—the
same expression still holds, with suitable β and γ obtained by
the Trotter split-up.

With the standard QA/AQC assumption of a linear anneal-
ing schedule s(t ) = t/τ , we would perform a digitized-QA
by simply setting sm = m/P for m = 1 · · · P, where P is
the number of Trotter steps and �tm = �t , hence a total
annealing time τ = P�t . This amounts to setting, in the case
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of a classical optimization problem, for all m = 1 · · · P,

βm = (1 − sm)
�t

h̄
, γm = sm

�t

h̄
, sm = m

P
. (4)

The digitized-QA unitary evolution would hence be given by

|ψP(β, γ )〉 = Û (βP, γP) · · · Û (β1, γ1)|+〉⊗N , (5)

where β = (β1, · · · βP), γ = (γ1, · · · γP) and the mth step evo-
lution operator reads

Û (βm, γm) = e−iβmĤx e−iγmĤz . (6)

This digitized-QA scheme allows for a single variational
parameter, �t in Eq. (4), which we can optimize so as to
minimize the variational energy,

EP(β, γ ) = 〈ψP(β, γ )|Ĥtarg|ψP(β, γ )〉, (7)

with Ĥtarg = Ĥz for a classical optimization. Indeed, as dis-
cussed in Ref. [45], a too small value of �t produces small
Trotter errors but also a short annealing time, while a too large
�t is associated to large Trotter errors that make the final state
rather inaccurate. Consequently, there is an optimal value of
�t for performing such a digitized-QA dynamics [45].

The quantum approximate optimization algorithm
(QAOA) by Farhi et al. [12] and more general variational
quantum algorithms rely on the basic variational principle
of Quantum Mechanics: a trial parameterized wavefunction
is defined—usually in terms of a quantum circuit—with an
objective function given by the target Hamiltonian average
energy on the state. One regards the quantum wavefunction
parameters as variational parameters of the objective
function in Eq. (7), which we seek to minimize by some
appropriate classical optimization scheme: hence the hybrid
quantum-classical nature of such algorithms.

In the QAOA case, to which we shall restrict our consid-
erations from now on, the trial wavefunction has the same
form as in Eqs. (5) and (6), where now β and γ are promoted
to variational parameters for the quantum state, rather than
fixed by a Trotter split-up as in digitized QA. The pro of
such a variational scheme is that the optimal energy at the
global minimum EP(β∗, γ∗) is certainly a monotonically de-
creasing function of P, which systematically improves on any
digitized-QA approach with the same P. The cons is that deter-
mining the global minimum (β∗, γ∗) is in general a nontrivial
task, since local optimization routines tend to get trapped into
one of the many local minima of the 2P-dimensional search
space, and the phenomenon of barren plateaus [48] can make
the gradients of the objective function exponentially small in
the number of spin variables.

Let us finally stress that while the implementation of
e−iβmĤx requires a single layer of one-qubit gates, the gate
decomposition (and thus the depth of the resulting quantum
circuit) for the unitary e−iγmĤz is strongly problem dependent,
and usually represents the true bottleneck for an actual im-
plementation of this computational paradigm. Let us mention,
in this respect, that there is a whole active field—sometimes
referred to as quantum neural networks—where parameter-
ized quantum circuits [33] with fixed gates but free variational
parameters are studied, both from the point of view of their
expressive power—the “expressivity” of a parameterized state

FIG. 1. Scheme of a perceptron. Binary synaptic weights σ j have
to be adjusted such that for given binary values ξ

μ
j in the N input

neurons, the scalar product σ · ξμ = ∑
j σ jξ

μ
j has a prescribed output

sign τμ. Here μ = 1 · · · M, with M = αN , labels the various input-
output patterns.

being the states set of the Hilbert space that it is able to
represent—as well as from the ease in finding good param-
eters, the so-called “trainability”. In these cases, the target
Hamiltonian Ĥtarg (or the Ĥz of the classical optimization prob-
lem) needs not be directly used in the construction of the
unitary gates.

B. Binary perceptron model

The perceptron represents the prototypical example of a
single-layer binary classifier, first introduced decades ago by
Rosenblatt [49]. It is still a subject of active research, both
as the fundamental unit of classical artificial neural networks
[50] and as a potential candidate for simple realizations of
quantum neural networks [51,52].

Following Ref. [34], we address the problem of supervised
learning of M = αN random patterns in a perceptron with N
neurons in the input layer: Any configuration of the binary
synaptic weights σ = {σ j} ∈ {−1, 1}N correctly classifies a
randomly generated pattern ξμ = {ξμ

j } ∈ {−1, 1}N into a pre-
scribed binary label τμ = ±1 if sgn(σ · ξμ) = τμ, see sketch
in Fig. 1.

During the learning phase, a given labeled dataset
{ξμ, τμ}M

μ=1 is provided, and the task consists in finding the
weight configurations σ such that all the patterns are correctly
classified. Since, by hypothesis, both the components of the
patterns ξμ and the labels τμ are independent identically dis-
tributed (unbiased) Bernoulli random variables—results of a
fair coin flip—we can assume without loss of generality the
labels τμ to be all equal +1.

The search problem is immediately reformulated as a min-
imization problem of a suitable cost function. The underlying
idea is to associate a positive energy cost for every pattern
incorrectly classified. The exact solutions to the classification
problem are the zero-energy configurations σ∗ of the cost
function. Let us define

mμ = 1√
N

N∑
j=1

σ jξ
μ
j (8)
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to be the overlap between the spin configuration σ and the μth
pattern ξμ, normalized in such a way that, upon averaging over
the random patterns, one gets m2

μ = 1. A possible definition of
the cost function is

Enc ({σ j}) :=
M∑

μ=1

|mμ|nc �(−mμ), (9)

where �(x) = (1 + sgn(x))/2 is the Heaviside step function.
The energy cost for an incorrect classification of a pattern,
mμ < 0, is simply +1 if nc = 0, or proportional to the error
|mμ| if nc = 1. We remark that for both values of nc = 0, 1 the
cost function yields the same global minima σ∗ at zero energy
(exact solutions), while the energy landscapes and the local
minima are generally different.

Finding optimal solutions σ∗ where Enc (σ∗) = 0 is a hard
optimization problem for either choice of nc = 0, 1: it has
been shown that the energy landscape, in the limit of large
N and for M = αN with α < αc ≈ 0.83 [53], is characterized
by an exponential number of zero-energy solutions and local
minima. The latter play the role of metastable states for classi-
cal stochastic search algorithms, such as simulated annealing
(SA) [54], which typically get stuck, for large N , in one of
these local minima, with extensive energy costs [of the order
O(N )].

More recently, further insight has been gained about the
geometrical structure of the ground states [43]. Very schemat-
ically, there exist exponentially rare regions characterized by
dense ground states: these regions are composed of an expo-
nentially large number of zero-energy solutions at extensive
but relatively small Hamming distances, thus possessing very
high local entropy. Despite being exponentially rare, these
dense regions might be particularly well-suited for making
predictions after the training is carried out, since they are less
likely to fit noise (small generalization error).

It has been conjectured and shown in Ref. [34]—with an-
alytical and numerical evidence—that quantum fluctuations,
as encoded by a path-integral Monte Carlo simulated QA [5],
are particularly effective in exploring these “dense” regions.
One of the aims of this paper is to provide numerical evidence
of enhanced effectiveness of QAOA over QA for small-size
perceptron instances, where unitary evolutions are computa-
tionally feasible to directly compare QA and QAOA.

The standard quantum mapping of the binary synaptic
weights consists in promoting the classical spins σ j to quan-
tum spin-1/2 Pauli operators σ̂ z

j , as a special case of the
procedure schematized in Eq. (1). Let us remark that this stan-
dard mapping is not the only possibility to encode classical
bits into a quantum setup. A recent paper [51] has imple-
mented a quantum version of the perceptron model within the
so-called amplitude encoding: such a scheme is in principle
very efficient in terms of memory resources, as it requires
log2 N quantum spins to represent N classical spins, but it
pays the price of an exponentially large number of quantum
gates necessary for the state preparation [51]. In our study, we
focus on leveraging quantum fluctuations to train a classical
perceptron, rather than implementing a quantum version of
it: As a natural choice, in the following, we proceed with the
standard encoding σ j → σ̂ z

j .

The target Hamiltonian associated to the perceptron is then
given by

Ĥtarg = Enc

({
σ̂ z

j

})
. (10)

This Hamiltonian has a complicated expression in terms of the
quantum spin variables {σ̂ z

j }, due to the Heaviside step func-
tion: in principle, it involves all possible interactions among
spins, up to N-body terms. Nonetheless, the expectation value
in Eq. (7) can still be estimated by a sample mean over a
set of measurements in the computational basis, by repeat-
edly preparing the variational state in Eqs. (5) and (6) for
fixed variational parameters. Each evaluation of the classical
cost function still has O(1) complexity, independently of its
expansion in terms of binary spins. On the other hand, the
operator Ĥtarg = Ĥz is also used in building up the QAOA
variational state in Eqs. (5) and (6). This structure is shared
by other relevant optimization problems, such as the finan-
cial crash models considered in Ref. [55], where the target
Hamiltonian also involves Heaviside functions. Whereas an
exact gate decomposition of the unitaries e−iγmĤz is always
possible, it would require impractical resources, i.e., an expo-
nential number of elementary gates in the number of qubits.
However, as anticipated above, the QAOA-like ansatz allows
for some flexibility in the choice of the Ĥz term appearing in
the variational state, with the possibility of replacing it with
a simpler set of quantum gates, a point that will be further
discussed in Sec. V.

III. RESULTS

In order to perform a fair comparison of QAOA against QA
(in its digitized form), we consider a set of 10 instances of the
perceptron problem for N = 21 spins, which were previously
analyzed (see Supporting Information in Ref. [34]). For each
instance, we aim at classifying correctly a training set of M =
17 patterns, corresponding to α = M

N ≈ 0.81. This is close to
the critical value αc ≈ 0.83, valid in the thermodynamic limit
N → ∞, beyond which zero-energy solutions may no longer
exist.

Following Ref. [34], these instances were obtained by ran-
domly generating 450 candidate training set samples, and
(i) keeping only those with a sufficiently large number of
solutions (>21, thus hinting at a nonconvex optimization
problem); (ii) keeping only the instances for which SA failed
to reach good approximate solutions. The rationale of select-
ing these instances is to mimic the typical behavior of larger
system sizes [34], which cannot be tackled directly with exact
classical simulations.

From here on, we shall refer to a perceptron instance char-
acterized by a specific randomly-generated training set simply
as sample.

A. Optimal digitized-QA

A natural figure of merit to compare the performance of
digitized-QA and QAOA is the variational energy density

εP(β, γ ) = 1

N
EP(β, γ ), (11)

where P is fixed. For QAOA, we aim at minimizing this
quantity with respect to the independent free parameters β and
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FIG. 2. The one-dimensional landscape of the variational energy
density for digitized-QA, where the parameters β and γ depend
only on �t , see Eq. (4). All samples examined and both choices of
nc = 0, 1 are shown. The qualitative features of the landscape, and
in particular the position of global minima, show mild sample-to-
sample variability.

γ; on the contrary, for digitized-QA (dQA), these are fixed as
in Eq. (4) and contain �t as a single free parameter, which we
can optimize accordingly.

Focusing on dQA, for any given P we obtain a unique well-
defined global minimum for the variational energy density vs
�t . This is shown, e.g., in Fig. 2 for P = 64 and for the two
different definitions of the cost-function, nc = 0 and nc = 1.

As previously discussed, see also [45], the rationale be-
hind the presence of an optimal �t is simple: Essentially, by
increasing �t at fixed P, εP initially decreases, because we
are allowing for a longer annealing time τ = P�t ; however,
upon further increase of �t , Trotter errors start spoiling the
result, leading to a noise-dominated regime. Remarkably, the
�t landscape and the optimal values depend significantly only
on the cost function definition (nc = 0, 1), while much smaller
sample-to-sample variability is present.

This is a first hint of general qualitative features of the
model, independent of the specific sample under consid-
eration. Additional numerical results on digitized-QA are
reported in Appendix B.

B. Smooth QAOA solutions

In practical implementations of QAOA, both the choice of
the classical optimization algorithm—local (gradient-based),
vs global—and of the starting point for the optimization rou-
tine can be relevant, particularly when the dimensionality 2P
of the search space grows, making the optimization harder.

The simplest approach would be to use a local gradient-
based algorithm starting from a random initialization of the

parameters, but in practice this is often ineffective, due to the
presence of many low-quality local minima. Moreover, recent
evidence proved the ubiquitous existence of barren plateaus
for variational quantum algorithms [48,56]—i.e., gradients
of the objective function that are exponentially vanishing in
the system size N , when the variational energy landscape
is sampled at random points—a phenomenon that calls for
effective warm-start strategies, further discouraging random
initialization: we shall not adopt it here.

Effective heuristic warm-start strategies have been pro-
posed, which are based on iterative procedures empirically
yielding far-better quality results than a random start. These
strategies adopt an iterative optimization with an increas-
ing number of variational parameters, recursively updating
a warm-start yielded by the previous step. In practice, this
is done by adopting Fourier-based algorithms [18], or by
interpolating from previous smaller P solutions [16,18].
Heuristically, at each step, the current optimal solution pro-
vides a very good warm-start for the next step, e.g., from
P → P′ (with P′ > P, such as P′ = P + 1). Moreover, such
methods have been observed to yield high-quality optimal
or quasi-optimal solutions (β, γ ) that appear to be smooth
when plotted versus the Trotter number m, albeit sometimes
strongly departing from the linear choice of Eq. (4). In prin-
ciple, smoothness in m of optimal or quasi-optimal solutions,
and their transferability, e.g., from P → P′ = P + 1, are two
different aspects. However, in practice, optimal or quasi-
optimal nonsmooth solutions often fail in providing a good
warm-start [42].

In this paper we adopt the following strategy. Let us denote
by (βdQA, γ dQA ) the optimal linear-choice that a digitized-QA
provides, as discussed above. Using (βdQA, γ dQA ) as a start-
ing point for a Broyden-Fletcher-Goldfard-Shanno (BFGS)
optimization algorithm [57,58], we find a minimum, de-
noted by (β(1), γ (1) ), which is often “close” to be a smooth
curve, with occasional high-frequency localized oscillations
of the optimal parameters. We associate these high-frequency
oscillations with the presence of spurious minima in the
variational energy landscape. As predicted in Refs. [59–61],
we expect the proliferation of such spurious minima to
limit the performance of the BFGS algorithm, which is un-
able to escape towards better solutions. To overcome this
performance limitation we enforce smoothness, by apply-
ing a smoothing procedure to (β(1), γ (1) ) and restarting a
second BFGS optimization. This leads to a final solution
(β(2), γ (2) ) that is found to be smooth, and to provide a
systematically better variational minimum compared to the
spurious minimum (β(1), γ (1) ). Schematically, here is the
procedure adopted:

(βdQA, γ dQA ) → BFGS optim.
QAOA−1−→ (β(1), γ (1) ) → Smoothing + BFGS optim.

QAOA−2−→ (β(2), γ (2) ). (12)

The smoothing procedure can be carried out either by hand
or by locally interpolating the curve (β(1), γ (1) ) with a low-
degree polynomial. We remark that details on the smoothing

procedure are not particularly relevant, since it only provides
a new educated guess for the second BFGS optimization,
eventually converging to a smooth optimal curve (β(2), γ (2) ).
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FIG. 3. Results for the optimal digitized-QA protocol (dashed and dash-dotted straight lines), QAOA-1 (open symbols with dotted lines),
and QAOA-2 (solid lines), for P = 16, 64 (left to right) and for nc = 0, 1 (top to bottom). We adopt a uniform x axis scale in terms of
m̃ = (m − 1)/(P − 1) ∈ [0, 1].

We now move to illustrate our results in more detail. We
performed digitized-QA and QAOA classical simulations for
both nc = 0, 1: in this framework, we computed the exact
QAOA final state in Eq. 5 and the corresponding variational
energy in Eq. (7) by applying the algebra of quantum mechan-
ics. While this analysis was carried out for all samples under
study, we now focus, for the sake of clarity, on a single sample
(or training set), with similar comments and results applying
to all samples.

Figure 3 illustrates the results obtained for this sample. We
show two representative values of P = 16, 64 (left to right)
and both energy-cost functions nc = 0, 1 (top to bottom). The
dashed straight lines denote the optimal (βdQA, γ dQA ) solutions.
The empty symbols denote the optimal (β(1), γ (1) ) solutions
obtained by a BFGS minimization starting from (βdQA, γ dQA ):
our “first shot of QAOA”, labeled as QAOA-1. Notice the
irregularities on top of an overall “smooth” behavior, partic-
ularly evident for nc = 0, where they are quite localized. For
nc = 0, we apply a smoothing procedure, and start a “second
shot” of QAOA simply as summarized in Eq. (12). On the
other hand, for nc = 1, irregularities of QAOA-1 solutions are
more diffuse, and the procedure was slightly modified: We
run the second BFGS local minimization from a warm-start
point, obtained by interpolation [16,18] from a smoothed P =
16 solution, in power-of-two steps, hence from P = 16 →
32 → 64 · · · . In both cases, the resulting smooth solutions
(β(2), γ (2) ) are labeled as QAOA-2 and denoted by solid lines.
In Appendix A, we summarize few more technical details con-
cerning these two procedures to single out QAOA-2 smooth
solutions; however—as discussed in the next section—we

anticipate that these are not particularly crucial: Once a
smooth solution for a single training set sample is found, there
is no need to repeat the whole procedure for other samples.

In Fig. 4 we compare the obtained minima of εP, Eq. (11),
for the optimal digitized-QA, QAOA-1 and QAOA-2 pro-
tocols. These results show a striking gain by applying
QAOA, both for nc = 0 and nc = 1. Moreover, as antici-
pated, smooth QAOA-2 protocols yield systematically better
results compared to QAOA-1 protocols. As expected, the
gain is larger for nc = 1, since our QAOA-2 implementa-
tion provides (for P > 16) a qualitatively different smooth
optimal curve, see Appendix A for details. In light of
these findings, the QAOA-1 solutions can always be inter-
preted as spurious local minima—where the classical BFGS
optimization gets trapped—systematically of lower quality
than the corresponding smoothed QAOA-2 protocols. These
results hold true for all randomly generated training set
samples.

C. Transferability of a smooth ansatz

The procedure described above to obtain smooth solutions
is elaborate and time-consuming. Luckily enough, it does not
need to be repeated for each different training set sample.

Indeed, a leitmotif of recent literature on QAOA appli-
cations are concentration effects of the variational energy
landscape: for any given P, typical instances of the same
problem often yield a similar QAOA energy landscape. When
this is the case, QAOA optimal parameters computed for the
first instance often serve as an excellent warm-start for a local
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(a)

(b)

FIG. 4. Comparison of variational energy density minima for
digitized-QA, QAOA-1 and QAOA-2 for a specific sample of ran-
dom patterns, with nc = 0 (a) and nc = 1 (b). QAOA-1 outperforms
digitized-QA, especially for large values of P. This gain can be
further enhanced with the smooth QAOA-2 solution (see main text).

optimization for other instances, with a significant reduction
of the computational cost.

While this result can be formally understood, sometimes,
in terms of light-cone spreading of quantum correlations, e.g.,
for MaxCut problems on regular graphs with P � N [38,40],
a growing body of numerical evidence hints at concentration
effects and parameter reusability in different regimes (large
P) and for different models, often without a complete formal
understanding. A remarkable exception is offered by [39],
where the authors prove concentration for the Sherrington-
Kirkpatrick (SK) model in the large-N limit, although the
infinite range of two-body interactions hinders an intuitive
understanding in terms of light-cone spreading of correlations.

In the following, we show numerically that similar con-
cepts also apply to the perceptron model, which does not
even admit a k-local cost function: QAOA smooth solutions
are transferable among different instances of the perceptron
model (i.e., for different training set samples). To show this,
we adopt the following strategy: For any fixed value of P and
for nc = 0, 1, separately, we consider QAOA-2 optimal angles
(β(2), γ (2) ) for our first sample and take them as a smooth
model-dependent ansatz (βAnsatz, γAnsatz ) used as initial point for
a BFGS minimization of a different sample. In this way, we are
able to find smooth optimal solutions for all other samples, as
illustrated in Fig. 5. Remarkably, these smooth solutions are

qualitatively coincident with the (β(2), γ (2) ) solutions that one
would construct by adopting the QAOA-2 procedure previ-
ously outlined.

From a practical standpoint, by starting from the
smooth ansatz (βAnsatz, γAnsatz ), the convergence of the BFGS-
optimization is always faster. Moreover, we note that all
smooth solutions have the same qualitative shape of the
smooth ansatz: remarkably, even without a new BFGS-
optimization, the previously-found (βAnsatz, γAnsatz ) already pro-
vides a better result compared to an optimal-�t dQA. This
finding is also confirmed by additional simulations on a new
(larger) set of samples, randomly drawn without any require-
ment on classical hardness or large number of zero-energy
configurations (see Appendix C).

IV. THE ROLE OF THE COST-FUNCTION
LANDSCAPE GEOMETRY

As discussed in Ref. [34], quantum fluctuations are partic-
ularly efficient in exploring exponentially rare dense regions
of solutions in the classical cost-function landscape, defined
by Eq. (9). These dense regions are characterized by a large
number of classical solutions clustering within relatively
small Hamming distance. This geometrical structure of the
landscape is linked to the good QA performance: The in-
stantaneous spectral gap “seen” by the QA dynamics only
closes when approaching the end of the protocol s → 1, where
Ĥ (s) → Ĥtarg, due to the degeneracy of classical solutions.

We can scramble this geometrical structure by permuting
the classical energies associated to each configuration; while
keeping the spectrum unchanged, this procedure yields an un-
structured problem, as previously done also in Refs. [62,63].
This scrambling was shown to be detrimental to QA in a
general setting [62] and for our specific case [34]: it causes a
sharp drop of the instantaneous spectral gap at a finite sc < 1,
the usual bottleneck of QA, and a drastic worsening of its
performance.

It is natural to investigate to which extent QAOA might
be able to cope with such a scrambling of the cost-function
landscape geometry and with its associated ultra narrow spec-
tral gap (avoided level-crossing): After all, QAOA is based on
the variational principle, rather than on the adiabatic theorem.
However, smooth QAOA solutions might be a signal of an
“optimal adiabatic schedule” [16], and this might suggest a
worse performance.

To answer such a question, we have adopted the following
strategy. For each sample considered, we generate a cor-
responding randomized sample, by permuting the classical
energies associated to each configuration σ, so as to retain the
same classical energy spectrum, while completely destroying
any geometrical feature of the classical energy landscape. In
summary, the randomized samples should be interpreted as
a benchmark: they provide (on average) the most difficult
optimization problem (no geometrical structure) retaining the
same full spectra of the original samples.

We then proceed along the same lines of Sec. III: By
starting from an optimal-�t digitized-QA solution for the
randomized samples, we run QAOA and compare the min-
ima of the variational energy density for the two methods.
By following the same scheme outlined in Eq. (12), it is again
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FIG. 5. QAOA optimal protocols for all tested samples, as obtained by a BFGS minimization starting from the same smooth ansatz
(βAnsatz, γAnsatz ), corresponding to smooth optimal schedules for the first sample (see main text). Data shown for P = 16, 64 (left to right)
and for nc = 0, 1 (top to bottom). We adopt a uniform x-axis scale in terms of m̃ = (m − 1)/(P − 1) ∈ [0, 1]. The qualitative similarity
of QAOA solutions for different samples is remarkable, particularly for nc = 1, where optimal protocols for different samples are almost
indistinguishable.

possible to single out smooth QAOA-2 solutions, being at the
same time qualitatively different compared to those for the
original samples, and transferable among different random-
ized samples (data not shown). In Appendix B, we carry out
a closer comparison between digitized-QA optimal-�t values
for the two cases of original vs randomized samples.

Figure 6 compares the minimized variational energy
density obtained from digitized-QA and QAOA-2 for the
randomized version of the sample reported in Fig. 4; the
original digitized-QA and QAOA-2 results are also reported,
for a direct comparison. Two main remarks are worthwhile:

(1) QAOA-2 solutions for the randomized sample consid-
erably improve on the corresponding digitized-QA results,
especially for nc = 0, where they become comparable to the
original sample digitized-QA results and (2) the quality of
these QAOA-2 solutions is much lower compared to QAOA-2
solutions for the original sample, witnessing a degradation of
performance. These comments apply to all samples examined.

To better understand the basic mechanism behind such a
degradation of performance, we plot in Fig. 7 the QAOA-2
smooth protocols for P = 64, reexpressed in terms of sm =
γm/(γm + βm), a parameter, which in digitized-QA linearly

FIG. 6. Variational energy density minima for digitized-QA and QAOA-2, comparing results for the original sample (the same as in Fig. 4,
full symbols) with those obtained by a randomization of its energy spectrum (empty symbols), for both nc = 0, 1.
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FIG. 7. Plot of the QAOA-2 smooth protocols for P = 64, in terms of sm = γm/(γm + βm ) for both the original (left) and the randomized
samples (right), in the case nc = 0. In both figures, the thick-dashed line represents the transferable smooth ansatz obtained by a detailed
study of the first sample, while data for other samples is obtained by exploiting this transferability result. As a visual reference, we also
plot the digitized-QA linear interpolation from s = 0 to s = 1. In the insets, we show the instantaneous spectral gap �(s) = Eex(s) − Egs(s):
the gap starts at �(s = 0) = 2 (single spin-flip excitation of Ĥx) and it vanishes for s = 1, due to the degeneracy of Ĥz, while negligible
sample-to-sample variability is observed. Remarkably, �(s) shows a sharp drop around sc = 0.725 for the randomized samples, and a wide
plateau is highlighted in the corresponding smooth optimal schedules by a red dotted horizontal line. Similar results and comments apply for
nc = 1.

interpolates from s = 0 to s = 1 during the annealing process,
see Eq. (4). The two figures correspond to the original (left)
and the randomized samples (right), in the case nc = 0. These
optimal schedules should be compared with the instantaneous
spectral gap �(s) = Eex(s) − Egs(s), which is plotted in the
inset for both cases. We observe that the instantaneous gap
of randomized samples displays, as expected (see Supporting
Information in Ref. [34]), an avoided level-crossing close to
the numerical value sc = 0.725. Correspondingly, close to
this value, the optimal schedule parameter sm shows a wide
marked plateau, particularly evident for large values of P:
this is reminiscent of a “slowing down” of the annealing near
the gap closure, a kind of “optimal adiabatic schedule” [16],
unfortunately unable to fully overcome the basic limitations of
the adiabatic mechanism. Moreover, these QAOA-2 smooth
solutions show striking similarity with adiabatic schedules
obtained for unstructured (Grover) search in Refs. [64,65].

However, nothing guarantees that our QAOA-2 smooth
solutions are the true global minimum in the 2P-dimensional
variational energy landscape: In principle, there might be
other better-performing QAOA protocols, e.g., similar to the
“shortcut to adiabaticity” (STA) schedules found in some
hard-instances of 3-MaxCut [18]. The STA strategy goes
beyond the adiabatic paradigm and is a promising frame-
work to overcome shortcomings of the adiabatic mechanism.
References [66–68] have recently developed counterdiabatic-
QAOA (CD-QAOA) approaches, to extend the QAOA vari-
ational ansatz by including terms that generate STAs. Since
STA protocols are generally smooth, a generalization of
QAOA-2 might succeed in finding them. However, this re-
quires developing efficient strategies [69] to modify the linear
guess inspired by dQA to specifically target STA protocols.

V. DISCUSSION AND CONCLUSIONS

In our paper we provided encouraging evidence for the
potential applicability and effectiveness of digitized-QA and
QAOA in the realm of hard classical optimization problems

with highly nonlocal Hamiltonians, well-beyond the usual
2-local models considered both in MaxCut and quantum spin
chains ground-state preparation.

Moreover, we devised an optimization scheme that lever-
ages the transferability of optimal smooth QAOA schedules
among different instances of the same problem (different
training sets). These findings are reminiscent of previ-
ous results on parameter concentration (or instance in-
dependence) and might be further investigated, possibly
leading to analytical results in the large N limit, as in
Refs. [39,70].

Inspired by the results of Ref. [34], we also analyzed the
role of the geometry of the classical cost-function landscape,
by artificially permuting the energy spectrum. This leads to
a vanishing spectral gap along the annealing path: While still
providing some advantage vs an optimized-�t linear schedule
QA, QAOA seems to perform a kind of “optimal adiabatic
schedule”, unable to fully overcome the basic limitations of
the adiabatic mechanism.

Concerning future developments, it is an open research line
to tailor smart approximation schemes, with the goal of ef-
ficiently implementing on actual quantum hardware unitaries
generated by a highly nonlocal classical Hamiltonian—paving
the way to experiments beyond classical simulation capabili-
ties. Nevertheless, we highlight that similar nontrivial tasks
need to be solved also for the implementation of such models
on a standard quantum annealer [34]. In this respect, one pos-
sibility is a further extension of QAOA, proposed in Ref. [22].
The main idea is that, by looking back at Eqs. (5) and (6),
one can redefine the variational energy in Eq. (7) as follows:
(1) keep the same exact classical Ĥtarg = Ĥz in the objective
function expectation value and (2) redefine the diagonal uni-
tary (which is quantum-computationally hard) generated by
Ĥz—e.g., by using a simplified version of it, encoding some
minimal information on the problem. As an additional pos-
sibility, one can even redefine the mixing unitary generated
by Ĥx, replacing it with another operator inducing tailored
quantum fluctuations. One would then simply repeat the
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QAOA prescription, but with a different—and possibly much
more efficient—quantum gate decomposition. In contrast,
note that the expectation value, in a realistic quantum device,
is simply estimated by computing the sample mean of Ĥtarg =
Ĥz for a given number of shots, each requiring only a mea-
surement on the computational basis: each evaluation of Ĥtarg

for a classical configuration σ is a trivial task, regardless of
its nonlocality.

Another route, in principle, would be to use a parameter-
ized quantum circuit agnostic about the problem Hamiltonian,
tailored on the resources of available quantum devices (e.g.,
native gates and qubit connectivity) [24,25]. This approach,
while potentially beneficial on the implementation side, might
significantly suffer from well-known limitations such as local
minima and barren plateaus. An efficient implementation of
an effective parameterized quantum circuit might pose new
interesting questions, concerning not only the presence of op-
timal smooth protocols and their transferability, but also their
robustness to shot-noise (due to finite-sample mean estimates
of the variational energy) or gate errors, effects worth studying
only once an efficient gate implementation is found. A com-
plementary approach relies on performing efficient classical
simulations of quantum optimization methods, e.g., relying on
tensor networks techniques [71].

A simple gate-efficient version of QAOA, which we have
tested, is the following. Rather than using Ĥtarg = Ĥz in the
quantum gates e−iγmĤz , we use the Sherrington-Kirkpatrick
(SK) model Hamiltonian, which derives from taking the
quadratic approximation (|mμ|) �(−mμ) → −mμ + m2

μ in
the nc = 1 cost function in Eq. (9), which, upon using Eq. (8),
leads to

Ĥz = −
N∑

j=1

h j σ̂
z
j +

∑
j �= j′

Jj j′ σ̂
z
j σ̂

z
j′ , (13)

where h j = 1√
N

∑M
μ=1 ξ

μ
j is a local field provided by all the

input patterns at site j, while Jj j′ = 1
N

∑M
μ=1 ξ

μ
j ξ

μ

j′ is the
standard Hebbian-rule coupling [50]. Unfortunately, such a
choice of Ĥz appears to dramatically decrease the perfor-
mance of QAOA. A possibly smarter choice to improve
performance, while maintaining a Hamiltonian with only two-
body interactions, could be to search for an optimal SK
model, either by iteratively identifying the optimal J and
h parameters or by defining an appropriate inverse Ising
model [72]. These options will be the subject of future
research.

A complementary and promising route for future research
is the extension of this work to the training of more com-
plex discrete-weights ANNs, as well as considering training
sets with correlations (data with a structure). This would
allow to better inquire into the role of the classical cost-
function landscape geometry, which is expected to be crucial
for the effectiveness of QAOA or similar quantum opti-
mization schemes. Incidentally, we remark that alternative
cost-function definitions (i.e., different cost for a misclassified
pattern) can be adopted, leading to a change of the whole
classical energy landscape but zero-energy solutions. It might
prove insightful to assess whether the classical cost-function

definition can be chosen to enhance the effectiveness of quan-
tum optimization.

Interestingly, a recent paper [73] has shown that purely
classical strategies using recurrent neural networks—denoted
as “variational neural annealing”—can improve significantly
on Simulated Annealing and simulated-QA on standard
benchmark problems. Our study confirms that the perceptron
model appears to belong to a class of problems where quan-
tum effects efficiently exploit the geometry of the classical
energy landscape, much better than, e.g., simulated anneal-
ing: it is therefore an ideal candidate to test and benchmark
the variational neural annealing strategies against competing
quantum algorithms.
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APPENDIX A: QAOA-2 PRACTICAL IMPLEMENTATION

As mentioned in the main text, two slightly different pro-
cedures are adopted in order to single out smooth optimal
QAOA-2 solutions.

In fact, some qualitative differences arise between QAOA-
1 results for nc = 0 and nc = 1, which are visible in Fig. 3
(empty symbols) for the first training set sample, but are
present for all the other samples in exam. Concisely, we
observe that for nc = 0 the QAOA-1 optimal parameters
(β(1), γ (1) ) are noticeably different from (βdQA, γ dQA ) for all
values of P, and the high-frequency oscillations are either
completely absent or well localized on top of the smooth
solutions. This observation motivates the original QAOA-2
procedure outlined in Eq. (12) (smoothing, second BFGS

FIG. 8. The one-dimensional landscape of the variational energy
density [Eq. (11)] for digitized-QA, where the parameters β and γ

depend only on �t , see Eq. (4). All randomized samples and both
choices of nc = 0, 1 are shown. We remark that the landscape, and
in particular the position of global minima, show mild sample-to-
sample variability.
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FIG. 9. Optimal digitized-QA �t values for increasing P, with logarithmic scales on both axes. The original samples case (left) compared
to the randomized samples (right). The presence of evident clusters shows mild sample-to-sample variability, with few exceptions (as P = 4
for nc = 1, in the left panel) due to an almost-flat energy landscape in that range.

minimization), which is applied straightforwardly, e.g., for
P = 16, 64, yielding the smooth (β(2), γ (2) ) protocols in Fig. 3
(solid curves).

On the contrary, for nc = 1, we observe the same qualita-
tive features, e.g., for P = 16, whereas for larger values such

(a)

(b)

FIG. 10. (a), Variational energy density averaged over the same
set of samples analyzed in Fig. 5. We plot the variational energy
density for optimal dQA, for the transferred smooth ansatz and after
a refinement optimization. (b) Variational energy density averaged
over a new batch of 50 random samples. The transferred smooth
ansatz still outperforms an optimal dQA. The same results are found
for nc = 0 (data not shown).

as P = 32, 64 the QAOA-1 solutions seem to get “trapped”
in a neighborhood of (βdQA, γ dQA ), also displaying more ex-
tended high-frequency oscillations in the optimal parameters
(β(1), γ (1) ). This numerical evidence calls for a slightly dif-
ferent approach: we simply apply Eq. (12) prescription only
for P = 16, and we find smooth solutions for larger values P′
using an iterative procedure: for each P′ > 16, we determine
the new starting point for BFGS minimization by interpolating
on the smooth optimal curve found for the previous value of
P. We implement this procedure in power-of-two steps, hence
from P = 16 → 32 → 64, but we expect to obtain similar
results, e.g., by means of a linear increment in P at each
iteration.

Consistently with our intuition, one can check in Fig. 4
that QAOA-2 offers a noticeable improvement for nc = 1,
since the solutions for P = 32, 64 have now “escaped” the
digitized-QA qualitative shape.

We remark that these details—concerning only the tech-
nical implementation of our QAOA-2 framework—do not
affect our central message, as reported in the main text:
for each sample in exam, QAOA hints at the presence of a
smooth solution that systematically outperforms (optimal-�t)
digitized-QA, as shown in Fig. 4. This QAOA-1 solution is
sometimes affected by the presence of high-frequency oscil-
lations, which can be smoothed out without spoiling the result:
on the contrary, QAOA-2 is systematically (albeit sometimes
negligibly) outperforming QAOA-1.

In conclusion, we wish to underline that—in light of the
discussion upon the transferability of the ansatz (see Fig. 5)—
the specific procedure adopted to obtain QAOA-2 solutions
becomes less relevant: Once a detailed study of a single sam-
ple is carried out, its optimized smooth solutions serve as an
excellent ansatz for all other randomly generated training sets,
yielding an effective unique procedure to find smooth QAOA
solutions outperforming optimal digitized-QA, valid for both
nc = 0, 1.

Concerning our study on randomized samples, we pro-
ceeded with the same iterative interpolation strategy starting
from P = 16, for both nc = 0, 1. Once a smooth QAOA-2
solution is obtained for the first sample, the transferability of
the ansatz yields a well-defined strategy to apply QAOA on
all the other randomized samples.
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APPENDIX B: ADDITIONAL RESULTS ON DIGITIZED-QA

In this section, we report additional numerical results on
optimal-�t digitized-QA, in particular by drawing a compar-
ison between ordered and randomized samples.

In Fig. 8 we show that, also in the randomized scenario, the
�t landscape and the position of minima are almost identical
for all samples in exam: we show data for P = 64 and both
definitions of the cost function nc = 0, 1, to be compared with
Fig. 2 for the original samples.

The validity of these results naturally extends to different
values of P, as summarized in Fig. 9, where we display the
optimal values of �t vs P for the original samples (left panel)
as well as for randomized samples (right panel). In the latter
case, we notice that the sample-to-sample variability of the op-
timal values of �t is even smaller, and also the differences—
for any fixed value of P—between nc = 0, 1 are negligible (es-
pecially for large values of P). Apparently, by scrambling the
classical cost-function landscape geometry, the initial specifi-
cation of the cost function becomes less relevant. In contrast,
we remark that the optimal values of �t differ significantly
between any original sample and its randomized version.

APPENDIX C: ADDITIONAL RESULTS ON SMOOTH
ANSATZ TRANSFERABILITY

Following on the discussion on the transferability of a
smooth ansatz among different training sets, in Fig. 10

(top panel) we plot the variational energy density obtained
with an optimal-�t dQA, compared to the one of the smooth
ansatz, before and after a refinement optimization. These data
correspond to the protocols shown in Fig. 5: here, we show
results averaged over the training set samples for nc = 1. Re-
markably, the transferred solution significantly outperforms
an optimal dQA, even without reoptimizing the QAOA varia-
tional parameters for the new training set. The same results
hold true also for nc = 0. As visible in Fig. 5, for nc = 1
the reoptimized parameters are almost indistinguishable from
the ansatz: A new BFGS-optimization provides only a minor
increase in performance.

The effectiveness of a transferred QAOA solution is
confirmed on a new batch of 50 training sets, generated ran-
domly without any a posteriori selection on the number of
zero-energy solutions or on the hardness for a classical opti-
mization. This is shown in Fig. 10 (bottom panel): also in this
case a transferred smooth ansatz outperforms an optimal dQA,
without the need of a further optimization. The same results
are verified for nc = 0. As a side note, we notice that the
average variational energy obtained with the smooth Ansatz
for the original 10 samples is lower than the values obtained
here for the new simulations: this may be due to the selection
of samples with a large number of classical solutions, on
which quantum methods are expected to perform particularly
well [34].
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