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The neural link between stimulus duration
and spatial location in the human visual
hierarchy

Valeria Centanino 1,2, Gianfranco Fortunato 1,2 & Domenica Bueti 1

Integrating spatial and temporal information is essential for our sensory
experience. While psychophysical evidence suggests spatial dependencies in
duration perception, few studies have directly tested the neural link between
temporal and spatial processing. Using ultra-high-field functional MRI and
neuronal-based modeling, we investigated how and where the processing and
the representation of a visual stimulus duration is linked to that of its spatial
location.Our results showa transition in duration coding: frommonotonic and
spatially-dependent in early visual cortex to unimodal and spatially-invariant in
frontal cortex. Along the dorsal visual stream, particularly in the intraparietal
sulcus (IPS), neuronal populations show common selective responses to both
spatial and temporal information. In the IPS, spatial and temporal topographic
organizations are also linked, although duration maps are smaller, less clus-
tered, and more variable across participants. These findings help identify the
mechanisms underlying human perception of visual duration and characterize
the functional link between time and space processing, highlighting the
importance of their interactions in shaping brain responses.

A key ingredient for a unitary perceptual appraisal of the external
environment is the ability to combine the spatial and temporal infor-
mation of the sensory inputs. On a warm summer night, for instance,
we can enjoy the view of a swarm of fireflies since we perceive the
position and the duration of the bioluminescence of each firefly.
Despite this tight link between the spatial and temporal aspects of our
sensory experience, not many studies have directly investigated how
and where the human brain synergistically links these two types of
information. In the visual system, for example, it is unclear to what
extent the duration processing of a visual stimulus entails spatial cir-
cuits and follows spatial representational rules, i.e., retinotopy, for
example. In humans, psychophysical studies suggested the presence
of both spatially-specific and spatially-independent mechanisms of
duration processing. A few studies have shown that the adaptation to a
fast-moving stimulus1–6 causes spatially-specific biases in duration
perception, i.e., the perceptual bias disappears if the stimulus to be
timed is presented in a different spatial position from the adapter

stimulus. On the other hand, it has been shown that the perceptual
after-effect caused by duration adaptation transfers across visual
hemifields and quadrants7,8 suggesting a spatially-independent tem-
poral processing. This apparently conflicting evidence suggests that
duration encoding and representation might be the outcome of a
double-stage processing. One early and spatially dependent, which
might be related to the processing of visual information in early visual
cortices, and one spatially invariant that might arise later in the visual
processing hierarchy9.

In line with the idea of a double-stage processing of duration
information but without a clear spatial connotation, recent functional
magnetic resonance imaging (fMRI) studies suggest two possible
mechanisms underlying the temporal processing of visual stimuli.
Zhou and colleagues have shown that along the visual stream (from
primary visual cortex—V1 to the intraparietal sulcus—IPS) stimulus
duration information results from a compressive (i.e., non-linear)
summation of the sensory input10. Conversely, a series of high-spatial
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resolution fMRI works suggest that temporal information is supported
by unimodal tuning mechanisms entailing a topographical
organization11,12. Duration maps (or chronomaps) have been identified
in a wide network of brain areas spanning from lateral occipital to
parietal, frontal, and premotor regions. Interestingly, chronomaps not
only appear in some of the brain regions showing a monotonic
encoding of stimulus duration, but they have also been found to par-
tially overlapwith retinotopicmaps11. In addition, a recent reanalysis of
the original findings of Harvey et al.13 has shown a transition between
monotonic and unimodal responses to stimulus duration along the
cortical hierarchy and a switch between these two types of response in
area V5/MT. Although these previous fMRI studies are crucial for
understanding the mechanism underlying duration processing, they
overlooked the spatial dimension of the stimuli in both the experi-
mental design and modeling approaches. As a result, they could not
establish a direct link between the representation of spatial and tem-
poral information. This omission prevents these studies from recon-
ciling the behavioral evidence described above and from uncovering
commonorganizational principles of spatial and temporal information
processing.

In this study, we, therefore, sought to understand the extent to
which the processing of time is linked to that of space along the visual
hierarchy, whether this link entails monotonic or unimodal responses
to stimulus duration, and whether there is a relationship between
spatial and duration topographies. To address these issues, we asked
human participants to judge the duration of a small visual stimulus
varying in both duration and spatial position within foveal and paraf-
oveal ranges in the lower visual field, and we measured brain activity
with high-spatial resolution fMRI (7 Tesla). The simultaneous manip-
ulation of stimulus’s duration and position allowed us also to under-
stand how and where, along the dorsal visual stream, brain responses
change as a function of the combination of stimulus’s duration and
position and to directly identify the neuronal populations selective to
either or both stimulus features.

Results
In this study, we used a single interval duration discrimination task
where participants (13 healthy volunteers) were asked to compare the
duration of a visual stimulus (i.e., comparison stimulus) varying at each
trial in both duration (i.e., display time) and spatial position (i.e., dis-
play location on the screen) to a previously internalized reference
duration. The task was to report whether the comparison stimulus
(ranging from 0.2 to 0.8 s) was longer or shorter than the reference
stimulus (0.5 s). The comparison stimulus could be presented, with
respect to a fixation cross, at either 2.5° or 0.9° of visual angle in the
lower-left or lower-right quadrant of the visual field. Comparison
durations varied pseudo-randomly across trials, spatial positions var-
ied sequentially (seeMethods—Task and experimental design formore
details). This modality of stimulus’s presentation ensured participants’
engagement in the duration discrimination task while minimizing
possible biases due to changes in spatial attention14. Figure 1a shows a
pictorial representation of the trial structure, the close-up highlights
the four spatial positions of the stimulus. Each participant performed
10 blocks (48 trials each, 2 trials per combination of stimulus duration
and position) acquired in separate fMRI runs. Participants also
underwent two retinotopy runs which allowed us to precisely estimate
individual visual field maps with an independent dataset (see Methods
—Retinotopy runs and Methods—Retinotopic mapping).

The spatial position of the stimulus does not affect its duration
discrimination
We analyzed the behavioral data to make sure participants accurately
performed the duration discrimination task and duration judgments
were not affectedby thedisplay location of the comparison stimulus. For
each spatial position of the comparison stimulus, we estimated

psychometric curves on the mean fraction of “comparison longer than
reference” responses for each comparison duration (see Methods—
Behavioral performance analysis). In addition, for each spatial position of
the comparison stimulus we also derived individual point of subjective
equality (PSE) and just noticeable difference (JND) values. Figure 1b
showsgrouppsychometric curves color-codedaccording to the stimulus
position, andbothgroup and individual PSE and JNDvalues aredisplayed
in the inset. To test duration discrimination differences among spatial
positions, individual PSE and JND values were analyzed with two linear
mixed effect (LME) models (PSE model formula: PSE ~ StimulusPosi-
tion + (1∣subject ID), marginal R2 = 0.02, conditional R2 = 0.70; JNDmodel
formula: JND ~ StimulusPosition + (1∣subject ID), marginal R2 = 0.01,

Fig. 1 | Experimental procedure and behavioral results. a In each trial, one of six
different comparison durations (i.e., 0.2, 0.3, 0.4, 0.6, 0.7, 0.8 s) was displayed at
either 2.5° or 0.9° of visual angle in the lower-left (L) or lower-right (R) quadrant of
the visual field. Durations varied trial-by-trial in a pseudo-random fashion, whereas
positions varied sequentially, from 2.5° L to 2.5° R and backwards, as shown in the
close-up. Participants were asked to compare the duration of the comparison sti-
mulus with that of an internalized reference and to report with a key press which
one was longer. After a randomized interval from the offset of the comparison
(stimulus-cue interval—SCI, uniformly drawn between 0.9 and 1.2 s), the response
was cued with a color switch of the fixation cross from white to black. Trials were
interleaved by a uniformly distributed inter-trial interval (ITI) spanning from 1.8 to
2.5 s. The fixation cross was displayed at the center of the screen throughout the
experiment (see Methods—Stimuli and Experimental Procedure). b Group psy-
chometric curves are shown color-coded according to the spatial position of the
comparison stimulus. Circles represent the average fraction of “comparison longer
than reference” responses across participants (n = 13) for each comparison dura-
tion, and error bars represent standard errors. In the inset, bar plots represent the
average PSE (top) and JND (bottom) values across participants for each spatial
position of the stimulus (color-coded). Black circles represent individual PSE and
JND values (see Methods—Behavioral performance analysis). Source data are pro-
vided as a Source Data file.
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conditional R2 = 0.61). A type III ANOVA on model estimates revealed no
main effect of spatial position for both PSE and JND values (see Supple-
mentaryTables 1 and2).These results confirmthat thedisplay locationof
the stimulus did not induce any bias nor change duration perception
sensitivity.

How brain responses to stimulus’s duration change along the
cortical hierarchy
We started our investigations by asking to which extent the duration
processing of a visual stimulus entails spatial circuits and follows
spatial representational rules. We first performed a general linear
model (GLM) analysis on fMRI data (see Methods—General Linear
Model (GLM) analysis), using as events of interest the 24 unique
combinations of the six durations and four positions of the compar-
ison stimulus time-locked to its offset. The GLM beta weights were
then used to perform a vertex-wise modeling with the population
receptive field (pRF) method (see Methods—Population Receptive
Field (pRF) modeling). To be able to tell if duration modulates brain
responses in spatial circuits and if this happens in association or not
with spatial responses, we tested four different neuronal response
models (pRFs). These pRFs were tailored to capture different tuning
properties of the BOLD responses linked to either space, time, or both.
The Compressive Monotonic Time (CMT) model assumes a neuronal
response scaling monotonically and sub-additively to increasing sti-
mulus’s durations10, and independently of the stimulus’s spatial posi-
tion (model highlighted indark blue in Fig. 2). TheGaussian Space (GS)
and Gaussian Time (GT) models describe two independent unimodal
tuning mechanisms for stimulus position15 and duration11,12,16 only
(models highlighted in red and light blue respectively in Fig. 2). The
Compressive Monotonic Time and Space (CMTS) model represents
the combination of the GS and the CMTmodels and assumes instead a
spatially-specific neuronal response which scales monotonically and
sub-additively to increasing stimulus’s durations (model highlighted in
orange in Fig. 2). See Supplementary Fig. 1 for an example of the results
of the fitting procedure for each neural response model.

In each individual subject, we assessed models’ performance by
comparing their cross-validated R2 (see Methods—R2 cross-validation).
We used a winner-take-all procedure to assign to each vertex of the
cortical surface the model with the highest cross-validated R2 value
(i.e., best fitting model). Figure 2a shows the group-level result of this
procedure. We then computed for each participant the fraction of
vertices assigned to each model in nine bilateral regions of interest
(ROIs). Since in this first analysis we tested pRFs models purely sensi-
tive to time (i.e., GT, CMT), we decided to focus our investigation on a
wide set of ROIs, some of which were outside the spatial circuits. The
ROIs spanned from the occipital pole to the inferior frontal cortex and
included brain regions that, according to previous works, are engaged
in either spatial17 or temporal12,18 processing (seeMethods—Atlas-based
ROIs). Figure 2b shows the group-level results averaged across hemi-
spheres (for individual results, see Supplementary Figs. 2–5). To ana-
lyze these data, we used a three-way repeated measure ANOVA with
model type, brain hemisphere, and ROI as factors (see Methods—
Neuronal response models comparison). The ANOVA showed a sig-
nificant effect of model type (F(3, 36) = 24.25, p <0.0001) and a sig-
nificant interaction between model type and ROI (F(24, 288) = 33.16
p <0.0001), indicating that brain responses in different ROIs were best
captured by different models. In particular, in the occipital pole (OcP)
and in the lateral occipital cortex (LO) the CMTSmodel outperformed
the other models (all t(864) > 9.26, p <0.001), suggesting that in those
regions stimulus duration is encoded via a monotonic increase in the
amplitude of spatially-specific neuronal responses. Interestingly, in
V3A and V3B (V3AB), a space-invariant temporal encodingmechanism,
represented by the GT and the CMT models, started to appear (for
both CMT and GT, all t(864) > 4.08 resulting from the comparison
between V3AB,OcP and LO, p < 0.005), while the explanatory power of

the CMTS model decreased (all t(864) < -7.74, p <0.001). In intrapar-
ietal and superior parietal areas (IPS-SPL) the GT model was repre-
sented as much as the models assuming a spatially-specific response
(CMTSandGSmodels), and itprevailedover theCMTSmodel fromthe
inferior parietal lobule (AnG-SmG) onwards (all t(864) > 4.45,
p <0.001). The GT model also prevailed over the GS model from the
frontal eye fields (FEFs) onwards (all t(864) > 4.22, p <0.001). In addi-
tion, the two spatially invariant duration response models (CMT and
GT models) were equally represented in V5/MT, IPS-SPL, AnG-SmG,
and in the supplementary motor area (SMA). The unimodal response
model to durations (GT) prevailed over the monotonic one (CMT) in
the FEFs (t(864) = 4.51, p <0.001) and in the inferior frontal sulcus (IFS-
PCSi, t(864) = 6.12, p < 0.001). These results suggest that along the
cortical hierarchy, temporal processing gradually detaches from spa-
tial processing and that in downstream areas, it is mainly supported by
unimodal responses of spatially invariant neuronal populations. In
addition, the IPS-SPL exhibited the coexistence of neuronal popula-
tions with different tuning mechanisms. This last result seems to fit
with the role of IPS-SPL as aplace in the cortical hierarchywhere spatial
and temporal information are integrated19. The details of the ANOVA
and of the Bonferroni-corrected multiple comparisons tests are
reported in Supplementary Tables 3–7. In summary, these findings
show a transition along the cortical hierarchy of brain responses to
stimulus’s duration: from monotonic and spatially-dependent
responses in occipital cortex (OcP and LO), to unimodal and
spatially-invariant responses in frontal cortex (FEFs, IFS-PCSi, and
SMA). This transition started in V3AB and in this area but also in V5/MT
andparietal cortex (IPS-SPL, AnG-SmG) the two types of responsewere
either present in different proportions (in V3AB, V5/MT, and AnG-
SmG) or equally matched (in IPS-SPL).

How duration processing interacts with eccentricity processing
The results from the previous section show the coexistence from
extrastriate area V3AB to superior and inferior parietal lobule (IPS-
SPL, AnG-SmG) of brain responses sensitive to either space and time
separately or to space and time together. To explore in-depth the
interactions between these stimulus features in eliciting brain
responses in these brain regions, we next tested another neuronal
response model (Gaussian Space and Time, GST), which assumes
unimodal tuning functions for both stimulus position and duration
(see Methods—Population Receptive Field (pRF) modeling). The GST
model describes the BOLD response with five parameters: the sti-
mulus’s spatial position and duration eliciting the greatest neuronal
response (μs and μd, respectively), the sensitivity of the response (σs
and σd), and the orientation of the tuning function (θ), which
appraises the contribution of each stimulus dimension to the neu-
ronal response. An example of the results of the fitting procedure is
presented in Supplementary Fig. 6. The GST model allowed us to
capture responses described by the previously tested CMT, GS, GT,
and CMTS models (see Supplementary Fig. 1), but differently from
those models, enabled us to directly estimate the interaction
between stimulus’s position and duration in eliciting brain respon-
ses. Since our goal was to investigate the relationship between visual
duration and eccentricity processing, we decided to focus our ana-
lyses on visuo-spatial circuits. We indeed analyzed the parameters of
the new GST model within 8 bilateral ROIs belonging to the dorsal
visual stream, and identified according to individual eccentricity
maps (estimated using the retinotopic fMRI runs, see Methods—
Retinotopy runs and Methods—Retinotopic mapping for more
details). These ROIs were located in the occipital cortex (three ROIs
covering dorsal V1 and V2, V3A and V3B, V5/MT), parietal cortex (four
ROIs covering the IPS i.e., IPS0, IPS1, IPS2, IPS3), and frontal
cortex (one ROI covering the FEFs), see Methods—Custom-made
ROIs. Figure 3a illustrates the eccentricity maps of one participant,
with the ROIs marked by blue, red, and white lines.
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To characterize the space-time interactions along the visual
hierarchy, in this second set of analyses we studied the changes in the
GST model parameters. The first parameter we checked was the μd
parameter, which represents the duration preference. We focused on
μd in the first place to check the presence of duration unimodal tuning
within eccentricity-defined ROIs. Figure 3b illustrates the cortical dis-
tribution of μd in the two hemispheres of one participant, whereas
Fig. 4a shows the group-level distribution of μd within each ROI. To

assess whether duration preferences changed across ROIs, we used a
LME model (see Methods—pRFs duration preference) with ROI and
hemisphere as factors and subjects as random intercept (model for-
mula: μd ~ ROI ∗ Hemisphere + (1∣subject ID), marginal R2: 0.22, con-
ditional R2: 0.30). Type III ANOVA on model estimates showed a main
effect of ROI (F(7, 180) = 7.41 p < 0.001), and a main effect of hemi-
sphere (F(1, 180) = 5.42 p <0.05). As also shown in Fig. 4a, the average
preferred duration decreased significantly from occipital to frontal

Fig. 2 | Models’ performance comparison. a The group-level vertex-wise dis-
tribution of winning neural response models is plotted onto a common surface
(fsaverage). The distribution was obtained by resampling all individual winning
models' distributions onto fsaverage surface and computing for each vertex the
mode across participants. Vertices were excluded if they had non-integer values
after the surface resampling, if they showed more than one winning model, or if
they were not labeled with a winning model in at least 7 participants out of 13. This
distribution is, therefore, highly conservative, and itwas computed for visualization
purposes only (see Methods—Neuronal response models comparison and Supple-
mentary Figs. 2–5). Each vertex is color-coded according to its winning model, as
shown in the top panel. Bright white lines outline the 9 bilateral ROIs in which
models' distribution was quantified. Semi-transparent white lines mark principal
sulci. b The group-level fraction of vertices assigned to each model is plotted for
each ROI outlined in (a), ordered from occipital to frontal areas. Each dot

represents the mean fraction of vertices across participants (n = 13) and hemi-
spheres for each model, color-coded as in (a), and the shaded area is the corre-
sponding standard error. For visualization purposes, we also plotted lines obtained
with a spline interpolation across dots. ROI legend:OcP= occipital pole, LO= lateral
occipital, V3AB= visual areas V3A and V3B, V5/MT= visual area V5/MT, AnG-
SmG= angular gyrus and supramarginal gyrus, IPS-SPL = intraparietal sulcus and
superior parietal lobule, IFS-PCSi = inferior frontal sulcus and precentral
sulcus–inferior part, FEFs = frontal eye fields, SMA= supplementary motor area;
sulci legend: CAS = calcarine sulcus, LOS = lateral occipital sulcus, ITS = inferior
temporal sulcus, STS = superior temporal sulcus, IPS = intraparietal sulcus, SF =
Sylvian fissure, CS = central sulcus, IFS = inferior frontal sulcus, SFS = superior
frontal sulcus, preCS = precentral sulcus; LH= left hemisphere, RH = right hemi-
sphere. Source data are provided as a Source Data file.
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regions, approaching the mean of the full range of tested durations in
the latter (all t(180) > 4.19, p <0.005 comparing V1-2d with IPS1, IPS2,
IPS3, and FEFs; all t(180) > 3.28, p <0.05 comparing V3AB and V5/MT
with FEFs). The full set of statistics is reported in Supplementary
Tables 8–10; all reported p values were Bonferroni corrected for
multiple comparisons. Besides the average μd values, what is worth
noticing here is the spread of the distributions, which is skewed
towards longer durations in V1-2d up to V5/MT and becomes much
broader from IPS1 to FEFs. These results indicate that in early visual
areas neuronal populations maximally respond to longer durations, in
line with our previous observation that in these regions the best-fitting
model is the CMST. In parietal and frontal visual areas instead, there

are neural populations tuned to a wide range of durations, in agree-
ment with the prominence in these regions of vertices best fitted by
the GT model (see Fig. 2).

We next checked the effect of changes in stimulus’s duration on
eccentricity preferences (i.e.,μs) by looking at the consistency of the μs
parameter estimated with the retinotopic mapping runs with the μs
obtained from the GST model (see Methods—pRFs eccentricity
preference). We computed Kendall’s τ correlation coefficient
between the two sets of eccentricity preferences for each ROI and
participant. Z-scores transformed correlation coefficients were
entered in a LME model with ROI and hemisphere as factors and sub-
jects as random intercept (model formula: z-transformed Kendall’s

Fig. 3 | Maps of pRFs preferred eccentricity and duration. The distribution of
preferred eccentricity (a) and preferred duration (b) of an example participant are
shown projected onto the flattened native cortical surface. Different eccentricity
and duration preferences are color-coded from red (0° or 0.2 s) to blue (7.5° or
0.8 s). The eccentricity mapwas obtained from the pRFmodeling of the retinotopy
data with a two-dimensional Gaussian function (see Methods—Retinotopic map-
ping). The duration map was obtained from the pRFmodeling of the experimental
data with the GST model (see Methods—Gaussian Space-Time (GST) model). A set
of eight bilateral ROIs was identified basedon individual retinotopicmaps. Red and

blue lines correspond respectively to the low and the high borders of the eccen-
tricity progression within each ROI. Lateral borders are represented with dashed
white lines (see Methods—Custom-made ROIs). Semi-transparent white lines out-
line principal sulci. ROI legend: V1-2d = dorsal primary and secondary visual areas,
V3AB= visual areas V3A and V3B, V5/MT= visual area V5/MT, IPS0-3 = different
portions of the intraparietal sulcus, FEFs = frontal eye fields. Sulci legend: CAS =
calcarine sulcus, SF = Sylvian fissure, CS = central sulcus, LH = left hemisphere,
RH = right hemisphere.
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τ ~ ROI ∗Hemisphere + (1∣subject ID), marginal R2: 0.49, conditional R2:
0.53). Type III ANOVA onmodel estimates showed amain effect of ROI
(F(7, 180) = 29.26 p <0.0001), and no effect of hemisphere nor inter-
action. The main effect of ROI indicates that the correlation between
the two estimates of eccentricity preferences changed along the visual
hierarchy (see Supplementary Fig. 7). Specifically, there was a gradual
worsening of correlation coefficients fromearly visual areas to parietal
and frontal regions (all t(180) > 4.63, p < 0.0005 comparing V1-2d with
all the other ROIs; all t(180) > 3.86, p <0.005 comparing V3AB with
IPS0, IPS1, IPS2, IPS3, andFEFs; all t(180) > 2.89,p <0.05 comparingV5/
MTwith IPS1, IPS2, IPS3, and FEFs). See Supplementary Tables 11 and 12
for the full set of statistics; all reported p values were Bonferroni cor-
rected formultiple comparisons. The better correlation of eccentricity
preferences in the occipital cortex might suggest that in early visual
regions BOLD responses mainly reflect changes in stimulus spatial
positions, whereas, from the parietal cortex onward, they likely reflect
changes in both stimulus’s position and duration.

Next, we considered other properties of the GST tuning function,
i.e., its orientation, its sensitivity, and the combination of orientation

and sensitivity. The orientation of the tuning function (i.e., θparameter
of the pRF) tells whether time and space contribute independently or
jointly in generating the brain response. Orientations close to either 0°
or 90° indicate a response driven by a single stimulus’s dimension,
whereas those between 0° and 90° indicate a response driven by both
dimensions. Figure 4b shows the group-level distribution of the θ
parameter within each ROI. To test their differences across ROIs, we
used Fisher’s non-parametric test and compared participants’ median
θ values (seeMethods—pRFs orientation). Results showed a significant
increase of the median θ parameter from occipital to frontal ROIs (χ2-
Pg(7) = 30.77, p =0.0001), with a significantly lower value in V1-2d
(median θ value = 0.4°) compared to V5/MT, IPS0, IPS1, IPS2, IPS3, and
FEFs (median θ values > 10.3°, all χ2-Pg(1) > 12.46, p < 0.05). We also
found a significantly lower median θ in V3AB compared to IPS1 (χ2-
Pg(1) = 18.61, p =0.0028). The full set of statistics is reported in Sup-
plementary Tables 13 and 14; p values were estimated using a 9999
iteration random permutation test and were Bonferroni corrected for
multiple comparisons. Thesefindings indicate that neuronal responses
in early visual areas (V1-2d, V3AB) are primarily driven by changes in

Fig. 4 | Changes in pRFs parameters. a Each violin plot represents the vertex-wise
distribution at the group-level (n = 13) of pRFs preferred duration (μd parameter of
the GST model) for each ROI, color-coded. Left (darker shade) and right (lighter
shade) sides of the violins correspond to the left and right hemispheres, respec-
tively. Dots indicate the median of each distribution, thick lines represent the
interquartile range. The distributions' kernels were estimated with 15% bandwidth.
b Each polar plot displays the vertex-wise distribution at the group level (n = 13) of
pRFsorientation (θparameter of theGSTmodel) in the different ROIs, color-coded.
The pRForientation reflects the contributionof either one (θ around0° and 90°) or
two (θ around 45°) stimulus’s dimensions to the response function. The dots
represent the median of each distribution: V1-2d = 0.4°, V3AB= 1.9°, V5/MT = 10.3°,
IPS0 = 16.9°, IPS1 = 30.4°, IPS2 = 19.7°, IPS3 = 24.6°, FEFs = 17.7°. The distributions'
kernels were estimated with 15° bandwidth. c Each bar plot represents the median
pRFs aspect ratio across participants (n = 13) and hemispheres for each ROI. The

aspect ratio (ratio between GST model major and minor σ) describes neuronal
response sensitivity. Round shapes (aspect ratio = 1) indicate equal sensitivity to
changes in stimulus position and duration, while elongated shapes (aspect ratio >1)
indicate greater sensitivity to changes in one dimension only. In the plot, values
span from 1 to 7. The error bars represent the standard error of the median. d The
group-level fraction of vertices for each type of selectivity is plotted across ROIs.
The pRFs selectivity (i.e., the stimulus dimension mainly leading the neural
response) was derived combining the σ and the θ parameters of the GST model.
Each dot is the mean fraction of vertices, across participants (n = 13) and hemi-
spheres, showing a selectivity type (pink for space, green for time, and blue for
both). The shaded area is the corresponding standard error. For visualization
purposes we also plotted lines obtained with a spline interpolation across dots. See
also Supplementary Fig. 8. SeeMethods—Properties ofGSTmodel. ROI legend as in
Fig. 2. Source data are provided as a Source Data file.
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one stimulus dimension, while at higher levels of the visual processing
hierarchy, responses are increasingly modulated by the interplay
between the stimulus’s position and duration.

We then assessed the sensitivity of the response function in each
ROI (see Methods—pRFs aspect ratio). The sensitivity, which defines
the shape of the pRF, was computed as the ratio between the major
and the minor axis of the response function (i.e., the ratio between
σmax and σmin). A thin elongated shape indicates a neuronal response
greatly sensitive to changes of a stimulus dimension only, whereas a
completely round shape reflects a neural response equally sensitive to
changes inboth stimulus dimensions. Figure 4c shows for each ROI the
median aspect ratio across participants and hemispheres. The plot
highlights a U-shaped pattern of aspect ratio changes along the visual
hierarchy, with aspect ratios decreasing from V1-V2d to IPS0 and then
slightly increasing from IPS0 to FEFs. To test these differences across
ROIs, we used a LME model with ROI and hemisphere as factors and
subjects as random intercept (model formula: Aspect Ratio ~ ROI ∗
Hemisphere + (1∣subject ID), marginal R2: 0.10, conditional R2: 0.26).
Type III ANOVA on model estimates showed a main effect of ROI
(F(7, 180) = 2.80 p <0.01) and hemisphere (F(7, 180) = 4.88, p <0.05).
Specifically, the aspect ratio was significantly lower in IPS0 compared
to V1-V2d in the right hemisphere only (t(180) = -3.92, p =0.004). The
full set of statistics is reported in Supplementary Tables 15–17; all
p values were Bonferroni corrected for multiple comparisons.
These results indicate that the sensitivity of neuronal responses
varies along the visual hierarchy, and in early portions of IPS (IPS0 and
IPS1) neuronal populations were more sensitive to changes in
both stimulus position and duration compared to the other cortical
regions.

Finally, we combined the orientation (θ parameter) and the sen-
sitivity (σ parameters) of the response function. This helped us to
identify which stimulus dimension (eccentricity, duration, or both)
mainly drives the neuronal response in each vertex, and to classify the
vertices accordingly (see Methods—pRFs selectivity). Figure 4d shows
the group-level results averaged across hemispheres. A three-way
repeated measure ANOVA was used to analyze these data with stimu-
lus’s dimension, hemisphere, and ROI as factors. The ANOVA revealed
a significant effect of stimulus’s dimension (F(1, 24) = 72.16,p <0.0001)
and, more interestingly, a significant interaction between stimulus’s
dimension and ROI (F(14, 168) = 17.43 p < 0.0001). The interaction
indicates that in different ROIs neuronal responses were selective for
different stimulus’s dimensions. Specifically, in V1-2d, V3AB, V5/MT,
and IPS0 the selectivity for the spatial dimension prevailed over that
for the temporal dimension and for their combination (all t(576) > 7.77,
p <0.0001). However, from V3AB onwards the selectivity for the spa-
tial dimension gradually decreased (all t(576) > 4.42 comparing V1-2d
with V3AB, V5/MT, and IPS0), whereas the selectivity for both space
and time dimensions increased (all t(576) < -3.45, p < 0.05 comparing
V1-2d with V3AB, V5/MT, and IPS0). In IPS1 and FEFs the selectivity for
the spatial dimension and for both space and time were equally
represented, whereas in IPS2 and IPS3 both types of selectivity were
not significantly different from IPS0. The selectivity for the temporal
dimension was always under-represented in all ROIs (all t(576) < -3.66,
p <0.0001 comparing temporal selectivity to the other types in all
ROIs—excluding the comparison with the selectivity for both dimen-
sions in V1-2d), however it significantly increased from occipital to
frontal regions (t(576) = -3.78, p = 0.005 comparing V1-2d and FEFs).
See Supplementary Tables 18–22 for the full set of statistics; all
reported p values were Bonferroni corrected for multiple compar-
isons. These results indicate that in early visual areas (from V1-2d to
MT/V5) neuronal populations exhibit higher selectivity for changes of
the spatial dimension of the stimulus, whereas in parietal and frontal
visual areas (IPS and FEFs) there are also neuronal populations selec-
tive for concurrent changes of both stimulus’s eccentricity and
duration.

Overall, these findings show a transition in brain responses to
changes in stimulus’s eccentricity and duration. In early visual areas
i.e., from V1-2d to V3AB, responses are mainly driven by spatial chan-
ges (i.e., lower θ values, more elongated pRF shapes, and higher frac-
tion of vertices showing spatial selectivity). From V5/MT onwards and
more decisively in early portions of IPS (IPS0 and IPS1), response
seems driven by changes of both stimulus’s dimensions (θ values
around 30°, rounded pRF shapes and neuronal populations selective
to either space, time or both). In this respect, it is noteworthy that
common responses to stimulus position and duration occurred in
parietal areaswhere selectivity to the full range of testeddurationswas
observed (see the μd distributions in Fig. 4a).

How duration maps are associated with eccentricity maps
The relationship between duration and spatial processing was finally
assessed by looking at the relationship between duration and eccen-
tricitymaps. Specifically, we studied if and how the spatial distribution
of preferred durations (μd) estimatedby theGSTmodel was associated
with that of preferred eccentricities obtained by modeling the reti-
notopy data (i.e., purely/standard eccentricity maps). To achieve this
goal, we employed two distinct spatially informed analysis tools—
spatial gradients and Moran’s I statistic—and focused the analyses on
the visual ROIs identified using the retinotopic mapping runs (see
Methods—Custom-made ROIs). Figure 3 illustrates eccentricity and
duration maps of one sample participant with ROIs marked by blue,
red, and white lines.

First, to identify howmaps unfold on the cortical surface, we used
a method as data-driven as possible, like the computation of spatial
gradients. Spatial gradients were computed for each eccentricity and
duration map in all participants (see Methods—Spatial gradients ana-
lysis). This method allowed us to determine the spatial direction of
preference change at each cortical location. To identify the main
direction of change in preference (i.e., the main direction of map’s
unfolding), we summed the gradient vector fieldwithin amap for each
ROI and subject. This sum results in a single vector,whichwe refer to as
global gradient. Figure 5a, b shows the result of this procedure for
maps in the left hemisphere of one participant (for spatial gradients of
all participants, see Supplementary Figs. 9–12). Eccentricity (panel a)
and duration (panel b) maps are presented with their corresponding
isolines (i.e., lines joining locations with equal preference’s values in
the map); global gradients are shown in the insets.

Figure 6a displays individual global gradients of duration (green
arrows) and eccentricity (pink arrows) maps. Upon visual inspection it
seems that in early visual areas (V1-2d, V3AB) eccentricity global gra-
dients are consistent across subjects; this consistency though
becomes weaker from V5/MT onwards (see also ref. 17). Duration
global gradients instead are highly variable across subjects in all ROIs.
The presence of a topographic relationship between eccentricity and
duration maps can be inferred from the angles between their respec-
tive gradient vector fields. This is shown in Fig. 5c as the super-
imposition of eccentricity and duration isolines (see Supplementary
Figs. 13 and 14 for all participants). To identify the relationship between
topographies, we then computed the angle between eccentricity and
duration global gradients (i.e., αg, see the arrows in Fig. 5c) in each
participant and ROI. Figure 6b illustrates for each ROI the group-level
distribution of αg values (see also Supplementary Fig. 15). At a visual
inspection, it seems that these distributions of αg are different in the
different ROIs. Specifically, in V3AB, V5/MT, IPS1, and FEFs, the dis-
tribution of αg is widespread, indicating an inconsistent association
between eccentricity and durationmaps in these cortical locations. On
the other hand, in V1-2d and IPS2 theαg valuesmainly fall between 150°
and 180°, and in IPS0 and IPS3 αg are most frequently close to 90°.
These results suggest the existenceof ROI-specific spatial relationships
between duration and eccentricity maps. In V1-2d and in IPS2 the two
maps change along the same orientation on the cortical surface but in
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opposite direction (αg close to 180°). In IPS0 and IPS3 instead maps
change independently on the cortical surface, following orthogonal
directions (αg close to 90°). It isworth emphasizing here that inV1-2d it
is not fully appropriate to talk about duration maps, since first, in this
area, the best pRF fittingmodel was CMTS (see Fig. 2), and second, the
fitting with the GST model revealed a distribution of duration pre-
ferences skewed towards long durations (see the analysis on the μd
parameter previously described). For these reasons, the topographic
relationship between eccentricity and durationmaps inV1-2d has to be
taken with caution. In contrast, in IPS0, IPS2, and IPS3, where all
durations are represented, results clearly showed that duration and
eccentricity maps changedmaintaining a very specific relationship. To
statistically prove a difference in the αg distributions along the differ-
ent cortical locations in the hierarchy, we ran the Fisher’s non-
parametric test on participants’median αg. Results showed significant
changes in the median values along the cortical hierarchy (χ2-Pg(7) =
27.08, p =0.0003). Specifically, the median of the αg distribution
decreased from V1-2d (median αg = 147°, spread = 18.33°) to FEFs
(medianαg = 80°, spread= 26.36°). The only exception to this decrease
was observed in IPS2 (median αg = 127°, spread = 27.50°), where the
median of the distribution was not significantly different from V1-2d
(χ2-Pg(1) = 3.85, p = 1). In V5/MT, IPS0, IPS3, and FEFs, median αg values
were significantly lower than inV1-2d (all χ2-Pg(1) > 12.46, p <0.05). The
full set of statistics is reported in Supplementary Tables 23 and 24. P
values were estimated using a 9999 iteration randompermutation test
and were Bonferroni corrected for multiple comparisons.

The analysis of spatial gradients revealed that eccentricity and
duration maps are linked when considering how maps change along
the cortical surface. However, this method does not consider any
direct association between eccentricity and duration preferences,
which might indeed represent another aspect of the relationship
between the maps. To this aim, we calculated for each ROI and parti-
cipant the bivariate global Moran’s I, which served as an indicator of
the spatial correlation between eccentricity and duration maps.
Essentially, this statistic measures to what extent the eccentricity
preference at each cortical location within a map correlates with the
averaged duration preference of its neighbors and summarizes the
nature of the overall spatial relationship between the two preferences.
The bivariate Moran’s I was computed considering vertices with a
duration preference estimated with the GSTmodel and an eccentricity
preference obtained from the retinotopic mapping runs (see Methods
—Bivariate Moran’s I statistic). Supplementary Fig. 16 displays the
group-level distributions of this statistic. A Moran’s I close to 0 indi-
cates spatial randomness (i.e., no spatial association, hence no clus-
tering) between the two preferences. Values higher or lower than zero
indicate spatial association, characterized by respectively a positive
(i.e., vertices with high or low eccentricity preferences tend to be close
to vertices with the same high or low duration preferences), or a
negative (vertices with high eccentricity preferences tend to be close
to those with low duration preferences, and vice versa) correlation.
The distributions of bivariate Moran’s I showed a consistent negative
Moran’s I in V1-2d only (median = -0.4 in both hemispheres), while in

Fig. 5 | Eccentricity and duration spatial gradients. Eccentricity (a) and duration
(b) maps are shown color-coded from red (0° or 0.2 s) to blue (7.5° or 0.8 s) with
their corresponding isolines (in black) for all ROIs of the left hemisphere of one
example participant. Isolines are separated by 50ms change of duration preference
and 0.5° of eccentricity preference. The insets display the global gradient (i.e., the
main direction of change) of each map, computed as the sum of its gradient vector

field. Panel c displays eccentricity (in pink) and duration (in green) isolines overlaid
to show the gradients intersection. The two corresponding global gradients are
plotted together to highlight the angle (αg) in between. We considered αg as a
measure of the spatial relationship between preference changes in eccentricity and
durationmaps. Vectors were normalized (by dividing the vector by itsmagnitude) to
ease visualization. See Methods—Spatial gradients analysis. ROI legend as in Fig. 2.
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the other ROIs the medianMoran’s I was close to 0 (between -0.16 and
0.04 in the left hemisphere and between -0.18 and 0.03 in the right
hemisphere). These results indicate that eccentricity and duration
preferences are clustered in V1-2d only, where high eccentricity pre-
ferences are likely to be located near low duration preferences, and
vice versa. In all the other ROIs, there was no spatial association
between eccentricity and duration preferences.

To summarize, the results of this section showed the presence in
IPS of a relationship between duration and eccentricity maps in their
unfolding along the cortical surface. In IPS2, the twomaps changed in
opposite directions (αgmainly at 180°), in IPS0 and IPS3 their change in
preference instead followed orthogonal directions (αg mainly at 90°).
However, with the exception of V1-2d, in all the rest of cortical loca-
tions there was no spatial association between duration and eccen-
tricity preferences.

Comparing duration with eccentricity maps
In the final set of analyses, we explored the link between spatial and
temporal processing by comparing the spatial properties of duration
and eccentricitymaps, i.e., their degree of clustering, the strength, and
the extent of their topographic organization. To achieve this goal, we
used two spatial statistical methods, Moran’s I and variogram.

First, we checked the quality of spatial clustering within the maps
by computing the univariate global Moran’s I for each eccentricity and
duration map independently (see Methods—Univariate Moran’s I sta-
tistic). The univariate Moran’s I is a measure of spatial autocorrelation,
and in our case, it quantified the correlation between each vertex’s
preference and the averaged preference of its 12 nearest neighbors.
Figure 7a shows the group-level distributions of this statistic. As pre-
viously described for the bivariate Moran’s I, a value of 0 indicates
spatial randomness, whereas values of 1 or -1 indicate spatial clustering,
characterized by either a positive or negative spatial autocorrelation.
The results revealed a positive Moran’s I for both eccentricity and
duration maps, indicating spatial clustering of vertices with similar
preferences. In eccentricity maps, medianMoran’s I values were above
0.76 in all ROIs, although therewas a gradual decay ofMoran’s I values
along the cortical hierarchy (i.e., the highest value was in V1-2d, the
lowest in FEFs). In duration maps, instead, Moran’s I values remained
relatively stable along the hierarchy, with median values above 0.58 in
all ROIs and with broader distributions than eccentricity maps. These
results indicate that duration preferences, while less clustered than
eccentricity preferences and with higher inter-individual variability in
their spatial arrangement, are still organized in a non-random fashion
in all ROIs.

Fig. 6 | Global gradients and angles. aArrows represent individual eccentricity (in
pink) or duration (in green) global gradients for each ROI in the left (polar plot on
the left) and the right (polar plot on the right) hemisphere. The global gradient
represents the main direction of change on a map. Vectors were normalized (by
dividing the vector by its magnitude) to ease visualization. b Color-coded polar
histograms display for each ROI the distribution across participants and hemi-
spheres of angles between eccentricity and duration global gradients (αg). We
considered αg as a measure of the spatial relationship between eccentricity and

duration maps. An αg of 0° or 180° signifies that maps change on the cortical
surface following the same orientation in either the same or the opposite direction.
Anαg of 90° implies thatmaps change independently, along orthogonal directions.
The dots represent the median of each distribution: V1-2d = 147°, spread= 19°;
V3AB= 111°, spread= 27°; V5/MT = 98°, spread= 22°; IPS0 = 93°, spread= 27°;
IPS1 = 87°, spread= 35°; IPS2 = 127°, spread= 28°; IPS3 = 86°, spread= 19°; FEFs =
80°, spread= 27°. See Methods—Spatial gradients analysis. ROI legend as in Fig. 2.
Source data are provided as a Source Data file.
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After assessing the presence of clustering in eccentricity and
duration maps, we next explored the strength and the extent of their
spatial autocorrelation. To achieve this goal we built the experimental
variogram of each map. The variogram is a method used to compute
spatial autocorrelation, but differently from the Moran’s I used pre-
viously, it is based on variance estimation, and it assesses the similarity
in preference of vertices located at varying distances from each other
(see Methods—Variogram). For example, in a map, one would expect
high similarity (i.e., low variance) between neighboring vertices and
low similarity (i.e., high variance) between spatially distant ones. We
extracted two parameters of the variogram: the nugget and the range.
The nugget corresponds to the variance observed at the shortest

distance between vertices in the map, and it quantifies the strength of
the spatial autocorrelation in the map. Low nuggets indicate low ran-
domness of neighboring vertices and, in turn, a strong spatial auto-
correlation. The range, instead, is the spatial distance required to reach
the sample variance, and it appraises the extent of the spatial auto-
correlation in the map. High ranges indicate a greater extent of spatial
autocorrelation. Figure 7 shows the group-level distribution of
eccentricity and duration nuggets (panel b) and ranges (panel c) for
eachROI.We tested individual nuggets and ranges of each eccentricity
and duration map with two different LME models with ROI, map type
(i.e., eccentricity or duration map), and hemisphere as factors and
subjects as random intercept (nugget model formula: Nuggets ~ ROI ∗

Fig. 7 | Group-level distributions of spatial statistics measures: Moran’s I,
nugget, and range. Each violin plot shows the group-level (n = 13) distribution of
the univariate Moran’s I (a), the variogram’s nugget (b), and the variogram’s range
(c) of eccentricity (leftward panel) and duration (rightward panel) maps in the
different ROIs, color-coded. The left side of the violins (darker shade) refers to the
left hemisphere, the right side refers to the right hemisphere (lighter shade). Dots
represent the median of the distribution, and circles correspond to individual data
points. Thick lines show the interquartile range, the distributions' kernels were
estimated with 15% bandwidth. a The Moran’s I is a measure of spatial auto-
correlation. A value of 0 indicates spatial randomness, whereas values of 1 or -1

indicate spatial clustering, characterized by either a positive or negative spatial
autocorrelation. b The nugget corresponds to the variance between vertices
located at the minimum distance in the map, and it reflects the strength of the
spatial autocorrelation in the map (lower values indicate a stronger spatial auto-
correlation). Nuggets are expressed in units of variance of the entire map. c The
range is the distance between vertices required to reach the variance of the whole
map, and it assesses the extent of the spatial autocorrelation in themap. Ranges are
expressed as a fraction of the full extent of the map. See Methods—Spatial prop-
erties of eccentricity and duration maps. ROI legend as in Fig. 2. Source data are
provided as a Source Data file.
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MapType ∗ Hemisphere + (1∣subject ID), marginal R2: 0.54, conditional
R2: 0.56; range model formula: Ranges ~ ROI ∗ MapType ∗ Hemi-
sphere + (1∣subject ID), marginal R2: 0.24, conditional R2: 0.25). Con-
cerning nuggets, type III ANOVA on model estimates showed a main
effect of ROI (F(7, 372) = 6.00 p <0.001), a main effect of map type
(F(7, 372) = 396.34, p <0.001), and an interaction between ROI and
map type (F(7, 372) = 8.32, p <0.001). Specifically, nuggets of eccen-
tricity maps were significantly lower than those of duration maps
(t(372) = -19.9, p <0.001), indicating a stronger spatial autocorrelation
in eccentricity maps. In addition, differences in nuggets across ROIs
depended on the type of map under consideration. In particular,
eccentricity nuggets increased from early visual areas to parietal and
frontal regions (all t(372) > 3.8, p < 0.001 comparing IPS0, IPS1, IPS2,
IPS3, and FEFs with V1-2d; all t(372) > 4.07, p < 0.005 comparing IPS1,
IPS2, IPS3, and FEFs with V3AB; all t(372) > 3.6, p < 0.05 comparing IPS1
and IPS2with V5/MT), whereas duration nuggets showedno significant
differences between ROIs. This result indicates that along the cortical
hierarchy, the strength of the spatial autocorrelation degrades in
eccentricity maps, and it remains stable in duration maps. See Sup-
plementary Tables 25–27 for the full set of statistics; all reported p
values were Bonferroni corrected for multiple comparisons. Con-
cerning ranges, type III ANOVA on model estimates showed a main
effect of ROI (F(7, 372) = 5.08, p <0.001), and amain effect ofmap type
(F(7, 372) = 69.64, p <0.001), while no interaction. Specifically,
eccentricity maps showed wider ranges than duration maps
(t(372) = 8.34, p <0.001), indicating that the spatial autocorrelation of
eccentricity maps extended over a greater portion of the cortical
surface compared to duration maps. Moreover, duration ranges in V1-
2d were wider compared to the other ROIs except for IPS0 (all
t(372) > 3.26, p <0.05 comparing V1-2d with V3AB, V5/MT, IPS1, IPS2,
IPS3, and FEFs). The wider range observed in V1-2d for duration pre-
ferences may be due to the great number of vertices in this area
respondingmaximally to longer duration (i.e., best fitted by the CMTS
model). If themajority of the vertices exhibit longduration preference,
the variance in the map will be small, and the distance to reach the
sample variance is necessarily large. See Supplementary Tables 28–30
for the full set of statistics; all reported p values were Bonferroni cor-
rected for multiple comparisons.

Overall, these findings suggest that duration preferences in visual
areas are clustered inmaps. Durationmaps, though, are different from
eccentricity ones. They show a lower degree of spatial autocorrelation
(as suggested by bothMoran’s I and variograms’ nugget), and they are
smaller in size. Yet, differently from eccentricity maps, they show
similar spatial properties throughout the visual hierarchy.

Discussion
In the present study, by means of spatially-dependent and spatially-
independent population response models to stimulus duration, we
explored the relationship between the cortical processing and repre-
sentation of visual duration and stimulus position. Specifically, we
asked: a) if and how the processing and the representation of the
duration of a visual stimulus are routed in the visuo-spatial cortical
hierarchy, b) whether the link between duration and spatial position
processing entails monotonic or unimodal (Gaussian-like) responses,
and c) what is the relationship between retinotopic (eccentricity) and
chronotopic maps.

The results of our first analysis show that duration tuning changes
along the cortical hierarchy, as does its link with spatial processing.
Stimulus duration is encoded in the response amplitude of spatially-
selective neuronal populations in early visual cortices (where CMTS is
the winning model) and gradually along the cortical hierarchy by
unimodal responses of spatially-invariant populations. Unimodal
responses to stimulus duration first appear in extrastriate areas V3AB
and V5/MT, their presence increases in the IPS and becomes pre-
dominant in frontal and premotor areas (SMA, FEFs, and IFS-PCSi,

where GT is the winning model). In humans, both monotonic and
unimodal topographically organized responses to visual stimulus
duration have been reported in a wide network of brain regions. In
visual and parietal cortices, both unimodal and monotonic responses
were identified10,13,18, whereas in premotor and prefrontal cortices only
unimodal responses were reported11,12. Our results, while replicating
these previous findings, extend them by showing how brain responses
to stimulus duration are linked to those to stimulus position and how
this link unfolds along the visual cortical hierarchy. Our results are also
in line with the idea of multi-stage processing of temporal
information9, where duration is initially extracted locally in early visual
cortices by spatially-tuned neuronal units that can be targeted by fast-
moving adapters1,3,6. Subsequently, it is decoded and represented in
duration-selective and spatially-independent neuronal populations,
susceptible to spatially invariant duration adaptation, in parietal
cortex7,8,16,18. Our findings corroborate earlier works showing a key
involvement of early visual areas in both duration processing and
perception20–24. As suggested by electrophysiological and imaging
works in rodents25,26, the duration of a visual stimulus might be enco-
ded in early sensory areas via the accumulation of sensory inputs. The
monotonic and spatially-selective responses to durations in V1-2d
might reflect this sensory accumulation process. Temporal informa-
tionmight then be decoded later in the cortical hierarchy, in premotor
and prefrontal regions, by means of unimodally tuned neuronal
populations. Neuronal populations selective to specific durations have
also been described in the monkey’s medial-premotor cortex27,28. In
this region, for example, the production of millisecond temporal
intervals is associated with the activation of duration-tuned neurons,
with neural trajectories of different speeds, and with the sequential
activation of different neurons. Importantly, most of these computa-
tions take place for both visual and auditory temporal intervals29.
These results together with many others neuroimaging studies in
humans (see, for instance, refs. 30–33 and ref. 34 for a recent review)
show a key role of medial-premotor cortex (i.e., SMA) and its tuning
mechanisms in temporal computations across tasks and sensory
modalities35. A previousworkbyHendrikx and colleagues13 showed the
switch between monotonic and unimodal responses to stimulus
duration in extrastriate area V5/MT. Here we showed the presence of
unimodal tuning to duration earlier in the visual hierarchy, in area
V3AB. Interestingly, this area also shows the presence of unimodal
tuning to stimulus numerosity36 and might represent one of the first
stages of visual magnitude processing37. We also observed that
monotonic responses to stimulus duration are tightly linked to spatial
processing and coexist with spatially-invariant duration responses
until the parietal lobule. In our work compared to Hendrikx and col-
leagues, by using different neuronal response models that combined
durations with spatially-selective responses, we were able to better
capture and specify this transition along the cortical hierarchy. In
addition, by introducing in our experiment parametric changes in
stimulus position, we were also able to better characterize the
dependency between duration and eccentricity preferences.

The relationship between space and time appears in its com-
plexity in the IPS, where not only spatially-specific monotonic and
spatially-independent unimodal responses to durations coexist, but
where brain responses, modeled—in our second set of analyses—as a
bivariate Gaussian function (GST model), show selectivity to either
space and (to a lesser extent) time separately or to both together (i.e.,
round aspect ratio, medians of the θ parameter around 30°). This last
result is in linewith a previousfinding fromour group showing that the
simultaneous change in duration and numerosity of a visual stimulus
leads to changes in brain responses from occipital to frontal regions.
Compared to baseline conditions where only a single stimulus
dimension was manipulated, response functions became more sensi-
tive to both duration and numerosity, and their preferences changed.
Interestingly, preference changes were more pronounced in parietal

Article https://doi.org/10.1038/s41467-024-54336-5

Nature Communications |        (2024) 15:10720 11

www.nature.com/naturecommunications


and frontal regions38. The parietal cortex is the brain area where dif-
ferent kinds of integration processes are known to happen, for
example multisensory39 and visuo-motor40, and where different visual
magnitudes like stimulus size, duration, and numerosity are pro-
cessed. The IPS is also the place where space, time, size, and numer-
osity maps have been found to partially overlap (for a review, see
ref. 41). One can therefore imagine that this is the brain area where the
information coming from multiple stimulus dimensions, such as
position, size, and duration is linked and brought together to create a
unitary representation of the stimulus at hand19,42.

The IPS is also the area where the spatial progression of eccen-
tricity and time topographies is linked. This relationship is not a point-
wise, one-to-one matching of duration and eccentricity preferences,
but rather a link in the way the two maps unfold along the cortical
surface. In IPS2, maps change along the same orientation but in
opposite directions. In IPS0 and IPS3, maps progression is orthogonal.
This result suggests that in different portions of the IPS there is a
common principle governing the spatial progression of the maps. As
the topographic organization is thought to improve the efficiency of
neural computation and communication43, we hypothesize that the
sharing of the same principles across different maps might serve a
similar purpose. The differences observed across ROIs might indicate
different steps of the integration between the two stimulus dimensions
and point to a complex link between eccentricity and duration maps
instead of a simple overlap41. Another indication of the complexity of
the interaction between eccentricity and duration maps comes from
the observation that the correlations between eccentricity maps esti-
mated with the GST model on the experimental data (where eccen-
tricity and duration were varied together) and those estimated on the
retinotopic mapping data (where only eccentricity was varied) tend to
worsen from parietal cortex onwards. This is probably a consequence
of the fact that this area is sensitive to both stimulus’s features, when
these features are manipulated together in the same visual object.

Finally, the use of spatial statistics tools (i.e., Moran’s I and var-
iogram) allowed us to assess the spatial properties of duration maps
compared to eccentricity ones. The results show that, unlike eccen-
tricity maps, whose clustering (univariate Moran’s I) tends to decrease
along the visual hierarchy, duration preferences are stable across
visual areas. However, compared to eccentricity maps, their degree of
clustering is always inferior, their size (range of variograms) is smaller,
and their variance between nearest neighbors (nugget of variograms)
is higher. These results show a worse quality of duration maps com-
pared to eccentricity ones. These differences might reflect the pecu-
liarity of duration as a stimulus feature to be mapped. First, the
duration of a stimulus is fully available only after its offset, and second,
there are neither sensory organs nor pathways dedicated to its pro-
cessing. The processing of temporal information might, therefore,
exploit brain mechanisms beneficial for its neural computations and
communication (e.g., unimodal tuning functions and topography) but
adapt them to the unique nature of time. It is worth emphasizing here
that the duration maps analyzed in this study were identified within
eccentricity maps. These maps reflect the cortical representation of a
visual stimulus’s duration covering a very specific location in the lower
visual field. For this reason, the duration maps presented here may be
different from other duration maps existing beyond visual areas11,12,
which might be more closely linked to perceptual aspects of duration
processing.

Overall, it is important to note that the stimuli we used were
presented only in the lower visual field. Although we did not find any
differences in the duration discrimination of the tested spatial posi-
tions, it is possible that a finer spatial manipulation, including the
upper visual hemifield, could reveal behavioral asymmetries44 as well
as differences in neural tuning properties45,46.

In conclusion, in this work, we show that time is linked to spatial
processing to a different extent depending on the functional stage of

duration processing. Time exploits visuo-spatial circuits and is enco-
ded in the neuronal response amplitude early in the visual hierarchy,
when it is extracted from sensory inputs. When these inputs are inte-
grated and time becomes an “object” or a representation, in extra-
striate areas and IPS, it is encoded in both spatially-specific and
spatially-independent neuronal units. At this stage, temporal and
spatial maps are associated, and brain responses are selective to
changes in both stimulus dimensions. Spatially-independent units that
are unimodally tuned to duration are mainly engaged at the decoding
stage, when time is read out in premotor and inferior frontal regions
for motor and decision purposes.

Methods
Participants
Thirteen healthy volunteers participated in this study (six females; sex
information self-reported; gender information not collected; mean
age = 29.6, SD = 7.3; 2 left-handed participants). All volunteers had
normal or corrected-to-normal visual acuity. The experimental pro-
cedures were approved by the International School for Advanced
Studies (SISSA) ethics committee (protocol number 11773) in accor-
dance with the Declaration of Helsinki. All participants gave their
written informed consent to participate in the experiment, and they
were financially compensated for their time and travel expenses.

Stimuli and experimental procedure
Stimuli. Participants were presented with visual stimuli displayed on a
BOLD screen (Cambridge Research Systems 32-inch LCD widescreen,
resolution = 1920 × 1080 pixels, refresh rate = 120Hz) placed outside
the scanner bore at a total viewing distance of 210 cm and viewed via a
mirror. The stimuli were colored circular patches of Gaussian noise
subtending 1.5° of visual angle, changing dynamically frame by frame
and presented on a gray background. Each stimulus was constructed
by randomly selecting RGB values from a Gaussian distribution of
mean= 127 and SD = 35 for each of its pixels and frames. This ensured
that the average stimulus luminance was constant and independent of
its duration. To prevent the perception of flickers induced by the fast-
changing rate in the stimulus, we scaled down its pixel resolution
(scaling factor = 12.33). This created a blurring effect that homo-
genized the local contrasts of the stimulus over frames andminimized
possible flickering effects47. The entire experimental procedure was
generated and delivered using MATLAB and Psychtoolbox-348. An
identical setup was used during the participants’ training.

Task and experimental design. Participants were asked to perform a
single interval discrimination task in which they had to compare the
duration (i.e., display time) of a comparison stimulus to that of a
reference stimulus internalized during the training procedure. The
task was to report whether the comparison stimulus was longer or
shorter than the reference. The reference duration was 0.5 s, and the
comparison durations were 0.2, 0.3, 0.4, 0.6, 0.7, and 0.8 s. The
comparisons were presented in different spatial positions (i.e., display
locations on the screen), which could be either at 0.9° or 2.5° of visual
angle diagonally from the center of the screen in the lower-left or
lower-right visual quadrant (see the close-up in Fig. 1a). Stimuli did not
overlap across spatial positions. A white fixation cross (0.32° of visual
angle) was displayed at the center of the screen throughout the
experiment. In each trial, the comparison stimulus was presented in a
specific position and entailed a specific duration. After a randomized
interval from the offset of the stimulus (stimulus-cue interval (SCI)
uniformly distributed between 0.9 and 1.2 s), the participants’
response was cued with a color switch (from white to black) in the
fixation cross. The response was allowed within a 2 s window, but no
emphasiswas placedon reaction times. Participants were instructed to
provide their responses by pressing one of two buttons on a response
pad with their right index finger or right middle finger to express the
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choices “comparison longer than reference” and “comparison shorter
than reference”, respectively. No feedback was provided after the
response. A uniformly distributed inter-trial interval (ITI) between 1.8
and 2.5 s interleaved the trials. See Fig. 1a for a pictorial representation
of the trial structure. The stimulus duration varied trial by trial in a
pseudo-randomized and counterbalanced fashion, whereas its posi-
tion varied sequentially and cyclically to minimize attentional switch-
ing effects on the duration judgment14. Each cycle started and ended at
2.5° in the lower-left quadrant and comprised a clockwise and coun-
terclockwise presentation of the stimulus in all positions, from 2.5°
lower-left to 2.5° lower-right and backward (i.e., 2.5° L, 0.9° L, 0.9° R,
2.5° R, 2.5° R, 0.9° R, 0.9° L, 2.5° L). Each half cycle (i.e., when the
presentation order turned from clockwise to counterclockwise and
vice versa) was followed by a 2.64 s (2 TR) interval. To ensure a
balanced presentation of all combinations of durations and positions
within each block, a cycle was repeated six times, and each duration
was presented twice in each position, for a total of 48 trials per block.
Each participant performed 10 blocks inside the scanner acquired in
separate fMRI runs. Duration randomization differed in each block,
whereas the position sequence was always the same. Stimuli pre-
sentation was synchronized with the scanner acquisition at the
beginning and at themiddle of each cycle. Participants were instructed
to maintain their gaze at the fixation cross while performing the task,
and eye movements were monitored online and recorded with anMR-
compatible eye-tracking system (R Research Eyelink 1000 Plus) placed
inside the scanner bore.

Training. Participants underwent a training procedure outside the
scanner to familiarize themselves with the stimuli and the task. First,
they were asked to internalize the duration of the reference stimulus.
In this phase, participants passively viewed a 0.5 s stimulus which was
presented at the center of the screen three times (inter-stimulus
interval uniformly distributed between 1.8 and 2.5 s) in each trial. They
were free to complete as many trials as they needed to feel confident
they had internalized the duration of the stimulus. Next, participants
performed the first training block of the duration discrimination task.
The task structure was identical to the one described earlier (see
Methods—Task and Experimental Design), but all comparisons were
presented at the center of the screen. This was done to ensure that the
participants were able to correctly discriminate the comparisons from
the reference stimulus. Finally, participants performed a second
training block equivalent to the experimental blocks to familiarize
themselves with the experimental procedure. Throughout the training
phase, participants received visual feedback about their performance
and eye movements.

Retinotopy runs
Participants underwent two retinotopy runs which allowed for a pre-
cise identification of their visual field maps. We used the stimulation
paradigm of the Human Connectome Project 7T Retinotopy Dataset49.
In brief, the stimulus was a bar-shaped aperture filled with a texture of
colorful objects at multiple scales on an achromatic pink-noise back-
ground. The barswere constrained to a circular region, subtending 10°
of the visual angle, and the width of each bar was 1.25° of the visual
angle (1/8 of the mapped visual field). The background was uniformly
gray. Four bar orientations (0°, 45°, 90°, and 135°) and two motion
directions were used, ending up with eight different bar configura-
tions. Each run consisted of blank periods and bar movements as fol-
lows: 16 s blank period, 4 bar movements (directions: right, up, left,
down) of 32 s each, 12 s blank period, 4 bar movements (directions:
upper-right, upper-left, lower-left, lower-right) of 32 s each, 16 s blank
period. The last 4 s of each 32 s bar movement were blank. Bars aper-
tures were animated at 15Hz by randomly selecting one of 100 texture
images (avoiding the consecutive presentation of the same texture). A
fixation cross (0.32° of visual angle) was displayed at the center of the

screen throughout the experiment, andparticipantswere instructed to
maintain their gaze on it. To aid fixation, the color of the cross swit-
ched randomly between green, red, and white, and participants were
asked to press a button whenever the color changed; furthermore, a
semi-transparent fixation grid was superimposed on the display
throughout the experiment.

MRI acquisition
MRI data were acquired with a Philips Achieva 7T scanner equipped
with an 8Tx/32Rx-channel Nova Medical head coil. T2*-weighted
functional images were acquired using a three-dimensional EPI
sequence with anterior-posterior phase encoding direction and the
following parameters: voxel resolution = 1.8mm isometric; repetition
time (TR) = 1.32 s; echo time (TE) = 0.017 s; flip angle = 13 degrees;
bandwidth = 1750Hz/px. Universal kt-points pulses were used to
achieve a more homogeneous flip angle throughout the brain50. The
matrix size was 112 × 112 × 98, resulting in a field of view of 200(AP) ×
200(FH) × 176.4(LR) mm. At the end of each run, 4 volumes were
acquired with the opposite phase encoding direction in order to per-
form susceptibility distortion correction (see Methods—MRI data
preprocessing). A minimum of 190 volumes (acquisition time
≈4 minutes) was acquired for each experimental run. For each reti-
notopy run, 228 volumes were acquired (acquisition time = 5minutes).
Peripheral pulse and respiratory signals were recorded simultaneously
with the fMRI data acquisition using the PhilipsMRPhysiologywireless
recording system. The finger clip of the peripheral pulse unit was
placed on the subject’s left ring finger, and the respiratory sensor was
placed over the diaphragmof the subject and securedwith a band. Eye
movementsweremonitored and recordedwith aneye-tracking system
(SR Research Eyelink 1000 Plus) mounted onto a hot-mirror system
and located inside the scanner bore. High-resolution T1-weighted
images were obtained using theMP2RAGE pulse sequence51 optimized
for 7T (voxel size = 0.7 × 0.7 × 0.7mm, matrix size = 352 × 352× 263).

MRI data processing
Pulse-oximetry and respiratory components were regressed from the
BOLD traces before the preprocessing.We converted the physiological
signals into slice-based regressors using RetroTS.py (AFNI), and we
performed the Retrospective Image Correction with a custom routine
based on 3dretroicor (AFNI). This procedurewas applied only whether
physiological signals were reliable in their frequency spectrum (phy-
siological signals were removed in 108 out of 156 runs; both pulse and
respiratory signals were removed in 67/108 runs, only pulse signals in
29/108 runs, only respiratory signals in 12/108 runs). Data were pre-
processed using fMRIPrep 21.0.252,53, which is based onNipype 1.6.154,55.
See the supplementary methods for details about the pipeline. The
BOLD time series of the retinotopy runs were also high-pass filtered by
removing the first six components from the discrete cosine transform
of the data and then were converted to percentage of signal change.

Behavioral performance analysis
The behavioral analysis aimed to assess whether duration discrimina-
tion performance was affected by the display location of the stimulus.
The individual behavioral data were grouped by the position of the
stimulus, and themean fraction of “comparison longer than reference”
responses was computed for each comparison duration to build indi-
vidual psychometric curves. In addition, we computed the mean
fraction of “comparison longer than reference” responses across par-
ticipants for each comparison duration to build group psychometric
curves (Fig. 1b). All psychometric curves were fitted using theMATLAB
built-in function glmfit with a logit link function. For each participant,
we derived the PSE (i.e., the comparison duration equally likely to be
judged as longer or shorter than the reference duration) and the JND
(i.e., the minimum difference between reference and comparison sti-
mulus to be detected 75% of the times) which are respectively a proxy
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for bias and sensitivity of the duration discrimination judgments.
Individual PSE and JND values were analyzed with two LME models,
using the lme4 R package56, with the following formulas:

PSE � StimulusPosition + ð1jsubject IDÞ ð1Þ

JND � StimulusPosition+ ð1jsubject IDÞ ð2Þ

LME model variance explained was computed using the MuMIn
package57. The Satterwaite’s method58 implemented in the lmerTest
package59 was used to estimate the degrees of freedom for the LME
model ANOVA.

General linear model (GLM) analysis
Functional data resampled on the cortical native surface were initially
analyzed using a GLM approach with the GLMdenoise toolbox60. For
each run, the design matrix included one regressor for each combi-
nation of comparison duration and position time-locked to the offset
of the stimulus (events of interest) and one regressor time-locked to
the onset of the response (event of no interest). Thus, 25 events were
modeled (6 stimulus durations × 4 stimulus positions + response). As
GLMdenoise automatically estimates noise regressors, no motion
correctionparameterswere entered in the procedure. Regressorswere
convolved with the canonical hemodynamic response function. For
each subject, this procedure yielded a set of 100 bootstrapped beta
weights for each vertex. The median beta weight across bootstraps,
converted to percentage of signal change, was used in the following
analysis steps.

Population receptive field (pRF) modeling
In order to characterize the tuning properties of BOLD responses
to different combinations of stimulus duration and position, we
applied the pRF modeling15 and predicted GLM betas relative to
stimulus offsets. We tested five different pRF models to account
for different neuronal responses elicited by our experimental
manipulations.

Compressive monotonic time (CMT) model. The CMT model
assumes a monotonic neuronal response to stimulus duration (d),
invariant to stimulus position. The neuronal response (nr) is thus
described by the following equation:

nr � ðm � dÞc ð3Þ

where m is the slope of the linear increase and c is an exponent
modulating the compression of the response10.

Compressive monotonic time and Gaussian space (CMTS) model.
The CMTSmodel assumes amonotonic neuronal response to stimulus
duration (as the CMT model) coupled with an unimodal response to
stimulus position (s), represented by a Gaussian function. Themodel is
described by the following equation:

nr � ðm � dÞc � e�
ðs�μs Þ2
2σ2s

ð4Þ

where μs represents the preferred spatial position (i.e., the stimulus
position eliciting the greatest neuronal response) and σs represents the
sensitivity of the response to changes in stimulus position.

Gaussian space (GS) model. The GS model assumes an unimodal
neuronal response to the spatial position of the stimulus (as in CMTS),
invariant to its duration, and it is described by a univariate Gaussian

function:

nr � e
�ðs�μs Þ2

2σ2s
ð5Þ

Gaussian time (GT) model. The GT model describes a unimodal
neuronal response to the duration of the stimulus, invariant to its
spatial position, thus it is the reciprocal of the GS model:

nr � e
�ðd�μd Þ

2

2σ2
d

ð6Þ

where μd represents the preferred duration (i.e., the stimulus duration
eliciting the greatest neuronal response) and σd the sensitivity of the
response to changes in stimulus duration.

Gaussian space-time (GST) model. The GST model assumes an
unimodal neuronal response to both the temporal and the spatial
dimensions of the stimulus. Therefore, it is described by a bivariate
Gaussian function with the following equation:

nr � e�ðaðd�μd Þ2 + 2bðd�μd Þ�ðs�μsÞ+ cðs�μs Þ2Þ

a = ðcos θÞ2
2σ2

d
+ ðsinθÞ2

2σ2
s

b = � sin 2θ
4σ2

d
+ sin 2θ

4σ2
s

c = ðsin θÞ2
2σ2

d
+ ðcos θÞ2

2σ2
s

ð7Þ

where θ represents the orientation of the neuronal response function.
The above-described models are able to capture a variety of

neuronal responses to our experimental manipulation, including dif-
ferent kinds of sensitivity that neuronal populationmight have relative
to changes of stimulus duration and position (i.e., purely space-
modulated responses, purely time-modulated responses, and
responses modulated by both stimulus dimensions) and different
tuning functions for temporal information (i.e., monotonic or unim-
odal neuronal responses).

Fitting procedure. A two-dimensional matrix was used to represent
the spatial and temporal dimensions of the stimulus, with durations
and positions expressed in arbitrary units from 1 to 100. We built 24
matrices, each representing a unique combination of stimulus dura-
tion and position present in our experimental manipulations. These
matriceswere then stacked along the thirddimension according to the
arrangement of the GLM beta weights. The predicted neuronal
response was derived by first multiplying the neuronal response
function (with varying parameters) by the stimulus space and then
integrating over the stimulus space. For each vertex of the cortical
surface, we optimized the parameters of the predicted neuronal
response function by minimizing the residual sum of squares relative
to the GLM betas. This optimization process was performed in two
steps: a grid search, which tested the performance of a large set of
parameters, followed by an iterative procedure, which used the win-
ning parameters of the gridfit as a seed to explore previously untested
parameter combinations. This latter step was based on the Nelder-
Meadmethod61 implemented inMATLAB fminsearchbnd function. The
entire fitting procedure was restricted to vertices with at least one
positive GLM beta, and only parameters that could explain at least 10%
of the variance in the grid fit wereoptimized in the iterativefit. Vertices
showing a negative pRF were excluded from further analyses. The
above-described procedures were performed using custom-made
functions in MATLAB. Supplementary Figs. 1 and 6 show an example
of the result of the fitting procedure for each pRF model.

R2 cross-validation. The tested pRF models have a different number
of free parameters. To overcome this issue and allow a comparison
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between them, we ran the pRF modeling with a two-fold
interleaved cross-validation procedure. GLM betas were estimated
separately for the two halves of the dataset. In order to equalize the
splits in terms of fMRI noise, for this procedure we used the
denoised data generated by GLMdenoise. We ran the pRF modeling
on one of the two splits. The resulting predicted neuronal responses
were then compared to the GLM betas of the second split using
linear regression. The linear regression ensured that the variance
explained by the pRF model was not dependent on arbitrary
changes in the signal (i.e., baseline or response amplitude) between
splits. The resulting cross-validated R2 values were used in the model
comparison analysis (see Methods—Neuronal response models
comparison).

Retinotopic mapping. We ran the standard pRF modeling15 on the
average BOLD signal of the two retinotopy runs. A two-dimensional
Gaussian function was used to model neuronal responses:

nr � e�
ðx�x0 Þ2 + ðy�y0 Þ2

σ2 ð8Þ

where (x0, y0) is the center of the pRF and σ is its size. The same
apertures used to generate the retinotopy stimuli (see Methods—
Retinotopy runs)were used to represent the x and y coordinates of the
stimulus relative to the screen during the modeling procedure. The
apertures matrix was convolved with the hemodynamic response
function generated with the MATLAB rmHrfTwogammas function
provided by Zhou and colleagues10. The flow of the fitting procedure
was the same as described before (see Methods—Fitting procedure).
The estimated pRF parameters were then converted into polarity and
eccentricity values.

ROIs identification
We selected two different sets of ROIs in each participant’s native
space. All ROIs were selected in a blind fashion relative to the experi-
mental functional data, to avoid circularity in the analyses.

Atlas-based ROIs. We identified nine bilateral ROIs using the Des-
trieux atlas62, the topological parcellation by Sereno and colleagues63,
and the HCPMMP 1.0 atlas64. We included areas known to be involved
in either spatial17 or temporal12,18 processing. We selected an ROI cov-
ering V1, V2, and V3 (Pole_occipital label from Freesurfer apar-
c.a2009s.annot), a lateral-occipital ROI (DI, LO1, LO2, LO3 labels from
Sereno’s parcellation), an occipito-parietal ROI (OPA, V3A, V3B labels
from Sereno’s parcellation), an ROI covering the V5/hMT+ complex
(MT_upper, MT_lower, MTc, MSTd, MSTv, FSTd labels from Sereno’s
parcellation), an ROI covering the angular and the supramarginal gyri
(PGs_ROI, IP1_ROI, IP2_ROI, PFm_ROI, PF_ROI fromHCPMMP 1.0 atlas),
an ROI partially covering the superior parietal lobule and the IPS (V7,
cIPS, LIP0, LIP1, PEc, IPS4, IPS5, aPCu1, aPCu2 labels from Sereno’s
parcellation), an ROI covering the inferior frontal sulcus (DLPFC,
DLPFCa, DLPFCaud labels from from Sereno’s parcellation), an ROI
covering the frontal eye fields (FEF_ROI, 6a_ROI, i6-8_ROI labels from
HPC MMP 1.0 atlas), and an ROI covering the supplementary motor
area (SMA1, SMA2, dmFEF, dmFAF labels from Sereno’s parcellation
and themedial part of the BA6 Freesurfer label). These ROIs were used
in the model comparison analysis (see Methods—Neuronal response
models comparison).

Custom-made ROIs. We drew eight bilateral ROIs belonging to the
dorsal visual stream. An initial guess of ROIs locations was provided
by the topological parcellation by Sereno and colleagues63 and by the
maximum likelihood probabilistic retinotopic atlas by Wang and
colleagues65 projected onto the subjects’ native cortical surface.
Afterward, we modified ROI boundaries guided by eccentricity and
polar angle maps derived from the retinotopic modeling (see

Methods—Retinotopic mapping), and the eccentricity progression
was considered the leading feature in drawing ROI contours. We
selected three occipital ROIs (dorsal V1 and 2, V3A and V3B, V5/MT),
four parietal ROIs covering the IPS (IPS0, IPS1, IPS2, IPS3), and one
frontal ROI covering the frontal eye fields (FEFs). Within each ROI we
also drew four borders to better outline eccentricity maps: two
borders marked the low and the high side of the eccentricity pro-
gression (named low and high borders); the other two were con-
junction borders (named lateral borders). In some ROIs the
eccentricity map was better captured by two high borders instead of
a low and a high border. To place borders, two main criteria were
applied38: map continuity (i.e., map’s vertices should belong to the
same spatial cluster) and progression continuity (i.e., map’s vertices
should be arranged following one eccentricity gradient only). These
ROIs were used to investigate the properties of BOLD responses
when spatial position and duration co-vary in the stimulus (see
Methods—Properties of GST model) and to study spatial and dura-
tion topographies (see Methods—Spatial relationship between
eccentricity and duration maps and Methods—Spatial properties of
eccentricity and duration maps). Only vertices within the borders
were considered in the analyses.

Neuronal response models comparison
With this analysis, we aimed to investigate if and how neuronal
responses to stimulus durations are related to the spatial circuitry.
To this purpose, we compared the goodness of fit of the CMT, CMTS,
GS, and GTmodels. For each participant, we performed a vertex-wise
winner-take-all procedure on models’ cross-validated R2 values. This
procedure enabled us to identify for each vertex its winning model
(i.e., the model with the higher R2), obtaining a winning models’
distribution for each participant. Figure 2a shows, for illustrative
purposes, the group-level winning models’ distribution. We obtained
it by first resampling individual distributions on a common surface
(FreeSurfer fsaverage) using FreeSurfer’s mri_surf2surf and then
computing for each vertex the mode across participants. We exclu-
ded from the final distribution vertices that had more than one
associated winning model, vertices with non-integer values due to
the surface resampling, and vertices without winning model assign-
ment in at least 7 subjects out of 13. To quantify the distribution of
winning models at the group level, for each participant and each ROI
(see Methods—Atlas-based ROIs) we computed the fraction of ver-
tices assigned to eachmodel. These data were analyzed using a three-
way repeatedmeasure ANOVAwithmodel type, ROI, and hemisphere
as factors. The ANOVAwas performedwith the anova_test function in
R (rstatix package66). Marginal means were estimated with the
lm function in R (model: Fraction Of Vertices ~ ROI ∗ Hemi ∗ Mod-
elType) and compared using the emmeans package67, which uses
the Kenward-Roger’s method68 to estimate degrees of freedom. In
the analysis presented in main text, we did not include the GST
model because, due to its inherent flexibility, it generalizes to the
shape of all the other models. For this reason, describing the actual
pattern of population response functions would become less
straightforward. The comparison between the full set of candidate
models can be found in the supplementary materials (see Supple-
mentary Fig. 17).

Properties of GST model
In this set of analyses, we studied the parameters of the GST model to
characterize the properties of BOLD responses when position and
duration co-vary in the stimulus. We focused on eight bilateral ROIs
belonging to the dorsal visual stream and defined by means of their
eccentricity maps (see Methods—Custom-made ROIs).

pRFs duration preference. To assess how the distribution of the μd
parameter (i.e., preferred duration) changed across ROIs, for each
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participantwe computed the average μdwithin eachROI andwe tested
the following LME model:

μd � ROI � Hemisphere+ ð1jsubject IDÞ ð9Þ

We applied the same methodology described in Methods—Behavioral
performance analysis, and the estimated marginal means were com-
pared using the emmeans package.

pRFs eccentricity preference. We performed a correlation analysis
between eccentricity preferences estimated on the retinotopic data
and those estimated by the GST model (i.e., μs converted into eccen-
tricity values). The vertex-wide Kendall’s correlation coefficient
between the two sets of eccentricity was computed for each partici-
pant and ROI and then transformed into z score to be entered in a LME
model. The model formula was specified as follows:

z-transformed Kendall's τ � ROI � Hemisphere+ ð1jsubject IDÞ ð10Þ

We used the same procedure described previously (see Methods—
Behavioral performance analysis and Methods—pRFs duration
preference).

pRFs orientation. We tested whether the distribution of the θ para-
meter (i.e., the orientation of the pRF) changed across ROIs using
Fisher’s non-parametric test for a common median direction69. This
test was implemented with custom functions in R, based on the
description provided by Pewsey and colleagues70, and subsequently
validated using the CircStat toolbox in MATLAB71. The test was per-
formedby comparing individualmedianθ values across ROIs.Medians
were calculated using the circular package in R. P values were esti-
mated using a random permutation test, in which the test statistic was
computed 9999 times on data with shuffled labels. The resulting p
value was computed as the probability of finding test statistic in the
random permutations greater than in the unshuffled data. Themedian
θ across participants reported in Fig. 4b for each ROI was calculated
using the circular package in R.

pRFs aspect ratio. We calculated the aspect ratio of each vertex as σmax
σmin

andwe tested the log-transformedmedianaspect ratio of eachROI and
participant with the following LME model:

Aspect Ratio � ROI � Hemisphere + ð1jsubject IDÞ ð11Þ

We used the same methodology described in Methods—Behavioral
performance analysis and in Methods—pRFs duration preference.
Aspect ratios greater than 50were excluded from the analysis. The log
transformation was used to improve normality in the sample data and
ensure robust model performance.

pRFs selectivity. We identified for each vertex which stimulus
dimension (i.e., the spatial position, the duration, or both) mainly
drove its response. This was possible by combining the θ and the σ
parameters as follows:

• space-selective responses were defined by two different condi-
tions: θ parameter horizontally oriented (i.e., θ < 20° or θ > 160°)
coupledwith σd greater than σs, or θ parameter vertically oriented
(i.e. 70° < θ < 110°) coupled with σs greater than σd;

• time-selective responses are complementary to space-selective
responses:θparameter vertically oriented coupledwith σdgreater
than σs, or θ parameter horizontally oriented coupled with σs
greater than σd;

• responses selective to both space and time were defined by a θ
parameter falling within the ranges 20°—70° or 110°—160°.

For each subject and ROI we computed the fraction of vertices
assigned to each type of selectivity and we performed a three-way
repeated measure ANOVA with stimulus dimension (i.e., space, time,
and both), ROI, and hemisphere as factors (same methodology as
described in Methods—Neuronal response models comparison).

Spatial relationship between eccentricity and duration maps
We designed the following analyses to investigate the spatial rela-
tionship between eccentricity and duration maps. Specifically, we
studied eccentricity preferences estimated on the retinotopy data and
duration preferences (μd) estimated with the GST model on the
experimental data. We considered eccentricity maps derived from
the retinotopy data—rather than those estimated by the GSTmodel on
the experimental data—to rely on spatial maps obtained through the
classical stimulation paradigm. These analyses were conducted within
the previously described 8 bilateral ROIs belonging to the dorsal visual
stream (see Methods—Custom-made ROIs).

Spatial gradients analysis. We implemented a pipeline based on
spatial gradients as a data-driven method to represent and compare
maps’ unfolding along the cortical surface. For each individual flat-
tened (using FreeSurfer’s mris_flatten) ROI, we first resampled eccen-
tricity and duration maps onto an isotropic two-dimensional grid of
2mm resolution. The resampling was performed within each ROI,
computing the weighted average of preference values (either eccen-
tricity or duration) for each cell of the grid. Weights were determined
using a Gaussian filter with a full-width half maximum of 4 mm, cen-
tered on each grid cell. We considered weights lower than 0.001 as 0.
We then computed the spatial gradient using the MATLAB gradient
function on this smoothed version of each map. Figure 5 shows
eccentricity (panel a) and duration (panel b) smoothed maps along
with the isolines representing the spatial gradients for all the ROIs in
the left hemisphere of one example participant. Finally, we summed
over the x and y components of each gradient and computed the
resulting vector. This single vector, which we named global gradient,
represents the main direction of preference change of each map
(insets in Fig. 5a, b). When calculating global gradients, we excluded
cells in the grid with gradient magnitudes greater than 1° for eccen-
tricity and greater than 0.1 s for duration, as these extensive variations
could be driven by noisy portions of the map. The spatial relationship
between eccentricity and duration maps can be inferred from the
angles between their spatial gradients. In light of this, for each ROI and
participant, we calculated the angles between eccentricity and dura-
tion spatial gradients (α), andbetween eccentricity anddurationglobal
gradients (αg, highlighted in Fig. 5c). Any statistical test on the dis-
tributions ofα valueswasnot feasible, given themultimodality of these
circular distributions (see Supplementary Fig. 15). For this reason, we
only focused on the distributions of αg values, which were analyzed
using the Fisher’s non-parametric test (as described in Methods—pRFs
orientation) to detect any changes across ROIs. The median αg across
participants and its spread reported in Fig. 6b for each ROI were cal-
culated using the circular package in R.

Bivariate Moran’s I statistic. The bivariate Moran’s I statistic72,73

quantifies the overall spatial correlation between two variables74,
which in our case were eccentricity and duration preferences. In brief,
this statistic computes, within each individual ROI, the correlation
between the eccentricity preference of each vertex and the averaged
duration preference of its neighbors. The result is a single value that
indicates the degree and the nature of the clustering between the two
types of preference. Preference values were transformed in z score for
each ROI independently. We included in the analysis only vertices
showing both eccentricity and duration preferences, estimated
respectivelyon the retinotopydata andon the experimental datafitted
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with the GST model. We employed a neighborhood structure com-
prising the first 12 nearest neighbors of each vertex. P values were
estimated through a random permutation test, in which the statistic
was computed 999 times, shuffling eccentricity preferences over ver-
tices. Since each individual ROI has a unique neighborhood structure,
the statistical comparisonof bivariateMoran’s I values across themwas
not feasible. We implemented this entire procedure with custom
functions in MATLAB based on and validated with the GeoDa
software75.

Spatial properties of eccentricity and duration maps
These analyses aimed to characterize the spatial properties of duration
maps as compared to eccentricity maps. As before, we used duration
preferences estimated by theGSTmodel on the experimental data and
the eccentricity preferences estimated on the retinotopy data, and we
focused on the 8 bilateral visual ROIs previously described (see
Methods—Custom-made ROIs).

Univariate Moran’s I statistic. The univariate Moran’s I statistic
quantifies the global spatial autocorrelation within a sample. In our
case, it measures within each eccentricity and duration map the cor-
relation between the preference at each vertex and the averaged
preference of its neighbors, providing a single value that indicates the
degree and the nature of preferences’ clustering. The statistic was
computed on mean-centered preference values for each ROI inde-
pendently, and a neighborhood structure of 12 vertices was employed.
This statistical analysis was implemented as previously described for
the bivariate version (see Methods—Bivariate Moran’s I statistic).

Variogram. The experimental variogram is a graphical representation
of the spatial autocorrelation in a sample based on variance estimation
among points located at different distances. For each individual ROI,
we computed the distance between each vertex in a map (either
eccentricity or duration) and then grouped the distance data into
30 bins. To build the variograms, we computed the variance between
preferences of vertices belonging to the same bin. This procedure was
performed with custom functions implemented in MATLAB based on
the GeostatsPy package76. The variograms were used to subsequently
extract two parameters: the nugget (i.e., the variance at the minimum
distance between points), and the range (i.e., the distance required to
reach the sample variance). These are, respectively, a proxy for the
strength and for the extent of the spatial autocorrelation within the
ROI. The ranges were then divided by the maximum distance between
vertices in the sample to normalize these values with respect to the full
extent of themap.We computed these parameters for the eccentricity
and duration maps of all participants and ROIs. These data were then
tested with the following LME models and an identical procedure as
previously described (see Methods—Behavioral performance analysis
and Methods—pRFs duration preference):

Nuggets � ROI �MapType �Hemisphere + ð1jsubject IDÞ ð12Þ

Ranges � ROI �MapType � Hemisphere+ ð1jsubject IDÞ ð13Þ

where MapType identifies eccentricity or duration maps.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw MRI data are protected and not available due to data privacy
laws. All processed data supporting our findings are available inOSF at

the following link: https://doi.org/10.17605/OSF.IO/CY34Q77. Source
data are provided with this paper.

Code availability
Codes supporting our findings are available in OSF at the following
link: https://doi.org/10.17605/OSF.IO/CY34Q77.
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