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Abstract

This thesis explores various aspects of the Jeffrey-Kirwan localisation formula, a
powerful tool in computing integrals on quotients of smooth varieties by reductive
group actions. Initially developed by Jeffrey and Kirwan in the symplectic context,
this formula has seen various adaptations and extensions scattered throughout the
literature. The primary goal of this thesis is to provide a fully algebraic proof of the
Jeffrey-Kirwan localisation formula, building on the work of Lerman, Guillemin, and
Kalkman. Furthermore, the thesis extends the formula to the equivariant setting,
enabling the computation of equivariant integrals with respect to additional torus
actions on the quotient. It also aims to clarify the relations among different versions
of this formula found in the literature. In addition, the thesis explores some appli-
cations of these localisation techniques, specifically in deriving residue formulae for
virtual invariants of critical loci in quotients of linear spaces, such as quiver varieties.
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Chapter 1

Introduction.

1.1 A brief history of the subject.

There are many techniques that, in the literature, go under the name of Jeffrey-
Kirwan localisation formula. In essence, they are all formulae to compute integrals
on quotients of smooth varieties by reductive group actions. The original version of
this formula, proved by Jeffrey and Kirwan in [JIX95], lives in the symplectic category
and it’s of a very analytic nature: it expresses the integral on the quotient in terms
of some inverse Laplace transforms of functions defined on the Lie algebra of the
group. This version found a great application in the work [JIKX98], where the same
authors computed intersection numbers on the moduli space of stable vector bundles
on Riemann surfaces of genus g > 2.

Later, Brion and Vergne in [BV99] expressed the inverse Laplace transforms ap-
pearing in the original localisation formula in terms of a newly defined linear oper-
ator, which they called Jeffrey-Kirwan residue. Using this result Szenes and Vergne
[SVO4] proved an important variation of the formula in the case where the variety of
interest is the quotient of a linear space by a torus action (namely a toric variety). In
this case, they expressed the Jeffrey-Kirwan residue in a combinatorial way, in terms
of iterated residues computed with respect to flags in the dual Lie algebra of the
torus. This version achieved a lot of success by being the key ingredient in the proof
of the toric mirror symmetry conjecture of Batyrev and Materov [BM02], given by
Szenes and Vergne in the same paper. At this point of the story, there was no purely
algebraic way of proving these localisation formulae, which relied on deep analytic
results.

In a parallel direction, Lerman [Ler95] studied an interesting construction in
symplectic geometry: the symplectic cut. Using this tool, he noticed that one could
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produce a formula for computing integrals on the quotient of a circle action in terms
of residues of functions defined on the Lie algebra of the circle. This construction
was iterated by Guillemin and Kalkman in [GK96] to produce residue formulae for
integrals on quotients of symplectic varieties by Hamiltonian actions of tori. The
case of a nonabelian reductive connected group G can be reduced to the case of
its maximal torus 7" by a result of Martin [Mar00]: this expresses integrals over
the G-quotient in terms of integrals over the T-quotient. This construction is much
more geometric and can be easily translated into algebraic terms by simply replacing
symplectic reduction with geometric invariant theory.

First aim of the thesis.

We follow this second path initiated by Lerman to give a fully algebraic proof of
this Jeffrey-Kirwan localisation formula. The first step, where the group is C*, was
already considered by Edidin and Graham in [FG98a]. We will also show how to
relate this version of the localisation formula to the one described by Szenes and
Vergne. This is the content of Section 4. Let’s quickly discuss the content of this
formula in the version of Szenes and Vergne in the case of a torus action (for a more
precise description, see Section 4.5).

Given a torus 1" acting on a linear space V' we can consider the weights of the
action, namely the set 2 of characters p € x(T') that appear as eigenvalues of the
action. Given a suitably regular linearisation £, an equivariant cohomology class a €
A%(V') defines a cohomology class r(«) on the quotient V' //T" and we are interested in
computing §, (). Since the equivariant cohomology ring A%(V) can be identified
with the ring of polynomial functions on x(7")¥, we can think of the fraction ﬁ
as of a rational function on x(7")¥. The formula of Szenes and Vergne reads

Joarr =9 ()

where J K? is a residue operation which essentially uses the linearisation ¢ to select
some "stable" ordered bases from 2(, which are then used to compute iterated residues
(see Section 4.1.6 for more details).

1.2 The equivariant version.

In many cases, interesting moduli spaces can be built as quotients of the form V//G,
where V' is a representation of a reductive connected group GG. These moduli spaces
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are often noncompact, and one wants to compute equivariant integrals with respect
to an additional torus action on V//G having compact fixed locus. This is the
motivation behind:

The second aim of the thesis.

We prove a version of the JK localisation formula (in the form of Szenes and Vergne)
that works in this equivariant context. This will be done in Section 5. Let’s quickly
discuss how this is different from the nonequivariant formula (for a more precise
description see Section 5.1.5). If an additional action of a torus S on V' is added to
the picture, we can consider the corresponding weights of the total (T' x S)-action.
They are the couples (p, v) € x(T) x x(S) that appear as eigenvalues of the action. For
every value s € x(S)Y of the equivariant parameter of the S-action, we can consider
the hyperplane arrangement H, in x(7')¥ given by the hyperplanes {p + v(s) = 0}.
The equivariant version of the Szenes-Vergne formula will read

P zero dimensional
intersection in Hs

where 2 p is a subset of 2l depending on P and the additional subscript P in the JK
residue denotes the fact that we are computing such residue at the point P and not
at the origin of x(T")¥. To be precise, the sum is not over all the zero dimensional
intersections in H, but only over some "stable" ones selected by the linearisation &.

1.3 Formulae from physics.

As we discussed, these formulae have found successful applications in several areas of
mathematics, but the field in which they experienced the most popularity is theoret-
ical physics. For example, Benini, Hori, Eager and Tachikawa in [Ben+15] recovered
formulae for computing integrals over complete intersections in GI'T quotients of lin-
ear spaces, such as products of Grassmannians. Later, Beaujard, Mondal and Pioline
[BMP19] and Cordova and Shao [CS16] applied these formulae to study invariants of
critical loci in quiver varieties. Other applications came from the work of Nekrasov
and Piazzalunga [NP19], where they used these localisation techniques to compute
(for low values of n) virtual invariants of the Hilbert scheme of n points on A?.
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The third aim of the thesis.

We provide an algebro-geometric proof of the formulae of [Ben-15], [BMP19] and
[CS16] appearing in the physics literature, and to discuss the application of JK
localisation to the case of Hilb™(A*). This will be the content of Section 6.

Let’s informally summarise the content of the main result (for more details see
Section 6.1.4). Assume we are given a quotient of the form V//G together with an
additional action of a torus S and an S-equivariant superpotential ¢ : V /G — C. Let
X := V(dp) be the critical locus of ¢. This carries a natural S-equivariant perfect
obstruction theory, from which one can define S-equivariant invariants, such as the
DT invariant, the virtual Hirzebruch genus and the virtual elliptic genus, via virtual
localisation if the fixed locus X* is proper. We will describe three meromorphic
functions Zpr, Z, and Zgy on x(1'x.S)¢ so that the invariants above can be computed
from these functions by extracting residues:

DT(X)(s) = == 3 JKM (Zor(—5)),

| | P stable isolated
intersection of Hs

1 2
W Z JKg,IIDD (Zy(=,9)),
P stable isolated
intersection of Hs

. ) 1
ch*El(X)(e*™7)(2mis) = —— > JKE % (Zen(—. 5,7)) .

| | P stable isolated
intersection of Hs

ch®x(X)(2mis) =

where W is the Weyl group of G. This result will be later specialised to the case
where V' //G is a quiver variety in Section 6.2.4.

About the Hilbert scheme of points in A*, we will recall its construction as a
vanishing locus of a section of a vector bundle in a quotient of the form V /G, via
the generalised Atiyah-Drinfeld-Hitchin-Manin construction [Nek20]. By using this
presentation, we will push the computation of its invariants to the smooth ambient
space V//G and write the JK formula for these quantities. For example, the (C*)%-
equivariant integral of 1 over the virtual class of Hilb"(A%) can be extracted from the
function

n n
(612613623> H (ur — uy) H1<a<b<3(“i — Uj + €ap) 1—[ 1

€1€2€3€4 i Hizl(ui —uj + €) k=1 u_k

by taking JK residues with respect to the u variables. This is far from being an
explicit computation of the invariants (which has already been achieved by Kool and

Rennemo) but recovers an intermediate formula used by Nekrasov and Piazzalunga,
clarifying a little bit the picture.



Chapter 2

Equivariant intersection theory.

In this section we review some of the core aspects of equivariant intersection theory,
as masterfully described by Edidin and Graham in their sequence of works [EG98b;
EGI98c; Edil0; EGI9]. The main ideas in this field come from merging Fulton’s
approach to Chow groups, key to doing intersection theory in algebraic geometry,
with the classical theory of equivariant cohomology originally developed in algebraic
topology. In this introduction we quickly recall some features of these two fields to
motivate some of the constructions that will be discussed in this section.

In his book on intersection theory [Full3|, Fulton develops a purely algebro-
geometric approach to homology and cohomology in the setting of schemes. The
Chow groups, the analogues of the classical singular homology groups, of a variety
X are generated by subvarieties up to a notion of continuous deformation called
rational equivalence. As long as the variety is smooth, these groups carry a canonical
ring structure called intersection product. One of the aims of enumerative geometry
is, in very abstract and imprecise terms, to study the results of multiplications of
interesting classes in the Chow groups.

In the topological world, this corresponds to computing integrals over smooth
manifolds and equivariant cohomology has proven many times to be an extremely
useful tool (see for example this paper by Atiyah and Bott [AB84]) for this kind of
computations. The equivariant cohomology of a topological space X endowed with a
G-action is defined as the singular cohomology of X x4 EG, where EG is the infinite
dimensional classifying principal G-bundle, whose quotient BG = EG/G is called
classifying space of G.

The infinite dimensionality of E'G is the main obstruction to directly defining
the equivariant Chow groups as Chow groups of the mixed product X x4 EG, since
this classifying bundle is not defined in the category of schemes. Equivariant Chow
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groups are instead defined in [EG98b] by using finite dimensional approximations
of EG by schemes due to Totaro [Tot99]. In this section we will discuss how these
definitions allow to use equivariant techniques to do intersection theory on a variety
with a group action.

Contents of the section:

The structure of this section is organized as follows:

2.1

We recall the definition of the equivariant Chow groups by finite dimensional
approximations of EG.

We introduce the change of group homomorphism A%(X) — A (X) associated
to a group homomorphism H — G. We prove that this morphism is well defined
and collect some of its basic properties.

We go through some of the most important points of [EG9I8b|. We especially
focus on the description of the Chow ring of a quotient by G in terms of the
G-equivariant Chow group of the original variety. Additionally, we will discuss
an equivariant version of this description.

We will recall some key concepts in geometric invariant theory and adapt the
results about the Chow rings of quotients from the previous sections to the
case where the quotient is constructed through GIT.

We discuss the analogous properties of equivariant Chow cohomology.

We recall the content of the Atiyah-Bott localisation formula, originally devel-
oped in [AB84], and present it within the context of Chow groups as described
in [EGI8¢].

We recall the basics of equivariant K-theory.

Equivariant Chow groups.

In this part we recall the definitions of equivariant Chow groups and their basic
properties. We also discuss some interesting morphisms that will be useful in the
study of Chow groups of quotients.
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Notation. Many properties of these groups that we are going to explore only hold
true when the coefficients are taken in Q. This is the reason why, from now on, all the
Chow groups, Chow rings and K-groups are with coefficients in the field C. We could
use Q but at some point we will want to work with meromorphic functions, so we
take C since the beginning. To make everything more readable, when working with
Chow groups we will omit the star subscript by simply writing A¢(X) for A%(X).
Analogously, in the case where G is trivial, we will write A(X) for A,(X). When we
refer to the cohomology A% (X) of X (see section 2.3), we will always write the star
so that no ambiguity should appear.

Consider an n-dimensional quasiprojective variety X over C together with the
action of a reductive connected algebraic group G of dimension g.

2.1.1 Equivariant Chow homology.

Edidin and Graham construct in [EG98b] the G-equivariant Chow groups of X.
Here we review the construction, which goes by approximation of the classifying
bundle EG by schemes. Fixed k£ > 0 we can consider a representation V of G,
having dimension v and admitting an open subset U < V' where the G-action is free
and V\U has codimension bigger than n — k. Then the k-th G-equivariant Chow
(homology) group of X is defined as

ALC0) = Ay

X xU
G

and it’s independent on V up to canonical isomorphism (Definition-Proposition 1 in
[EGI8D]).

Remark 1. Everywhere in this thesis we will denote with X the scheme (X xU)/G,
where we assume that U is an open subset of a representation V' over which the action
of G is free and such that the codimension of V\U is bigger than . Thus by definition
A%X) = A(Xgn )

These equivariant Chow groups enjoy the same functoriality properties (with
respect to G-equivariant maps) of ordinary Chow groups. Notice that G-invariant
k-dimensional subvarieties Z < X induce degree k equivariant homology classes: we
define [Z]¢ to be the class of the subvariety Zg ,—r S X n—k. In particular, if X is
irreducible, then it possesses an equivariant fundamental class [X]g € AY(X).

Example 2.1.1 (Chow groups of points.). Given an algebraic reductive group G we
will denote with

X(G) := Hom(G,C*) , x(G)Y := Hom(C*, G)
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the lattices of characters and cocharacters of G (we will write x(G)c and x(G){ for
the corresponding C-linear spaces obtained by tensoring with the field of complex
numbers). If T < G is a maximal subtorus, we can consider the Weyl group W :=
N(T)/T acting on T. Given the trivial G-action on a point, Edidin and Graham
[EGI8h, Section 3.2] prove that the equivariant Chow group of a point with complex
coefficients is

A%(pt) ~ Sym(x(T)e)"

where the second ring can be interpreted as the ring of Weyl-invariant polynomial
functions on x(7)¢.

2.1.2 Change of groups in Chow homology.

We shall now describe how the Chow homology changes when we change groups via
an homomorphism H — G. Assume that G acts on X and that H acts on X via
the group homomorphism above. Fixed k consider a representation V' of G having
an open subset U < V so that the complement V\U has codimension greater than
n —kin V and G acts freely on U. Analogously consider a representation V' of H
having U' ¢ V' so that H acts freely on U’ and V'\U’ has codimension greater than
n — k. Clearly H acts on U too and we have the morphism

X ! X
: ><U><U_) x U (2.1)

)
H G

induced from the projection X x U x U’ — X x U. Notice that V' x V' is a represen-
tation of H and U x U’ is an open subset over which H acts freely. The complement
of this open set is (VA\U) x V' 0V x (VA\U’) which has codimension greater than
n — k. Since both the composition

: X xUxU ¢ X xU

X U U, H-quotien R
S 7] G

and the H-quotient map are faithfully flat (being quotients by free group actions)
we get that @ is flat, hence we can consider the pullback morphism.

Definition 2.1.1. The pullback
(H— G)": AkG(X) — AZ(X).

through the morphism ® described above is called change of group homomorphism.
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Similar change of group homomorphisms have been considered by Krishna [[Kril4,
Section 2.2] in the case where H is a subgroup of G. The proof of the following
statement, which ensures that this morphism doesn’t depend on the choice of V' and
V', is just a routine check.

Lemma 2.1.1. The morphism (H — G)* defined above is independent of the choice
of Vand V'.

Proof. Consider two other such representations:

e G~V with an invariant open subset U such that G acts freely on U and
codimy (VAU) > n — k.

o« H ~ V' with an invariant open subset U’ such that H acts freely on U’ and
codimy, (V\U') > n — k.

Then we construct a further couple of representations:

o G~V ><~f/. This has an invariant open subset W, containing both V x U
and U x V, such that G acts freely on W. Moreover the codimension of the
complement of W in V' x V is clearly greater than n — k.

e H—~V' ><~1~/’ . This has an invariant open subset W, containing both V' x U’
and U’ x V', such that H acts freely on W’. Moreover the codimension of the
complement of W' in V' x V' is clearly greater than n — k.

We can now relate the change of group homomorphisms defined through V.V’ to
the ones defined via the two representations we just defined. The corresponding
morphisms of varieties fit into the commutative diagram

XxW xW' XxW
H e

J J

XxUxU' xVxV! . XxUxV
H ’ G
vector vector
lbundle lbundle
XxUxU’ . XxU
H e

Notice that the vertical open embeddings in the first diagram induce isomorphisms
of the Chow groups of the relevant dimensions; for example the arrow on the right
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induces via pushforward an isomorphism

XxUxV X xW
Ak+dim(W)—g <T> = Ak—l—dim(W)—g ( a )

since the codimension of the complement of U x V in W is greater than n — k. By
composing with the flat pullbacks coming from the two vertical maps in the second
diagrams we obtain the canonical identifications of the Chow groups discussed by
Edidin and Graham in [EG98b, Definition/Proposition 1|. For example, for the two
vertical arrows on the right of the diagram we obtain the isomorphism

X xU X xW
At dim(v)—g ( Iz ) ~ Aptdim(W)—g (T)

which is the canonical identification of the G-equivariant Chow groups of X defined
through the representations V and V x V. This shows that the change of group
homomorphism defined by V and V' is related to the change of group morphism
defined through V x V and V' x V' by the canonical isomorphisms between the
equivariant Chow groups of X defined through these representations. This argument
can be applied reversing the roles of (V, V') and (V, V') completing the proof. [

The following results are an immediate consequence of the definition and of func-
toriality of flat pullbacks:

Lemma 2.1.2. Gwen a group homomorphism H — G, the following statements hold
true:

1. (functoriality in the groups) for every other group homomorphism K — H, the
change of group homomorphisms satisfy (K — H)* o (H — G)* = (K — G)*.

2. (functoriality in the varieties) Given a G-equivariant flat morphism of varieties
f:Y =X, then (H—G)*o f*= f*o(H - G)*.

3. Given a G-invariant subvariety Z of X, then (H — G)* (|Z]¢) = [Z]u-
In particular we can study the case where X is a point:

Example 2.1.2. Given a group homomorphism h : H — G, consider the trivial
action of G on a point. The induced change of group homomorphism

(H — G)*: A%(pt) — A™(pt)
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is, if we denote with Ty < H and T; < G the maximal subtori and with Wy, Wg
the Weyl groups, the morphism

Sym (x(Te)e)™® — Sym (x\(Ta)e)"™™

that sends the function f : x(Tg)¢ — C to the function g : x(Tx)¢ — C given by
g(u) :== f(¢ o p) for every pe x(Tu)".

Example 2.1.3. A particular example that will be useful later is the following.
Assume we have a m-dimensional torus T acting on a point and m distinct rank 1
subtori A; € T so that Ay x --- x \,, — T is a surjection (necessarily with finite
kernel). In this case the \; form a C-basis of x(T)¢ and the induced change of group
homomorphism is

Sym (x(T)¢) = Cls1, ..., Sm]

given by considering sy, ..., S,, as the elements of the dual basis to A. Concretely, it
sends a character ¢ into > (N, @)s;.

2.1.3 Chow groups of quotient stacks.

In this section we recall the properties of Chow homology of Deligne-Mumford quo-
tient stacks following the works of Edidin-Graham.

Notation. In this section the distinction between Chow groups with integral and
rational (or complex) coefficients is important to appreciate so, only for this section,
we will denote with A(X) the integral Chow group of X.

Assume that G is a reductive algebraic group acting on a quasiprojective variety
X so that the action is locally proper.

Definition 2.1.2. The action of a reductive group G on a scheme X is called proper
if the action map G x X — X x X is proper. It’s said to be locally proper if there is
an invariant open cover of X so that for every open U in the cover the action G —~ U
is proper.

Remark 2. Here are some useful facts:

1. Since G is reductive then it is affine by definition, hence if the action is locally
proper then the stabilisers are finite.

2. Notice that if the G-action is free then G x X — X x X is a closed embedding,
hence the action is proper.
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3. The action of G is locally proper if X admits an affine invariant open cover
(see [EGI8D, remark 3, pag. 18]). In particular, this is the case if X is the
semistable locus for a linearised action on a closed subvariety of P x A, if the
semistable locus coincides with the stable locus. This is the case we are going
to study later.

Definition 2.1.3. Given a G-invariant subvariety Z of X we denote with o¢(Z) the
order of the G-stabiliser at a general point of Z.

The quotient stack X' := [X/G] is a Deligne-Mumford stack and its integral Chow
group is the equivariant Chow group of X [EG98b, Section 5.3]:

A (X)) = AC, (X).

*+g
Let M be a geometric quotient (in the sense of [ME194]) for the action of G on X.
Then M is a coarse moduli scheme for the stack X' by [EGI8b, Corollary 4.26] (and
the converse is also true by [EGI8b, Corollary 4.33]). The following important result
of Edidin and Graham ([EGI8b, Theorem 3| and [Edil0, Proposition 4.42|) allows
to relate the Chow homology of X with the one of its coarse moduli space:

Theorem 2.1.1. Assume that G is a reductive algebraic group acting on a quasipro-
jective variety X so that the action is locally proper and let M be a geometric quotient.
There is an isomorphism of graded Q-linear spaces

7ATG : A*(M)Q = AG (X)Q (22)

*+g

Consider the quotient map © : X — M. Then the isomorphism 7g maps the class
of a subvariety V]| into the class og(m (V) - [x ' (V)]g. In particular 7g|M] =
oc(X)[X]e-

Remark 3. Notice that a DM stack doesn’t admit a scheme as a coarse moduli space
in general. Here we are assuming X does.

A simple manipulation of this result shows that it also holds equivariantly. This
is basically the content of [[{ril3, Proposition 3.1] which we prove here to remain a
bit more self-contained and to establish notation.

Theorem 2.1.2. Assume that G is a reductive group of dimension g acting in a
locally proper way on a quasiprojective variety X and let m: X — M be a geometric
quotient. Let H be another reductive group of dimension h acting on X and com-
muting with G, so that the action descends to the quotient M. Then there is an
isomorphism of graded Q-linear spaces

TGxH,H Af(M)Q — AGXH(X)Q

*+g

Given three groups G, H, K acting on X so that
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1. The action of G x H is locally proper,
2. G, H, K commute with each other,

3. there is a geometric quotient X — M for the G-action and one M — N for
the induced H-action, so that together they give a geomelric quotient X — N
for the (G x H)-action,

then the compatibility condition
7ATG><H><K,H><K o ﬁHxK,K = 7%G’><H><K,K

holds true. Moreover g1 = Tg as described in the previous Theorem 2.1.1.

Proof. All the Chow groups in this proof are with rational coefficients. First of all
we define oy . Fixed £ € N we can pick a representation Vy of H having an
open subset Uy over which H acts freely and such that the codimension of Vy\Uy
is greater than n — k. Then, by the definition of equivariant Chow groups, we notice

that AfXH(X) ~ Affd[i{m(VH)(X x Up) for all j. Now the actionUof GxHon X xUyis
XUH

with finite stabilisers and we have a geometric quotient in MT, which by Theorem
2.1.1 gives the isomorphism appearing as the lower horizontal arrow in the diagram

A (M) e AT (X)
canonical isol lﬂat pullback (23)
MxU TGxH GxH
Akt dim(Ugr)~h ( H H) / Ak+dim(UH)+g(X x Up)

We define g« g g to fit in the diagram above, which makes sense since all the other
arrows are isomorphisms. It’s easy to show that this doesn’t depend on the choice of
the representation Vy and that 7 ; = 7g. First we prove the compatibility in the
case where K = 1, where the relation we want to prove reads

TGxHH O TH = TG. (2.4)

Here we write X/G for M and X /(G x K) for N to make the argument easier to
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follow. Consider the following diagram

flat
AGXH(X) pullback AGXH(X % UH)

TGxH

canonical

AH(X/G) iso \ A((X/GI_)IXUH)

where the right square, whose arrows are isomorphisms, commutes by definition,
while we want to prove the commutativity of the left triangle. We can do this by
proving the commutativity of the full diagram, and we start by giving names to the
corresponding morphisms

X «—— X x Uy
X

/GXH
GxH
NG

X/GyxU
X/G (/I){H

Now notice that by the explicit description of the maps 7 given in Theorem 2.1.1,
we are left to proving that given a subvariety W of X /(G x H) the following equality
holds true:

(T W) x U N
p! (%) — Wcle(W) x Uy,

which is obvious. The general case, with K # 1, follows by considering the action
G x H x K —~ X x Uk and applying (2.4) for the groups G, H x K. ]

Remark 4. Notice that, if X is smooth, this result endows the equivariant Chow ring
of the possibly singular geometric quotient M with a product induced by 7gxm .
We will call this the stacky ring structure on A”(M). Notice this is not intrinsic of
M but depends on its presentation as a geometric quotient.

The maps we just discussed will play a fundamental role in what follows, so we
give them a name:
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Definition 2.1.4. Assume that G x H acts on X so that G acts with finite stabilisers
and let M be a geometric quotient for the G-action. The morphism 7gymg g of
Theorem 2.1.2 is called H -equivariant ascent map for the action. Its inverse, denoted
with CszH,H, is called descent map.

These maps satisfy many good properties. For example they behave well with
respect to proper pushforwards:

Proposition 2.1.1. Let X, Y be quasiprojective varieties with a G x H action so
that G acts in a locally proper way. Assume they admit geometric quotients X — M,
Y — N and consider a proper G-equivariant morphism f : X — Y inducing a proper
morphism f : M — N. The following diagram commutes:

X I X
AGH(X)q —= AT (Y)q

TAFGXH,HT TTA"GXH,H

AH(M)q —5— AH(N)q.

Proof. This is the content of Proposition 11 in [FG98b], which can be extended to
the H-equivariant case by applying it to the products X x Uy and Y x Uy. O
They are also compatible with the change of group homomorphisms:

Proposition 2.1.2. Assume that G is a reductive group acting on a quasiprojective
variety X wn a locally proper way and let m : X — M be a geometric quotient. Let H
be another reductive group of dimension h acting on X and commuting with X, so
that the action descends to the quotient M. Given a group homomorphism K — H
the following relation holds true

Taxkk © (Gx K -G x H)* = (K - H)" oftgxn,n-

Proof. The proof follows by the commutativity of the diagram

A((X/GI){XUH)Q RGxH X AGXH(XX UH)Q

(GXxK—>GxH)*

~

o* AGXK(X X UH)Q

flat pullback

~

A ((X/G)}U”XUK)Q Tty AOK(X X Un % Urq
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where ® is just the flat morphism (2.1) used to define the change of group homomor-
phism. The commutativity is immediately checked by using the explicit description
of the morphisms 7 given by Theorem 2.1.1 and the description of the change of
group homomorphism given in point 3 of Lemma 2.1.2. By fitting this diagram in
the middle of the two diagrams (2.3) defining 7gxp g and Texx x we immediately
see that the composition of the vertical arrows on the left is (K — H)*, while the
composition of the vertical arrows on the right is (G x K — G x H)* by using point
1 in Lemma 2.1.2. O

Finally, we can use the descent isomorphism CZGXH,H to define the degree operation
on DM stacks of the form X = [X/G]:

Definition 2.1.5. Assume that G is a reductive group acting in a locally proper way
on a quasiprojective variety X and let 7 : X — M be a proper geometric quotient.
Let H be another reductive group of dimension A acting on X and commuting with X,

so that the action descends to the quotient M. Given a class z € A (X) = AS}(X)

we define its H-equivariant degree as degy(z) := deg(dgwm.u(2)).

2.2 Some geometric invariant theory.

References for more background on GIT are the original book [MFIX94] by Mumford,
Fogarty and Kirwan and the notes [Hos15] of Hoskins and [Tho05] of Thomas, which
also explore the relations with symplectic reduction.

Consider a reductive algebraic group G acting on a quasiprojective variety X. A
G-equivariant line bundle £ on X is called a linearisation.

Definition 2.2.1. A point x € X is called semistable if there is an invariant section
s € HY(X,L®")Y for some n > 0 so that s(x) # 0 and the open subscheme {s # 0}
is affine. It is called stable if the stabiliser G, is finite and there is such invariant
section s so that s(z) # 0, {s # 0} is affine and G - x is closed in {s # 0}. We will
denote the semistable locus with X (G)* and the stable locus with X(G)*. If the
semistable locus coincides with the stable locus we will say that the linearisation £
is reqular.

Notice that this condition on {s # 0} being affine is always satisfied, for example,
in the case of ample line bundles on projective varieties or for the trivial line bundle
on an affine variety. Given such data, Mumford [MI'K94] showed that there is a
good quotient

X* 5 X//G
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with quasiprojective target (see for example [Hos15, Section 5.5]). We will only focus
on the case in which X is a closed subvariety of P® x A’ and the linearisation £ is
the restriction of O(1) carrying some equivariant structure. Notice that this bundle
is ample, meaning all nonvanishing loci of sections are affine. We are now interested
in a particular version of the Hilbert-Mumford numerical criterion for checking if
a point x € X is semistable. As kindly pointed out by Johan Martens, this is a
particular case of the main result of [GHH15]. We keep the proof here as it is quite
brief and recaps the techniques that King used to prove the analogous result for
affine varieties:

Proposition 2.2.1. Assume that X admits a G-equivariant closed embedding in
P2 x A® for some a,b = 0. Let O(1) be a linearisation of the action on P*. A point
x € X is semistable with respect to the pullback of O(1) if and only if, for every
homomorphism X : C* — G so that the limit T := lim;_,ot - x exists, the weight of
the C*-representation O(1)z given by A, denoted with (X, O(1)z), is non-negative.

Proof. Since the embedding of X in the ambient space is closed, in order to check
the semistability of € X we can check the semistability of z € P* x A’. Here the
proof of King’s analogous result for affine varieties [I[{in94, Section 2| goes through
without modifications. More precisely, let & € A%*! x A? be a point lying over z. From
the definition and using the fact that G is geometrically reductive (more precisely
[Hos15, Lemma 4.29]) it’s easy to see that x is semistable if and only if G - & doesn’t
intersect O x A’. By the fundamental theorem [Kem78, Theorem 1.4, saying that
any closed G-invariant subset of a representation meeting the closure of a G-orbit
also meets the closure of the orbit of a 1-parameter subgroup A of GG, we obtain that
x is semistable if and only if, for every l-parameter subgroup A € x(G)" so that
lim; ,oA(t) - & exists, then this limit is not in O x A’. Then the conclusion follows
as in the classical Hilbert-Mumford theorem, as we now show. Consider a point
r = (y,2) € P* x A’ and pick a lift & = (§,2) € AT x AP,

e First we assume that x is semistable. Let A be a 1-parameter subgroup and
assume that the limit lim;, ,o A(¢)(y, z) exists. Diagonalise the action on the
projective space so that \ acts on A®*! as (t%yq, ..., t%y,). Consider the limit
lim;_,oA(¢) - g. We have three possibilities:

1. This limit doesn’t exist, which means that there is an index ¢ so that
U; # 0 and d; < 0. Since the Hilbert-Mumford weight is the opposite of
the minimum of the d; so that y; # 0, we find that the Hilbert-Mumford
weight is positive.
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2. This limit exist and it is nonzero, which means that there all indices 7 so
that y; # 0 satisty d; = 0. Here we find that the Hilbert-Mumford weight
is zero.

3. The limit exists and it is zero. This is impossible since otherwise the limit
@ = (9, 2) would be in O x A’, contradicting the semistability of z by the
first part of the proof.

e The converse is completely analogous.
m

Notice that this result is not true for general quasiprojective varieties. Luckily,
the class of varieties we consider is closed under the operation of taking quotients:

Lemma 2.2.1. Let T, S be two tori acting on P*x AP and consider a T x S-equivariant
structure on the pullback of O(1). The quotient (P* x AY)/T by T embeds into the
product of a projective variety and an affine space.

Proof. For these varieties, by definition the GIT quotient is built as

(P* x A") /T ~ Proj (@ HO(P® x AL, O(n))T>

n=0

and the graded ring @, ., H°(P* x A*, O(n))" is finitely generated over C, being
the invariant functions on O(—1) x A®, or in other words invariant functions on the
corresponding representation A%l x Ab. In particular, this ring is finitely generated
as an algebra over its degree zero part H°(A’, Ou)T and we can pick generators
S0, - - -, Sn, (We can even assume they are of the same degree, since Veronese subrings
induce the same projective scheme). Then we have the following surjection given by
evaluation of z; at s;

H(A*, Op)" @ Clao, . .., 2] = @ H (P x A, O(n))"

nz0
which in turn induces the closed embedding of the quotient variety into the product
P x Spec(HO(A®, Op)T). O
2.2.1 Kirwan maps.

Here we express the results on descent maps, especially those on the Chow groups
of quotient varieties, in the framework of geometric invariant theory. Consider a
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reductive algebraic group G acting on a variety X via a closed embedding into
P2 x Ab, together with a regular linearisation G —~ £. In particular, the action of G
on the semistable locus X (G)*® is locally proper by point 3 in Remark 2.

Definition 2.2.2. The composition
ro t AS(X) 5 AS(X(G)™) 5 A(X)G)

is called the Kirwan map for (G, X, L). The second arrow is the descent map de =
75" of Definition 2.1.4.

Assume that an additional group H acts on X, commutes with G' and extends to
an action on the linearisation £. Then we have the H -equivariant Kirwan map

ran t ACH(X) S ACH (X (G)) S AT(X /).

Remark 5. Notice that since the actions of G and H commute the G-semistable locus
is H-invariant. Assume indeed we have a G-invariant section s € H°(X, £&")¢ and
that s(x) # 0 for some point z € X. Then, for every h € H we can consider the section
h~'-s, which is G-invariant and doesn’t vanish on h-z since h-s(h-x) = h-s(x) # 0.

Finally, assume that G' x H acts on X, via an embedding in P* x A®, and that £
is a regular linearisation for the action. Assume that K is an additional group acting
on X whose action lifts to £. The (G x H)-linearisation descends to the intermediate
quotient by G and we obtain H —~ L/G, where £/G is the induced bundle on the
quotient X //G. We have the following straightforward compatibility results:

Lemma 2.2.2. There is

o compatibility of linearisations, namely (X //G)(H)** = X (G x H)*//G as open
subschemes of X//G and there is a canonical isomorphism X//(G x H) ~

(X//G) )/ H.

e compatibility of Kirwan maps, namely
TGxHxK,K = THxK,K © TGxHxK HxK-

Proof. The first result is just the fact that quotients can be built in two steps. We
show the second statement in the case of K = 1, the general case is proven in an
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analogous way. Consider the following diagram:

AGXH(X) it AGXH(X(G')SS) L) AGxH (X(G x H)*®)

TGxH,H TGxH,H
TGxH,H

X(G)* * X(GxH)>
AT (H§7) A ()

Tl

X(GxH)s
A( (G><H) )

where the horizontal maps are pullbacks via open embeddings. Commutativity of the
triangles is true by definition while the square commutes by the explicit description
of the ascent maps 7 given in Theorem 2.1.1. Then Theorem 2.1.2 ensures that the
composition of the arrows in the first row and of the inverses of the arrows in the
last column coincides with rgyg. O

Remark 6. Since we are allowing the actions to have nontrivial (but finite) stabilisers
on the semistable locus, it’s possible that the linearisation £ only induces a bundle
on the intermediate quotient stack [X(H)*/H| and not on the quotient scheme
X//H. Luckily, in this case there is a positive integer n € N so that £" descends
to a line bundle on the GIT quotient X //H. Notice that taking tensor products of
the linearisation doesn’t change anything: the semistable locus is the same and the
quotient is the same too.

2.3 Equivariant Chow cohomology.

The Chow cohomology groups A% (X) are constructed from the equivariant Chow
homology groups exactly as the classical Chow cohomology is built from Chow ho-
mology ([Ful13], Definition 17.3). Elements ¢ € A%(X) are collections of homomor-
phisms c(t) : AY(Y) — AS (Y), one for each G-equivariant morphism ¢ : Y — X
which are compatible under flat pullback, lci pullback, proper pushforward etc. As
for classical Chow cohomology, A% (X) is naturally a ring with respect to the product
v induced by composition. Moreover, there is a clear action of the Chow cohomology
on Chow homology, and we denote it by

NALX)@ A (X) - A7 (X) :© cnZ:=c(1x)(2).
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In particular this ensures that G-equivariant Chow homology groups A% (X) are
modules over A%(X) and therefore over A%(pt). Corollary 2 in [EGI8D] ensures
that, under the hypotheses we are working with (X separated and in characteristic
zero), the Chow cohomology groups can be computed straight from the "homotopy
quotient approximations" we introduced above: A%(X) ~ A¥(Xq ). As a corollary
of this and of classical Poincaré duality ([L'ull3], Corollary 17.4) applied to X¢ ,
G-equivariant Poincaré duality holds true:

Theorem 2.3.1. Let X be a smooth quasiprojective variety of dimension n with a
G-action and let k € Z. The Poincaré homomorphism

A’é(X)—)AS_k(X) e en[Xl]e
1 an 1somorphism.

Almost all the constructions we performed in the context of Chow homology can
be translated in the context of Chow cohomology. For example, pulling back along
the same morphism (2.1) defines a change of group homomorphism

(H = G)* : Ag(X) — Ay (X)

in cohomology which still satisfies all the relevant functoriality properties with re-
spect to group homomorphisms and equivariant morphisms of varieties, giving an
analogous of Lemma 2.1.2. Edidin-Graham’s result on the homology of quotients
still holds in cohomology [FG98b, Theorem 4]:

Theorem 2.3.2. Assume that G is a reductive algebraic group acting on a quasipro-
jective variety X so that the action is locally proper and let M be a geometric quotient.
There is an isomorphism of C-algebras

T AN(M) S AL(X) (2.5)
which satisfies T(c ny) = m*cnam for all ce A*(M) and y € A, (M).

With the aid of this result one can prove that if X is smooth then the Poincaré
duality morphism for M, namely ¢ — ¢ n [M] which is well defined being M irre-
ducible, is an isomorphism of C-linear spaces even if M is singular! This endows
A.(M)¢ with a canonical ring structure, which is independent from the realisation
of M as a coarse moduli space. We make this more explicit with the following
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Lemma 2.3.1. If 0g(X) is the order of the stabiliser of G on X at a general point,
the following diagram of C-linear spaces is commutative

A (M) ——— A5(X)
cl—)Cm[M]l lo—m‘g(X).(cm[X]G)
Agim(ary—« (M) —T A (X)_*(X)

dim

In particular the Poincaré duality morphism for M is an isomorphism over C (not
over Z1).

Proof. By the Theorems 2.1.1 and 2.3.2 we have that for all c e A*(M)
T(en[M])=7"cna[M] = og(X)(r*c n [X]q).
[

Remark 7. Assume that a scheme M appears as a geometric quotient of a smooth
quasiprojective variety X by a locally proper action of a reductive group GG. There are
two ring structures on A, (M) that we can consider. (1) The canonical ring structure
induced by the one on A*(M) via the Poincaré duality isomorphism ¢ — ¢ n [M],
which is well defined by the previous lemma. If M is smooth then this is the usual
ring structure given by the intersection product. (2) The stacky ring structure of
Remark 4, induced by the isomorphism 7, which is extrinsic to M and depends on
the presentation as a geometric quotient. The previous result shows that these two
structures are related by a twist by og(X).

2.3.1 Equivariant cohomology of quotients and Kirwan maps.

We start with the following

Remark 8. The morphism 7* of Theorem 2.3.2 is defined by Edidin and Graham at
the beginning of the proof of Theorem 4 [EG98h, Page 25|. After unravelling the
definitions, this coincides with the composition

(G-D*

A*(M) AL(M) ™5 A%(X)

described by using the change of group homomorphism and the G-equivariant pull-
back through the quotient map.
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Assume now that G is a reductive group acting in a locally proper way on a
quasiprojective variety X and let 7 : X — M be a geometric quotient. Let H be
another reductive group acting on X and commuting with G, so that the action
descends to the quotient M.

In the same way we did in Theorem 2.1.2, by using Theorem 2.3.2 applied to the
mixed spaces X x g U, we can prove that if H is another group acting on X so that
the action commutes with the one of GG, then the composition

et A(M) I Ar (M) T A (X)
is an isomorphism, compatible with the one in homology via the H-equivariant ver-
sion of the Poincaré duality diagram of Lemma 2.3.1:

(M) — S Ax (X))

A
cen[My lCHgG(X).(m[X]GxH) (2.6)

In this way we can also define the inverse, called again descent map
doxm : Afn(X) = Af(M).

In the situation of section 2.2.1, where GG acts on X with a regular linearisation L,
we can define Kirwan maps

# # ss\ doxHH *
o Aba(X) = AG (X (G)®) =25 AR(X)/G)

by precomposing the descent map with the restriction to the semistable locus. By
using the previous definition of degree of an equivariant class in the Chow group of
X = [X/G], we can recall the definition of integral of an equivariant Chow cohomol-
ogy class:

Definition 2.3.1. Assume that G is a reductive group acting in a locally proper way
on a quasiprojective variety X and let 7 : X — M be a proper geometric quotient.
Let H be another reductive group acting on X and commuting with G, so that the
action descends to the quotient M. Let X := [X/G] be the quotient stack for the
action. We define the integral of a class o € A} (X) = Al .y (X) to be

L o 1= degy (0 [Xon) = deg (d(e [X]rr))
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2.3.2 Localisation for torus actions.

Consider a torus 1" acting on a quasiprojective variety X. The localisation theorem
of [EG98¢] shows that the pushforward along the inclusion of the fixed locus X7 is
an isomorphism of T-equivariant Chow groups after localisation.

Theorem 2.3.3. Consider the inclusion of the fized locus i - XT < X and consider
the multiplicative system S < AT « (pt) of homogeneous elements of positive degree.
Once we set Q := S~PAx(pt), the pushforward

bt ATXT) @as oy @ = AT(X) ®ar () Q
1S5 an isomorphism.

Remark 9. Notice that this is an isomorphism of modules over the equivariant co-
homology of the point. This is a polynomial ring by Example 2.1.1 and equivariant
Poincaré duality.

Remark 10. The formal reason why tensoring by Q is necessary comes from the map
14 fitting into the long exact sequence of higher Chow groups:

co AT(X\XT, 1) - AT(XT) 25 AT(X) - AT(X\XT) - 0.

According to Proposition 3 in [EG98¢]|, for each m, there exists an element f,, €
S that annihilates the module AT(X\X7 m). This implies that the isomorphism
remains valid without having to invert the entirety of S; it suffices to invert just the
product fo- fi. This means that we can always think of Q as the localisation A%(pt)
for some appropriate f.

This theorem has an important corollary in the case where X is a smooth variety,
since in this case the fixed locus X7 is regularly embedded and there is an explicit
way to invert the morphism i,:

Theorem 2.3.4. Assume that T acts on a smooth quasiprojective variety X. The
Buler class e"(Nxr/x) is an invertible element of AT(XT) ®ux(py Q. Then the
pullback along the reqular embedding i : X7 — X satisfies i*i.a = o - eT(NXT/X)
and therefore it is a (ring) isomorphism.

Remark 11. The quantity on the right-hand side of the previous equality should be
read as a sum over the connected components of the fixed locus.

We will see later in Section 4.3 that it is not strictly necessary for X to be smooth
in order to explicitly invert the isomorphism 7,. If X is the geometric quotient of
a smooth variety by a reductive group action, this approach still works, even if the
fixed locus is not regularly embedded.
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2.4 Equivariant K-theory.

Given a variety X with the action of an algebraic group G we will denote with K¢ (X)
the Grothendieck group of G-equivariant vector bundles on X. We will also denote
with K%(X) the Grothendieck group of G-equivariant coherent sheaves on X.
Remark 12. Notice that the equivariant K-theory is not the K-theory of the mixed
spaces X xqg U. In this, K-theory differs from cohomology.

Notice that Kg(X) forms a ring under direct sum and tensor product, while
K% (X) is a Kg(X)-module. Notice that if X is smooth then the two coincide, since
all coherent sheaves are perfect on smooth varieties.

Example 2.4.1. The G-equivariant K-theory of a point is isomorphic to the ring
R(G) of representations of G.

As in the nonequivariant case there is the Chern class map ¢ : Kg(X) — A%(X).
In particular we have the following

Definition 2.4.1. Let E be a G-equivariant vector bundle on X. For every k, the
k-th equivariant Chern class of E is defined as the k-th Chern class of the bundle

ExqU— X xqU
where U is a suitable representative for the classifying bundle of G.

In [EGI98b, Section 2.4] it is proven that the one above is a vector bundle over
X x¢ U and that the resulting class doesn’t depend on the choice of U.
In [EG99], Edidin and Graham describe the Chern character

0 rk(E)
ch?: Ko(X) - [ [AL(X)  ch¥(E) = ) e
k=0 i=1
and the Todd class
o0 rk(E) .
Td: Ko(X) — | [AL(X)  Td9E) := .
0= [[400 1@ =[]
where z1,..., 7, € AL(X) are the equivariant Chern roots of E. If X is a smooth
projective variety they satisfy the equivariant Hirzebruch Riemann-Roch theorem
ch” (x“(X,E)) = J ch“(E) u Td%(Tx) (2.7)
X

as shown in [£G99, Corollary 3.1]. Sometimes we will use the notation Td%(X) to
denote the Chow homology class Td%(Tx) n [X]q.
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2.4.1 Descent maps and Kirwan maps.

Assume that G x H is a reductive group acting so that G acts freely on X and there
is a geometric quotient X /G. Exactly as in the case of cohomology, the composition

(GxH—H)*
-

Ku(X)/G) Kowu(X//G) ™ Kaen(X)

defines an isomorphism, where 7* is the pullback through the quotient map and
(G x H— H)* is defined, at the level of vector bundles, by considering the action
of G x H on a H-equivariant bundle E induced by G x H — H. The inverse is the
the descent map in K-theory

dexmn : Kpxa(X) = Ku(X//G).

It satisfies the following compatibility conditions with the descent maps in (co)-
homology:

Lemma 2.4.1. Let E be a (G x H)-equivariant vector bundle on X. Given a number
k, set d := daxu.n we have

e (d(E)) = d(c;”"(E))

and, for every x € ACH(X),

(e (E) nx) = ¢/ (d(E)) n d().

Proof. The first part follows from the statement regarding the Chern character in
[[ril4, Lemma 5.5]. The second statement follows from the first one and Poincaré
duality (2.6). O

Indeed d is the inverse of the pullback through the quotient map and the property
follows from the functoriality of pullbacks and Theorem 2.3.2. The following is the
equivariant version of [Fdil2; Equation (8)]:

Lemma 2.4.2. For a K-theory class E € Kgxg(X)

! (M (X)/G d(E))) = L//Gd (k" (E)Td" (Tx — ).
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Proof. By using the equivariant Hirzebruch-Riemann-Roch formula (2.7) we can
write

e (P (X)/G.d(E)) = L//G e (d(E))Td" (Tx )

_ L//G ch (d(E))Td" (d(Tx — g))
- JX//Gd (ch™(E)Td"(Tx —g)) .

Here we have used that T'x y¢ = d(Tx — g) where g is the trivial bundle on X having
as fibre the adjoint representation of GG, which follows from the short exact sequence

O—>g—>TX—>7r*TX//G—>O

where 7 is the quotient map. ]

In the GIT framework of section 2.2.1 we can define the K-theoretic Kirwan map
r Kawp(X) = Kaxn(X(G)®) S Ky(X//G)

as the composition of the restriction to the semistable locus and the descent map.



Chapter 3

The algebraic cut.

The algebraic cut, introduced by Edidin and Graham in [EG98a], translates the tech-
nique of symplectic cutting of Lerman |Ler95] in the algebraic geometry framework.
Given the role played by this construction in the geometric proof of the localisation
formula by Jeffrey and Kirwan, which is a central focus of this thesis, we will devote
significant attention to understanding this geometric construction. The algebraic
cutting technique is more intuitive to understand within its original symplectic con-
text. Here, we’ll provide an informal overview of this construction to lay the ground
for understanding the technical aspects that will be discussed later on in the section.

Consider a symplectic manifold X with a Hamiltonian S action and an associated
moment map g. A classic example is the sphere S? rotating around the z-axis, where
the y is the height function:

\&

32
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Choose a value h € Imy such that the action is free on the level set u=1'(h). We are
interested in the quotient Xj, := p~1(h)/S, known as the Hamiltonian reduction of
X at h, which parameterises all orbits at the given height h. The symplectic cut
construction provides a method to embed this quotient into a specially constructed
ambient space. The process involves:

1. considering the manifold X,
2. cutting it at the level h to obtain y=*((—o0, h]) and

3. taking the quotient of the boundary p~'(h) by S*.

The resulting space X<, is the symplectic cut of X at the value h and remains a
symplectic manifold with a residual Hamiltonian action of S*:

L159

In this new space, the connected components of the fixed locus are:

1. the embedded symplectic reduction X; and

2. the components F' X5 of the fixed locus of X that map, via u, to values
smaller than h.

By applying the Atiyah-Bott localisation formula [AB84| to this master space—as
we will do algebraically in Section 4—we can express integrals on the symplectic
reduction Xy, in terms of integrals on the connected components of the fixed locus of
X.

In this section we recall how to see the symplectic cutting from a purely algebraic
point of view.
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Contents of the section.
The section is structured as follows

e We first recall some basic results on the momentum polytope of a closed sub-
variety of P® x A’ endowed with a torus action and a linearisation.

e In particular, we will discuss the wall and chamber structure of this polytope.

e We study the construction of the algebraic cut in the case where the torus is
of rank one. We describe the hypotheses that make this space projective and
smooth and we study its fixed loci under its canonical C*-action.

e We then specialise the results on the algebraic cut to a particular situation.
Consider a torus T acting on a smooth variety Y, via an equivariant closed
embedding into P x A®, together with a regular linearisation £. We will study
the properties of space obtained by selecting a splitting of T ~ 7" x C* and
applying the algebraic cut construction to the induced action C* —~ Y //T on
the intermediate quotient.

3.1 The momentum polytope.

Consider a variety X, admitting a closed embedding in a product P® x A’ with the
action of a torus T together with a linearisation £. In this section, we will exam-
ine some fundamental results concerning the structure of the momentum polytope
associated with this setup. A comprehensive reference for this discussion is [DH98],
which provides an in-depth analysis of the case for projective varieties. Another rel-
evant reference is [5ja98|, where the algebraic approach to the momentum polytope
(which we will follow) is related to the standard symplectic one, for which many of
the following results are classical. However, since the essential results we require can
be readily derived from the Hilbert-Mumford criterion, we will present all necessary
proofs to ensure the discussion remains self-contained.

Given a character ¢ € x(T') := Hom(7, C*) (thought as a 1-dimensional represen-
tation of T, hence an equivariant structure on the trivial line bundle on X), we can
consider the twisted linearisation £ ® 1. We denote with X (7")¥™ the semistable
locus with respect to L ® 1.

Definition 3.1.1. We call momentum polytope A for the data (X, L) the subset of
the character space x(T)q := x(T) ®Q given by characters ¢ such that the following
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Hilbert-Mumford type of inequality holds true:
dJre X : YA e x(T)" such that T := PH& A(t) -z exists, (N, Liz) = (N, ).

In this case we say that x is v-semistable with respect to L.

Notice that if v is an integral character, then v belongs to A if and only if
the semistable locus X (T)%* is nonempty, since the condition above is exactly the

Hilbert-Mumford criterion. We now characterise in a similar way the rational points
of A:

Lemma 3.1.1. Let ¢p € x(T)q be a character and let n > 0 be a natural number
so that ni is integral. Then, for every x in X, the point x 1s -semistable with
respect to L if and only if it is ni-semistable with respect to L. In particular, the
character 1 belongs to A if and only if there is x € X that is ni-semistable with
respect to the linearisation L&".

Proof. We can check this on P? x A’ with a fixed linearisation induced by an action
on the total space of the pullback of O(—1):

t- (370, s Tay Y1y - - 7yb) = (¢0(t)x07 s >¢a(t)xa7 yl(t)yla cee ,Vb(t)yb), (31)

where ¢;,v; € x(T') are characters. This induces an equivariant structure on O(n),

77777

nate corresponding to the monomial 20 - - - zie, then t-y;, . = ¢o(t) - da(t)Yso... .
while the action on A’ stays the same. Fixed a point z, Hilbert-Mumford ensures
that its ¢)-semistability with respect to O(1) is equivalent to the condition

VA e x(T)Y such that T := Pr% A(t) - z exists, m_ii10<)\, by <\ Y).

By multiplication by n this is equivalent to

VA e x(T)” such that T := lim A(¢) - x exists, ,‘mi;rél()()\, ng;y <\ n) (3.2)

t—0
and notice that
4mi£0</\7 ng;) = min (O\, Z kigi) over all k such that Z ki = n) ‘
T4 12 #0 By 70

This shows that (3.2) is the Hilbert-Mumford numerical criterion for niy-semistable
point with respect to O(n), concluding the proof. O
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One immediate and important property of the momentum polytope is its con-
vexity. This was proven in the symplectic context by Atiyah [Ati82] and Guillemin
and Sternberg [GS82] in the compact setting. The algebraic analogue for projective
varieties was considered in [Bri87|. The case of quasiprojective varieties was studied
in the symplectic category in [HNP94].

Lemma 3.1.2. The momentum polytope A is convez in x(T)q.

Proof. A simple application of the Hilbert-Mumford criterion. Pick a point z € X
which is ¢-semistable and (i) + m¢)-semistable. If A € x(T')¥ is such that the limit
Z = lim; o A\(t) - = exists, we have that for all k£ € [0, m], if we denote with ¢ the
quantity (A, Liz) + (A, ), then the Hilbert-Mumford weight ¢ + k() ¢) is always
contained in between the numbers ¢ and ¢ +m{\, ¢) which are both non-negative by
the semistability hypothesis. O

How does the momentum polytope change when we restrict to a smaller torus?

Lemma 3.1.3. Let T act on X with linearisation L and consider a subtorus T — T.
A point x € X is T-semistable with respect to L if and only if there is a character
€ € x(T)q orthogonal to T such that = is &-semistable with respect to L:

X = ) xme

¢ex(Ma
§r=0

In particular, the momentum polytope A for the T-action and the induced lineari-
sation coincides with the restriction to T of the momentum polytope A for the T-

action. In other words, if we denote with - the morphism x(T)q — x(T)q we get
that A = A\T

Proof. It’s enough to prove the statement for X = P% x A® and T ~ T @ C* acting
diagonally. Clearly if z € X (T)%* then it also belongs to X (T')* by Hilbert-Mumford.
On the other hand pick a point (x,y) € X (T)*. Then there is a section X2 .. X% ¢
H° (P*,O(n)) and a monomial y;* - - - y;* in the coordinates of A’ such that

F(X,y) o= (XG0 Xy - 5

is a T-invariant function on the total space of the pullback of O(—n) not vanishing
on a lift of (z,y). Being f monomial, f is also C*-equivariant of some weight k:
f(s-X,s-y) = s*f(X,y). This in particular shows that f € H(X,O(n) ® k¢)T
where £ : T — C* is the character given by the splitting, hence (x,y) € X (T)k*. O
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We get, as an immediate consequence, the following

Corollary 3.1.1. Assume that L is a linearisation for T —~ X and that the corre-
sponding momentum polytope is contained in A\ for some X\ € x(T). Then X\ acts
trivially on X. In particular, if L admits a stable point then the corresponding poly-
tope has nonempty interior.

Proof. We can assume that the origin belongs to A, otherwise we can simply translate
by changing £. First of all, it is immediate to show that if C* acts on P? x A’ with
a linearisation O(1) such that the corresponding polytope has only one point, then
the action is trivial. By taking the image A\(C*) and the connected component of the
identity, we can assume that \ determines a subgroup A : C* < T, and therefore an
action C* — X that carries the induced linearisation from £. Lemma 3.1.3 ensures
that the momentum polytope for this action is Ac«, which we know coincides with
the origin, hence this action is trivial. Assume that £ admits a stable point. Then,
being A convex, if it has empty interior then it is contained in a hyperplane and
hence there is a C* acting trivially on X, which is a contradiction. O]

We can also prove a result in the converse direction, obtaining the following

Proposition 3.1.1. Let S be subtorus of T and let S* < x(T)q be the set of char-
acters vanishing on S. Then S acts trivially on X if and only if the momentum
polytope of X is contained in ¢ + St for some ¢ € x(T).

Proof. We can assume, up to twisting £ with a character, that the origin belongs
to A. In this case we can prove the result for ¢ = 0. The "if" part follows from an
iterated application of the previous Corollary. On the other hand if S acts trivially
on X we can consider a character ¥ that doesn’t vanish on S. First of all notice
that since 0 € A we have that the weight of the S-action on all the fibres of L is
trivial, so (A, L) = 0 for all A€ x(5)" and z € X. Assume by contradiction z is a
y-semistable point of X. For all A € x(5)", we clearly have the existence of the limit
lim;,o A(t) - « which is z itself. The Hilbert-Mumford weight for this is the pairing
(A, 1) and by semistability this is non-negative. Consider the other cocharacter —\
for which we obtain the weight —(\, ) which is again non-negative by semistability,
thus proving (\, 1) = 0. Since ¢ doesn’t vanish on S, this is a contradiction. O

Here we introduce one important open subscheme of X which will be useful later.
We work in the case of rank 1 where T'= C* and we identify x(C*) with Z via the
standard n — t".
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Definition 3.1.2. Assume C* acts on X with a linearisation £. We denote with X~
the open subscheme

X=X
PeA
P<0

We can give a characterisation of this scheme in terms of limits. We need an
auxiliary lemma first:

Lemma 3.1.4. Let C* act on X with linearisation L. For every fized point pe X~
denote with w, € Z the character of the action on the fibre L,. For every point x € X
admitting both limits

Z:=limt -z and z:=limt ' -z
t—0 t—0

the inequality wz = wy holds true.

Proof. The points in P% x A that can have both limits with respect to A are such
that the whole A-orbit has constant components in A, so we can check this condition
in the projective case. Consider P* with linearisation given by O(1). Indeed consider
the linearisation given by dualising the action on O(—1) given by ¢ - (xq,...,z,) :=
(troxg, ..., 12 X,) for Ng,...,A\q € Z. Then given z = [x¢ : - : 2,] € P* we can
consider the limit 7 for ¢ going to zero. If the coordinate Z; is nonzero then J; is the
minimum among all \; such that z; # 0:

T, 20= X\ =X=min()\; : z;#0).
Analogously for the limit £~1 — 0 we have
z, 70= X = A:=max(\;, : x; #0).

This immediately shows that C* acts on the fibre O(—1)z by the character X and on
O(—1), by the character A\. By dualizing we find that wz = —A = —) = w,. O

Proposition 3.1.2. A point x € X belongs to X~ if and only if, whenever the limit

limt-z =%
t—0

exists, the weight of the action of C* on the fibre Lz of the linearisation is non-
negative.
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Prlro] CxC* CxC” CxC P

[1:0]

Figure 3.1: The momentum polytope and the semistable locus.

Proof. (=) Assume that x € X(C*)¥* for some 1 < 0. Then by the Hilbert-
Mumford criterion we have that if the limit T exists then the weight of the lineari-
sation Lz ® v is non-negative. This is the weight of Lz plus the integer ¢, hence
the first summand is positive. (<) The semistability of x is determined by the other
limit

z:=limt ' .
t—0

If this limit doesn’t exist then the point is semistable for L. If it exists then the
weight of ¢! on L, is either non-negative or negative. If it’s non-negative then x
is semistable for £. If it’s negative, denote this weight by ¢ and , via Lemma 3.1.4,
it’s immediate to check that x is semistable for £ ® 1. m

Example 3.1.1. Consider the action of C* on the projective line X := P! by ¢ - [z :
z1] = [t*zy : x1] and consider the linearisation £ = O(1) dual to the action on
the tautological bundle O(—1) described by (tzg,t 'z1). Notice that the weight of
the action on the fibre of O(—1) over the point [1 : 0] is by the character ¢, while
the action over O(—1).1] is by the character t~!. Dually we see that C* acts with
weight -1 on Ljj1.0) and with weight 1 over Ljjp.1;;. There are many ways to study the
momentum polytope for such linearisation, but the simplest trick is to notice that,
by the Hilbert-Mumford criterion, there is a semistable point for £ ® v if and only
if the weights of the actions on the fibre above the two fixed points, namely —1 + ¢
and 1 + 1, are either of different signs or one of the two is zero. In this way we see
that the momentum polytope is A = [-1,1] € Q =~ x(C*)q (Figure 3.1). Moreover,
we can describe the subset (P')~. In this case all the points different from [1 : 0]
flow, via the action of ¢t — 0, to the point [0 : 1]. The action on the fibre of £ over
[0 : 1] is with positive weight, hence we see that (P')~ = P'\[1 : 0] as in Figure 3.2.
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(o]

Figure 3.2: The example of (P')~ = P'\[1:0].

3.2 The stratification of the momentum polytope.

In this section we will work with the action of an algebraic torus 7" on a closed
subvariety X € P® x A’ admitting a linearisation £. We will also assume that there
is no subtorus of positive rank acting trivially on X. The momentum polytope has
an important stratification:

Definition 3.2.1. Let k € {0,...,dim(7)}. The codimension-k stratum of A is the
subset dxA = A given by characters 1) € x(T)q such that there is a point z € X ¥~
having stabiliser of dimension greater or equal to k.

Notice that the complement in A of the 1-codimensional stratum 0;A only con-
tains, by definition, regular linearisations. Pick A € x(7')¥ and consider the subvari-
ety X* of X fixed by \.

Definition 3.2.2. Let 7" — T be a subtorus of rank k. Consider the fixed locus
X' which is a union of smooth irreducible subvarieties of X. Consider the momen-
tum polytopes for the action of T on these connected components with respect to
the linearisation induced by restricting £. If the momentum polytope for one such
component is of codimension k, we call this a wall of codimension k in A. We will
denote with Wallg(A) the set of all walls of codimension k of A.

Remark 13. Notice that by Proposition 3.1.1 the momentum polytope of such con-
nected components is always contained in a hyperplane of codimension k, which
is a translation of the hyperplane of characters vanishing on 7”. Tt defines a wall
if it is precisely of codimension k, or in other words if the action of T/T" on the
corresponding component of X7 doesn’t admit any nontrivial subtorus that acts
trivially.
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A straightforward application of Luna’s étale slice theorem allows to prove an
interesting property of torus actions:

Lemma 3.2.1. Assume that a torus T acts on X so that X # XT. Every connected
component F of XT is strictly contained in the connected component X° for some
codimension 1 subtorus S < T.

Proof. By Luna’s slice theorem [Dré04, Lemma 5.1| there is an affine open subscheme
V < X containing z and a T-equivariant morphism ¢ : V. — T, X that is étale.
Consider the weight space decomposition

T.X ~ P (T.X),

pex(T)

where the T-action on (7,.X), is by the character p. Notice that at least one nonzero
character p gives a nonzero weight space (1,.X);, otherwise the T-action on V' (and
hence on X) is trivial being ¢ equivariant and étale. Finally consider the closed
subscheme ¢ '((T,X);) of X. This is fixed by the codimension 1 subtorus S :=
ker(p) and has a positive dimensional connected component C' passing through .
Clearly this connected component can’t be fixed by T being ¢ equivariant, hence the
connected component F” of X*° containing both F' and C' satisfies the claim. m

Corollary 3.2.1. For every k € {0,...,dim(T)—1}, every wall of codimension k + 1
15 contained i a wall of codimension k.

Proof. Assume we are given a subtorus 7" < T of rank k + 1 such that there is a
connected component XyT' of X™" with momentum polytope of codimension k+1. By
considering the T"-action on X we can invoke the previous Lemma 3.2.1 to find 7" so
that X7’ XyT". The momentum polytope of X;‘F" contains the previous one but,
additionally, it is not contained in (7”)* by Proposition 3.1.1.Then its momentum
polytope has codimension k£ 4+ 1 and defines a wall of codimension k£ + 1. n

Corollary 3.2.2. The codimension k stratum of A is the union of all codimension
k walls:

@A = U Wi

we Walli(A)

Proof. Clearly a point in a codimension k wall is contained in dyA by definition.
Assume now that 1 is a point of 0yA. Let k be the biggest number such that
¢ € 0pA. Then there is y € X which is ¢)-semistable and fixed by a subtorus 7"
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of dimension k. Consider the connected componentX!" of X”" containing y and
look at its momentum polytope. By Proposition 3.1.1 and by maximality of k, the
momentum polytope of Xg/ is k-codimensional, hence it defines a wall w of A of
codimension k. Every wall of codimension k is contained in one of codimension k,
concluding the proof. O

3.3 Algebraic cuts.

Here we consider the construction of the algebraic cut, originally described in sym-
plectic geometry by Lerman [Ler95], due to Edidin and Graham [EG98a] and we
study it in the cases of varieties with a closed embedding into a product of projective
and affine space. Assume C* acts on a variety X via an embedding into P® x A® and
let £ be a regular linearisation of the action. If Al is the 1-dimensional representation
of C* with weight 1, we consider the additional action

C* ~ X xA : s-(z,2):=(s-2,52).

Consider the linearisation we obtain by pulling back £ via the C*-equivariant pro-
jection X x Al — X. We’ll keep denoting this equivariant line bundle with L.

Definition 3.3.1. The algebraic cut of X at L is the GIT quotient of X x A! with
respect to the linearisation £. We denote it with X, := (X x A!)//C*.

We start the study of X, by describing the semistable locus (X x A!)™.

Lemma 3.3.1. (X x A)* = (X~ x C*) u (X** x 0). In particular, L is a regqular
linearisation.

Proof. We can use the Hilbert-Mumford criterion to study the semistable locus.
First of all notice that the condition for the points of the form (z,0) € X x Al
to be semistable coincides with the condition of z being semistable in X, hence
(X x A1)® A X x 0= X* x 0. On the other hand, a point (z, 2) is semistable if and
only if, whenever the limit
(7,Z) := E}r&t (x, 2)

exists, then the character of the action on £z z) is non-negative (notice we don’t care
about the limit for £~* — 0 since it can never converge being z # 0). The existence
of this limit is equivalent to the existence of the limit 7 for ¢ - x, and the condition on
the weight is equivalent to the character for Lz being non-negative. This, together
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with Proposition 3.1.2, shows that (z,z) is semistable if and only if z € X—. To
complete the proof we have to show that all stabilisers are finite at the semistable
points. On X x C* the action is free by construction, while on X** x 0 this holds
true since L is regular. O

This shows that in our hypotheses X, has at most finite quotient singularities.
From GIT we have the projective morphism

X, — Spec (HO(X AL (’)XXN)C*> . (3.3)

This gives us a simple criterion to check projectivity of the algebraic cut:
Proposition 3.3.1. The following statements are equivalent:
1. the algebraic cut X. is projective.

2. the only global functions f : X — C scaling with non positive weights are the
constants. In other words, every function f € H(X,Ox) satisfying

Ja<0 : f(t-x)=t"f(zx) VteC* VreX
15 constant.

3. the quotient X J/C* is projective and, for every point x € X, the limit limy ot - x
exists.

4. the quotient X //C* is projective and the momentum polytope A is bounded from
below, namely In € 7 such that A < Z-,

Proof. (1 = 2) If f scales with non-positive weight —k then F(z,z) := f(x)z" is a
regular function on X x A! which is C*-invariant and nonconstant. Clearly it stays
not constant on the semistable locus (being it open) and by universal property of
the GIT quotient it factors as

(XXAl)SS—)XC—)C,

which defines a nonconstant function on X, which therefore is not projective. (2 = 1)
We start by studying the ring HO(X x A", Oxya1)C". Clearly HO(X x A', Oxyp) =~
H°(X,Ox)[z] and a function F(x,z) = Y_, fu(x)2* is C*-invariant if and only if

d
Z(fk($)—tkfk(t-l’))zk=0 Vee X, ze A, teC*.

k=0
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This implies that all the f; are equivariant functions scaling with non-positive weight.
Thus condition 2 is equivalent to H°(X x A', Ox ,,1)®" =~ C. This shows that the base
of the projective morphism (3.3) is a point. (2 = 3) By GIT we have a projective
morphism X //C* — Spec(H°(X,Ox)®") and the base is a point, so the domain is
projective. Moreover, consider the closed embedding

X < P® x Ab

and the two projections 7p and m, to the projective and the affine spaces. Notice
that given x € X the limit of ¢ - x for ¢ tending to zero exists in P% x A? if and only
if both limits
%i_r)%t -mp(x) and 11_1[%25 - ma(x)

exist. Notice that the first limit always exists being P® projective, while the second
limit exists and is equal to zero since all the coordinate functions scale with positive
weight. Since X is closed in this ambient space, the limit exists in X too. (3 = 2)
Since X //C* is projective we have that H(X, Ox)®" =~ C. Assume by contradiction
that there is a nonconstant function f on X that scales with negative weight —k.
Then pick x € X so that f(x) # 0. Then the limit must satisfy

Sl ) =ty @

but the limit on the right doesn’t exist, giving a contradiction. (3 = 4) F,..., F
be the connected components of the fixed locus of the action on X. Let ¢ € x(C*)
be such that the weight of the linearisation L, is smaller than 1 for all <. Then, for
all 1) < —1p, the linearisation £ ® ¢ is such that the weight of the C*-action on the
fibre above every fixed point is negative. Since all limits for ¢ — 0 exist, then there is
no @—semistable point. (4 = 3) Assume by contradiction that z is a point such that
the limit for ¢ — 0 of ¢ - x doesn’t exist. Then, given ¢ € x(C*), the ¢)-semistability
of z is determined by the limit z = lim,_,ot ' - 2. If the limit doesn’t exist then z
is y-semistable for all v, contradicting the hypothesis of point 4. If it exists, the
Y-semistability of x is equivalent to the weight of £, ® 1) being non-positive, which
clearly happens for all ¥ sufficiently negative, again contradicting the hypothesis
4. O

Notice that the algebraic cut has a residual C*-action coming from the action on
X. Indeed we can consider the action of the 2-dimensional torus

CixCh~XxA : (s1,8) (x,2):=(s1- 1,55, '2)
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and realise that X, is the quotient by Cj, so that CJ still acts on it. Denote with
(X x AMopp the variety X x A! endowed with the action of C¥ x C§ obtained by
exchanging the roles of s; and s, in the definition above. We can explicitly describe
the action on X, in terms of the original one on X:

Proposition 3.3.2. There is a closed embedding i : X //C* — X. (possibly non
reqular if stabilisers are nontrivial) induced by the C§ x Ci-equivariant embedding
I: X% x0 — (X x AY*. The resulting divisor is a fized locus of X. and its
complement is given by the open embedding A\ : X~ — X, induced by the C7 x Cj-
equivariant embedding

A (X7 X C¥)gpp 25 X~ x CF > (X x A
where K(x,2) = (271 - x,271).

Proof. By Lemma 3.3.1 the C} x Cj-equivariant closed embedding I exists and hence
induces a closed embedding between the quotients by the action of Cj. The com-
plement of the closed embedding I is given, thanks to the same Lemma, by the
equivariant open embedding X~ x C* — (X x A!)*| inducing an open embedding
U — X, of the quotients. Notice that the morphism K is a C} x Ci-equivariant
isomorphism, hence it induces a C3-equivariant isomorphism on the quotients by Cj,
but clearly X~ ~ (X~ x C*)opp/Ct so we obtain X~ = U. O

3.4 Geometry of the algebraic cut.

Consider a torus T acting on a smooth variety Y, via an equivariant closed embedding
into P* x Ab, together with a regular linearisation £. In this section we study the
properties of the algebraic cut obtained by selecting a splitting of T ~ T x C* and
applying the algebraic cut construction to the intermediate quotient Y //T.

Lemma 3.4.1. A primitive character ¢ € x(T) defines a splitting of the form T ~
T@C* where T is the connected component of ker(¢) containing 1 and C* is the image
of any XA € x(T)Y such that {\, ¢y > 0. Conversely, any such splitting determines a
primitive character by projecting on the second factor.

Consider a character ¢ inducing a splitting of T ~ T"@® C*. We can consider
the intermediate quotient Y //T', which is endowed with a residual C*-action and
linearisation. Notice that the further quotient (Y //T)//C* coincides with Y //T. We
would now like to address the following question: what is the condition that we have
to impose on the character ¢, corresponding to the fixed splitting of T, to ensure the
projectivity of the algebraic cut of Y //T?
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Proposition 3.4.1. Assume that Y //T is projective and that the momentum polytope
A of T ~Y doesn’t contain the negative ray of the line Q- ¢. Then the algebraic cut
of Y//T is projective.

Proof. Assume by contradiction that the algebraic cut is not projective. Then, by
Proposition 3.3.1 we have a nonzero regular function f € H°(Y /T, Oy yr) scaling
with negative weight —k with respect to the residual C*-action. Since H*(Y /T, Oy r)
H°(Y,Oy)T by geometric invariant theory, we can consider the corresponding reg-
ular function F' : Y — C. Since its restriction to the semistable locus factors as
Y1 — Y//T — C, for every A\ € x(T)V the function F scales as F(\(t) - y) =
t=#29 F(y). The function F is nonzero, so we can take a semistable point y € Y755
for £ so that F(y) # 0. Given m > 0 the Hilbert-Mumford criterion says that
y is (—me¢)-semistable if and only if, whenever A\ € x(T)" is such that the limit
g = limy_,A(t) - y exists, the weight (A, L5 ® (—me)) = (A, L) — m{A, ¢) is non-
negative. Since F'(y) # 0, the limit can’t exist for A satisfying (A, ¢) > 0. On the
other hand, for any A such that (), ¢) < 0 we have that, if the limit exists, then

N Ligy —=mlA, ¢) = (A, L) = 0
where the last equality follows from y being semistable for the linearisation £. [

Example 3.4.1. Consider the following simple example where the torus T := (C*)?,
with character space canonically isomorphic to x(T)gq ~ Q?, acts on the 2-dimensional
affine space A? diagonally. Assume that the linearisation is given by the trivial bundle
with action on the fibre given by the character ¢;¢5. We now show that the character
¢1 :=t, yields a projective algebraic cut, while the opposite ¢, = t]* doesn’t. First
of all we recognise that T' := ker(¢) is the same for both characters and equals the
subtorus C* 3 ¢ — (1,¢). The induced T-action on A? is given by t - (z,vy) = (z,ty)
and the linearisation is by the character ¢. This shows that the GIT quotient A%//T
is the one dimensional affine space A! with quotient map given by

A xC* > A (z,y)
Now we consider the algebraic cuts for the two different characters ¢; and ¢s:

1. In the case of ¢, the splitting T ~ 7" x C* is given by the choice of the second
factor as C* 3 s +— (s,1) € T. Notice that indeed this subgroup pairs positively
with ¢;. The induced action on the intermediate quotient Al is given by s-z =
sx and the induced linearisation is given by the character s. The algebraic cut
is built, by definition, as the GIT quotient for the action C* — (A%//T) x A!

~
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given by s - (x, z) := (sz, sz) with respect to the linearisation given by s. This
quotient is immediately seen to be

C*xC*—>P' : (2,2)0 [z: 2]
hence the algebraic cut is P!, which is projective as expected.

2. In the case of ¢, the splitting T ~ T x C* is given by the choice of the second
factor as C* 2 s — (s',1) € T. Notice that indeed this subgroup pairs
positively with ¢». The induced action on the intermediate quotient Al is
given by s -2 = s 'z and the induced linearisation is given by the character
571, The algebraic cut is built, by definition, as the GIT quotient for the
action C* — (A?//T) x A! given by s - (z,z) := (s™'z,sz) with respect to the
linearisation given by s~!. This quotient is immediately seen to be

C*x At - AY o (1,2) = 2z,
hence the algebraic cut is A! and it is not projective.

This suggests us to consider momentum polytopes that are strictly convex, namely
polytopes that don’t contain any line of x(T)q. If we work under this condition, for
every character ¢, at least one among the splittings induced by ¢ and —¢ produce
a projective algebraic cut. Is there a simple way to describe the fixed locus on the
algebraic cut in terms of the data on Y? Consider A € x(T)" defining a wall w) in
A. Then we can consider the union Y, of those irreducible components of Y* whose
momentum polytope coincides with the wall w.

Lemma 3.4.2. Fiz A\ € x(T) and a wall wy in the momentum polytope A. Assume
that the line Q - ¢ meets wy away from a wall of codimension higher than 1. Then
L is a reqular linearisation for Y,, and for every connected component K of Y,,, the
quotient K//T is a nonempty, C*-fized irreducible subvariety of Y J/T. Moreover, if
A€ x(T)Y are not multiples, then Y., //T and Y, //T are disjoint for any choice
of the walls wy and w,.

Proof. We write down the proof assuming that Y, is connected. The same proof
works in general by replacing Y,,, with each connected component K. We know that
T = ker(¢), so if we consider the action of T on Y the momentum polytope is given
by projecting along the direction ¢:

A=Ay
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In particular Lemma 3.1.3 above shows that

Y(T)* = [ Y (T)e.
qeQ

Since there is a ¢ € Q such that gq¢ € w,, for that value of ¢ the semistable locus
Yo (T)* = Y, (T)% is nonempty. Since Y,, is a closed invariant subvariety of Y,
it descends to a closed subvariety of Y //T" after taking the quotient. Notice that, for
every y € Y, (T')%, there is no p € x(7')" fixing y, since otherwise the 2-dimensional
subtorus generated by p and A (which are independent since ¢(u) = 0 and ¢(\) # 0)
would fix y, but ¢¢ is not in a codimension-2 wall and this would be a contradiction.
In particular, £ is a regular linearisation for the action of 7" on Y,,,. Finally, A fixes
all points in Yy, (7)* and thus Y,,, /T is fixed in Y //T. The final claim follows from
the fact that if Y, (T')* nY,,, (T)® # & then the points in the intersection are fixed
by the 2-dimensional subtorus generated by u and A, which contradicts the fact that
q¢ is not a higher codimension wall in A. m

This allows to prove the following result characterising the fixed locus on Y //T

Proposition 3.4.2. Assume that the character ¢ is such that the line Q - ¢ doesn’t
intersect 0. The fized locus for the residual C*-action on Y )/T is

v/n = J YuIT.
we Wally (A)
wNQe#J
where the union is over all 1-codimensional walls of A which intersect the line Qo.
Moreover, Y, //T is contained in (Y //T)~ if and only if w intersects the negative ray
of the line Q¢. Lastly, the linearisation L restricted to Y, is regular.

Proof. We know that the subvarieties of the form Y,,//T" appearing in the right-hand
side of the equality are all nonempty, fixed and disjoint from each other. On the other
hand consider a point [y] € Y//T fixed by C*. Then thereis a A € x(T)" fixingye Y
and consider the fixed subvariety Y*. Let Yy’\ be the connected component containing
y. By Proposition 3.1.3 there is ¢ € Q so that y € Y(T)%", hence q¢ € 0;A\dA.
This means that Y;;\ must have momentum polytope of codimension 1, hence it must
define a wall w) containing g¢, hence [y] € Y., //T. This concludes the first part
of the proof. Consider a point y € Y,,//T and let X\ € x(T)¥ be such that w = w),
and (A, ¢) > 1, so that the action induced by A on the quotient Y //T is a positive
multiple of the residual C*-action. Let g¢ be the intersection of w with the line Q¢.
Since y is q¢-semistable and fixed by A, the Hilbert-Mumford criterion gives that

¥ ‘Cly> = —q(\, ).
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which allows to conclude that y € (Y //T)~ if and only if ¢ < 0 by Proposition
3.1.2. [



Chapter 4

Jeffrey-Kirwan localisation.

In this section, we will describe how the algebraic cut construction can be employed
to derive residue formulae for the degrees of cycles in quotients of smooth varieties
by reductive connected group actions. These formulae will be related to the so-called
Jeffrey-Kirwan localisation formula.

To begin, we address a common misunderstanding that often arises when dis-
cussing this formula. The key feature of the Jeffrey-Kirwan localisation formula is
that it allows to compute degrees, or equivalently integrals, on quotient varieties by
localising to fixed loci of the action upstairs, used to take the quotient. This ap-
proach contrasts with the Atiyah-Bott localisation formula of Theorem 2.3.3, which
computes degrees of classes by localizing at fixed loci on the same variety. This
should show why the Jeffrey-Kirwan localization is not merely a non-abelian coun-
terpart to Atiyah-Bott’s formula: even when the group is abelian, the two formulae
are fundamentally different and serve distinct purposes.

The literature features numerous formulae under the name of "Jeffrey-Kirwan
localisation formula", each a variation on the same theme. However, understanding
how they are related to each other can be challenging. We will consider three specific
localisation formulae:

1. The original formula by Jeffrey and Kirwan [JI<95], which is analytic in nature
and expresses the relevant intersection number in terms of inverse Laplace
transforms.

2. The formula by Guillemin and Kalkman [GIK96], which expresses the intersec-

tion number as a sum of certain residues, referred to in this thesis as Guillemin-
Kalkman residues.

50
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3. The formula by Brion, Szenes, and Vergne [BV99; SV04], that can be used
when the variety we take the quotient of is a linear space. This uses a different
residue operation known as the Jeffrey-Kirwan residue.

These formulae are interrelated as follows: Brion and Vergne prove in [BV99]
that the inverse Laplace transforms in the Jeffrey-Kirwan formula can be expressed
via a residue operation they term Jeffrey-Kirwan residue. Consequently, the formula
in point (3) is a direct corollary of the original formula in point (1). The formula in
point (2), however, has a completely different proof and is initially unrelated to the
other two. Notably, it features an additional aspect: it is not a single formula but a
family of formulae, each corresponding to a combinatorial object called a dendrite,
for which there is generally no canonical choice. In [JIX05], Jeffrey and Kogan derive
the localisation formula (1) from (2) in the case of a torus action. We will instead
derive the formula of Szenes-Vergne from the one of Guillemin-Kalkman, giving a
fully algebraic proof of the formula (3).

Contents of the section.
The section is structured as follows:

e We first describe the various residue operations that we are going to consider.
We will discuss their properties and how these residues are related to each
other.

e We will outline the main steps in the proof of the Guillemin-Kalkman localisa-
tion formula in a concrete example, in order to give an idea of the structure of
the proof.

e We describe in detail the first step of the proof of this localisation formula. This
expresses the intersection number we are interested in in terms of intersection
numbers defined on varieties obtained as quotients by smaller dimensional tori.

e We describe how to iterate the previous step, obtaining the Guillemin-Kalkman
localisation formula (Theorem 4.4.1).

e We specialise to the case of actions on linear spaces and recover the localisation
formula of Szenes and Vergne (Theorem 4.5.1) from the one of Guillemin and
Kalkman.
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e Prove the nonabelian version of these formulae by using a result of Martin
(Theorem 4.6.1) relating integrals on quotients by nonabelian groups to integral
over the corresponding quotient by the maximal subtorus.

4.1 Residues.

In this section we will describe different ways of taking the residues of a meromorphic
function on C". We will only describe residues at the origin, since this is the only
interesting case up to translation.

4.1.1 Iterated residues
First of all, given a ring R, consider the following big ring of power series

A= Rzn]le, - [21])2:-

Its elements will be Laurent power series in 27 with coefficients in R[[z, ]|, - - - [22]]«,-

Remark 14. Notice that, by rearranging the sums, we have an isomorphism

Rz, ...,z = Rllxn] - - [21]]

with the formal power series ring in n variables. Notice, however, that this just
extends to an inclusion

Rlz1, .- 2olley,zn = Rlznle, - 21z,

and not to an isomorphism.

Example 4.1.1. Let n = 2 and denote the variables with x; = z, 29 = y. Then the
element = + y is invertible in R[y]l,[[«] ., where the inverse is

(x+y)~ = Z (y_l_k) "

by the geometric series expansion. It’s immediate to check that the series on the
right-hand side is not a Laurent power series, hence Rz, y]..,, is only a subring of

Rlylylz].-

We have well defined residue maps on these spaces:
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Definition 4.1.1. The R-linear homomorphism
res,—o : R[z]. — R
picking the coefficient of ! is called the residue map.

Clearly, a morphism of R-modules B — C induces a morphism B[ z], — C[z].-
Therefore, the homomorphism

resg,—o : Rl zn]le, - [2ille; = Rlzn]e, - [[xi+1]]xi+l

induces a morphism

A— R[[xn]]ﬂﬁn T [['ri+1]]xi+l[[mi*1]]xifl T [[:El]]xl

Definition 4.1.2. Given i € {1,...,n}, the map

IeSg;=0 : A— R[[mn]]wn e [[xiJrl]]:EiH [[xi*l]]mifl e [[xl]]xl

defined as above by taking the residue with respect to x; is called the i*" residue
map. The composition of all the residue maps

Resg =0 Reszy=0

Resz,,_1=0 R[[xn]]xn

Rzn ]z, 21 ]

Resz,, =0

R

gives a R-linear morphism
IRo : Rl|zn]ls,---[x1]le, = R
called iterated residue map.

Remark 15. Notice that the the order of the variables at which we take the residue
doesn’t change the definition of the iterated residue.

In a completely analogous way we can define the map that takes the coefficient
of x; and iterating it for all the variables, obtaining the iterated derivative map

Do : R[zn]le,---[21]2, — R-

As the iterated residue, also IDy doesn’t depend on the choice of the ordering of the
variables.
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4.1.2 Szenes-Vergne residues

Definition 4.1.3. Let f : C" --» C be a meromorphic function. We define the
Szenes-Vergne residue in the following way. Notice that the ring homomorphism

o1 : Hol(C") — Mer(C" D[] : ouf = ZOO (i)] £(0, za, ..., 2) 2}

= 021
is injective, hence it defines an extension of the corresponding fields of fractions
o1 : Mer(C™) — Mer(C" Y [[z1]l.,
Thus we can consider the injection
On o1 Mer(C") = Cllen]le, -+ [x1] s

The composition SV(f) := IRy o o, 01 : Mer(C") — C is called Szenes-Vergne
residue.

Remark 16. This is the operation that one would usually call residue of a meromor-
phic function with respect to the ordered coordinates z1, ..., z,.

If y1,...,yn is another set of coordinates on C" we denote with SV, ., the
residue with respect to these new coordinates.

Definition 4.1.4. Let H be a hyperplane arrangement centered at the origin of
C". A meromorphic function f defined on an open neighborhood of the origin is
called H-meromorphic if, locally around the origin, its poles lie on the union of the
hyperplanes belonging to H. In this case we write f € Mery.

Szenes [S7¢98; Proposition 3.1] has a useful integral characterisation of the residue
in this case:

Lemma 4.1.1. Let H be a hyperplane arrangement of C" centered at the origin.

There is an oriented compact n-dimensional subtorus Z < C" so that, for every
fe Mery,

SV(f) = fodzl Ao A dzy.

This immediately shows that these residues behave well under linear changes of
coordinates as pointed out in [SV04, Pag. 12|:
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Lemma 4.1.2. Consider two bases {1, ..., Bn} and {71, ..., v} of C* such that the
following conditions hold:

1. span (B, ..., Br) = span (Y1, ..., V) for all k =1,....n.
2. {B1, ..., Bu} and {1, ..., ym} are oriented in the same way.

Then, giwen a meromorphic function f on C™ with hyperplanes as poles,

A AT

Brac A By

Another useful corollary of the integral representation is the behavior of these
residues under uniform convergence of sequences.

SV, (f) = SVay o (F)- (4.1)

Lemma 4.1.3. Let D < C" be an open neighborhood of the origin. Consider a
hyperplane arrangement H and a sequence of meromorphic functions f, : D --+ C

with poles on H. Assume that there is a compact subset K < D so that f;. converges
uniformly to f € Mery on D\K. Then

lim SV(fi) = SV(F).

k—o0

Proof. Clearly we can find a representative Z' < D\K of the homology class of the
torus Z of Lemma 4.1.1 corresponding to H. We want to prove that for the torus
Z < D we have the convergence of integrals

lim frdzy Ao A dz, = fdzy A Adz,
k—o0 VA z!
which follows by uniform convergence. O]

4.1.3 Guillemin-Kalkman residues

Definition 4.1.5. Consider the inclusion of integral domains

C[Z‘l, ,.In] — ([:[[Bg, 7In][[x1_1]]m1_1

This descends to a morphism of the respective fields of fractions

01 : Cxq, .oy ) — C(xo, ...,xn)[[xl_l]]xf1 (4.2)
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[terating this procedure we obtain the following fields extension
Op w01 C(an, oy ) = Clla, o - - [[x;l]]xfl

and the composition

-----

is called Guillemin-Kalkman residue map.
Remark 17. Notice that ;' has degree 1 in this ring of power series, so IDy picks
the coefficient of the factor [T, ;"

If we are given another set of coordinates yi,...,y, on C" we denote with

GK,,. .y, the Guillemin-Kalkman residue with respect to these variables.

Ylyeees

4.1.4 SV = GK when poles are linear spaces.

There is a nice situation in which these two notions of residue coincide, that is when
f is a rational function having its only poles on hyperplanes through the origin. Let
S < Clxy, ..., x,] be the multiplicatively closed subset of the form

S = {HZagxz : S finite set and a, € C"\{O}}

seS 1=1

using the convention that the product over S = ¢J gives 1 as result. Then such f
lives in the localisation R := S~ 'Clx1, ..., z,].

Proposition 4.1.1. The equality of residues SVy, .. ., (f) = GK,, . 2 (f) holds true
for every f € R.

Remark 18. Notice that the order of the variables used to extract the SV residue is
opposite to the one used for the GK residue!

Let’s start with a simple example:

Example 4.1.2. Consider the rational function

flz,y) TR
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In order to compute SV, ,(f) we have to expand f in z first, then in y and finally
take the residue:

1 o0
f==> " = SV, (f)=1
ry k=0

On the other hand, to compute GK, .(f) we have to expand f in y ' first, then in
2! and finally take the residue:

f=aty! i(xl)kyk = GK,.(f) =1

k=0
As expected, we obtained the same result from these residue operations.

Remark 19. Notice that, outside the subring R of functions having poles on hyper-
planes through the origin, these notions of residue don’t coincide in general. The
simplest case in which this happens is for the rational function f := (1 — z) %
Notice that SV(f) = 0 is the usual complex-analytical residue, while we have

GK(f) =resyo (— Dpq27F) = —1.

Proof. The proof follows these lines. First we show that the two different expansions
of the rational function factor through a common first step, namely a morphism to
a common ring T'. Then, we show that the iterated residue and iterated derivative
operations agree on these elements. Consider the following ring

T:= C[[x"T—l]]x@ T [[xi]]x% [Zn]e-
which embeds into the relevant fields:

a:T < Clzalle, - [z1]x

is defined by z;, — z;'z; and z,, — z,, while

ﬁ T — C[[xfl]]x;l T [[x;l]]:pgl

-1

is defined by z;/, — ;' (z;")™ and z, — (z;')7'. It’s immediate to check that

these two morphisms of rings are well defined. Now notice that the inclusion

I:Clzy,...,2y] =T : x;—> zix,and z, — x,

n

extends to R since all the elements of S are mapped to invertible elements of T
n

To see this, it’s enough to prove that all linear polynomials )}’ , a;z; are mapped
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to invertible elements. We can do this by induction on the number of coefficients
a; that are nonzero. If there is only one nonzero coefficient the statement is trivial.
On the other hand let j < n be the smallest coefficient appearing. By the geometric
series we find

k
o8]
1 1 a; K
a;r; + Z#jyn 4T+ an Zi#j,n a;vi + an = Z#j’n ;T + an %

and the right-hand side is a well defined expression in 7' by inductive hypothesis.
Notice that the diagram

o B _ _
Clznlle, - [z1]2, T > Cllzy 1]]x1_1 T [[xnl]]m,‘ll

1
On- 01 81+0n

R

commutes since the arrows are ring homomorphsims and they agree on x4,...,z,.
Finally, it’s easy to check that IRgoa = IDg o 3, since they are linear maps agreeing
on monomials, namely

IRo (o - a5 ™= ™) = IDg((ay )~ -, L)~ ()~ e h,

n—1 n

4.1.5 Generalised GK residues

As a last notion we describe a generalised version of the GK residue where the base
ring is not C. In our applications, this will be the Chow ring of some smooth variety.
Given a ring S, we can consider the multiplicatively closed subset I¥ < S[ty, ..., ;]
given by all the possible finite products of the elements of the set

{s—i—iaiti seSandac Zk\{O}} v {1}

=1

we can define the map

O, (1§) " S[tr, oy tn] = (TEH) 7' S[tr, st I8, (4.3)
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extending the identity on S[tq,...,t,] since, whenever a,, # 0,

1
1 _ 1 1+ S+ Z?;ll aiti
S+ 2 aity  aply antn

We can iterate this construction to obtain
611 ©--+0 51 : ([g)ils[tla 7tn] - S[[trill]]tgl T IItfl]]tfl

And we can finally extract the coefficient of ¢;'---¢.1 by applying 1Dy, obtaining
the S-valued GK residue

GKp,p, o (I§) STt ] — S (4.4)

We will often omit writing the S in GK® when it’s clear from the context. The
following Lemma is just a technical tool that will be handy in the evaluation of a
residue that we will encounter at a later stage.

Lemma 4.1.4. Consider a morphism of rings S — S'[t'] and the induced morphism
[ S[t] = S'[t,t']. Then, for every o € S[t] and for every e € I3, €' € I%, we have

that
! f(Oé) Sl 1 S (6%
GK?, - 6Ky (1 (6K (%)) 45
t,t (f(e)e’ t e,f t e ( )
Proof. Clearly f commutes with both the operations of applying ¢ and taking the
residue with respect to ¢, hence

o () - (42

Now ¢ is an element of S’[¢'], hence the expression for 5 doesn’t contain t, so

o (1) - ()

Finally, the thesis follows by the equality

GK?), = GKy o GK; '

which is clear by definition. O
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4.1.6 Jeffrey-Kirwan residues.

Let a be a n-dimensional Q-linear space and assume that the dual space aV is endowed
with a lattice I' of full rank. Let 2 be a projective finite subset of I', namely a set
whose positive linear span doesn’t contain a line (or in other words the positive span
is a strictly convex cone).

Definition 4.1.6. An element £ € a¥ is called a reqular stability if there is no subset
S < 2 of cardinality n — 1 so that § € Spang_ (5). If we set

YA = {Zw : SCQ[},
weSs

we say that & is sum-regular if there is no subset S < X2 of cardinality n — 1 so that

§ € Spang_ (5). If £ is a regular stability and ¢ is a sum regular stability so that the

segment between them in a¥ is entirely made of regular stabilities, we say that £ is

a sum-reqular perturbation of &.

Remark 20. It’s easy to check that every regular stability admits a sum-regular
perturbation.

Example 4.1.3. Assume that a torus T of dimension n acts effectively on a complex
linear space V', let 2 < x(T) be the set of weights (the characters with which the
torus acts on V') and choose a linearisation £ € x(T)g. We can consider the linear
space X (T)g, whose dual x(T)q is endowed with the full rank lattice I' := x(T). It’s
well known [Dol03] that

1. 2 is a projective subset of x(T)q if and only if there is a linearisation such that
V J/T is projective.

2. The stability £ is regular in the sense of Definition 4.1.6 if and only if the
corresponding linearisation is regular in the usual sense, namely semistability
and stability agree.

In this context, the character £ is sum-regular if and only if there is no set of n — 1
elements of 22 so that £ belongs to their positive span.

Pick any integral basis of the lattice I' and define du as the top form on a given by
the wedge product of the elements of the basis (this is well defined up to sign). Given
a flag F' spanned by some elements of 2, we can define some elements k1, ...,k, € [’
as

Ki 1= Z w. (4.6)

wWEANF;
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Definition 4.1.7. If these elements form a basis k := {1, ..., k,} of a¥ we say that
the flag I is proper. Fixed a sum regular stability ¢, if £ € spang_ (k) we say that
the flag is stable. We denote with F (2, &) the set of all proper stable flags spanned
by elements of 2.

There is a residue operation induced by every such flag:

Definition 4.1.8. Let F' € F(2,£) be a proper stable flag. The flag residue of a
meromorphic function f on a ®q C is, up to a constant, the Szenes-Vergne residue
computed with respect to s:

Resp(f) := SVt mn (f)- (4.7)

K1 A A Ky
Finally we can define the Jeffrey-Kirwan residue operation:

Definition 4.1.9. Fix a finite projective set 2 < I' and a sum-regular stability
§ € a¥. The Jeffrey-Kirwan residue of a meromorphic function f: a®gq C --» C is

Given a € a ®q C, we will denote the residue at this point with
JKZ(f) == JKZ(f o 7a),

where 7, is translation by a.

Here is an important remark that will allow us to work with regular stabilities &
which are not sum-regular:

Remark 21 (Definition for regular stabilities). Consider the hyperplane arrangement
H in a” defined by the hyperplanes spanned by elements of 2. From the description
in [SV04, Equation (2.1)] the residue JK?(f) of a function f € Mery, doesn’t depend

on the particular sum-regular stability é but only on the chamber of the hyperplane
arrangement defined by the elements of 2. In particular, given a regular but not sum-
regular stability &, every sum-regular perturbation 3 gives the same result. Thus,
whenever £ is only regular and f € Mery, we define

JK3(f) = JK2(/)

where ¢ is any fixed sum-regular perturbation of .
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The following is an immediate corollary of Lemma 4.1.3

Lemma 4.1.5. Let D < a® C be an open neighborhood of the origin. Consider a
hyperplane arrangement H and a sequence of meromorphic functions fr : D --+ C

with poles on H. Assume that there is a compact subset K < D so that f; converges
uniformly to f € Mery on D\K. Then

lim JKE (fy) = JKE(f)-
Proof. Write the JK residue as a sum of SV residues and use Lemma 4.1.3. O]

At some point we will also need the following simple fact which immediately
follows from the definition of JK residue as sum of iterated residues and from the
fact that res,_of(\z) = A"'res,—of(x) for any \ € C*.

Lemma 4.1.6. Given a meromorphic function f : aQC and X € C*, then JK?(f()\x)) =
A0 I (2)).

Example 4.1.4. Here we discuss a simple computation of a JK residue. Consider
the linear space a ~ Q2. In the dual space a¥ ~ Q? consider the lattice Z? and let
t1,t € a¥ be the coordinates on a. Set 2 = {¢1,t5} and consider the regular stability
t1 + ty € a¥. This is regular, since it is contained neither in the span of ¢; nor in the
span of t5. Unfortunately, £ is not sum-regular being in the span of t; + ¢, so we
pick a sum-regular perturbation & = ¢; + (1+ €)ty with € > 0 small. Assume we want
to compute the JK residue of the following rational function

t—1\°
fra®@C--»C : f= .
tito

First of all we must consider the set F (Q(,é) of proper stable flags we can extract
from 2. There are two flags generated by elements of 2:

0 c span(t;) c a¥ and 0 c span(tz) < aV.

For the first flag the corresponding vectors (4.6) are k1 = t1, ko = t1 + t9, hence the
flag is proper (since k1, ko form a basis) but not stable (since fis not in the positive
span of k1, k2). On the other hand for the second flag we have k1 = to, ko = t; + to
and the flag is proper and stable. The flag residue corresponding to this flag F' is

tl/\tg

12 1
resy, —oresy, —o(f) = res;,—oresy —o ( — + —) = -2

t1 At 2 tity 2

and this is JKZ ().



CHAPTER 4. JEFFREY-KIRWAN LOCALISATION. 63

Example 4.1.5. Here we give another example which will be used in a later geo-
metric situation. Consider the linear space a ~ Q2, whose coordinates we denote
with uy, uy and the projective set 2 := {u;,us} < a¥, spanning a lattice I' defining
the top form du := u; A ug on a. Let £ € a¥ be the regular stability & = uy + us.
Fixed a generic parameter s € C, we want to compute JK?(Z ) for the meromorphic
function on a @ C given by

s () (S ()

sin(m(4duy + 4us)) sin(m(ug — uy)) sin(7(uy — ug))

sin(m(s — 4uy — 4ug)) sin(w(s + uz — uy)) sin(w(s + uy — uz))

Notice that around the origin Z has poles only on the hyperplanes generated by
elements of 2, so the Jeffrey-Kirwan residue is well defined even if £ is just a regular
(and not sum-regular) stability by Remark 21. In order to compute the Jeffrey-
Kirwan residue we have to perturb £ into a sum-regular stability é . We chose é =
1—10(11u1 + 9uy). There are two possible flags of a¥ that we can generate with the two
vectors {uy, us} and here we compute their contribution to the JK residue:

e Consider first the flag F} := 0 < spang(u;) < a¥. The corresponding basis x
is given by k1 = uy and Ky = u; + ug, SO

and the flag is stable. The contribution of this flag is by definition

dp
K1 N R9

Resy,—oRes,, 02 (u1, us) = Res,,—oResw, 02 (K1, ko — K1)

= Resy,—oResy,—0Z (u1, us),

where the second equality follows by Lemma 4.1.2. After some computations,
taking the residue first at u; = 0 and then at us = 0 gives

352 sin(ms) (cos®(ws) cot(ms) + sin(ws) cos(ms))
as result.

e The second flag is Fy := 0 < spang(uz) < a¥. The corresponding basis & is
given by k1 = ug and ko = u; + us, SO

and the flag is unstable, hence it gives no contribution to the JK residue.
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We have finally shown that

JKéul’”}(Z) = 352sin(rs) (cos(ms) cot(ms) + sin(ms) cos(ms)) .

4.2 An introductory example.

This part of the thesis might be a bit technical, so let’s start with a concrete example
which shows the procedure we are going to follow. Assume we are interested in the
quotient for the action of T := C* x C* on A% given by (t1,15) - (z,y) := (t; 't3z, t1y)
with respect to the linearisation given by the character ¢ := t;t5. Notice that the
stacky quotient of the semistable locus is [(C* x C*)/T| = [1/us3], hence we expect
that

deg(r([#7])) = des([1/ps]) = 5.

Keep in mind that, with this example, our aim is not to just compute this particular
intersection number, which is an easy task due to the simple geometry involved. We
want to show how, following a prescription that can be applied in general, we can
express this intersection number, originally defined in terms of data on the quotient
of A2 by T, as a sum of intersection numbers which can be computed on quotients
of subvarieties Y,, = A% by smaller dimensional tori T' < T. The reason behind this
strategy lies in the possibility to recursively apply this procedure. In the following
sections, we’ll demonstrate how this iterative approach results to an expression for
this intersection number in terms of degrees of cycles defined on proper subschemes
(points!) of the original space A%

4.2.1 The polytope and the first algebraic cut.

In Lemma 4.5.1 the momentum polytope will be shown to be the cone spanned by
the elements (—1,3) and (1,0) of the linear space x(T)q ~ Q* (translated so that
the vertex of the cone is at —¢). To start we pick a character, for example ¢ = tt,
with N > 1, so that the ray Q¢ - ¢ is not entirely contained in A and it meets the
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codimension 1 stratum in smooth points:

('In'l)

The wall w met by this ray has, as associated subvariety, Y, := A! x O. The choice
of such character induces a splitting of the torus T in kernel plus complement; if
we denote with 7' the subtorus of elements of the form (¢7',¢") and with C} the
subtorus of elements of the form (1,s) we have the splitting T ~ T x C. The main
idea behind the following localisation procedure is that the original quotient [1/us]
we want to study is the quotient of A%//T by the residual action of C%, hence it is
embedded as a fixed locus in the algebraic cut for C; —~ A?//T. Let’s describe the
quotient A2//T. The induced action is t - (z,y) = (#3¥ "1z, ¢t71y) and the linearisation
is given by the character V=1, hence the quotient is

N J/T ~ Proj (Clzy*V*'][z]) ~ A'
where 22V ! has degree zero and x has positive degree. The quotient map is
C* %< Al N Al (qu) N l’y3N+1.

Notice that the residual C¥-action is given by s-2 = sz and comes with the induced
linearisation corresponding to the character s (notice that the quotient by this action
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is indeed [1/13]). We can now consider the algebraic cut of A?//T ~ A'. This is the
quotient of C} —~ Al xA! given by s-(z,w) = (52, sw) with respect to the linearisation
given by the character s. We immediately see that

(A1) = A' x A//CT ~ Proj (C[z,w®]) ~ P!
and that the quotient map is

ANO - P (z,w) - [z WP

4.2.2 Localisation on the first algebraic cut.

Notice that our original quotient of A2 by T corresponds to the quotient of C* x 0 <
A*\O and hence to the point [1 : 0] € P. On the other hand, the point [0 : 1]
corresponds to the origin in A' ~ A?//T and hence to the locus Y,, in the original
A?. They are fixed points for the residual C}-action on (A!), induced by the action
on A?//T, which is s - [zg : 1] = [s°%¢ : 1], hence the localisation Theorem 2.3.3
ensures that

1:0] [0:1] [1:0]  [0:1]

P =i, *[ : + e =i, + Ja . 4.8
7] e (Muoye1) ’ e* (No:1/p1) —3s J 3s (48)

Now the trick is to try to write the right-hand side of the previous equality in terms
of the data of the original action on A% For example, with the aid of Theorem 2.1.1,
we can immediately rewrite the equality above as

[[Pl] _ Z* TWT([AQ]) + (3N + 1)']* TT([Yw])

—S 3s

)

where the coefficient 3N + 1 comes from the cardinality of the T-stabiliser of Y,,. By
applying the pushforward to a point and the degree map we obtain an equality of
the form

d A? d Y,
polynomial in (s) = M + (3N +1) eg(gT[ ])
—s 3.
By applying the residue map res,_y we obtain

deg (re([47])) = 2 e (rr ([¥2]) (1.9

which reaches our goal to express the degree of our intersection number in terms of
degrees of intersection numbers computed in quotients by smaller dimensional tori.
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4.2.3 The second algebraic cut, and localisation there.

By further considering the algebraic cut of Y,, with respect to the action of T" we
would obtain (Y3). ~ P! with quotient map

Yy x A s P (2, 2) e [z, 23V,

The induced C*-action inherited from T — Y, is the action ¢ - [zg : 7] = [t3V Tz -

x1]. Moreover, Y,,//T is embedded as the fixed point [1 : 0] while the origin O €Y,
is embedded as [0 : 1]. By applying the localisation formula 2.3.3, pushing forward
to a point and taking the degree as done in the previous step, we obtain the equality

deg (rr ([Yu])) deg ([0]) -

TN+ 1
Putting this together with (4.9) we obtain

1
deg (ro([42) = 5 de ([0
which finally expresses the intersection number on the quotient of A% by T in terms of
an intersection number computed at the origin (the fixed locus) of A%. In particular,
since the degree of the point [O] is 1, we recover the expected result 1/3.

4.3 The first step of localisation.

Assume that a torus T acts on a smooth variety Y via an equivariant embedding in
P2 x A’ and let £ be a regular linearisation so that Y //T is projective. Given a class
a € AL(Y) we are interseted in finding a residue formula for the number

deg(rr(a)). (4.10)

We start by choosing a nonzero primitive character ¢ € x(T). We can pick a splitting
of the form T ~ T x C§ where T is the connected component of ker(¢) containing
1 and C* ~ C} < T is a subtorus of rank 1 satisfying ¢;cx = id. We consider an
additional copy C5 ~ C* and the action

TxClxCi—~Y xA : (t,s1,8) (2,2):=(t-s1 1,58, 2).

Notice that the GIT quotient of Y x A! by T, via the regular linearisation £ pulled
back from Y, is the algebraic cut (Y //T). for the residual action Cj —~ Y //T. We
can easily describe the semistable locus for this new action on Y x Al:
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Lemma 4.3.1. The T-semistable locus of Y x Al is the open subscheme
(Y x AHY(T)* = (Y(T)* x 0) u (Y x C*),
where Y~ is the inverse image of (Y //T)~ along the quotient map 7w : Y (T)* — Y //T.
Proof. Tt’s a straightforward consequence of the compatibility of semistability with
taking quotients of Lemma 2.2.2. Let 7 : (Y x AY)(T)® — Y //T x A be the quotient
map for the T-action. Then we have that
(V x AT =7 1 ((Y//T x A1)(C*)¥)
=7 ((Y)T)(C)* x0)ur H((Y)T) xC¥)
where the second equality is given by Lemma 3.3.1. Since 7 acts as m on the first
factor and as the identity on the second factor, this is equal to
= (W*I((Y//T)(C*)SS) X O) v (Y* X C*)
=Y(M*x0)u (Y xC*).
O

In order to obtain a well behaved algebraic cut (Y //T). we want to choose the
character ¢ such that:

e the negative ray of the line Q - ¢ is not entirely contained in the momentum
polytope A. By Proposition 3.4.1 this implies that the algebraic cut (Y //T).
is projective.

e the line Q - ¢ intersects the singular variety 0;A in its smooth points, away
from the codimension 2 walls. In this case Proposition 3.4.2, together with
Lemma 3.3.2, describes completely the fixed locus of the algebraic cut (Y /7).
One connected component is given by the quotient we want to study, namely
i:Y/))T — (Y//T)., via the quotient of the T-equivariant morphism

T:Y(T)® x 0 (Y x AY)(T)*.

For every intersection of the ray Q.o - ¢ with a wall w of A, the subvariety
Jw 2 Yu//T — (Y //T). given by the quotient of the T-equivariant morphism

Tt (Y T)™ 5 CYopy = (Y7 % €y, > (¥ x AN (T)™ (4.11)

is fixed. The subscript "opp” denotes the fact that the actions of the two rank
1 tori C} and Cj are exchanged and the morphism A is the equivariant open
embedding A(y, 2) := (2~ '-y,271). Moreover, these are all the fixed loci of the
algebraic cut.
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The main idea is to use the localisation formula of Theorem 2.3.3 to express the
intersection number (4.10), computed in Y //T, in terms of intersection numbers that
can be computed on the ambient algebraic cut (Y //T). and on the fixed loci Y,,//T.
The first goal that we need to accomplish, in order to use the localisation theorem
in an effective way, is to invert the localisation isomorphism.

Lemma 4.3.2. Since I is a reqular embedding, it defines a pullback I'* of equivariant
Chow groups. This descends to a morphism i* defined by the following diagram

ATXC;‘((Y % Al)(‘u’)ss) I_*> ATXC3 (Y('H')ss)

dA ¥ o~k Cz * %k
l TxC5,C5 TxCy,Cy

ASS((Y)/T)e) —— AZ (v /T).
The following self-intersection formula holds true:
i*i,8 = (dr(s1) — 52)3

where s1, sy are the equivariant variables for C¥, C% and dy : AT(Y(T)*) — A(Y //T)
15 the descent map for T ~Y.

Proof. By Proposition 2.1.1 the square on the left of

Aw@;"(y(msg) EECEN ATXC;((YXAl)(—H—)SS) = Achg‘(Y(T)ss)

l ‘IT><C2,C2 'II'><G:2,C2 ‘[|'><032 ,CQ

A (Y )IT) —%y A ((Y)JT),) — s A% (Y)T)

is commutative, and notice that here i, is the honest pushforward by the embedding
1. The composition of the two horizontal arrows in the first line is the multiplication
by the equivariant Euler class of the normal bundle, hence by s; — s5. This means
that the composition of the two lower horizontal arrows is the multiplication by

Ciwrxc;‘,c; (51— 52) = dy(s1) — 5. O
We prove the same kind of statement for the other fixed loci:

Lemma 4.3.3. Let w be a wall of A which is met by the negative ray of the line
Q- ¢. Since J, is a reqular embedding, it defines a pullback J} of equivariant Chow
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groups. This descends to a morphism j; defined by the following diagram

Avxc:;‘((y x AL)(T)®) J_$> AFXC;“((Yw(T)ss X C*) opp)

di ok o Ao o% o
l Tx@2,02 ‘II'><02 ,C2

ASE((Y)/T).) K AS(Y,)T).

The following self-intersection formula holds true:

j;]w*ﬁ = B T €U =gy (dA‘[I',(Ci< (GT(NYUJ/Y))) :

Proof. As in the proof of the previous proposition we consider the same diagram
composed by the two squares defined by J,. and J?. Consider the regular closed
embedding K, : Y,, = Y. If we set Z := Y, (T)* x C* we can consider the induced

regular closed embedding
Ky:Z—>Y xC*

which we denote with the same letter. Since .J,, factors as K, followed by an open
embedding, the diagram defined by J,, reduces to

ATXC; (Zopp) &) ATXC;((Y_ X C*)Opp) K—$> ATXC; (Zopp)

l 1]'><C2 ,02 1]'><C2 ,02 1]'><C2 ,02

A (Y I T)opp) —25— ACE((Y JIT)g0) — 2 A% (Vi T)opp).

opp

and the composition of the lower horizontal arrows is j¥j,.. By inverting the role
of CT and C3 we find that evy, g, 75 jux€Vs,—s, 15 the composition of the horizontal
arrows at the bottom of

AFXC;(Z) & A'U'XC;‘(Yf « (E*) K—j}) A'U'XC;(Z)

l TXCQ,CI 1I><032 ,Cl TXCQ ,Cl

ACL(Y, JT) =22 AST (v T)") —22s At (Y, )/T).

By compatibility of descent maps we can split this diagram in two by taking the
quotient with respect to the action of Cj, which now only acts on the second factor
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c*:
ATx(D;‘(Z) Ky ATxC%‘(y— > C*) K s ATXC%‘(Z)

d dr % dr o
l TxC¥,T TxCE,T TxCE,T
3

ATV (T)=) — 22 AT(Y ) — S AT(Y,(T)*)

d d d
l T,c¥ l T,c¥ l T,c¥

ACH(Y, JT) =22 ASE (v ))T)7) —22s ATE (Y, )T).

Notice that composition of the horizontal arrows in the middle row is the multipli-
cation by e'(Y,,/Y) (to be precise, by the restriction of this class to the semistable
locus), and therefore the self-intersection formula follows by the commutativity of
the two lower squares. O

Now that we have the self-intersection formulae we can invert the localisation
isomorphism. Recall that 05(Z) denotes the order of the G-stabiliser of a general
point in Z.

Proposition 4.3.1. The following equation holds true in the localised equivariant
Chow group A% ((Y J/T).)s,:

D =

L. [V //T] 1 [V //T]
or(Y)” <‘zﬂ51) - 52) : wev%lw or (V)" o (W@T (e‘T(NYw/Y)))
wNQ<o-¢p# T

Proof. The localisation Theorem2.3.3 shows that there are classes a and (3, such
that

[(Y/T)e] =iwa+ >, usbu (4.12)
weWall; (A)
wNQ<o-p#J

By applying i* (defined in Lemma 4.3.2) we have that i*[(V //T).] = Z5Z52 [y //T]

by Theorem 2.1.1. Since I* o J,, = 0 we have that i*j,, = 0 and thus

O'W(Y X Al)

o1 (Y) [Y//T] = i*iwa = (dr(s1) — s2).
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Since CZT(Sl) — 89 is of the form "nilpotent + unit" we can invert it with the geometric
series, so we have found «. Analogously, by applying j* to (4.12) we find

O"U'(Y X Al)

W[Yw//T] = €eVg =g, (Tv,q:;k (ev(/\fyw/y))) Buw

which again identifies 3,,. The claim follows by noticing that (Y, x Al) = o7(Ys,).
0

We have to find a way to use this relation of classes in the Chow group of the cut
to produce a residue formula for intersection numbers on Y //T. The first step is to
find a way to extend classes from Y//T to the whole algebraic cut (Y //T).:

Lemma 4.3.4. There is a morphism
s AT(Y) — A% ((Y)/T).)
satisfying the following conditions:

e i*os = rr. In particular, classes of the form i* o s(a) have trivial Cj-
equivariance.

e For every wall w € Wally(A) meeting the ray Q- ¢, consider the regular closed
embedding K., : Yy, = Y. The equality jy o s = evs, =5, ry c» © Ky, holds true.

Proof. First of all we define s as the composition

(TxCH-T)* "Txc} ek
-

AT (v) 25 AT (Y« AL AS((Y))T).),

where T x C% — T is the homomorphism (¢,s,) — t and P : Y x Al — Y is the
projection (y, z) — y, which is flat and therefore induces a pullback on Chow groups.
To prove the first claim we consider the diagram

s: AT(Y)

XC?HW)AFXC%‘ (Y) p* AFX(C;‘ (Y « Al) I* AFX(C;‘ (Y « 0)

T * ook T * ok
l TxC;,C5 l TxCy,C5

AS((Y)JT)e) —=— A% (Y /T).

ATy

Notice that P o I is the identity on Y, hence i o s = rr crer o (T x €3 — T)* =
(C3 — 1)* o ry where the last equality follows by Proposition 2.1.2. Notice that the
change of groups homomorphism relative to C; — 1 just corresponds to the inclusion
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A(Y J/T) < A® (Y //T), which completes the proof of the first claim. For the second
claim the proof is similar. First of all notice that s fits into the commutative diagram

(TXC?—»T
EEEE—

AT(Y) b AT () T ATCHY x )
ACT (Y//]Z% @)Cﬁ@fx@;‘ (Y//T) T A xC3 (Y//T % Al) (413)
lTCTXC;,C;

AB((Y)/T).)

*
1

as the composition of the upper row with the column to the right. Denote with
§: AM(Y/)T) — A% ((Y//T).) the composition of the lowest row with the last
arrow of the column to the right. We claim that j, o § = ev,_, ki, for the closed
embedding k,, : Y,,//T — (Y//T)~. Notice that, as seen before, k, might not be
regular but the pullback £} is still well defined, being induced from K. We have
the commutative diagram

AT (Y,,IT) —— ATER(Y,,)/T x €)
AL (v /7)) 2 ASTXCE((Y IT)~ x ©%) 2225 ACEXCE((Y,, /T x €*)opy)

dA ES k %k d * * 0%k
l c¥ xc¥ ¢} c¥xck ek

ASE((Y)/T).) N AS(Y,)T)

where A : (Y//T)™ x C*)opp — (Y /T x A1), given by Ay, z) := (z 1 -y, 27 1), is the
morphism induced on the T-quotient by the A in (4.11). Notice that § (composed
with the restriction to the open subscheme u : (Y //T)~ < Y //T) is the morphism
one obtains by following the lowest path in the diagram. By commutativity of the
diagram

Juw © 80 Us = d@fx(@;‘,@;‘ o (poA)* ok, (4.14)

On the other hand, the composition of the two morphisms at the top of the diagram
is the pullback along the flat morphism

poX: (YT x C*)Opp =Y, /T = poly.z) = Z_l'y =y
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(where we have used that Y, /T is fixed by C3) and therefore, for every closed
subvariety Z of Y,,//T

d@fxu:;‘,@; o(poA)*[Z] = Czq"xcg,@;‘ [Z x C*] = [Z]

where the last equality follows by Theorem 2.1.1. Moreover d@fx@;@; o(poX)*(s1) =
sy. This shows that equation (4.14) can be rewritten as

Jr 080U, = eV s ki
By applying u* to the right of this equality we find
Ju 080 uu* = evg s, (1o ky)*.

It’s immediate from the definition of § that j5([Z]) = 0 for every subvariety Z
contained in (Y //T)\(Y //T)~, hence j* 0§ = evy, —,,(u o ky,)*. From diagram (4.13)
we conclude that ji o s = evy, =g, (u o ky)* o rper = vy, orper Ky, O

Putting together Proposition 4.3.1 and Lemma 4.3.4 we have the following
Proposition 4.3.2. Let a € A'(Y). The intersection number deg(rt(c)) is equal to

Z (N, @) - degy, s (T’T (resskzo (T x X\ — T)*(J(i\/’—z/y))) . (4.15)

we Walli (A)

wNQ<o-¢p#
where, given a wall w, the morphism rp : AT(Y,,) — A(Y,//T) is the Kirwan map for
the T-action on'Y,, and the residue operation is defined as follows. Given the rank 1
subtorus X € x(T)V fizing Y, and such that {\, ¢y > 0, consider the surjection T x X —
T. The homomorphism (T x A — T)* is the change of group homomorphism with
respect to this surjection. Then A'(Y,) ~ AT(Y,)[ss], where s\ is the equivariant
variable corresponding to \, and the residue is the generalised Guillemin-Kalkman
residue GKs, for the ring AT(Y,,) and the variable sy as defined in (4.4).

Proof. We intersect the fundamental class [(Y//T).] with s(a) using the stacky
ring structure on A% ((Y//T).)s, induced from the isomorphism with AT<C((Y x
AN (T)*). By the localisation formula of Proposition 4.3.1, the projection formula
and Lemma 4.3.4 we get

@ [T -

1 [ri(e) n[Y/T] 1 (rrer(ay,) 0 [Yo/T]
* ~ + S81=82 w
UW(Y)Z < dr(s1) — 59 ) - weW§1(A) UT(Y“’)] ( TT.ct (eT(NYw/Y))
wNQ<o-p# I
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where N denotes the stacky product of Remark 4. Since this product satisfies
s(@) N [(Y//T)] = or(Y x A)s(a)

(and analogously for the other terms), we apply the pushforward to a point and the
degree map obtaining the following equality in C|sg]s,:

deg m(y ).« (s(@0)) =

rr(a) rrex(Qy,)
degmy ma | =———— | + evgs, deg Ty, 1+ - :
/ (dT(sl) — 52> Z ! <TWCT (e"Wyupr))

weWally (A)
wNQ<o-p#J

Notice that degm(y /7).« (s(a)) € C[sz] being the degree of an equivariant class on
(Y//T).. By taking the residue with respect to s, we immediately obtain

It c* (v,
deg my /1y (r7(0)) = Z res,, —o deg Ty, s ( TN, ) . (4.16)
weWall; (A) Tr.c¥ (e" Myur))
wNQ<o- ¢+

Finally we want to simplify the residue computation for every wall. Given a wall w
we can consider the one dimensional subtorus A € x(7)g such that A acts trivially
on Y,, and such that (A, ¢) = 1. Once we consider the surjection 7' x A\ — T and the
corresponding morphism &, : T'x A — T = T x C*, inducing £, : A — C¥ on the
second factors, we have the diagram

ATt (y,) 5 4ct (v, )
l&’i &
ATy} ZE22 AN, /T

by Proposition 2.1.2. Notice that since Y,,//T is fixed by both C§ and A the vertical
arrow on the left is just the homomorphism of polynomial rings

AYw//T)[s1] = AVw//T)sx] = s> A 9)si,

where s, denotes the equivariant variable for the action of A. Since A\ acts trivially
on Y,, the map rpy ) can be computed as

ATNY,) 222 ANY, //T)

; ;

AT(Yy) s3] —— A(Yu//T)ls)]
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and shows that the residues we want to compute on the right-hand side of (4.16) are

of the form
§o (v,
deg 7y, /rs (TT (GKQ,@SR (f* (GTE/\}Y BY))>>> |

We have finally achieved our aim of having a residue formula for the intersection
number (4.10). Still, this seems very complicated. We have reduced the original
intersection number on Y //T to a sum of intersection numbers which are computed
over Y, //T, which are quotients by a torus of smaller dimension. By iterating this
construction, we can find a simpler formula.

4.4 Guillemin-Kalkman localisation.

Consider the action of a dimension m torus T on a smooth closed subvariety of P? x A?
and let o € A'(Y). Our aim in this section is to find a combinatorial formula for
deg(rr(a)) by an iterated application of Proposition 4.3.2 of the previous section.
First of all, we show how to keep track of the combinatorial structure underlying
this iteration. Given a ray [ € x(T)q (not necessarily centered at the origin) and a
number d > 0, we say that [ satisfies the condition (Cy) if

e the ray [ is not entirely contained in the momentum polytope A of T ~Y,
e the ray [ meets dyA in its smooth points, away from walls (Cy)

of codimension d + 1.

In Proposition 4.3.2, we showed that given a primitive character ¢; € x(T) (or
equivalently a ray l; = Qo - ¢1 through the origin in x(T)q) satisfying (C}), then
the intersection number on [Y/T] can be computed in terms of intersection numbers
on [Y,,/T1], where w € Wall;(A) are the 1-codimensional walls of A met by the ray
1 and Ty is the connected component of the identity in the kernel of ¢ (hence a



CHAPTER 4. JEFFREY-KIRWAN LOCALISATION. 77

codimension 1 subtorus of T).

What happens if we try to apply the same formula of Proposition 4.3.2 to compute
the contribution of |Y,,/T1]? We need to start by picking another character ¢9 € x(7})
so that the negative ray ly := Qg - ¢ satisfies (C7) with respect to the momentum
polytope A, for the action T} —~ Y,,. If A € x(T)" is the subtorus acting trivially on
Y,,, through the following surjection of groups and the corresponding isomorphism
of character spaces

TixA—=T , x(Me = x(T1)g x x(Ng

we can identify the momentum polytope A, of T} — Y,, with the wall w in A. The
ray lo, seen as a ray in x(T)q by this isomorphism, intersects A along the wall w and
originates from the intersection point p,, = l; »n w. For such a ray, the conditions
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(C1) with respect to A,, are equivalent to the conditions (Cy) with respect to A.

The character ¢ € x(77) defines a 1-codimensional subtorus 7o < T; and by ap-
plying the formula of Proposition 4.3.2 we can compute the intersection number on
[Y/T1] in terms of intersection numbers computed on |Y,,/T5], where w’ ranges over
codimension 2 walls w’ € Wally(A) met by the ray l,. Then we can keep iterating this
construction, and we now introduce the object that keeps track if the combinatorics
involved.

Definition 4.4.1. A dendrite for a strictly convex momentum polytope A is a set
of rays in x(T)q of the following form:

e There is a level 1 ray [ satistying (C}).

e Fixed d > 1, for every intersection p of a ray Iy of level d — 1 with a (d — 1)-
codimensional wall w of A, there is a ray of level d [; originating by p and
intersecting A inside the wall w which satisfies condition (Cy).

Definition 4.4.2. Let D be a dendrite in A. A path in D is a polygonal line in
A starting from the origin and reaching a wall of maximal codimension in A by
only moving along rays appearing in the dendrite D and passing, for each level k by
exactly only one ray at that level.

Notice that, fixed a dendrite D in A, a path determines a sequence of rays
l1, - laimeny in x(T)q and hence a filtration of tori

T=TyoT1>-->2T,=1 (4.17)
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Figure 4.1: A 3-dimensional dendrite.

so that T} := ker <li\T-_1
elements which vanish once evaluated at a nonzero character belonging to I; (or
rather the connected component of the identity of this subgroup). We also have a

sequence of walls

). In other words, T; is the subtorus of T;_; given by the

A =wyDwy D Dwy (4.18)

of strictly increasing codimension, where w; is the wall at which the path changes
direction for the ¢-th time. This determines a sequence of smooth closed T-invariant
subvarieties

Y=Y,oY,5---0Y, =F (4.19)

so that Y; is the subvariety of Y whose momentum polytope coincides with the
wall w;. Notice that, by Proposition 3.1.1, Y; is a fixed locus for the subtorus of
T orthogonal to the wall w;, in particular F is a fixed locus for the T-action on Y.
Notice that the path identifies m different 1-dimensional subtori

NS Tiy (4.20)

characterised by Y; = Ylil and oriented so that {\;,[;) < 0.
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Definition 4.4.3. Let P be a path in the dendrite D for A. Given a class a €
AT(Y) we can consider the corresponding fixed locus Fp = Y and the induced class
resp(a) € A(Fp) defined as

AM A AN, a|F
= |— | GKy, M XX Ay > T ——2— ), (4.21
reon) = [T G (O 2 h D et )02
where \; are the subtori (4.20) defined by the path and
1. the number ‘M‘ is computed with respect to an integral basis e, ..., e,

€1 A ANem
of x(T)Y. This is the absolute value of the determinant of the matrix defined
by the coefficients of the A; expressed in terms of the basis e;.

2. The change of group homomorphism with respect to the surjection Ay x --- x
Am — T is, by Example 2.1.3, the isomorphism

A(Fp) ® Sym (X(-ﬂ—)@) i A(Fp)[Sl, . 75m]

given by expressing characters of T as linear combinations of sy, .. ., s,,, thought
as elements of the basis of x(T)¢ dual to .

3. GK denotes the Guillemin-Kalkman residue (4.4) with respect to the ring
A(Fp) and the variables sq,. .., Sy,.

Remark 22. Let ¢; € x(T') be the generator for the ray [; which restricts to a primitive
element of x(7;_1). Then T; = ker¢; for every i, which implies that ¢1,..., ¢, form
an integral basis of x (7).

Theorem 4.4.1 (Guillemin-Kalkman localisation.). Consider an action of a torus
T on a smooth variety Y with a reqular linearisation L induced from an equivariant
closed embedding Y — P x A, Assume that Y //T is projective and that the momen-
tum polytope A is strictly conver. Given a dendrite D for A and a class a € AT(Y),
the following equality

deg(my rarr(@)) = D deg (Tpps (resp(a)))

PePath(D)

holds true, where the sum s over all possible paths in the dendrite D and the mor-
phism wp, : Fp — pt is the map to a point.

Remark 23. Notice that the conditions on A being strictly convex and Y //T be-
ing projective imply that the fixed loci Fp we encounter are projective, so we can
pushforward to a point.
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Proof. By applying iteratively the formula of Proposition 4.3.2 we get that deg(ry(«))
is a sum over the paths in the dendrite D. We compute the contribution of a path
P as follows. For every i let ¢; € x(T;_1) be the primitive character generating the
ray [; of the path, or in other words so that [; = Qg - ¢;. Set ag := « and, for every
i€ {l,...,m}, define

Qi-1)y;

=i 0GR, (T A > Ty ———N ) e ATy,

where GK is the Guillemin-Kalkman residue (4.4) for the ring A% (Y,,,) with respect
to the variable s; corresponding to the 1-dimensional subtorus A; in T;_; fixing Y.
The contribution of the path P to the intersection number is given by deg mp,.(av,).
Now notice that

2
[ [ é™" - as
j=1

1 . Ny;
=GK,, | (T2 x Ay = T1)* 0y, GK, ( (Th x A = 1) 7 —
(( 2 x A = Th) T (Nygys) 2 (( 1A =) er(Nyl/Y)))
B LTy e
=GKj, s, ((Tz X A1 X A = T) eW(NYQ/Y))

by Lemma 4.1.4, and by iterating this procedure we find that

m ary
Ay = Ny @i GKg, s [ (A X e X Ay = 1) ] .
111< o o (( 1 ) GT(NFP/Y))

By simple linear algebra (as shown in the auxiliary Lemma 4.4.1 below) it follows
that

M A A Ay

9
E1L A AEn

H<)\j’ ¢j) =

for an integral basis ey, ..., e, of x(T)Y, concluding the proof. ]

In order to complete the proof we have to prove the following linear algebra
statement:

Lemma 4.4.1. Consider a filtration of lattices

0cZcZ?°c...c7™

with rank 1 subgquotients. Assume there are homomorphisms ¢; : 7' — 7 so that
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o 7' = ker(¢;) and

e ¢, is an integral and primitive morphism of lattices.

Then there are ¢n, ..., om : Z™ — Z extending the functions above to the whole Z™
and forming an integral basis of this lattice. In particular, for every \i € Z,..., A\, €
7™ satisfying {\;, ¢y = 0 we have that

AM A A A,

EL A A Em

H<)\j> ¢j) =

where €1, ..., e, 1S an integral basis of 7™.

Proof. The fact that ¢; can be extended to the whole space is obvious: since ¢,
is primitive it is surjective and from its exact sequence we find a splitting 7™ ~
™1 x 7. But ¢,,_1 is a primitive morphism on Z™ !, hence we can split the
lattice as Z™ ~ 7 x --- x Z where 7' is the product of the first 7 copies of Z. Then
it is obvious to extend the functions to the whole space by setting them to zero
on the other components. The proof of these extension being an integral basis is
straightforward by using induction, the base case m = 1 being trivial. The final
equality holds by choosing as ey, ..., e, the dual basis to ¢q,..., ¢, to compute
both terms. O]

Example 4.4.1. Consider the situation of Example 4.2. Here the momentum cone
in Q% is spanned by the characters (—1,3) and (1,0) with vertex at (—1,—1). We
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can choose the dendrite given by the two rays [y and /5 in the picture:

-

C.

This dendrite only has one path P = {ly,l5}, of which we compute the contri-
bution to deg(rr([A%]r)). The first ray, whose direction is given by the character
(=N, —1), identifies the first subtorus 7} = ;- given by

C*—>T : te (Y.

Consider the second ray Iy, whose direction in T is given by the character (1,—3).
This restricts to the ray in x(77) spanned by the character —(3N + 1) and hence it
identifies the trivial subtorus Ty = Iy = 1 < T} < T. The filtration by of tori (4.17)
is, in this case,

C* x C* o {tVt, =0} o 1.
The sequence of walls (4.18) is given by

Ao{(-1—-z,3z—1) : =0} >(-1,-1)
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and the corresponding sequence of subvarieties (4.19) is
A > Ax0>O0.
The subtorus A; of T fixing A x 0 and pairing negatively with the ray [; is
C* T : tw (1),

while the subtorus Ay of T} fixing the origin of A? and pairing negatively with the
direction of [, is T} itself. Notice that the T-equivariant Euler class of the normal
bundle to the origin in A? is the polynomial expression in the characters given by

ST(NO/AQ) = (3t2 - tl)tl
which can be reexpressed in terms of the dual basis to \ as
€>\1X)\2(NO/A2) = (?)N + 1)82(381 — 82).

The Guillemin-Kalkman localisation formula of Theorem 4.4.1 states that the degree
deg(rr([A?])) is equal to

-1 N 1 1
det K = GK —_— .
¢ ( 3 1 > ‘ Koo ((3N + 1)s2(3s1 — Sg)) oo (52(381 — 82))

In order to compute this Guillemin-Kalkman residue we have to first expand with
respect to s7 and take the residue, then do the same with respect to s:

1 1 s \" 1 1
GKS s — Y~ | = GK51 s — = GKS — V==
o2 (52(351 — 82)) 2 (38182 é (381) ) 2 (382) 3

as we expected, since the quotient stack [(C* x C*)/T] is [1/u3] and we are computing
the degree of its fundamental class.

4.5 Szenes-Vergne localisation.

In the previous section we have seen how we can compute intersection numbers on
Y //T by looking at a particular combinatorial object called dendrite. In particular,
different choices of the dendrite in the momentum polytope A of Y give different
localisation formulae for the same intersection number. Here we show how, in the
case where Y =V is a linear space, there is a canonical choice for the dendrite and
this produces a famous version of the Jeffrey-Kirwan localisation formula. We start
by giving an explicit description of the momentum polytope and of its walls:
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Lemma 4.5.1. Let py,...,pn € X(T) be characters so that V' has a decomposition

V=@V
i=1

where the T-action on V; is given by multiplication with p;. We will call them weights
of the action. Consider the trivial linearisation Ly whose T-action on the fibres is
trivial. Then

1. The momentum polytope A for the action is the cone spanned by the characters
P15 P

2. The codimension-k walls of A are the cones spanned by dim(T) — k linearly
independent weights p;,, . ..

3 Pi g (1) =k *
We omit the proof of this straightforward fact.

Remark 24. Notice that, since line bundles on affine spaces are trivial, every other
linearisation differs from the one with trivial action on the fibre via the twist by a
character. This just produces a translation of the momentum polytope, so that the
polytope for an arbitrary linearisation £ is the translation of the polytope we just
described for Ly so that the vertex lies on the point —¢ € x(T), where £ denotes the
character of the T-action on the fibre above the origin of the linearisation L.

We will always work under the following conditions:

Lemma 4.5.2. The linear space V' has no nontrivial fized subspace, i.e. V' = O,
and that the momentum polytope is strictly convex if and only if, for every character
€ € x(Mq, the quotient V //T built with respect to the linearisation Lo®E is projective.

Proof. By picking a basis we can assume V' ~ A™ and that T acts diagonally. We
know that V //T is projective if and only if there are non nonconstant T-invariant
functions on V. Assume that V! = O and that A is strictly convex. Assume by
contradiction that f : V' — C is a nonconstant invariant function. Then we have a
nonconstant monomial xfll X xzd: which is invariant, so the corresponding characters
Piys - - -, Pi, Must satisfy

k
Z djpij = (.
j=1

This either means that all the weights p; are zero (and so there are nontrivial invari-
ant subspaces) or that A contains a line (hence it is not strictly convex). Conversely
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if VU is a nontrivial subspace, the corresponding coordinate functions define noncon-
stant invariant functions. Moreover if A is not strictly convex one can find a relation
among the weights of the form "  d;p; = 0 with d; = 0 not all zero and hence the
corresponding monomial [ [}, 2% is invariant. [

In this case, if we choose a character £ € x(T)q, we can consider the corresponding
quotient V' //T with respect to the linearisation £ := Ly ® &, namely the one whose
action on the fibres is given by £&. We want to apply the localisation formula of
Theorem 4.4.1 to compute intersection numbers of the form deg(ry(«)), where a €
AY(V) and ry : AY(V) — A(V//T) is the Kirwan map. The first step to apply
this localisation formula is to pick a dendrite in A; here we show how to do this in
a canonical way once £ is sum-reqular in the sense of Example 4.1.3. Recall that
the momentum polytope A for this action is the translation of the one described in
Lemma 4.5.1 by the character —¢ as discussed in Remark 24.

Definition 4.5.1. Let 2 < x(T) be the set of weights of the torus action on the
linear space V. Consider the following dendrite, called canonical dendrite for the
sum-regular linearisation L:

o (level 1) Consider the element vy := 3, o p and choose the ray [; := Q<o - v1.

e (level d) Given an intersection point p of a level d — 1 ray with a (d — 1)-
codimensional wall w of A we can set v, := )| p and consider the ray

p+ Qoo - Vg

peAN(w+E)

Lemma 4.5.3. The rays above define a dendrite in A.

Proof. Notice that every vy is nonzero since A is assumed to be strictly convex. It
is clear that these rays are not entirely contained in A, which is the positive span of
the weights. Moreover, since ¢ is sum-regular by hypothesis, we have that the ray
of level d doesn’t meet the (d — 2)-dimensional skeleton of A, otherwise we could
write £ as a positive linear combination of m — 1 elements of x(T) defined as sums
of weights, contradicting sum-regularity. Thus the rays [, satisfy the conditions (Cy)
and therefore define a dendrite for A. ]

From a sum-regular character £ we have constructed a dendrite and we can con-
sider the associated formula (4.4.1). We start by giving a different combinatorial
description of paths in the canonical dendrite in terms of flags in the linear space
X(T)q of characters:

Proposition 4.5.1. The paths in the canonical dendrite are in bijection with the set
of flags F(2U, &) introduced in Definition 4.1.7.
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Proof. In this proof we set m := dim(T) to shorten the notation. Consider a path
P for the canonical dendrite D. We can consider the associated decreasing chain of
walls of A

A=wyDdDw; D+ Dw,y, =—E€
and define the corresponding flag in x(T)q as
O=FcFkc--cF,1cF,=xT)g

via Fj := spang(wp—; +§). We claim that this flag is in F(2, ). The ray at level
d of the path is generated by the vector vy = K441 by definition (4.6), hence we
have that

Fy = spang(wy—q + &) = spang(Vm, ..., Vm—da+1) = spang(k1, ..., Ka)

for every d, and in particular the flag is proper. Moreover, since £ is connected to
the origin (the unique vertex of the momentum cone) via the rays of the dendrite
we have that £ € SpanQ>0(/£1, ..., Km), hence the flag is stable and thus it belongs to
F(A,€). On the other hand, given a flag F' € F(2,£), notice that the translations
by —¢ of the linear spaces I} in the flag intersect A in walls (of dimension j). Since
F is proper we can write F; = spang(s1, ..., ;) for all j. By definition the flag F is
stable and hence we can write

m
£ = ¢k,
j=1

for some ¢y, ...,c, > 0. Therefore

m—1
Em—1 = Z Cikj
j=1

belongs to the intersection of the ray & + Qg - k,, with F,, ;. In the same way we
see that

m—2

Em—2 = Z Cikj

j=1

belongs to (§n-1 + Q<o - Km—1) N Fy,_2 and so on. By subtracting £ we have shown
that the points O,&,_1 — &, ...,& — &, —& define a path for the canonical dendrite
D. It’s immediate to check that these two constructions are one the inverse of the
other. O
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Remember that, given a flag in x(T)q, flag residues (4.7) are computed with
respect to the basis k1, ..., Kgim(t) induced by the flag. The following result relates
the path residue (4.21) with respect to a path P to the flag residue corresponding to
the associated flag:

Proposition 4.5.2. The path residue of a € AY(V) can be computed as a flag residue
with respect to the corresponding flag:

resp(a) = resp (ﬁ)

Proof. Set m := dim(T). Consider the 1-dimensional subtori Ay, ..., \,, associated
to the path P and let sy,...,s, be the corresponding dual basis of x(T) We have
to prove that, for the characters ki, ..., k, associated to the flag F', the following

equality holds true:
a|o
GKS s
o ()

Oé|o
SV/{/17...7l‘im (QT(T\/))

where e, ..., e, is an integral basis of x(T)¥ and ey, ..., ey, is the dual basis of x(T).
Notice that the dual bases satisfy

M A A A,

e1 A A ey

4 4
|l A aey

K1 A A Ky

N \
M A A A, ey A Ae)

Y

1A A e S1A A S
so we can focus on proving

Ry N NRKp

|0 _ o
GKsl,...,sm (B-U—(Tv)> = SVKJ ..... Km (eﬂ_(Tv)) .

By Proposition 4.1.1 we see that the symbol GKg, . on the left-hand side can be
replaced with SV, since the class e"(Ty) is a product of linear factors. Finally,
we claim that the resulting equality holds true by virtue of Lemma 4.1.2. In order

St A A Sm

to apply this lemma we just have to show that the two ordered bases {s,...,s1}
and {k1,..., K} are such that
L. span(sy,, ..., Sm—i) = span(ky, ..., K;) for all i,

2. they are oriented in the same way.
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1) Clearly span(kq, ..., k;) is the span of the i-dimensional wall of the path. Recall
that the equations of this linear space, by Proposition 3.1.1, are A\; = 0 for j > m —1,
and s, ..., S, ; satisfy those. Being linearly independent they span the linear space.
2) Being the i'" ray defined by the direction —k,, ;, the inequality {\;, x;> > 0 holds
true for every i. This, together with point 1, ensures that the two bases are oriented
in the same way as can be seen by expressing the ; in terms of the s;. O]

Finally, we can restate the Guillemin-Kalkman localisation formula in the case of
the canonical dendrite:

Theorem 4.5.1 (Szenes-Vergne Localization Formula). Let T —~ V be a representa-
tion of an algebraic torus having trivial fized part V' = O. Fized a reqular lineari-
sation L corresponding to a character & € x(T), let A be the associated momentum
polytope and assume it is strictly conver. For every a € AT(V) we have the equality

deg (v 1. (re(a))) = JK (ﬁ“m) (4.22)

er(Ty)

where is thought as a rational function on x(T){.

4.6 Nonabelian localisation.

Until now we have only discussed degree computations on quotients by torus actions.
Assume we are interested in formulae for degrees of cycles in quotients of the form
Y //G, where G is a reductive connected algebraic group acting on a smooth variety
Y with a linearisation £. In this section we will work in the case where, denoted with
T a maximal subtorus of G, the GG and T-actions on the respective semistable loci
are free, so that the quotients Y //G and Y //T (with respect to the same linearisation
L) are smooth. We also assume these quotients are projective.

Remark 25. 1 am convinced that these smoothness hypotheses are not necessary for
the results of this section to hold, even though the arguments presented here rely
on them. In particular I expect that a purely algebraic analogue of Martin’s result
below holds true, so having "semistable = stable" for the linearisation £ should be
enough.

The way to obtain formulae for nonabelian quotients of the form Y //G is to relate
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them to abelian the abelian quotients Y //T through the following diagram:

G)ss ]
Y(T) J s Y )IT

lﬁ (4.23)
Y/G

where j is the open embedding of the G-semistable locus in the T-semistable one
and 7 is the residual G//T fibration.

Remark 26. Notice that if B < G is a Borel subgroup containing 7" then 7 factors as
an affine bundle g followed by G/B-fibration f (which is, in particular, projective)

SS SS f
Y(G)*/)T % Y(G)*)B 5 Y /G
as discussed in [E589, Section 2.5]

Example 4.6.1. Here we describe this picture explicitly in the case of a Grassman-
nian. Consider the action of G = GLy on V := Mats,,(C) by left multiplication
and let £ be the linearisation corresponding to the character £ = det. The ring of
invariant sections of powers of L is generated by the 2 x 2 minors, which are the
Pliicker coordinates for the embedding of Gr(2,n) — P(A%C").

Consider the maximal subtorus 7' =~ (C*)? given by diagonal matrices. The
induced action (ty,t2)- M is by multiplication of the first row of M with ¢; and of the
second row with 5. The induced linearisation corresponds to the character §ir = t1to
and the quotient is the product of projective spaces P! x P"~! corresponding to
the rows of the matrix.

By our discussion of the G-invariant sections of £&", the T-quotient of the G-
unstable locus is cut out by the equations defining the 2 x 2 minors, and therefore it
corresponds to the diagonal:

(V\V(G*))IT = A < Pt x Pt

This describes completely the diagram (4.23) in this example, which is

([Pn—l X [Pn—l)\A ¢ J [Pn—l % [Pn—l

|7

Gr(2,n)
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with the vertical morphism 7 being

m([z], [y]) = [ziy; — z;5ui]

geometrically mapping the two distinct lines [z] and [y] of C" to the plane they
generate.

The factorisation of 7 of Remark 26 can be seen as follows. Let B be the subgroup
of upper triangular matrices. Then the quotient V(G)*//B coincides with the flag
variety of (1,2)-dimensional flags in C" and 7 factors as

(P x P NA S F(1,2,n) 5 Gr(2,n)

where the first map sends two lines ([z],[y]) in the flag given by [z] and the 2-
dimensional subspace containing them, while f is the P'-bundle over the Grassman-
nian whose fibre above a point is the set of lines contained in the corresponding
plane.

The main technical tool is the following formula of Martin [Mar00]:

Theorem 4.6.1. Let o € H*(Y//G) and p € H*(Y//T) be such that m*a = j*p.
Then

1
o= —
L//G W] YT

where W is the Weyl group of G and R is the roots bundle of Y //T, namely the
bundle obtained by descending to the quotient the T-equivariant vector bundle

pue(R),

X xg/h— X,

where g := TG and by = 11T, with action on the fibre induced by the adjoint
representation.

Notice that Theorem 4.6.1 directly transposes into Chow groups by virtue of the
cycle class maps [Full3, Chapter 19|

cl: Ay (Z) - HXmO) =207,

Notice that, in principle, the target should be the Borel-Moore homology of Z, but
we will only consider smooth Z so Poincaré duality allows us to map to singular
cohomology. We can translate the theorem above in the following way:
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Theorem 4.6.2. Let o € A (Y//G) and 5 € A, (Y/)/T) be such that m*a = j*f.
Then

1

W deg (Wy//g* (Bu e(R))) )

deg(Ty ja« ()

Proof. Since cycle maps commute with flat pullbacks we see that m*cl(a) = j*cl(5),
hence by Martin’s formula

1
L//G o) = [ | A8 vel®)

Moreover cycle maps are ring homomorphisms and are well behaved with respect to
Chern classes, so

1
L//G R B )

Finally, cycle maps commute with proper pushforwards (which in cohomology cor-
respond to integration) and hence we obtain the wanted result. ]

This result, paired with the abelian localisation formulae of the previous section,
immediately translates to localisation formulae for nonabelian quotients:

Theorem 4.6.3 (Nonabelian Guillemin-Kalkman localisation.). Consider the action
of a reductive connected algebraic group on a smooth subvariety Y of P® x A® and
let L be a linearisation. If T is a mazximal subtorus of G, assume that the T and
G actions on the corresponding semistable loci are free and that Y //G and Y )/T are
projective. Let o € AS(Y) be a G-equivariant class, ap = (T — G)*a € AT(Y) be
the corresponding T-equivariant class and consider the T-equivariant vector bundle
on Y with fibre g/b. Then, fized a dendrite D for the momentum polytope of the
T-action, the equality

deg(Ty jaxra(a)) = 1 Z deg (ﬂ-FP* (reSP(OéT : eT(g/h))))

W] PePath(D)

holds true, where W is the Weyl group of G and the sum is over all possible paths in
the dendrite D.

Proof. The proof simply follows by combining Theorem 4.6.2 above and the abelian
Guillemin-Kalkman formula of Theorem 4.4.1. The only thing we have to notice is
that 7*rg = j*r7 which immediately follows from Theorem 2.1.1. O
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Remark 27. Notice that if Y //T is projective then Y //G is projective too, since all
G-invariant functions on Y are also T-invariant. This means that we can just require
the first condition in the hypotheses of the previous theorem.

Analogously we have a nonabelian version of Szenes-Vergne localisation.

Theorem 4.6.4 (Nonabelian Szenes-Vergne localisation.). Consider a representa-
tion V' of a reductive connected algebraic group G with mazximal subtorus T and
assume that VT = O and that the momentum polytope for the T-action is strictly
convex. Let L be a linearisation so that the G and T-actions on the respective
semistable loci are free. Given an G-equivariant class o € AS(V) and the corre-
sponding T-equivariant one ap := (T — G)*a € AT(V), the equality

deg(my joxra(a)) = ﬁm@l (%T(VG)/‘J))

holds true, where
o W is the Weyl group of G.

o (e X(G)=x(T)W is the character of G so that the linearisation L has action
on the fibre given by &.

e 2 < x(T) is the set of characters of the action of T on V.

Example 4.6.2. Let’s build on the previous Example 4.6.1 and assume we want to
compute the degree of a point in the Grassmannian Gr(2,4). By Theorem 2.1.1 we
know that we want to compute

deg (WGr(2,4)*TG ([64]0))

where C* is, for example, the subspace of 2 x 4 matrices of the form

r1 T2 0 0

y1 y2 0 0/°
Notice that, via the pullback along V' — pt, we have the isomorphism AS, (V) ~
A%(pt) ~ Q[t1,t2]%2 by Example 2.1.1. Since C* is cut as the zero locus of a section

of the rank 4 vector bundle £ — C having as fibre the G-representation Matayo(C),
[C*]¢ is the Euler class of E, namely

[C']e = e“(E) = 1153
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and we want to compute

deg (7TGI~(274)*TGf(t%t§)) .

Analogously we see that el(g/h) = (t; — t2)(ts — t1) and T (Ty) = tit3, so the
Szenes-Vergne localisation formula of Theorem 4.6.4 reads

1 tl - t2 ?
deg (Tarasra(tit3)) = _§JK2”2 << 1ty ) > .

Here 2 is the set of weights for the action of 7" on V' = Mats,4(C), hence 2 = {¢1,t2}.
The JK residue on the right-hand side was computed in Example 4.1.4 and shown
to be —2, thus we find that the degree we wanted to compute is 1.




Chapter 5

Equivariant and K-theoretic
localisation.

From now on we are going to focus on the formula of Szenes and Vergne, since it’s the
one that has found more applications in the recent years. A completely analogous
discussion can be carried on for the version of Guillemin and Kalkman.

We have described how this localisation formula can be used to compute degrees
of Chow classes on quotients of linear spaces. In this section we are going to show
how we can extend this to the equivariant setting. Similar to the Atiyah-Bott formula
in the classical setting, this new formula simplifies the residue computation (analo-
gous to the integral in the classical setting) but introduces increased combinatorial
complexity in enumerating the many points at which residues must be computed
(analogous to the number of fixed loci). These analogies are not coincidental; they
arise from the proof of this equivariant formula as a corollary of Atiyah-Bott’s one.

Additionally, we will discuss an extension of this localization formula to equivari-
ant K-theory via the Hirzebruch-Riemann-Roch theorem.

Notation. From now on we will use with the integral sign SX also in Chow homology,
to denote the composition of the degree map with the pushforward through the
projection 7 : X — pt to a point. In more explicit terms, given a cycle Z € A.(X)
we will use the notation

JX 7 = deg(m.2)

and we will do the same in the equivariant case. This will make the formulae much
easier to read in what follows.

95
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Contents of the section.

The section is structured as follows.

e We will discuss the equivariant generalisation of the Szenes-Vergne localisation
formula (Theorem 5.1.1 in the abelian setting and Theorem 5.1.3 in the non-
abelian one). The new feature of this equivariant formula is the role played
by a hyperplane arrangement defined in the character space of the torus used
to build the quotient. The result will be expressed as a sum of Jeffrey-Kirwan
residues, one for each isolated intersection of the arrangement.

e We will also study a K-theoretic version of this formula (Theorem 5.2.1), useful
to compute equivariant Euler characteristics of K-theory classes.

5.1 Equivariant Szenes-Vergne localisation.

In this section we are going to describe a generalisation of this formula to the equiv-
ariant setting, so that it computes degrees of equivariant cycles on quotients of linear
spaces. This will be done in two steps:

1. First, we apply the classical Atiyah-Bott localisation formula to the degree we
want to compute. This splits up the degree in several contributions arising
from the fixed loci in the quotient variety.

2. We then realise that all these fixed loci can be described as GIT quotient
themselves. Then the non-equivariant version of the Szenes-Vergne formula
can be applied to compute the contribution of each fixed locus.

3. We pack together all this data in a nice combinatorial description of the fixed
loci and of their contributions in terms of intersections in a hyperplane arrange-
ment and of residues computed at this points.

Different equivariant versions of the Jeffrey-Kirwan localisation formula were studied
in [Ziel8] and [Mar08|. The strength of the version that we are interested in lies in
the fact that it produces very explicit computations and that it is widely applied in
physics, as we will see in later sections.
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5.1.1 The fixed locus.

Consider a linear space V' together with the action of two tori 7" and S and a regular
T-linearisation £ given by a character £ € x(7'). We also assume that the T-action
commutes with the S-action, which therefore descends to the quotient V//T. We
have the weight-space decomposition

V> @ V. (5.1)

pex(T)

vex(S)
where V,, © V' is the subspace over which T" and S acts via the characters p and v
respectively. The following lemma will be useful to study the fixed locus (V //T)%:

Lemma 5.1.1. The following conditions are equivalent for a vector ve V(T)*:
1. The vector v defines a fized point in V //T.
2. The stabiliser G €T x S of v is of dimension dim(S).

3. Denoted with I the set of (p,v) € x(T'xS) so thatv,, # 0 in (5.1), the quotient
of the subspace EI—)( Vo by T s fized by S.

pv)EL

4. Denoted with I the set of (p,v) € x(T' x S) so that v,, # 0 in (5.1), the inter-
section of hyperplanes U := (), yerlp + v = 0} of X(T x S)¢ is of dimension
dim(S).

Proof. (1 = 2) Being the image of v through the quotient map fixed by S, the
projection of G to S must be surjective, so dim(G) = dim(S). On the other hand
the dimension can’t be greater, otherwise the fibre of G above 1 € S must be positive
dimensional, giving a C* < T acting trivially on v and contradicting semistability.
(2 = 3) Notice that being v semistable, the fibre of G — S above the identity
is finite, hence the kernel is finite and G maps surjectively on S by dimensional
reasons. This implies that, if G acts trivially on ¢ € V(T')®, then the image of
v" through the quotient map is fixed. Notice that G acts on V,, via the character
G — T x S % C*. Since G acts trivially on v, for every (p,v) € I we have that
the character of G defined above is trivial, hence G acts trivially on V,,. (3 = 1)
is trivial. (4 = 2) Notice that 4 is the infinitesimal version of 2. Given such U
we can consider the subgroup of G < T x S having U as space of cocharacters. In
other words we can find a C-basis of U given by integral elements A, ..., Agim(s),
which define a subgroup G of dimension dim(.S). It’s clear that this fixes the vector
v since (A; - v),., = p(A)v(N)v,, = v,, whenever p,v € I by construction. Finally
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assume that the stabiliser of v is of bigger dimension. Then its space of cocharacters
would be a bigger dimensional space contained in the intersection U, contradicting
the hypothesis on the dimension of U. (2 = 4) Clearly x(G){ is contained in U, so
U is at least dim(S)-dimensional. If it were higher dimensional, we could construct
a bigger G fixing v as in the previous point, contradicting the hypothesis on the
dimension of the stabiliser. O

This allows us to give a combinatorial description of the S-fixed locus on V /T
in terms of the following hyperplane arrangement:

Definition 5.1.1. We will denote with H the hyperplane arrangement in the linear
space x(T)Z x x(S)¢ given by the hyperplanes of the form {p + v = 0} for every
choice of p € x(T') and v € x(S) so that V,, # 0 in (5.1). Given a subspace
U < x(T)¢ xx(S5)¢ we will denote with Hy the set of hyperplanes of the arrangement
containing U.

Notation. Given characters p € x(T) and v € x(S) we will write p + v € Hy if the
corresponding hyperplane {p + v = 0} belongs to Hy. By abusing notation, we will
also write p € Hy is there if a v so that p+ v € Hy.

Definition 5.1.2. Given an intersection U of hyperplanes in H, we say that it
is stable if it is dim(S)-dimensional and £ belongs to the positive span of the set
{plp € Hy}. For such a U define the corresponding subspace of V'

VU = @ V,V.

p+reHy

Proposition 5.1.1. The function

{stable intersections of H} — {connected components of (V//T)"}

s a well-defined bijection.

Proof. First of all, notice that since U is stable the T-semistable locus of V; is
nonempty by Lemma 4.5.1, hence the quotient is nonempty. The quotient is fixed
by Lemma 5.1.1 and obviously connected. Notice that given two different stable
intersections U and U’ the corresponding quotient varieties don’t intersect. Assume
in fact that v € V belongs to the intersection of the corresponding linear spaces. Then
the intersection of hyperplanes corresponding to v given in point 4 of Lemma 5.1.1
contains both U and U’, so it is of dimension strictly bigger than dim(S). The same
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argument used in the previous Lemma ensures that the dimension of the stabiliser is
bigger than dim(S) and therefore v can’t be stable. Finally let v € V(T')* be a point
that descends to a fixed point on the quotient. By Lemma 5.1.1, point 4 ensures that
the corresponding intersection U is of the correct dimension. Moreover, U is stable
by Lemma 4.5.1. [

Example 5.1.1. Consider the simplest case possible, namely the case of P!. Let
T = S = C* and consider the action on A? given by

TxS~A : (ts)(z,y):= (tsz, ty). (5.2)

If we consider the T-linearisation given by the character £ := ¢, we immediately see
that the quotient A%//T is the projective line P.

Proposition 5.1.1 gives a description of the fixed locus of the residual S-action
on P! in terms of a hyperplane arrangement. Here we show this correspondence
explicitly.

The hyperplane arrangement in the space of cocharacters x(7)& x x(S)¢ =~ CxC
is given by the weights of the (7' x S)-action, hence it is the arrangement given by
the two lines t+s = 0 and ¢t = 0. Each of these two lines is a stable intersection since
¢ is in the positive span of t. The first stable intersection {¢t + s = 0} corresponds
to the subspace A! x 0 < A2, hence our Proposition 5.1.1 predicts that its quotient
[1:0] € P!is a fixed locus for the induced S-action. Analogously the second stable
intersection {t = 0} corresponds to the subspace 0 x Al = A, hence our proposition
predicts that its quotient [0 : 1] € P! is a fixed locus. Indeed, these are the only two
fixed loci for the induced S-action on P!, which is s [x : y| = [sz : y] as can be seen
from (5.2).

This gives a combinatorial description of the fixed locus (V//T)° in terms of a
hyperplane arrangement. We now show that this arrangement is not just an ad-hoc
gadget, but it’s an intrinsic invariant of V //T, namely the spectrum of its homology
Ting.

5.1.2 The spectrum of homology.

This and the following sections are not strictly needed for the proof of equivariant
JK localisation, but they provide more context and a nice interpretation of the hy-
perplane arrangements that appear in the formula. We start by considering the more
general context of a torus S acting on a smooth quasiprojective variety S —~ X with
a regular linearisation £. The first observation is that, since the Atiyah-Bott local-
isation formula of Theorem 2.3.4 ensures that the pullback defines an isomorphism
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of A%(pt)-algebras
i A¥(X) - AF(XF);

for some f e A%(pt) ~ Sym (x(S5)c) vanishing at the origin. By taking Spec we find
an isomorphism of schemes over the open subscheme {f # 0} of x(S)¢:

Spec (A% (X)) — > Spec (A%(X)y)

\ /

{f # 0}
This helps us studying the spectrum of the equivariant homology of X:

Proposition 5.1.2. Consider the decomposition X° = |lpcxs I of the fived locus
in its connected components. Then the ring A°(X); is isomorphic to @, AS(F);
and

Spec (A% (X)y) ~ |_| Spec (A(F)y)

15 the decomposition in connected components, and each component is a fattening of
the base {f # 0} < x(5)¢.

Proof. The first part of the claim is an immediate corollary of Atiyah-Bott’s for-
mula. Notice that for every connected component of the fixed locus A%(F); =~
A(F) ®c A%(pt)s. Moreover A(F) is nilpotent, being the Chow group of a smooth
quasiprojective variety (there is nothing below degree zero), hence

Spec (A5(F);) ~ Spec(A(F)) x {f # 0},
where Spec(A(F')) is a fat point. O

In the case where X is a geometric quotient of the form Y //T we can say more
about A%(X):

Proposition 5.1.3. Spec (AS(Y//T)) is a closed subscheme of Spec (AT*5(Y)) and
its ideal sheaf is the image of the (T x S)-equivariant pushforward j., where j is the
inclusion of the non-semistable locus j : Y\Y(T)* — Y.

Proof. Consider the exact sequence of equivariant Chow groups [FG98b, Lemma 4]
ATSS(Y\Y (T)®) 25 AT*S(y) 25 ATS (v (T)*) - 0 (5.3)

where u* is a flat pullback and hence a ring homomorphism. Notice that AT>5 (Y (T)%)
is isomorphic to A%(Y //T) by Theorem 2.1.2. O



CHAPTER 5. EQUIVARIANT AND K-THEORETIC LOCALISATION. 101

5.1.3 Intersections in the hyperplane arrangement as homol-
ogy schemes.

Let’s go back at our case of interest, where T' x S —~ V with a regular T-linearisation
L. We have seen that the spectrum of A°(V //T) is a closed subscheme of x(T')¢ x
X(S)¢ and (away from a hypersurface) it coincides with the disjoint union of the
spectra of the cohomology of fixed loci. We have shown how connected components
of (V//T)® are indexed by stable intersections of H. We now want to prove that
the fixed locus corresponding to the stable intersection U has U itself as reduced
spectrum of its equivariant homology:

Proposition 5.1.4. Let U be a stable intersection of H. Then the support of the
cohomology of Vi /T coincides with U :

supp (Spec(A°(Vy//T))) = U.

Vv

Scheme-theoretically, this subscheme is cut inside x(T)¢ x x(S)< by the equations
H 1_[ (p_i_y)dim(Vp,y)
peJ p+veHy

where J ranges over the minimal subsets of {p|p € Hy} such that & is not in the
positive span of the complement J°.

Proof. First of all, notice that the T-unstable locus of Vy; is a union of T-invariant
linear spaces since the ring of invariant sections

@ HO(VU, £®n)T o~ @ HO(VU, OVU &® né)T
n=0 n=0

is generated by monomials. Moreover notice that a linear subspace is T-invariant
if and only if it is a direct sum of eigenspaces for the T-action. By Lemma 4.5.1,
this means that the unstable locus in Vj; is the union, indexed over the maximal
subsets I < {p|p € Hy} so that £ is not in the positive span of I, of the subspaces

‘/I = @pel ‘/P:

VAV (T)* = | Wi

Consider the exact sequence (5.3) specialised to Y = V; the equations we seek are
given by the generators for the image of the pushforward map

AT*S (VU\VU(T)SS) = ATXS(VU).
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We can consider the surjection

| |vi = Vo\Vu(T)*

inducing a surjection of Chow groups by pushforward. So the image we want to
study coincides with the image of

@ATXS(VI) j—*>ATXS(VU),
1

which is the ideal generated by the images of the various AT*5(V;) 2% AT*S(Vy),
Notice that, since both V; and V;; are linear spaces, their Chow groups are canonically
isomorphic to the Chow group of a point via the flat pullback through the projection.
This makes j, an endomorphism of A%(pt) ~ Sym(x(T)c x x(S)c). The pullback
through the regular embedding j is an isomorphism, so we can easily compute j, by
the projection formula

j*j*a = 6TXS(/\/'VJ/VU) C Q.

Since that this Euler class is

n H (p + V)dim(Vp,V) =0

pelc p+veHy

the morphism j, is the multiplication by this function. This discussion shows that
Spec(A%(Vy//T)) is the zero locus of the functions above, and by setting J = I°
we complete the proof of the scheme-theoretic statement. Set-theoretically, U is
contained in the vanishing locus of those functions by construction. On the other
hand, assume that a point x € x(7)¢ x x(S)¢ belongs to that zero set. The set of
characters

I:={peHy|3vsothat p+veHy and (p+ v)(x) = 0}

forms a set of generators of x(7)¢, otherwise £ would not be contained in the positive
span of I but the function

[T T[] (o+w)timte) (5.4)
pelc p+veHy

wouldn’t vanish on x, causing a contradiction. Hence the functions p + v that van-
ish on x cut a subspace of dimension dim(S), which must then be precisely U by
dimensional reasons, so z € U. O
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This result shows that the stable intersections of the hyperplane arrangement
H are an intrinsic invariant of V /T, namely they describe the spectrum of its S-
equivariant cohomology!

Example 5.1.2. Let’s continue Example 5.1.1. We show that the hyperplane ar-
rangement we studied before, given by the two lines {t+s = 0} and {t = 0}, coincides
with Spec(A%(P1)). Indeed AS(P1) ~ AT*5(A%\0) fits into the exact sequence (5.3)

ATXS(O) ji)ATXS(AQ) ﬂAS(Hﬂ) 0

which, by identifying the first two Chow groups with the Chow group of a point via
the flat pullback along the projection to a point, coincides with

X (t+s)t
—_—

C[t, s] C[t, s] 5 AS(P) — 0

finally giving A%(P') ~ C[¢, s]/((t + s)t).

5Pec (ASO?L )) Sfo.c (ATXS(/AQ.))

5 .

Figure 5.1: The spectrum of A°(P') as a subscheme of Spec(AT*5(A?)).
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5.1.4 A remark on hyperplane arrangements.

Consider the weight space decomposition (5.1) of V' for the action of T x S:

V@ V..

pex(T)
vex(S)

We described the fixed loci on V//T in terms of the stable intersections of the hy-
perplane arrangement #H in x (7" x S)¢. This was the arrangement of hyperplanes of
the form

{p+v=0} : V., #0.

Consider a subspace U of the same dimension as S obtained by intersecting some
hyperplanes in H and set

Ay :={pex(T) | Uc{p+v=0}andV,, #0}.

Such subspace is called a stable intersection if the stability € is contained in the
positive span of 2. For every s € x(S5)¢ we consider the point

C(s) :=Un(X(T)¢ x {s}).

The equivariant localisation formulae of the next section will describe the relevant
intersection number, evaluated at a generic s € x(9)¢, as a sum of contributions,
one for each stable intersection U, of the form

Do IR () (5.5)

. U stable,
intersection in H

Our aim is now to simplify a little bit this residue operator.
Definition 5.1.3. . Fixed s € x(5)¢ we can consider the hyperplane arrangement
in x(T)¢
Hoi=Hn ((T)E x {s})
explicitly given by the affine hyperplanes of the form
{p+rv(s)=0} : V., #0.

A point in x(7')¢ is called an isolated intersection of Hs if it’s the intersection of
dim(7') independent hyperplanes. Given such intersection P consider

Ap:={pex(T) | Fvst. Pc{p+v(s)=0}andV,, # 0}.

We say that P is a stable isolated intersection if £ is contained in the positive span
of 91]3.
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For generic s the stable intersections of U of H are in bijection, via

U Culs) :=Un (x(T)¢ x {s}),

with the stable isolated intersections of Hs. Notice that this correspondence satisfies
Ay = Ae,(s)- This means that, for a generic s, the operator (5.5) is equal to

> JKER (-..). (5.6)

P stable isolated
intersection in Hg

]
- .
! 1

Figure 5.2: The hyperplane arrangement H, in the case of Example 5.1.2. Tt is the
arrangement in x(7')¢ realised by intersecting H with x(7')¢ x {s}.

5.1.5 Equivariant abelian localisation.

In this section we wish to prove the S-equivariant version of the abelian Szenes-
Vergne localisation formula:

Theorem 5.1.1 (Abelian equivariant localisation). Consider a linear space V' to-
gether with the action of two commuting tori T and S and a regular T-linearisation L
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given by a character £ € x(T). Assume that the momentum polytope for the T-action
is strictly conver and that VT = O. Given a € AT*5(V), consider the induced class
r(a) € AS(VJJT), where r := rpyss is the S-equivariant Kirwan map for the action
of T'x S on V. For a generic cocharacter s € x(S){, its degree can be computed as

P stable isolated

intersection in Hs
where Hs and Ap are those of Definition 5.1.5 and the argument of the JK residue
is evaluated at s, so it defines a rational function on x(T)¢.

Remark 28. This formula computes the value of the equivariant degree at a generic
cocharacter s € x(5)¢. Notice that this is not restrictive at all, since this degree is
a polynomial function on x(5)¢ and knowing it generically is enough to describe it
everywhere. Moreover, the computation for "the generic s" can be done in one step
by just treating s as a formal variable not satisfying any relation that would make
it non-generic.

Proof. In this proof all character spaces are with complex coefficients. For simplicity,
we will not reflect this in the notation. In Proposition 5.1.1 we have seen that the
connected components of (V//T)° are described by stable intersections in H, using
the notation of Section 5.1.4.By applying Atiyah-Bott localisation (Theorem 2.3.3)
with respect to the S-action on the quotient V //T', we can write

o) — T(Oun)
L//T (@) Ustzable fvu//T (e (Nvyv)) (5:7)

intersection in H

exactly as we did in Section 4.3. Consider the morphism r, which restricted to V;
becomes

r: Sym(x(T)) ® Sym(x(5)) — A(Vy//T) & Sym(x(5))-

We can express this map in terms of the non-equivariant Kirwan map ry : A7 (V) —
A(Vy//T) with the following

Lemma 5.1.2. Given stable intersection U of H consider the C-linear morphism (y :
X(S)Y = x(T)Y so that U is the graph. Given a polynomial function f : x(T)¥ — C
we can consider the associated function

Fox(T)Y xx(8)" =€ ¢ [f(t.s):= f(t+Cu(s)).
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If we split the contributions of T and S as f(t,s) = S_y fa(t)gi(s), then

d

() @h(s)) = Y, rr(fr) @ gu(s)h(s).

k=0
for every polynomial function h: x(S) — C.

Proof. Consider the subtorus G < T x S fixing Vi;, whose cocharacter space satisfies
X(G)Y =U < x(T)" x x(S)¥ by the proof of Lemma 5.1.1. The finite morphism
T x G— T x S gives a change of group homomorphism fitting in the diagram

AT*S(Vy) —2— AS(Vyy //T)
(TxG—»TxS)*l l(G—nS’)*
AT*G(v,) 298 AG(V, )/T)

which coincides with the diagram

Sym(x(T)) @ Sym(x(5)) —— A(Vu//T) ® Sym(x(5))

composition with composition with
X(T) Y xU—x(T)" xx(S)" U—x(S)"

Sym(x(T)) ® Sym(U¥) 5% A(Vy//T) @ Sym(U™)

We know that U projects isomorphically onto x(S)Y, so we can pick the inverse and
attach to the bottom of the diagram the following clearly commutative square

Sym(y(T)) ® Sym(U¥) —“Z% A(Vy//T) @ Sym(U™)

composition with composition with
xX(T)Y xx(8)" =x(T)" xU x($)Y—=U

Sym(y(T)) ® Sym(x(S)) "2 A(Vy//T) ® Sym(x(S)).

The wanted equality follows from the commutativity of this big diagram, since the
composition of the vertical arrows on the right is the identity while the composition
of the vertical arrows on the left is the endomorphism of Sym(x (7)) ® Sym(x(S5))
given by the composition with

X(T)" > x(5)" = x(T)" x x(5)" = (ts) = (t+Cu(s),s).
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Notice that (5.7) is an equality in Sym(x(5)) for some polynomial function f. In
particular it becomes an equality of numbers whenever we evaluate it at a cocharacter
s € x(5)Y where the Euler classes don’t vanish. If we fix such s € x(S5)", thanks to
the lemma we just proved, the contribution of the stable intersection U is

J rr (et + Cu(s), s))
Vo T T

(E(t+Cu(s),s))
where we have denoted with E : x (7)Y x x(S)¥ — C the T x S-equivariant Euler class

of Ny, v. Notice that, having nonzero constant term, E(t + (y(s), s) is invertible in
the ring of formal power series in ¢ by means of the geometric series, hence

(t+CU Z

where ¢ is an homogeneous function of degree k on x(7')¥ (notice that if we tensor
x(T)¥ with C this is the power series expansion of the holomorphic function E(t +
Cu(s),s)~! at the origin). Then we can write the integral above as

JVU//T T (a (t+ Cu(s Z )

where the sum can be truncated at every k bigger than the dimension of V;//T. By
nonequivariant Szenes-Vergne localisation we find that this integral coincides with
the residue

w [0+ () TE 0O\ o [ alt+ Cu(s),s)
e ( o (Tv,) )‘JK% (E<t+cU<s>,s>eT<TvU>)’

where the second equality holds true by Lemma 4.1.5. To conclude we just have to
notice that

e (T, )(t) = "5 (Tiy ) (t + Cu(s). 5),

which is obvious being

Ty )(ts) = [ (p() +w(s) e

p+rveEHY
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hence

TS (T )+ Cu(s),s) = [ (olt) + p(Cu(s)) + v(s) ™)

p+rveHy

= T Goymon)
p+veEHY

= [ [ o)) = (T, (1),
PEp

since ((y(s), s) belongs to U, where all the p + v € Hy vanish by definition. Finally,
we use the fact that the operators (5.5) and (5.6) coincide. O

Example 5.1.3. Let’s continue with our series of examples on P! started in Example
5.1.1. The T-equivariant Kirwan map 77 : AT(A?) — A(P') sends the equivariant
class t into the class of the point h. In particular this shows that the S-equivariant
Kirwan map r sends the class at + bs into some S-equivariant lift of ah € A(P'). In
particular we should expect

f r(at + bs) = a. (5.8)

Let’s use the formula of Theorem 5.1.1 to show this. We already showed that the

\

hyperplane arrangement in x(7")¢ x x(5){ = C x C is
H={{t+s=0}{t=0}}
and both the lines are stable intersections. For the first line the morphism
Cft+s=0} : C—-C

maps x into —x. Thus, for a generic value of s, the contribution of this intersection
to the S-equivariant integral (5.8) is

b b—
JKt{ﬁs (at-i— s) _ K (at-l—( a)s) —ab

(t+ s)t t(t — s)

where the last equality holds true since, in this case, the JK residue is simply the
usual complex analytic residue at ¢ = 0. Analogously the contribution of the line

{t =0} is
JK{t} at + bs b
P (t+ )t ’

so their sum is a as expected.
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5.1.6 Quasiprojective quotients.

In the previous section we have discussed the case where V //T is projective, or
equivalently by Lemma 4.5.2 the case of A strictly convex and VT = O. If V//T is
not projective we can still define the equivariant degree {, T r(«) by localisation, as

long as the fixed locus (V //T)" is proper. In this case, the formula of Theorem 5.1.1
still works by the same exact proof.

We can translate the condition on the properness of the fixed locus in the following
condition on the stable intersections in the hyperplane arrangement H:

Proposition 5.1.5. Assume that V' = O and let U be a stable intersection of the
hyperplane arrangement H. The fived variety Vi //T is fized if and only if the subset
2y spans a strictly convex cone. In particular, the fived locus (V //T)% is projective if
and only if, for every isolated intersection U in the hyperplane arrangement H, the
set Ay spans a strictly convex cone.

Proof. This follows at once by Lemma 4.5.1 ensuring that the momentum cone of
Vi is spanned by 2 and by Lemma 4.5.2. O

Another sufficient, and usually easy to check, condition for properness of (V //T)*
is given by the following:

Proposition 5.1.6. Assume that there is no nonconstant (T x S)-invariant function

on V. Then (V//T)® is projective.

Proof. The action of S on V commuting with the one of T" induces an S-action on
HO(V,0Oy)T. This is a finitely generated algebra and we can take the generators
to be S-equivariant. This is because we know this algebra is generated by some
elements of degree bounded by some number d, and the subspace Wy < H(V, Oy)T
of nonconstant functions of degree at most d is a finite dimensional subrepresentation
of S. Then we can split this subrepresentation in 1-dimensional representations and
take generators fi, ..., fy for all of them. This shows that the projective morphism

V//T — Spec(H"(V, Oy))" < A"
given by GIT is S-equivariant with respect to an S-action on AN having the origin as

its only fixed point. Then (V //T)°, being fixed, is mapped to the origin and therefore
it is contained in a fibre of the projective morphism, so it is projective. O
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5.1.7 Equivariant nonabelian localisation.

The two ingredients we used to pass from the abelian version to the nonabelian one
are the cycle class map and the Theorem 4.6.1 of Martin. Both keep working in
the same way in the equivariant context. In particular a reference for equivariant
cycle maps is [EG98b, Section 2.8, where it’s shown they enjoy all the functoriality
properties of the usual cycle maps. The following equivariant version of Martin’s
formula holds true by the same proof of Martin:

Theorem 5.1.2. Let G be a reductive connected algebraic group acting on a smooth
quasiprojective variety Y with a linearisation L. Denoted with T' a maximal subtorus
of G, assume that the G and T -actions on the respective semistable loci are free and
that the quotients Y /G and Y J/T are projective. Let S be another torus action on
Y commuting with the action of G. Let « € HX{(Y //G) and B € H5(Y //T) be such
that m*a = 7*B. Then

1 s
o= — Bue’(R),
JY//G W1 Jyyr

where W is the Weyl group of G and R is the roots bundle of Y //T, namely the
bundle obtained by descending to the quotient the T x S-equivariant vector bundle

Y xg/h — X,

where g := TG and by :=T1T, with action on the fibre induced by the adjoint T-action
and trivial S-action.

The equivariant version of the nonabelian Szenes-Vergne formula follows from the
abelian one exactly as in the nonequivariant case:

Theorem 5.1.3 (Equivariant Szenes-Vergne localisation). Consider a linear space
V' with the action of a reductive connected group G and a torus S. Let T < G
be a mazimal subtorus and consider a linearisation L for the G action, given by a
character £ € x(G). Assume that

1. The actions of G and S commute.

2. The actions of T and G are free on the respective semistable loci.

3. The S-fired loci (V //T)® and (V //G)® are proper.
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Given a € AS*5(V), consider the induced class r(a) € AS(V //G), where v 1= rgxs.s
is the S-equivariant Kirwan map for the action of G x S on V. For a generic
cocharacter s € x(S)¢, its degree can be computed as

L a - ¢"(g/b)
r(a)(s) = L (_ |
J |W| P stable isolated oF eTXS(TV)
intersection in Hs

where

e The argument of the JK residue is evaluated at s, so it defines a rational func-
Vv

tion on x(T){.
o W is the Weyl group of G.
e g is the adjoint representation of G and by is the Lie algebra of T.

o H, Ap are those of Definition 5.1.3.

Remark 29 (Projectivity of the fixed loci). Notice that, by Proposition 5.1.6, if
HO(V,0y)T*5 = C then (V//T)? is proper. Clearly, since G-invariant functions
are T-invariant too, we obtain that H°(V,0y)“*® = C and hence that (V //G)* by
the same proof of Proposition 5.1.6. This shows that the condition

HY(V,0)"% ~ C (5.9)
implies that both (V /T)% and (V //G)® are projective.

5.1.8 Integrating other classes.

Assume we are in the context of the previous section and that we want to compute
the integral of a class a € A%(V //G). Assume we also don’t know how to express it
in the form 7(3) for some 8 € A*5(V). Maybe we know that there are two classes

B,v € ASS(V) so that r(y) is invertible on (V //G)* and
P r(B)vycys
I(V/G) r(7) (v ey

Then the same exact argument used in the previous sections ensures that, in the
notation of the previous Theorem 5.1.3,

1 2A g GT(Q/U)
afs) = — JK2E (— . (5.10)
JV//T |W| P stabgsolated & i eTXS(TV)

intersection in Hs
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Notice that it is crucial that r(v) is invertible on (V //G)? for this equality to hold
true. Here we consider a very important example of such classes:

Lemma 5.1.3. Let E be a (G x S)-equivariant vector bundle on V' so that its equiv-
ariant Euler class eT*%(E), thought as a polynomial function on x(T x S)¢, doesn’t
vanish entirely on any stable intersection of the hyperplane arrangement H associ-
ated to'V (see Definition 5.1.1). Then r(eT*5(E)) is invertible on (V //T)% and hence
r(eS*5(E)) is invertible on (V //G)5.

Proof. By splitting the (T'x S)-representation F in subrepresentations we can assume
that E is 1-dimensional, so e?*5(E) = ¢ + ¢ for some ¢ € x(T),v € x(S). Every
fixed locus on V//T is of the form Vi, //T for some stable intersection U of H as seen
in Proposition 5.1.1. Moreover, notice that r(¢ + 1) € A7 (Vy//T) is invertible if and
only if it is not constant in the equivariant parameter s € x(S)¢. Then, as described
in Lemma 5.1.2, for every s € x(S5)¥ we have

(@ +¥)(s) = 1(0) + ¢(Cu(s)) +U(s) = 7(¢) + e (E)(Cu(s), 5)

which doesn’t depend on s if and only if e7*5(E)(¢y(s),s) = 0 for all s, or in other
words e *5(E) vanishes on U. O

5.2 K-theoretic version.

In this section we prove a version of the Szenes-Vergne localisation formula for Euler
characteristics by using the previous formula and a the Hirzebruch-Riemann-Roch
theorem. For another approach to K-theoretic localisation formulae of Jeffrey-Kirwan
type see [AFO18, Appendix A].

Definition 5.2.1. Given a formal variable y and a K-theory class represented by
a vector bundle E € Kg(X) we will denote with A_,E the class Y2 y*AFE €

Ka(X)[y]. In particular A_ E = Y (1) AFE € Ko (X).

Theorem 5.2.1 (K-theoretic Szenes-Vergne localisation.). Consider a linear space
V' with the action of a reductive connected group G and a torus S. Let T < G
be a mazimal subtorus and consider a linearisation L for the G action, given by a
character £ € x(G). Assume that

1. The actions of G and S commute.

2. The actions of T' and G are free on the respective semistable loci.
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3. The S-fized loci (VJ/T)S and (V J/G)® are proper.

Given E € Kgxs(V), denoting with r(E) the S-equivariant K-theory class induced
on V /|G, the following formula holds true for a generic cocharacter s € x(S)¢:

o (xS (VG r(E))) (5) =
w5k (s (PR,

P stable isolated
intersection in Hs

where

e The argument of the JK residue is evaluated at s, so it defines a meromorphic
function on x(T){.

o W is the Weyl group of G.
e g is the Lie algebra of G and b is the Lie algebra of T.
e H, and Ap are those of Definition 5.1.5.

Proof. The Lemma 2.4.2 above shows that
¥ (P (V)G r(E))) = f r (b (BYT" (T — g) o [V]exn)
V/)G

The thesis follows by applying the formula of Theorem 5.1.3 to this latter integral,
noticing that

GxH F)
TdGXH F) = € (
( ) ChGXH(A_lFV)

for every F e Kgyxu(V). O

5.2.1 Computing with other classes.

Exactly as in the cohomological case, we might be interested in computing Euler
characteristics of classes E so that there are A, B € Kgys(V), with r(B) is invertible
over (V //G)%, satisfying

r(A)vyes

E V/IiG)S — .
I (B jeps
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If this holds then we can use the same formula of Theorem 5.2.1 (under the same
hypotheses) to write

ch® (x* (V//G, E)) (s) =
1 Ap rxs (A®A 1(g/h) .
0l oo IR <ch (m» : (5.11)

P stable isolated
intersection in Hg

Asin Lemma 5.1.3, we can see that given an equivariant bundle £ € Kgyxs(V), A1 E
is invertible on (V//T)% if and only if the characters of the representation E don’t
vanish on the stable intersections of the hyperplane arrangement H associated to V.



Chapter 6

Applications.

In this section we will explore various corollaries of the localisation formulae discussed
in the previous sections.

Contents of the section.

We will consider the following applications:

e First of all, we will study the case of invariants of critical loci cut inside varieties
of the form V//G. This virtual invariants will be the integral of 1 over the
virtual fundamental class and its K-theoretic and elliptic analogues. We will
provide an interpretation for these invariants in simple cases and use the JK
formulae of the previous sections to give a general formula in Theorem 6.1.1.
The origins of this result lie in the work of the Benini-Hori-Eager-Tachikawa
|Ben+15] in theoretical physics.

e We will specialise to the case of critical loci in quiver varieties, obtaining The-
orem 6.2.1 computing the invariants above in this context. We will discuss the
concrete formula that one finds in the case of the Hilbert scheme of points on
A3.

e We will then focus on Hilb"(A%), a scheme which is cut inside a variety of the
form V//G by a section of a vector bundle, but which is not a critical locus.
We will show how a direct application of the JK localisation formula recovers
some interesting formulae for its invariants already used in physics.

116
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6.1 Invariants of critical loci.

In this section we are going to compute, via the Szenes-Vergne localisation formula
described before, invariants of critical loci in quotients of linear space by actions of
reductive connected groups. Many interesting spaces are of this form, for example
critical loci in quiver varieties. Classical examples are Hilb"(A?) and Hilb™(A?), but
also quot schemes [FMR21].

Notation. The Dedekind eta function is the formal power series 1) € ¢21 - Z[q] given
by

n(g) == [ [(1—q").

nzl

The Jacobi theta function is the power series 0 € qéy’% -Clly, qlly

0(q:y) = —igs(y? —y~2) | [ = ¢") (1 = yg™) (1L =y~ q").

n=1

We also denote with the same Greek letters the functions
n(r) :=n(e*™7), 0(7|2) := 0(e*™, &™),

which enjoy nice modular properties [Mum07].

6.1.1 Which invariants?

A reference for this section is the work [BI'97]| of Behrend and Fantechi.

Consider a smooth quasiprojective variety A, which we will call ambient space.
Given a superpotential, namely a regular function ¢ € H°(A, O4), we can consider
the corresponding critical locus X := V(dy) € A. This locus is often singular, its
classical invariants are hard to define/compute and they depend on the specific ¢.

Instead, we are going to focus on a kind of invariants which are easier to compute
and deformation invariant, which in this case means that they do not depend on . Of
course, they will not be invariants of just the scheme X, but they will also remember
that we used a section of €24 to construct it. More precisely, they will be invariants
of the scheme X endowed with the perfect obstruction theory E € DI[);rlf’O] (X) dual to
the wvirtual tangent bundle

ddy

Ty = [(TA)\X — (Q.A)|X] (6.1)
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where ddy is the vertical derivative of the differential dy. In more explicit terms,
the differential of ¢ can be thought as a morphism of schemes dp : A — Q4 and its
differential defines a morphism of vector bundles on A

dde : Tq — (dp)*Ta,.

Since dyp*Tq ,, once it’s restricted to X = V(dy), splits as T4 @24, we can consider
the composition of the morphism above with the projection to the second component
and call it vertical derivative. Once we have this perfect obstruction theory we can
recover the building blocks for the invariants we want to consider. They are the
virtual fundamental class [X|'" € Ao(X) and the virtual structure sheaf O €
Ko(X), which are defined from the p.o.t. via the intrinsic normal cone construction
(see [BI'97]). From these two classes we can define many interesting invariants via
integration.

In this context, the interesting case is where X is not proper (hence A is only
quasiprojective) and we define invariants by localisation with respect to an additional
torus action. This situation will be explored in later sections. Here, as a warm-up,
we consider the simple case where A is proper and there is no equivariance involved.

Definition 6.1.1. Assume that X is proper. The DT invariant of X is the number

DT(X) :f leZ.
[X]vir

The virtual Hirzebruch genus of X is

X(X) == x (X, K¥® ng) e?
where K¥" € K%(X) is the determinant of the virtual tangent bundle (6.1) and its
square root is (K 4)|x (as can be seen directly from (6.1)).

Another interesting invariant is expressed in terms of the following equivariant
K-theory class defined in [FMR21]: for every vector bundle £ on X set

E1pp(E) = X)Symu (E@®EY) e 1+ ¢K°(X)[q]]

n=1

having constant term in g equal to 1. Notice that &/, defines a group homomorphism
between (K°(X),+) and (1 + ¢ - K°(X)[¢], ®).
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Definition 6.1.2. If X is proper, the wvirtual chiral elliptic genus of X is the Euler
characteristic

E(X)(q) := x (X, E1p(TXT) @/ K¥ ® 0%)

which belongs to Z[[q].
The three invariants DT, xy and Ell are all equal in this simple context:
Proposition 6.1.1. If X is proper, since [X|"" is of dimension zero, then
DT(X) = x(X) = El(X)(q)-

Proof. By the virtual Hirzebruch-Riemann-Roch theorem |[FG10]|, for every E €
K(X)

VX, E@ O — J ch(E)Td(T¥").
(X

Now notice that [X|'I" is of dimension zero, hence only the component in A°(X) of
the class under the integral sign will contribute to the Euler characteristic. Notice
that by definition of Chern character and Todd class this constant part coincides
with the rank of F, hence

(X, E® OY) = rk(E)DT(X).

The class 4/ K} must be of rank 1 since squares to a line bundle, so x(X) = DT(X).
On the other hand, since & (E) = & 2(E"Y) and &5 is a group homomorphism, we
see from (6.1) that & »(T¥") = 1. O

Furthermore, if A is proper too, then ¢ is constant and the critical locus is X = A.
The virtual tangent bundle (6.1) has ddp = 0, and the virtual fundamental class is
e(Q4) N [A]. In particular, we can see that the DT invariant is the topological Euler
characteristic up to sign:

DT(A) = | e(9) = (<1 (6.2

Assume that A = V //G for an action of a reductive connected group G on a linear
space V with a linearisation given by a character £ € x(G) so that
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e there is a maximal subtorus 7" € G so that the actions of T on V(7T)* and of
G on V(G)* are free.

e V//T is proper, hence so is V//G.

The DT invariant (6.2) is an integral over V//G, so we can compute it by Szenes-
Vergne localisation. Consider the weight-space decomposition of V' for the action of
T

V> PV,

pex(T)
and let A < x(T') be the set of characters p so that V, # 0.

Proposition 6.1.2. Assume that V //T is proper. Then

() " (g/h)
DT(A) = "Km( T(Ty) & (g/b)>

where ¢! (E) := Z,Zk(? cF(E) denotes the equivariant total Chern class. In particular,
if we denote with ® < x(T') the set of roots of G, we can explicitly write the rational
function on x(T)¢ that is the argument of the JK residue:

- (10) 1)

ped P

Proof. Notice that the class we want to integrate over V//G is

since we have the short exact sequence on V(G)*®
0 — g _)TV _)W*TV//G’ — 0.

By Theorem 4.6.4 we obtain the expression

e (E5)
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for this integral. By definition of roots of GG, we have the weight-space decomposition
for the adjoint action of T’

g=h®Pga

aed

where each « is 1-dimensional and 7" acts on it via «. This, together with the
weight-space decomposition of V' above allows to compute the equivariant classes in
the formula. Notice that, since roots of G’ come in positive-negative pairs, ¢! (g) =
¢’ (g¥). Moreover, h doesn’t contribute to ¢’ (g) since the T-action is trivial on it. [

6.1.2 The equivariant setting.

In the previous section we have seen that the only thing we could compute was the

signed Euler characteristic of A, since if A is proper and X is a critical locus, then
X = A and

(~1)% "y = DT(X) = x(X) = ElI(X)(q). (6.3)

The situation becomes much more interesting once we allow an additional torus S to
act on A and we perform the same argument equivariantly with respect to S. This
will allow us to work with nonproper ambient spaces A (as long as (A)° is proper)
and therefore with nonconstant superpotentials ¢, giving nontrivial critical loci X.
Somehow surprisingly, even in the case where A = X is proper, the equivariant
version of the invariants above will contain much more information on the variety A:
the equality (6.3) will stop being true and DT(X), x(X) and EI(X) will compute
important classical invariants of A, namely the Euler characteristic, the Hirzebruch
genus and the FElliptic genus.

Consider a 1-dimensional representation s of the torus S, corresponding to a char-
acter ¥ € x(5), and a S-equivariant superpotential, namely a S-equivariant function

p: A—>s.

The differential dp defines an invariant section of the S-equivariant bundle 24 ® s.
Let X be the corresponding critical locus X := V(dp) < A, which is clearly a S-
invariant subscheme. This is endowed with the S-equivariant perfect obstruction
theory dual to the virtual tangent bundle

Ty = [(TA)\X s (O ®5)|X] (6.4)
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which again defines a S-equivariant virtual fundamental class and a S-equivariant
virtual structure sheaf:

(X" e AF(X) . OF e K°(X).

The definitions of the invariants DT(X), x(X) and Ell(X) are exactly the same as
those given in the previous section. The only difference is that they live in the S-
equivariant homology and K-theory of the point and, if X is nonproper, they are
defined through the virtual localisation formula of [GP97]:

Definition 6.1.3. The S-equivariant DT-invariant of X is defined as

1
DT(X) := j 1 = f S -
[X]vir [XS]vir es( XS/X)

and it is a rational function of degree zero on x(S)¢, meaning that DT(X)(As) =
DT(X)(s) for every A\ € C*.

Remark 30. First of all, if X is proper then DT(X) must belong to Z. If X is
not proper, then the DT invariant defined by virtual localisation should in principle
belong to A%(pt); ~ Sym(x(S)); for some homogeneous polynomial function f on
x(9)¢. Notice that R := A%(X®); is a graded ring being the localisation of a graded
ring by a homogeneous element, and the homogeneous component of degree d is given
by

Ry

0

@D 7 Sym? (x(S)e) ® AU (X?)

p,q,u€N
g+u—pdeg(f)=d
By definition of virtual class of the fixed locus and of virtual normal bundle, the
degree of [X°|'' and the rank of the virtual normal bundle sum to the virtual
dimension of X, namely zero. This means that there is a d so that [X®] € A5(X?®)
and e(NV") € R_,;. This shows that e5(NY")~! € R, and therefore
1 .
. XSV e —P.g p-deg(f) S An( X5
eS(NVlI‘) a [ ] C—%f ym (X( )C) ® 0( )7
pE

so its degree is a rational function of degree zero on x(S)¢. In particular notice that
DT is constant if S is of rank 1.

Definition 6.1.4. The S-equivariant virtual Hirzebruch genus of X is

- vie Kvir@@vir
0= (i eor) - (0 R
A (M)
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where the virtual canonical bundle K¥* € K°(X) is the determinant of the equivariant
virtual tangent bundle (6.1) and its square root is the one described in Lemma 6.1.1

below. It is an element of R(S)[+/s] for some f € R(S).

The following simple lemma is the equivariant version of [FMR21, Proposition
3.2]

Lemma 6.1.1. Up to formally adding to K3(X) the square root of the representation
s, the scheme X possesses a canonical (once we fix a presentation as critical locus)
square root of its S-equivariant virtual canonical bundle.

Proof. By directly computing the determinant of (6.4) we find

K ~ Ky jr ® Ky jr ® 590

dim(X)

giving as square root \/KY" = Ky r ®s 2 . O
Remark 31. Notice that if X is proper then x(X) belongs to R(S)[/s].

Analogously we define the equivariant chiral elliptic genus

Definition 6.1.5. The virtual chiral elliptic genus of X is the Euler characteristic
EN(X)(q) : = x° (X, Ep(TX) @ K§§r®(9§§r)

_ Xs (XS 51/2(T)V<ir) @ A/ K}ir ® Oinr>

A_I(Nvir)v

which belongs to R(S)¢[v/s][¢]] for some f € R(S).
Remark 32. Again, if X is proper this belongs to R(S)[v/s][¢]-

Let’s specialise to the case of a proper ambient space. This will help to clarify
the names some of these invariants.

Proposition 6.1.3. Assume that A is proper. The only S-equivariant function is
the zero one (or constants if s is trivial) and X = A. Then, if we denote with d the
dimension of A,
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Remark 33. Notice that if we pick the trivial representation s = 1 then we recover
the equality (6.3) of the previous section, since &;2(0) = 1 and x*(X,A_1Qy) =
§x ¢*(Tx) = xx by Hirzebruch-Riemann-Roch.

Remark 34. The quantities on the right are the evaluations of classical invariants at
the representation s. Indeed, the Hirzebruch x, genus of a smooth projective variety
X is a Laurent polynomial in the variable y

Xy (X) 1= X (X, A Qx) (6.5)
while the elliptic genus is
Bl o(X) := x (X, E12((1 =y~ Tx) ® A_,x) (6.6)

as they are described in [HBJ92, Page 175]. It’s a classical fact that these invariants
are rigid, namely that if they are computed G-equivariantly with respect to the
action of a connected group G on X they display no equivariance at all, they don’t
depend on equivariant parameters. This is easy to see for the Hirzebruch genus.
By Hodge theory this G-equivariant genus is the character for the G-action on the
cohomology groups HP°(X), but G acts on X by biholomorphisms homotopic to
the identity, so the action on cohomology is trivial. The fact that the G-equivariant
elliptic genus of a smooth projective variety coincides with the classical elliptic genus
is the rigidity theorem conjectured by Witten [Wit88|, proven for spin manifolds by
Bott and Taubes [BT89] and in the general case by Hirzebruch (theorem at page 181
of [HBJ92]).

We will need the following preliminary lemma
Lemma 6.1.2. Let E be an S-equivariant vector bundle on X. Then
A_lE = —det(E) ® A_lEv.

Proof. This is an immediate application of the splitting principle. If £ = L is a line
bundle then

AE=1-L=-L®(1-L")=—det(E)@A_E".

If FE is a direct sum of line bundles the proof is the same, hence it follows for all
vector bundle by the splitting principle. O
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Proof of Proposition 6.1.5. In this case we have that [X]'" = eS(QA)7 0¥ = A (Tx®
5\/)7 Tgir =Tx —Qx®s and \/@ = KX@ﬁd/Q, S0

DT(X) = J e*(Qx ®s)

X
X(X) =x° (X, KEx @5 @A 1(Tx ®5))
EIN(X)(g) = x* (X, Ep((1 = 8¥)Tx) © Kx @57 @ A1 (Tx @5"))

By using the equality of Lemma 6.1.2 above specialised to £ := Qx ® s
Kx @A (Tx ®s") = (—5")'QA_1(Qx ®5),
we can write the two genera as

X(X) = (—v5) ™" (X, A1 (Qx ®5))
EI(X)(q) = (—v5) %" (X, E12((1 — 8V)Tx) @ A1 (Qx ® 9))

where we have used that y*(X, E®t) = vt ® x°(X, E) for every S-representation
t € R(S), which is just the projection formula in equivariant K-theory. Finally notice
that A_1(Qx ®s) = A_,Qx and hence we can write our invariants as

DT(X)zJ e’(x ®5)
X(X) = (=) ™" (X, A Qx)

EN(X)(q) = (—v8) X (X, Ea((1 — 5")Tx) © A2y

Notice that the DT invariant is necessarily the nonequivariant integral of e(Qy)
by dimensional reasons, so it coincides with the signed Euler characteristic. Since
x° commutes with taking products with s we can consider s as a formal variable,
which we can rename as y. Then our expressions for x(X) and EIl(X) coincide
with the classical ones of Remark 34, apart from the fact that here we are taking
equivariant Euler characteristics instead of nonequivariant ones, which doesn’t affect
the computation by the rigidity of these invariants as described in the same remark.

[

At some point we will need the following variant of the morphism & s,

Definition 6.1.6. Given an equivariant K-theory class F so that A_; E'Y is invertible,
consider the class

gl/Q(E) = 51/2(E)A®1E(jet(Ev). (6.7)
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Notice that since all the classes in its definition are multiplicative, & /2 sends sums
into products:

él/Q(E + F) = él/z(E) ®(€‘1/2(F)

6.1.3 Pushing forward.

Let’s go back to the general case where A can be nonproper as long as A® is projective
and ¢ : A — s is an equivariant function whose critical locus is X.

In this simple case, since X is globally the zero locus of a section of a vector
bundle on a smooth ambient space, we can easily compute the pushforwards of the
relevant classes of X to the smooth ambient space A so that computations are easier
to perform. Since X is globally cut by a section of {24 ® s we have

WX = S(Qu®s) and O = AL (T4 ®s").

so that, by projection formula, the invariants we want to compute are

DT(X) = L * (4 ®5)

X(X) = (=v5) X° (A, A Q)
El(X)(q) = x° <A, Erpp(TH") @ A/ det(Tr) ®ASVTA> :

where we have set TH" 1= Ty — Q4 @5 € K3(A), which satisfies TY" = *T%". W
have also used Lemma 6.1.2 to simplify the formula for the Hirzebruch genus.

Remark 35. Notice that the reason behind us being able to push the computation
to A is that we know how to push forward [ X" and O, and all the other classes
that appear are given in terms of T%", which is a pullback from A by definition (6.4).
Thus we can use the projection formula to express the invariants of X in terms of
computations on A.

Remark 36. In case A is nonproper, a little care is required for checking what we
are doing is compatible with the definition of the integral by localisation to the
proper fixed locus. In this case we are first localising to X by means of the virtual
localisation formula, then thinking of X as cut in A by the invariant part of dy
and pushing forward the computation on A%,
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6.1.4 The result.

Consider a reductive connected group acting on a linear space V' together with a
linearisation £ given by a character £ € x(G). Assume that

1. there is a maximal subtorus 7" < G so that the actions of 7" on V(T')* and of
G on V(G)* are free.

2. there is an additional torus S acting on V' so that the action commutes with
the one of G. Assume that the fixed loci (V//T)° and (V//G)® are proper.

3. we have fixed a 1-dimensional representation s of S, corresponding to a char-
acter ¥ € x(S). Let ¢ : V//G — s be an S-equivariant function and let
X be its critical locus, endowed with the corresponding S-equivariant perfect
obstruction theory.

Then we can consider the weight-space decomposition of V'

V~ PV,

pex(T)
vex(S)

where V,, is the subspace over which T' x S acts by (¢, s) - v = p(t)v(s)v. For every
s € x(5)¢, this defines a hyperplane arrangement #H, in x(7)¢ given by

{p+v(s)=0} : Vo #0.

Let ® < x(T) be the set of roots of G, namely the weights « of the adjoint represen-
tation of G

g~bdP g

aced

where b is the Lie algebra of 7. We will need the following additional condition

4. No stable isolated intersection P of the hyperplane arrangement Hg (in the
sense of Definition 5.1.3) is contained in a hyperplane of the form a+(s) = 0,
where o € P.
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The main result of this section is expressed in terms of the following meromorphic
\2

functions on x(7')¢ x x(S5)¢ having poles on hyperplanes:

T — q=dimT Y —v—p\ T o
bT =¥ n p+v n@/}—i-oz’

a(ate) NS ey o9
P = (%wé) H (0(; %f ;>V)) H%

Given s € x(5)¢ and 7 € C not belonging to the poles of these functions, we
will denote with Zpr(—,s), Z(—,s) and Zgy(—,s,7) the meromorphic functions
X(T)¢ --» C obtained by restricting the functions we just defined.

Theorem 6.1.1. For a generic s € x(S){, the invariants of X can be computed as
sums of residues at the stable intersections of the hyperplane arrangement H:

DIX)s) = = Y JKM (Zil—,5),

w
| | P stable isolated
intersection of Hs

ch®x(X)(2mis) = % Z JK?} (Zy(=,9)),

| | P stable isolated
intersection of Hs

oS BUX) () 2ris) = —— S K (Zal— 5,7))

| | P stable isolated
intersection of Hs

where W is the Weyl group of G and
Ap:={pex(T) | st Pc{p+v(s)=0}andV,, #0}.

for every stable isolated intersection P.

6.1.5 Szenes-Vergne localisation.

Notice that in K2(V //G) we have the equalities

QV//G®5=T(Qv®5—g®5),
\‘;i/;G:r(TV_QV®5_g+g®5)
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where r = rg.s g is the S-equivariant K-theoretic Kirwan map for the G-action on
V. Notice that we can’t directly use this to give a description of the classes we want
to compute in terms of the Kirwan map. For example, we can’t write

0, 0)

S _
e (Qvyc®@s) =r ( TS(g@s)

since the quantity inside the bracket doesn’t make sense in A7>%(V). On the other
hand, since the hypothesis 4 holds true, we can use Lemma 5.1.3 to show that
r(e“*5(g/s)) is invertible once restricted to the fixed locus (V//G)°, and hence the
variation (5.10) of Theorem 5.1.3 ensures that for a generic cocharacter s € x(5)¢
the invariant DT(X)(s) is

(6”5(% ®s) e™5(g/h) )

— JK}Y
W Z &Cu(s) eT<S(Ty)  eT*S(g®s)

U stable
intersection of H
where H is the hyperplane arrangement in x (S xT')¢ of Definition 5.1.1. Analogously,
the version (5.11) of the K-theoretic localisation formula of Theorem 5.2.1, gives the
following expressions, where # is the same hyperplane arrangement: ch®y(X)(s) is

equal to
(—ev’?) 2 rxs [ A=sQv _ A1g/h
—_ KZY h
(W] Z ! Ecv \° A1 Qy ® Asg

. U stable,
intersection in H

and ch®ElI(X)(q)(s) is

L Z JKQ}U CthS gl/Q(TV) ® 51/2(9 ®5> ® 1
Wi U stable Suls) E1p(ly ®5) E12(g/b) E12(h)

intersection in H

where 51/2 is the class of Definition 6.1.6.

6.1.6 Setting up the computation.

In order to make computations a bit simpler to follow, in this section we will adopt
the following notation: given a character p € x(T') we will denote with t* € R(T)
the corresponding 1-dimensional representation. We will do the same with S, so for
example s = s¥, where 1) was the character with which S acts on s. Notice that
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this defines an isomorphism of Kr,s(pt) with the group algebra over the character
lattice x(T" x S).
The first step is to consider the weight-space decomposition of V:

V~€|—)v;,y

pex(T)
vex(S)

where the action of 7' x S on V,, is given by (¢,s) - v = p(t)v(s)v. The hyperplane
arrangement 7 appearing in the previous section is the arrangement in x (7" x S)¢
of hyperplanes of the form

{p+v =0} : Vo, #0.

Then we can describe the representations involved in our previous formulae:

Ty = > dim(V,,)t°s”  Qu = > dim(V,,)t s,
p,V p,V

Notice that, if ® < x(T') is the set of roots of G,

g = dim(p) + >t

aed

We have the following two lemmas, useful to compute the various classes in the
previous formulae:

Lemma 6.1.3. Let E be a representation of T' x S:

E = Z 1" 5%,
j=1
with trivial fized part. Then

ChTXS (A_I(E®5 ) _ kEn sinh wJ+ZJ+"/))
AL FE sinh(“52)

7j=1

If W is a trivial, 1-dimensional representation, then

A (W ®s) = —2e¥/%sinh(1)/2).
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Proof. Notice that the Chern character is a ring homomorphism and

m

ALE =] —1t"s%),

J=1

hence the Chern character we want to compute is the product over j of

w425+ witzi+P
1— eijijJrllJ 2671/1/2 _ eijijer/Z 26_ J 2] —e J 2J
_ pWjtz; _ pWjtz; wjtzj witz;
1 — eWitZj 1 — ewitz; e_JQJ_eJQJ

which is precisely the expression in the hyperbolic sine function that we wanted to
find. The second statement follows in the same way. n

Lemma 6.1.4. Given a torus T, consider an element of Kr(pt) of the form

E =)t =Y %,
j=0 k=0
with trivial fized part. Then

E1j2(E) = (—iqf?n(cI))rkE %-

If W is a trivial, 1-dimensional representation of T':

L

&) = n(é:)?

Proof. This is an immediate consequence of Sym (") = (1 — qt*)~! and of the
definition of the eta and theta functions. O

6.1.7 The proof for DT.
We just have to explicitly write the rational function x(7" x S)¢ --» C

e (Qy ®@35) "% (g/b)
eTxS(TV) GTXS(9®5)

in terms of the weights p, v, of the roots o and of the character ). Notice that we
can split g ® s as the sum of (g/h) ® s and h ® s, obtaining

—dimT Y —p— v\ mVer N
’ n(?) [

Py
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6.1.8 The proof for the Hirzebruch genus.

Again, we have to rewrite the following meromorphic function on x (7" x S)¢

_ A_Q2 A_1g/b
_ /2y —d ey TxS 59tV 19
(e (Alm Asg)

Splitting A_,g as the product of A sg/h and A_;h we find, thanks to Lemma 6.1.3,
the following function

dtdimT 1 dimT sinh (wfg 7”) Vo sinh($)
(=1) (2 Sinh(w/Q)) 1;[ ( sinh (_T_”) ) n sinh (M)

acd

By our localisation theorem, for a generic s € x(S)¢ this computes ch®y(X)(s). The
expression becomes slightly simpler if we consider ch®y(X)(2nis) instead. In this
case we can also use the fact that scaling the coordinates that we use to take the
residue simply changes the residue by multiplication by the inverse scaling factor
(Lemma 4.1.6) to rescale the coordinates on x(7")¢ by 2mi, obtaining the following
expression for ch®y(X)(2mis):

(ei) TS ety

Notice that the minus sign in front disappeared as we now discuss. We changed the
sign in the —p — v denominator, so that the global sign before the product would be
(—1)drdimTHdimV " byt notice that the exponent is congruent to dimG — dim7 modulo
2 , which is always even by representation theory.

6.1.9 The proof for the elliptic genus.

This proof is completely analogous to the one given for the Hirzebruch genus. we
have to rewrite the following meromorphic function on x(7" x S){

Cths< 51/2(Tv) é1/2(9®5) 1 )

51/2(9\/ ®s) <‘f1/2(9/f]) E12(h)

Splitting 5’1/2(9 ®s) as the product of él/g(g/b ®s) and 51/2(h ® s) we find, thanks
to Lemma 6.1.4, the following function

i@\ (0l )\ e
< 9(61;61”)) 1,,_[< 0 (q;ert) ) Hf)(q;e““")

aed
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By our localisation theorem, for a generic s € x(S)¢ this computes ch®EI(X)(q)(s).
The expression becomes slightly simpler if we consider ch”Ell(X)(q)(27is) instead.
As for the Hirzebruch genus, we rescale the coordinates on x(7')¢ by 2mi. Moreover
we formally set ¢ := €2™7 obtaining the following expression for ch®EIl(X) (™) (27is):

(zm<7>3)m (euw—p—u))dimm 9(9<r|a>

0(7[v) 0(rlp+v) Tlo+ )

6.1.10 Complete intersections in GIT quotients.

As a first application we show how to use Theorem 6.1.1 to compute classical invari-
ants of complete intersections in GIT quotients of linear spaces. First of all, we show
how to recover these from virtual invariants of critical loci.

Consider a smooth projective variety Y together with a locally free sheaf £ admit-
ting a transversal section. Let E = Spec(Sym&") be the vector bundle built as total
space of £¥ and consider the C*-action on E that scales the fibres. If we consider the
C*-representation s of weight one, the virtual invariants of the corresponding critical
locus compute the classical invariants of the zero locus of a transversal section of £.

Proposition 6.1.4. Let s € HY(Y,E) be a transversal section and let Z = V(s)
be its zero locus, whose dimension we denote with d. Let X be a critical locus of a
S-equivariant function ¢ : E — 5. Then

where the invariants on the right-hand side are the Euler number, the Hirzebruch x,
genus (6.5) and the elliptic genus (6.6) of the smooth projective variety Z.

Proof. The key is to use the short exact sequence
0-E®@s5s—> (y®s)z > Ax®s -0
together with Poincaré duality, namely the fact that
J a7 = J a-e(Qg) and Xx(Z,A1z) =x(Y,AQ A E)
z %

for all a € AL(Y') and A e Kg(Y). O
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Now assume that Y is isomorphic to the GIT quotient of a linear space V; by
the action of a reductive connected algebraic group G with respect to a linearisation
given by a character ¢ so that the action of G and of a maximal subtorus T are free
on the semistable loci. Suppose moreover that there is some other G-representation
V5 so that, pulling back the linearisation & to V' := V; @ V4, the quotient V //G is the
vector bundle E. Finally assume that, if we let S := C* act trivially on V; and by
scalar multiplication on V5, the induced action on E' is the one scaling the fibres.

Remark 37. Notice that in thise context the hypotheses of Theorem 6.1.1 are satisfied.
The S-fixed locus coincides with Y, which is proper. The condition (4) is always
satisfied, since there is only one stable intersection of the hyperplane arrangement
H (since there is only one connected component of the fixed locus, namely V') and
it coincides with the subspace {0} x x(S)¢, which clearly satisfies (4).

Then the formulae of Theorem 6.1.1 compute the classical invariants Z by virtue
of Proposition 6.1.4 above.

Example 6.1.1. Consider the embedding of G(2,4) via the Pliicker embedding,
so that O(1) ~ det(S)Y, where S is the tautological subbundle. By adjunction, a
generic section of O(4) cuts a smooth Calabi-Yau threefold Z. We wish to compute
its classical Hirzebruch genus by means of Theorem 6.1.1. The total space of the
bundle O(—4) can be built as the quotient of

V= Mat2X4(C) x C
by the action of G := GLy(C) given by
g+ (M, z) := (gM,det(g)""2)

with respect to the linearisation given by the character ¢ = det. The easiest way to
see this is probably to notice that the tautological subbundle can be, as in the case
of the projective space, built as the quotient of Matyy4(C) @ Mata,2(C) with action
given by g-(M, N) := (gM, Ng='). This quotient has a map [M, N| — ([M],[NM]),
defining a closed embedding into Gr(2,4) x Matax4(C), which allows to directly check
that it coincides with the tautological subbundle S. Moreover, the C*-action scaling
the fibres of this bundle is induced by the action on V' which is trivial on the first
summand and by scalar multiplication on the second summand C.

Let’s set up the computation of the formula for the Hirzebruch genus in Theorem
6.1.1. The maximal subtorus is G © T ~ (C*)? has cocharacter space x(T)¢ ~ C?
and we denote its coordinates with uy, us € (7). The Weyl group is W ~ S, and



CHAPTER 6. APPLICATIONS. 135

acts by exchanging the coordinates. In this notation the linearisation is given by the
Weyl-invariant character € := u; + uy. The set 2 of weights for the G-action on V is

{Ul, Ug, —4U1 — 4U2}
and the corresponding weight-space decomposition is
VC'@oC'@C.

The roots of G are the functionals +(u; — u2). Moreover the cocharacter space of
S = C* is isomorphic to C and we consider its coordinate function s € x(S). Once
we fix the representation s over which C* acts by scalar multiplication (hence ¢ = s
in the notation of Theorem 6.1.1) we can explicitly write the function Z, as

sin(m(4duy + 4uy)) sin(m(ug — uq)) sin(7(uy — uz))

sin(m(s — 4uy — 4ug)) sin(m(s + ug — uy)) sin(mw(s + uy — ug))

Fixed a generic s € C, the hyperplane arrangement #H, is drawn in the following
picture: the full lines correspond to the poles coming from the weights while the
dashed ones come from the roots, for which we have to check condition 4:

U2

N @

o
T

N|®w |-
[\
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As it’s clear from the picture there are 3 isolated intersections of the hyperplane
arrangement defined by the weights:

{isolated intersections of Hs} = {(0, 0), (Z, ()) 7 (()7 Z) } _

Notice that, as shown in the picture, no hyperplane defined by the roots passes
from these points, hence condition (4) is satisfied. Let’s check which one of these
intersections is stable.

e The weights corresponding to the hyperplanes vanishing at the origin (0, 0) are
up and wug. Since £ = uy + us is in the positive span of these vectors, the origin
is stable.

e The weights corresponding to the hyperplanes vanishing at the point (,0) are
—4uq — 4uy and uy. Since

1
E=u +uy = —Z(—4u1 — duy),

this point is not stable.

e The weights corresponding to the hyperplanes vanishing at the point (0, 7) are
—4u; — 4us and uy. Since

1
f = U + U = —Z(—4U1 — 4U2),

again this point is not stable.

We have finally shown that, as expected, there is only one stable isolated intersection
in the origin. Hence, for a critical locus X of an equivariant function V//G — s we
find

X () (2mis) = IR (Z,(~,5),§)

by Theorem 6.1.1. This JK residue was computed in Example 4.1.5 earlier, and by
using the result we obtained we see that

ch®x(X)(2mis) = 176 sin(rs) (cos®(ms) cot(ms) + sin(ms) cos(ms)) . (6.9)

Now x(X) € R(C*) ~ Cls]s is a virtual representation of C* and can be written as
X(X) = >, ars® for some a;, € C. By definition of Chern character we find that

ch¥x(X)(2nis) = Z ape®™ s,

keZ
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This shows that y(X) is the evaluation of (6.9) at s = “6©) which gives

X(X) = 88 (1\25) .

as result. Proposition 6.1.4 ensures that the classical Hirzebruch genus of 7 is

Y o(Z) = —/5"X(X) = —88(s + 52).

This result can be checked by using the description of Z as a complete intersection
of a quadric and a quartic hypersurfaces in P® (by following the Pliicker embedding)
[[IM19, Table 1, row 1|. Then, if we apply Hirzebruch-Riemann-Roch to compute
the genus we obtain the same result.

6.2 Invariants of critical loci in quiver varieties.

Given a quiver (), the corresponding quiver varieties are defined as the GIT quotients
of the spaces of representations by actions of products of general linear groups. Here
we recall how to build these varieties, for more details see the survey [Rei08]. Let
() be a connected quiver with finitely many arrows and nodes. It can be with or
without oriented cycles, with or without loops. The set of nodes of the quiver is
denoted with (g, while the set of arrows with );. We have two functions, called
head and tail

h7t:Q1 _)QOa

which send an arrow into the node corresponding to its head or tail.

6.2.1 The representation theoretic setup.

Given a dimension vector D € N do0 we consider the space of D-dimensional repre-
’
sentations

V= @ Mach(B)XDt(B)(C)' (6.10)
BeQ

There is a group [ [,.o. GLp,(C) acting on the representation space by

veQo

[]GLp,(C)~V (M - ®)5 := M5 P My (6.11)
vEQo
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The diagonal A ~ C* inside this group acts trivially so, in order to work with an
effective action, we consider the action of the projectivized group':

G = (H GLDU(C)> JA.

’UEQQ

The maximal subtorus of GG is the quotient of the group of tuples of diagonal matrices
by A:

T = (H (@*)Dv) JA.

’UEQ()

The Lie algebras x(T')¢ ~ h < g are the quotients of

@ Cc < D glp,(C)

VEQo vEQo
by the diagonal subspace spang(1). Let uf be the coordinate functions on @, C”*.
Once we have fixed a couple U € Qy and i € {1,..., D,}, we obtain an isomorphism

of x(T")¢ with the codimension 1 subspace where the coordinate u} vanishes:
XD =V() and  x(T)= D Z-u
(v,8)# ()

This isomorphism is fixed in the following discussion, so every time u? appears any-
where it must be set to zero.
The Weyl group of G is

w=1]6n,

vEQo

and acts on h by permuting the components in each piece C”*. We omit the proof
of the following two straightforward lemmas.

Lemma 6.2.1. Then roots of G are the characters of the form

ot

VY
gi = Uy — U

where v e Qo and i,j € {1, ..., D,}.

INotice this is still reductive since A is the center and hence normal.
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It’s also easy to describe the weights for the action of 7" on V:

Lemma 6.2.2. The weights of the T-representation V', whose set we denote with A,
are the characters of the form

hB) _ )

3
Pji = U

where B € @1, 1 € {1,..., Dyp)} and j € {1,..., Dps)}. Notice that two arrows define
the same weights if and only if they share the same head and tail.

6.2.2 Linearisations and stabilities.

Since V' is an affine space, the linearisations for this actions corresponds to choices
of a character of G, namely an element of

X(G) = x(D)".
Clearly the only such characters of GG are of the form
G—-C* : g det®(g,).

where ¢ € Z% satisfies Y veqy Do = 0. As shown in [Rei08], if € is a regular stability
the action on the semistable locus is free and the corresponding GIT quotient V //G
is smooth. In the literature, this is called a quiver variety and it’s denoted with

MBH@Q).

6.2.3 The additional torus action.

Let S be another torus. We can endow V' with an action of S by choosing a set of
characters R € x(S)% (called the R-charge in physics) and writing

(8 : (I))ﬁ = Rg(s)q)g Vﬁ S Ql.

Notice that, since G acts linearly on each irreducible piece Matp, . xp,, (C) of V,
then the actions of G and S commute. Now we want to study under which conditions
the fixed subvarieties (V /T and (V //G)® are proper. We have a simple description,
proven in [LP90], of the T-invariant functions on the space of representations: they
are all generated by monomials of the form

1_[ ((I)ﬁ)jgyi/a

Becycle
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where the product is over arrows belonging to a fixed oriented cycle in the quiver
and the indices j € {1,..., Dy}, 1 € {1,..., Dyp)} satisfy ig, = ja, for consecutive
arrows --- 2 o % ... in the cycle.

The description of the generators of the ring of invariant functions given by the
theorem above, together with the characterisation (5.9) of properness of (V //T)° and
(V//G)3, allows us to find a condition to impose on the R-charge in order to have a

projective fixed subvariety:

Proposition 6.2.1. Assume that there is a strictly convex cone C in x(S) so that

Z Rz € C for every minimal oriented cycle v in Q. (6.12)
pey

Then the fived loci (V J/T)S and (V J/G)® are projective.

6.2.4 The formula.

Let’s specialise the statement of Theorem 6.1.1 to the setting of quiver varieties
we described in the previous sections. Fixed s € x(S5)¢, consider the hyperplane
arrangement H, of x(7)¢ ~ b defined by the weights of the T-action and the R-
charge:

HP = {uh(ﬁ) — uz(ﬁ) + Rs(s) = O},

2¥) J

indexed by g€ Qq, i€ {1,..., Dyp} and j € {1,..., Dy(g)}. Consider the set of points
P e x(T)¢ at which at least dim7" independent hyperplanes vanish. For each such
isolated intersection of Hs, consider the set of characters vanishing on it:

Ap = {u’?@ —uex(T) | Pe Hfj}'

J

Then P is a table isolated intersection of H, (in the sense of Definition 5.1.3) if and
only if £ belongs to the cone spanned by 2p in x(T'). Denoting with |D| the total
dimension vector > .o D, of the quiver and given a character ¢ € x(S), consider
the following meromorphic functions x(7')¢ x x(5)¢ --» C:

e The function Zpt computing the DT invariant

Dy(g) Dn(p) ¥ — Ry + ! t(B) h(B)

7 1-|D| — Uy
br =y ﬂle_cyll H ﬂ U; 1~ + Ry
v]é_(é[o 7,];[1 d} + U U .

1#]
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e The function Z, computing the Hirzebruch genus

. |D| -1 Dysy Prp) sin (W(¢ — Ry + uf(ﬁ) _ u;z(ﬁ))>
Zy = (sin(ww)) 51;2[1 H ﬂ sin (W(u;}(ﬂ) IV ON RB))
Do sin(7m u —u ))

e The function Zgy, depending on an additional formal parameter 7, computing
the elliptic genus

2mn(7)3 |D|-1 Dy(s) Drg) @ (TW — R+ uz(ﬁ) _ u?(6)>
e < 0(7l¢) ) 0L it 1 0 (T|u?(ﬂ) VON Rﬁ)
|u —uj)
n n —uj + 77/1)

veEQp 1,j= 1
1]

The following result is the specialisation of Theorem 6.1.1 to the case of quivers:

Theorem 6.2.1. Consider the critical locus X of a reqular S-equivariant function
on the quiver moduli space

0 M5(Q) — s,
where s 1s a I1-dimensional representation of S corresponding to a character ¢ €
x(S). Let D € N9 be a dimension vector for a quiver Q. Assume the stability & is
regular and that the R-charge R € x(S)9' satisfies the condition (6.12). Assume that,

for a generic s € x(S){, for every stable isolated intersection P of the hyperplane
arrangement Hs the inequality

ui (P) —uj(P) +(s) # 0 (6.13)

holds true for every v € Qo and i,j € {1,...,D,}. For a generic s € x(S)¢ the
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wmwvariants X can be computed by

1
DT(X)(s) =577 TK % (Zpr(—,s)) s
HUGQO (Dv') P stab;solated 7
intersection of Hs
1
chx(X)(2mis) = T3 (Z3(= ),
HUEQO (DU') P stab;solated ,

intersection of Hs

hd

ch® BU(X ) (e*™7) (2mis) = JK?’IZ (Zgu(—,s,7)).

|
HUEQO (DU) P stable isolated
intersection of Hs

This result appeared for the first time in the physics literature in the works of
Beaujard, Mondal and Pioline [BMP19] and Cérdova and Shao [CS16].

Remark 38. It’s worth remarking that in the case of quiver varieties, the procedure
of pulling back integrals from V' //G onto V//T through Martin’s formula (Theorem
5.1.2) corresponds to pulling back integrals from the variety corresponding to the
quiver () to the one corresponding to the quiver Q) obtained by "abelianising" the
nodes. This procedure consists in replacing a node of dimension vector d with d
distinct nodes of dimension 1 and connecting two nodes in Q with an arrow if and
only if the original nodes were connected in (). For example, if we start from the
quiver )
c” Tet—sc,
~_

the corresponding Q is

6.2.5 Example: DT invariants of A®.

The rigorous application of Jeffrey-Kirwan localisation techniques to the problem of
instanton counting (the computation of integrals on the Hilbert scheme of points
of affine spaces) is due to Martens [Mar08]. Here we consider the quot scheme of
quotient sheaves of O% having finite length n:

X := Quot,s (0%, n).
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As shown in [FMR21], this scheme is closely related to the moduli space of represen-

tations of the quiver
aq

B1
O/\
m(O ¢
U\ﬁ/

The space of representations is
Rep(Q) = Mat, ., (C)®* @ (C™)®"
and the gauge group G := GL,(C) acts on it by
g- (A1, Ay, Az, by, ... b)) i= (gA1g™ Y, gAsg™t, gAsg™ gb, ..., gb,).

The stability £ := 1 € Z ~ x(G) is regular and the corresponding quotient is a
smooth quasiprojective variety A := Rep(Q)//G. The G-invariant function

@ :Rep(Q) > C :  @(Ay, Ag, Az, by, ..., b.) := Tr (A;1[As, A3])
defines a regular function ¢ : A — C whose critical locus is the quot scheme:
X' = Crit(p) < A.
We can enrich the picture with an action of S := (C*)® on Rep(Q) given by
(s1,82,53) - (A1, Ag, A, by, ..., b,) 1= (5141, $2A2, 8343, 01, ..., by).

Condition (6.12) is clearly satisfied and ensures that the fixed locus A° is projective.
Moreover, ¢ equivariant once we let S act on the target C with the character ¢ :=
s18283. The equivariant DT invariant of X" is called n™ degree zero cohomological
DT invariant of rank r of A3:

DT?(A%) := f 1.
[Xp]ie

Our formula can, in principle, be used to compute these invariants (this approach
to compute the invariants of A3 is present in the physics literature, in particular
in [Ben-19]). By identifying the maximal subtorus 7' ¢ G with diagonal matrices
there is an isomorphism x(7)¢ ~ C" and let uy,...,u, € x(T') be the coordinate

functions. Analogously, we can identify x(S)¢ with C3 and the characters sy, s9, 53
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are the coordinate functions. The function Zpt : C* --s C of which we have to
extract the residues is

n r 3 n
P ' n U — ug P — 8 — up + Uqg
pr(U1, .o, Un, 51, S2, 53) 1= | | u n H S 4 up —
k l b — Ug

U; — Uj
3 Pt
ij—1 770 + u; — Uj
7]

where ¢ = s1 + s9 + s3. The hyperplane arrangement H, is given by the hyperplanes
of the following two types
Hy := {uy = 0} and Hl7b:= {s1 + up — uy = 0}

a

and it’s easy to see that for a generic choice of (sy,s9,53) € C3 the stable isolated
intersections in this arrangement are not contained in any hyperplane of the form
{u; —uj + s1 + so + s3 = 0}, thus condition (6.13) is satisfied and Theorem 6.2.1
shows

DT = o S TR (Zor(— )
R
It is combinatorially challenging (even though doable with some effort) to enumerate
the many stable isolated intersections of this hyperplane arrangement. Basically,
they correspond to the same plane partitions that enumerate the fixed points on the
quot scheme. In practice some additional stable intersection appears but still gives a
trivial JK residue (see Remark 39 below for an explanation of this phenomenon). By
checking numerically the result for small values of n, the formula confirms equality

> 3 _p(s1+82)(s1+s3)(s2+53)
> DT (A" = M((—1)q) s102% :

n=0

which has been proven with classical virtual localisation techniques in [FMRE21]|. Here
M is the MacMahon function, the generating functions of plane partitions:

_
(1= 2kt

18

M(q) =

k=1

Remark 39. By unraveling the proof of this localisation formula, notice that in this
case Szenes-Vergne localisation consists in the following steps:
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1. Push the computation forward from the quot scheme to the smooth "noncom-
mutative" quot scheme A.

2. Do Atiyah-Bott localisation on A.
3. Compute the contribution of each fixed locus as a JK residue.

It seems that by pushing the computation to A one is adding some fixed loci that only
belong to A and not to the actual quot scheme, but notice that their contribution to
the formula is zero since the Euler class e®(Q4) vanishes there, as the section used
to cut X is nonvanishing over that fixed component.

In this specific example one doesn’t gain much from this procedure of pushing
forward to the smooth ambient variety A. In some other cases, as we will see in the
next section, this technique might be very helpful.

6.3 The case of Hilb"(A).

In [OT23], a theory of algebraic virtual classes for moduli spaces of sheaves on Calabi-
Yau fourfolds is developed. The simplest example of such moduli space is Hilb"A*. In
NP 19] Nekrasov and Piazzalunga conjecture a formula (now proven in full generality
by Kool and Rennemo using Oh-Thomas localisation), for the equivariant integral of
1 over this Hilbert scheme. They check the conjecture for small values of n by using a
Jeffrey-Kirwan type of formula motivated by physical arguments. Here we show how
to mathematically recover this JK formula from the formalism of Oh-Thomas. This
doesn’t give a new proof of Nekrasov’s formula for SHilb" a1, since the JK formula we
are going to show still requires a lot of hard combinatorics to be made before reaching
the result of Kool-Rennemo, and we don’t know how to perform such computations.

Remark 40. In practice, Nekrasov and Piazzalunga consider K-theoretic invariants
(see Remark 41 below). We will focus on the cohomological invariant S[X]vir 1 for
simplicity, but the K-theoretic discussion is completely analogous.

6.3.1 Recap on the Oh-Thomas virtual cycle.

The reference for this section is the work |[OT23] of Oh and Thomas. The theory
of virtual classes for moduli spaces of sheaves on fourfolds is based on the following
local model: the relevant moduli space M is build as the zero locus, in some smooth
ambient space A, of an isotropic section s of an orthogonal vector bundle £ with
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nondegenerate bilinear form
q:ERE — Oy
Denoted with r is the rank of £, an orientation is needed, namely a trivialization

0: Oy = det€é

so that (—1)™%~0%? is the inverse to the isomorphism (det€)®? ~ O 4 defined by q.
Up to passing to a cover p : A — A, the bundle € := p*E admits a maximal isotropic
subbundle A <> &, hence we have a short exact sequence induced by ¢:

O—>/~\;>gi>/~\v—>0.

We can always find (on the cover A) this A so that it is positive, namely the isomor-
phism

OF 2 det€ ~ det]\@det]\v ~0;

sends i" to 1. A virtual cycle [M]"" € A,(M) can be built from this data and, if
£ admits a maximal isotropic positive subbundle A on A, the virtual cycle pushes
forward along i : M — A as

i [M]™T = e(A).

We can do everything equivariantly: if a torus S acts on A, the bundle £ has a S-
equivariant structure, s is an invariant section of £ and A\ < £ is an invariant positive
maximal isotropic subbundle, then the virtual cycle is equivariant [M]'" € AS(M)
and pushes forward to

6.3.2 Building the Hilbert scheme.

The first step is to realize the relevant moduli space as the zero locus of an isotropic
section of an orthogonal bundle. This is all standard, for example see |Nek20].
Consider the quiver

Xo X1

WOy

cre—L—¢

NEAH
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The corresponding representations space is
V ~ End(CH)® @ C".
which is acted upon by G := GL,, as
g+ (X1, Xo, X3, Xy, ) := (9X19 ', 9Xag ™", g X9, 9Xug ™", gI).

Fixing the stability £ := 1 € Z ~ x(G) we see by the "generalised AHDM construc-
tion" that Hilb"A* is the zero locus of a section on the quiver variety A := V //GL,:

1)
Hilb"A* ~ V(s) —— A:=V//GL,

The bundle £ is induced on the quotient by the G-equivariant bundle on V' having
as fibre the GL,-representation

gl, ® A2C*

where the action on the second factor is trivial while on first factor it is given by
the adjoint representation. If we denote with X; A X, ¢ < j the elements of a basis
of the 6-dimensional linear space A2C*, the section s is induced by the G-invariant
section

S = Z [X“XJ]®XZ/\XJ

1<i<j<4

Lemma 6.3.1. The bundle £ has a natural structure of orthogonal bundle given by
the product of the nondegenerate bilinear forms

gl, xgl, > C : tr(A B):= tr(AB)
and
APCP @ ATCH D AMCH ~ spane (X A Xo A X3 A Xy) ~C.

Moreover, the section s is isotropic.
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Proof. The only thing to prove is that ¢(s,s) = 0. Clearly

q(s,s) = Tr (Z (—=1)7[Xoq), XU(Q)][XU(3)7XU(4)]> :

oeSy
Notice that for every a, b, ¢, d the sum over the order 4 cyclic subgroup generated by
the cycle (1,2,3,4) € &,
Z (=17 [Xo(a)> Xow))[Xo(e)s Xo(a)]
0€{(1,2,3,4))

is trace-free, since the trace tr : gl, — C is linear and invariant under cyclic per-
mutations in a product. If we pick a representative in &, for each class in the set
S4/{(1,2,3,4)), we can write ¢(s, s) as the trace of

> D (D) Xty Xewen [Xom@): Xewma]

S
[77]€<(1,2,§,4)> o&((1,2,3,4))

which is trace-free by the above discussion. O]

Notice that the bundle £ on V has a maximal isotropic subbundle L given by
the sections X A Y, X A Z and Y A Z. This induces a maximal isotropic subbundle
A—EonV/G.

6.3.3 The torus action.

We can enrich the picture with an action of the four dimensional torus S := (C*)*
on V by

S - (X17 X27 X37 X47 -[) = (Slev S2X27 83X37 84X47 I)
Notice that the action of S commutes with the action of G, hence T acts on V//G.

We can endow F with a S-equivariant structure induced from the action on the fibre
by

Sdg[n®([j /\2(:4 . SM@XZ/\X] = 818]]\4@9)(1/\)(J
and notice that s is S-invariant. Notice that in particular the subbundle A c £ is
S-invariant. This means we are in the framework of Oh-Thomas and hence

J 1= f eS(A) = J r(e“*5(L)).
[Hilb" A4]vie e e

The last expression for this invariant is precisely the kind of integral that the locali-
sation formula of Theorem 5.1.3 can help to compute.
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6.3.4 The hyperplane arrangement and the localisation for-
mula.

Consider the maximal subtorus 7' < G given by diagonal matrices, which gives the
isomorphism x(7")¢ =~ C" and denote the coordinate functions with w,...,u, €
x(T). Analogously x(S5)¢ ~ C* and consider the coordinate functions €y, €, €3, €4 €
X(S) (these would be denoted sq, sq, 3,54 in the notation of the previous sections,
but we use the letter € to match the notation of Nekrasov). Fixed e € x(S5)¢ the
hyperplane arrangement H, in x(7){ is given by the hyperplanes of the form

HEj = {u; —u; +e€} and Hy:= {u, =0}

where 1 < ¢ <4 and 1 <4,j,k <n. Theorem 5.1.3 shows that, for a generic ¢, this

integral is
[l oy oy (em(L)eT(g[n/b)> |
[Hilbm A4]vir ! o eT5(Ty)

" P stable isolated
intersection of H.

Here the argument of the JK residue is readily computed as

(612613623)n H (ur = uj) | Ty<apes(Wi — U; + €an) ﬁ 1
U

€1€2€3€4 i%j Hiz1(ui —uj + €) k=1

where we used the notation ey, := €, + ¢,. This is the content of equations (2.24)
and (2.25) in the work of Nekrasov and Piazzalunga [NP19].

Remark 41. To be precise, Nekrasov and Piazzalunga are doing a K-theoretic com-
putation with some tautological insertions (namely insertions built from K-theory
classes on A* by pulling back to the universal family and pushing down to the Hilbert
scheme). More precisely, they are computing the so called Nekrasov genus described
in [CKM?22, Definition 0.2]. The one we studied is the cohomological limit discussed
at the end of [CKM22, Appendix A], but the Jeffrey-Kirwan approach to the original
K-theoretic computation is completely analogous.

Remark 42. While discussing the case of A% in Section 6.2.5, we noted that there
is not much to gain from pushing the computation forward to the smooth ambient
noncommutative Hilbert scheme A. In the case of A* the situation is radically dif-
ferent: doing localisation directly on Hilb™(A%) is much harder than in the 3d case.
The technical reason for this is that it is hard to keep track of the sign in the square
root of €°(€) when localising to the fixed points. On the other hand, by pushing
the computation forward to the ambient space one recovers the usual localisation
formula on the smooth variety A which completely forgets about the square root
problem.
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