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Abstract

This thesis explores various aspects of the Je�rey-Kirwan localisation formula, a
powerful tool in computing integrals on quotients of smooth varieties by reductive
group actions. Initially developed by Je�rey and Kirwan in the symplectic context,
this formula has seen various adaptations and extensions scattered throughout the
literature. The primary goal of this thesis is to provide a fully algebraic proof of the
Je�rey-Kirwan localisation formula, building on the work of Lerman, Guillemin, and
Kalkman. Furthermore, the thesis extends the formula to the equivariant setting,
enabling the computation of equivariant integrals with respect to additional torus
actions on the quotient. It also aims to clarify the relations among di�erent versions
of this formula found in the literature. In addition, the thesis explores some appli-
cations of these localisation techniques, speci�cally in deriving residue formulae for
virtual invariants of critical loci in quotients of linear spaces, such as quiver varieties.
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Chapter 1

Introduction.

1.1 A brief history of the subject.

There are many techniques that, in the literature, go under the name of Je�rey-
Kirwan localisation formula. In essence, they are all formulae to compute integrals
on quotients of smooth varieties by reductive group actions. The original version of
this formula, proved by Je�rey and Kirwan in [JK95], lives in the symplectic category
and it's of a very analytic nature: it expresses the integral on the quotient in terms
of some inverse Laplace transforms of functions de�ned on the Lie algebra of the
group. This version found a great application in the work [JK98], where the same
authors computed intersection numbers on the moduli space of stable vector bundles
on Riemann surfaces of genus g ¥ 2.

Later, Brion and Vergne in [BV99] expressed the inverse Laplace transforms ap-
pearing in the original localisation formula in terms of a newly de�ned linear oper-
ator, which they called Je�rey-Kirwan residue. Using this result Szenes and Vergne
[SV04] proved an important variation of the formula in the case where the variety of
interest is the quotient of a linear space by a torus action (namely a toric variety). In
this case, they expressed the Je�rey-Kirwan residue in a combinatorial way, in terms
of iterated residues computed with respect to �ags in the dual Lie algebra of the
torus. This version achieved a lot of success by being the key ingredient in the proof
of the toric mirror symmetry conjecture of Batyrev and Materov [BM02], given by
Szenes and Vergne in the same paper. At this point of the story, there was no purely
algebraic way of proving these localisation formulae, which relied on deep analytic
results.

In a parallel direction, Lerman [Ler95] studied an interesting construction in
symplectic geometry: the symplectic cut. Using this tool, he noticed that one could
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6 1.2. THE EQUIVARIANT VERSION.

produce a formula for computing integrals on the quotient of a circle action in terms
of residues of functions de�ned on the Lie algebra of the circle. This construction
was iterated by Guillemin and Kalkman in [GK96] to produce residue formulae for
integrals on quotients of symplectic varieties by Hamiltonian actions of tori. The
case of a nonabelian reductive connected group G can be reduced to the case of
its maximal torus T by a result of Martin [Mar00]: this expresses integrals over
the G-quotient in terms of integrals over the T -quotient. This construction is much
more geometric and can be easily translated into algebraic terms by simply replacing
symplectic reduction with geometric invariant theory.

First aim of the thesis.

We follow this second path initiated by Lerman to give a fully algebraic proof of
this Je�rey-Kirwan localisation formula. The �rst step, where the group is C�, was
already considered by Edidin and Graham in [EG98a]. We will also show how to
relate this version of the localisation formula to the one described by Szenes and
Vergne. This is the content of Section 4. Let's quickly discuss the content of this
formula in the version of Szenes and Vergne in the case of a torus action (for a more
precise description, see Section 4.5).

Given a torus T acting on a linear space V we can consider the weights of the
action, namely the set A of characters ρ P χpT q that appear as eigenvalues of the
action. Given a suitably regular linearisation ξ, an equivariant cohomology class α P
A�
T pV q de�nes a cohomology class rpαq on the quotient V {{T and we are interested in

computing
³
V {{T

rpαq. Since the equivariant cohomology ring A�
T pV q can be identi�ed

with the ring of polynomial functions on χpT q_, we can think of the fraction α
eT pTV q

as of a rational function on χpT q_. The formula of Szenes and Vergne reads»
V {{T

rpαq � JKA
ξ

�
α

eT pTV q



where JKA
ξ is a residue operation which essentially uses the linearisation ξ to select

some "stable" ordered bases from A, which are then used to compute iterated residues
(see Section 4.1.6 for more details).

1.2 The equivariant version.

In many cases, interesting moduli spaces can be built as quotients of the form V {{G,
where V is a representation of a reductive connected group G. These moduli spaces
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are often noncompact, and one wants to compute equivariant integrals with respect
to an additional torus action on V {{G having compact �xed locus. This is the
motivation behind:

The second aim of the thesis.

We prove a version of the JK localisation formula (in the form of Szenes and Vergne)
that works in this equivariant context. This will be done in Section 5. Let's quickly
discuss how this is di�erent from the nonequivariant formula (for a more precise
description see Section 5.1.5). If an additional action of a torus S on V is added to
the picture, we can consider the corresponding weights of the total pT � Sq-action.
They are the couples pρ, νq P χpT q�χpSq that appear as eigenvalues of the action. For
every value s P χpSq_ of the equivariant parameter of the S-action, we can consider
the hyperplane arrangement Hs in χpT q_ given by the hyperplanes tρ � νpsq � 0u.
The equivariant version of the Szenes-Vergne formula will read

»
V {{T

rpαqpsq �
¸

P zero dimensional
intersection in Hs

JKAP
ξ,P

�
α

eT�SpTV q



where AP is a subset of A depending on P and the additional subscript P in the JK
residue denotes the fact that we are computing such residue at the point P and not
at the origin of χpT q_. To be precise, the sum is not over all the zero dimensional
intersections in Hs but only over some "stable" ones selected by the linearisation ξ.

1.3 Formulae from physics.

As we discussed, these formulae have found successful applications in several areas of
mathematics, but the �eld in which they experienced the most popularity is theoret-
ical physics. For example, Benini, Hori, Eager and Tachikawa in [Ben+15] recovered
formulae for computing integrals over complete intersections in GIT quotients of lin-
ear spaces, such as products of Grassmannians. Later, Beaujard, Mondal and Pioline
[BMP19] and Córdova and Shao [CS16] applied these formulae to study invariants of
critical loci in quiver varieties. Other applications came from the work of Nekrasov
and Piazzalunga [NP19], where they used these localisation techniques to compute
(for low values of n) virtual invariants of the Hilbert scheme of n points on A4.
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The third aim of the thesis.

We provide an algebro-geometric proof of the formulae of [Ben+15], [BMP19] and
[CS16] appearing in the physics literature, and to discuss the application of JK
localisation to the case of HilbnpA4q. This will be the content of Section 6.

Let's informally summarise the content of the main result (for more details see
Section 6.1.4). Assume we are given a quotient of the form V {{G together with an
additional action of a torus S and an S-equivariant superpotential φ : V {{GÑ C. Let
X :� V pdφq be the critical locus of φ. This carries a natural S-equivariant perfect
obstruction theory, from which one can de�ne S-equivariant invariants, such as the
DT invariant, the virtual Hirzebruch genus and the virtual elliptic genus, via virtual
localisation if the �xed locus XS is proper. We will describe three meromorphic
functions ZDT, Zχ and ZEll on χpT�Sq_C so that the invariants above can be computed
from these functions by extracting residues:

DTpXqpsq � 1

|W |
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZDTp�, sqq ,

chSχpXqp2πisq � 1

|W |
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZχp�, sqq ,

chSEllpXqpe2πiτ qp2πisq � 1

|W |
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZEllp�, s, τqq ,

where W is the Weyl group of G. This result will be later specialised to the case
where V {{G is a quiver variety in Section 6.2.4.

About the Hilbert scheme of points in A4, we will recall its construction as a
vanishing locus of a section of a vector bundle in a quotient of the form V {{G, via
the generalised Atiyah-Drinfeld-Hitchin-Manin construction [Nek20]. By using this
presentation, we will push the computation of its invariants to the smooth ambient
space V {{G and write the JK formula for these quantities. For example, the pC�q4-
equivariant integral of 1 over the virtual class of HilbnpA4q can be extracted from the
function �

ϵ12ϵ13ϵ23
ϵ1ϵ2ϵ3ϵ4


n¹
i�j

pu1 � ujq
±

1¤a b¤3pui � uj � ϵabq±4
c�1pui � uj � ϵcq

n¹
k�1

1

uk

by taking JK residues with respect to the u variables. This is far from being an
explicit computation of the invariants (which has already been achieved by Kool and
Rennemo) but recovers an intermediate formula used by Nekrasov and Piazzalunga,
clarifying a little bit the picture.



Chapter 2

Equivariant intersection theory.

In this section we review some of the core aspects of equivariant intersection theory,
as masterfully described by Edidin and Graham in their sequence of works [EG98b;
EG98c; Edi10; EG99]. The main ideas in this �eld come from merging Fulton's
approach to Chow groups, key to doing intersection theory in algebraic geometry,
with the classical theory of equivariant cohomology originally developed in algebraic
topology. In this introduction we quickly recall some features of these two �elds to
motivate some of the constructions that will be discussed in this section.

In his book on intersection theory [Ful13], Fulton develops a purely algebro-
geometric approach to homology and cohomology in the setting of schemes. The
Chow groups, the analogues of the classical singular homology groups, of a variety
X are generated by subvarieties up to a notion of continuous deformation called
rational equivalence. As long as the variety is smooth, these groups carry a canonical
ring structure called intersection product. One of the aims of enumerative geometry
is, in very abstract and imprecise terms, to study the results of multiplications of
interesting classes in the Chow groups.

In the topological world, this corresponds to computing integrals over smooth
manifolds and equivariant cohomology has proven many times to be an extremely
useful tool (see for example this paper by Atiyah and Bott [AB84]) for this kind of
computations. The equivariant cohomology of a topological space X endowed with a
G-action is de�ned as the singular cohomology of X�GEG, where EG is the in�nite
dimensional classifying principal G-bundle, whose quotient BG � EG{G is called
classifying space of G.

The in�nite dimensionality of EG is the main obstruction to directly de�ning
the equivariant Chow groups as Chow groups of the mixed product X �G EG, since
this classifying bundle is not de�ned in the category of schemes. Equivariant Chow
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groups are instead de�ned in [EG98b] by using �nite dimensional approximations
of EG by schemes due to Totaro [Tot99]. In this section we will discuss how these
de�nitions allow to use equivariant techniques to do intersection theory on a variety
with a group action.

Contents of the section:

The structure of this section is organized as follows:

� We recall the de�nition of the equivariant Chow groups by �nite dimensional
approximations of EG.

� We introduce the change of group homomorphism AGpXq Ñ AHpXq associated
to a group homomorphismH Ñ G. We prove that this morphism is well de�ned
and collect some of its basic properties.

� We go through some of the most important points of [EG98b]. We especially
focus on the description of the Chow ring of a quotient by G in terms of the
G-equivariant Chow group of the original variety. Additionally, we will discuss
an equivariant version of this description.

� We will recall some key concepts in geometric invariant theory and adapt the
results about the Chow rings of quotients from the previous sections to the
case where the quotient is constructed through GIT.

� We discuss the analogous properties of equivariant Chow cohomology.

� We recall the content of the Atiyah-Bott localisation formula, originally devel-
oped in [AB84], and present it within the context of Chow groups as described
in [EG98c].

� We recall the basics of equivariant K-theory.

2.1 Equivariant Chow groups.

In this part we recall the de�nitions of equivariant Chow groups and their basic
properties. We also discuss some interesting morphisms that will be useful in the
study of Chow groups of quotients.
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Notation. Many properties of these groups that we are going to explore only hold
true when the coe�cients are taken in Q. This is the reason why, from now on, all the
Chow groups, Chow rings and K-groups are with coe�cients in the �eld C. We could
use Q but at some point we will want to work with meromorphic functions, so we
take C since the beginning. To make everything more readable, when working with
Chow groups we will omit the star subscript by simply writing AGpXq for AG� pXq.
Analogously, in the case where G is trivial, we will write ApXq for A�pXq. When we
refer to the cohomology A�

GpXq of X (see section 2.3), we will always write the star
so that no ambiguity should appear.

Consider an n-dimensional quasiprojective variety X over C together with the
action of a reductive connected algebraic group G of dimension g.

2.1.1 Equivariant Chow homology.

Edidin and Graham construct in [EG98b] the G-equivariant Chow groups of X.
Here we review the construction, which goes by approximation of the classifying
bundle EG by schemes. Fixed k ¡ 0 we can consider a representation V of G,
having dimension v and admitting an open subset U � V where the G-action is free
and V zU has codimension bigger than n � k. Then the k-th G-equivariant Chow
(homology) group of X is de�ned as

AGk pXq :� Ak�v�g

�
X � U

G




and it's independent on V up to canonical isomorphism (De�nition-Proposition 1 in
[EG98b]).

Remark 1. Everywhere in this thesis we will denote with XG,l the scheme pX�Uq{G,
where we assume that U is an open subset of a representation V over which the action
of G is free and such that the codimension of V zU is bigger than l. Thus by de�nition
AGpXq � ApXG,n�kq.

These equivariant Chow groups enjoy the same functoriality properties (with
respect to G-equivariant maps) of ordinary Chow groups. Notice that G-invariant
k-dimensional subvarieties Z � X induce degree k equivariant homology classes: we
de�ne rZsG to be the class of the subvariety ZG,n�k � XG,n�k. In particular, if X is
irreducible, then it possesses an equivariant fundamental class rXsG P AGn pXq.
Example 2.1.1 (Chow groups of points.). Given an algebraic reductive group G we
will denote with

χpGq :� HompG,C�q , χpGq_ :� HompC�, Gq
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the lattices of characters and cocharacters of G (we will write χpGqC and χpGq_C for
the corresponding C-linear spaces obtained by tensoring with the �eld of complex
numbers). If T � G is a maximal subtorus, we can consider the Weyl group W :�
NpT q{T acting on T . Given the trivial G-action on a point, Edidin and Graham
[EG98b, Section 3.2] prove that the equivariant Chow group of a point with complex
coe�cients is

AGpptq � SympχpT qCqW

where the second ring can be interpreted as the ring of Weyl-invariant polynomial
functions on χpT q_C .

2.1.2 Change of groups in Chow homology.

We shall now describe how the Chow homology changes when we change groups via
an homomorphism H Ñ G. Assume that G acts on X and that H acts on X via
the group homomorphism above. Fixed k consider a representation V of G having
an open subset U � V so that the complement V zU has codimension greater than
n � k in V and G acts freely on U . Analogously consider a representation V 1 of H
having U 1 � V 1 so that H acts freely on U 1 and V 1zU 1 has codimension greater than
n� k. Clearly H acts on U too and we have the morphism

Φ :
X � U � U 1

H
Ñ X � U

G
(2.1)

induced from the projection X �U �U 1 Ñ X �U . Notice that V �V 1 is a represen-
tation of H and U �U 1 is an open subset over which H acts freely. The complement
of this open set is pV zUq � V 1 Y V � pV 1zU 1q which has codimension greater than
n� k. Since both the composition

X � U � U 1 H-quotientÝÝÝÝÝÝÑ X � U � U 1

H
ΦÝÑ X � U

G

and the H-quotient map are faithfully �at (being quotients by free group actions)
we get that Φ is �at, hence we can consider the pullback morphism.

De�nition 2.1.1. The pullback

pH Ñ Gq� : AGk pXq Ñ AHk pXq.

through the morphism Φ described above is called change of group homomorphism.
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Similar change of group homomorphisms have been considered by Krishna [Kri14,
Section 2.2] in the case where H is a subgroup of G. The proof of the following
statement, which ensures that this morphism doesn't depend on the choice of V and
V 1, is just a routine check.

Lemma 2.1.1. The morphism pH Ñ Gq� de�ned above is independent of the choice
of V and V 1.

Proof. Consider two other such representations:

� G ñ Ṽ with an invariant open subset Ũ such that G acts freely on Ũ and
codimṼ pṼ zŨq ¡ n� k.

� H ñ Ṽ 1 with an invariant open subset Ũ 1 such that H acts freely on Ũ 1 and
codimṼ 1pṼ 1zŨ 1q ¡ n� k.

Then we construct a further couple of representations:

� G ñ V � Ṽ . This has an invariant open subset W , containing both V � Ũ
and U � Ṽ , such that G acts freely on W . Moreover the codimension of the
complement of W in V � Ṽ is clearly greater than n� k.

� H ñ V 1 � Ṽ 1. This has an invariant open subset W 1, containing both V 1 � Ũ 1

and U 1 � Ṽ 1, such that H acts freely on W 1. Moreover the codimension of the
complement of W 1 in V 1 � Ṽ 1 is clearly greater than n� k.

We can now relate the change of group homomorphisms de�ned through V, V 1 to
the ones de�ned via the two representations we just de�ned. The corresponding
morphisms of varieties �t into the commutative diagram

X�W�W 1

H
X�W
G

X�U�U 1�Ṽ�Ṽ 1

H
X�U�Ṽ

G

X�U�U 1

H
X�U
G

vector
bundle

vector
bundle

Notice that the vertical open embeddings in the �rst diagram induce isomorphisms
of the Chow groups of the relevant dimensions; for example the arrow on the right
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induces via pushforward an isomorphism

Ak�dimpW q�g

�
X � U � Ṽ

G

�
� Ak�dimpW q�g

�
X �W

G




since the codimension of the complement of U � Ṽ in W is greater than n � k. By
composing with the �at pullbacks coming from the two vertical maps in the second
diagrams we obtain the canonical identi�cations of the Chow groups discussed by
Edidin and Graham in [EG98b, De�nition/Proposition 1]. For example, for the two
vertical arrows on the right of the diagram we obtain the isomorphism

Ak�dimpV q�g

�
X � U

G



� Ak�dimpW q�g

�
X �W

G




which is the canonical identi�cation of the G-equivariant Chow groups of X de�ned
through the representations V and V � Ṽ . This shows that the change of group
homomorphism de�ned by V and V 1 is related to the change of group morphism
de�ned through V � Ṽ and V 1 � Ṽ 1 by the canonical isomorphisms between the
equivariant Chow groups of X de�ned through these representations. This argument
can be applied reversing the roles of pV, V 1q and pṼ , Ṽ 1q completing the proof.

The following results are an immediate consequence of the de�nition and of func-
toriality of �at pullbacks:

Lemma 2.1.2. Given a group homomorphism H Ñ G, the following statements hold
true:

1. (functoriality in the groups) for every other group homomorphism K Ñ H, the
change of group homomorphisms satisfy pK Ñ Hq� � pH Ñ Gq� � pK Ñ Gq�.

2. (functoriality in the varieties) Given a G-equivariant �at morphism of varieties
f : Y Ñ X, then pH Ñ Gq� � f� � f� � pH Ñ Gq�.

3. Given a G-invariant subvariety Z of X, then pH Ñ Gq� prZsGq � rZsH .
In particular we can study the case where X is a point:

Example 2.1.2. Given a group homomorphism h : H Ñ G, consider the trivial
action of G on a point. The induced change of group homomorphism

pH Ñ Gq� : AGpptq Ñ AHpptq
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is, if we denote with TH � H and TG � G the maximal subtori and with WH , WG

the Weyl groups, the morphism

Sym pχpTGqCqWG Ñ Sym pχpTHqCqWH

that sends the function f : χpTGq_C Ñ C to the function g : χpTHq_C Ñ C given by
gpµq :� fpϕ � µq for every µ P χpTHq_.
Example 2.1.3. A particular example that will be useful later is the following.
Assume we have a m-dimensional torus T acting on a point and m distinct rank 1
subtori λi � T so that λ1 � � � � � λm Ñ T is a surjection (necessarily with �nite
kernel). In this case the λi form a C-basis of χpTqC and the induced change of group
homomorphism is

Sym pχpTqCq Ñ Crs1, . . . , sms
given by considering s1, . . . , sm as the elements of the dual basis to λ. Concretely, it
sends a character ϕ into

°m
i�1xλi, ϕysi.

2.1.3 Chow groups of quotient stacks.

In this section we recall the properties of Chow homology of Deligne-Mumford quo-
tient stacks following the works of Edidin-Graham.

Notation. In this section the distinction between Chow groups with integral and
rational (or complex) coe�cients is important to appreciate so, only for this section,
we will denote with ApXq the integral Chow group of X.

Assume that G is a reductive algebraic group acting on a quasiprojective variety
X so that the action is locally proper.

De�nition 2.1.2. The action of a reductive group G on a scheme X is called proper
if the action map G�X Ñ X �X is proper. It's said to be locally proper if there is
an invariant open cover of X so that for every open U in the cover the action Gñ U
is proper.

Remark 2. Here are some useful facts:

1. Since G is reductive then it is a�ne by de�nition, hence if the action is locally
proper then the stabilisers are �nite.

2. Notice that if the G-action is free then G�X Ñ X�X is a closed embedding,
hence the action is proper.
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3. The action of G is locally proper if X admits an a�ne invariant open cover
(see [EG98b, remark 3, pag. 18]). In particular, this is the case if X is the
semistable locus for a linearised action on a closed subvariety of Pa� Ab, if the
semistable locus coincides with the stable locus. This is the case we are going
to study later.

De�nition 2.1.3. Given a G-invariant subvariety Z of X we denote with σGpZq the
order of the G-stabiliser at a general point of Z.

The quotient stack X :� rX{Gs is a Deligne-Mumford stack and its integral Chow
group is the equivariant Chow group of X [EG98b, Section 5.3]:

A�pX q � AG��gpXq.
Let M be a geometric quotient (in the sense of [MFK94]) for the action of G on X.
Then M is a coarse moduli scheme for the stack X by [EG98b, Corollary 4.26] (and
the converse is also true by [EG98b, Corollary 4.33]). The following important result
of Edidin and Graham ([EG98b, Theorem 3] and [Edi10, Proposition 4.42]) allows
to relate the Chow homology of X with the one of its coarse moduli space:

Theorem 2.1.1. Assume that G is a reductive algebraic group acting on a quasipro-
jective variety X so that the action is locally proper and letM be a geometric quotient.
There is an isomorphism of graded Q-linear spaces

π̂G : A�pMqQ �ÝÑ AG��gpXqQ. (2.2)

Consider the quotient map π : X Ñ M . Then the isomorphism π̂G maps the class
of a subvariety rV s into the class σGpπ�1pV qq � rπ�1pV qsG. In particular π̂GrM s �
σGpXqrXsG.
Remark 3. Notice that a DM stack doesn't admit a scheme as a coarse moduli space
in general. Here we are assuming X does.

A simple manipulation of this result shows that it also holds equivariantly. This
is basically the content of [Kri13, Proposition 3.1] which we prove here to remain a
bit more self-contained and to establish notation.

Theorem 2.1.2. Assume that G is a reductive group of dimension g acting in a
locally proper way on a quasiprojective variety X and let π : X ÑM be a geometric
quotient. Let H be another reductive group of dimension h acting on X and com-
muting with G, so that the action descends to the quotient M . Then there is an
isomorphism of graded Q-linear spaces

π̂G�H,H : AH� pMqQ �ÝÑ AG�H��g pXqQ
Given three groups G,H,K acting on X so that
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1. The action of G�H is locally proper,

2. G,H,K commute with each other,

3. there is a geometric quotient X Ñ M for the G-action and one M Ñ N for
the induced H-action, so that together they give a geometric quotient X Ñ N
for the pG�Hq-action,

then the compatibility condition

π̂G�H�K,H�K � π̂H�K,K � π̂G�H�K,K

holds true. Moreover π̂G,1 � π̂G as described in the previous Theorem 2.1.1.

Proof. All the Chow groups in this proof are with rational coe�cients. First of all
we de�ne π̂G�H,H . Fixed k P N we can pick a representation VH of H having an
open subset UH over which H acts freely and such that the codimension of VHzUH
is greater than n� k. Then, by the de�nition of equivariant Chow groups, we notice
that AG�Hj pXq � AG�Hj�dimpVHq

pX�UHq for all j. Now the action of G�H on X�UH is

with �nite stabilisers and we have a geometric quotient in M�UH
H

, which by Theorem
2.1.1 gives the isomorphism appearing as the lower horizontal arrow in the diagram

AHk pMq AG�Hk�g pXq

Ak�dimpUHq�h
�
M�UH
H

�
AG�Hk�dimpUHq�g

pX � UHq
canonical iso

π̂G�H,H

�at pullback

π̂G�H

(2.3)

We de�ne π̂G�H,H to �t in the diagram above, which makes sense since all the other
arrows are isomorphisms. It's easy to show that this doesn't depend on the choice of
the representation VH and that π̂G,1 � π̂G. First we prove the compatibility in the
case where K � 1, where the relation we want to prove reads

π̂G�H,H � π̂H � π̂G. (2.4)

Here we write X{G for M and X{pG � Kq for N to make the argument easier to
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follow. Consider the following diagram

AG�HpXq AG�HpX � UHq

Ap X
G�H

q

AHpX{Gq Ap pX{Gq�UH
H

q

�at
pullback

π̂G�H

π̂H

canonical
iso

π̂G�H π̂G�H

where the right square, whose arrows are isomorphisms, commutes by de�nition,
while we want to prove the commutativity of the left triangle. We can do this by
proving the commutativity of the full diagram, and we start by giving names to the
corresponding morphisms

X X � UH

X
G�H

X{G pX{Gq�UH
H

πG�H

p

πH

Now notice that by the explicit description of the maps π̂ given in Theorem 2.1.1,
we are left to proving that given a subvariety W of X{pG�Hq the following equality
holds true:

p�1

�
π�1
H pW q � UH

H



� π�1

G�HpW q � UH ,

which is obvious. The general case, with K � 1, follows by considering the action
G�H �K ñ X � UK and applying (2.4) for the groups G, H �K.

Remark 4. Notice that, if X is smooth, this result endows the equivariant Chow ring
of the possibly singular geometric quotient M with a product induced by π̂G�H,H .
We will call this the stacky ring structure on AHpMq. Notice this is not intrinsic of
M but depends on its presentation as a geometric quotient.

The maps we just discussed will play a fundamental role in what follows, so we
give them a name:
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De�nition 2.1.4. Assume that G�H acts on X so that G acts with �nite stabilisers
and let M be a geometric quotient for the G-action. The morphism π̂G�H,H of
Theorem 2.1.2 is called H-equivariant ascent map for the action. Its inverse, denoted
with d̂G�H,H , is called descent map.

These maps satisfy many good properties. For example they behave well with
respect to proper pushforwards:

Proposition 2.1.1. Let X, Y be quasiprojective varieties with a G � H action so
that G acts in a locally proper way. Assume they admit geometric quotients X ÑM ,
Y Ñ N and consider a proper G-equivariant morphism f : X Ñ Y inducing a proper
morphism f :M Ñ N . The following diagram commutes:

AG�H� pXqQ AG�H� pY qQ

AH� pMqQ AH� pNqQ.

f�

f�

π̂G�H,H π̂G�H,H

Proof. This is the content of Proposition 11 in [EG98b], which can be extended to
the H-equivariant case by applying it to the products X � UH and Y � UH .

They are also compatible with the change of group homomorphisms:

Proposition 2.1.2. Assume that G is a reductive group acting on a quasiprojective
variety X in a locally proper way and let π : X ÑM be a geometric quotient. Let H
be another reductive group of dimension h acting on X and commuting with X, so
that the action descends to the quotient M . Given a group homomorphism K Ñ H
the following relation holds true

π̂G�K,K � pG�K Ñ G�Hq� � pK Ñ Hq� � π̂G�H,H .
Proof. The proof follows by the commutativity of the diagram

A
�
pX{Gq�UH

H

	
Q

AG�HpX � UHqQ

AG�KpX � UHqQ

A
�
pX{Gq�UH�UK

K

	
Q

AG�KpX � UH � UKqQ

π̂G�H

Φ�

pG�KÑG�Hq�

�at pullback

π̂G�K
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where Φ is just the �at morphism (2.1) used to de�ne the change of group homomor-
phism. The commutativity is immediately checked by using the explicit description
of the morphisms π̂ given by Theorem 2.1.1 and the description of the change of
group homomorphism given in point 3 of Lemma 2.1.2. By �tting this diagram in
the middle of the two diagrams (2.3) de�ning π̂G�H,H and π̂G�K,K we immediately
see that the composition of the vertical arrows on the left is pK Ñ Hq�, while the
composition of the vertical arrows on the right is pG�K Ñ G�Hq� by using point
1 in Lemma 2.1.2.

Finally, we can use the descent isomorphism d̂G�H,H to de�ne the degree operation
on DM stacks of the form X � rX{Gs:
De�nition 2.1.5. Assume that G is a reductive group acting in a locally proper way
on a quasiprojective variety X and let π : X Ñ M be a proper geometric quotient.
LetH be another reductive group of dimension h acting onX and commuting withX,
so that the action descends to the quotientM . Given a class z P AH� pX q � AG�H��g pXq
we de�ne its H-equivariant degree as degX pzq :� degpd̂G�H,Hpzqq.

2.2 Some geometric invariant theory.

References for more background on GIT are the original book [MFK94] by Mumford,
Fogarty and Kirwan and the notes [Hos15] of Hoskins and [Tho05] of Thomas, which
also explore the relations with symplectic reduction.

Consider a reductive algebraic group G acting on a quasiprojective variety X. A
G-equivariant line bundle L on X is called a linearisation.

De�nition 2.2.1. A point x P X is called semistable if there is an invariant section
s P H0pX,LbnqG for some n ¡ 0 so that spxq � 0 and the open subscheme ts � 0u
is a�ne. It is called stable if the stabiliser Gx is �nite and there is such invariant
section s so that spxq � 0, ts � 0u is a�ne and G � x is closed in ts � 0u. We will
denote the semistable locus with XpGqss and the stable locus with XpGqs. If the
semistable locus coincides with the stable locus we will say that the linearisation L
is regular.

Notice that this condition on ts � 0u being a�ne is always satis�ed, for example,
in the case of ample line bundles on projective varieties or for the trivial line bundle
on an a�ne variety. Given such data, Mumford [MFK94] showed that there is a
good quotient

Xss Ñ X{{G
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with quasiprojective target (see for example [Hos15, Section 5.5]). We will only focus
on the case in which X is a closed subvariety of Pa � Ab and the linearisation L is
the restriction of Op1q carrying some equivariant structure. Notice that this bundle
is ample, meaning all nonvanishing loci of sections are a�ne. We are now interested
in a particular version of the Hilbert-Mumford numerical criterion for checking if
a point x P X is semistable. As kindly pointed out by Johan Martens, this is a
particular case of the main result of [GHH15]. We keep the proof here as it is quite
brief and recaps the techniques that King used to prove the analogous result for
a�ne varieties:

Proposition 2.2.1. Assume that X admits a G-equivariant closed embedding in
Pa � Ab for some a, b ¥ 0. Let Op1q be a linearisation of the action on Pa. A point
x P X is semistable with respect to the pullback of Op1q if and only if, for every
homomorphism λ : C� Ñ G so that the limit x :� limtÑ0 t � x exists, the weight of
the C�-representation Op1q|x given by λ, denoted with xλ,Op1q|xy, is non-negative.

Proof. Since the embedding of X in the ambient space is closed, in order to check
the semistability of x P X we can check the semistability of x P Pa � Ab. Here the
proof of King's analogous result for a�ne varieties [Kin94, Section 2] goes through
without modi�cations. More precisely, let x̂ P Aa�1�Ab be a point lying over x. From
the de�nition and using the fact that G is geometrically reductive (more precisely
[Hos15, Lemma 4.29]) it's easy to see that x is semistable if and only if G � x̂ doesn't
intersect O � Ab. By the fundamental theorem [Kem78, Theorem 1.4], saying that
any closed G-invariant subset of a representation meeting the closure of a G-orbit
also meets the closure of the orbit of a 1-parameter subgroup λ of G, we obtain that
x is semistable if and only if, for every 1-parameter subgroup λ P χpGq_ so that
limtÑ0λptq � x̂ exists, then this limit is not in O � Ab. Then the conclusion follows
as in the classical Hilbert-Mumford theorem, as we now show. Consider a point
x � py, zq P Pa � Ab and pick a lift x̂ � pŷ, zq P Aa�1 � Ab.

� First we assume that x is semistable. Let λ be a 1-parameter subgroup and
assume that the limit limtÑ0 λptqpy, zq exists. Diagonalise the action on the
projective space so that λ acts on Aa�1 as ptd0y0, ..., tdayaq. Consider the limit
limtÑ0λptq � ŷ. We have three possibilities:

1. This limit doesn't exist, which means that there is an index i so that
ŷi � 0 and di   0. Since the Hilbert-Mumford weight is the opposite of
the minimum of the dj so that yj � 0, we �nd that the Hilbert-Mumford
weight is positive.
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2. This limit exist and it is nonzero, which means that there all indices i so
that ŷi � 0 satisfy di � 0. Here we �nd that the Hilbert-Mumford weight
is zero.

3. The limit exists and it is zero. This is impossible since otherwise the limit
x̂ � pŷ, zq would be in O � Ab, contradicting the semistability of x by the
�rst part of the proof.

� The converse is completely analogous.

Notice that this result is not true for general quasiprojective varieties. Luckily,
the class of varieties we consider is closed under the operation of taking quotients:

Lemma 2.2.1. Let T , S be two tori acting on Pa�Ab and consider a T�S-equivariant
structure on the pullback of Op1q. The quotient pPa � Abq{{T by T embeds into the
product of a projective variety and an a�ne space.

Proof. For these varieties, by de�nition the GIT quotient is built as

pPa � Abq{{T � Proj

�à
n¥0

H0pPa � Ab,OpnqqT
�

and the graded ring
À

n¥0H
0pPa � Ab,OpnqqT is �nitely generated over C, being

the invariant functions on Op�1q � Ab, or in other words invariant functions on the
corresponding representation Aa�1 � Ab. In particular, this ring is �nitely generated
as an algebra over its degree zero part H0pAb,OAbqT and we can pick generators
s0, . . . , sn (we can even assume they are of the same degree, since Veronese subrings
induce the same projective scheme). Then we have the following surjection given by
evaluation of xi at si

H0pAb,OAbqT b Crx0, . . . , xns Ñ
à
n¥0

H0pPa � Ab,OpnqqT

which in turn induces the closed embedding of the quotient variety into the product
Pn � SpecpH0pAb,OAbqT q.

2.2.1 Kirwan maps.

Here we express the results on descent maps, especially those on the Chow groups
of quotient varieties, in the framework of geometric invariant theory. Consider a



CHAPTER 2. EQUIVARIANT INTERSECTION THEORY. 23

reductive algebraic group G acting on a variety X via a closed embedding into
Pa � Ab, together with a regular linearisation Gñ L. In particular, the action of G
on the semistable locus XpGqss is locally proper by point 3 in Remark 2.

De�nition 2.2.2. The composition

rG : AGpXq i�ÝÑ AGpXpGqssq d̂GÝÑ ApX{{Gq

is called the Kirwan map for pG,X,Lq. The second arrow is the descent map d̂G �
π̂�1
G of De�nition 2.1.4.

Assume that an additional group H acts on X, commutes with G and extends to
an action on the linearisation L. Then we have the H-equivariant Kirwan map

rG�H,H : AG�HpXq i�ÝÑ AG�HpXpGqssq d̂G�H,HÝÝÝÝÝÑ AHpX{{Gq.

Remark 5. Notice that since the actions of G and H commute the G-semistable locus
is H-invariant. Assume indeed we have a G-invariant section s P H0pX,LbnqG and
that spxq � 0 for some point x P X. Then, for every h P H we can consider the section
h�1 �s, which is G-invariant and doesn't vanish on h �x since h �sph �xq � h �spxq � 0.

Finally, assume that G�H acts on X, via an embedding in Pa � Ab, and that L
is a regular linearisation for the action. Assume that K is an additional group acting
on X whose action lifts to L. The pG�Hq-linearisation descends to the intermediate
quotient by G and we obtain H ñ L{G, where L{G is the induced bundle on the
quotient X{{G. We have the following straightforward compatibility results:

Lemma 2.2.2. There is

� compatibility of linearisations, namely pX{{GqpHqss � XpG�Hqss{{G as open
subschemes of X{{G and there is a canonical isomorphism X{{pG � Hq �
pX{{Gq {{H.

� compatibility of Kirwan maps, namely

rG�H�K,K � rH�K,K � rG�H�K,H�K .

Proof. The �rst result is just the fact that quotients can be built in two steps. We
show the second statement in the case of K � 1, the general case is proven in an
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analogous way. Consider the following diagram:

AG�HpXq AG�H pXpGqssq AG�H pXpG�Hqssq

AH
�
XpGqss

G

	
AH

�
XpG�Hqss

G

	

A
�
XpG�Hqss

G�H

	

i�

rG�H,H

j�

j�

rH

π̂G�H,H π̂G�H,H

π̂H

where the horizontal maps are pullbacks via open embeddings. Commutativity of the
triangles is true by de�nition while the square commutes by the explicit description
of the ascent maps π̂ given in Theorem 2.1.1. Then Theorem 2.1.2 ensures that the
composition of the arrows in the �rst row and of the inverses of the arrows in the
last column coincides with rG�H .

Remark 6. Since we are allowing the actions to have nontrivial (but �nite) stabilisers
on the semistable locus, it's possible that the linearisation L only induces a bundle
on the intermediate quotient stack rXpHqss{Hs and not on the quotient scheme
X{{H. Luckily, in this case there is a positive integer n P N so that Ln descends
to a line bundle on the GIT quotient X{{H. Notice that taking tensor products of
the linearisation doesn't change anything: the semistable locus is the same and the
quotient is the same too.

2.3 Equivariant Chow cohomology.

The Chow cohomology groups AkGpXq are constructed from the equivariant Chow
homology groups exactly as the classical Chow cohomology is built from Chow ho-
mology ([Ful13], De�nition 17.3). Elements c P AkGpXq are collections of homomor-
phisms cptq : AG� pY q Ñ AG��kpY q, one for each G-equivariant morphism t : Y Ñ X,
which are compatible under �at pullback, lci pullback, proper pushforward etc. As
for classical Chow cohomology, A�

GpXq is naturally a ring with respect to the product
Y induced by composition. Moreover, there is a clear action of the Chow cohomology
on Chow homology, and we denote it by

X : AkGpXq b AGl pXq Ñ AGl�kpXq : cX Z :� cp1XqpZq.
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In particular this ensures that G-equivariant Chow homology groups AG� pXq are
modules over A�

GpXq and therefore over A�
Gpptq. Corollary 2 in [EG98b] ensures

that, under the hypotheses we are working with (X separated and in characteristic
zero), the Chow cohomology groups can be computed straight from the "homotopy
quotient approximations" we introduced above: AkGpXq � AkpXG,kq. As a corollary
of this and of classical Poincaré duality ([Ful13], Corollary 17.4) applied to XG,k,
G-equivariant Poincaré duality holds true:

Theorem 2.3.1. Let X be a smooth quasiprojective variety of dimension n with a
G-action and let k P Z. The Poincaré homomorphism

AkGpXq Ñ AGn�kpXq : c ÞÑ cX rXsG

is an isomorphism.

Almost all the constructions we performed in the context of Chow homology can
be translated in the context of Chow cohomology. For example, pulling back along
the same morphism (2.1) de�nes a change of group homomorphism

pH Ñ Gq� : A�
GpXq Ñ A�

HpXq

in cohomology which still satis�es all the relevant functoriality properties with re-
spect to group homomorphisms and equivariant morphisms of varieties, giving an
analogous of Lemma 2.1.2. Edidin-Graham's result on the homology of quotients
still holds in cohomology [EG98b, Theorem 4]:

Theorem 2.3.2. Assume that G is a reductive algebraic group acting on a quasipro-
jective variety X so that the action is locally proper and letM be a geometric quotient.
There is an isomorphism of C-algebras

π� : A�pMq �ÝÑ A�
GpXq (2.5)

which satis�es π̂pcX yq � π�cX π̂m for all c P A�pMq and y P A�pMq.

With the aid of this result one can prove that if X is smooth then the Poincaré
duality morphism for M , namely c Ñ c X rM s which is well de�ned being M irre-
ducible, is an isomorphism of C-linear spaces even if M is singular! This endows
A�pMqC with a canonical ring structure, which is independent from the realisation
of M as a coarse moduli space. We make this more explicit with the following
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Lemma 2.3.1. If σGpXq is the order of the stabiliser of G on X at a general point,
the following diagram of C-linear spaces is commutative

A�pMq A�
GpXq

AdimpMq��pMq AGdimpXq��pXq

π�

c ÞÑcXrMs c ÞÑσGpXq�pcXrXsGq

π̂

In particular the Poincaré duality morphism for M is an isomorphism over C (not
over Z!).

Proof. By the Theorems 2.1.1 and 2.3.2 we have that for all c P A�pMq

π̂ pcX rM sq � π�cX π̂rM s � σGpXqpπ�cX rXsGq.

Remark 7. Assume that a scheme M appears as a geometric quotient of a smooth
quasiprojective varietyX by a locally proper action of a reductive groupG. There are
two ring structures on A�pMq that we can consider. (1) The canonical ring structure
induced by the one on A�pMq via the Poincaré duality isomorphism c ÞÑ c X rM s,
which is well de�ned by the previous lemma. If M is smooth then this is the usual
ring structure given by the intersection product. (2) The stacky ring structure of
Remark 4, induced by the isomorphism π̂, which is extrinsic to M and depends on
the presentation as a geometric quotient. The previous result shows that these two
structures are related by a twist by σGpXq.

2.3.1 Equivariant cohomology of quotients and Kirwan maps.

We start with the following

Remark 8. The morphism π� of Theorem 2.3.2 is de�ned by Edidin and Graham at
the beginning of the proof of Theorem 4 [EG98b, Page 25]. After unravelling the
de�nitions, this coincides with the composition

A�pMq pGÑ1q�ÝÝÝÝÝÑ A�
GpMq π�ÝÑ A�

GpXq

described by using the change of group homomorphism and the G-equivariant pull-
back through the quotient map.
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Assume now that G is a reductive group acting in a locally proper way on a
quasiprojective variety X and let π : X Ñ M be a geometric quotient. Let H be
another reductive group acting on X and commuting with G, so that the action
descends to the quotient M .

In the same way we did in Theorem 2.1.2, by using Theorem 2.3.2 applied to the
mixed spaces X �H U , we can prove that if H is another group acting on X so that
the action commutes with the one of G, then the composition

π�G�H,H : A�
HpMq pG�HÑHq�ÝÝÝÝÝÝÝÑ A�

G�HpMq π�ÝÑ A�
G�HpXq

is an isomorphism, compatible with the one in homology via the H-equivariant ver-
sion of the Poincaré duality diagram of Lemma 2.3.1:

A�
HpMq A�

G�HpXq

AHdimpMq��pMq AG�H
dimpXq��pXq

π�G�H,H

c ÞÑcXrMsH c ÞÑσGpXq�pcXrXsG�Hq

π̂G�H,H

(2.6)

In this way we can also de�ne the inverse, called again descent map

dG�H,H : A�
G�HpXq �ÝÑ A�

HpMq.
In the situation of section 2.2.1, where G acts on X with a regular linearisation L,
we can de�ne Kirwan maps

rG�H,H : A�
G�HpXq Ñ A�

G�HpXpGqssq
dG�H,HÝÝÝÝÝÑ A�

HpX{{Gq
by precomposing the descent map with the restriction to the semistable locus. By
using the previous de�nition of degree of an equivariant class in the Chow group of
X � rX{Gs, we can recall the de�nition of integral of an equivariant Chow cohomol-
ogy class:

De�nition 2.3.1. Assume that G is a reductive group acting in a locally proper way
on a quasiprojective variety X and let π : X Ñ M be a proper geometric quotient.
Let H be another reductive group acting on X and commuting with G, so that the
action descends to the quotient M . Let X :� rX{Gs be the quotient stack for the
action. We de�ne the integral of a class α P A�

HpX q � A�
G�HpXq to be»

X
α :� degX pα X rXsG�Hq � deg

�
d̂pα X rXsG�Hq

	
.
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2.3.2 Localisation for torus actions.

Consider a torus T acting on a quasiprojective variety X. The localisation theorem
of [EG98c] shows that the pushforward along the inclusion of the �xed locus XT is
an isomorphism of T -equivariant Chow groups after localisation.

Theorem 2.3.3. Consider the inclusion of the �xed locus i : XT
ãÑ X and consider

the multiplicative system S � AT � pptq of homogeneous elements of positive degree.
Once we set Q :� S�1A�

T pptq, the pushforward
i� : A

T pXT q bA�T pptq
QÑ AT pXq bA�T pptq

Q

is an isomorphism.

Remark 9. Notice that this is an isomorphism of modules over the equivariant co-
homology of the point. This is a polynomial ring by Example 2.1.1 and equivariant
Poincaré duality.

Remark 10. The formal reason why tensoring by Q is necessary comes from the map
i� �tting into the long exact sequence of higher Chow groups:

� � � Ñ AT pXzXT , 1q Ñ AT pXT q i�ÝÑ AT pXq Ñ AT pXzXT q Ñ 0.

According to Proposition 3 in [EG98c], for each m, there exists an element fm P
S that annihilates the module AT pXzXT ,mq. This implies that the isomorphism
remains valid without having to invert the entirety of S; it su�ces to invert just the
product f0 �f1. This means that we can always think of Q as the localisation A�

T pptqf
for some appropriate f .

This theorem has an important corollary in the case where X is a smooth variety,
since in this case the �xed locus XT is regularly embedded and there is an explicit
way to invert the morphism i�:

Theorem 2.3.4. Assume that T acts on a smooth quasiprojective variety X. The
Euler class eT pNXT {Xq is an invertible element of AT pXT q bA�T pptq

Q. Then the
pullback along the regular embedding i : XT

ãÑ X satis�es i�i�α � α � eT pNXT {Xq
and therefore it is a (ring) isomorphism.

Remark 11. The quantity on the right-hand side of the previous equality should be
read as a sum over the connected components of the �xed locus.

We will see later in Section 4.3 that it is not strictly necessary for X to be smooth
in order to explicitly invert the isomorphism i�. If X is the geometric quotient of
a smooth variety by a reductive group action, this approach still works, even if the
�xed locus is not regularly embedded.
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2.4 Equivariant K-theory.

Given a varietyX with the action of an algebraic group G we will denote withKGpXq
the Grothendieck group of G-equivariant vector bundles on X. We will also denote
with KGpXq the Grothendieck group of G-equivariant coherent sheaves on X.

Remark 12. Notice that the equivariant K-theory is not the K-theory of the mixed
spaces X �G U . In this, K-theory di�ers from cohomology.

Notice that KGpXq forms a ring under direct sum and tensor product, while
KGpXq is a KGpXq-module. Notice that if X is smooth then the two coincide, since
all coherent sheaves are perfect on smooth varieties.

Example 2.4.1. The G-equivariant K-theory of a point is isomorphic to the ring
RpGq of representations of G.

As in the nonequivariant case there is the Chern class map cG : KGpXq Ñ A�
GpXq.

In particular we have the following

De�nition 2.4.1. Let E be a G-equivariant vector bundle on X. For every k, the
k-th equivariant Chern class of E is de�ned as the k-th Chern class of the bundle

E �G U Ñ X �G U

where U is a suitable representative for the classifying bundle of G.

In [EG98b, Section 2.4] it is proven that the one above is a vector bundle over
X �G U and that the resulting class doesn't depend on the choice of U .

In [EG99], Edidin and Graham describe the Chern character

chG : KGpXq Ñ
8¹
k�0

AiGpXq chGpEq :�
rkpEq¸
i�1

exi

and the Todd class

TdG : KGpXq Ñ
8¹
k�0

AiGpXq TdGpEq :�
rkpEq¹
i�1

xi
1� e�xi

where x1, . . . , xr P A1
GpXq are the equivariant Chern roots of E. If X is a smooth

projective variety they satisfy the equivariant Hirzebruch Riemann-Roch theorem

chG
�
χGpX,Eq� � »

X

chGpEq Y TdGpTXq (2.7)

as shown in [EG99, Corollary 3.1]. Sometimes we will use the notation TdGpXq to
denote the Chow homology class TdGpTXq X rXsG.
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2.4.1 Descent maps and Kirwan maps.

Assume that G�H is a reductive group acting so that G acts freely on X and there
is a geometric quotient X{{G. Exactly as in the case of cohomology, the composition

KHpX{{Gq pG�HÑHq�ÝÝÝÝÝÝÝÑ KG�HpX{{Gq π�ÝÑ KG�HpXq

de�nes an isomorphism, where π� is the pullback through the quotient map and
pG � H Ñ Hq� is de�ned, at the level of vector bundles, by considering the action
of G�H on a H-equivariant bundle E induced by G�H Ñ H. The inverse is the
the descent map in K-theory

dG�H,H : KH�GpXq �ÝÑ KHpX{{Gq.

It satis�es the following compatibility conditions with the descent maps in (co)-
homology:

Lemma 2.4.1. Let E be a pG�Hq-equivariant vector bundle on X. Given a number
k, set d :� dG�H,H we have

cHk pdpEqq � dpcG�Hk pEqq

and, for every x P AG�HpXq,

d̂pcG�Hk pEq X xq � cHk pdpEqq X d̂pxq.

Proof. The �rst part follows from the statement regarding the Chern character in
[Kri14, Lemma 5.5]. The second statement follows from the �rst one and Poincaré
duality (2.6).

Indeed d is the inverse of the pullback through the quotient map and the property
follows from the functoriality of pullbacks and Theorem 2.3.2. The following is the
equivariant version of [Edi12, Equation (8)]:

Lemma 2.4.2. For a K-theory class E P KG�HpXq

chH
�
χHpX{{G, dpEqq� � »

X{{G

d
�
chHpEqTdHpTX � gq� .
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Proof. By using the equivariant Hirzebruch-Riemann-Roch formula (2.7) we can
write

chH
�
χHpX{{G, dpEqq� � »

X{{G

chHpdpEqqTdHpTX{{Gq

�
»
X{{G

chHpdpEqqTdHpdpTX � gqq

�
»
X{{G

d
�
chHpEqTdHpTX � gq� .

Here we have used that TX{{G � dpTX � gq where g is the trivial bundle on X having
as �bre the adjoint representation of G, which follows from the short exact sequence

0Ñ gÑ TX Ñ π�TX{{G Ñ 0

where π is the quotient map.

In the GIT framework of section 2.2.1 we can de�ne the K-theoretic Kirwan map

r : KG�HpXq Ñ KG�HpXpGqssq dÝÑ KHpX{{Gq

as the composition of the restriction to the semistable locus and the descent map.



Chapter 3

The algebraic cut.

The algebraic cut, introduced by Edidin and Graham in [EG98a], translates the tech-
nique of symplectic cutting of Lerman [Ler95] in the algebraic geometry framework.
Given the role played by this construction in the geometric proof of the localisation
formula by Je�rey and Kirwan, which is a central focus of this thesis, we will devote
signi�cant attention to understanding this geometric construction. The algebraic
cutting technique is more intuitive to understand within its original symplectic con-
text. Here, we'll provide an informal overview of this construction to lay the ground
for understanding the technical aspects that will be discussed later on in the section.

Consider a symplectic manifoldX with a Hamiltonian S1 action and an associated
moment map µ. A classic example is the sphere S2 rotating around the z-axis, where
the µ is the height function:

32
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Choose a value h P Imµ such that the action is free on the level set µ�1phq. We are
interested in the quotient Xh :� µ�1phq{S1, known as the Hamiltonian reduction of
X at h, which parameterises all orbits at the given height h. The symplectic cut
construction provides a method to embed this quotient into a specially constructed
ambient space. The process involves:

1. considering the manifold X,

2. cutting it at the level h to obtain µ�1pp�8, hsq and
3. taking the quotient of the boundary µ�1phq by S1.

The resulting space X¤h is the symplectic cut of X at the value h and remains a
symplectic manifold with a residual Hamiltonian action of S1:

In this new space, the connected components of the �xed locus are:

1. the embedded symplectic reduction Xh and

2. the components F � XS1
of the �xed locus of X that map, via µ, to values

smaller than h.

By applying the Atiyah-Bott localisation formula [AB84] to this master space�as
we will do algebraically in Section 4�we can express integrals on the symplectic
reduction Xh in terms of integrals on the connected components of the �xed locus of
X.

In this section we recall how to see the symplectic cutting from a purely algebraic
point of view.
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Contents of the section.

The section is structured as follows

� We �rst recall some basic results on the momentum polytope of a closed sub-
variety of Pa � Ab endowed with a torus action and a linearisation.

� In particular, we will discuss the wall and chamber structure of this polytope.

� We study the construction of the algebraic cut in the case where the torus is
of rank one. We describe the hypotheses that make this space projective and
smooth and we study its �xed loci under its canonical C�-action.

� We then specialise the results on the algebraic cut to a particular situation.
Consider a torus T acting on a smooth variety Y , via an equivariant closed
embedding into Pa�Ab, together with a regular linearisation L. We will study
the properties of space obtained by selecting a splitting of T � T � C� and
applying the algebraic cut construction to the induced action C� ñ Y {{T on
the intermediate quotient.

3.1 The momentum polytope.

Consider a variety X, admitting a closed embedding in a product Pa � Ab, with the
action of a torus T together with a linearisation L. In this section, we will exam-
ine some fundamental results concerning the structure of the momentum polytope
associated with this setup. A comprehensive reference for this discussion is [DH98],
which provides an in-depth analysis of the case for projective varieties. Another rel-
evant reference is [Sja98], where the algebraic approach to the momentum polytope
(which we will follow) is related to the standard symplectic one, for which many of
the following results are classical. However, since the essential results we require can
be readily derived from the Hilbert-Mumford criterion, we will present all necessary
proofs to ensure the discussion remains self-contained.

Given a character ψ P χpT q :� HompT,C�q (thought as a 1-dimensional represen-
tation of T , hence an equivariant structure on the trivial line bundle on X), we can
consider the twisted linearisation L b ψ. We denote with XpT qψ-ss the semistable
locus with respect to Lb ψ.

De�nition 3.1.1. We call momentum polytope ∆ for the data pX,Lq the subset of
the character space χpT qQ :� χpT qbQ given by characters ψ such that the following
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Hilbert-Mumford type of inequality holds true:

Dx P X : @λ P χpT q_ such that x :� lim
tÑ0

λptq � x exists, xλ,L|xy ¥ xλ, ψy.

In this case we say that x is ψ-semistable with respect to L.

Notice that if ψ is an integral character, then ψ belongs to ∆ if and only if
the semistable locus XpT qψ-ss is nonempty, since the condition above is exactly the
Hilbert-Mumford criterion. We now characterise in a similar way the rational points
of ∆:

Lemma 3.1.1. Let ψ P χpT qQ be a character and let n ¡ 0 be a natural number
so that nψ is integral. Then, for every x in X, the point x is ψ-semistable with
respect to L if and only if it is nψ-semistable with respect to Lbn. In particular, the
character ψ belongs to ∆ if and only if there is x P X that is nψ-semistable with
respect to the linearisation Lbn.

Proof. We can check this on Pa � Ab with a �xed linearisation induced by an action
on the total space of the pullback of Op�1q:

t � px0, . . . , xa, y1, . . . , ybq � pϕ0ptqx0, . . . , ϕaptqxa, ν1ptqy1, . . . , νbptqybq, (3.1)

where ϕi, νj P χpT q are characters. This induces an equivariant structure on Opnq,
given by dualising the action on H0pPa,Opnqq�Ab such that, if yi0,...,ia is the coordi-
nate corresponding to the monomial xi00 � � � xiaa , then t�yi0,...,ia � ϕ0ptqi0 � � �ϕaptqiayi0,...,ia
while the action on Ab stays the same. Fixed a point x, Hilbert-Mumford ensures
that its ψ-semistability with respect to Op1q is equivalent to the condition

@λ P χpT q_ such that x :� lim
tÑ0

λptq � x exists, min
i:xi�0

xλ, ϕiy ¤ xλ, ψy.

By multiplication by n this is equivalent to

@λ P χpT q_ such that x :� lim
tÑ0

λptq � x exists, min
i:xi�0

xλ, nϕiy ¤ xλ, nψy (3.2)

and notice that

min
i:xi�0

xλ, nϕiy � min

�
xλ,

¸
i:xi�0

kiϕiy over all k such that
¸
i:xi�0

ki � n

�
.

This shows that (3.2) is the Hilbert-Mumford numerical criterion for nψ-semistable
point with respect to Opnq, concluding the proof.
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One immediate and important property of the momentum polytope is its con-
vexity. This was proven in the symplectic context by Atiyah [Ati82] and Guillemin
and Sternberg [GS82] in the compact setting. The algebraic analogue for projective
varieties was considered in [Bri87]. The case of quasiprojective varieties was studied
in the symplectic category in [HNP94].

Lemma 3.1.2. The momentum polytope ∆ is convex in χpT qQ.
Proof. A simple application of the Hilbert-Mumford criterion. Pick a point x P X
which is ψ-semistable and pψ �mϕq-semistable. If λ P χpT q_ is such that the limit
x :� limtÑ0 λptq � x exists, we have that for all k P r0,ms, if we denote with c the
quantity xλ,L|xy � xλ, ψy, then the Hilbert-Mumford weight c � kxλ, ϕy is always
contained in between the numbers c and c�mxλ, ϕy which are both non-negative by
the semistability hypothesis.

How does the momentum polytope change when we restrict to a smaller torus?

Lemma 3.1.3. Let T act on X with linearisation L and consider a subtorus T ãÑ T.
A point x P X is T -semistable with respect to L if and only if there is a character
ξ P χpTqQ orthogonal to T such that x is ξ-semistable with respect to L:

XpT qss �
¤

ξPχpTqQ
ξ|T�0

XpTqξ-ss

In particular, the momentum polytope ∆ for the T -action and the induced lineari-
sation coincides with the restriction to T of the momentum polytope � for the T-
action. In other words, if we denote with �|T the morphism χpTqQ Ñ χpT qQ we get
that ∆ � �|T .

Proof. It's enough to prove the statement for X � Pa � Ab and T � T ` C� acting
diagonally. Clearly if x P XpTqξ-ss then it also belongs toXpT qss by Hilbert-Mumford.
On the other hand pick a point px, yq P XpT qss. Then there is a section Xd0

0 � � �Xda
a P

H0 pPa,Opnqq and a monomial ye11 � � � yebb in the coordinates of Ab such that

fpX, yq :� pXd0
0 � � �Xda

a qpye11 � � � yebb q

is a T -invariant function on the total space of the pullback of Op�nq not vanishing
on a lift of px, yq. Being f monomial, f is also C�-equivariant of some weight k:
fps � X, s � yq � skfpX, yq. This in particular shows that f P H0pX,Opnq b kξqT
where ξ : TÑ C� is the character given by the splitting, hence px, yq P XpTqkξ-ss.
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We get, as an immediate consequence, the following

Corollary 3.1.1. Assume that L is a linearisation for T ñ X and that the corre-
sponding momentum polytope is contained in λK for some λ P χpT q. Then λ acts
trivially on X. In particular, if L admits a stable point then the corresponding poly-
tope has nonempty interior.

Proof. We can assume that the origin belongs to∆, otherwise we can simply translate
by changing L. First of all, it is immediate to show that if C� acts on Pa � Ab with
a linearisation Op1q such that the corresponding polytope has only one point, then
the action is trivial. By taking the image λpC�q and the connected component of the
identity, we can assume that λ determines a subgroup λ : C� ãÑ T , and therefore an
action C� ãÑ X that carries the induced linearisation from L. Lemma 3.1.3 ensures
that the momentum polytope for this action is ∆|C� , which we know coincides with
the origin, hence this action is trivial. Assume that L admits a stable point. Then,
being ∆ convex, if it has empty interior then it is contained in a hyperplane and
hence there is a C� acting trivially on X, which is a contradiction.

We can also prove a result in the converse direction, obtaining the following

Proposition 3.1.1. Let S be subtorus of T and let SK � χpT qQ be the set of char-
acters vanishing on S. Then S acts trivially on X if and only if the momentum
polytope of X is contained in ϕ� SK for some ϕ P χpT q.

Proof. We can assume, up to twisting L with a character, that the origin belongs
to ∆. In this case we can prove the result for ϕ � 0. The "if" part follows from an
iterated application of the previous Corollary. On the other hand if S acts trivially
on X we can consider a character ψ that doesn't vanish on S. First of all notice
that since 0 P ∆ we have that the weight of the S-action on all the �bres of L is
trivial, so xλ,L|xy � 0 for all λ P χpSq_ and x P X. Assume by contradiction x is a
ψ-semistable point of X. For all λ P χpSq_, we clearly have the existence of the limit
limtÑ0 λptq � x which is x itself. The Hilbert-Mumford weight for this is the pairing
xλ, ψy and by semistability this is non-negative. Consider the other cocharacter �λ
for which we obtain the weight �xλ, ψy which is again non-negative by semistability,
thus proving xλ, ψy � 0. Since ψ doesn't vanish on S, this is a contradiction.

Here we introduce one important open subscheme of X which will be useful later.
We work in the case of rank 1 where T � C� and we identify χpC�q with Z via the
standard n ÞÑ tn.
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De�nition 3.1.2. Assume C� acts on X with a linearisation L. We denote with X�

the open subscheme

X� :�
¤
ψP∆
ψ¤0

XpC�qψ-ss.

We can give a characterisation of this scheme in terms of limits. We need an
auxiliary lemma �rst:

Lemma 3.1.4. Let C� act on X with linearisation L. For every �xed point p P XC�

denote with wp P Z the character of the action on the �bre L|p. For every point x P X
admitting both limits

x :� lim
tÑ0

t � x and x :� lim
tÑ0

t�1 � x

the inequality wx ¥ wx holds true.

Proof. The points in Pa � Ab that can have both limits with respect to λ are such
that the whole λ-orbit has constant components in Ab, so we can check this condition
in the projective case. Consider Pa with linearisation given by Op1q. Indeed consider
the linearisation given by dualising the action on Op�1q given by t � px0, . . . , xaq :�
ptλ0x0, . . . , tλaXxq for λ0, . . . , λa P Z. Then given x � rx0 : � � � : xas P Pa we can
consider the limit x for t going to zero. If the coordinate xi is nonzero then λi is the
minimum among all λj such that xj � 0:

xi � 0ñ λi � λ :� min pλj : xj � 0q .

Analogously for the limit t�1 Ñ 0 we have

xi � 0ñ λi � λ :� max pλj : xj � 0q .

This immediately shows that C� acts on the �bre Op�1qx by the character λ and on
Op�1qx by the character λ. By dualizing we �nd that wx � �λ ¥ �λ � wx.

Proposition 3.1.2. A point x P X belongs to X� if and only if, whenever the limit

lim
tÑ0

t � x � x

exists, the weight of the action of C� on the �bre L|x of the linearisation is non-
negative.
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Figure 3.1: The momentum polytope and the semistable locus.

Proof. (ñ) Assume that x P XpC�qψ-ss for some ψ   0. Then by the Hilbert-
Mumford criterion we have that if the limit x exists then the weight of the lineari-
sation L|x b ψ is non-negative. This is the weight of L|x plus the integer ψ, hence
the �rst summand is positive. (ð) The semistability of x is determined by the other
limit

x :� lim
tÑ0

t�1 � x.

If this limit doesn't exist then the point is semistable for L. If it exists then the
weight of t�1 on L|x is either non-negative or negative. If it's non-negative then x
is semistable for L. If it's negative, denote this weight by ψ and , via Lemma 3.1.4,
it's immediate to check that x is semistable for Lb ψ.

Example 3.1.1. Consider the action of C� on the projective line X :� P1 by t � rx0 :
x1s :� rt2x0 : x1s and consider the linearisation L � Op1q dual to the action on
the tautological bundle Op�1q described by ptx0, t�1x1q. Notice that the weight of
the action on the �bre of Op�1q over the point r1 : 0s is by the character t, while
the action over Op�1q|r0:1s is by the character t�1. Dually we see that C� acts with
weight -1 on L|r1:0s and with weight 1 over L|r0:1s. There are many ways to study the
momentum polytope for such linearisation, but the simplest trick is to notice that,
by the Hilbert-Mumford criterion, there is a semistable point for L b ψ if and only
if the weights of the actions on the �bre above the two �xed points, namely �1� ψ
and 1 � ψ, are either of di�erent signs or one of the two is zero. In this way we see
that the momentum polytope is ∆ � r�1, 1s � Q � χpC�qQ (Figure 3.1). Moreover,
we can describe the subset pP1q�. In this case all the points di�erent from r1 : 0s
�ow, via the action of t Ñ 0, to the point r0 : 1s. The action on the �bre of L over
r0 : 1s is with positive weight, hence we see that pP1q� � P1zr1 : 0s as in Figure 3.2.
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Figure 3.2: The example of pP1q� � P1zr1 : 0s.

3.2 The strati�cation of the momentum polytope.

In this section we will work with the action of an algebraic torus T on a closed
subvariety X � Pa � Ab admitting a linearisation L. We will also assume that there
is no subtorus of positive rank acting trivially on X. The momentum polytope has
an important strati�cation:

De�nition 3.2.1. Let k P t0, . . . , dimpT qu. The codimension-k stratum of ∆ is the
subset Bk∆ � ∆ given by characters ψ P χpT qQ such that there is a point x P Xψ-ss

having stabiliser of dimension greater or equal to k.

Notice that the complement in ∆ of the 1-codimensional stratum B1∆ only con-
tains, by de�nition, regular linearisations. Pick λ P χpT q_ and consider the subvari-
ety Xλ of X �xed by λ.

De�nition 3.2.2. Let T 1 ãÑ T be a subtorus of rank k. Consider the �xed locus
XT 1 , which is a union of smooth irreducible subvarieties of X. Consider the momen-
tum polytopes for the action of T on these connected components with respect to
the linearisation induced by restricting L. If the momentum polytope for one such
component is of codimension k, we call this a wall of codimension k in ∆. We will
denote with Wallkp∆q the set of all walls of codimension k of ∆.

Remark 13. Notice that by Proposition 3.1.1 the momentum polytope of such con-
nected components is always contained in a hyperplane of codimension k, which
is a translation of the hyperplane of characters vanishing on T 1. It de�nes a wall
if it is precisely of codimension k, or in other words if the action of T {T 1 on the
corresponding component of XT 1 doesn't admit any nontrivial subtorus that acts
trivially.
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A straightforward application of Luna's étale slice theorem allows to prove an
interesting property of torus actions:

Lemma 3.2.1. Assume that a torus T acts on X so that X � XT . Every connected
component F of XT is strictly contained in the connected component XS for some
codimension 1 subtorus S � T .

Proof. By Luna's slice theorem [Dré04, Lemma 5.1] there is an a�ne open subscheme
V � X containing x and a T -equivariant morphism ϕ : V Ñ TxX that is étale.
Consider the weight space decomposition

TxX � à
ρPχpT q

pTxXqρ

where the T -action on pTxXqρ is by the character ρ. Notice that at least one nonzero
character ρ̃ gives a nonzero weight space pTxXqρ̃, otherwise the T -action on V (and
hence on X) is trivial being ϕ equivariant and étale. Finally consider the closed
subscheme ϕ�1ppTxXqρ̃q of X. This is �xed by the codimension 1 subtorus S :�
kerpρ̃q and has a positive dimensional connected component C passing through x.
Clearly this connected component can't be �xed by T being ϕ equivariant, hence the
connected component F 1 of XS containing both F and C satis�es the claim.

Corollary 3.2.1. For every k P t0, . . . , dimpT q�1u, every wall of codimension k�1
is contained in a wall of codimension k.

Proof. Assume we are given a subtorus T 1 � T of rank k � 1 such that there is a
connected component XT 1

y of XT 1 with momentum polytope of codimension k�1. By
considering the T 1-action on X we can invoke the previous Lemma 3.2.1 to �nd T 2 so
that XT 1

y � XT 11
y . The momentum polytope of XT 2

y contains the previous one but,
additionally, it is not contained in pT 1qK by Proposition 3.1.1.Then its momentum
polytope has codimension k � 1 and de�nes a wall of codimension k � 1.

Corollary 3.2.2. The codimension k stratum of ∆ is the union of all codimension
k walls:

Bk∆ �
¤

wPWallkp∆q

wk

Proof. Clearly a point in a codimension k wall is contained in Bk∆ by de�nition.
Assume now that ψ is a point of Bk∆. Let k be the biggest number such that
ψ P Bk∆. Then there is y P X which is ψ-semistable and �xed by a subtorus T 1



42 3.3. ALGEBRAIC CUTS.

of dimension k. Consider the connected componentXT 1

y of XT 1 containing y and

look at its momentum polytope. By Proposition 3.1.1 and by maximality of k, the
momentum polytope of XT 1

y is k-codimensional, hence it de�nes a wall w of ∆ of

codimension k. Every wall of codimension k is contained in one of codimension k,
concluding the proof.

3.3 Algebraic cuts.

Here we consider the construction of the algebraic cut, originally described in sym-
plectic geometry by Lerman [Ler95], due to Edidin and Graham [EG98a] and we
study it in the cases of varieties with a closed embedding into a product of projective
and a�ne space. Assume C� acts on a variety X via an embedding into Pa� Ab and
let L be a regular linearisation of the action. If A1 is the 1-dimensional representation
of C� with weight 1, we consider the additional action

C� ñ X � A1 : s � px, zq :� ps � x, szq.
Consider the linearisation we obtain by pulling back L via the C�-equivariant pro-
jection X � A1 Ñ X. We'll keep denoting this equivariant line bundle with L.

De�nition 3.3.1. The algebraic cut of X at L is the GIT quotient of X � A1 with
respect to the linearisation L. We denote it with Xc :� pX � A1q{{C�.

We start the study of Xc by describing the semistable locus pX � A1qss.
Lemma 3.3.1. pX � A1qss � pX� � C�q Y pXss � 0q. In particular, L is a regular
linearisation.

Proof. We can use the Hilbert-Mumford criterion to study the semistable locus.
First of all notice that the condition for the points of the form px, 0q P X � A1

to be semistable coincides with the condition of x being semistable in X, hence
pX � A1qss XX � 0 � Xss � 0. On the other hand, a point px, zq is semistable if and
only if, whenever the limit

px, zq :� lim
tÑ0

t � px, zq

exists, then the character of the action on L|px,zq is non-negative (notice we don't care
about the limit for t�1 Ñ 0 since it can never converge being z � 0). The existence
of this limit is equivalent to the existence of the limit x for t �x, and the condition on
the weight is equivalent to the character for L|x being non-negative. This, together
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with Proposition 3.1.2, shows that px, zq is semistable if and only if x P X�. To
complete the proof we have to show that all stabilisers are �nite at the semistable
points. On X � C� the action is free by construction, while on Xss � 0 this holds
true since L is regular.

This shows that in our hypotheses Xc has at most �nite quotient singularities.
From GIT we have the projective morphism

Xc Ñ Spec
�
H0pX � A1,OX�A1qC�

	
. (3.3)

This gives us a simple criterion to check projectivity of the algebraic cut:

Proposition 3.3.1. The following statements are equivalent:

1. the algebraic cut Xc is projective.

2. the only global functions f : X Ñ C scaling with non positive weights are the
constants. In other words, every function f P H0pX,OXq satisfying

Da ¤ 0 : fpt � xq � tafpxq @t P C�, @x P X
is constant.

3. the quotient X{{C� is projective and, for every point x P X, the limit limtÑ0t �x
exists.

4. the quotient X{{C� is projective and the momentum polytope ∆ is bounded from
below, namely Dn P Z such that ∆ � Z¡n

Proof. (1 ñ 2) If f scales with non-positive weight �k then F px, zq :� fpxqzk is a
regular function on X � A1 which is C�-invariant and nonconstant. Clearly it stays
not constant on the semistable locus (being it open) and by universal property of
the GIT quotient it factors as

pX � A1qss Ñ Xc Ñ C,

which de�nes a nonconstant function onXc which therefore is not projective. (2ñ 1)
We start by studying the ring H0pX � A1,OX�A1qC� . Clearly H0pX � A1,OX�A1q �
H0pX,OXqrzs and a function F px, zq � °d

k�0 fkpxqzk is C�-invariant if and only if

ḑ

k�0

�
fkpxq � tkfkpt � xq

�
zk � 0 @x P X, z P A1, t P C�.
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This implies that all the fk are equivariant functions scaling with non-positive weight.
Thus condition 2 is equivalent toH0pX�A1,OX�A1qC� � C. This shows that the base
of the projective morphism (3.3) is a point. (2 ñ 3) By GIT we have a projective
morphism X{{C� Ñ SpecpH0pX,OXqC�q and the base is a point, so the domain is
projective. Moreover, consider the closed embedding

X ãÑ Pa � Ab

and the two projections πP and πA to the projective and the a�ne spaces. Notice
that given x P X the limit of t � x for t tending to zero exists in Pa � Ab if and only
if both limits

lim
tÑ0

t � πPpxq and lim
tÑ0

t � πApxq

exist. Notice that the �rst limit always exists being Pa projective, while the second
limit exists and is equal to zero since all the coordinate functions scale with positive
weight. Since X is closed in this ambient space, the limit exists in X too. (3 ñ 2)
Since X{{C� is projective we have that H0pX,OXqC� � C. Assume by contradiction
that there is a nonconstant function f on X that scales with negative weight �k.
Then pick x P X so that fpxq � 0. Then the limit must satisfy

f
�
lim
tÑ0

t � x
	
� lim

tÑ0
t�kf pxq

but the limit on the right doesn't exist, giving a contradiction. (3 ñ 4) F1, . . . , Fl
be the connected components of the �xed locus of the action on X. Let ψ P χpC�q
be such that the weight of the linearisation L|Fi is smaller than ψ for all i. Then, for

all ψ̃   �ψ, the linearisation L b ψ̃ is such that the weight of the C�-action on the
�bre above every �xed point is negative. Since all limits for tÑ 0 exist, then there is
no ψ̃-semistable point. (4ñ 3) Assume by contradiction that x is a point such that
the limit for tÑ 0 of t � x doesn't exist. Then, given ψ P χpC�q, the ψ-semistability
of x is determined by the limit x � limtÑ0 t

�1 � x. If the limit doesn't exist then x
is ψ-semistable for all ψ, contradicting the hypothesis of point 4. If it exists, the
ψ-semistability of x is equivalent to the weight of L|x b ψ being non-positive, which
clearly happens for all ψ su�ciently negative, again contradicting the hypothesis
4.

Notice that the algebraic cut has a residual C�-action coming from the action on
X. Indeed we can consider the action of the 2-dimensional torus

C�1 � C�2 ñ X � A1 : ps1, s2q � px, zq :� ps1 � x, s1s�1
2 zq
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and realise that Xc is the quotient by C�1 , so that C�2 still acts on it. Denote with
pX � A1qopp the variety X � A1 endowed with the action of C�1 � C�2 obtained by
exchanging the roles of s1 and s2 in the de�nition above. We can explicitly describe
the action on Xc in terms of the original one on X:

Proposition 3.3.2. There is a closed embedding i : X{{C� ãÑ Xc (possibly non
regular if stabilisers are nontrivial) induced by the C�1 � C�2-equivariant embedding
I : Xss � 0 ãÑ pX � A1qss. The resulting divisor is a �xed locus of Xc and its
complement is given by the open embedding λ : X�

ãÑ Xc induced by the C�1 � C�2-
equivariant embedding

Λ : pX� � C�qopp KÝÑ X� � C� ãÑ pX � A1qss

where Kpx, zq :� pz�1 � x, z�1q.
Proof. By Lemma 3.3.1 the C�1�C�2-equivariant closed embedding I exists and hence
induces a closed embedding between the quotients by the action of C�1 . The com-
plement of the closed embedding I is given, thanks to the same Lemma, by the
equivariant open embedding X� � C� ãÑ pX � A1qss, inducing an open embedding
U ãÑ Xc of the quotients. Notice that the morphism K is a C�1 � C�2-equivariant
isomorphism, hence it induces a C�2-equivariant isomorphism on the quotients by C�1 ,
but clearly X� � pX� � C�qopp{C�1 so we obtain X� �ÝÑ U .

3.4 Geometry of the algebraic cut.

Consider a torus T acting on a smooth variety Y , via an equivariant closed embedding
into Pa � Ab, together with a regular linearisation L. In this section we study the
properties of the algebraic cut obtained by selecting a splitting of T � T � C� and
applying the algebraic cut construction to the intermediate quotient Y {{T .
Lemma 3.4.1. A primitive character ϕ P χpTq de�nes a splitting of the form T �
T`C� where T is the connected component of kerpϕq containing 1 and C� is the image
of any λ P χpTq_ such that xλ, ϕy ¡ 0. Conversely, any such splitting determines a
primitive character by projecting on the second factor.

Consider a character ϕ inducing a splitting of T � T ` C�. We can consider
the intermediate quotient Y {{T , which is endowed with a residual C�-action and
linearisation. Notice that the further quotient pY {{T q{{C� coincides with Y {{T. We
would now like to address the following question: what is the condition that we have
to impose on the character ϕ, corresponding to the �xed splitting of T, to ensure the
projectivity of the algebraic cut of Y {{T?
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Proposition 3.4.1. Assume that Y {{T is projective and that the momentum polytope
∆ of Tñ Y doesn't contain the negative ray of the line Q �ϕ. Then the algebraic cut
of Y {{T is projective.

Proof. Assume by contradiction that the algebraic cut is not projective. Then, by
Proposition 3.3.1 we have a nonzero regular function f P H0pY {{T,OY {{T q scaling
with negative weight�k with respect to the residual C�-action. SinceH0pY {{T,OY {{T q �
H0pY,OY qT by geometric invariant theory, we can consider the corresponding reg-
ular function F : Y Ñ C. Since its restriction to the semistable locus factors as
Y T-ss Ñ Y {{T Ñ C, for every λ P χpTq_ the function F scales as F pλptq � yq �
t�kxλ,ϕyF pyq. The function F is nonzero, so we can take a semistable point y P Y T�ss

for L so that F pyq � 0. Given m ¡ 0 the Hilbert-Mumford criterion says that
y is p�mϕq-semistable if and only if, whenever λ P χpTq_ is such that the limit
y :� limtÑ0λptq � y exists, the weight xλ,L|y b p�mϕqy � xλ,L|yy �mxλ, ϕy is non-
negative. Since F pyq � 0, the limit can't exist for λ satisfying xλ, ϕy ¡ 0. On the
other hand, for any λ such that xλ, ϕy ¤ 0 we have that, if the limit exists, then

xλ,L|yy �mxλ, ϕy ¥ xλ,L|yy ¥ 0

where the last equality follows from y being semistable for the linearisation L.

Example 3.4.1. Consider the following simple example where the torus T :� pC�q2,
with character space canonically isomorphic to χpTqQ � Q2, acts on the 2-dimensional
a�ne space A2 diagonally. Assume that the linearisation is given by the trivial bundle
with action on the �bre given by the character t1t2. We now show that the character
ϕ1 :� t1 yields a projective algebraic cut, while the opposite ϕ2 � t�1

1 doesn't. First
of all we recognise that T :� kerpϕq is the same for both characters and equals the
subtorus C� Q t Ñ p1, tq. The induced T -action on A2 is given by t � px, yq � px, tyq
and the linearisation is by the character t. This shows that the GIT quotient A2{{T
is the one dimensional a�ne space A1 with quotient map given by

A1 � C� Ñ A1 : px, yq ÞÑ x.

Now we consider the algebraic cuts for the two di�erent characters ϕ1 and ϕ2:

1. In the case of ϕ1 the splitting T � T � C� is given by the choice of the second
factor as C� Q s ÞÑ ps, 1q P T. Notice that indeed this subgroup pairs positively
with ϕ1. The induced action on the intermediate quotient A1 is given by s �x �
sx and the induced linearisation is given by the character s. The algebraic cut
is built, by de�nition, as the GIT quotient for the action C� ãÑ pA2{{T q � A1
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given by s � px, zq :� psx, szq with respect to the linearisation given by s. This
quotient is immediately seen to be

C� � C� Ñ P1 : px, zq ÞÑ rx : zs,

hence the algebraic cut is P1, which is projective as expected.

2. In the case of ϕ2 the splitting T � T � C� is given by the choice of the second
factor as C� Q s ÞÑ ps�1, 1q P T. Notice that indeed this subgroup pairs
positively with ϕ2. The induced action on the intermediate quotient A1 is
given by s � x � s�1x and the induced linearisation is given by the character
s�1. The algebraic cut is built, by de�nition, as the GIT quotient for the
action C� ãÑ pA2{{T q � A1 given by s � px, zq :� ps�1x, szq with respect to the
linearisation given by s�1. This quotient is immediately seen to be

C� � A1 Ñ A1 : px, zq ÞÑ xz,

hence the algebraic cut is A1 and it is not projective.

This suggests us to consider momentum polytopes that are strictly convex, namely
polytopes that don't contain any line of χpTqQ. If we work under this condition, for
every character ϕ, at least one among the splittings induced by ϕ and �ϕ produce
a projective algebraic cut. Is there a simple way to describe the �xed locus on the
algebraic cut in terms of the data on Y ? Consider λ P χpTq_ de�ning a wall wλ in
∆. Then we can consider the union Ywλ of those irreducible components of Y λ whose
momentum polytope coincides with the wall wλ.

Lemma 3.4.2. Fix λ P χpTq and a wall wλ in the momentum polytope ∆. Assume
that the line Q � ϕ meets wλ away from a wall of codimension higher than 1. Then
L is a regular linearisation for Ywλ and for every connected component K of Ywλ the
quotient K{{T is a nonempty, C�-�xed irreducible subvariety of Y {{T . Moreover, if
λ, µ P χpTq_ are not multiples, then Ywλ{{T and Ywµ{{T are disjoint for any choice
of the walls wλ and wµ.

Proof. We write down the proof assuming that Ywλ is connected. The same proof
works in general by replacing Ywλ with each connected component K. We know that
T � kerpϕq, so if we consider the action of T on Y the momentum polytope is given
by projecting along the direction ϕ:

∆ � �|T .



48 3.4. GEOMETRY OF THE ALGEBRAIC CUT.

In particular Lemma 3.1.3 above shows that

Y pT qss �
¤
qPQ

Y pTqqϕ-ss.

Since there is a q P Q such that qϕ P wλ, for that value of q the semistable locus
YwλpT qss � YwλpTqqϕ-ss is nonempty. Since Ywλ is a closed invariant subvariety of Y ,
it descends to a closed subvariety of Y {{T after taking the quotient. Notice that, for
every y P YwλpT qss, there is no µ P χpT q_ �xing y, since otherwise the 2-dimensional
subtorus generated by µ and λ (which are independent since ϕpµq � 0 and ϕpλq � 0)
would �x y, but qϕ is not in a codimension-2 wall and this would be a contradiction.
In particular, L is a regular linearisation for the action of T on Ywλ . Finally, λ �xes
all points in YwλpT qss and thus Ywλ{{T is �xed in Y {{T . The �nal claim follows from
the fact that if YwλpT qssX YwµpT qss � H then the points in the intersection are �xed
by the 2-dimensional subtorus generated by µ and λ, which contradicts the fact that
qϕ is not a higher codimension wall in ∆.

This allows to prove the following result characterising the �xed locus on Y {{T :
Proposition 3.4.2. Assume that the character ϕ is such that the line Q � ϕ doesn't
intersect B2∆. The �xed locus for the residual C�-action on Y {{T is

pY {{T qC� �
¤

wPWall1p∆q
wXQϕ�H

Yw{{T,

where the union is over all 1-codimensional walls of ∆ which intersect the line Qϕ.
Moreover, Yw{{T is contained in pY {{T q� if and only if w intersects the negative ray
of the line Qϕ. Lastly, the linearisation L restricted to Yw is regular.

Proof. We know that the subvarieties of the form Yw{{T appearing in the right-hand
side of the equality are all nonempty, �xed and disjoint from each other. On the other
hand consider a point rys P Y {{T �xed by C�. Then there is a λ P χpTq_ �xing y P Y
and consider the �xed subvariety Y λ. Let Y λ

y be the connected component containing
y. By Proposition 3.1.3 there is q P Q so that y P Y pTqqϕ-ss, hence qϕ P B1∆zB2∆.
This means that Y λ

y must have momentum polytope of codimension 1, hence it must
de�ne a wall wλ containing qϕ, hence rys P Ywλ{{T . This concludes the �rst part
of the proof. Consider a point y P Yw{{T and let λ P χpTq_ be such that w � wλ
and xλ, ϕy ¥ 1, so that the action induced by λ on the quotient Y {{T is a positive
multiple of the residual C�-action. Let qϕ be the intersection of w with the line Qϕ.
Since y is qϕ-semistable and �xed by λ, the Hilbert-Mumford criterion gives that

xλ,L|yy � �qxλ, ϕy.
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which allows to conclude that y P pY {{T q� if and only if q ¤ 0 by Proposition
3.1.2.



Chapter 4

Je�rey-Kirwan localisation.

In this section, we will describe how the algebraic cut construction can be employed
to derive residue formulae for the degrees of cycles in quotients of smooth varieties
by reductive connected group actions. These formulae will be related to the so-called
Je�rey-Kirwan localisation formula.

To begin, we address a common misunderstanding that often arises when dis-
cussing this formula. The key feature of the Je�rey-Kirwan localisation formula is
that it allows to compute degrees, or equivalently integrals, on quotient varieties by
localising to �xed loci of the action upstairs, used to take the quotient. This ap-
proach contrasts with the Atiyah-Bott localisation formula of Theorem 2.3.3, which
computes degrees of classes by localizing at �xed loci on the same variety. This
should show why the Je�rey-Kirwan localization is not merely a non-abelian coun-
terpart to Atiyah-Bott's formula: even when the group is abelian, the two formulae
are fundamentally di�erent and serve distinct purposes.

The literature features numerous formulae under the name of "Je�rey-Kirwan
localisation formula", each a variation on the same theme. However, understanding
how they are related to each other can be challenging. We will consider three speci�c
localisation formulae:

1. The original formula by Je�rey and Kirwan [JK95], which is analytic in nature
and expresses the relevant intersection number in terms of inverse Laplace
transforms.

2. The formula by Guillemin and Kalkman [GK96], which expresses the intersec-
tion number as a sum of certain residues, referred to in this thesis as Guillemin-
Kalkman residues.

50
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3. The formula by Brion, Szenes, and Vergne [BV99; SV04], that can be used
when the variety we take the quotient of is a linear space. This uses a di�erent
residue operation known as the Je�rey-Kirwan residue.

These formulae are interrelated as follows: Brion and Vergne prove in [BV99]
that the inverse Laplace transforms in the Je�rey-Kirwan formula can be expressed
via a residue operation they term Je�rey-Kirwan residue. Consequently, the formula
in point (3) is a direct corollary of the original formula in point (1). The formula in
point (2), however, has a completely di�erent proof and is initially unrelated to the
other two. Notably, it features an additional aspect: it is not a single formula but a
family of formulae, each corresponding to a combinatorial object called a dendrite,
for which there is generally no canonical choice. In [JK05], Je�rey and Kogan derive
the localisation formula (1) from (2) in the case of a torus action. We will instead
derive the formula of Szenes-Vergne from the one of Guillemin-Kalkman, giving a
fully algebraic proof of the formula (3).

Contents of the section.

The section is structured as follows:

� We �rst describe the various residue operations that we are going to consider.
We will discuss their properties and how these residues are related to each
other.

� We will outline the main steps in the proof of the Guillemin-Kalkman localisa-
tion formula in a concrete example, in order to give an idea of the structure of
the proof.

� We describe in detail the �rst step of the proof of this localisation formula. This
expresses the intersection number we are interested in in terms of intersection
numbers de�ned on varieties obtained as quotients by smaller dimensional tori.

� We describe how to iterate the previous step, obtaining the Guillemin-Kalkman
localisation formula (Theorem 4.4.1).

� We specialise to the case of actions on linear spaces and recover the localisation
formula of Szenes and Vergne (Theorem 4.5.1) from the one of Guillemin and
Kalkman.
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� Prove the nonabelian version of these formulae by using a result of Martin
(Theorem 4.6.1) relating integrals on quotients by nonabelian groups to integral
over the corresponding quotient by the maximal subtorus.

4.1 Residues.

In this section we will describe di�erent ways of taking the residues of a meromorphic
function on Cn. We will only describe residues at the origin, since this is the only
interesting case up to translation.

4.1.1 Iterated residues

First of all, given a ring R, consider the following big ring of power series

A :� Rrrxnssxn � � � rrx1ssx1 .

Its elements will be Laurent power series in x1 with coe�cients in Rrrxnssxn � � � rrx2ssx2 .
Remark 14. Notice that, by rearranging the sums, we have an isomorphism

Rrrx1, . . . , xnss � Rrrxnss � � � rrx1ss

with the formal power series ring in n variables. Notice, however, that this just
extends to an inclusion

Rrrx1, . . . , xnssx1,...,xn ãÑ Rrrxnssxn � � � rrx1ssx1
and not to an isomorphism.

Example 4.1.1. Let n � 2 and denote the variables with x1 � x, x2 � y. Then the
element x� y is invertible in Rrryssyrrxssx, where the inverse is

px� yq�1 �
8̧

k�0

�
y�1�k

�
xk.

by the geometric series expansion. It's immediate to check that the series on the
right-hand side is not a Laurent power series, hence Rrrx, yssx,y is only a subring of
Rrryssyrrxssx.

We have well de�ned residue maps on these spaces:
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De�nition 4.1.1. The R-linear homomorphism

resx�0 : Rrrxssx ÝÑ R

picking the coe�cient of x�1 is called the residue map.

Clearly, a morphism of R-modules B Ñ C induces a morphism Brrxssx Ñ Crrxssx.
Therefore, the homomorphism

resxi�0 : Rrrxnssxn � � � rrxissxi Ñ Rrrxnssxn � � � rrxi�1ssxi�1

induces a morphism

AÑ Rrrxnssxn � � � rrxi�1ssxi�1
rrxi�1ssxi�1

� � � rrx1ssx1
De�nition 4.1.2. Given i P t1, ..., nu, the map

resxi�0 : AÑ Rrrxnssxn � � � rrxi�1ssxi�1
rrxi�1ssxi�1

� � � rrx1ssx1
de�ned as above by taking the residue with respect to xi is called the ith residue
map. The composition of all the residue maps

Rrrxnssxn ...rrx1ssx1
Resx1�0ÝÝÝÝÝÑ Rrrxnssxn ...rrx2ssx2

Resx2�0ÝÝÝÝÝÑ ...

...
Resxn�1�0ÝÝÝÝÝÝÑ Rrrxnssxn

Resxn�0ÝÝÝÝÝÑ R

gives a R-linear morphism

IR0 : Rrrxnssxn ...rrx1ssx1 Ñ R

called iterated residue map.

Remark 15. Notice that the the order of the variables at which we take the residue
doesn't change the de�nition of the iterated residue.

In a completely analogous way we can de�ne the map that takes the coe�cient
of xi and iterating it for all the variables, obtaining the iterated derivative map

ID0 : Rrrxnssxn ...rrx1ssx1 Ñ R.

As the iterated residue, also ID0 doesn't depend on the choice of the ordering of the
variables.
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4.1.2 Szenes-Vergne residues

De�nition 4.1.3. Let f : Cn 99K C be a meromorphic function. We de�ne the
Szenes-Vergne residue in the following way. Notice that the ring homomorphism

σ1 : HolpCnq Ñ MerpCn�1qrrx1ss : σ1f :�
�8̧

j�0

� B
Bz1


j

fp0, z2, ..., znqxj1

is injective, hence it de�nes an extension of the corresponding �elds of fractions

σ1 : MerpCnq Ñ MerpCn�1qrrx1ssx1
Thus we can consider the injection

σn � � � σ1 : MerpCnq Ñ Crrxnssxn � � � rrx1ssx1
The composition SVpfq :� IR0 � σn � � � σ1 : MerpCnq Ñ C is called Szenes-Vergne
residue.

Remark 16. This is the operation that one would usually call residue of a meromor-
phic function with respect to the ordered coordinates x1, . . . , xn.

If y1, . . . , yn is another set of coordinates on Cn we denote with SVy1,...,yn the
residue with respect to these new coordinates.

De�nition 4.1.4. Let H be a hyperplane arrangement centered at the origin of
Cn. A meromorphic function f de�ned on an open neighborhood of the origin is
called H-meromorphic if, locally around the origin, its poles lie on the union of the
hyperplanes belonging to H. In this case we write f P MerH.

Szenes [Sze98, Proposition 3.1] has a useful integral characterisation of the residue
in this case:

Lemma 4.1.1. Let H be a hyperplane arrangement of Cn centered at the origin.
There is an oriented compact n-dimensional subtorus Z � Cn so that, for every
f P MerH,

SVpfq �
»
Z

fdz1 ^ � � � ^ dzn.

This immediately shows that these residues behave well under linear changes of
coordinates as pointed out in [SV04, Pag. 12]:



CHAPTER 4. JEFFREY-KIRWAN LOCALISATION. 55

Lemma 4.1.2. Consider two bases tβ1, ..., βnu and tγ1, ..., γnu of Cn such that the
following conditions hold:

1. span pβ1, ..., βkq � span pγ1, ..., γkq for all k � 1, ..., n.

2. tβ1, ..., βnu and tγ1, ..., γnu are oriented in the same way.

Then, given a meromorphic function f on Cn with hyperplanes as poles,����γ1 ^ � � � ^ γn
β1 ^ � � � ^ βn

���� SVβ1,...,βnpfq � SVγ1,...,γnpfq. (4.1)

Another useful corollary of the integral representation is the behavior of these
residues under uniform convergence of sequences.

Lemma 4.1.3. Let D � Cn be an open neighborhood of the origin. Consider a
hyperplane arrangement H and a sequence of meromorphic functions fk : D 99K C
with poles on H. Assume that there is a compact subset K � D so that fk converges
uniformly to f P MerH on DzK. Then

lim
kÑ8

SVpfkq � SVpfq.

Proof. Clearly we can �nd a representative Z 1 � DzK of the homology class of the
torus Z of Lemma 4.1.1 corresponding to H. We want to prove that for the torus
Z � D we have the convergence of integrals

lim
kÑ8

»
Z1
fkdz1 ^ � � � ^ dzn �

»
Z1
fdz1 ^ � � � ^ dzn

which follows by uniform convergence.

4.1.3 Guillemin-Kalkman residues

De�nition 4.1.5. Consider the inclusion of integral domains

Crx1, ..., xns ãÑ Crx2, ..., xnsrrx�1
1 ssx�1

1

This descends to a morphism of the respective �elds of fractions

δ1 : Cpx1, ..., xnq ãÑ Cpx2, ..., xnqrrx�1
1 ssx�1

1
(4.2)
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Iterating this procedure we obtain the following �elds extension

δn � � � δ1 : Cpx1, ..., xnq ãÑ Crrx�1
n ssx�1

n
� � � rrx�1

1 ssx�1
1

and the composition

GKx1,...,xn : Cpx1, ..., xnq δn���δ1ÝÝÝÑ Crrx�1
n ssx�1

n
� � � rrx�1

1 ssx�1
1

ID0ÝÝÑ C

is called Guillemin-Kalkman residue map.

Remark 17. Notice that x�1
i has degree 1 in this ring of power series, so ID0 picks

the coe�cient of the factor
±

i x
�1
i .

If we are given another set of coordinates y1, . . . , yn on Cn we denote with
GKy1,...,yn the Guillemin-Kalkman residue with respect to these variables.

4.1.4 SV = GK when poles are linear spaces.

There is a nice situation in which these two notions of residue coincide, that is when
f is a rational function having its only poles on hyperplanes through the origin. Let
S � Crx1, ..., xns be the multiplicatively closed subset of the form

S :�
#¹
sPS

ņ

i�1

aisxi : S �nite set and as P CnztOu
+

using the convention that the product over S � H gives 1 as result. Then such f
lives in the localisation R :� S�1Crx1, ..., xns.

Proposition 4.1.1. The equality of residues SVx1,...,xnpfq � GKxn,...,x1pfq holds true
for every f P R.

Remark 18. Notice that the order of the variables used to extract the SV residue is
opposite to the one used for the GK residue!

Let's start with a simple example:

Example 4.1.2. Consider the rational function

fpx, yq � 1

xpy � xq .



CHAPTER 4. JEFFREY-KIRWAN LOCALISATION. 57

In order to compute SVx,ypfq we have to expand f in x �rst, then in y and �nally
take the residue:

f � 1

xy

8̧

k�0

y�kxk ñ SVx,ypfq � 1.

On the other hand, to compute GKy,xpfq we have to expand f in y�1 �rst, then in
x�1 and �nally take the residue:

f � x�1y�1
8̧

k�0

px�1q�ky�k ñ GKy,xpfq � 1.

As expected, we obtained the same result from these residue operations.

Remark 19. Notice that, outside the subring R of functions having poles on hyper-
planes through the origin, these notions of residue don't coincide in general. The
simplest case in which this happens is for the rational function f :� p1 � xq�1.
Notice that SVpfq � 0 is the usual complex-analytical residue, while we have
GKpfq � resx�0

��°8
k�1 x

�k
� � �1.

Proof. The proof follows these lines. First we show that the two di�erent expansions
of the rational function factor through a common �rst step, namely a morphism to
a common ring T . Then, we show that the iterated residue and iterated derivative
operations agree on these elements. Consider the following ring

T :� Crrxn�1
n
ssxn�1

n

� � � rrx 1
n
ssx 1

n

rxnsxn .

which embeds into the relevant �elds:

α : T ãÑ Crrxnssxn � � � rrx1ssx1
is de�ned by xi{n ÞÑ x�1

n xi and xn ÞÑ xn, while

β : T ãÑ Crrx�1
1 ssx�1

1
� � � rrx�1

n ssx�1
n

is de�ned by xi{n ÞÑ x�1
n px�1

i q�1 and xn ÞÑ px�1
n q�1. It's immediate to check that

these two morphisms of rings are well de�ned. Now notice that the inclusion

I : Crx1, . . . , xns ãÑ T : xi ÞÑ x i
n
xn and xn ÞÑ xn

extends to R since all the elements of S are mapped to invertible elements of T .
To see this, it's enough to prove that all linear polynomials

°n
i�1 aixi are mapped
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to invertible elements. We can do this by induction on the number of coe�cients
ai that are nonzero. If there is only one nonzero coe�cient the statement is trivial.
On the other hand let j   n be the smallest coe�cient appearing. By the geometric
series we �nd

1

ajx j
n
�°

i�j,n aix i
n
� an

� 1°
i�j,n aix i

n
� an

8̧

k�0

�
� aj°

i�j,n aix i
n
� an

�k

xkj
n

and the right-hand side is a well de�ned expression in T by inductive hypothesis.
Notice that the diagram

Crrxnssxn � � � rrx1ssx1 T Crrx�1
1 ssx�1

1
� � � rrx�1

n ssx�1
n

R

α β

σn���σ1 δ1���δn

I

commutes since the arrows are ring homomorphsims and they agree on x1, . . . , xn.
Finally, it's easy to check that IR0 �α � ID0 � β, since they are linear maps agreeing
on monomials, namely

IR0pxd11 � � � xdn�1

n�1 x
dn�

°
i n di

n q � ID0ppx�1
1 q�d1 � � � px�1

n�1q�dn�1px�1
n q�dn�

°
i n diq.

4.1.5 Generalised GK residues

As a last notion we describe a generalised version of the GK residue where the base
ring is not C. In our applications, this will be the Chow ring of some smooth variety.
Given a ring S, we can consider the multiplicatively closed subset IkS � Srt1, ..., tks
given by all the possible �nite products of the elements of the set#

s�
ķ

i�1

ait
i s P S and a P ZkztOu

+
Y t1u

we can de�ne the map

δtn : pInS q�1Srt1, ..., tns ãÑ pIn�1
S q�1Srt1, ..., tn�1srrt�1

n sst�1
n

(4.3)
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extending the identity on Srt1, ..., tns since, whenever an � 0,

1

s�°n
i�1 aiti

� 1

antn

�
1� s�°n�1

i�1 aiti
antn

��1

� 1

antn

8̧

k�0

�
�s�

°n�1
i�1 aiti

antn

�k

.

We can iterate this construction to obtain

δn � � � � � δ1 : pInS q�1Srt1, ..., tns ãÑ Srrt�1
n sst�1

n
� � � rrt�1

1 sst�1
1

And we can �nally extract the coe�cient of t�1
1 � � � t�1

n by applying ID0, obtaining
the S-valued GK residue

GKS
t1,...,tn

: pInS q�1Srt1, ..., tns Ñ S (4.4)

We will often omit writing the S in GKS when it's clear from the context. The
following Lemma is just a technical tool that will be handy in the evaluation of a
residue that we will encounter at a later stage.

Lemma 4.1.4. Consider a morphism of rings S Ñ S 1rt1s and the induced morphism
f : Srts Ñ S 1rt, t1s. Then, for every α P Srts and for every e P I1S, e1 P I1S1 we have
that

GKS1

t,t1

�
fpαq
fpeqe1



� GKS1

t1

�
1

e1
f
�
GKS

t

�α
e

		

(4.5)

Proof. Clearly f commutes with both the operations of applying δ and taking the
residue with respect to t, hence

f
�
GKS

t

�α
e

		
� GK

S1rt1s
t

�
fpαq
fpeq




Now e1 is an element of S 1rt1s, hence the expression for 1
e1
doesn't contain t, so

1

e1
GK

S1rt1s
t

�
fpαq
fpeq



� GK

S1rt1s
t

�
fpαq
fpeqe1




Finally, the thesis follows by the equality

GKS1

t,t1 � GKS1

t1 �GKS1rt1s
t

which is clear by de�nition.



60 4.1. RESIDUES.

4.1.6 Je�rey-Kirwan residues.

Let a be a n-dimensional Q-linear space and assume that the dual space a_ is endowed
with a lattice Γ of full rank. Let A be a projective �nite subset of Γ, namely a set
whose positive linear span doesn't contain a line (or in other words the positive span
is a strictly convex cone).

De�nition 4.1.6. An element ξ P a_ is called a regular stability if there is no subset
S � A of cardinality n� 1 so that ξ P SpanQ¥0

pSq. If we set

ΣA :�
#¸
wPS

w : S � A

+
,

we say that ξ is sum-regular if there is no subset S � ΣA of cardinality n� 1 so that
ξ P SpanQ¥0

pSq. If ξ is a regular stability and ξ̃ is a sum regular stability so that the

segment between them in a_ is entirely made of regular stabilities, we say that ξ̃ is
a sum-regular perturbation of ξ.

Remark 20. It's easy to check that every regular stability admits a sum-regular
perturbation.

Example 4.1.3. Assume that a torus T of dimension n acts e�ectively on a complex
linear space V , let A � χpTq be the set of weights (the characters with which the
torus acts on V ) and choose a linearisation ξ P χpTqQ. We can consider the linear
space χpTq_Q , whose dual χpTqQ is endowed with the full rank lattice Γ :� χpTq. It's
well known [Dol03] that

1. A is a projective subset of χpTqQ if and only if there is a linearisation such that
V {{T is projective.

2. The stability ξ is regular in the sense of De�nition 4.1.6 if and only if the
corresponding linearisation is regular in the usual sense, namely semistability
and stability agree.

In this context, the character ξ is sum-regular if and only if there is no set of n � 1
elements of ΣA so that ξ belongs to their positive span.

Pick any integral basis of the lattice Γ and de�ne dµ as the top form on a given by
the wedge product of the elements of the basis (this is well de�ned up to sign). Given
a �ag F spanned by some elements of A, we can de�ne some elements κ1, ..., κn P Γ
as

κi :�
¸

wPAXFi

w. (4.6)
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De�nition 4.1.7. If these elements form a basis κ :� tκ1, ..., κnu of a_ we say that
the �ag F is proper. Fixed a sum regular stability ξ, if ξ P spanQ¡0

pκq we say that
the �ag is stable. We denote with FpA, ξq the set of all proper stable �ags spanned
by elements of A.

There is a residue operation induced by every such �ag:

De�nition 4.1.8. Let F P FpA, ξq be a proper stable �ag. The �ag residue of a
meromorphic function f on a bQ C is, up to a constant, the Szenes-Vergne residue
computed with respect to κ:

ResF pfq :�
���� dµ

κ1 ^ � � � ^ κn

���� SVκ1,...,κnpfq. (4.7)

Finally we can de�ne the Je�rey-Kirwan residue operation:

De�nition 4.1.9. Fix a �nite projective set A � Γ and a sum-regular stability
ξ P a_. The Je�rey-Kirwan residue of a meromorphic function f : abQ C 99K C is

JKA
ξ pfq :�

¸
FPFpA,ξq

ResF pfq.

Given a P abQ C, we will denote the residue at this point with

JKA
ξ,apfq :� JKA

ξ pf � τaq,

where τa is translation by a.

Here is an important remark that will allow us to work with regular stabilities ξ
which are not sum-regular:

Remark 21 (De�nition for regular stabilities). Consider the hyperplane arrangement
H in a_ de�ned by the hyperplanes spanned by elements of A. From the description
in [SV04, Equation (2.1)] the residue JKA

ξ̃
pfq of a function f P MerH doesn't depend

on the particular sum-regular stability ξ̃ but only on the chamber of the hyperplane
arrangement de�ned by the elements of A. In particular, given a regular but not sum-
regular stability ξ, every sum-regular perturbation ξ̃ gives the same result. Thus,
whenever ξ is only regular and f P MerH, we de�ne

JKA
ξ pfq :� JKA

ξ̃
pfq

where ξ̃ is any �xed sum-regular perturbation of ξ.
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The following is an immediate corollary of Lemma 4.1.3

Lemma 4.1.5. Let D � a b C be an open neighborhood of the origin. Consider a
hyperplane arrangement H and a sequence of meromorphic functions fk : D 99K C
with poles on H. Assume that there is a compact subset K � D so that fk converges
uniformly to f P MerH on DzK. Then

lim
kÑ8

JKA
ξ pfkq � JKA

ξ pfq.

Proof. Write the JK residue as a sum of SV residues and use Lemma 4.1.3.

At some point we will also need the following simple fact which immediately
follows from the de�nition of JK residue as sum of iterated residues and from the
fact that resx�0fpλxq � λ�1resx�0fpxq for any λ P C�.
Lemma 4.1.6. Given a meromorphic function f : abC and λ P C�, then JKA

ξ pfpλxqq �
λ�dimpaqJKA

ξ pfpxqq.
Example 4.1.4. Here we discuss a simple computation of a JK residue. Consider
the linear space a � Q2. In the dual space a_ � Q2 consider the lattice Z2 and let
t1, t2 P a_ be the coordinates on a. Set A � tt1, t2u and consider the regular stability
t1 � t2 P a_. This is regular, since it is contained neither in the span of t1 nor in the
span of t2. Unfortunately, ξ is not sum-regular being in the span of t1 � t2, so we
pick a sum-regular perturbation ξ̃ � t1�p1� ϵqt2 with ϵ ¡ 0 small. Assume we want
to compute the JK residue of the following rational function

f : ab C 99K C : f �
�
t1 � t2
t1t2


2

.

First of all we must consider the set FpA, ξ̃q of proper stable �ags we can extract
from A. There are two �ags generated by elements of A:

0 � spanpt1q � a_ and 0 � spanpt2q � a_.

For the �rst �ag the corresponding vectors (4.6) are κ1 � t1, κ2 � t1 � t2, hence the
�ag is proper (since κ1, κ2 form a basis) but not stable (since ξ̃ is not in the positive
span of κ1, κ2). On the other hand for the second �ag we have κ1 � t2, κ2 � t1 � t2
and the �ag is proper and stable. The �ag residue corresponding to this �ag F is����t1 ^ t2

t1 ^ t2

���� rest2�0rest1�0pfq � rest2�0rest1�0

�
1

t21
� 2

t1t2
� 1

t22



� �2

and this is JKA
ξ pfq.
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Example 4.1.5. Here we give another example which will be used in a later geo-
metric situation. Consider the linear space a � Q2, whose coordinates we denote
with u1, u2 and the projective set A :� tu1, u2u � a_, spanning a lattice Γ de�ning
the top form dµ :� u1 ^ u2 on a. Let ξ P a_ be the regular stability ξ � u1 � u2.
Fixed a generic parameter s P C, we want to compute JKA

ξ pZq for the meromorphic
function on ab C given by

Zpu1, u2q �
�

π

sinpπsq

2�

sinpπps� u1qq
sinpπu1q


4�
sinpπps� u2qq

sinpπu2q

4

� sinpπp4u1 � 4u2qq
sinpπps� 4u1 � 4u2qq

sinpπpu2 � u1qq
sinpπps� u2 � u1qq

sinpπpu1 � u2qq
sinpπps� u1 � u2qq .

Notice that around the origin Z has poles only on the hyperplanes generated by
elements of A, so the Je�rey-Kirwan residue is well de�ned even if ξ is just a regular
(and not sum-regular) stability by Remark 21. In order to compute the Je�rey-
Kirwan residue we have to perturb ξ into a sum-regular stability ξ̃. We chose ξ̃ :�
1
10
p11u1� 9u2q. There are two possible �ags of a_ that we can generate with the two

vectors tu1, u2u and here we compute their contribution to the JK residue:

� Consider �rst the �ag F1 :� 0 � spanCpu1q � a_. The corresponding basis κ
is given by κ1 � u1 and κ2 � u1 � u2, so

ξ̃ � 2

10
κ1 � 9

10
κ2

and the �ag is stable. The contribution of this �ag is by de�nition���� dµ

κ1 ^ κ2

����Resκ2�0Resκ1�0Zpu1, u2q � Resκ2�0Resκ1�0Zpκ1, κ2 � κ1q
� Resu2�0Resu1�0Zpu1, u2q,

where the second equality follows by Lemma 4.1.2. After some computations,
taking the residue �rst at u1 � 0 and then at u2 � 0 gives

352 sinpπsq �cos2pπsq cotpπsq � sinpπsq cospπsq�
as result.

� The second �ag is F2 :� 0 � spanCpu2q � a_. The corresponding basis κ is
given by κ1 � u2 and κ2 � u1 � u2, so

ξ̃ � � 2

10
κ1 � 11

10
κ2

and the �ag is unstable, hence it gives no contribution to the JK residue.
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We have �nally shown that

JK
tu1,u2u
ξ pZq � 352 sinpπsq �cos2pπsq cotpπsq � sinpπsq cospπsq� .

4.2 An introductory example.

This part of the thesis might be a bit technical, so let's start with a concrete example
which shows the procedure we are going to follow. Assume we are interested in the
quotient for the action of T :� C� � C� on A2 given by pt1, t2q � px, yq :� pt�1

1 t32x, t1yq
with respect to the linearisation given by the character ξ :� t1t2. Notice that the
stacky quotient of the semistable locus is rpC� � C�q{Ts � r1{µ3s, hence we expect
that

degprTprA2sqq � degpr1{µ3sq � 1

3
.

Keep in mind that, with this example, our aim is not to just compute this particular
intersection number, which is an easy task due to the simple geometry involved. We
want to show how, following a prescription that can be applied in general, we can
express this intersection number, originally de�ned in terms of data on the quotient
of A2 by T, as a sum of intersection numbers which can be computed on quotients
of subvarieties Yw � A2 by smaller dimensional tori T � T. The reason behind this
strategy lies in the possibility to recursively apply this procedure. In the following
sections, we'll demonstrate how this iterative approach results to an expression for
this intersection number in terms of degrees of cycles de�ned on proper subschemes
(points!) of the original space A2.

4.2.1 The polytope and the �rst algebraic cut.

In Lemma 4.5.1 the momentum polytope will be shown to be the cone spanned by
the elements p�1, 3q and p1, 0q of the linear space χpT qQ � Q2 (translated so that
the vertex of the cone is at �ξ). To start we pick a character, for example ϕ � tN1 t2
with N ¡ 1, so that the ray Q 0 � ϕ is not entirely contained in ∆ and it meets the
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codimension 1 stratum in smooth points:

The wall w met by this ray has, as associated subvariety, Yw :� A1 �O. The choice
of such character induces a splitting of the torus T in kernel plus complement; if
we denote with T the subtorus of elements of the form pt�1, tNq and with C�1 the
subtorus of elements of the form p1, sq we have the splitting T � T � C�1 . The main
idea behind the following localisation procedure is that the original quotient r1{µ3s
we want to study is the quotient of A2{{T by the residual action of C�1 , hence it is
embedded as a �xed locus in the algebraic cut for C�1 ñ A2{{T . Let's describe the
quotient A2{{T . The induced action is t � px, yq � pt3N�1x, t�1yq and the linearisation
is given by the character tN�1, hence the quotient is

A2{{T � Proj
�
Crxy3N�1srxs� � A1

where xy3N�1 has degree zero and x has positive degree. The quotient map is

C� � A1 Ñ A1 px, yq ÞÑ xy3N�1.

Notice that the residual C�1-action is given by s � z � s3z and comes with the induced
linearisation corresponding to the character s (notice that the quotient by this action



66 4.2. AN INTRODUCTORY EXAMPLE.

is indeed r1{µ3s). We can now consider the algebraic cut of A2{{T � A1. This is the
quotient of C�1 ñ A1�A1 given by s�pz, wq � ps3z, swq with respect to the linearisation
given by the character s. We immediately see that

pA1qc � A1 � A1{{C�1 � Proj
�
Crz, w3s� � P1

and that the quotient map is

A2zO Ñ P1 : pz, wq ÞÑ rz : w3s.

4.2.2 Localisation on the �rst algebraic cut.

Notice that our original quotient of A2 by T corresponds to the quotient of C� � 0 �
A2zO and hence to the point r1 : 0s P P1. On the other hand, the point r0 : 1s
corresponds to the origin in A1 � A2{{T and hence to the locus Yw in the original
A2. They are �xed points for the residual C�1-action on pA1qc induced by the action
on A2{{T , which is s � rx0 : x1s � rs3x0 : x1s, hence the localisation Theorem 2.3.3
ensures that

rP1s � i�
r1 : 0s

eC�pNr1:0s{P1q � j�
r0 : 1s

eC�pNr0:1s{P1q � i�
r1 : 0s
�3s � j�

r0 : 1s
3s

. (4.8)

Now the trick is to try to write the right-hand side of the previous equality in terms
of the data of the original action on A2. For example, with the aid of Theorem 2.1.1,
we can immediately rewrite the equality above as

rP1s � i�
rTprA2sq
�s � p3N � 1qj� rT prYwsq

3s
,

where the coe�cient 3N � 1 comes from the cardinality of the T -stabiliser of Yw. By
applying the pushforward to a point and the degree map we obtain an equality of
the form

polynomial in psq � deg prTprA2sqq
�s � p3N � 1qdegprT rYwsq

3s
.

By applying the residue map ress�0 we obtain

deg
�
rTprA2sq� � 3N � 1

3
deg prT prYwsqq (4.9)

which reaches our goal to express the degree of our intersection number in terms of
degrees of intersection numbers computed in quotients by smaller dimensional tori.
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4.2.3 The second algebraic cut, and localisation there.

By further considering the algebraic cut of Yw with respect to the action of T we
would obtain pY2qc � P1 with quotient map

Yw � A1 99K P1 : px, zq ÞÑ rx, z3N�1s.
The induced C�-action inherited from T ñ Yw is the action t � rx0 : x1s � rt3N�1x0 :
x1s. Moreover, Yw{{T is embedded as the �xed point r1 : 0s while the origin O P Yw
is embedded as r0 : 1s. By applying the localisation formula 2.3.3, pushing forward
to a point and taking the degree as done in the previous step, we obtain the equality

deg prT prYwsqq � 1

3N � 1
deg prOsq .

Putting this together with (4.9) we obtain

deg
�
rTprA2sq� � 1

3
deg prOsq

which �nally expresses the intersection number on the quotient of A2 by T in terms of
an intersection number computed at the origin (the �xed locus) of A2. In particular,
since the degree of the point rOs is 1, we recover the expected result 1{3.

4.3 The �rst step of localisation.

Assume that a torus T acts on a smooth variety Y via an equivariant embedding in
Pa � Ab and let L be a regular linearisation so that Y {{T is projective. Given a class
α P AT�pY q we are interseted in �nding a residue formula for the number

degprTpαqq. (4.10)

We start by choosing a nonzero primitive character ϕ P χpTq. We can pick a splitting
of the form T � T � C�1 where T is the connected component of kerpϕq containing
1 and C� � C�1 � T is a subtorus of rank 1 satisfying ϕ|C� � id. We consider an
additional copy C�2 � C� and the action

T � C�1 � C�2 ñ Y � A1 : pt, s1, s2q � px, zq :� pt � s1 � x, s1s�1
2 zq.

Notice that the GIT quotient of Y � A1 by T, via the regular linearisation L pulled
back from Y , is the algebraic cut pY {{T qc for the residual action C�1 ñ Y {{T . We
can easily describe the semistable locus for this new action on Y � A1:
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Lemma 4.3.1. The T-semistable locus of Y � A1 is the open subscheme

pY � A1qpTqss � pY pTqss � 0q Y pY � � C�q,
where Y � is the inverse image of pY {{T q� along the quotient map π : Y pT qss Ñ Y {{T .
Proof. It's a straightforward consequence of the compatibility of semistability with
taking quotients of Lemma 2.2.2. Let π̃ : pY �A1qpT qss Ñ Y {{T �A1 be the quotient
map for the T -action. Then we have that

pY � A1qpTqss � π̃�1
�pY {{T � A1qpC�qss�

� π̃�1 ppY {{T qpC�qss � 0q Y π̃�1
�pY {{T q� � C�

�
where the second equality is given by Lemma 3.3.1. Since π̃ acts as π on the �rst
factor and as the identity on the second factor, this is equal to

� �
π�1ppY {{T qpC�qssq � 0

�Y �
Y � � C�

�
� pY pTqss � 0q Y �

Y � � C�
�
.

In order to obtain a well behaved algebraic cut pY {{T qc we want to choose the
character ϕ such that:

� the negative ray of the line Q � ϕ is not entirely contained in the momentum
polytope ∆. By Proposition 3.4.1 this implies that the algebraic cut pY {{T qc
is projective.

� the line Q � ϕ intersects the singular variety B1∆ in its smooth points, away
from the codimension 2 walls. In this case Proposition 3.4.2, together with
Lemma 3.3.2, describes completely the �xed locus of the algebraic cut pY {{T qc.
One connected component is given by the quotient we want to study, namely
i : Y {{T ãÑ pY {{T qc, via the quotient of the T-equivariant morphism

I : Y pTqss � 0 ãÑ pY � A1qpTqss.
For every intersection of the ray Q 0 � ϕ with a wall w of ∆, the subvariety
jw : Yw{{T ãÑ pY {{T qc given by the quotient of the T-equivariant morphism

Jw : pYwpT qss � C�qopp ãÑ pY � � C�qopp Λ
ãÝÑ pY � A1qpTqss (4.11)

is �xed. The subscript ”opp” denotes the fact that the actions of the two rank
1 tori C�1 and C�2 are exchanged and the morphism Λ is the equivariant open
embedding Λpy, zq :� pz�1 � y, z�1q. Moreover, these are all the �xed loci of the
algebraic cut.
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The main idea is to use the localisation formula of Theorem 2.3.3 to express the
intersection number (4.10), computed in Y {{T, in terms of intersection numbers that
can be computed on the ambient algebraic cut pY {{T qc and on the �xed loci Yw{{T .
The �rst goal that we need to accomplish, in order to use the localisation theorem
in an e�ective way, is to invert the localisation isomorphism.

Lemma 4.3.2. Since I is a regular embedding, it de�nes a pullback I� of equivariant
Chow groups. This descends to a morphism i� de�ned by the following diagram

AT�C
�
2 ppY � A1qpTqssq AT�C

�
2 pY pTqssq

AC
�
2 ppY {{T qcq AC

�
2 pY {{Tq.

I�

d̂
T�C�2 ,C

�
2

d̂
T�C�2 ,C

�
2

i�

The following self-intersection formula holds true:

i�i�β � pd̂Tps1q � s2qβ

where s1, s2 are the equivariant variables for C�1 , C
�
2 and d̂T : ATpY pTqssq Ñ ApY {{Tq

is the descent map for Tñ Y .

Proof. By Proposition 2.1.1 the square on the left of

AT�C
�
2 pY pTqssq AT�C

�
2 ppY � A1qpTqssq AT�C

�
2 pY pTqssq

AC
�
2 pY {{Tq AC

�
2 ppY {{T qcq AC

�
2 pY {{Tq

d̂
T�C�2 ,C

�
2

I� I�

d̂
T�C�2 ,C

�
2

d̂
T�C�2 ,C

�
2

i� i�

is commutative, and notice that here i� is the honest pushforward by the embedding
i. The composition of the two horizontal arrows in the �rst line is the multiplication
by the equivariant Euler class of the normal bundle, hence by s1 � s2. This means
that the composition of the two lower horizontal arrows is the multiplication by
d̂T�C�2 ,C�2 ps1 � s2q � d̂Tps1q � s2.

We prove the same kind of statement for the other �xed loci:

Lemma 4.3.3. Let w be a wall of ∆ which is met by the negative ray of the line
Q � ϕ. Since Jw is a regular embedding, it de�nes a pullback J�w of equivariant Chow
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groups. This descends to a morphism j�w de�ned by the following diagram

AT�C
�
2 ppY � A1qpTqssq AT�C

�
2 ppYwpT qss � C�qoppq

AC
�
2 ppY {{T qcq AC

�
2 pYw{{T q.

J�w

d̂
T�C�2 ,C

�
2

d̂
T�C�2 ,C

�
2

j�w

The following self-intersection formula holds true:

j�wjw�β � β � evs1�s2
�
d̂T,C�1

�
eTpNYw{Y q

�	
.

Proof. As in the proof of the previous proposition we consider the same diagram
composed by the two squares de�ned by Jw� and J�w. Consider the regular closed
embedding Kw : Yw ãÑ Y . If we set Z :� YwpT qss � C� we can consider the induced
regular closed embedding

Kw : Z ãÑ Y � � C�

which we denote with the same letter. Since Jw factors as Kw followed by an open
embedding, the diagram de�ned by Jw reduces to

AT�C
�
2 pZoppq AT�C

�
2 ppY � � C�qoppq AT�C

�
2 pZoppq

AC
�
2 ppYw{{T qoppq AC

�
2 ppY {{T q�oppq AC

�
2 ppYw{{T qoppq.

d̂
T�C�2 ,C

�
2

Kw� K�
w

d̂
T�C�2 ,C

�
2

d̂
T�C�2 ,C

�
2

kw� k�w

and the composition of the lower horizontal arrows is j�wjw�. By inverting the role
of C�1 and C�2 we �nd that evs1�s2j

�
wjw�evs2�s1 is the composition of the horizontal

arrows at the bottom of

AT�C
�
2 pZq AT�C

�
2 pY � � C�q AT�C

�
2 pZq

AC
�
1 pYw{{T q AC

�
1 ppY {{T q�q AC

�
1 pYw{{T q.

d̂
T�C�2 ,C

�
1

Kw� K�
w

d̂
T�C�2 ,C

�
1

d̂
T�C�2 ,C

�
1

kw� k�w

By compatibility of descent maps we can split this diagram in two by taking the
quotient with respect to the action of C�2 , which now only acts on the second factor
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C�:

AT�C
�
2 pZq AT�C

�
2 pY � � C�q AT�C

�
2 pZq

ATpYwpT qssq ATpY �q ATpYwpT qssq

AC
�
1 pYw{{T q AC

�
1 ppY {{T q�q AC

�
1 pYw{{T q.

d̂
T�C�2 ,T

Kw� K�
w

d̂
T�C�2 ,T

d̂
T�C�2 ,T

d̂
T,C�1

Kw� K�
w

d̂
T,C�1

d̂
T,C�1

kw� k�w

Notice that composition of the horizontal arrows in the middle row is the multipli-
cation by eTpYw{Y q (to be precise, by the restriction of this class to the semistable
locus), and therefore the self-intersection formula follows by the commutativity of
the two lower squares.

Now that we have the self-intersection formulae we can invert the localisation
isomorphism. Recall that σGpZq denotes the order of the G-stabiliser of a general
point in Z.

Proposition 4.3.1. The following equation holds true in the localised equivariant
Chow group AC

�
2 ppY {{T qcqs2:

1

σTpY � A1qrpY {{T qcs �

1

σTpY qi�
�

rY {{Ts
d̂Tps1q � s2

�
�

¸
wPWall1p∆q
wXQ 0�ϕ�H

1

σT pYwqjw�

�
� rYw{{T s
evs1�s2

�
rT,C�1

�
eTpNYw{Y q

�	
�



Proof. The localisation Theorem2.3.3 shows that there are classes α and βw such
that

rpY {{T qcs � i�α �
¸

wPWall1p∆q
wXQ 0�ϕ�H

jw�βw (4.12)

By applying i� (de�ned in Lemma 4.3.2) we have that i�rpY {{T qcs � σTpY�A
1q

σTpY q
rY {{Ts

by Theorem 2.1.1. Since I� � Jw� � 0 we have that i�jw� � 0 and thus

σTpY � A1q
σTpY q rY {{Ts � i�i�α � pd̂Tps1q � s2qα.
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Since d̂Tps1q�s2 is of the form "nilpotent + unit" we can invert it with the geometric
series, so we have found α. Analogously, by applying j�w to (4.12) we �nd

σTpY � A1q
σTpYw � A1qrYw{{T s � evs1�s2

�
rT,C�1

�
eTpNYw{Y q

�	
βw

which again identi�es βw. The claim follows by noticing that σTpYw �A1q � σT pYwq.

We have to �nd a way to use this relation of classes in the Chow group of the cut
to produce a residue formula for intersection numbers on Y {{T. The �rst step is to
�nd a way to extend classes from Y {{T to the whole algebraic cut pY {{T qc:
Lemma 4.3.4. There is a morphism

s : ATpY q Ñ AC
�
2 ppY {{T qcq

satisfying the following conditions:

� i� � s � rT. In particular, classes of the form i� � spαq have trivial C�2-
equivariance.

� For every wall w PWall1p∆q meeting the ray Q 0 �ϕ, consider the regular closed
embedding Kw : Yw ãÑ Y . The equality j�w � s � evs1�s2 rT,C�1 �K�

w holds true.

Proof. First of all we de�ne s as the composition

s : ATpY q pT�C�2ÑTq�ÝÝÝÝÝÝÝÑ AT�C
�
2 pY q P�ÝÝÑ AT�C

�
2 pY � A1q

r
T�C�2 ,C

�
2ÝÝÝÝÝÑ AC

�
2 ppY {{T qcq,

where T � C�2 Ñ T is the homomorphism pt, s2q ÞÑ t and P : Y � A1 Ñ Y is the
projection py, zq ÞÑ y, which is �at and therefore induces a pullback on Chow groups.
To prove the �rst claim we consider the diagram

ATpY q AT�C
�
2 pY q AT�C

�
2 pY � A1q AT�C

�
2 pY � 0q

AC
�
2 ppY {{T qcq AC

�
2 pY {{Tq.

pT�C�2ÑTq� P� I�

r
T�C�2 ,C

�
2

r
T�C�2 ,C

�
2

i�

Notice that P � I is the identity on Y , hence i � s � rT�C�2 ,C�2 � pT � C�2 Ñ Tq� �
pC�2 Ñ 1q� � rT where the last equality follows by Proposition 2.1.2. Notice that the
change of groups homomorphism relative to C�2 Ñ 1 just corresponds to the inclusion
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ApY {{Tq ãÑ AC
�
2 pY {{Tq, which completes the proof of the �rst claim. For the second

claim the proof is similar. First of all notice that s �ts into the commutative diagram

ATpY q AT�C
�
2 pY q AT�C

�
2 pY � A1q

AC
�
1 pY {{T q AC

�
1�C

�
2 pY {{T q AC1�C

�
2 pY {{T � A1q

AC
�
2 ppY {{T qcq

pT�C�2ÑTq

r
T,C�1

P�

r
T�C�2 ,C

�
1�C

�
2

r
T�C�2 ,C

�
1�C

�
2

pC�1�C
�
2ÑC�1 q p�

r
C�1�C

�
2 ,C

�
2

(4.13)

as the composition of the upper row with the column to the right. Denote with
s̃ : AC

�
1 pY {{T q Ñ AC

�
2 ppY {{T qcq the composition of the lowest row with the last

arrow of the column to the right. We claim that jw � s̃ � evs2�s1k
�
w, for the closed

embedding kw : Yw{{T ãÑ pY {{T q�. Notice that, as seen before, kw might not be
regular but the pullback k�w is still well de�ned, being induced from K�

w. We have
the commutative diagram

AC
�
1�C

�
2 pYw{{T q AC

�
1�C

�
2 pYw{{T � C�q

AC
�
1�C

�
2 ppY {{T q�q AC

�
1�C

�
2 ppY {{T q� � C�q AC

�
1�C

�
2 ppYw{{T � C�qoppq

AC
�
2 ppY {{T qcq AC

�
2 pYw{{T q

p�

λ�
k�w

p� k�w�λ
�

k�w

d̂
C�1�C

�
2 ,C

�
2

d̂
C�1�C

�
2 ,C

�
2

j�w

where λ : ppY {{T q��C�qopp Ñ pY {{T �A1qss, given by λpy, zq :� pz�1 � y, z�1q, is the
morphism induced on the T -quotient by the Λ in (4.11). Notice that s̃ (composed
with the restriction to the open subscheme u : pY {{T q� ãÑ Y {{T ) is the morphism
one obtains by following the lowest path in the diagram. By commutativity of the
diagram

j�w � s̃ � u� � d̂C�1�C�2 ,C�2 � pp � λq� � k�w. (4.14)

On the other hand, the composition of the two morphisms at the top of the diagram
is the pullback along the �at morphism

p � λ : pYw{{T � C�qopp Ñ Yw{{T : p � λpy, zq � z�1 � y � y
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(where we have used that Yw{{T is �xed by C�2) and therefore, for every closed
subvariety Z of Yw{{T

d̂C�1�C�2 ,C�2 � pp � λq�rZs � d̂C�1�C�2 ,C�2 rZ � C�s � rZs
where the last equality follows by Theorem 2.1.1. Moreover d̂C�1�C�2 ,C�2 �pp�λq�ps1q �
s2. This shows that equation (4.14) can be rewritten as

j�w � s̃ � u� � evs1�s2k
�
w.

By applying u� to the right of this equality we �nd

j�w � s̃ � u�u� � evs1�s2pu � kwq�.
It's immediate from the de�nition of s̃ that j�ws̃prZsq � 0 for every subvariety Z
contained in pY {{T qzpY {{T q�, hence j�w � s̃ � evs1�s2pu � kwq�. From diagram (4.13)
we conclude that j�w � s � evs1�s2pu � kwq� � rT,C�1 � evs1�s2 � rT,C�1K�

w.

Putting together Proposition 4.3.1 and Lemma 4.3.4 we have the following

Proposition 4.3.2. Let α P ATpY q. The intersection number degprTpαqq is equal to¸
wPWall1p∆q
wXQ 0�ϕ�H

xλ, ϕy � deg πYw{{T�
�
rT

�
ressλ�0 pT � λÑ Tq� α|Yw

eTpNYw{Y q




. (4.15)

where, given a wall w, the morphism rT : AT pYwq Ñ ApYw{{T q is the Kirwan map for
the T -action on Yw and the residue operation is de�ned as follows. Given the rank 1
subtorus λ P χpTq_ �xing Yw and such that xλ, ϕy ¡ 0, consider the surjection T�λÑ
T. The homomorphism pT � λ Ñ Tq� is the change of group homomorphism with
respect to this surjection. Then ATpYwq � AT pYwqrsλs, where sλ is the equivariant
variable corresponding to λ, and the residue is the generalised Guillemin-Kalkman
residue GKsλ for the ring AT pYwq and the variable sλ as de�ned in (4.4).

Proof. We intersect the fundamental class rpY {{T qcs with spαq using the stacky
ring structure on AC

�
2 ppY {{T qcqs2 induced from the isomorphism with AT�C

�
2 ppY �

A1qpTqssq. By the localisation formula of Proposition 4.3.1, the projection formula
and Lemma 4.3.4 we get

1

σTpY � A1qspαq X rpY {{T qcs �

1

σTpY qi�
�
rTpαq X rY {{Ts
d̂Tps1q � s2

�
� evs1�s2

¸
wPWall1p∆q
wXQ 0�ϕ�H

1

σT pYwqjw�
�
rT,C�1 pα|Ywq X rYw{{T s
rT,C�1

�
eTpNYw{Y q

�
�
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where X denotes the stacky product of Remark 4. Since this product satis�es

spαq X rpY {{T qcs � σTpY � A1qspαq
(and analogously for the other terms), we apply the pushforward to a point and the
degree map obtaining the following equality in Crs2ss2 :

deg πpY {{T qc� pspαqq �

deg πY {T�

�
rTpαq

d̂Tps1q � s2

�
� evs1�s2

¸
wPWall1p∆q
wXQ 0�ϕ�H

deg πYw{{T�

�
rT,C�1 pα|Ywq

rT,C�1
�
eTpNYw{Y q

�
�
.

Notice that deg πpY {{T qc� pspαqq P Crs2s being the degree of an equivariant class on
pY {{T qc. By taking the residue with respect to s2 we immediately obtain

deg πY {T� prTpαqq �
¸

wPWall1p∆q
wXQ 0�ϕ�H

ress1�0 deg πYw{{T�

�
rT,C�1 pα|Ywq

rT,C�1
�
eTpNYw{Y q

�
�
. (4.16)

Finally we want to simplify the residue computation for every wall. Given a wall w
we can consider the one dimensional subtorus λ P χpT q_Q such that λ acts trivially
on Yw and such that xλ, ϕy � 1. Once we consider the surjection T � λÑ T and the
corresponding morphism ξw : T � λ Ñ T

�ÝÑ T � C�1 , inducing ξw : λ Ñ C�1 on the
second factors, we have the diagram

AT�C
�
1 pYwq AC

�
1 pYw{{T q

AT�λpYwq AλpYw{{T q
ξ�w

r
T,C�1

ξ
�
w

rT�λ,λ

by Proposition 2.1.2. Notice that since Yw{{T is �xed by both C�1 and λ the vertical
arrow on the left is just the homomorphism of polynomial rings

ApYw{{T qrs1s Ñ ApYw{{T qrsλs : s1 ÞÑ xλ, ϕysλ,
where sλ denotes the equivariant variable for the action of λ. Since λ acts trivially
on Yw, the map rT�λ,λ can be computed as

AT�λpYwq AλpYw{{T q

AT pYwqrsλs ApYw{{T qrsλs
�

rT�λ,λ

�

rT
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and shows that the residues we want to compute on the right-hand side of (4.16) are
of the form

deg πYw{{T�

�
rT

�
GKxλ,ϕysλ

�
ξ�w

�
α|Yw

�
ξ�w

�
eTpNYw{Y q

�
���

.

We have �nally achieved our aim of having a residue formula for the intersection
number (4.10). Still, this seems very complicated. We have reduced the original
intersection number on Y {{T to a sum of intersection numbers which are computed
over Yw{{T , which are quotients by a torus of smaller dimension. By iterating this
construction, we can �nd a simpler formula.

4.4 Guillemin-Kalkman localisation.

Consider the action of a dimensionm torus T on a smooth closed subvariety of Pa�Ab
and let α P ATpY q. Our aim in this section is to �nd a combinatorial formula for
degprTpαqq by an iterated application of Proposition 4.3.2 of the previous section.
First of all, we show how to keep track of the combinatorial structure underlying
this iteration. Given a ray l P χpTqQ (not necessarily centered at the origin) and a
number d ¡ 0, we say that l satis�es the condition pCdq if


 the ray l is not entirely contained in the momentum polytope ∆ of Tñ Y,


 the ray l meets Bd∆ in its smooth points, away from walls

of codimension d� 1.

(Cd)

In Proposition 4.3.2, we showed that given a primitive character ϕ1 P χpTq (or
equivalently a ray l1 � Q 0 � ϕ1 through the origin in χpTqQ) satisfying pC1q, then
the intersection number on rY {Ts can be computed in terms of intersection numbers
on rYw{T1s, where w P Wall1p∆q are the 1-codimensional walls of ∆ met by the ray
l1 and T1 is the connected component of the identity in the kernel of ϕ (hence a
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codimension 1 subtorus of Tq.

What happens if we try to apply the same formula of Proposition 4.3.2 to compute
the contribution of rYw{T1s? We need to start by picking another character ϕ2 P χpT1q
so that the negative ray l2 :� Q 0 � ϕ2 satis�es pC1q with respect to the momentum
polytope ∆w for the action T1 ñ Yw. If λ P χpTq_ is the subtorus acting trivially on
Yw, through the following surjection of groups and the corresponding isomorphism
of character spaces

T1 � λÑ T , χpTqQ �ÝÑ χpT1qQ � χpλqQ

we can identify the momentum polytope ∆w of T1 ñ Yw with the wall w in ∆. The
ray l2, seen as a ray in χpTqQ by this isomorphism, intersects ∆ along the wall w and
originates from the intersection point pw � l1 X w. For such a ray, the conditions
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pC1q with respect to ∆w are equivalent to the conditions pC2q with respect to ∆.

The character ϕ2 P χpT1q de�nes a 1-codimensional subtorus T2 � T1 and by ap-
plying the formula of Proposition 4.3.2 we can compute the intersection number on
rYw{T1s in terms of intersection numbers computed on rYw1{T2s, where w1 ranges over
codimension 2 walls w1 PWall2p∆q met by the ray l2. Then we can keep iterating this
construction, and we now introduce the object that keeps track if the combinatorics
involved.

De�nition 4.4.1. A dendrite for a strictly convex momentum polytope ∆ is a set
of rays in χpTqQ of the following form:

� There is a level 1 ray l1 satisfying pC1q.
� Fixed d ¡ 1, for every intersection p of a ray ld�1 of level d� 1 with a pd� 1q-
codimensional wall w of ∆, there is a ray of level d ld originating by p and
intersecting ∆ inside the wall w which satis�es condition pCdq.

De�nition 4.4.2. Let D be a dendrite in ∆. A path in D is a polygonal line in
∆ starting from the origin and reaching a wall of maximal codimension in ∆ by
only moving along rays appearing in the dendrite D and passing, for each level k by
exactly only one ray at that level.

Notice that, �xed a dendrite D in ∆, a path determines a sequence of rays
l1, . . . , ldimpTq in χpTqQ and hence a �ltration of tori

T � T0 � T1 � � � � � Tm � 1 (4.17)
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Figure 4.1: A 3-dimensional dendrite.

so that Ti :� ker
�
li|Ti�1

	
. In other words, Ti is the subtorus of Ti�1 given by the

elements which vanish once evaluated at a nonzero character belonging to li (or
rather the connected component of the identity of this subgroup). We also have a
sequence of walls

∆ � w0 � w1 � � � � � wm (4.18)

of strictly increasing codimension, where wi is the wall at which the path changes
direction for the i-th time. This determines a sequence of smooth closed T-invariant
subvarieties

Y � Y0 � Y1 � � � � � Ym � F (4.19)

so that Yi is the subvariety of Y whose momentum polytope coincides with the
wall wi. Notice that, by Proposition 3.1.1, Yi is a �xed locus for the subtorus of
T orthogonal to the wall wi, in particular F is a �xed locus for the T-action on Y .
Notice that the path identi�es m di�erent 1-dimensional subtori

λi � Ti�1 (4.20)

characterised by Yi � Y λi
i�1 and oriented so that xλi, liy   0.
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De�nition 4.4.3. Let P be a path in the dendrite D for ∆. Given a class α P
ATpY q we can consider the corresponding �xed locus FP � Y and the induced class
resP pαq P ApFP q de�ned as

resP pαq :�
����λ1 ^ � � � ^ λm
e1 ^ � � � ^ em

����GKs1,...,sm

�
pλ1 � � � � � λm Ñ Tq� α|FP

eTpNFP {Y q


, (4.21)

where λi are the subtori (4.20) de�ned by the path and

1. the number
���λ1^���^λme1^���^em

��� is computed with respect to an integral basis e1, . . . , em

of χpTq_. This is the absolute value of the determinant of the matrix de�ned
by the coe�cients of the λi expressed in terms of the basis ej.

2. The change of group homomorphism with respect to the surjection λ1 � � � � �
λm Ñ T is, by Example 2.1.3, the isomorphism

ApFP q b Sym pχpTqCq Ñ ApFP qrs1, . . . , sms
given by expressing characters of T as linear combinations of s1, . . . , sm, thought
as elements of the basis of χpTqC dual to λ.

3. GK denotes the Guillemin-Kalkman residue (4.4) with respect to the ring
ApFP q and the variables s1, . . . , sm.

Remark 22. Let ϕi P χpT q be the generator for the ray li which restricts to a primitive
element of χpTi�1q. Then Ti � kerϕi for every i, which implies that ϕ1, . . . , ϕn form
an integral basis of χpT q.
Theorem 4.4.1 (Guillemin-Kalkman localisation.). Consider an action of a torus
T on a smooth variety Y with a regular linearisation L induced from an equivariant
closed embedding Y ãÑ Pa�Ab. Assume that Y {{T is projective and that the momen-
tum polytope ∆ is strictly convex. Given a dendrite D for ∆ and a class α P ATpY q,
the following equality

degpπY {{T�rTpαqq �
¸

PPPathpDq

deg pπFP � presP pαqqq

holds true, where the sum is over all possible paths in the dendrite D and the mor-
phism πFP : FP Ñ pt is the map to a point.

Remark 23. Notice that the conditions on ∆ being strictly convex and Y {{T be-
ing projective imply that the �xed loci FP we encounter are projective, so we can
pushforward to a point.
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Proof. By applying iteratively the formula of Proposition 4.3.2 we get that degprTpαqq
is a sum over the paths in the dendrite D. We compute the contribution of a path
P as follows. For every i let ϕi P χpTi�1q be the primitive character generating the
ray li of the path, or in other words so that li � Q 0 � ϕi. Set α0 :� α and, for every
i P t1, ...,mu, de�ne

αi � xλi, ϕiy �GKsi

�
pTi � λi Ñ Ti�1q�

αi�1|Yi

eTi�1pNYi{Yi�1
q


P ATipYiq,

where GK is the Guillemin-Kalkman residue (4.4) for the ring ATipYwiq with respect
to the variable si corresponding to the 1-dimensional subtorus λi in Ti�1 �xing Yi.
The contribution of the path P to the intersection number is given by deg πFP �pαnq.
Now notice that

2¹
j�1

xλj, ϕjy�1 � α2

�GKs2

�
pT2 � λ2 Ñ T1q� 1

eT1pNY2{Y1q
i�Y2 GKs1

�
pT1 � λ1 Ñ Tq� α|Y1

eTpNY1{Y q




�GKs1,s2

�
pT2 � λ1 � λ2 Ñ Tq� α|Y2

eTpNY2{Y q



by Lemma 4.1.4, and by iterating this procedure we �nd that

αm �
m¹
j�1

xλi, ϕiy �GKs1,...,sm

�
pλ1 � � � � � λm Ñ Tq� α|FP

eTpNFP {Y q


.

By simple linear algebra (as shown in the auxiliary Lemma 4.4.1 below) it follows
that

n¹
j�1

xλj, ϕjy �
����λ1 ^ � � � ^ λm
e1 ^ � � � ^ em

���� ,
for an integral basis e1, . . . , em of χpTq_, concluding the proof.

In order to complete the proof we have to prove the following linear algebra
statement:

Lemma 4.4.1. Consider a �ltration of lattices

0 � Z � Z2 � � � � � Zm

with rank 1 subquotients. Assume there are homomorphisms ϕi : Zi Ñ Z so that
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� Zi � ker pϕiq and

� ϕi is an integral and primitive morphism of lattices.

Then there are ϕ̃1, . . . , ϕ̃m : Zm Ñ Z extending the functions above to the whole Zm

and forming an integral basis of this lattice. In particular, for every λ1 P Z, . . . , λm P
Zm satisfying xλi, ϕiy ¥ 0 we have that

m¹
j�1

xλj, ϕjy �
����λ1 ^ � � � ^ λm
e1 ^ � � � ^ em

����

where e1, . . . , em is an integral basis of Zm.

Proof. The fact that ϕi can be extended to the whole space is obvious: since ϕm
is primitive it is surjective and from its exact sequence we �nd a splitting Zm �
Zm�1 � Z. But ϕm�1 is a primitive morphism on Zm�1, hence we can split the
lattice as Zm � Z � � � � � Z where Zi is the product of the �rst i copies of Z. Then
it is obvious to extend the functions to the whole space by setting them to zero
on the other components. The proof of these extension being an integral basis is
straightforward by using induction, the base case m � 1 being trivial. The �nal
equality holds by choosing as e1, . . . , em the dual basis to ϕ1, . . . , ϕm to compute
both terms.

Example 4.4.1. Consider the situation of Example 4.2. Here the momentum cone
in Q2 is spanned by the characters p�1, 3q and p1, 0q with vertex at p�1,�1q. We
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can choose the dendrite given by the two rays l1 and l2 in the picture:

This dendrite only has one path P � tl1, l2u, of which we compute the contri-
bution to degprTprA2sTqq. The �rst ray, whose direction is given by the character
p�N,�1q, identi�es the �rst subtorus T1 � lK1 given by

C� ãÑ T : t ÞÑ pt�1, tNq.

Consider the second ray l2, whose direction in T is given by the character p1,�3q.
This restricts to the ray in χpT1q spanned by the character �p3N � 1q and hence it
identi�es the trivial subtorus T2 � lK2 � 1 � T1 � T. The �ltration by of tori (4.17)
is, in this case,

C� � C� � ttN1 t2 � 0u � 1.

The sequence of walls (4.18) is given by

∆ � tp�1� x, 3x� 1q : x ¥ 0u � p�1,�1q
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and the corresponding sequence of subvarieties (4.19) is

A2 � A� 0 � O.

The subtorus λ1 of T �xing A� 0 and pairing negatively with the ray l1 is

C� ãÑ T : t ÞÑ pt3, tq,
while the subtorus λ2 of T1 �xing the origin of A2 and pairing negatively with the
direction of l2 is T1 itself. Notice that the T-equivariant Euler class of the normal
bundle to the origin in A2 is the polynomial expression in the characters given by

eTpNO{A2q � p3t2 � t1qt1
which can be reexpressed in terms of the dual basis to λ as

eλ1�λ2pNO{A2q � p3N � 1qs2p3s1 � s2q.
The Guillemin-Kalkman localisation formula of Theorem 4.4.1 states that the degree
degprTprA2sqq is equal to����det

��1 N
3 1


����GKs1,s2

�
1

p3N � 1qs2p3s1 � s2q


� GKs1,s2

�
1

s2p3s1 � s2q


.

In order to compute this Guillemin-Kalkman residue we have to �rst expand with
respect to s�1

1 and take the residue, then do the same with respect to s2:

GKs1,s2

�
1

s2p3s1 � s2q


� GKs1,s2

�
1

3s1s2

¸
k¡0

�
s2
3s1


k
�
� GKs2

�
1

3s2



� 1

3

as we expected, since the quotient stack rpC��C�q{Ts is r1{µ3s and we are computing
the degree of its fundamental class.

4.5 Szenes-Vergne localisation.

In the previous section we have seen how we can compute intersection numbers on
Y {{T by looking at a particular combinatorial object called dendrite. In particular,
di�erent choices of the dendrite in the momentum polytope ∆ of Y give di�erent
localisation formulae for the same intersection number. Here we show how, in the
case where Y � V is a linear space, there is a canonical choice for the dendrite and
this produces a famous version of the Je�rey-Kirwan localisation formula. We start
by giving an explicit description of the momentum polytope and of its walls:
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Lemma 4.5.1. Let ρ1, . . . , ρn P χpTq be characters so that V has a decomposition

V �
nà
i�1

Vi

where the T-action on Vi is given by multiplication with ρi. We will call them weights
of the action. Consider the trivial linearisation L0 whose T-action on the �bres is
trivial. Then

1. The momentum polytope ∆ for the action is the cone spanned by the characters
ρ1, ..., ρn.

2. The codimension-k walls of ∆ are the cones spanned by dimpTq � k linearly
independent weights ρi1 , . . . , ρidimpTq�k .

We omit the proof of this straightforward fact.

Remark 24. Notice that, since line bundles on a�ne spaces are trivial, every other
linearisation di�ers from the one with trivial action on the �bre via the twist by a
character. This just produces a translation of the momentum polytope, so that the
polytope for an arbitrary linearisation L is the translation of the polytope we just
described for L0 so that the vertex lies on the point �ξ P χpTq, where ξ denotes the
character of the T-action on the �bre above the origin of the linearisation L.

We will always work under the following conditions:

Lemma 4.5.2. The linear space V has no nontrivial �xed subspace, i.e. V T � O,
and that the momentum polytope is strictly convex if and only if, for every character
ξ P χpTqQ, the quotient V {{T built with respect to the linearisation L0bξ is projective.
Proof. By picking a basis we can assume V � Am and that T acts diagonally. We
know that V {{T is projective if and only if there are non nonconstant T-invariant
functions on V . Assume that V T � O and that ∆ is strictly convex. Assume by
contradiction that f : V Ñ C is a nonconstant invariant function. Then we have a
nonconstant monomial xd1i1 � � � xdkik which is invariant, so the corresponding characters
ρi1 , . . . , ρik must satisfy

ķ

j�1

djρij � 0.

This either means that all the weights ρij are zero (and so there are nontrivial invari-
ant subspaces) or that ∆ contains a line (hence it is not strictly convex). Conversely
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if V T is a nontrivial subspace, the corresponding coordinate functions de�ne noncon-
stant invariant functions. Moreover if ∆ is not strictly convex one can �nd a relation
among the weights of the form

°n
i�1 diρi � 0 with di ¥ 0 not all zero and hence the

corresponding monomial
±n

i�1 x
di
i is invariant.

In this case, if we choose a character ξ P χpTqQ, we can consider the corresponding
quotient V {{T with respect to the linearisation L :� L0 b ξ, namely the one whose
action on the �bres is given by ξ. We want to apply the localisation formula of
Theorem 4.4.1 to compute intersection numbers of the form degprTpαqq, where α P
ATpV q and rT : ATpV q Ñ ApV {{Tq is the Kirwan map. The �rst step to apply
this localisation formula is to pick a dendrite in ∆; here we show how to do this in
a canonical way once ξ is sum-regular in the sense of Example 4.1.3. Recall that
the momentum polytope ∆ for this action is the translation of the one described in
Lemma 4.5.1 by the character �ξ as discussed in Remark 24.

De�nition 4.5.1. Let A � χpTq be the set of weights of the torus action on the
linear space V . Consider the following dendrite, called canonical dendrite for the
sum-regular linearisation L:

� (level 1) Consider the element ν1 :�
°
ρPA ρ and choose the ray li :� Q 0 � ν1.

� (level d) Given an intersection point p of a level d � 1 ray with a pd � 1q-
codimensional wall w of ∆ we can set νd :�

°
ρPAXpw�ξq ρ and consider the ray

p� Q 0 � νd.
Lemma 4.5.3. The rays above de�ne a dendrite in ∆.

Proof. Notice that every νd is nonzero since ∆ is assumed to be strictly convex. It
is clear that these rays are not entirely contained in ∆, which is the positive span of
the weights. Moreover, since ξ is sum-regular by hypothesis, we have that the ray
of level d doesn't meet the pd � 2q-dimensional skeleton of ∆, otherwise we could
write ξ as a positive linear combination of m � 1 elements of χpTq de�ned as sums
of weights, contradicting sum-regularity. Thus the rays ld satisfy the conditions pCdq
and therefore de�ne a dendrite for ∆.

From a sum-regular character ξ we have constructed a dendrite and we can con-
sider the associated formula (4.4.1). We start by giving a di�erent combinatorial
description of paths in the canonical dendrite in terms of �ags in the linear space
χpTqQ of characters:

Proposition 4.5.1. The paths in the canonical dendrite are in bijection with the set
of �ags FpA, ξq introduced in De�nition 4.1.7.
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Proof. In this proof we set m :� dimpTq to shorten the notation. Consider a path
P for the canonical dendrite D. We can consider the associated decreasing chain of
walls of ∆

∆ � w0 � w1 � � � � � wm � �ξ
and de�ne the corresponding �ag in χpTqQ as

0 � F0 � F1 � � � � � Fm�1 � Fm � χpTqQ
via Fj :� spanQpwm�j � ξq. We claim that this �ag is in FpA, ξq. The ray at level
d of the path is generated by the vector νd � κm�d�1 by de�nition (4.6), hence we
have that

Fd :� spanQpwm�d � ξq � spanQpνm, ..., νm�d�1q � spanQpκ1, ..., κdq
for every d, and in particular the �ag is proper. Moreover, since ξ is connected to
the origin (the unique vertex of the momentum cone) via the rays of the dendrite
we have that ξ P spanQ¡0pκ1, . . . , κmq, hence the �ag is stable and thus it belongs to
FpA, ξq. On the other hand, given a �ag F P FpA, ξq, notice that the translations
by �ξ of the linear spaces Fj in the �ag intersect ∆ in walls (of dimension j). Since
F is proper we can write Fj � spanQpκ1, . . . , κjq for all j. By de�nition the �ag F is
stable and hence we can write

ξ �
m̧

j�1

cjκj

for some c1, . . . , cn ¡ 0. Therefore

ξm�1 :�
m�1̧

j�1

cjκj

belongs to the intersection of the ray ξ � Q 0 � κm with Fm�1. In the same way we
see that

ξm�2 :�
m�2̧

j�1

cjκj

belongs to pξm�1 � Q 0 � κm�1q X Fm�2 and so on. By subtracting ξ we have shown
that the points O, ξm�1 � ξ, ..., ξ1 � ξ,�ξ de�ne a path for the canonical dendrite
D. It's immediate to check that these two constructions are one the inverse of the
other.
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Remember that, given a �ag in χpTqQ, �ag residues (4.7) are computed with
respect to the basis κ1, . . . , κdimpTq induced by the �ag. The following result relates
the path residue (4.21) with respect to a path P to the �ag residue corresponding to
the associated �ag:

Proposition 4.5.2. The path residue of α P ATpV q can be computed as a �ag residue
with respect to the corresponding �ag:

resP pαq � resF

�
α

eTpTV q



Proof. Set m :� dimpTq. Consider the 1-dimensional subtori λ1, . . . , λm associated
to the path P and let s1, . . . , sm be the corresponding dual basis of χpTq We have
to prove that, for the characters κ1, . . . , κm associated to the �ag F , the following
equality holds true: ����λ1 ^ � � � ^ λm

e1 ^ � � � ^ em

����GKs1,...,sm

�
α|O

eTpTV q



�
����e_1 ^ � � � ^ e_m
κ1 ^ � � � ^ κm

���� SVκ1,...,κm

�
α|O

eTpTV q



where e1, ..., em is an integral basis of χpTq_ and e_1 , ..., e
_
m is the dual basis of χpTq.

Notice that the dual bases satisfy����λ1 ^ � � � ^ λm
e1 ^ � � � ^ em

���� �
����e_1 ^ � � � ^ e_m
s1 ^ � � � ^ sm

���� ,
so we can focus on proving����κ1 ^ � � � ^ κm

s1 ^ � � � ^ sm

����GKs1,...,sm

�
α|O

eTpTV q


� SVκ1,...,κm

�
α|O

eTpTV q


.

By Proposition 4.1.1 we see that the symbol GKs1,...,sm on the left-hand side can be
replaced with SVsm,...,s1 since the class e

TpTV q is a product of linear factors. Finally,
we claim that the resulting equality holds true by virtue of Lemma 4.1.2. In order
to apply this lemma we just have to show that the two ordered bases tsm, . . . , s1u
and tκ1, . . . , κmu are such that

1. spanpsm, . . . , sm�iq � spanpκ1, . . . , κiq for all i,
2. they are oriented in the same way.
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1) Clearly spanpκ1, . . . , κiq is the span of the i-dimensional wall of the path. Recall
that the equations of this linear space, by Proposition 3.1.1, are λj � 0 for j ¡ m� i,
and s1, . . . , sm�i satisfy those. Being linearly independent they span the linear space.
2) Being the ith ray de�ned by the direction �κm�i, the inequality xλi, κiy ¡ 0 holds
true for every i. This, together with point 1, ensures that the two bases are oriented
in the same way as can be seen by expressing the κi in terms of the sj.

Finally, we can restate the Guillemin-Kalkman localisation formula in the case of
the canonical dendrite:

Theorem 4.5.1 (Szenes-Vergne Localization Formula). Let Tñ V be a representa-
tion of an algebraic torus having trivial �xed part V T � O. Fixed a regular lineari-
sation L corresponding to a character ξ P χpTq, let ∆ be the associated momentum
polytope and assume it is strictly convex. For every α P ATpV q we have the equality

deg
�
πV {{T� prTpαqq

� � JKA
ξ

�
α

eT pTV q



(4.22)

where α
eT pTV q

is thought as a rational function on χpTq_C .

4.6 Nonabelian localisation.

Until now we have only discussed degree computations on quotients by torus actions.
Assume we are interested in formulae for degrees of cycles in quotients of the form
Y {{G, where G is a reductive connected algebraic group acting on a smooth variety
Y with a linearisation L. In this section we will work in the case where, denoted with
T a maximal subtorus of G, the G and T -actions on the respective semistable loci
are free, so that the quotients Y {{G and Y {{T (with respect to the same linearisation
L) are smooth. We also assume these quotients are projective.

Remark 25. I am convinced that these smoothness hypotheses are not necessary for
the results of this section to hold, even though the arguments presented here rely
on them. In particular I expect that a purely algebraic analogue of Martin's result
below holds true, so having "semistable = stable" for the linearisation L should be
enough.

The way to obtain formulae for nonabelian quotients of the form Y {{G is to relate
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them to abelian the abelian quotients Y {{T through the following diagram:

Y pGqss

T
Y {{T

Y {{G

j

π (4.23)

where j is the open embedding of the G-semistable locus in the T -semistable one
and π is the residual G{{T �bration.

Remark 26. Notice that if B � G is a Borel subgroup containing T then π factors as
an a�ne bundle g followed by G{B-�bration f (which is, in particular, projective)

Y pGqss{{T gÝÑ Y pGqss{{B fÝÑ Y {{G

as discussed in [ES89, Section 2.5]

Example 4.6.1. Here we describe this picture explicitly in the case of a Grassman-
nian. Consider the action of G � GL2 on V :� Mat2�npCq by left multiplication
and let L be the linearisation corresponding to the character ξ � det. The ring of
invariant sections of powers of L is generated by the 2 � 2 minors, which are the
Plücker coordinates for the embedding of Grp2, nq ãÑ Pp^2Cnq.

Consider the maximal subtorus T � pC�q2 given by diagonal matrices. The
induced action pt1, t2q �M is by multiplication of the �rst row ofM with t1 and of the
second row with t2. The induced linearisation corresponds to the character ξ|T � t1t2
and the quotient is the product of projective spaces Pn�1 � Pn�1 corresponding to
the rows of the matrix.

By our discussion of the G-invariant sections of Lbn, the T -quotient of the G-
unstable locus is cut out by the equations de�ning the 2� 2 minors, and therefore it
corresponds to the diagonal:

pV zV pGqssq{{T � ∆ � Pn�1 � Pn�1

This describes completely the diagram (4.23) in this example, which is

pPn�1 � Pn�1qz∆ Pn�1 � Pn�1

Grp2, nq

j

π
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with the vertical morphism π being

πprxs, rysq ÞÑ rxiyj � xjyis

geometrically mapping the two distinct lines rxs and rys of Cn to the plane they
generate.

The factorisation of π of Remark 26 can be seen as follows. Let B be the subgroup
of upper triangular matrices. Then the quotient V pGqss{{B coincides with the �ag
variety of (1,2)-dimensional �ags in Cn and π factors as

pPn�1 � Pn�1qz∆ gÝÑ Fp1, 2, nq fÝÑ Grp2, nq

where the �rst map sends two lines prxs, rysq in the �ag given by rxs and the 2-
dimensional subspace containing them, while f is the P1-bundle over the Grassman-
nian whose �bre above a point is the set of lines contained in the corresponding
plane.

The main technical tool is the following formula of Martin [Mar00]:

Theorem 4.6.1. Let α P H�pY {{Gq and β P H�pY {{T q be such that π�α � j�β.
Then »

Y {{G

α � 1

|W |
»
Y {{T

β Y epRq,

where W is the Weyl group of G and R is the roots bundle of Y {{T , namely the
bundle obtained by descending to the quotient the T -equivariant vector bundle

X � g{hÑ X,

where g :� T1G and h :� T1T , with action on the �bre induced by the adjoint
representation.

Notice that Theorem 4.6.1 directly transposes into Chow groups by virtue of the
cycle class maps [Ful13, Chapter 19]

cl : A�pZq Ñ H2dimpY q�2�pZq.

Notice that, in principle, the target should be the Borel-Moore homology of Z, but
we will only consider smooth Z so Poincaré duality allows us to map to singular
cohomology. We can translate the theorem above in the following way:
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Theorem 4.6.2. Let α P A�pY {{Gq and β P A�pY {{T q be such that π�α � j�β.
Then

degpπY {{G�pαqq � 1

|W |deg
�
πY {{G� pβ Y epRqq� .

Proof. Since cycle maps commute with �at pullbacks we see that π�clpαq � j�clpβq,
hence by Martin's formula»

Y {{G

clpαq � 1

|W |
»
Y {{T

clpβq Y epRq.

Moreover cycle maps are ring homomorphisms and are well behaved with respect to
Chern classes, so »

Y {{G

clpαq � 1

|W |
»
Y {{T

cl pβ Y epRqq .

Finally, cycle maps commute with proper pushforwards (which in cohomology cor-
respond to integration) and hence we obtain the wanted result.

This result, paired with the abelian localisation formulae of the previous section,
immediately translates to localisation formulae for nonabelian quotients:

Theorem 4.6.3 (Nonabelian Guillemin-Kalkman localisation.). Consider the action
of a reductive connected algebraic group on a smooth subvariety Y of Pa � Ab and
let L be a linearisation. If T is a maximal subtorus of G, assume that the T and
G actions on the corresponding semistable loci are free and that Y {{G and Y {{T are
projective. Let α P AGpY q be a G-equivariant class, αT :� pT ãÑ Gq�α P AT pY q be
the corresponding T -equivariant class and consider the T -equivariant vector bundle
on Y with �bre g{h. Then, �xed a dendrite D for the momentum polytope of the
T -action, the equality

degpπY {{G�rGpαqq � 1

|W |
¸

PPPathpDq

deg
�
πFP �

�
resP pαT � eT pg{hqq

��

holds true, where W is the Weyl group of G and the sum is over all possible paths in
the dendrite D.

Proof. The proof simply follows by combining Theorem 4.6.2 above and the abelian
Guillemin-Kalkman formula of Theorem 4.4.1. The only thing we have to notice is
that π�rG � j�rT which immediately follows from Theorem 2.1.1.
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Remark 27. Notice that if Y {{T is projective then Y {{G is projective too, since all
G-invariant functions on Y are also T -invariant. This means that we can just require
the �rst condition in the hypotheses of the previous theorem.

Analogously we have a nonabelian version of Szenes-Vergne localisation.

Theorem 4.6.4 (Nonabelian Szenes-Vergne localisation.). Consider a representa-
tion V of a reductive connected algebraic group G with maximal subtorus T and
assume that V T � O and that the momentum polytope for the T -action is strictly
convex. Let L be a linearisation so that the G and T -actions on the respective
semistable loci are free. Given an G-equivariant class α P AGpV q and the corre-
sponding T -equivariant one αT :� pT ãÑ Gq�α P AT pV q, the equality

degpπY {{G�rGpαqq � 1

|W |JK
A
ξ

�
αT � eT pg{hq
eT pTV q




holds true, where

� W is the Weyl group of G.

� ξ P χpGq � χpT qW is the character of G so that the linearisation L has action
on the �bre given by ξ.

� A � χpT q is the set of characters of the action of T on V .

Example 4.6.2. Let's build on the previous Example 4.6.1 and assume we want to
compute the degree of a point in the Grassmannian Grp2, 4q. By Theorem 2.1.1 we
know that we want to compute

deg
�
πGrp2,4q�rG

�rC4sG
��

where C4 is, for example, the subspace of 2� 4 matrices of the form�
x1 x2 0 0
y1 y2 0 0



.

Notice that, via the pullback along V Ñ pt, we have the isomorphism AG��8pV q �
AG� pptq � Qrt1, t2sS2 by Example 2.1.1. Since C4 is cut as the zero locus of a section
of the rank 4 vector bundle E Ñ C having as �bre the G-representation Mat2�2pCq,
rC4sG is the Euler class of E, namely

rC4sG � eGpEq � t21t
2
2
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and we want to compute

deg
�
πGrp2,4q�rGpt21t22q

�
.

Analogously we see that eT pg{hq � pt1 � t2qpt2 � t1q and eT pTV q � t41t
4
2, so the

Szenes-Vergne localisation formula of Theorem 4.6.4 reads

deg
�
πGrp2,4q�rGpt21t22q

� � �1

2
JKA

t1�t2

��
t1 � t2
t1t2


2
�
.

Here A is the set of weights for the action of T on V � Mat2�4pCq, hence A � tt1, t2u.
The JK residue on the right-hand side was computed in Example 4.1.4 and shown
to be �2, thus we �nd that the degree we wanted to compute is 1.



Chapter 5

Equivariant and K-theoretic

localisation.

From now on we are going to focus on the formula of Szenes and Vergne, since it's the
one that has found more applications in the recent years. A completely analogous
discussion can be carried on for the version of Guillemin and Kalkman.

We have described how this localisation formula can be used to compute degrees
of Chow classes on quotients of linear spaces. In this section we are going to show
how we can extend this to the equivariant setting. Similar to the Atiyah-Bott formula
in the classical setting, this new formula simpli�es the residue computation (analo-
gous to the integral in the classical setting) but introduces increased combinatorial
complexity in enumerating the many points at which residues must be computed
(analogous to the number of �xed loci). These analogies are not coincidental; they
arise from the proof of this equivariant formula as a corollary of Atiyah-Bott's one.

Additionally, we will discuss an extension of this localization formula to equivari-
ant K-theory via the Hirzebruch-Riemann-Roch theorem.

Notation. From now on we will use with the integral sign
³
X
also in Chow homology,

to denote the composition of the degree map with the pushforward through the
projection π : X Ñ pt to a point. In more explicit terms, given a cycle Z P A�pXq
we will use the notation »

X

Z :� deg pπ�Zq

and we will do the same in the equivariant case. This will make the formulae much
easier to read in what follows.

95
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Contents of the section.

The section is structured as follows.

� We will discuss the equivariant generalisation of the Szenes-Vergne localisation
formula (Theorem 5.1.1 in the abelian setting and Theorem 5.1.3 in the non-
abelian one). The new feature of this equivariant formula is the role played
by a hyperplane arrangement de�ned in the character space of the torus used
to build the quotient. The result will be expressed as a sum of Je�rey-Kirwan
residues, one for each isolated intersection of the arrangement.

� We will also study a K-theoretic version of this formula (Theorem 5.2.1), useful
to compute equivariant Euler characteristics of K-theory classes.

5.1 Equivariant Szenes-Vergne localisation.

In this section we are going to describe a generalisation of this formula to the equiv-
ariant setting, so that it computes degrees of equivariant cycles on quotients of linear
spaces. This will be done in two steps:

1. First, we apply the classical Atiyah-Bott localisation formula to the degree we
want to compute. This splits up the degree in several contributions arising
from the �xed loci in the quotient variety.

2. We then realise that all these �xed loci can be described as GIT quotient
themselves. Then the non-equivariant version of the Szenes-Vergne formula
can be applied to compute the contribution of each �xed locus.

3. We pack together all this data in a nice combinatorial description of the �xed
loci and of their contributions in terms of intersections in a hyperplane arrange-
ment and of residues computed at this points.

Di�erent equivariant versions of the Je�rey-Kirwan localisation formula were studied
in [Zie18] and [Mar08]. The strength of the version that we are interested in lies in
the fact that it produces very explicit computations and that it is widely applied in
physics, as we will see in later sections.



CHAPTER 5. EQUIVARIANT AND K-THEORETIC LOCALISATION. 97

5.1.1 The �xed locus.

Consider a linear space V together with the action of two tori T and S and a regular
T -linearisation L given by a character ξ P χpT q. We also assume that the T -action
commutes with the S-action, which therefore descends to the quotient V {{T . We
have the weight-space decomposition

V � à
ρPχpT q
νPχpSq

Vρ,ν (5.1)

where Vρ,ν � V is the subspace over which T and S acts via the characters ρ and ν
respectively. The following lemma will be useful to study the �xed locus pV {{T qS:
Lemma 5.1.1. The following conditions are equivalent for a vector v P V pT qss:

1. The vector v de�nes a �xed point in V {{T .
2. The stabiliser G � T � S of v is of dimension dimpSq.
3. Denoted with I the set of pρ, νq P χpT�Sq so that vρ,ν � 0 in (5.1), the quotient

of the subspace
À

pρ,νqPI Vρ,ν by T is �xed by S.

4. Denoted with I the set of pρ, νq P χpT � Sq so that vρ,ν � 0 in (5.1), the inter-
section of hyperplanes U :� �

pρ,νqPItρ � ν � 0u of χpT � Sq_C is of dimension
dimpSq.

Proof. (1 ñ 2) Being the image of v through the quotient map �xed by S, the
projection of G to S must be surjective, so dimpGq ¥ dimpSq. On the other hand
the dimension can't be greater, otherwise the �bre of G above 1 P S must be positive
dimensional, giving a C� � T acting trivially on v and contradicting semistability.
(2 ñ 3) Notice that being v semistable, the �bre of G Ñ S above the identity
is �nite, hence the kernel is �nite and G maps surjectively on S by dimensional
reasons. This implies that, if G acts trivially on v1 P V pT qss, then the image of
v1 through the quotient map is �xed. Notice that G acts on Vρ,ν via the character

G ãÑ T � S
ρ�νÝÝÑ C�. Since G acts trivially on v, for every pρ, νq P I we have that

the character of G de�ned above is trivial, hence G acts trivially on Vρ,ν . (3 ñ 1q
is trivial. (4 ñ 2) Notice that 4 is the in�nitesimal version of 2. Given such U
we can consider the subgroup of G � T � S having U as space of cocharacters. In
other words we can �nd a C-basis of U given by integral elements λ1, . . . , λdimpSq,
which de�ne a subgroup G of dimension dimpSq. It's clear that this �xes the vector
v since pλi � vqρ,ν � ρpλiqνpλiqvρ,ν � vρ,ν whenever ρ, ν P I by construction. Finally
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assume that the stabiliser of v is of bigger dimension. Then its space of cocharacters
would be a bigger dimensional space contained in the intersection U , contradicting
the hypothesis on the dimension of U . (2 ñ 4) Clearly χpGq_C is contained in U , so
U is at least dimpSq-dimensional. If it were higher dimensional, we could construct
a bigger G �xing v as in the previous point, contradicting the hypothesis on the
dimension of the stabiliser.

This allows us to give a combinatorial description of the S-�xed locus on V {{T
in terms of the following hyperplane arrangement:

De�nition 5.1.1. We will denote with H the hyperplane arrangement in the linear
space χpT q_C � χpSq_C given by the hyperplanes of the form tρ � ν � 0u for every
choice of ρ P χpT q and ν P χpSq so that Vρ,ν � 0 in (5.1). Given a subspace
U � χpT q_C�χpSq_C we will denote withHU the set of hyperplanes of the arrangement
containing U .

Notation. Given characters ρ P χpT q and ν P χpSq we will write ρ � ν P HU if the
corresponding hyperplane tρ� ν � 0u belongs to HU . By abusing notation, we will
also write ρ P HU is there if a ν so that ρ� ν P HU .

De�nition 5.1.2. Given an intersection U of hyperplanes in H, we say that it
is stable if it is dimpSq-dimensional and ξ belongs to the positive span of the set
tρ |ρ P HUu. For such a U de�ne the corresponding subspace of V

VU :� à
ρ�νPHU

Vρ,ν .

Proposition 5.1.1. The function

tstable intersections of Hu Ñ  
connected components of pV {{T qS(

U ÞÑ VU{{T

is a well-de�ned bijection.

Proof. First of all, notice that since U is stable the T -semistable locus of VU is
nonempty by Lemma 4.5.1, hence the quotient is nonempty. The quotient is �xed
by Lemma 5.1.1 and obviously connected. Notice that given two di�erent stable
intersections U and U 1 the corresponding quotient varieties don't intersect. Assume
in fact that v P V belongs to the intersection of the corresponding linear spaces. Then
the intersection of hyperplanes corresponding to v given in point 4 of Lemma 5.1.1
contains both U and U 1, so it is of dimension strictly bigger than dimpSq. The same
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argument used in the previous Lemma ensures that the dimension of the stabiliser is
bigger than dimpSq and therefore v can't be stable. Finally let v P V pT qss be a point
that descends to a �xed point on the quotient. By Lemma 5.1.1, point 4 ensures that
the corresponding intersection U is of the correct dimension. Moreover, U is stable
by Lemma 4.5.1.

Example 5.1.1. Consider the simplest case possible, namely the case of P1. Let
T � S � C� and consider the action on A2 given by

T � S ñ A2 : pt, sq � px, yq :� ptsx, tyq. (5.2)

If we consider the T -linearisation given by the character ξ :� t, we immediately see
that the quotient A2{{T is the projective line P1.

Proposition 5.1.1 gives a description of the �xed locus of the residual S-action
on P1 in terms of a hyperplane arrangement. Here we show this correspondence
explicitly.

The hyperplane arrangement in the space of cocharacters χpT q_C �χpSq_C � C�C
is given by the weights of the pT � Sq-action, hence it is the arrangement given by
the two lines t�s � 0 and t � 0. Each of these two lines is a stable intersection since
ξ is in the positive span of t. The �rst stable intersection tt � s � 0u corresponds
to the subspace A1 � 0 � A2, hence our Proposition 5.1.1 predicts that its quotient
r1 : 0s P P1 is a �xed locus for the induced S-action. Analogously the second stable
intersection tt � 0u corresponds to the subspace 0� A1 � A2, hence our proposition
predicts that its quotient r0 : 1s P P1 is a �xed locus. Indeed, these are the only two
�xed loci for the induced S-action on P1, which is s � rx : ys � rsx : ys as can be seen
from (5.2).

This gives a combinatorial description of the �xed locus pV {{T qS in terms of a
hyperplane arrangement. We now show that this arrangement is not just an ad-hoc
gadget, but it's an intrinsic invariant of V {{T , namely the spectrum of its homology
ring.

5.1.2 The spectrum of homology.

This and the following sections are not strictly needed for the proof of equivariant
JK localisation, but they provide more context and a nice interpretation of the hy-
perplane arrangements that appear in the formula. We start by considering the more
general context of a torus S acting on a smooth quasiprojective variety S ñ X with
a regular linearisation L. The �rst observation is that, since the Atiyah-Bott local-
isation formula of Theorem 2.3.4 ensures that the pullback de�nes an isomorphism
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of A�
Spptqf -algebras

i� : ASpXqf Ñ ASpXSqf
for some f P A�

Spptq � Sym pχpSqCq vanishing at the origin. By taking Spec we �nd
an isomorphism of schemes over the open subscheme tf � 0u of χpSq_C :

Spec
�
ASpXSqf

�
Spec

�
ASpXqf

�

tf � 0u

�

This helps us studying the spectrum of the equivariant homology of X:

Proposition 5.1.2. Consider the decomposition XS � �
F�XS F of the �xed locus

in its connected components. Then the ring ASpXqf is isomorphic to
À

F A
SpF qf

and

Spec
�
ASpXqf

� � §
F�XS

Spec
�
ASpF qf

�
is the decomposition in connected components, and each component is a fattening of
the base tf � 0u � χpSq_C .
Proof. The �rst part of the claim is an immediate corollary of Atiyah-Bott's for-
mula. Notice that for every connected component of the �xed locus ASpF qf �
ApF q bC A

Spptqf . Moreover ApF q is nilpotent, being the Chow group of a smooth
quasiprojective variety (there is nothing below degree zero), hence

Spec
�
ASpF qf

� � SpecpApF qq � tf � 0u,
where SpecpApF qq is a fat point.

In the case where X is a geometric quotient of the form Y {{T we can say more
about ASpXq:
Proposition 5.1.3. Spec

�
ASpY {{T q� is a closed subscheme of Spec

�
AT�SpY q� and

its ideal sheaf is the image of the pT � Sq-equivariant pushforward j�, where j is the
inclusion of the non-semistable locus j : Y zY pT qss ãÑ Y .

Proof. Consider the exact sequence of equivariant Chow groups [EG98b, Lemma 4]

AT�SpY zY pT qssq j�ÝÑ AT�SpY q u�ÝÑ AT�SpY pT qssq Ñ 0 (5.3)

where u� is a �at pullback and hence a ring homomorphism. Notice thatAT�SpY pT qssq
is isomorphic to AS�pY {{T q by Theorem 2.1.2.
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5.1.3 Intersections in the hyperplane arrangement as homol-

ogy schemes.

Let's go back at our case of interest, where T �S ñ V with a regular T -linearisation
L. We have seen that the spectrum of ASpV {{T q is a closed subscheme of χpT q_C �
χpSq_C and (away from a hypersurface) it coincides with the disjoint union of the
spectra of the cohomology of �xed loci. We have shown how connected components
of pV {{T qS are indexed by stable intersections of H. We now want to prove that
the �xed locus corresponding to the stable intersection U has U itself as reduced
spectrum of its equivariant homology:

Proposition 5.1.4. Let U be a stable intersection of H. Then the support of the
cohomology of VU{{T coincides with U :

supp
�
SpecpASpVU{{T qq

� � U.

Scheme-theoretically, this subscheme is cut inside χpT q_C � χpSq_C by the equations¹
ρPJ

¹
ρ�νPHU

pρ� νqdimpVρ,νq

where J ranges over the minimal subsets of tρ | ρ P HUu such that ξ is not in the
positive span of the complement J c.

Proof. First of all, notice that the T-unstable locus of VU is a union of T -invariant
linear spaces since the ring of invariant sectionsà

n¥0

H0pVU ,LbnqT �à
n¥0

H0pVU ,OVU b nξqT

is generated by monomials. Moreover notice that a linear subspace is T -invariant
if and only if it is a direct sum of eigenspaces for the T -action. By Lemma 4.5.1,
this means that the unstable locus in VU is the union, indexed over the maximal
subsets I � tρ | ρ P HUu so that ξ is not in the positive span of I, of the subspaces
VI :�

À
ρPI Vρ:

VUzVUpT qss �
¤
I

VI .

Consider the exact sequence (5.3) specialised to Y � VU ; the equations we seek are
given by the generators for the image of the pushforward map

AT�S pVUzVUpT qssq j�ÝÑ AT�SpVUq.
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We can consider the surjection §
I

VI Ñ VUzVUpT qss

inducing a surjection of Chow groups by pushforward. So the image we want to
study coincides with the image ofà

I

AT�SpVIq j�ÝÑ AT�SpVUq,

which is the ideal generated by the images of the various AT�SpVIq j�ÝÑ AT�SpVUq.
Notice that, since both VI and VU are linear spaces, their Chow groups are canonically
isomorphic to the Chow group of a point via the �at pullback through the projection.
This makes j� an endomorphism of ASpptq � SympχpT qC � χpSqCq. The pullback
through the regular embedding j is an isomorphism, so we can easily compute j� by
the projection formula

j�j�α � eT�SpNVI{VU q � α.
Since that this Euler class is¹

ρPIc

¹
ρ�νPHU

pρ� νqdimpVρ,νq � 0

the morphism j� is the multiplication by this function. This discussion shows that
SpecpASpVU{{T qq is the zero locus of the functions above, and by setting J � Ic

we complete the proof of the scheme-theoretic statement. Set-theoretically, U is
contained in the vanishing locus of those functions by construction. On the other
hand, assume that a point x P χpT q_C � χpSq_C belongs to that zero set. The set of
characters

I :� tρ P HU | Dν so that ρ� ν P HU and pρ� νqpxq � 0u
forms a set of generators of χpT qC, otherwise ξ would not be contained in the positive
span of I but the function ¹

ρPIc

¹
ρ�νPHU

pρ� νqdimpVρ,νq (5.4)

wouldn't vanish on x, causing a contradiction. Hence the functions ρ � ν that van-
ish on x cut a subspace of dimension dimpSq, which must then be precisely U by
dimensional reasons, so x P U .
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This result shows that the stable intersections of the hyperplane arrangement
H are an intrinsic invariant of V {{T , namely they describe the spectrum of its S-
equivariant cohomology!

Example 5.1.2. Let's continue Example 5.1.1. We show that the hyperplane ar-
rangement we studied before, given by the two lines tt�s � 0u and tt � 0u, coincides
with SpecpASpP1qq. Indeed ASpP1q � AT�SpA2zOq �ts into the exact sequence (5.3)

AT�SpOq j�ÝÑ AT�SpA2q u�ÝÑ ASpP1q Ñ 0

which, by identifying the �rst two Chow groups with the Chow group of a point via
the �at pullback along the projection to a point, coincides with

Crt, ss �pt�sqtÝÝÝÝÑ Crt, ss u�ÝÑ ASpP1q Ñ 0

�nally giving ASpP1q � Crt, ss{ppt� sqtq.

Figure 5.1: The spectrum of ASpP1q as a subscheme of SpecpAT�SpA2q).
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5.1.4 A remark on hyperplane arrangements.

Consider the weight space decomposition (5.1) of V for the action of T � S:

V � à
ρPχpT q
νPχpSq

Vρ,ν .

We described the �xed loci on V {{T in terms of the stable intersections of the hy-
perplane arrangement H in χpT � Sq_C . This was the arrangement of hyperplanes of
the form

tρ� ν � 0u : Vρ,ν � 0.

Consider a subspace U of the same dimension as S obtained by intersecting some
hyperplanes in H and set

AU :� tρ P χpT q | U � tρ� ν � 0u and Vρ,ν � 0u .
Such subspace is called a stable intersection if the stability ξ is contained in the
positive span of AU . For every s P χpSq_C we consider the point

ζUpsq :� U X pχpT q_C � tsuq .
The equivariant localisation formulae of the next section will describe the relevant
intersection number, evaluated at a generic s P χpSq_C , as a sum of contributions,
one for each stable intersection U , of the form¸

U stable
intersection in H

JKAU
ξ,ζU psq

p. . . q . (5.5)

Our aim is now to simplify a little bit this residue operator.

De�nition 5.1.3. . Fixed s P χpSq_C we can consider the hyperplane arrangement
in χpT q_C

Hs :� H X pχpT q_C � tsuq
explicitly given by the a�ne hyperplanes of the form

tρ� νpsq � 0u : Vρ,ν � 0.

A point in χpT q_C is called an isolated intersection of Hs if it's the intersection of
dimpT q independent hyperplanes. Given such intersection P consider

AP :� tρ P χpT q | Dν s.t. P � tρ� νpsq � 0u and Vρ,ν � 0u .
We say that P is a stable isolated intersection if ξ is contained in the positive span
of AP .
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For generic s the stable intersections of U of H are in bijection, via

U ÞÑ ζUpsq :� U X pχpT q_C � tsuq ,
with the stable isolated intersections of Hs. Notice that this correspondence satis�es
AU � AζU psq. This means that, for a generic s, the operator (5.5) is equal to¸

P stable isolated
intersection in Hs

JKAP
ξ,P p. . . q . (5.6)

Figure 5.2: The hyperplane arrangement Hs in the case of Example 5.1.2. It is the
arrangement in χpT q_C realised by intersecting H with χpT q_C � tsu.

5.1.5 Equivariant abelian localisation.

In this section we wish to prove the S-equivariant version of the abelian Szenes-
Vergne localisation formula:

Theorem 5.1.1 (Abelian equivariant localisation). Consider a linear space V to-
gether with the action of two commuting tori T and S and a regular T -linearisation L
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given by a character ξ P χpT q. Assume that the momentum polytope for the T -action
is strictly convex and that V T � O. Given α P AT�SpV q, consider the induced class
rpαq P ASpV {{T q, where r :� rT�S,S is the S-equivariant Kirwan map for the action
of T � S on V . For a generic cocharacter s P χpSq_C , its degree can be computed as»

V {{T

rpαqpsq �
¸

P stable isolated
intersection in Hs

JKAP
ξ,P

�
α

eT�SpTV q


,

where Hs and AP are those of De�nition 5.1.3 and the argument of the JK residue
is evaluated at s, so it de�nes a rational function on χpT q_C .
Remark 28. This formula computes the value of the equivariant degree at a generic
cocharacter s P χpSq_C . Notice that this is not restrictive at all, since this degree is
a polynomial function on χpSq_C and knowing it generically is enough to describe it
everywhere. Moreover, the computation for "the generic s" can be done in one step
by just treating s as a formal variable not satisfying any relation that would make
it non-generic.

Proof. In this proof all character spaces are with complex coe�cients. For simplicity,
we will not re�ect this in the notation. In Proposition 5.1.1 we have seen that the
connected components of pV {{T qS are described by stable intersections in H, using
the notation of Section 5.1.4.By applying Atiyah-Bott localisation (Theorem 2.3.3)
with respect to the S-action on the quotient V {{T , we can write»

V {{T

rpαq �
¸

U stable
intersection in H

»
VU {{T

rpα|VU q
rpeT�SpNVU {V qq

(5.7)

exactly as we did in Section 4.3. Consider the morphism r, which restricted to VU
becomes

r : SympχpT qq b SympχpSqq Ñ ApVU{{T q b SympχpSqq.
We can express this map in terms of the non-equivariant Kirwan map rT : AT pVUq Ñ
ApVU{{T q with the following

Lemma 5.1.2. Given stable intersection U of H consider the C-linear morphism ζU :
χpSq_ Ñ χpT q_ so that U is the graph. Given a polynomial function f : χpT q_ Ñ C

we can consider the associated function

f̃ : χpT q_ � χpSq_ Ñ C : f̃pt, sq :� fpt� ζUpsqq.



CHAPTER 5. EQUIVARIANT AND K-THEORETIC LOCALISATION. 107

If we split the contributions of T and S as f̃pt, sq � °d
k�0 fkptqgkpsq, then

rpfptq b hpsqq �
ḑ

k�0

rT pfkq b gkpsqhpsq.

for every polynomial function h : χpSq Ñ C.

Proof. Consider the subtorus G � T �S �xing VU , whose cocharacter space satis�es
χpGq_ � U � χpT q_ � χpSq_ by the proof of Lemma 5.1.1. The �nite morphism
T �GÑ T � S gives a change of group homomorphism �tting in the diagram

AT�SpVUq ASpVU{{T q

AT�GpVUq AGpVU{{T q
pT�GÑT�Sq�

r

pGÑSq�

rT�G,G

which coincides with the diagram

SympχpT qq b SympχpSqq ApVU{{T q b SympχpSqq

SympχpT qq b SympU_q ApVU{{T q b SympU_q

composition with
χpT q_�UÑχpT q_�χpSq_

r

composition with
UÑχpSq_

rTbId

We know that U projects isomorphically onto χpSq_, so we can pick the inverse and
attach to the bottom of the diagram the following clearly commutative square

SympχpT qq b SympU_q ApVU{{T q b SympU_q

SympχpT qq b SympχpSqq ApVU{{T q b SympχpSqq.

composition with
χpT q_�χpSq_ÑχpT q_�U

rTbId

composition with
χpSq_ÑU

rTbId

The wanted equality follows from the commutativity of this big diagram, since the
composition of the vertical arrows on the right is the identity while the composition
of the vertical arrows on the left is the endomorphism of SympχpT qq b SympχpSqq
given by the composition with

χpT q_ � χpSq_ Ñ χpT q_ � χpSq_ : pt, sq ÞÑ pt� ζUpsq, sq.
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Notice that (5.7) is an equality in SympχpSqqf for some polynomial function f . In
particular it becomes an equality of numbers whenever we evaluate it at a cocharacter
s P χpSq_ where the Euler classes don't vanish. If we �x such s P χpSq_, thanks to
the lemma we just proved, the contribution of the stable intersection U is

»
VU {{T

rT pαpt� ζUpsq, sqq
rT pEpt� ζUpsq, sqq .

where we have denoted with E : χpT q_�χpSq_ Ñ C the T�S-equivariant Euler class
of NVU {V . Notice that, having nonzero constant term, Ept� ζUpsq, sq is invertible in
the ring of formal power series in t by means of the geometric series, hence

1

Ept� ζUpsq, sq �
8̧

k�0

ϕkptq

where ϕk is an homogeneous function of degree k on χpT q_ (notice that if we tensor
χpT q_ with C this is the power series expansion of the holomorphic function Ept �
ζUpsq, sq�1 at the origin). Then we can write the integral above as

»
VU {{T

rT

�
αpt� ζUpsq, sq

8̧

k�0

ϕkptq
�
,

where the sum can be truncated at every k bigger than the dimension of VU{{T . By
nonequivariant Szenes-Vergne localisation we �nd that this integral coincides with
the residue

JKAU
ξ̃

�
αpt� ζUpsq, sq

°8
k�0 ϕkptq

eT pTVU q


� JKAU

ξ̃

�
αpt� ζUpsq, sq

Ept� ζUpsq, sqeT pTVU q


,

where the second equality holds true by Lemma 4.1.5. To conclude we just have to
notice that

eT pTVU qptq � eT�SpTVU qpt� ζUpsq, sq,

which is obvious being

eT�SpTVU qpt, sq �
¹

ρ�νPHU

pρptq � νpsqqdimpVρ,νq
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hence

eT�SpTVU qpt� ζUpsq, sq �
¹

ρ�νPHU

pρptq � ρpζUpsqq � νpsqqdimpVρ,νq

�
¹

ρ�νPHU

pρptqqdimpVρ,νq

�
¹
ρPAρ

ρptqdimpVρq � eT pTVU qptq.

since pζUpsq, sq belongs to U , where all the ρ� ν P HU vanish by de�nition. Finally,
we use the fact that the operators (5.5) and (5.6) coincide.

Example 5.1.3. Let's continue with our series of examples on P1 started in Example
5.1.1. The T -equivariant Kirwan map rT : AT pA2q Ñ ApP1q sends the equivariant
class t into the class of the point h. In particular this shows that the S-equivariant
Kirwan map r sends the class at� bs into some S-equivariant lift of ah P ApP1q. In
particular we should expect »

P1

rpat� bsq � a. (5.8)

Let's use the formula of Theorem 5.1.1 to show this. We already showed that the
hyperplane arrangement in χpT q_C � χpSq_C � C� C is

H � ttt� s � 0u, tt � 0uu
and both the lines are stable intersections. For the �rst line the morphism

ζtt�s�0u : CÑ C

maps x into �x. Thus, for a generic value of s, the contribution of this intersection
to the S-equivariant integral (5.8) is

JK
ttu
t,�s

�
at� bs

pt� sqt


� JK

ttu
t

�
at� pb� aqs
tpt� sq



� a� b,

where the last equality holds true since, in this case, the JK residue is simply the
usual complex analytic residue at t � 0. Analogously the contribution of the line
tt � 0u is

JK
ttu
t

�
at� bs

pt� sqt


� b,

so their sum is a as expected.
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5.1.6 Quasiprojective quotients.

In the previous section we have discussed the case where V {{T is projective, or
equivalently by Lemma 4.5.2 the case of ∆ strictly convex and V T � O. If V {{T is
not projective we can still de�ne the equivariant degree

³
V {{T

rpαq by localisation, as

long as the �xed locus pV {{T qS is proper. In this case, the formula of Theorem 5.1.1
still works by the same exact proof.

We can translate the condition on the properness of the �xed locus in the following
condition on the stable intersections in the hyperplane arrangement H:

Proposition 5.1.5. Assume that V T � O and let U be a stable intersection of the
hyperplane arrangement H. The �xed variety VU{{T is �xed if and only if the subset
AU spans a strictly convex cone. In particular, the �xed locus pV {{T qS is projective if
and only if, for every isolated intersection U in the hyperplane arrangement H, the
set AU spans a strictly convex cone.

Proof. This follows at once by Lemma 4.5.1 ensuring that the momentum cone of
VU is spanned by AU and by Lemma 4.5.2.

Another su�cient, and usually easy to check, condition for properness of pV {{T qS
is given by the following:

Proposition 5.1.6. Assume that there is no nonconstant pT �Sq-invariant function
on V . Then pV {{T qS is projective.

Proof. The action of S on V commuting with the one of T induces an S-action on
H0pV,OV qT . This is a �nitely generated algebra and we can take the generators
to be S-equivariant. This is because we know this algebra is generated by some
elements of degree bounded by some number d, and the subspace Wd � H0pV,OV qT
of nonconstant functions of degree at most d is a �nite dimensional subrepresentation
of S. Then we can split this subrepresentation in 1-dimensional representations and
take generators f1, ..., fN for all of them. This shows that the projective morphism

V {{T Ñ SpecpH0pV,OV qqT � AN

given by GIT is S-equivariant with respect to an S-action on AN having the origin as
its only �xed point. Then pV {{T qS, being �xed, is mapped to the origin and therefore
it is contained in a �bre of the projective morphism, so it is projective.
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5.1.7 Equivariant nonabelian localisation.

The two ingredients we used to pass from the abelian version to the nonabelian one
are the cycle class map and the Theorem 4.6.1 of Martin. Both keep working in
the same way in the equivariant context. In particular a reference for equivariant
cycle maps is [EG98b, Section 2.8], where it's shown they enjoy all the functoriality
properties of the usual cycle maps. The following equivariant version of Martin's
formula holds true by the same proof of Martin:

Theorem 5.1.2. Let G be a reductive connected algebraic group acting on a smooth
quasiprojective variety Y with a linearisation L. Denoted with T a maximal subtorus
of G, assume that the G and T -actions on the respective semistable loci are free and
that the quotients Y {{G and Y {{T are projective. Let S be another torus action on
Y commuting with the action of G. Let α P H�

SpY {{Gq and β P H�
SpY {{T q be such

that π�α � j�β. Then »
Y {{G

α � 1

|W |
»
Y {{T

β Y eSpRq,

where W is the Weyl group of G and R is the roots bundle of Y {{T , namely the
bundle obtained by descending to the quotient the T � S-equivariant vector bundle

Y � g{hÑ X,

where g :� T1G and h :� T1T , with action on the �bre induced by the adjoint T -action
and trivial S-action.

The equivariant version of the nonabelian Szenes-Vergne formula follows from the
abelian one exactly as in the nonequivariant case:

Theorem 5.1.3 (Equivariant Szenes-Vergne localisation). Consider a linear space
V with the action of a reductive connected group G and a torus S. Let T � G
be a maximal subtorus and consider a linearisation L for the G action, given by a
character ξ P χpGq. Assume that

1. The actions of G and S commute.

2. The actions of T and G are free on the respective semistable loci.

3. The S-�xed loci pV {{T qS and pV {{GqS are proper.
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Given α P AG�SpV q, consider the induced class rpαq P ASpV {{Gq, where r :� rG�S,S
is the S-equivariant Kirwan map for the action of G � S on V . For a generic
cocharacter s P χpSq_C , its degree can be computed as»

V {{G

rpαqpsq � 1

|W |
¸

P stable isolated
intersection in Hs

JKAP
ξ,P

�
α � eT pg{hq
eT�SpTV q



,

where

� The argument of the JK residue is evaluated at s, so it de�nes a rational func-
tion on χpT q_C .

� W is the Weyl group of G.

� g is the adjoint representation of G and h is the Lie algebra of T .

� Hs,AP are those of De�nition 5.1.3.

Remark 29 (Projectivity of the �xed loci). Notice that, by Proposition 5.1.6, if
H0pV,OV qT�S � C then pV {{T qS is proper. Clearly, since G-invariant functions
are T -invariant too, we obtain that H0pV,OV qG�S � C and hence that pV {{GqS by
the same proof of Proposition 5.1.6. This shows that the condition

H0pV,OV qT�S � C (5.9)

implies that both pV {{T qS and pV {{GqS are projective.

5.1.8 Integrating other classes.

Assume we are in the context of the previous section and that we want to compute
the integral of a class α P ASpV {{Gq. Assume we also don't know how to express it
in the form rpβq for some β P AG�SpV q. Maybe we know that there are two classes
β, γ P AG�SpV q so that rpγq is invertible on pV {{GqS and

α|pV {{GqS �
rpβq|pV {{GqS
rpγq|pV {{GqS

.

Then the same exact argument used in the previous sections ensures that, in the
notation of the previous Theorem 5.1.3,»

V {{T

αpsq � 1

|W |
¸

P stable isolated
intersection in Hs

JKAP
ξ,P

�
β � eT pg{hq
γ � eT�SpTV q



. (5.10)
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Notice that it is crucial that rpγq is invertible on pV {{GqS for this equality to hold
true. Here we consider a very important example of such classes:

Lemma 5.1.3. Let E be a pG�Sq-equivariant vector bundle on V so that its equiv-
ariant Euler class eT�SpEq, thought as a polynomial function on χpT � Sq_C , doesn't
vanish entirely on any stable intersection of the hyperplane arrangement H associ-
ated to V (see De�nition 5.1.1). Then rpeT�SpEqq is invertible on pV {{T qS and hence
rpeG�SpEqq is invertible on pV {{GqS.
Proof. By splitting the pT�Sq-representation E in subrepresentations we can assume
that E is 1-dimensional, so eT�SpEq � ϕ � ψ for some ϕ P χpT q, ψ P χpSq. Every
�xed locus on V {{T is of the form VU{{T for some stable intersection U of H as seen
in Proposition 5.1.1. Moreover, notice that rpϕ�ψq P AS1 pVU{{T q is invertible if and
only if it is not constant in the equivariant parameter s P χpSq_C . Then, as described
in Lemma 5.1.2, for every s P χpSq_ we have

rpϕ� ψqpsq � rpϕq � ϕpζUpsqq � ψpsq � rpϕq � eT�SpEqpζUpsq, sq

which doesn't depend on s if and only if eT�SpEqpζUpsq, sq � 0 for all s, or in other
words eT�SpEq vanishes on U .

5.2 K-theoretic version.

In this section we prove a version of the Szenes-Vergne localisation formula for Euler
characteristics by using the previous formula and a the Hirzebruch-Riemann-Roch
theorem. For another approach to K-theoretic localisation formulae of Je�rey-Kirwan
type see [AFO18, Appendix A].

De�nition 5.2.1. Given a formal variable y and a K-theory class represented by
a vector bundle E P KGpXq we will denote with Λ�yE the class

°rkpEq
k�1 ykΛkE P

KGpXqrys. In particular Λ�1E � °rkpEq
k�1 p�1qkΛkE P KGpXq.

Theorem 5.2.1 (K-theoretic Szenes-Vergne localisation.). Consider a linear space
V with the action of a reductive connected group G and a torus S. Let T � G
be a maximal subtorus and consider a linearisation L for the G action, given by a
character ξ P χpGq. Assume that

1. The actions of G and S commute.

2. The actions of T and G are free on the respective semistable loci.
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3. The S-�xed loci pV {{T qS and pV {{GqS are proper.

Given E P KG�SpV q, denoting with rpEq the S-equivariant K-theory class induced
on V {{G, the following formula holds true for a generic cocharacter s P χpSq_C :

chS
�
χS pV {{G, rpEqq� psq �

1

|W |
¸

P stable isolated
intersection in Hs

JKAP
ξ̃,P

�
chT�S

�
E b Λ�1pg{hq

Λ�1ΩV




,

where

� The argument of the JK residue is evaluated at s, so it de�nes a meromorphic
function on χpT q_C .

� W is the Weyl group of G.

� g is the Lie algebra of G and h is the Lie algebra of T .

� Hs and AP are those of De�nition 5.1.3.

Proof. The Lemma 2.4.2 above shows that

chS
�
χSpV {{G, rpEqq� � »

V {{G

r
�
chHpEqTdHpTV � gq X rV sG�H

�
.

The thesis follows by applying the formula of Theorem 5.1.3 to this latter integral,
noticing that

TdG�HpF q � eG�HpF q
chG�HpΛ�1F_q

for every F P KG�HpV q.

5.2.1 Computing with other classes.

Exactly as in the cohomological case, we might be interested in computing Euler
characteristics of classes E so that there are A,B P KG�SpV q, with rpBq is invertible
over pV {{GqS, satisfying

E|pV {{GqS �
rpAq|pV {{GqS
rpBq|pV {{GqS

.
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If this holds then we can use the same formula of Theorem 5.2.1 (under the same
hypotheses) to write

chS
�
χS pV {{G,Eq� psq �

1

|W |
¸

P stable isolated
intersection in Hs

JKAP
ξ,P

�
chT�S

�
Ab Λ�1pg{hq
B b Λ�1ΩV




. (5.11)

As in Lemma 5.1.3, we can see that given an equivariant bundle E P KG�SpV q, Λ�1E
is invertible on pV {{T qS if and only if the characters of the representation E don't
vanish on the stable intersections of the hyperplane arrangement H associated to V .



Chapter 6

Applications.

In this section we will explore various corollaries of the localisation formulae discussed
in the previous sections.

Contents of the section.

We will consider the following applications:

� First of all, we will study the case of invariants of critical loci cut inside varieties
of the form V {{G. This virtual invariants will be the integral of 1 over the
virtual fundamental class and its K-theoretic and elliptic analogues. We will
provide an interpretation for these invariants in simple cases and use the JK
formulae of the previous sections to give a general formula in Theorem 6.1.1.
The origins of this result lie in the work of the Benini-Hori-Eager-Tachikawa
[Ben+15] in theoretical physics.

� We will specialise to the case of critical loci in quiver varieties, obtaining The-
orem 6.2.1 computing the invariants above in this context. We will discuss the
concrete formula that one �nds in the case of the Hilbert scheme of points on
A3.

� We will then focus on HilbnpA4q, a scheme which is cut inside a variety of the
form V {{G by a section of a vector bundle, but which is not a critical locus.
We will show how a direct application of the JK localisation formula recovers
some interesting formulae for its invariants already used in physics.

116
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6.1 Invariants of critical loci.

In this section we are going to compute, via the Szenes-Vergne localisation formula
described before, invariants of critical loci in quotients of linear space by actions of
reductive connected groups. Many interesting spaces are of this form, for example
critical loci in quiver varieties. Classical examples are HilbnpA2q and HilbnpA3q, but
also quot schemes [FMR21].

Notation. The Dedekind eta function is the formal power series η P q 1
24 � Zrrqss given

by

ηpqq � q
1
24

¹
n¥1

p1� qnq.

The Jacobi theta function is the power series θ P q 1
8y�

1
2 � Crry, qssy

θpq; yq :� �iq 1
8 py 1

2 � y�
1
2 q
¹
n¥1

p1� qnqp1� yqnqp1� y�1qnq.

We also denote with the same Greek letters the functions

ηpτq :� ηpe2πiτ q, θpτ |zq :� θpe2πiτ , e2πizq,

which enjoy nice modular properties [Mum07].

6.1.1 Which invariants?

A reference for this section is the work [BF97] of Behrend and Fantechi.
Consider a smooth quasiprojective variety A, which we will call ambient space.

Given a superpotential, namely a regular function φ P H0pA,OAq, we can consider
the corresponding critical locus X :� V pdφq � A. This locus is often singular, its
classical invariants are hard to de�ne/compute and they depend on the speci�c φ.

Instead, we are going to focus on a kind of invariants which are easier to compute
and deformation invariant, which in this case means that they do not depend on φ. Of
course, they will not be invariants of just the scheme X, but they will also remember
that we used a section of ΩA to construct it. More precisely, they will be invariants
of the scheme X endowed with the perfect obstruction theory E P Dr�1,0s

perf pXq dual to
the virtual tangent bundle

T vir
X :�

�
pTAq|X ddφÝÝÑ pΩAq|X

�
(6.1)
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where ddφ is the vertical derivative of the di�erential dφ. In more explicit terms,
the di�erential of φ can be thought as a morphism of schemes dφ : AÑ ΩA and its
di�erential de�nes a morphism of vector bundles on A

ddφ : TA Ñ pdφq�TΩA .

Since dφ�TΩA , once it's restricted to X � V pdφq, splits as TA`ΩA, we can consider
the composition of the morphism above with the projection to the second component
and call it vertical derivative. Once we have this perfect obstruction theory we can
recover the building blocks for the invariants we want to consider. They are the
virtual fundamental class rXsvir P A0pXq and the virtual structure sheaf Ovir

X P
K0pXq, which are de�ned from the p.o.t. via the intrinsic normal cone construction
(see [BF97]). From these two classes we can de�ne many interesting invariants via
integration.

In this context, the interesting case is where X is not proper (hence A is only
quasiprojective) and we de�ne invariants by localisation with respect to an additional
torus action. This situation will be explored in later sections. Here, as a warm-up,
we consider the simple case where A is proper and there is no equivariance involved.

De�nition 6.1.1. Assume that X is proper. The DT invariant of X is the number

DTpXq :�
»
rXsvir

1 P Z.

The virtual Hirzebruch genus of X is

χpXq :� χ

�
X,

b
Kvir
X bOvir

X



P Z

where Kvir
X P K0pXq is the determinant of the virtual tangent bundle (6.1) and its

square root is pKAq|X (as can be seen directly from (6.1)).

Another interesting invariant is expressed in terms of the following equivariant
K-theory class de�ned in [FMR21]: for every vector bundle E on X set

E1{2pEq :�
â
n¥1

Symqn pE ` E_q P 1� qK0pXqrrqss

having constant term in q equal to 1. Notice that E1{2 de�nes a group homomorphism
between pK0pXq,�q and p1� q �K0pXqrrqss,bq.
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De�nition 6.1.2. If X is proper, the virtual chiral elliptic genus of X is the Euler
characteristic

EllpXqpqq :� χ

�
X, E1{2pT vir

X q b
b
Kvir
X bOvir

X




which belongs to Zrrqss.
The three invariants DT, χ and Ell are all equal in this simple context:

Proposition 6.1.1. If X is proper, since rXsvir is of dimension zero, then

DT pXq � χpXq � EllpXqpqq.

Proof. By the virtual Hirzebruch-Riemann-Roch theorem [FG10], for every E P
K0pXq

χpX,E bOvir
X q �

»
rXsvir

chpEqTdpT vir
X q.

Now notice that rXsvir is of dimension zero, hence only the component in A0pXq of
the class under the integral sign will contribute to the Euler characteristic. Notice
that by de�nition of Chern character and Todd class this constant part coincides
with the rank of E, hence

χpX,E bOvir
X q � rkpEqDTpXq.

The class
a
Kvir
X must be of rank 1 since squares to a line bundle, so χpXq � DTpXq.

On the other hand, since E1{2pEq � E1{2pE_q and E1{2 is a group homomorphism, we
see from (6.1) that E1{2pT vir

X q � 1.

Furthermore, ifA is proper too, then φ is constant and the critical locus isX � A.
The virtual tangent bundle (6.1) has ddφ � 0, and the virtual fundamental class is
epΩAqX rAs. In particular, we can see that the DT invariant is the topological Euler
characteristic up to sign:

DTpAq �
»
A
epΩAq � p�1qdimpAqχA. (6.2)

Assume that A � V {{G for an action of a reductive connected group G on a linear
space V with a linearisation given by a character ξ P χpGq so that



120 6.1. INVARIANTS OF CRITICAL LOCI.

� there is a maximal subtorus T � G so that the actions of T on V pT qss and of
G on V pGqss are free.

� V {{T is proper, hence so is V {{G.

The DT invariant (6.2) is an integral over V {{G, so we can compute it by Szenes-
Vergne localisation. Consider the weight-space decomposition of V for the action of
T

V � à
ρPχpT q

Vρ

and let A � χpT q be the set of characters ρ so that Vρ � 0.

Proposition 6.1.2. Assume that V {{T is proper. Then

DTpAq � JKA
ξ

�
cT pΩV q
eT pTV q

eT pg{hq
cT pg{hq



.

where cT pEq :� °rkpEq
k�1 cTk pEq denotes the equivariant total Chern class. In particular,

if we denote with Φ � χpT q the set of roots of G, we can explicitly write the rational
function on χpT q_C that is the argument of the JK residue:

DTpAq � JKA
ξ

�¹
ρPA

�
1� ρ

ρ


dimVρ ¹
αPΦ

α

1� α

�
.

Proof. Notice that the class we want to integrate over V {{G is

cpΩV {{Gq � d

�
cGpΩV q
cGpg_q




since we have the short exact sequence on V pGqss

0Ñ gÑ TV Ñ π�TV {{G Ñ 0.

By Theorem 4.6.4 we obtain the expression

JKA
ξ

�
cT pΩV q
eT pTV q

eT pg{hq
cT pg_q
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for this integral. By de�nition of roots of G, we have the weight-space decomposition
for the adjoint action of T

g � h`à
αPΦ

gα

where each α is 1-dimensional and T acts on it via α. This, together with the
weight-space decomposition of V above allows to compute the equivariant classes in
the formula. Notice that, since roots of G come in positive-negative pairs, cT pgq �
cT pg_q. Moreover, h doesn't contribute to cT pgq since the T -action is trivial on it.

6.1.2 The equivariant setting.

In the previous section we have seen that the only thing we could compute was the
signed Euler characteristic of A, since if A is proper and X is a critical locus, then
X � A and

p�1qdimpXqχX � DT pXq � χpXq � EllpXqpqq. (6.3)

The situation becomes much more interesting once we allow an additional torus S to
act on A and we perform the same argument equivariantly with respect to S. This
will allow us to work with nonproper ambient spaces A (as long as pAqS is proper)
and therefore with nonconstant superpotentials φ, giving nontrivial critical loci X.
Somehow surprisingly, even in the case where A � X is proper, the equivariant
version of the invariants above will contain much more information on the variety A:
the equality (6.3) will stop being true and DTpXq, χpXq and EllpXq will compute
important classical invariants of A, namely the Euler characteristic, the Hirzebruch
genus and the Elliptic genus.

Consider a 1-dimensional representation s of the torus S, corresponding to a char-
acter ψ P χpSq, and a S-equivariant superpotential, namely a S-equivariant function

φ : AÑ s.

The di�erential dφ de�nes an invariant section of the S-equivariant bundle ΩA b s.
Let X be the corresponding critical locus X :� V pdφq � A, which is clearly a S-
invariant subscheme. This is endowed with the S-equivariant perfect obstruction
theory dual to the virtual tangent bundle

T vir
X :�

�
pTAq|X ddφÝÝÑ pΩA b sq|X

�
(6.4)
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which again de�nes a S-equivariant virtual fundamental class and a S-equivariant
virtual structure sheaf:

rXsvir P AS0 pXq , Ovir
X P KSpXq.

The de�nitions of the invariants DTpXq, χpXq and EllpXq are exactly the same as
those given in the previous section. The only di�erence is that they live in the S-
equivariant homology and K-theory of the point and, if X is nonproper, they are
de�ned through the virtual localisation formula of [GP97]:

De�nition 6.1.3. The S-equivariant DT-invariant of X is de�ned as

DTpXq :�
»
rXsvir

1 �
»
rXSsvir

1

eSpN vir
XS{X

q
and it is a rational function of degree zero on χpSq_C , meaning that DTpXqpλsq �
DTpXqpsq for every λ P C�.
Remark 30. First of all, if X is proper then DTpXq must belong to Z. If X is
not proper, then the DT invariant de�ned by virtual localisation should in principle
belong to ASpptqf � SympχpSqqf for some homogeneous polynomial function f on
χpSq_C . Notice that R :� A�

SpXSqf is a graded ring being the localisation of a graded
ring by a homogeneous element, and the homogeneous component of degree d is given
by

Rd �
à

p,q,uPN
q�u�pdegpfq�d

f�p � Symq pχpSqCq b AupXSq

By de�nition of virtual class of the �xed locus and of virtual normal bundle, the
degree of rXSsvir and the rank of the virtual normal bundle sum to the virtual
dimension of X, namely zero. This means that there is a d so that rXSs P ASd pXSq
and eSpN virq P R�d. This shows that e

SpN virq�1 P Rd and therefore

1

eSpN virq X rXSsvir Pà
pPN

f�p � Symp�degpfq pχpSqCq b A0pXSq,

so its degree is a rational function of degree zero on χpSq_C . In particular notice that
DT is constant if S is of rank 1.

De�nition 6.1.4. The S-equivariant virtual Hirzebruch genus of X is

χpXq :� χS
�
X,

b
Kvir
X bOvir

X



� χS

�
XS,

a
Kvir
X bOvir

X

Λ�1pN virq_
�
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where the virtual canonical bundle Kvir
X P K0pXq is the determinant of the equivariant

virtual tangent bundle (6.1) and its square root is the one described in Lemma 6.1.1
below. It is an element of RpSqf r

?
ss for some f P RpSq.

The following simple lemma is the equivariant version of [FMR21, Proposition
3.2]

Lemma 6.1.1. Up to formally adding to K0
SpXq the square root of the representation

s, the scheme X possesses a canonical (once we �x a presentation as critical locus)
square root of its S-equivariant virtual canonical bundle.

Proof. By directly computing the determinant of (6.4) we �nd

Kvir
X � KV {{T bKV {{T b sdimpXq

giving as square root
a
Kvir
X � KV {{T b s

dimpXq
2 .

Remark 31. Notice that if X is proper then χpXq belongs to RpSqr?ss.
Analogously we de�ne the equivariant chiral elliptic genus

De�nition 6.1.5. The virtual chiral elliptic genus of X is the Euler characteristic

EllpXqpqq : � χS
�
X, E1{2pT vir

X q b
b
Kvir
X bOvir

X




� χS

�
XS,

E1{2pT vir
X q b

a
Kvir
X bOvir

X

Λ�1pN virq_
�

which belongs to RpSqf r
?
ssrrqss for some f P RpSq.

Remark 32. Again, if X is proper this belongs to RpSqr?ssrrqss.
Let's specialise to the case of a proper ambient space. This will help to clarify

the names some of these invariants.

Proposition 6.1.3. Assume that A is proper. The only S-equivariant function is
the zero one (or constants if s is trivial) and X � A. Then, if we denote with d the
dimension of A,

DTpXq � p�1qdχA

χpXq � p�?sq�dχ pX,Λ�sΩXq
EllpXqpqq � p�?sq�dχ �X, E1{2pp1� s�1qTXq b Λ�sΩX

�
.
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Remark 33. Notice that if we pick the trivial representation s � 1 then we recover
the equality (6.3) of the previous section, since E1{2p0q � 1 and χSpX,Λ�1ΩXq �³
X
eSpTXq � χX by Hirzebruch-Riemann-Roch.

Remark 34. The quantities on the right are the evaluations of classical invariants at
the representation s. Indeed, the Hirzebruch χy genus of a smooth projective variety
X is a Laurent polynomial in the variable y

χypXq :� χpX,ΛyΩXq (6.5)

while the elliptic genus is

Elly,qpXq :� χ
�
X, E1{2pp1� y�1qTXq b Λ�yΩX

�
(6.6)

as they are described in [HBJ92, Page 175]. It's a classical fact that these invariants
are rigid, namely that if they are computed G-equivariantly with respect to the
action of a connected group G on X they display no equivariance at all, they don't
depend on equivariant parameters. This is easy to see for the Hirzebruch genus.
By Hodge theory this G-equivariant genus is the character for the G-action on the
cohomology groups Hp,0pXq, but G acts on X by biholomorphisms homotopic to
the identity, so the action on cohomology is trivial. The fact that the G-equivariant
elliptic genus of a smooth projective variety coincides with the classical elliptic genus
is the rigidity theorem conjectured by Witten [Wit88], proven for spin manifolds by
Bott and Taubes [BT89] and in the general case by Hirzebruch (theorem at page 181
of [HBJ92]).

We will need the following preliminary lemma

Lemma 6.1.2. Let E be an S-equivariant vector bundle on X. Then

Λ�1E � �detpEq b Λ�1E
_.

Proof. This is an immediate application of the splitting principle. If E � L is a line
bundle then

Λ�1E � 1� L � �Lb p1� L_q � �detpEq b Λ�1E
_.

If E is a direct sum of line bundles the proof is the same, hence it follows for all
vector bundle by the splitting principle.
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Proof of Proposition 6.1.3. In this case we have that rXsvir � eSpΩAq, Ovir
X � Λ�1pTXb

s_q, T vir
S � TX � ΩX b s and

a
Kvir
X � KX b sd{2, so

DTpXq �
»
X

eSpΩX b sq
χpXq � χS

�
X,KX b sd{2 b Λ�1pTX b s_q�

EllpXqpqq � χS
�
X, E1{2pp1� s_qTXq bKX b sd{2 b Λ�1pTX b s_q�

By using the equality of Lemma 6.1.2 above specialised to E :� ΩX b s

KX b Λ�1pTX b s_q � p�s_qd b Λ�1pΩX b sq,
we can write the two genera as

χpXq � p�?sq�dχS pX,Λ�1pΩX b sqq
EllpXqpqq � p�?sq�dχS �X, E1{2pp1� s_qTXq b Λ�1pΩX b sq�

where we have used that χSpX,E b rq � r b χSpX,Eq for every S-representation
r P RpSq, which is just the projection formula in equivariant K-theory. Finally notice
that Λ�1pΩX b sq � Λ�sΩX and hence we can write our invariants as

DTpXq �
»
X

eSpΩX b sq
χpXq � p�?sq�dχS pX,Λ�sΩXq
EllpXqpqq � p�?sq�dχS �X, E1{2pp1� s_qTXq b Λ�sΩX

�
Notice that the DT invariant is necessarily the nonequivariant integral of epΩXq
by dimensional reasons, so it coincides with the signed Euler characteristic. Since
χS commutes with taking products with s we can consider s as a formal variable,
which we can rename as y. Then our expressions for χpXq and EllpXq coincide
with the classical ones of Remark 34, apart from the fact that here we are taking
equivariant Euler characteristics instead of nonequivariant ones, which doesn't a�ect
the computation by the rigidity of these invariants as described in the same remark.

At some point we will need the following variant of the morphism E1{2
De�nition 6.1.6. Given an equivariant K-theory class E so that Λ�1E

_ is invertible,
consider the class

Ê1{2pEq :�
E1{2pEq b

a
detpE_q

Λ�1E_
. (6.7)
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Notice that since all the classes in its de�nition are multiplicative, Ê1{2 sends sums
into products:

Ê1{2pE � F q � Ê1{2pEq b Ê1{2pF q.

6.1.3 Pushing forward.

Let's go back to the general case whereA can be nonproper as long asAS is projective
and φ : AÑ s is an equivariant function whose critical locus is X.

In this simple case, since X is globally the zero locus of a section of a vector
bundle on a smooth ambient space, we can easily compute the pushforwards of the
relevant classes of X to the smooth ambient space A so that computations are easier
to perform. Since X is globally cut by a section of ΩA b s we have

i�rXsvir � eSpΩA b sq and i�Ovir
X � Λ�1pTA b s_q.

so that, by projection formula, the invariants we want to compute are

DTpXq �
»
A
eSpΩA b sq

χpXq � p�?sq�dχS pA,Λ�sΩAq ,
EllpXqpqq � χS

�
A, E1{2pT vir

A q b
b
detpT vir

A q_ b Λ�s_TA



.

where we have set T vir
A :� TA � ΩA b s P K0

SpAq, which satis�es T vir
X � i�T vir

A . W
have also used Lemma 6.1.2 to simplify the formula for the Hirzebruch genus.

Remark 35. Notice that the reason behind us being able to push the computation
to A is that we know how to push forward rXsvir and Ovir

X , and all the other classes
that appear are given in terms of T vir

X , which is a pullback from A by de�nition (6.4).
Thus we can use the projection formula to express the invariants of X in terms of
computations on A.

Remark 36. In case A is nonproper, a little care is required for checking what we
are doing is compatible with the de�nition of the integral by localisation to the
proper �xed locus. In this case we are �rst localising to XS by means of the virtual
localisation formula, then thinking of XS as cut in AS by the invariant part of dφ
and pushing forward the computation on AS.
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6.1.4 The result.

Consider a reductive connected group acting on a linear space V together with a
linearisation L given by a character ξ P χpGq. Assume that

1. there is a maximal subtorus T � G so that the actions of T on V pT qss and of
G on V pGqss are free.

2. there is an additional torus S acting on V so that the action commutes with
the one of G. Assume that the �xed loci pV {{T qS and pV {{GqS are proper.

3. we have �xed a 1-dimensional representation s of S, corresponding to a char-
acter ψ P χpSq. Let φ : V {{G Ñ s be an S-equivariant function and let
X be its critical locus, endowed with the corresponding S-equivariant perfect
obstruction theory.

Then we can consider the weight-space decomposition of V

V � à
ρPχpT q
νPχpSq

Vρ,ν

where Vρ,ν is the subspace over which T � S acts by pt, sq � v � ρptqνpsqv. For every
s P χpSq_C , this de�nes a hyperplane arrangement Hs in χpT q_C given by

tρ� νpsq � 0u : Vρ,ν � 0.

Let Φ � χpT q be the set of roots of G, namely the weights α of the adjoint represen-
tation of G

g � h`à
αPΦ

gα

where h is the Lie algebra of T . We will need the following additional condition

4. No stable isolated intersection P of the hyperplane arrangement Hs (in the
sense of De�nition 5.1.3) is contained in a hyperplane of the form α�ψpsq � 0,
where α P Φ.
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The main result of this section is expressed in terms of the following meromorphic
functions on χpT q_C � χpSq_C having poles on hyperplanes:

ZDT � ψ�dimT
¹
ρ,ν

�
ψ � ν � ρ

ρ� ν


dimVρ,ν ¹
αPΦ

α

ψ � α
,

Zχ �
�

π

sinpπψq

dimT ¹

ρ,ν

�
sin pπpψ � ρ� νqq
sin pπpρ� νqq


dimVρ,ν ¹
αPΦ

sinpπαq
sin pπpα � ψqq .

ZEll �
�
2πηpτq3
θpτ |ψq


dimT ¹
ρ,ν

�
θ pτ |ψ � ρ� νq
θ pτ |ρ� νq


dimVρ,ν ¹
αPΦ

θpτ |αq
θ pτ |α � ψq .

(6.8)

Given s P χpSq_C and τ P C not belonging to the poles of these functions, we
will denote with ZDTp�, sq, Zχp�, sq and ZEllp�, s, τq the meromorphic functions
χpT q_C 99K C obtained by restricting the functions we just de�ned.

Theorem 6.1.1. For a generic s P χpSq_C , the invariants of X can be computed as
sums of residues at the stable intersections of the hyperplane arrangement Hs:

DTpXqpsq � 1

|W |
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZDTp�, sqq ,

chSχpXqp2πisq � 1

|W |
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZχp�, sqq ,

chSEllpXqpe2πiτ qp2πisq � 1

|W |
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZEllp�, s, τqq .

where W is the Weyl group of G and

AP :� tρ P χpT q | Dν s.t. P � tρ� νpsq � 0u and Vρ,ν � 0u .
for every stable isolated intersection P .

6.1.5 Szenes-Vergne localisation.

Notice that in K0
SpV {{Gq we have the equalities

ΩV {{G b s � r pΩV b s� gb sq ,
T vir
V {{G � r pTV � ΩV b s� g� gb sq
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where r � rG�S,S is the S-equivariant K-theoretic Kirwan map for the G-action on
V . Notice that we can't directly use this to give a description of the classes we want
to compute in terms of the Kirwan map. For example, we can't write

eSpΩV {{G b sq � r

�
eT�SpΩV b sq
eT�Spgb sq




since the quantity inside the bracket doesn't make sense in AT�SpV q. On the other
hand, since the hypothesis 4 holds true, we can use Lemma 5.1.3 to show that
rpeG�Spg{sqq is invertible once restricted to the �xed locus pV {{GqS, and hence the
variation (5.10) of Theorem 5.1.3 ensures that for a generic cocharacter s P χpSq_C
the invariant DTpXqpsq is

1

|W |
¸

U stable
intersection of H

JKAU
ξ,ζU psq

�
eT�SpΩV b sq
eT�SpTV q

eT�Spg{hq
eT�Spgb sq




whereH is the hyperplane arrangement in χpS�T q_C of De�nition 5.1.1. Analogously,
the version (5.11) of the K-theoretic localisation formula of Theorem 5.2.1, gives the
following expressions, where H is the same hyperplane arrangement: chSχpXqpsq is
equal to

p�eψ{2q�d
|W |

¸
U stable

intersection in H

JKAU
ξ̃,ζU psq

�
chT�S

�
Λ�sΩV

Λ�1ΩV

b Λ�1g{h
Λ�sg





and chSEllpXqpqqpsq is

1

|W |
¸

U stable
intersection in H

JKAU
ξ̃,ζU psq

�
chT�S

�
Ê1{2pTV q

Ê1{2pΩV b sq b
Ê1{2pgb sq
Ê1{2pg{hq

b 1

E1{2phq

��

where Ê1{2 is the class of De�nition 6.1.6.

6.1.6 Setting up the computation.

In order to make computations a bit simpler to follow, in this section we will adopt
the following notation: given a character ρ P χpT q we will denote with tρ P RpT q
the corresponding 1-dimensional representation. We will do the same with S, so for
example s � sψ, where ψ was the character with which S acts on s. Notice that
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this de�nes an isomorphism of KT�Spptq with the group algebra over the character
lattice χpT � Sq.

The �rst step is to consider the weight-space decomposition of V :

V � à
ρPχpT q
νPχpSq

Vρ,ν

where the action of T � S on Vρ,ν is given by pt, sq � v � ρptqνpsqv. The hyperplane
arrangement H appearing in the previous section is the arrangement in χpT � Sq_C
of hyperplanes of the form

tρ� ν � 0u : Vρ,ν � 0.

Then we can describe the representations involved in our previous formulae:

TV �
¸
ρ,ν

dimpVρ,νqtρsν ΩV �
¸
ρ,ν

dimpVρ,νqt�ρs�ν .

Notice that, if Φ � χpT q is the set of roots of G,

g � dimphq �
¸
αPΦ

tα.

We have the following two lemmas, useful to compute the various classes in the
previous formulae:

Lemma 6.1.3. Let E be a representation of T � S:

E �
m̧

j�1

twjszj .

with trivial �xed part. Then

chT�S
�
Λ�1pE b sq

Λ�1E



� peψ2 qrkE

m¹
j�1

sinhpwj�zj�ψ
2

q
sinhpwj�zj

2
q .

If W is a trivial, 1-dimensional representation, then

Λ�1pW b sq � �2eψ{2 sinhpψ{2q.
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Proof. Notice that the Chern character is a ring homomorphism and

Λ�1E �
m¹
j�1

p1� twjszjq,

hence the Chern character we want to compute is the product over j of

1� ewj�zj�ψ

1� ewj�zj
� eψ{2

e�ψ{2 � ewj�zj�ψ{2

1� ewj�zj
� eψ{2

e�
wj�zj�ψ

2 � e
wj�zj�ψ

2

e�
wj�zj

2 � e
wj�zj

2

which is precisely the expression in the hyperbolic sine function that we wanted to
�nd. The second statement follows in the same way.

Lemma 6.1.4. Given a torus T , consider an element of KT pptq of the form

E �
m̧

j�0

twj �
ņ

k�0

tzk .

with trivial �xed part. Then

Ê1{2pEq �
�
�iq 1

12ηpqq
	rkE

±n
k�0 θpq; tzkq±m
j�0 θpq; twjq

.

If W is a trivial, 1-dimensional representation of T :

E1{2pW q � q
1
12

ηpqq2
Proof. This is an immediate consequence of Symqptwq � p1 � qtwq�1 and of the
de�nition of the eta and theta functions.

6.1.7 The proof for DT.

We just have to explicitly write the rational function χpT � Sq_C 99K C

eT�SpΩV b sq
eT�SpTV q

eT�Spg{hq
eT�Spgb sq

in terms of the weights ρ, ν, of the roots α and of the character ψ. Notice that we
can split gb s as the sum of pg{hq b s and hb s, obtaining

ψ�dimT
¹
ρ,ν

�
ψ � ρ� ν

ρ� ν


dimVρ,ν ¹
αPΦ

α

α � ψ
.
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6.1.8 The proof for the Hirzebruch genus.

Again, we have to rewrite the following meromorphic function on χpT � Sq_C
p�eψ{2q�dchT�S

�
Λ�sΩV

Λ�1ΩV

b Λ�1g{h
Λ�sg




Splitting Λ�sg as the product of Λ�sg{h and Λ�sh we �nd, thanks to Lemma 6.1.3,
the following function

p�1qd�dimT
�

1

2 sinhpψ{2q

dimT ¹

ρ,ν

�
sinh

�
ψ�ρ�ν

2

�
sinh

�
�ρ�ν

2

�
�dimVρ,ν ¹

αPΦ

sinhpα
2
q

sinh
�
α�ψ
2

�
By our localisation theorem, for a generic s P χpSq_C this computes chSχpXqpsq. The
expression becomes slightly simpler if we consider chSχpXqp2πisq instead. In this
case we can also use the fact that scaling the coordinates that we use to take the
residue simply changes the residue by multiplication by the inverse scaling factor
(Lemma 4.1.6) to rescale the coordinates on χpT q_C by 2πi, obtaining the following
expression for chSχpXqp2πisq:�

π

sinpπψq

dimT ¹

ρ,ν

�
sin pπpψ � ρ� νqq
sin pπpρ� νqq


dimVρ,ν ¹
αPΦ

sinpπαq
sin pπpα � ψqq .

Notice that the minus sign in front disappeared as we now discuss. We changed the
sign in the �ρ� ν denominator, so that the global sign before the product would be
p�1qd�dimT�dimV , but notice that the exponent is congruent to dimG�dimT modulo
2 , which is always even by representation theory.

6.1.9 The proof for the elliptic genus.

This proof is completely analogous to the one given for the Hirzebruch genus. we
have to rewrite the following meromorphic function on χpT � Sq_C

chT�S

�
Ê1{2pTV q

Ê1{2pΩV b sq b
Ê1{2pgb sq
Ê1{2pg{hq

b 1

E1{2phq

�

Splitting Ê1{2pg b sq as the product of Ê1{2pg{h b sq and Ê1{2ph b sq we �nd, thanks
to Lemma 6.1.4, the following function�

� iηpqq3
θpq; eψq


dimT ¹
ρ,ν

�
θ
�
q; eψ�ρ�ν

�
θ pq; eρ�νq

�dimVρ,ν ¹
αPΦ

θpq; eαq
θ pq; eα�ψq
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By our localisation theorem, for a generic s P χpSq_C this computes chSEllpXqpqqpsq.
The expression becomes slightly simpler if we consider chSEllpXqpqqp2πisq instead.
As for the Hirzebruch genus, we rescale the coordinates on χpT q_C by 2πi. Moreover
we formally set q :� e2πiτ obtaining the following expression for chSEllpXqpe2πiτ qp2πisq:

�
2πηpτq3
θpτ |ψq


dimT ¹
ρ,ν

�
θ pτ |ψ � ρ� νq
θ pτ |ρ� νq


dimVρ,ν ¹
αPΦ

θpτ |αq
θ pτ |α � ψq .

6.1.10 Complete intersections in GIT quotients.

As a �rst application we show how to use Theorem 6.1.1 to compute classical invari-
ants of complete intersections in GIT quotients of linear spaces. First of all, we show
how to recover these from virtual invariants of critical loci.

Consider a smooth projective variety Y together with a locally free sheaf E admit-
ting a transversal section. Let E � SpecpSymE_q be the vector bundle built as total
space of E_ and consider the C�-action on E that scales the �bres. If we consider the
C�-representation s of weight one, the virtual invariants of the corresponding critical
locus compute the classical invariants of the zero locus of a transversal section of E .

Proposition 6.1.4. Let s P H0pY, Eq be a transversal section and let Z :� V psq
be its zero locus, whose dimension we denote with d. Let X be a critical locus of a
S-equivariant function φ : E Ñ s. Then

DTpXq � p�1qdχZ ,
χpXq � p�?sq�dχ�spZq,

EllpXqpqq � p�?sq�dElls,qpZq

where the invariants on the right-hand side are the Euler number, the Hirzebruch χy
genus (6.5) and the elliptic genus (6.6) of the smooth projective variety Z.

Proof. The key is to use the short exact sequence

0Ñ E b sÑ pΩY b sq|Z Ñ ΩX b sÑ 0

together with Poincaré duality, namely the fact that»
Z

α|Z �
»
Y

α � epΩEq and χpZ,A|Zq � χpY,Ab Λ�1Eq

for all α P A�
SpY q and A P KSpY q.
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Now assume that Y is isomorphic to the GIT quotient of a linear space V1 by
the action of a reductive connected algebraic group G with respect to a linearisation
given by a character ξ so that the action of G and of a maximal subtorus T are free
on the semistable loci. Suppose moreover that there is some other G-representation
V2 so that, pulling back the linearisation ξ to V :� V1` V2, the quotient V {{G is the
vector bundle E. Finally assume that, if we let S :� C� act trivially on V1 and by
scalar multiplication on V2, the induced action on E is the one scaling the �bres.

Remark 37. Notice that in thise context the hypotheses of Theorem 6.1.1 are satis�ed.
The S-�xed locus coincides with Y , which is proper. The condition (4) is always
satis�ed, since there is only one stable intersection of the hyperplane arrangement
H (since there is only one connected component of the �xed locus, namely Y ) and
it coincides with the subspace t0u � χpSq_C , which clearly satis�es (4).

Then the formulae of Theorem 6.1.1 compute the classical invariants Z by virtue
of Proposition 6.1.4 above.

Example 6.1.1. Consider the embedding of Gp2, 4q via the Plücker embedding,
so that Op1q � detpSq_, where S is the tautological subbundle. By adjunction, a
generic section of Op4q cuts a smooth Calabi-Yau threefold Z. We wish to compute
its classical Hirzebruch genus by means of Theorem 6.1.1. The total space of the
bundle Op�4q can be built as the quotient of

V :� Mat2�4pCq � C

by the action of G :� GL2pCq given by

g � pM, zq :� pgM, detpgq�4zq

with respect to the linearisation given by the character ξ � det. The easiest way to
see this is probably to notice that the tautological subbundle can be, as in the case
of the projective space, built as the quotient of Mat2�4pCq `Mat2�2pCq with action
given by g �pM,Nq :� pgM,Ng�1q. This quotient has a map rM,N s ÞÑ prM s, rNM sq,
de�ning a closed embedding into Grp2, 4q�Mat2�4pCq, which allows to directly check
that it coincides with the tautological subbundle S. Moreover, the C�-action scaling
the �bres of this bundle is induced by the action on V which is trivial on the �rst
summand and by scalar multiplication on the second summand C.

Let's set up the computation of the formula for the Hirzebruch genus in Theorem
6.1.1. The maximal subtorus is G � T � pC�q2 has cocharacter space χpT q_C � C2

and we denote its coordinates with u1, u2 P χpT q. The Weyl group is W � S2 and
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acts by exchanging the coordinates. In this notation the linearisation is given by the
Weyl-invariant character ξ :� u1� u2. The set A of weights for the G-action on V is

tu1, u2,�4u1 � 4u2u
and the corresponding weight-space decomposition is

V � C4 ` C4 ` C.

The roots of G are the functionals �pu1 � u2q. Moreover the cocharacter space of
S � C� is isomorphic to C and we consider its coordinate function s P χpSq. Once
we �x the representation s over which C� acts by scalar multiplication (hence ψ � s
in the notation of Theorem 6.1.1) we can explicitly write the function Zχ as

Zχpu1, u2, sq �
�

π

sinpπsq

2�

sinpπps� u1qq
sinpπu1q


4�
sinpπps� u2qq

sinpπu2q

4

� sinpπp4u1 � 4u2qq
sinpπps� 4u1 � 4u2qq

sinpπpu2 � u1qq
sinpπps� u2 � u1qq

sinpπpu1 � u2qq
sinpπps� u1 � u2qq

Fixed a generic s P C, the hyperplane arrangement Hs is drawn in the following
picture: the full lines correspond to the poles coming from the weights while the
dashed ones come from the roots, for which we have to check condition 4:

�3s
2

�s � s
2

0 s
2

s 3s
2

�3s
2

�s

� s
2

0

s
2

s

3s
2

u1

u2
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As it's clear from the picture there are 3 isolated intersections of the hyperplane
arrangement de�ned by the weights:

tisolated intersections of Hsu �
!
p0, 0q ,

�s
4
, 0
	
,
�
0,
s

4

	)
.

Notice that, as shown in the picture, no hyperplane de�ned by the roots passes
from these points, hence condition (4) is satis�ed. Let's check which one of these
intersections is stable.

� The weights corresponding to the hyperplanes vanishing at the origin p0, 0q are
u1 and u2. Since ξ � u1� u2 is in the positive span of these vectors, the origin
is stable.

� The weights corresponding to the hyperplanes vanishing at the point p s
4
, 0q are

�4u1 � 4u2 and u2. Since

ξ � u1 � u2 � �1

4
p�4u1 � 4u2q,

this point is not stable.

� The weights corresponding to the hyperplanes vanishing at the point p0, s
4
q are

�4u1 � 4u2 and u1. Since

ξ � u1 � u2 � �1

4
p�4u1 � 4u2q,

again this point is not stable.

We have �nally shown that, as expected, there is only one stable isolated intersection
in the origin. Hence, for a critical locus X of an equivariant function V {{G Ñ s we
�nd

chSχpXqp2πisq � 1

2
JKtu1,u2upZχp�, sq, ξ̃q

by Theorem 6.1.1. This JK residue was computed in Example 4.1.5 earlier, and by
using the result we obtained we see that

chSχpXqp2πisq � 176 sinpπsq �cos2pπsq cotpπsq � sinpπsq cospπsq� . (6.9)

Now χpXq P RpC�q � Crsss is a virtual representation of C� and can be written as
χpXq � °

kPZ aks
k for some ak P C. By de�nition of Chern character we �nd that

chSχpXqp2πisq �
¸
kPZ

ake
2πiks.
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This shows that χpXq is the evaluation of (6.9) at s � logpsq
2πi

, which gives

χpXq � 88

�
1� s?

s



.

as result. Proposition 6.1.4 ensures that the classical Hirzebruch genus of Z is

χ�spZq � �?s
3
χpXq � �88ps� s2q.

This result can be checked by using the description of Z as a complete intersection
of a quadric and a quartic hypersurfaces in P5 (by following the Plücker embedding)
[IIM19, Table 1, row 1]. Then, if we apply Hirzebruch-Riemann-Roch to compute
the genus we obtain the same result.

6.2 Invariants of critical loci in quiver varieties.

Given a quiver Q, the corresponding quiver varieties are de�ned as the GIT quotients
of the spaces of representations by actions of products of general linear groups. Here
we recall how to build these varieties, for more details see the survey [Rei08]. Let
Q be a connected quiver with �nitely many arrows and nodes. It can be with or
without oriented cycles, with or without loops. The set of nodes of the quiver is
denoted with Q0, while the set of arrows with Q1. We have two functions, called
head and tail

h, t : Q1 Ñ Q0,

which send an arrow into the node corresponding to its head or tail.

6.2.1 The representation theoretic setup.

Given a dimension vector D P NQ0 , we consider the space of D-dimensional repre-
sentations

V :� à
βPQ1

MatDhpβq�DtpβqpCq. (6.10)

There is a group
±

vPQ0
GLDvpCq acting on the representation space by¹

vPQ0

GLDvpCqñ V : pM � Φqβ :�MhpβqΦαM
�1
tpβq. (6.11)
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The diagonal ∆ � C� inside this group acts trivially so, in order to work with an
e�ective action, we consider the action of the projectivized group1:

G :�
�¹
vPQ0

GLDvpCq
�
{∆.

The maximal subtorus of G is the quotient of the group of tuples of diagonal matrices
by ∆:

T �
�¹
vPQ0

pC�qDv
�
{∆.

The Lie algebras χpT q_C � h � g are the quotients ofà
vPQ0

CDv � à
vPQ0

glDvpCq

by the diagonal subspace spanCp1q. Let uvi be the coordinate functions on
À

vPQ0
CDv .

Once we have �xed a couple v P Q0 and i P t1, . . . , Dvu, we obtain an isomorphism
of χpT q_C with the codimension 1 subspace where the coordinate uvi vanishes:

χpT q_C � V puv
i
q and χpT q � à

pv,iq�pv,iq

Z � uvi .

This isomorphism is �xed in the following discussion, so every time uv
i
appears any-

where it must be set to zero.
The Weyl group of G is

W �
¹
vPQ0

SDv

and acts on h by permuting the components in each piece CDv . We omit the proof
of the following two straightforward lemmas.

Lemma 6.2.1. Then roots of G are the characters of the form

αvj,i � uvj � uvi

where v P Q0 and i, j P t1, ..., Dvu.
1
Notice this is still reductive since ∆ is the center and hence normal.
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It's also easy to describe the weights for the action of T on V :

Lemma 6.2.2. The weights of the T -representation V , whose set we denote with A,
are the characters of the form

ρβj,i � u
hpβq
j � u

tpβq
i

where β P Q1, i P t1, ..., Dtpβqu and j P t1, ..., Dhpβqu. Notice that two arrows de�ne
the same weights if and only if they share the same head and tail.

6.2.2 Linearisations and stabilities.

Since V is an a�ne space, the linearisations for this actions corresponds to choices
of a character of G, namely an element of

χpGq � χpT qW .
Clearly the only such characters of G are of the form

GÑ C� : g ÞÑ detξvpgvq.
where ξ P ZQ0 satis�es

°
vPQ0

Dvξv � 0. As shown in [Rei08], if ξ is a regular stability
the action on the semistable locus is free and the corresponding GIT quotient V {{G
is smooth. In the literature, this is called a quiver variety and it's denoted with
Mξ-ss

D pQq.

6.2.3 The additional torus action.

Let S be another torus. We can endow V with an action of S by choosing a set of
characters R P χpSqQ1 (called the R-charge in physics) and writing

ps � Φqβ :� RβpsqΦβ @β P Q1.

Notice that, since G acts linearly on each irreducible piece MatDhpβq�DtpβqpCq of V ,
then the actions of G and S commute. Now we want to study under which conditions
the �xed subvarieties pV {{T qS and pV {{GqS are proper. We have a simple description,
proven in [LP90], of the T -invariant functions on the space of representations: they
are all generated by monomials of the form¹

βPcycle

pΦβqjβ ,iβ
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where the product is over arrows belonging to a �xed oriented cycle in the quiver
and the indices j P t1, . . . , Dhpβqu, i P t1, . . . , Dtpβqu satisfy iβ2 � jβ1 for consecutive

arrows � � � β1ÝÑ 
 β2ÝÑ � � � in the cycle.
The description of the generators of the ring of invariant functions given by the

theorem above, together with the characterisation (5.9) of properness of pV {{T qS and
pV {{GqS, allows us to �nd a condition to impose on the R-charge in order to have a
projective �xed subvariety:

Proposition 6.2.1. Assume that there is a strictly convex cone C in χpSq so that¸
βPγ

Rβ P C for every minimal oriented cycle γ in Q. (6.12)

Then the �xed loci pV {{T qS and pV {{GqS are projective.

6.2.4 The formula.

Let's specialise the statement of Theorem 6.1.1 to the setting of quiver varieties
we described in the previous sections. Fixed s P χpSq_C , consider the hyperplane
arrangement Hs of χpT q_C � h de�ned by the weights of the T -action and the R-
charge:

Hβ
i,j :�

!
u
hpβq
j � u

tpβq
i �Rβpsq � 0

)
,

indexed by β P Q1, i P t1, ..., Dtpβqu and j P t1, ..., Dhpβqu. Consider the set of points
P P χpT q_C at which at least dimT independent hyperplanes vanish. For each such
isolated intersection of Hs, consider the set of characters vanishing on it:

AP :�
!
u
hpαq
j � u

tpαq
i P χpT q | P P Hβ

i,j

)
.

Then P is a table isolated intersection of Hs (in the sense of De�nition 5.1.3) if and
only if ξ belongs to the cone spanned by AP in χpT q. Denoting with |D| the total
dimension vector

°
vPQ0

Dv of the quiver and given a character ψ P χpSq, consider
the following meromorphic functions χpT q_C � χpSq_C 99K C:

� The function ZDT computing the DT invariant

ZDT �ψ1�|D|
¹
βPQ1

Dtpβq¹
i�1

Dhpβq¹
j�1

ψ �Rβ � u
tpβq
i � u

hpβq
j

u
hpβq
j � u

tpβq
i �Rβ

�
¹
vPQ0

Dv¹
i,j�1
i�j

uvj � uvi
ψ � uvj � uvi

.
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� The function Zχ computing the Hirzebruch genus

Zχ �
�

π

sinpπψq

|D|�1 ¹

βPQ1

Dtpβq¹
i�1

Dhpβq¹
j�1

sin
�
πpψ �Rβ � u

tpβq
i � u

hpβq
j q

	
sin

�
πpuhpβqj � u

tpβq
i �Rβq

	

�
¹
vPQ0

Dv¹
i,j�1
i�j

sinpπpuvj � uvi qq
sin

�
πpuvj � uvi � ψq� .

� The function ZEll, depending on an additional formal parameter τ , computing
the elliptic genus

ZEll �
�
2πηpτq3
θpτ |ψq


|D|�1 ¹
βPQ1

Dtpβq¹
i�1

Dhpβq¹
j�1

θ
�
τ |ψ �Rβ � u

tpβq
i � u

hpβq
j

	
θ
�
τ |uhpβqj � u

tpβq
i �Rβ

	

�
¹
vPQ0

Dv¹
i,j�1
i�j

θpτ |uvj � uvi q
θ
�
τ |uvj � uvi � ψ

� .

The following result is the specialisation of Theorem 6.1.1 to the case of quivers:

Theorem 6.2.1. Consider the critical locus X of a regular S-equivariant function
on the quiver moduli space

φ : Mξss
D pQq Ñ s,

where s is a 1-dimensional representation of S corresponding to a character ψ P
χpSq. Let D P NQ0 be a dimension vector for a quiver Q. Assume the stability ξ is
regular and that the R-charge R P χpSqQ1 satis�es the condition (6.12). Assume that,
for a generic s P χpSq_C , for every stable isolated intersection P of the hyperplane
arrangement Hs the inequality

uvi pP q � uvj pP q � ψpsq � 0 (6.13)

holds true for every v P Q0 and i, j P t1, ..., Dvu. For a generic s P χpSq_C the
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invariants X can be computed by

DTpXqpsq � 1±
vPQ0

pDv!q
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZDTp�, sqq ,

chSχpXqp2πisq � 1±
vPQ0

pDv!q
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZχp�, sqq ,

chSEllpXqpe2πiτ qp2πisq � 1±
vPQ0

pDv!q
¸

P stable isolated
intersection of Hs

JKAP
ξ,P pZEllp�, s, τqq .

This result appeared for the �rst time in the physics literature in the works of
Beaujard, Mondal and Pioline [BMP19] and Córdova and Shao [CS16].

Remark 38. It's worth remarking that in the case of quiver varieties, the procedure
of pulling back integrals from V {{G onto V {{T through Martin's formula (Theorem
5.1.2) corresponds to pulling back integrals from the variety corresponding to the
quiver Q to the one corresponding to the quiver Q̂ obtained by "abelianising" the
nodes. This procedure consists in replacing a node of dimension vector d with d
distinct nodes of dimension 1 and connecting two nodes in Q̂ with an arrow if and
only if the original nodes were connected in Q. For example, if we start from the
quiver Q

C C3 C ,

the corresponding Q̂ is

C

C C C

C

.

6.2.5 Example: DT invariants of A3.

The rigorous application of Je�rey-Kirwan localisation techniques to the problem of
instanton counting (the computation of integrals on the Hilbert scheme of points
of a�ne spaces) is due to Martens [Mar08]. Here we consider the quot scheme of
quotient sheaves of O`r

A3 having �nite length n:

Xn
r :� QuotA3pO`r, nq.
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As shown in [FMR21], this scheme is closely related to the moduli space of represen-
tations of the quiver

Cn C

α1

α2

α3

β1

...

βr

The space of representations is

ReppQq � Matn�npCq`3 ` pCnq`r

and the gauge group G :� GLnpCq acts on it by

g � pA1, A2, A3, b1, . . . , brq :� pgA1g
�1, gA2g

�1, gA3g
�1, gb1, . . . , gbrq.

The stability ξ :� 1 P Z � χpGq is regular and the corresponding quotient is a
smooth quasiprojective variety A :� ReppQq{{G. The G-invariant function

φ̃ : ReppQq Ñ C : φ̃pA1, A2, A3, b1, ..., brq :� Tr pA1rA2, A3sq

de�nes a regular function φ : AÑ C whose critical locus is the quot scheme:

Xn
r � Critpφq � A.

We can enrich the picture with an action of S :� pC�q3 on ReppQq given by

ps1, s2, s3q � pA1, A2, A3, b1, ..., brq :� ps1A1, s2A2, s3A3, b1, ..., brq.

Condition (6.12) is clearly satis�ed and ensures that the �xed locus AS is projective.
Moreover, φ equivariant once we let S act on the target C with the character ψ :�
s1s2s3. The equivariant DT invariant of Xn

r is called nth degree zero cohomological
DT invariant of rank r of A3:

DTnr pA3q :�
»
rXn

r s
vir

1.

Our formula can, in principle, be used to compute these invariants (this approach
to compute the invariants of A3 is present in the physics literature, in particular
in [Ben+19]). By identifying the maximal subtorus T � G with diagonal matrices
there is an isomorphism χpT q_C � Cn and let u1, . . . , un P χpT q be the coordinate
functions. Analogously, we can identify χpSq_C with C3 and the characters s1, s2, s3
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are the coordinate functions. The function ZDT : Cn 99K C of which we have to
extract the residues is

ZDTpu1, ..., un, s1, s2, s3q :�ψ�n
n¹
k�1

�
ψ � uk
uk


r 3¹
l�1

n¹
a,b�1

ψ � sl � ub � ua
sl � ub � ua

�
n¹

i,j�1
i�j

ui � uj
ψ � ui � uj

,

where ψ � s1� s2� s3. The hyperplane arrangement Hs is given by the hyperplanes
of the following two types

Hk :� tuk � 0u and H l
a,b :� tsl � ub � ua � 0u

and it's easy to see that for a generic choice of ps1, s2, s3q P C3 the stable isolated
intersections in this arrangement are not contained in any hyperplane of the form
tui � uj � s1 � s2 � s3 � 0u, thus condition (6.13) is satis�ed and Theorem 6.2.1
shows

DTnr pA3q � 1

n!

¸
P stable isolated
intersection of Hs

JKAP
ξ,P pZDTp�, sqq

It is combinatorially challenging (even though doable with some e�ort) to enumerate
the many stable isolated intersections of this hyperplane arrangement. Basically,
they correspond to the same plane partitions that enumerate the �xed points on the
quot scheme. In practice some additional stable intersection appears but still gives a
trivial JK residue (see Remark 39 below for an explanation of this phenomenon). By
checking numerically the result for small values of n, the formula con�rms equality

8̧

n�0

DT nr pA3qqn �Mpp�1qrqq�r
ps1�s2qps1�s3qps2�s3q

s1s2s3 ,

which has been proven with classical virtual localisation techniques in [FMR21]. Here
M is the MacMahon function, the generating functions of plane partitions:

Mpqq �
8¹
k�1

1

p1� xkqk .

Remark 39. By unraveling the proof of this localisation formula, notice that in this
case Szenes-Vergne localisation consists in the following steps:
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1. Push the computation forward from the quot scheme to the smooth "noncom-
mutative" quot scheme A.

2. Do Atiyah-Bott localisation on A.

3. Compute the contribution of each �xed locus as a JK residue.

It seems that by pushing the computation toA one is adding some �xed loci that only
belong to A and not to the actual quot scheme, but notice that their contribution to
the formula is zero since the Euler class eSpΩAq vanishes there, as the section used
to cut X is nonvanishing over that �xed component.

In this speci�c example one doesn't gain much from this procedure of pushing
forward to the smooth ambient variety A. In some other cases, as we will see in the
next section, this technique might be very helpful.

6.3 The case of HilbnpA4q.

In [OT23], a theory of algebraic virtual classes for moduli spaces of sheaves on Calabi-
Yau fourfolds is developed. The simplest example of such moduli space is HilbnA4. In
[NP19] Nekrasov and Piazzalunga conjecture a formula (now proven in full generality
by Kool and Rennemo using Oh-Thomas localisation), for the equivariant integral of
1 over this Hilbert scheme. They check the conjecture for small values of n by using a
Je�rey-Kirwan type of formula motivated by physical arguments. Here we show how
to mathematically recover this JK formula from the formalism of Oh-Thomas. This
doesn't give a new proof of Nekrasov's formula for

³
HilbnA4 1, since the JK formula we

are going to show still requires a lot of hard combinatorics to be made before reaching
the result of Kool-Rennemo, and we don't know how to perform such computations.

Remark 40. In practice, Nekrasov and Piazzalunga consider K-theoretic invariants
(see Remark 41 below). We will focus on the cohomological invariant

³
rXsvir

1 for
simplicity, but the K-theoretic discussion is completely analogous.

6.3.1 Recap on the Oh-Thomas virtual cycle.

The reference for this section is the work [OT23] of Oh and Thomas. The theory
of virtual classes for moduli spaces of sheaves on fourfolds is based on the following
local model: the relevant moduli space M is build as the zero locus, in some smooth
ambient space A, of an isotropic section s of an orthogonal vector bundle E with
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nondegenerate bilinear form

q : E b E Ñ OA.

Denoted with r is the rank of E , an orientation is needed, namely a trivialization

o : OA
�ÝÑ detE

so that p�1q rpr�1q
2 ob2 is the inverse to the isomorphism pdetEqb2 � OA de�ned by q.

Up to passing to a cover p : ÃÑ A, the bundle Ẽ :� p�E admits a maximal isotropic
subbundle Λ̃ ãÑ Ẽ , hence we have a short exact sequence induced by q:

0Ñ Λ̃ ãÑ Ẽ q̃ÝÑ Λ̃_ Ñ 0.

We can always �nd (on the cover Ã) this Λ̃ so that it is positive, namely the isomor-
phism

OÃ
õÝÑ detẼ � detΛ̃b detΛ̃_ � OÃ

sends in to 1. A virtual cycle rMsvir P A�pMq can be built from this data and, if
E admits a maximal isotropic positive subbundle Λ on A, the virtual cycle pushes
forward along i : M ãÑ A as

i�rMsvir � epΛq.
We can do everything equivariantly: if a torus S acts on A, the bundle E has a S-
equivariant structure, s is an invariant section of E and λ ãÑ E is an invariant positive
maximal isotropic subbundle, then the virtual cycle is equivariant rMsvir P AS�pMq
and pushes forward to

i�rMsvir � eSpΛq.

6.3.2 Building the Hilbert scheme.

The �rst step is to realize the relevant moduli space as the zero locus of an isotropic
section of an orthogonal bundle. This is all standard, for example see [Nek20].
Consider the quiver

Cn C

X1X2

X3 X4

I
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The corresponding representations space is

V � EndpCnq`4 ` Cn.

which is acted upon by G :� GLn as

g � pX1, X2, X3, X4, Iq :� pgX1g
�1, gX2g

�1, gX3g
�1, gX4g

�1, gIq.

Fixing the stability ξ :� 1 P Z � χpGq we see by the "generalised AHDM construc-
tion" that HilbnA4 is the zero locus of a section on the quiver variety A :� V {{GLn:

E

HilbnA4 � V psq A :� V {{GLni

s

The bundle E is induced on the quotient by the G-equivariant bundle on V having
as �bre the GLn-representation

gln b^2C4

where the action on the second factor is trivial while on �rst factor it is given by
the adjoint representation. If we denote with Xi ^Xj, i   j the elements of a basis
of the 6-dimensional linear space ^2C4, the section s is induced by the G-invariant
section

s �
¸

1¤i j¤4

rXi, Xjs bXi ^Xj.

Lemma 6.3.1. The bundle E has a natural structure of orthogonal bundle given by
the product of the nondegenerate bilinear forms

gln � gln
trÝÑ C : trpA,Bq :� trpABq

and

^2C4 b^2C4 ^ÝÑ ^4C4 � spanCpX1 ^X2 ^X3 ^X4q � C.

Moreover, the section s is isotropic.
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Proof. The only thing to prove is that qps, sq � 0. Clearly

qps, sq � Tr

� ¸
σPS4

p�1qσrXσp1q, Xσp2qsrXσp3q, Xσp4qs
�
.

Notice that for every a, b, c, d the sum over the order 4 cyclic subgroup generated by
the cycle p1, 2, 3, 4q P S4 ¸

σPxp1,2,3,4qy

p�1qσrXσpaq, XσpbqsrXσpcq, Xσpdqs

is trace-free, since the trace tr : gln Ñ C is linear and invariant under cyclic per-
mutations in a product. If we pick a representative in S4 for each class in the set
S4{xp1, 2, 3, 4qy, we can write qps, sq as the trace of¸

rηsP
S4

xp1,2,3,4qy

¸
σPxp1,2,3,4qy

p�1qσrXσpηp1qq, Xσpηp2qqsrXσpηp3qq, Xσpηp4qqs

which is trace-free by the above discussion.

Notice that the bundle E on V has a maximal isotropic subbundle L given by
the sections X ^ Y , X ^Z and Y ^Z. This induces a maximal isotropic subbundle
Λ ãÑ E on V {{G.

6.3.3 The torus action.

We can enrich the picture with an action of the four dimensional torus S :� pC�q4
on V by

s � pX1, X2, X3, X4, Iq :� ps1X1, s2X2, s3X3, s4X4, Iq.
Notice that the action of S commutes with the action of G, hence T acts on V {{G.
We can endow E with a S-equivariant structure induced from the action on the �bre
by

S ñ gln bC ^2C4 : s �M bXi ^Xj :� sisjM bXi ^Xj.

and notice that s is S-invariant. Notice that in particular the subbundle Λ � E is
S-invariant. This means we are in the framework of Oh-Thomas and hence»

rHilbnA4svir
1 �

»
V {{G

eSpΛq �
»
V {{G

rpeG�SpLqq.

The last expression for this invariant is precisely the kind of integral that the locali-
sation formula of Theorem 5.1.3 can help to compute.
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6.3.4 The hyperplane arrangement and the localisation for-

mula.

Consider the maximal subtorus T � G given by diagonal matrices, which gives the
isomorphism χpT q_C � Cn and denote the coordinate functions with u1, . . . , un P
χpT q. Analogously χpSq_C � C4 and consider the coordinate functions ϵ1, ϵ2, ϵ3, ϵ4 P
χpSq (these would be denoted s1, s2, s3, s4 in the notation of the previous sections,
but we use the letter ϵ to match the notation of Nekrasov). Fixed ϵ P χpSq_C the
hyperplane arrangement Hϵ in χpT q_C is given by the hyperplanes of the form

Hc
i,j :� tui � uj � ϵcu and Hk :� tuk � 0u

where 1 ¤ c ¤ 4 and 1 ¤ i, j, k ¤ n. Theorem 5.1.3 shows that, for a generic ϵ, this
integral is »

rHilbnA4svir
1 � 1

n!

¸
P stable isolated
intersection of Hϵ

JKAP
ξ,P

�
eT�SpLqeT pgln{hq

eT�SpTV q


.

Here the argument of the JK residue is readily computed as�
ϵ12ϵ13ϵ23
ϵ1ϵ2ϵ3ϵ4


n¹
i�j

pu1 � ujq
±

1¤a b¤3pui � uj � ϵabq±4
c�1pui � uj � ϵcq

n¹
k�1

1

uk

where we used the notation ϵab :� ϵa � ϵb. This is the content of equations (2.24)
and (2.25) in the work of Nekrasov and Piazzalunga [NP19].

Remark 41. To be precise, Nekrasov and Piazzalunga are doing a K-theoretic com-
putation with some tautological insertions (namely insertions built from K-theory
classes on A4 by pulling back to the universal family and pushing down to the Hilbert
scheme). More precisely, they are computing the so called Nekrasov genus described
in [CKM22, De�nition 0.2]. The one we studied is the cohomological limit discussed
at the end of [CKM22, Appendix A], but the Je�rey-Kirwan approach to the original
K-theoretic computation is completely analogous.

Remark 42. While discussing the case of A3 in Section 6.2.5, we noted that there
is not much to gain from pushing the computation forward to the smooth ambient
noncommutative Hilbert scheme A. In the case of A4 the situation is radically dif-
ferent: doing localisation directly on HilbnpA4q is much harder than in the 3d case.
The technical reason for this is that it is hard to keep track of the sign in the square
root of eSpEq when localising to the �xed points. On the other hand, by pushing
the computation forward to the ambient space one recovers the usual localisation
formula on the smooth variety A which completely forgets about the square root
problem.
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