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A B S T R A C T

The study of non-equilibrium dynamics in quantum many-body systems
is a rapidly evolving field at the intersection of condensed matter physics,
quantum information theory, and statistical mechanics. These systems, which
are far from thermal equilibrium, display rich and often counterintuitive be-
havior, driven by phenomena such as quantum coherence, entanglement,
and criticality. Understanding the complex dynamics of these systems is not
only of fundamental interest, but also essential for the development of next-
generation quantum technologies, including quantum computation and sim-
ulation. This thesis aims to contribute to this growing body of knowledge
by exploring advanced topics in the non-equilibrium dynamics of quantum
systems. The work is divided into key sections, each addressing different
aspects of quantum dynamics using a range of analytical and numerical
techniques.

First, we present standard numerical and analytical techniques for sim-
ulating the dynamics of many-body quantum systems employing tensor
network methods and Gaussian states to provide efficient descriptions of
complex wave functions.

In the second part of the thesis, by employing tensor-network methods,
we present a study on discrete-time crystals within two-dimensional Flo-
quet systems, revealing the emergence of a long-range order and periodicity
in driven quantum states. Then, we present some results to improve the
tensor-network methods. In particular, we develop hybrid approaches that
combine stabilizer circuits with tensor-network techniques, offering insights
into the disentangling properties of Clifford unitaries contrasting the spread
of entanglement in the evolution of these systems.

Finally, going beyond the unitary dynamics of quantum systems, we ex-
amine the effects of monitoring onto system dynamics, highlighting mea-
surement induced phase transitions and the physics beyond the Lindblad
dynamics in open quantum systems. In particular, we focus on the full
counting statistics of the expectation values of observables in the ensemble
of quantum trajectories. We examine different unravelings of the Lindblad
equation in different setups.
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Part I

N O N E Q U I L I B R I U M D Y N A M I C S O F Q U A N T U M
S Y S T E M S

In the first part, we discuss the dynamics of many-body quan-
tum systems. The content will cover numerical techniques, in
particular focusing on exact methods and tensor-network states.
This introduction aims to provide a foundational understanding
of the numerical methods used to analyze complex quantum sys-
tems.





1D Y N A M I C S O F M A N Y- B O D Y Q U A N T U M S Y S T E M S

Quantum mechanics represents a fundamental breakthrough in our under-
standing of the universe. This field, despite its vast scope and impressive
precision, is founded on a handful of core principles. In the following, we
will briefly outline these fundamental concepts. Then we will discuss free-
fermionic and tensor network ansatz methods for the dynamics of many-
body wave functions.

1.1 quantum state and observables

In quantum mechanics, the concept of a quantum state is fundamental to de-
scribe a physical system. Any quantum system is associated with a Hilbert
space H . Elements of H , usually denoted using ket notation |ψ⟩, represent
possible states of the system.

It is convenient to decompose a state |ψ⟩ with respect to an orthonormal
basis of the Hilbert space |j⟩, where j = 1, . . . ,dim(H ). This decomposition
is expressed as

|ψ⟩ =
∑
j

ψj |j⟩ , (1)

where ψj ∈ C are complex coefficients given by ⟨j|ψ⟩ = ψj. For a physical
state, the norm must be unity, which implies that |⟨ψ|ψ⟩|2 = 1. Consequently,
we have∑

j

∣∣ψj
∣∣2 = 1. (2)

By choosing a particular basis, we can describe all the states in the Hilbert
space through their respective components ψj. This effectively creates a cor-
respondence between H and CD. This approach is highly beneficial for
practical purposes, as it allows for straightforward numerical computations
by working with numerical values directly.

Observables are physical quantities that can be measured, such as po-
sition, momentum, and energy. These observables are represented by op-
erators acting on H . An observable O is typically a Hermitian operator,
meaning that O = O†, where O† is the adjoint (or Hermitian conjugate) of
O. This property ensures that the eigenvalues of O, which correspond to the
possible measurement outcomes, are real numbers. Again, it is convenient
to decompose an observable O : H → H with respect to an orthonormal
basis of H . This decomposition can be represented as

O =
∑
ij

Oij |i⟩⟨j| , (3)

where Oij = ⟨i|O|j⟩. Moreover, the expectation value of an observable O in
a quantum state |ψ⟩ is given by

⟨O⟩ = ⟨ψ|O|ψ⟩ . (4)

This quantity represents the average outcome of many measurements of O
on a system prepared in the state |ψ⟩. It is important to stress that the act
of measuring an observable in quantum mechanics is inherently probabilis-
tic. In the case of what we will call strong projective measurements, when an

5



6 dynamics of many-body quantum systems

observable O is measured in a state |ψ⟩, the probability P(λj) of obtaining a
particular eigenvalue λj of O is given byStrong projective

measurements
probability

P(λj) =
∣∣〈ϕj

∣∣ψ
〉∣∣2, (5)

where
∣∣ϕj
〉

is the eigenstate of O corresponding to the eigenvalue λj. The
state of the system after the measurement collapses to the eigenstate

∣∣ϕj
〉

associated with the measured eigenvalue λj.

1.2 time evolution

The time evolution of a quantum state is governed by the Schrödinger equa-
tion, a fundamental deterministic equation in quantum mechanics that de-
scribes how the quantum state of a physical system changes over time. For a
system with a time-dependent Hamiltonian H(t), the Schrödinger equation
is given byTime-dependent

Schrödinger equation

i h
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ , (6)

where  h is the reduced Planck constant,1 |ψ(t)⟩ is the state of the system at
time t, and H is the Hamiltonian operator representing the total energy of
the system.

To solve this differential equation, we can express the state at any time t
as

|ψ(t)⟩ = Te−i
∫t
0H(t ′)dt ′ |ψ(0)⟩ , (7)

where |ψ(0)⟩ is the state of the system at the initial time t = 0. The unitary
operator Te−i

∫t
0H(t ′)dt ′ , that is, the time-ordered exponential of the hamil-

tonian H, also known as the time evolution operator, acts on the initial state
to transform the state at any later time. Therefore, with this formalism, we
can predict the future behavior of a quantum system based on its initial
state and its Hamiltonian.

Finally, it is important to remark that the Schrödinger equation describes
the evolution of isolated quantum systems. However, in reality, many quan-
tum systems interact with their external environment, leading to open quan-
tum systems. The dynamics of open quantum systems are more complex
due to decoherence and dissipation effects. To account for these interactions,
the evolution is often described by the Lindblad master equation or other
non-unitary frameworks.

1.3 many-body quantum systems

The simplest non-trivial quantum system is a two-level system, where the
Hilbert space is spanned by the states |0⟩ and |1⟩. This system is known as a
qubit, with |0⟩ and |1⟩ forming the computational basis.

Any operator acting on this Hilbert space can be constructed using the
identity operator I and the three Pauli operators X, Y, and Z. The compu-
tational basis states are chosen to be the eigenstates of Z, such that Z |σ⟩ =
(−1)σ |σ⟩ for σ = 0, 1. The matrix representations of the Pauli operators are
given byPauli basis matrix

representation

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
. (8)

1 In the following we will always consider  h = 1.



1.4 fermionic gaussian systems 7

The state of a many-body system composed of multiple subsystems is de-
scribed by the tensor product of the states of the individual subsystems. In
particular, the wave-function of a N-qubit state is written as

|Ψ⟩ =
∑

σ1,... ,σN

ψσ1,...,σN |σ1, ..., σN⟩ . (9)

We notice that ψσ1,...,σN is a rank N tensor which contains 2N complex
numbers. This exponential growth in the number of complex coefficients
with the size of the system poses significant challenges for memory and
computational resources. When N ≳ 30, the memory required to store the
wavefunction becomes prohibitive, exceeding the capacity of conventional
computing systems. Nevertheless, there are ways of taming this complexity.
We start by reviewing some techniques to solve exactly the dynamics. Specif-
ically, we will provide a brief overview of non-interacting systems character-
ized by fermionic Gaussian wave functions and Hamiltonians. Next, we will
introduce tensor-network techniques to approximate the wave function and
manage the exponential complexity present in interacting quantum systems.

1.4 fermionic gaussian systems

In this section, we present some techniques for solving the dynamics of
certain spin and fermionic systems, where the Hamiltonians and quantum
states are quadratic in fermionic variables.

Consider a set of N Dirac fermionic creation and annihilation operators

such that
{
ci, c

†
j

}
= δij and

{
ci, cj

}
= 0 with the number operator ni =

c
†
ici. The most general form of a quadratic gaussian Hamiltonian is ex-

pressed as Quadratic fermionic
hamiltonian

H =
∑
ij

Aijcic
†
j −B

∗
ijc

†
ic

†
j +Bijcicj −A

∗
ijc

†
icj (10)

Since H is hermitean A has to be hermitean and B skew-symmetric. Intro-
ducing the vector of operators defined by

Ψ = (c†1, ..., c
†
N, c1, ..., cN)T , (11)

we can write the hamiltonian as

H = Ψ†HΨ (12)

where H is a 2N× 2N matrix and takes the following block form

H =

(
A B

−B∗ −A∗

)
. (13)

It is always possible to find a set of Dirac operators

Φ = (b†1, ..., b
†
N, b1, ..., bN)T = UΨ (14)

where U is the unitary transformation that diagonalize the hamiltonian

H =Φ†HDΦ (15)

with

HD = U†HU = diag(−ϵ1, ..., −ϵN, ϵ1, ...., ϵN) (16)

notice that the eigenvalues {ϵj,−ϵj} appear in pairs due to the symplectic
nature of H.
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We can focus now on the quantum states. We say that a quantum state is
a Gaussian state if we can represent it asGaussian quantum

state

ρ =
e−Ψ

†WΨ

Z
, (17)

where W = Ψ†WΨ is referred to as the parent Hamiltonian of ρ and has the
same structure of a quadratic Gaussian Hamiltonian. Observe the similarity
between ρ and a canonical thermal state. Similar to the diagonalization of
the Hamiltonian H, we can diagonalize the density matrix ρ by transforming
W, with an appropriate unitary transformation Ũ, into WD = Ũ†WŨ,
with eigenvalues {wj,−wj}, and introducing a new set of fermionic variables
Φ = ŨΨ such that

ρ =

N∏
n=1

e−wn(b
†
nbn−bnb

†
n)

2 coshwn
, (18)

it is apparent that Z = Tr{ρ} =
∏
n 2 coshwn. Gaussian quantum states are

particularly important since they are completely determined by the correla-
tion matrixCorrelation matrix

G =
〈
ΨΨ†

〉
=

(
Gc†c Gc†c†

Gcc Gcc†

)
. (19)

In fact, the correlation matrix and the parent Hamiltonian are connected
through the formula

G =
1

1+ e2W
(20)

Indeed

(G)ij = Tr
{
ρΨiΨ

†
j

}
=

∑
kn

UikU
†
jn Tr

{
eΦ

†WDΦ

Z
ΦkΦ

†
n

}

=

L∑
n=1

UinU
†
jn

2 coshwn
Tr
{
ewn(b

†
nbn−bnb

†
n)b†nbn

}
+

+

L∑
n=1

Ui,n+LU
†
j,n+L

2 coshwn
Tr
{
ewn(b

†
nbn−bnb

†
n)bnb

†
n

}

=

L∑
n=1

UinU
†
jn

1

1+ e−2wn
+

+

L∑
n=1

Ui,n+LU
†
j,n+L

1

1+ e2wn

=

2L∑
n=1

Uin

[
1

1+ e2WD

]

nn

U
†
jn =

[
1

1+ e2W

]

ij

. (21)

time evolution — Let us now focus on the dynamics of quadratic
fermionic systems. Consider the hamiltonian in its diagonal form

H =Φ†HDΦ (22)

from the Heisenberg picture we have that

dbn

dt
= i[H,bn] = −2iϵnbn (23)

which leads to the following

Φ(t) = e−2iHDtΦ(0) (24)
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going back to the Ψ fermions we obtain

Ψ(t) = e−2iHtΨ(0). (25)

Thus, the evolution of the correlation matrix is given by

G(t) = e−2iHtG(0)e2iHt (26)

Observe that, since the state ρ is gaussian, Wick’s theorem holds. As such,
evaluating the expectation values of products of Dirac fermion reduces to
compute a suitable determinant.

1.4.1 Transverse Field Ising Chain

The quantum transverse Ising chain is a fundamental model in quantum me-
chanics and statistical physics, used to study phase transitions and quantum
criticality. It consists of a one-dimensional array of spins with interactions
between neighboring spins and an external magnetic field applied perpen-
dicular to the spin direction (the transverse field). The competition between
the spin-spin interaction, which favors alignment, and the transverse mag-
netic field, which favors flipping the spins, leads to a quantum phase tran-
sition. We will examine this model repeatedly throughout this thesis. Here,
we demonstrate how to solve its dynamics. The Hamiltonian of the trans-
verse field quantum Ising model with periodic boundary conditions is the
following Transverse field Ising

model

Ht = −

L∑
j=1

XjXj+1 + h(t)

L∑
j=1

Zj, (27)

where Xj, Yj and Zj are the local Pauli matrices, with j = 1, ..., N. To map
the spin degrees of freedom into fermionic variables, we employ the so-
called Jordan-Wigner transformation. Specifically, the mapping expresses
fermionic creation and annihilation operators in terms of tensor products of
Pauli matrices and identity matrices. In particular, we have Jordan-Wigner

transformation

Xk =

k−1∏
j=1

Zj(c
†
k + ck), Yk = i

k−1∏
j=1

Zj(c
†
k − ck), Zk = 1− 2nk , (28)

where {ci, c
†
j } = δij and nj = c

†
jcj. Through the use of this transforma-

tion the transverse field Ising chain Hamiltonian can be represented as a
quadratic fermionic problem Mapping to fermions

transverse field Ising
model

Ht = −

L∑
j=1

(c†jcj+1 + c
†
jc

†
j+1 + h.c.) − h(t)

L∑
j=1

(2c†jcj − 1). (29)

Moreover, since the model is translationally invariant, the Hamiltonian Ht
can be diagonalized by means of the discrete Fourier transform

cj =
e−iπ/4√

L

∑
p

eipjc̃p , c̃p =
eiπ/4√
L

L∑
j=1

e−ipjcj (30)

with p = 2πm/L and m = −L/2+ 1, . . . , L/2. Additionally, the invariance
under the inversion symmetry p → −p lets us to restrict the computations
to positive momenta by defining Ψp = (c̃p, c̃

†
−p)

T . Therefore,

Ht =
∑
p>0

Ψ†
pHp(t)Ψp (31)
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where

Hp(t) =

(
−2 cosp+ 2h(t) −2 sinp

−2 sinp 2 cosp− 2h(t)

)
. (32)

The Ry(ϕp(t)) = exp(iϕpσy/2) rotation applied to the new fermions Γp(t) =
(γp, γ

†
−p)

T diagonalizes the problem. Formally, one has

Ψp = exp
(
i
ϕp(t)

2
σy
)
Γp(t) ≡ Ry(ϕp(t))Γp(t), (33)

where the eigenvectors of the rotation are given by

v+,p =

(
cosϕp(t)/2

sinϕp(t)/2

)
and v−,p =

(
− sinϕp(t)/2

cosϕp(t)/2

)
. (34)

The rotation angles ϕp are implicitly defined by the conditions cosϕp(t) =
2(h(t) − cosp)/ωp(t) and sinϕp(t) = 2 sinp/ωp(t); note that ϕp(t) =

−ϕ−p(t). The Hamiltonian, written in terms of the new fermionic opera-
tors, then reads

Ht =
∑
p>0

Γ†p(t)Dp(t)Γp(t) =
∑
p>0

Ψ†
pR

†
y(ϕp(t))ωp(t)σ

zRy(ϕp(t))Ψp (35)

where Dp(t) = ωp(t)σ
z and the energies of each mode are given byωp(t) =

2

√
(cosp− h(t))2 + sin2 p, with ωp(t) = ω−p(t).

Observe that the transverse field Ising model serves as an excellent bench-
mark for numerical methods since it is exactly solvable.

1.5 tensor network methods

In general, apart from a few integrable models, which can be solved using
techniques similar to those discussed in the previous section, the dynamics
of quantum systems cannot be solved exactly. Therefore, we must rely on
numerical methods. One of the most powerful techniques for solving the
dynamics of interacting quantum systems is tensor network methods, which
aim to reduce the complexity of the wavefunction using an approximating
ansatz.

1.5.1 Tensor Network

Tensor networks are mathematical structures. They consist of tensors, which
are multi-dimensional arrays of numbers, connected by edges that repre-
sent the contraction (or summation) of indices between tensors. A graphical
representation simplifies the handling of large amounts of data, such as a
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quantum wave-function, reducing computational complexity. In particular,
it works as shown in the following diagrams

 v
i

Rank 1 tensor  vi

j

 M
i

Rank 2 tensor  Mij

k

 T
i

j

Rank 3 tensor  Tijk

Contraction  wi = ∑
k

Mikvk

i

 M

 v
k

 w
i

=

|ψ⟩ = ∑
{σ1 ... σN}

cσ1 ... σN
|σ1 . . . σN⟩ = ∑

{σ1 ... σN}
|σ1 . . . σN⟩ c

σ1

σN

. . .

(36)

Before presenting tensor network methods to decompose the wave-function,
represent operators and present algorithms for the dynamics of quantum
systems [15, 16], it is essential to review an important decomposition in
many-body quantum systems, as it forms the foundation for understanding
these methods.

1.5.2 Schmidt Decomposition

The Schmidt decomposition is a fundamental concept in in linear algebra
particularly valuable in quantum mechanics that provides a way to express
the state of a bipartite quantum system in a particularly useful form.

Consider a quantum system divided into two subsystems, A and B. Any
pure state |ψ⟩ of the combined system can be written as

|ψ⟩ =
∑
i,j

ψij |ai⟩ ⊗
∣∣bj
〉
, (37)

where |ai⟩ and
∣∣bj
〉
, with i = 1, ..., n and j = 1, ...,m, are orthonormal bases

for subsystems A and B, respectively, and ψij are the coefficients of the state
in this product basis. The Schmidt decomposition theorem states that there
exist orthonormal bases {

∣∣a ′
k

〉
} for subsystem A and {

∣∣b ′
k

〉
} for subsystem B

such that |ψ⟩ can be written in the form Schmidt
decomposition

|ψ⟩ =
∑
k

λk
∣∣a ′
k

〉
⊗
∣∣b ′
k

〉
, (38)

where λk ⩾ 0 are the Schmidt coefficients.
In order to give an operative way to find the Schmidt decomposition, we

introduce a linear algebra decomposition called singular value decomposi-
tion (SVD). The singular value decomposition of an n×m matrix M is a
factorization that expresses M as a product of three matrices. Specifically,
M can be written as Singular value

decomposition
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Original Image 25 Singular Values 5 Singular Values

Figure 1: We examine an 800 by 350 pixels gray-scale image. By truncating the sin-
gular value spectrum at a specific threshold, a low-rank approximation of
the image can be carried out. Observe that this approximation eliminates
finer details while preserving the key features.

M = UΛV†, (39)

where U is an n×min(n,m) matrix and has orthonormal columns U†U = I,
Λ is an min(n,m)×min(n,m) diagonal matrix with non-negative real num-
bers on the diagonal, and V† is an min(n,m)×m matrix and has orthonor-
mal rows V†V = I. The diagonal entries of Λ are known as the singular
values of M and are generally arranged in descending order.

The singular value decomposition provides us with a low-rank represen-
tation of the matrix M by minimizing the Frobenius norm between M and
M̃Frobenius norm

∥M− M̃ ∥=
√∑
ij

(Mij − M̃ij)2, (40)

under the constraint that rank(M̃) = χ < rank(M). In fact, to do so, it is
sufficient to set zero λk for k = χ + 1, ..., min(n,m). As an example of
this compression, see Fig. 1 for the result of a low-rank approximation in
showing a black and white image. Let us now consider the expression in
Eq. (37) and perform a SVD of the matrix ψij

|ψ⟩ =
∑
ij

ψij
∣∣aibj

〉
=

∑
ijk

UikΛkV
†
kj

∣∣aibj
〉
=

∑
k

Λk
∣∣a ′
kb

′
k

〉
, (41)

where
∣∣a ′
k

〉
=

∑
iUik |ai⟩ and

∣∣b ′
k

〉
=

∑
j V

†
kj

∣∣bj
〉

are orthonormal bases.
The normalization constraint implies that

∑
kΛ

2
k = 1.

Notice how, given the Schmidt decomposition, it is easy to trace out half of
the system. Indeed, since |b ′

n⟩ is an orthonormal base of B, we can describe
the subsystem A considering the following mixed reduced density matrix

ρA =
∑
k

〈
b ′
k

∣∣ |ψ⟩⟨ψ|
∣∣b ′
k

〉
=

∑
k

Λ2k
∣∣a ′
k

〉〈
a ′
k

∣∣ . (42)

Using the Schmidt decomposition, one can easily calculate the bipartite von
Neumann entanglement entropy, which quantifies the extent of quantum
entanglement between two subsystems, as given byBipartite

entanglement
entropy SA = −Tr{ρA log ρA} = −

∑
k

Λ2k logΛ2k = −Tr{ρB log ρB} = SB. (43)
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This is why the squared singular values of the bipartition are referred to
as the entanglement spectrum. The low-rank approximation of ψ therefore
represents an approximation of the level of entanglement between A and B
in the wave function ψ̃.

In the following section, we will leverage on the low-rank approximation
provided by the Schmidt decomposition to discuss the role of entanglement
entropy in assessing complexity and present the tensor network approach
for representing wave functions.

1.5.3 Matrix Product States (MPS)

Given the exponential growth of the state space in many-body quantum
systems, efficient representations of quantum states are essential. One such
powerful representation is the Matrix Product State (MPS), which provides
a compact and scalable way to describe quantum states. Instead of directly
storing 2N coefficients, an MPS expresses the wave function of an N-qubit
system as a product of rank 3 tensors, each associated with a single qubit,
significantly reducing the complexity.

First, let us construct the MPS representation of the many-body wave func-
tion in Eq. (9). The idea is to decompose the wave function from the high-
dimensional rank N tensor ψσ1,...,σN into a product of lower-dimensional
tensors. Let us remind the graphical notation for tensors Graphical notation

ψσ1,...,σN =

ψ

σ1 σ2 σN

…

ψ

σ1 σ2
σN

…
ON

,

∑
σ ′
N

ψσ1,...,σ ′
N
Oσ ′

NσN
=

ψ

σ1 σ2 σN

…

ψ

σ1 σ2
σN

…
ON

. (44)

We represent tensors of rankNwith colored shapes, where the legs attached
to these shapes represent indices. When we combine the legs of different
tensors, we perform tensor contractions, summing over the shared indices.

left canonical mps — We start our decomposition by performing
an SVD on the reshaped tensor ψσ1,(σ2,...σN), with dimensions (2× 2N−1),
obtaining the following

ψσ1,(σ2,...,σN) =
∑
k1

A
[1]
σ1,k1

Λk1V
†
k1,(σ2,...σN)

. (45)

We can define ψ(k1,σ2),(σ3,...,σN) ≡ Λk1V
†
k1,(σ2,...,σN)

, this decomposition,
in graphical notation, is represented as

ψ

σ1 σ2 σN

…
σ1 σ2, . . . , σN

k1 k1A Λ V†
= =

σ1

k1A ψ

σ2 σ3 σN

… . (46)

Following this, we apply the reshape and SVD procedure again toψ(k1,σ2),(σ3,...,σN),
resulting in

ψ(k1,σ2),(σ3,...,σN) =
∑
k2

A
[2]
(k1,σ2),k2

Λk2V
†
k2,(σ3,...,σN)

, (47)
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Continuing in this manner, the general step using graphical notation is de-
picted as follows

=ψ

σj+1 σN

…
…

σj

kj−1 A
kj

σj

kj−1 A
kj

σj+1 σj+2, . . . , σN

kj+1 kj+1A Λ V†…
(48)

We finally obtain (without explicitly writing the sums over the virtual bond
indices k1, ..., kN−1 to keep the notation simple) the following MPS

ψσ1,...,σN =

=ψ

σj+1 σN

…
…

σj

kj−1 A
kj

σj

kj−1 A
kj

σj+1 σj+2, . . . , σN

kj+1 kj+1A Λ V†…

σ1

A
k1

σ2

A
k2 kN−2

σN−1

A kN−1

σN

A. . .
= A

[1]
σ1A

[2]
σ2 . . . A

[N−1]
σN−1

A
[N]
σN

(49)

referred to as the left canonical form of the MPS. In fact, each A[j]
σj is a left

orthogonal tensor that

∑
kj−1,σj

(
A

[j]
σj

)
kj−1,kj

(
A

[j]
σj

)
kj−1,k

′
j

= δkj,k ′
j
−→

=ψ

σj+1 σN

…
…

σj

kj−1 A
kj

σj

kj−1 A
kj

σj+1 σj+2, . . . , σN

kj+1 kj+1A Λ V†…

σ1

A
k1

σ2

A
k2 kN−2

σN−1

A kN−1

σN

A. . .

A

A
= , (50)

where A is the complex conjugate of A.

right canonical mps — Analogously, we can start from the rightmost
bond and proceed from right to left. We start by reshaping the wave function
as ψ(σ1,...,σN−1),σN , then perform an SVD

ψ(σ1,...,σN−1),σN =
∑
kN−1

U(σ1,...,σN−1),kN−1
ΛkN−1

B
[N]
kN−1,σN

, (51)

in graphical notation

ψ

σ1 σ2 σN

…
σ1, . . . , σN−1

kN−1U Λ
σN

kN−1 B
= =

ψ

σ2 σ3 σN

…
σN

kN−1 B

ψ

σ1 σ2 σj−1
…

σ1, . . . , σj−2

kj−1U Λ
σj−1

kj−1 B=
σj

kj B …
σj

kj B

. (52)

Then sweeping up to the first bond

ψ

σ1 σ2 σN

…
σ1, . . . , σN−1

kN−1U Λ
σN

kN−1 B
= =

ψ

σ2 σ3 σN

…
σN

kN−1 B

ψ

σ1 σ2 σj−1
…

σ1, . . . , σj−2

kj−1U Λ
σj−1

kj−1 B=
σj

kj B …
σj

kj B
(53)

finally obtaining the right canonical form of the MPS

ψσ1,...σN = B
[1]
σ1B

[2]
σ2 ...B[N−1]

σN−1
B
[N]
σN , (54)

again, we avoid explicitly writing the sums over the virtual bond indices
k1, ..., kN−1 to keep the notation simple. We call this decomposition right
canonical since each B[j]σj is a right orthogonal tensor.

mixed canonical mps — With the MPS formalism it is easy to obtain
the Schmidt decomposition between the subsystems [1, j] and [j+ 1,N] by
mixing up the two canonical forms, that is

ψ

σ1 σ2 σN

…
σ1, . . . , σN−1

kN−1U Λ
σN

kN−1 B
= =

ψ

σ2 σ3 σN

…
σN

kN−1 B

ψ

σ1 σ2 σj−1
…

σ1, . . . , σj−2

kj−1U Λ
σj−1

kj−1 B=
σj

kj B …
σj

kj B

σ1

A
k1

σ2

A
k2 . . .

σN−1

kN−2 B

σN

kN−1 B. . .kjA Λ kj B

σj σj+1

(55)
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where Λ2 is the entanglement spectrum of the partition. In fact, we have
that

|ψ⟩ =
∑
{σ}

A
[1]
σ1 ...A[j]

σjΛB
[j+1]
σj+1 ...B[N]

σN |σ1...σN⟩ (56)

where we can identify the orthonormal basis
∣∣∣ϕ[1,j]
L,kj

〉
= A

[1]
σ1 ...A[j]

σj

∣∣σ1, ..., σj
〉

(57)
∣∣∣ϕ[j+1,N]
R,kj+1

〉
= B

[j+1]
σj+1 ...B[N]

σN

∣∣σj+1, ..., σN
〉

. (58)

such that

|ψ⟩ =
∑
kj

Λkj

∣∣∣ϕ[1,j]
L,kj

〉 ∣∣∣ϕ[j+1,N]
R,kj+1

〉
. (59)

The size of the virtual index kj (in contrast to the physical index, σj) called
the bond dimension express the complexity of the MPS representation. There-
fore, a low-rank approximation of the MPS in the mixed-canonical represen-
tation corresponds to a truncation of the entanglement spectrum (also said
truncation of the bond dimension). Notice that, to preserve the normaliza-
tion of the wave function, when truncating the singular values

Λ = (λ1, ..., λχ) → Λ̃ = (λ1, ..., λχ̃, 0, ..., 0) (60)

it is important to normalize Λ̃, that is

Λ̃ −→ Λ̃√
χ̃∑
j=1

λ2j

. (61)

relevant mps — Here we present some low-entangled states which ad-
mits an exact MPS representation

1. The most basic MPS is a product state, which has the smallest bond
dimension χ = 1. For an N qubit system, the most general expression
of a product state is given by

A
[j]
σj=0

=
(
α
)
, A

[j]
σj=1

=
(
β
)
, (62)

with
√
|α|2 + |β|2 = 1 to ensure the normalization of the state. There-

fore we have

|ψ⟩ =
∑
{σ}

N∏
j=1

(
A

[j]
σj

∣∣σj
〉)

=
∑
{σ}

A A A A A |σ1, ...σN⟩

(63)

2. In the field of quantum information theory, a Greenberger Horne Zeilinger
(GHZ) state represents a unique type of entangled quantum state en-
compassing at least three qubits [17]. These states may exhibit highly
non-classical properties; however, it turns out that for an arbitrary
number of qubits, they admit a very simple MPS (and thus, in a sense,
"classical") representation.

Indeed, the standard MPS of the GHZ state for n qubits is given as

|GHZ⟩ = 1√
2

(
1 1

)(
|0⟩ 0

0 |1⟩

)n(
1

1

)
(64)

=
1√
2
(|00 . . . 0⟩+ |11 . . . 1⟩) (65)
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which is an exact representation with bond dimension χ = 2. Notice
that we expressed the GHZ state as a product of state-valued matrices.
This notation is useful for representing the three-legged tensors Aσjj .

3. The W state is an entangled quantum state of three qubits, represented
in bra-ket notation as follows:

|W⟩ = 1√
3

(|001⟩+ |010⟩+ |100⟩)

This state is remarkable for representing a specific type of multipartite
entanglement and appears in several applications in quantum infor-
mation theory. Particles prepared in this state exhibit the properties
described by Bell’s theorem, which asserts that no classical theory of
local hidden variables can reproduce the predictions of quantum me-
chanics.

The W state exemplifies one of the two classes of three-qubit states
that cannot be separated into independent subsystems. The other class
is exemplified by the 3-qubit GHZ state. These two states, |W⟩ and
|GHZ⟩, cannot be transformed into each other, even probabilistically,
via LOCC (local operations and classical communication). Therefore,
they represent fundamentally different types of tripartite entangle-
ment.

The concept of the W state has been extended to n qubits, referring to
a quantum superposition where each term has equal coefficients, and
exactly one qubit is in the state |1⟩ while the rest are in the |0⟩ state; it
can be easily written as an MPS

|Wn⟩ =
1√
n

(
0 1

)(
|0⟩ 0

|1⟩ |0⟩

)n(
1

0

)
(66)

=
1√
n
(|100 . . . 0⟩+ |010 . . . 0⟩+ |001 . . . 0⟩+ · · ·+ |000 . . . 1⟩)

We can now start to illustrate some standard algorithm to solve the quan-
tum dynamics. In particular, we want to solve the Schroedinger equation to
solve the unitary quantum dynamics.

1.5.4 Time-Evolving Block Decimation (TEBD) Algorithm

In this section, we present a way of evolving quantum states in the MPS
ansatz through the Lie-Trotter formula [18]. In particular, we will deal with
nearest-neighbor Hamiltonians, that is

H =
∑
j

hj,j+1, (67)

we can approximate the exact evolution operator

U(t) = e−iHt (68)

by splitting the nearest neighbor hamiltonian in two terms

Heven =
∑
j∈even

hj,j+1, Hodd =
∑
j∈odd

hj,j+1, (69)

now, we can use the Baker–Campbell–Hausdorff (BCH) formula in order to
approximate

U(dt) ≈ e−iHevendte−iHodddte−i[Heven,Hodd]dt
2

≈ e−iHevendte−iHodddt +O(dt2). (70)
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We therefore have the following approximate evolution up to time t = kdt First order Troetter
decomposition

|ψ(kdt)⟩ ≈
k∏
j=1

e−iHevendte−iHodddt |ψ(0)⟩ . (71)

We can now present the Time-Evolving Block Decimation (TEBD) method,
whose fundamental block is the following two-site unitary gate

Uj,j+1(dt) = e
ihj,j+1dt

=
∑
σj,σ

′
j

σj+1,σ
′
j+1

〈
σ ′
j, σ

′
j + 1

∣∣∣eihj,j+1dt
∣∣∣σj, σj + 1

〉 ∣∣∣σ ′
j, σ

′
j + 1

〉〈
σj, σj + 1

∣∣∣

=
∑
σj,σ

′
j

σj+1,σ
′
j+1

U
σj,σj+1
σ ′
j,σ

′
j+1

∣∣∣σ ′
j, σ

′
j + 1

〉〈
σj, σj + 1

∣∣∣

=
∑
σj,σ

′
j

σj+1,σ
′
j+1

σj σj+1

σ′ j σ′ j+1
∣∣∣σ ′
j, σ

′
j + 1

〉〈
σj, σj + 1

∣∣∣ . (72)

In graphical notation, in order to evolve the quantum state we have to con-
tract the following network TEBD brick wall

circuit

|ψ(t)⟩ =

σj σj+1

σ′ j σ′ j+1
, (73)

which is a brick-wall quantum circuit contracted to an MPS.
First, let us express the wavefunction in the following local two-sites

mixed canonical form

|ψ⟩ =
∑

σj,σj+1
kj−1,kj+1

Θ
σj,σj+1
kj,kj+1

∣∣∣ϕ[1,j−1]
L,kj−1

〉 ∣∣σj, σj+1
〉 ∣∣∣ϕ[j+2,N]

R,kj

〉
(74)

It is straightforward to obtain Θ from the Schmidt decomposition. Since

|ψ⟩ =
∑
kj

Λkj−1

∣∣∣ϕ[1,j−1]
L,kj−1

〉 ∣∣∣ϕ[j,N]
R,kj+1

〉

=
∑
kj

Λkj−1B
[j]
σjB

[j+1]
σj+1

∣∣∣ϕ[1,j−1]
L,kj

〉 ∣∣σjσj+1
〉 ∣∣∣ϕ[j+2,N]

R,kj

〉

therefore we have

Θ
σj,σj+1
kj,kj+1

= Λkj−1B
[j]
σjB

[j+1]
σj+1 = . (75)
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It is now easy to apply the two-site unitary gate Uj,j+1(dt) which trans-
forms

Θ̃
σj,σj+1
kj,kj+1

=
∑

σ ′
j,σ

′
j+1

U
σjσj+1
σ ′
j,σ

′
j+1
Θ
σ ′
j,σ

′
j+1

kj,kj+1
= (76)

we can now reshape the tensor and perform an SVD

Θ̃(σj,kj),(σj+1,kj+1) = (77)

= A
[j]
σjΛ̃

[j]B
[j+1]σj+1 =

1/ΛΛ

Notice that the new wavefunction
∣∣ψ̃
〉

is in a mixed canonical form

∣∣ψ̃
〉
=

∑
σj,σj+1
kj−1,kj+1

Ã
[j]
σjΛ̃B

[j+1]
σj+1

∣∣∣ϕ[1,j−1]
L,kj−1

〉 ∣∣σj, σj+1
〉 ∣∣∣ϕ[j+2,N]

R,kj

〉

=
∑
kj

Λ̃kj

∣∣∣ϕ[1,j]
L,kj

〉 ∣∣∣ϕ[j+1,N]
R,kj

〉
(78)

which means that we can perform a low-rank approximation of
∣∣ψ̃
〉

by trun-
cating the SVD in Λ̃. In order to get back the initial canonical form one has
to multiply A[j] by Λ−1

kj−1

∣∣ψ̃
〉
=

∑
σj,σj+1
kj−1,kj+1

1/ΛΛ ∣∣∣ϕ[1,j−1]
L,kj−1

〉 ∣∣σj, σj+1
〉 ∣∣∣ϕ[j+2,N]

R,kj

〉

(79)

therefore the we have that

B̃
[j]
σj = Λ

−1
kj−1

Ã
[j]
σjΛ̃kj (80)

errors — The TEBD algorithm experiences two types of errors, both of
which are manageable and can be estimated with relative ease. The first
error is associated with the time step and is of order O(δ2) per time step
for first-order TEBD and O(δ3) for second-order TEBD. When the total time
interval T is divided into N = T/δ steps, the cumulative error over the entire
interval becomes O(δ) and O(δ2) for first-order and second-order TEBD, re-
spectively. This inherent time-step error does not compromise the unitarity
of real-time evolution, as each operator e−iδHα is unitary. However, if the
time-step error is significant, it may lead to variations in conserved quanti-
ties such as energy. To mitigate this discretization error, one can opt for a
smaller time-step size δ or utilize a higher-order decomposition like TEBD4.
The second error is the truncation error which arises from approximating
the quantum state of a many-body system using MPS with limited bond di-
mensions. As the system evolves, the bond dimensions of the matrices grow,
increasing computational demands. To maintain efficiency, TEBD truncates
these matrices by performing the usual SVD and retaining only the most
significant singular values.



1.5 tensor network methods 19

1.5.5 Matrix Product Operators (MPO)

Matrix Product Operators basically constitute the operator analogue of MPS.
Any linear operator O in the Hilbert space of N qubits is an object that maps
H → H therefore belongs to the tensor product H ∗ ⊗H , that is,

O =
∑

{σ},{σ ′}

O
σ ′
1,...,σ

′
N

σ1,...,σN

∣∣σ ′
1, ..., σ

′
N

〉〈
σ1, ..., σN

∣∣ . (81)

in graphical notation we have

O =
∑

{σ},{σ ′}

O

σ′ 1

σ1

. . .

. . .

σ′ N

σN

O1 O2 ON

σ′ 1 σ′ Nσ′ 2

σ1 σNσ2

∣∣σ ′
1, ..., σ

′
N

〉〈
σ1, ..., σN

∣∣ (82)

It is apparent that by fusing the indices (σjσ ′
j) we can apply the same tensor

decomposition of the MPS in order to obtain

O
σ ′
1,...,σ

′
N

σ1,...,σN =
∑

k1,...,kN−1

= O[1]σ1σ
′
1

k1
O[2]σ2σ

′
2

k2k3
...O[N]σNσ

′
N

kN−1
(83)

where we explicitly wrote the contraction on the virtual bonds kj, resulting,
in graphical notation, in MPO representation

O
σ ′
1,...,σ

′
N

σ1,...,σN =
∑

{σ},{σ ′}

O

σ′ 1

σ1

. . .

. . .

σ′ N

σN

O1 O2 ON

σ′ 1 σ′ Nσ′ 2

σ1 σNσ2

∣∣σ ′
1, ..., σ

′
N

〉〈
σ1, ..., σN

∣∣ (84)

where we reshuffled back each fused index, so that O
σjσ

′
j

j are matrices like

the Aσjj entering in the MPS, with the key distinction staying in the fact that,
as representations of operators, they require both outgoing and incoming
physical indices. Notice that, in general, a systematic procedure based on it-
erative SVD from a many-body representation of the operator itself requires
an exponentially large amount of resources and is unlikely to be feasible in
practical scenarios.

Conversely, there are instances where an MPO representation of an oper-
ator can be constructed operationally. First of all, let us examine the analo-
gous of a product state. In the realm of the operators they are tensor product
of local operators, which have the straightforward representation

O
σ ′
1,...,σ

′
N

σ1,...,σN =
∑

{σ},{σ ′}

O

σ′ 1

σ1

. . .

. . .

σ′ N

σN

O1 O2 ON

σ′ 1 σ′ Nσ′ 2

σ1 σNσ2

O1 O2 ON

σ′ 1 σ′ Nσ′ 2

σ1 σNσ2

∣∣σ ′
1, ..., σ

′
N

〉〈
σ1, ..., σN

∣∣ (85)

with local bond dimension equal to one. As a further example, an highly
non-local operator whose MPO representation can be written straightfor-
wardly is the projector to a MPS state MPO projector on

MPS

|ψ⟩⟨ψ| =
∑

{σ},{σ ′}

∣∣σ ′
1, ..., σ

′
N

〉〈
σ1, ..., σN

∣∣

(86)

where now by fusing the two auxiliary spaces, we can identify the local

MPO matrices O
σjσ

′
j

j = A
σj
j ⊗ (A∗

j )
σ ′
j ( and O

σjσ
′
j

j = B
σj
j ⊗ (B∗j )

σ ′
j ) with

bond dimension given by the square of the MPS bond dimension.
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multiply mpo to mpo or mps — Suppose that we have the following
MPS and MPO:

|ψ⟩

O

A A A A A A A A

W WW W W W W W=

= |σ1 . . . σN⟩

|σ1 . . . σN⟩⟨σ′ 1 . . . σ′ N |

(87)

with dim(A
σj
j ) = χj−1 × χj and dim(W

σjσ
′
j

j ) = Dj−1 ×Dj, and where we
use the implicit summation convention for repeated indices. Applying the
operator O to the state |ψ⟩ actually results in the following contraction

O |ψ⟩ A A A A A A A A

W WW W W W W W

= |σ1 . . . σN⟩
(88)

which is a new MPS state with matrices Mσjj

O |ψ⟩ A A A A A A A A

W WW W W W W W

= |σ1 . . . σN⟩

W WW W W W W W

W′ W′ W′ W′ W′ W′ W′ W′ 

|σ1 . . . σN⟩⟨σ′ 1 . . . σ′ N |OO′ =

A

W

M=
(89)

whose auxiliary dimensions are dim(M
σj
j ) = Dj−1χj−1 ×Djχj. Notice that,

a very similar procedure applies for the contraction of two operators O and
V both having an MPO representation:

O |ψ⟩ A A A A A A A A

W WW W W W W W

= |σ1 . . . σN⟩

W WW W W W W W

W′ W′ W′ W′ W′ W′ W′ W′ 

|σ1 . . . σN⟩⟨σ′ 1 . . . σ′ N |OO′ =

where the order of the physical indices contraction is relevant since in gen-
eral [O,O ′] ̸= 0.

relevant finite-dimensional mpo — Constructing an exact com-
pact MPO representation for certain physically relevant operators might ini-
tially seem daunting. However, analogously to the case of low-entangled
states that admit an exact MPS representation, whenever "local" operators
are involved (such as Hamiltonians with short-range interactions), an ex-
act finite-dimensional MPO representation exists. Similarly to what we al-
ready did for MPS, we can rearrange a matrix product operator in terms of
operator-value matrices, as follows

W WW W W W W WO = W = ∑
σjσ′ j

Oσjσ′ j |σj⟩⟨σ′ j |

(90)
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This representation is very useful to understand how to systematically con-
struct exact MPO of relevant operators. In fact when considering the addi-
tion of two operators, O and O ′, with both MPO representations, the result-
ing MPO is formed by the direct sum of the local operator-value matrices
for all sites 1 < j < n, with the exception of the boundary sites where we
add row and column vectors. Essentially, we get

W WW W W W W W

W′ W′ W′ W′ W′ W′ W′ W′ 

O + O′ = +

= W

W′ 

W

W′ 

W

W′ 

|σ1 . . . σN⟩⟨σ′ 1 . . . σ′ N |

|σ1 . . . σN⟩⟨σ′ 1 . . . σ′ N |. . .

(91)

where basically we are using block diagonal matrices to take into account
the independent effects of both operators. However, for local operators, the
previous representation is sub-optimal, and we can systematically construct
much better representations.

In the following, we present a list of example of operators which admit
an exact MPO representation.

1. Let us start from a simplest example of a local Hamiltonian acting on
n qubits Local Hamiltonian

H =

n∑
j=1

hjZj (92)

This compact form of Hamiltonian can be written in a more general
tensor product notation,

H =

n∑
j=1

I1 ⊗ . . .⊗ Ij−1 ⊗ hjZj ⊗ Ij+1 ⊗ . . .⊗ In (93)

In this notation, it is evident that the size of the matrix correspond-
ing to the operator H is dn × dn, where each term in the sum is an
exact product operator, i.e., an MPO with auxiliary dimension equal
to one. Clearly, a suitable MPO representation of the Hamiltonian
(92) requires an auxiliary space with dimension D > 1. The ques-
tion then becomes: what is the minimal extra resource needed to store
all the information in a suitable operator-valued matrix product form
O1O2 · · ·On.

If we temporarily set aside the boundary vectors O1 and On and focus
on the bulk matrices, we can ask ourselves what these matrices need
to accomplish and remember:

• Insert the identity operator regardless of the lattice site.

• Insert the operator Z and remember having done so.

• After the previous step, insert only the identity operator.
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Actually, we can accomplish, and visualise the effect of the operator-
value matrices, via the following auxiliary-state diagram

1 2̂I ̂I

̂Z
Ôj = (

̂I Ø
hj

̂Z ̂I )

1 5̂I ̂I

̂Z

Ôj =

̂I
X̂

̂Y
̂Z

Ø X̂ ̂Y Δ ̂Z ̂I

2

3

4 ̂Z

X̂ X̂

̂Y ̂Y Ø

W

Finally, the boundary vectors can be easily obtained from the bulk
matrix, by just piking up the last row and the first column, namely

having O1 =
(
h1Z I

)
and (On)

t =
(
I hnZ

)
.

2. Let us consider now an interacting Hamiltonian like the Heisenberg
one with anisotropy (i.e. the XXZ Hamiltonian)XXZ model MPO

H =

n−1∑
j=1

XjXj+1 + YjYj+1 +∆ZjZj+1, (94)

where for simplicity we are considering the anisotropy ∆ uniform
along the chain. To find the MPO representation, let’s focus on a
generic neighboring interaction term

∑
j SjSj+1. Practically, as before,

we need to insert the identity operator. Then, if the bulk matrix inserts
the operator S, immediately after we have to insert the same operator
again. After this step, we complete the operator chain with the iden-
tity. This needs to be done for each of the interaction terms. Using the
auxiliary-state diagram, we get

1 2̂I ̂I

̂Z
Ôj = (

̂I Ø
hj

̂Z ̂I )

1 5̂I ̂I

̂Z

Ôj =

̂I
X̂

̂Y
̂Z

Ø X̂ ̂Y Δ ̂Z ̂I

2

3

4 ̂Z

X̂ X̂

̂Y ̂Y Ø
W

and similar considerations as before applies for the boundary vectors.

3. Next, we want to address arbitrary long-range interacting Hamilto-
nian. Let us start with the preliminary example of a fully connected
spin system, such thatLong-range

Hamiltonian MPO

H =

n∑
j>i

SiSj, (95)

and S here stays for a generic local operator. A generic operator enter-
ing in that sum can be written explicitly as · · · I⊗ I⊗ S⊗ I|j−i| ⊗ S⊗
I⊗ I · · · for any possible distance |j− i| ∈ {1, . . . , n− 1}. The only dif-
ference between a simple neighboring site interaction SjSj+1 is that,
after inserting the operator S at any lattice site j, our MPO must al-
low for the insertion of an arbitrary number of identity operators until
the second insertion of the operator S occurs. Thereafter, we complete
our chain with the remaining identities. In terms of auxiliary-state di-
agram this reads

1 2̂I ̂I

̂Z
Ôj = (

̂I Ø
hj

̂Z ̂I )

1 5̂I ̂I

̂Z

Ôj =

̂I
X̂

̂Y
̂Z

Ø X̂ ̂Y Δ ̂Z ̂I

2

3

4 ̂Z

X̂ X̂

̂Y ̂Y Ø

W

1 2̂I ̂I

̂Z
Ôj = (

̂I Ø
hj

̂Z ̂I )

1 5̂I ̂I

̂Z

Ôj =

̂I
X̂

̂Y
̂Z

Ø X̂ ̂Y Δ ̂Z ̂I

2

3

4 ̂Z

X̂ X̂

̂Y ̂Y Ø

1 3̂I ̂I2
̂S ̂S

̂I

Ôj =
̂I Ø Ø
̂S ̂I Ø

Ø ̂S ̂I

W
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Now it is clear that, if we have exponentially decaying interactions
such that

H =

n∑
j>i

e−|j−i|/ξSiSj =

n∑
j>i

λ|j−i|SiSj (96)

with λ ≡ exp(−1/ξ), we can slightly modify the state diagram of the
fully connected Hamiltonian by introducing an additional numerical
coefficient λ for each identity operator inserted by the auxiliary state 2,
and another λwhen transitioning from state 2 to state 3. This modifica-
tion leads to the intriguing result that exponentially decaying interac-
tions can be exactly encoded into an MPO with an auxiliary dimension
of D = 3:

Oj =



I ∅ ∅
S λI ∅
∅ λS I


 . (97)

This results is extremely useful, because it allows to efficiently repre-
sent generic interacting Hamiltonians on a finite chain

H =

n∑
j>i

J(j− i− 1)SiSj. (98)

In fact, once we approximate the interactions as a sum of K different
exponential J(r) ≃ ∑K

k=1 αkλ
r
k, we can rewrite the generic Hamilto-

nian as

H =

K∑
k=1

n∑
j>i

αkλ
j−i−1
k SiSj, (99)

and using the previous argument we can easily draw the following
auxiliary-state diagram

1̂I ̂I2
̂S α1 ̂S

λ1 ̂I

Ôj =

̂I Ø Ø ⋯ Ø Ø
̂S λ1 ̂I Ø ⋯ Ø Ø
̂S Ø λ2 ̂I ⋯ Ø Ø

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
̂S Ø Ø ⋯ λK

̂I Ø
Ø α1 ̂S α2 ̂S ⋯ αK

̂S ̂I

3

λ2 ̂I

λK
̂I

K+2

K+1

̂S

̂S αk
̂S

α2 ̂S

W

which results in a MPO with auxiliary dimension D = 2+K.

4. In conclusion, it is worth mentioning that the sites of a 2D system can
be reordered into a 1D snake-like structure to apply MPS techniques
for simulating 2D systems. Let us consider the following classical Ising
hamiltonian on a square N = L× L lattice 2d Ising Hamiltonian

MPO

H = −
∑
⟨i,j⟩

ZiZj −→ H = −

L2∑
i,j

JijZiZj. (100)
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where Jij = 1 if the sites are neighbors in the 2D lattice. As an example
for the following snake

1 9 135

2 10 146

3 11 157

4 12 168 (101)

we will have that{
Jj,j+1 = 1 if j mod L ̸= 0
Jj,j+L = 1

(102)

resulting in a MPO with auxiliary dimension D = 2+ L.

1.5.6 Time-Dependent Variational (TDVP) Principle Algorithm

The time-dependent variational principle (TDVP) gives an alternative to the
Lie-Trotter formula for the approximation of the time evolution of wave
functions. First of all, let us consider the general Schroedinger equation

iψ̇(t) = Hψ(t), (103)

where ψ(t) is the wave function in the Hilbert space H . Suppose M is a sub-
manifold within the Hilbert space H , where we aim to find an approximate
solution u(t) given that

ψ(0) = u(0) ∈ M . (104)

The Dirac-Frenkel variational principle seeks a variational solution u(t) in
the tangent space Tu(t)M by imposing

⟨v|i∂t −H|u(t)⟩ = 0 ∀v ∈ Tu(t)M , (105)

with u̇(t) lying in the tangent space. Equivalently, one may rephrase the
orthogonality condition in terms of the orthogonal projection Pu(t) : H →
Tu(t)M to the tangent space at u(t) and state the Dirac–Frenkel principle
as the non-linear evolution equation

iu̇(t) = Pu(t)Hu(t), (106)

in which we project back Hu(t) into the tangent space.
Let us now apply this formalism to variational manifolds constructed us-

ing the MPS ansatz. The idea is to construct the MPS manifold MMPS such
that we can write the variational principle for the wave function

|ψ(M)⟩ =M[1]
σ1 ...M[N]

σN |σ1...σN⟩ , (107)

by projecting in the tangent space the Schroedinger equation

d
dt

|ψ(M)⟩ = −iP|ψ(M)⟩ H |ψ(M)⟩ . (108)

We refer to [19, 20] for the construction of tangent space to |ψ(M)⟩. The
tangent space projector can be decomposed as

P|ψ(M)⟩ =
N∑
n=1

P
[1:(n−1)]
L ⊗ In⊗P[(n+1):N]

R −

N−1∑
n=1

P
[1:n]
L ⊗P[(n+1):N]

R , (109)
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where

P
[1:n]
L =

∑
α

∣∣∣ϕ[1:n]
L,α

〉〈
ϕ
[1:n]
L,α

∣∣∣ ,
∣∣∣ϕ[1:n]
L,α

〉
= A

[1]
σ1 ...A[n]

σn |σ1...σn⟩ ,

(110)

P
[n:N]
R =

∑
β

∣∣∣ϕ[n:N]
L,β

〉〈
ϕ
[n:N]
L,β

∣∣∣ ,
∣∣∣ϕ[n:N]
L,α

〉
= B

[n]
σn ...B[N]

σN |σn...σN⟩ .

(111)

We can represent the projector using graphical notation as

σn

σ′ n

P|ψ(M)⟩ =
N

∑
n=1

−
N−1
∑
n=1

(112)

If M[n]
σn is the one-site center tensor, then

∣∣∣ϕ[1,n−1]
L,α

〉
and

∣∣∣ϕ[n+1,N]
R,β

〉
are

the orthonormal basis of the left and right block of the lattice respectively.
Such that

|ψ⟩ =
∑
α,β

M
[n]
σn

∣∣∣ϕ[1,n−1]
L,α

〉
|σn⟩

∣∣∣ϕ[n+1,N]
R,β

〉
, (113)

we can move the orthogonality center from the site n with an SVD we can
write M[n]

σn = A
[n]
σnΛ

[n+1] = Λ[n]B
[n]
σn , where we denoted Λ[n] = Λkn in fact

= =M A ΛΛ Bkn

σn

σn σn

kn+1 kn kn+1 kn+1 kn+1kn kn

(114)

by contracting Λ[n] (Λ[n+1]) with A[n−1] (B[n+1]) we shift the center by one
site to the left (right).

By projecting the MPS from Eq. (113), we obtain the following expression,
where the Hamiltonian is represented in its MPO form

d
dt

|ψ(t)⟩ =− i

N∑
n=1

P
[1:(n−1)]
L ⊗ In ⊗ P[(n+1):N]

R H |ψ⟩

+ i

N−1∑
n=1

P
[1:n]
L ⊗ P[(n+1):N]

R H |ψ⟩ (115)

It is not possible to solve the equation in a single step; instead, we need to
solve N sequentially forward-evolving equations simultaneously

d
dt

|ψ⟩ = −iP
[1:(n−1)]
L ⊗ In ⊗ P[(n+1):N]

R H |ψ⟩ , (116)

with the corresponding N− 1 backward-evolving equations

d
dt

|ψ⟩ = −iP
[1:(n)]
L ⊗ P[(n+1):N]

R H |ψ⟩ . (117)

Next, to derive the evolution of the one-site center tensors M[n]
σn , we project

these single-site Schrödinger equations by multiplying wih the orthonormal

bases
〈
ϕ
[1:(n−1)]
L,α

∣∣∣
〈
ϕ
[(n+1):N]
R,β

∣∣∣, that is

d
dt
M

[n]
σn = −iHeffM

[n]
σn −→M

[n]
σn (t+ dt) = e

−iHeffdtM
[n]
σn (t), (118)
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where we have that

HeffM
[n]
σn =

Heff Keff

(119)

and, analogously for the singular values

d
dt
Λ[n+1] = +iKeffΛ

[n+1] −→ Λ[n+1](t+dt) = eiKeffdtΛ[n+1](t), (120)

where again in graphical notation

KeffΛ
[n+1] =

Heff Keff

(121)

Notice that, in order to solve the time-dependent Schroedinger equation it
is sufficient to know the action of Heff and Keff on the state to exponentiate
the operator with Krylov subspace techniques such as Lanczos or Davidson
methods. We call this method the 1-TDVP in which no truncation of the
bond dimension has to occur after the projection of the Hamiltonian into
the MPS manifold. This implies that the norm of the state and the energy of
the system are exactly conserved.

An easy extension of this single-site algorithm, known as 2-TDVP, in-
volves projecting onto the local tensor M(n,n+1) = M

[n]
σnM

[n+1]
σn+1 after the

evolution step. Following this, M(n,n+1) must be truncated, which results
in the MPS no longer staying in the tangent manifold. As a consequence,
the norm and the average of H are not preserved. However, this approach
allows for the bond dimension to be adjusted during the evolution process.
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Here, we outline the 2-TDVP algorithm. The projected Schrödinger equation
is the following

d
dt

|ψ(t)⟩ =− i

N∑
n=1

P
[1:(n−1)]
L ⊗ In ⊗ In+1 ⊗ P[(n+2):N]

R H |ψ⟩

+ i

N−1∑
n=1

P
[1:(n−1)]
L ⊗ In ⊗ P[(n+1):N]

R H |ψ⟩ (122)

which implies the solution of the following forward and backward equa-
tions

d
dt

(M
[n]
σnM

[n+1]
σn+1 ) = −iHeff(M

[n]
σnM

[n+1]
σn+1 ), (123)

d
dt

(M
[n+1]
σn+1 ) = +iKeff(M

[n+1]
σn+1 ). (124)

In graphical notation, the forward evolution reads

Heff(M
[n]
σnM

[n+1]
σn+1 ) =

Heff Keff
(125)

Then, the two-site evolved tensor needs to be truncated

(M
[n]
σnM

[n+1]
σn+1 )(t) = A

[n]
σn (Λ

[n+1]V
[n+1]
σn ) = A

[n]
σnM

[n+1]
σn . (126)
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Subsequently, the backward evolution evolves the new M
[n+1]
σn+1 with

KeffM
[n+1]
σn+1 =

Heff Keff

(127)

We stress again that to solve the Schrödinger equation, it is enough to know
how Hmeff and Keff acts on the state in order to exponentiate the operator
using Krylov subspace techniques.

error — The TDVP algorithm encounters four main types of errors.
The first is the projection error, which arises from projecting the full time-
dependent Schrödinger equation onto the MPS manifold with fixed bond
dimension. This error is minimized when the bond dimension is large and
is exactly zero for maximal bond dimensions. It does not violate energy con-
servation or alter the norm of the state during evolution. The second error
is the finite time-step error, which occurs because the algorithm sequentially
solves coupled time-dependent schroedinger equations for each site tensor.
This error is of order O(δ3) per time step and O(δ2) per unit time, and
its magnitude is influenced by the bond dimension of the input state. The
third error, truncation error, results from the singular value decomposition
(SVD) needed to split two-site tensors into separate ones. This error must
be carefully analyzed, as it is significant unless the MPS has maximal bond
dimensions. Finally, the fourth error stems from the inexact solution of lo-
cal equations, which can be minimized by using sufficiently many Krylov
vectors. Importantly, altering the time-step size δ affects these errors dif-
ferently. Smaller δ reduces the time-step error but increases projection and
truncation errors. Therefore, careful selection of truncation thresholds and
time-step size is essential to balance these errors. In 1TDVP, the energy and
norm are exactly conserved, whereas, in 2TDVP, they are only influenced by
the truncation error.
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Part II

M A N Y- B O D Y Q U A N T U M S Y S T E M S

In the second part, we turn our attention to the dynamics of
closed quantum systems. The first chapter focuses on periodic
dynamics within a two-dimensional framework, specifically ex-
amining the kicked quantum Ising chain. We utilize tensor net-
work simulations to assess the robustness and viability of a two-
dimensional discrete time-crystal. In the subsequent chapter, af-
ter a review of the stabilizer formalism, we discuss enhance-
ments to tensor network simulations through the integration of
Clifford operations. This methodological advancement aims to
refine simulation accuracy and efficiency, providing deeper in-
sights into the dynamics of complex quantum systems.





2C L E A R D I S C R E T E F L O Q U E T 2 D T I M E C RY S TA L

In this chapter, we make use of the TDVP algorithm to analyze the dynam-
ics of a 2D kicked Ising model. We examine the system’s response to the
periodic evolution and explore the impact of dimensionality comparing the
1D analytical results to the 2D numerical simulations.

2.1 discrete time crystals

In a seminal work [21], Wilczek introduced the intriguing concept of a “time
crystal”, a new phase of matter characterized by the breaking of continuous
time symmetry. Although initial theories suggesting the existence of such
phases were later disproved [22, 23], the idea of breaking “discrete” time
symmetry to create discrete time crystals (DTC) persisted.

Simply put, DTCs are systems driven by periodic interactions that exhibit
stable responses at submultiples of the driving frequency. For these systems
to avoid heating up to an infinite temperature, which disrupts order, their
response to the driving force needs to be synchronized, thus stabilizing the
phase of matter. Importantly, this response should be robust against generic
perturbations and persist in the thermodynamic limit.

Floquet DTCs, which typically involve lattice spin models subjected to
quick and periodic pulses, have become a standard model for studying these
phenomena [24–27]. Many-body localization (MBL) [28, 29], where disorder
helps prevent the system from reaching thermal equilibrium, is often used to
freeze the local excitation caused by the driving, thereby stabilizing discrete
time-crystals [30].

However, MBL is not the only player in the game. Various mechanisms
have been explored to create stable DTC phases or at least transient sig-
natures of DTCs in a range of systems, both theoretically and experimen-
tally. These include pre-thermalization [31–37], emergent Floquet integrabil-
ity with specific symmetries [38–40], quantum many-body scarring [41–43],
and confinement of excitations [44]. There has been significant interest in
identifying clean DTCs, which operate without the need for disorder. The
simplest strategy for achieving a stable DTC involves systems that exhibit
long-range order in a Gibbs ensemble at finite temperatures [45].

Guided by this idea, we extend our investigation of the kicked quantum
Ising model from the one-dimensional setting to two dimensions. After review-
ing results in one dimension, we present some numerical findings in two
dimensions, paralleling advances in higher-dimensional classical systems
[46, 47].

2.2 kicked clean ising model

We consider a d-dimensional nearest-neighbor quantum Ising model on a
hyper-cubic lattice subjected to delta-periodic pulses of the transverse mag-
netic field. The time-dependent Hamiltonian operator of the system reads

Kicked
d-dimensional Ising
model

H(t) = −J
∑
⟨jj ′⟩

XjXj ′ −
(π
2
+ ϵ
) ∞∑
n=1

δ(t−nτ)
∑
j

Zj, (128)

where J > 0 is the ferromagnetic coupling between nearest-neighbor spins
and ϵ > 0 is the transverse magnetic field, and Xj,Yj and Zj for j = 1, ..., N,

33



34 clear discrete floquet 2d time crystal

with N = Ld, L being the size of the hyper-cube, are the standard Pauli
matrices. Here ⟨jj ′⟩ denotes the sum over nearest-neighbors.

The unitary dynamics generated by the time-dependent Hamiltonian in
Eq. (128) can be understood as a Floquet dynamics governed by the Ising
Hamiltonian evolution operator

V = eiJτ
∑

⟨jj ′⟩XjXj ′ , (129)

intertwined by sudden imperfect single-spin kicks along the z-axis

Kπ/2+ϵ = e
i(π/2+ϵ)

∑
j

Zj
, (130)

at times tn = nτ = τ, 2τ, . . . , which are integer multiples of the period τ.
The resulting single-period Floquet operator thus reads U = Kπ/2+ϵV .

To see the cleanest realization of DTC order, the system is initially pre-
pared in the fully polarized state with positive magnetization along the x
direction, i.e. |+⟩ = |↑x . . . ↑x⟩, where |↑x⟩ (|↓x⟩) is the eigenvector of the
Pauli matrix X with eigenvalue +1 (−1). The system experiences a strobo-
scopic dynamics, and the state after n periods is given by

|ψn⟩ = Un |+⟩ = (Kπ/2+ϵV)
n |+⟩ . (131)

Since Kπ/2+ϵ = Kπ/2Kϵ, and Kπ/2 = iNP with P =
∏
j Zj being the

global spin flip operator, such that [P, V] = 0, we can factor out from the
evolution the product of all perfect spin flips, thus obtainingChange of reference

frame
|ψn⟩ = (KϵV)

n Knπ/2 |+⟩ = (i)n (KϵV)
n |(−)n⟩ . (132)

This can be interpreted as a stroboscopic change of reference frame, which
results in a non-trivial evolution only due to (KϵV)

n, on top of perfect alter-
nating jumps between |+⟩ and |−⟩ = |↓x . . . ↓x⟩.

The x-magnetization after every kick provides information about the per-
sistence of the ferromagnetic order during the stroboscopic dynamics, and
it is given by

m(n) =
(−1)n

N

N∑
j=1

⟨+|
(
V†K†

ϵ

)n
Xj
(
KϵV

)n
|+⟩ . (133)

Setting ϵ = 0 results in a trivial dynamics in which the system periodi-
cally jumps between the two product states |+⟩ and |−⟩, with magnetization
being equal to m(n) = (−1)n, thus exhibiting a perfect time-crystal behav-
ior. As a matter of fact, one might say that m(n) shows a “period-doubling”
since m(n) = m(n+ 2) whereas H(n) = H(n+ 1). Nonetheless, we stress
that, in order to realize a stable non-equilibrium DTC phase, the long-range
ferromagnetic order has to be robust against arbitrary (sufficiently weak)
perturbations in the thermodynamic limit L→ ∞.

2.3 clean one-dimensional kicked ising chain

In order to highlight the emergent stability of such phase in two-dimensions,
here we recap some recent results for the one-dimensional case [44].

The time-dependent Hamiltonian operator in the 1D setting, factoring out
the perfect spin flips, reads

H(t) = −J
∑
j

XjXj+1 − ϵ

∞∑
n=1

δ(t−nτ)
∑
j

Zj. (134)

Since both Kϵ = eiϵ
∑
jZj and V = eiJτ

∑
jXjXj+1 are Gaussian opera-

tors in terms of Jordan-Wigner fermions, then, we can solve analytically
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the dynamics induced by the Floquet operator. Indeed, the Jordan-Wigner
transformation

Xj =

j−1∏
i=1

Zj(c
†
j + cj), Yj = i

j−1∏
i=1

Zj(c
†
j − cj), Zj = 1− 2c

†
jcj, (135)

where
{
ci, c

†
j

}
= δij and

{
ci, cj

}
= 0, transforms the evolution operators to

Kϵ = eiϵ
∑
j(cjc

†
j−c

†
jcj), V = eiJτ

∑
j(c

†
j−cj)(c

†
j+1+cj+1). (136)

We can further simplify the problem by means of the discrete Fourier trans-
form

cj =
1√
L

∑
p

e−ipjcp, (137)

where p = 2πn/L with n = −L/2, ..., L/2− 1. Notice that we enforced the
symmetry sector P = 1 of the spin-flip operator P =

∏N
j=1 Zj. In this way

we obtain

Kϵ = eiϵ
∑
pψ

†
pKψp , V = eiJ

∑
pψ

†
pVψp , (138)

where we defined the vector ψp = (cp, c
†
−p)

T and the matrices

K = −2iσz V = 2iJτ [σz cosp− sinpσy] , (139)

where σα, are the Pauli matrices, for α = x, y, z. For each p > 0 we compose
the two Gaussian operators by using the identity

eH = eKeV (140)

where H = iϕprp ·σ with

cosϕp = cos(2Jτ) cos(2ϵ) + sin(2Jτ) sin(2ϵ) cos(p), (141)

and

rp =
1

sinϕp




sin(2Jτ) sin(2ϵ) sin(p)

− sin(2Jτ) cos(2ϵ) sinp

sin(2Jτ) cos(2ϵ) cos(p) − cos(2Jτ) sin(2ϵ)


 . (142)

We can then perform a Bogoliubov transformation, i.e., ψp = Upξp, to
diagonalize the Floquet operator

KϵV = eiϕpξ
†
pσzξp . (143)

where we have Up = e−iϵσze−iθpσx/2 with

sin θp =
sin(2Jτ) sinp

sinϕp
, (144)

cos θp =
sin(2Jτ) cos(2ϵ) cosp− cos(2Jτ) sin(2ϵ)

sinϕp
. (145)

This allows us to compute the time evolution of the two-point function
⟨X0(n)Xℓ(n)⟩. The idea is first to connect the initial state

|ψ0⟩ = (|+⟩+ |−⟩) /
√
2, (146)

i.e., the vacuum of ξ[0]p fermions to the Jordan-Wigner fermions ψp, namely,

ξ
[0]
p = U

[0]
p ψp. We can then transform ψp to the post-quench diagonal

fermions ξp obtaining

ξ
[0]
p = U

[0]
p Upξp. (147)
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These rotations identify a single Bogoliubov angle ∆p such that

cos(∆p) = cos(θp) cos(p) + sin(θp) cos(2ϵ) sin(p), (148)

therefore the magnetization decays as
∣∣〈Xj

〉∣∣ ∝ e−γn, (149)

as outlined in [48], the rate of decay is

γ = −

∫π
0

dp

2π
∂pϕp ln |cos∆p|. (150)

When taking the limit ϵ → 0, we observe that γ ∝ ϵ3. Consequently, the
magnetization will decay to zero as long as (ϵ mod π) ̸= 0.

2.4 clean two-dimensional kicked ising chain

In the next section, we investigate the robustness against the parameter ϵ of
the DTC response in the two-dimensional kicked Ising model, via state-of-
the-art numerical techniques, and try to infer its thermodynamic behavior.

2.5 numerical results

2.5.1 Exact diagonalization

We start our analysis by considering small system sizes whose dynamics
have been computed via exact diagonalization (ED) techniques [49]. In Fig. 2

we show a color density plot of the stroboscopic evolution of the magneti-
zation and its Fourier transform, for ϵ ranging in [0, 0.6] and fixed energy
scale Jτ = 1. The system consists of N = 16 lattice sites, arranged in a chain
in the 1D case, and in a 4× 4 square lattice for the 2D geometry.

The one-dimensional setting is in agreement with the results of [50] in
which it is shown that finite-size kicked spin chains can sustain a time-
crystalline response. However, this behavior is a finite-size effect and does
not hold in the thermodynamic limit as shown in [44, 51]. Similarly to the
1D case, a very preliminary analysis confirms that in two dimensions does
exist a region in the ϵ− n plane wherein stable oscillations of the order pa-
rameter are present, at least up to n = 500 unit periods, and for small system
sizes (see Fig. 2(b)). For these values of the parameters, the system synchro-
nizes to the driving and behaves in a time-crystalline way. Both in one and
two dimensions, by increasing the value of ϵ we disrupt the spatio-temporal
order by letting excitations proliferate in the system thus breaking the DTC
response. Interestingly, from the stroboscopic density plots, it seems that the
meta-stable ferromagnetic dynamical region extends up to ϵ ≃ 0.4 in the 1D
case, while in the 2D case the order starts disappearing at ϵ ≃ 0.15. How-
ever, while in the 1D setup the system exhibits a smooth transition from
one dynamical behavior to the other, in the 2D geometry the transition is re-
markably sharper. This is confirmed by a thorough analysis of the excitation
spectrum via discrete Fourier transform (DFT).

In order to explore the excitation spectrum of the system we plot in
Fig. 2(c-d) the modulus of the discrete Fourier transform m(ω) of m(n).
When ϵ = 0 there is only the time-crystal characteristic frequency ω = π,
which corresponds to the period-doubling of the magnetization. By increas-
ing the value of the kick perturbation ϵ, we generate more and more exci-
tations in the system at different frequencies, which will eventually break
the order. Let us stress that in the 1D case, due to integrability, the excita-
tions that proliferate in the chain result in an extensive set of prominent
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Figure 2: Floquet dynamics of the kicked Ising model with N = 16 lattice sites and
Jτ = 1. (a-b) Stroboscopic evolution of the magnetization in 1D and 2D. (c-
d) Absolute value of the discrete Fourier Transform of the corresponding
magnetization.

frequencies (delta-peak in the spectrum) which are present already from
ϵ = 0+; they correspond to stable quasi-particle traveling across the system
and leading to the melt-down of the DTC behavior at large time. Quite in-
teresting, in the 2D geometry, the Fourier spectrum is dominated by only a
few peaks for small kick perturbations; as far as the number of such quasi-
particle remains finite, we do expect the DTC response to be robust for a
finite but long-lasting time in the thermodynamic limit.

Only for ϵ ≳ 0.15 they sharply melt into a continuum of excitations, thus
leading to a transition without DTC order.

2.5.2 Tensor network time evolution

The results shown in the previous section are based on the analysis of small
systems. In order to confirm the fact that in the 2D geometry the kicked
Ising model may sustain a DTC phase, we need to rule out whether the
evidence we found are artifacts due to finite-size effects.

In particular, we aim at understanding how the recurrences in the order
parameter (see Fig. 2) are possibly caused by finite-size effects rather than
being a genuine DTC signature. In order to do so, we explored the dynamics
for larger lattice sizes using Tensor Network (TN) based techniques. Both for
1D and 2D geometries, we used a suitable matrix product state (MPS) rep-
resentation of the many-body wave function, joined with the correspondent
matrix product operator (MPO) representation of the Hamiltonian. The non-
equilibrium Floquet dynamics has been computed via the time-dependent
variational principle (TDVP) algorithm [16, 19, 20].

We start with the one-dimensional case, where we expect that by in-
creasing the system size, the space-time order should disappear. Indeed, in
Figs. 3(a-b) we show the evolution of the magnetization, with fixed Jτ = 1,
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Figure 3: Stroboscopic evolution of the magnetization for the 1D kicked Ising model,
with Jτ = 1 and (a) ϵ = 0.02, (b) ϵ = 0.1. The arrows mark the trend of the
stroboscopic magnetization with increasing the system size L.
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Figure 4: (a,c) Same as in Fig. 3 for the 2D case, with ϵ = 0.02 in panel (a) and
ϵ = 0.1 in (c). (b,d) Absolute value of the discrete Fourier transform of
the corresponding stroboscopic magnetization. The insets are close-up of
the period-doubling peak at ωτ = π. The color code and markers in the
legends apply also for the (a,c) panels, respectively.

and ϵ = 0.02, 0.1, respectively. We observe that the smaller the system the
sooner recurrences appear in the evolution of the magnetization. As a matter
of fact, with increasing L, the curves are approaching the exponentially de-
caying thermodynamic line. As expected, the long-time oscillations are thus
finite-size effects whereas in the thermodynamic limit the magnetization
does decay to zero. This will give us a well-grounded numerical reference
to compare the forthcoming novel 2D results with.

In Figs. 4(a-c) we show the same Floquet dynamics for the two-dimensional
geometry. Remarkably, we find a completely different picture: as the system
size is getting larger, the DTC response becomes more robust. In particu-
lar, in Fig. 4(a) where ϵ is kept small, the many-body wave function re-
mains low entangled, and we are able to simulate fairly large systems, up
to N = 22× 22 = 484 lattice sites, for a relatively large number of kicks.
This allows us to safely exclude the possibility that finite-size effects may
mimic the presence of a stable DTC. Indeed, what is crucial here is that, as
opposed to the 1D case, passing from the smaller lattice (4× 4) to the larger
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Figure 5: Time-average magnetization vs ϵ for different system size and Jτ = 1. The
averages have been take over the time interval [75τ, 120τ]. The solid line
represents ED results with shaded region representing the standard devia-
tion. Symbols with error bars are TDVP results.

one (22× 22), we observe an enhancement of the average stroboscopic mag-
netization, from ∼ 0.985 to ∼ 0.995.

When we consider larger values of ϵ, as in Fig. 4(c), the entanglement
that the MPS should encode grows much faster, thus preventing us to con-
sider system sizes bigger than N = 64 without a sensible numerical error.
Nonetheless, the qualitative pattern we found is the same as the one illus-
trated before: increasing the system size stabilizes the space-time order. Fur-
thermore, by comparing the 1D case with the 2D case, namely, Fig. 3(b) vs
Fig. 4(c), we observe that, initially, all system sizes manifest the same be-
havior during the first few kicks. However, in 1D, this initial “transient” is
getting longer by increasing the system size, suggesting that it is not rep-
resenting a transient at all, but instead the thermodynamic behavior. On
the contrary, in 2D, the departure from the transient decay starts sooner as
the system size is getting larger, showing almost immediately a stable os-
cillating magnetization. As a matter of fact, this suggests that the role of
two-dimensional spin-spin interaction is non-trivial and stabilizes the dy-
namics, as in the case of long-range one-dimensional interactions [44]. We
thus expect that the two-dimensional space-time order should persist in the
thermodynamic limit, provided a sufficiently small value of the kick pertur-
bation ϵ is used.

We further analyze the numerical data by inspecting the power spectrum
of the magnetization. In Fig. 4(b) we plot the absolute value of the discrete
Fourier transform of the magnetization shown in Fig. 4(a). We marked the
peaks of the power spectrum corresponding to the following frequencies

ωτ = π± τ∆EJ mod 2π , (151)

where ∆EJ measures the energy cost of a single spin-flip on top of the fully
polarised state.

In particular, ∆EJ = 8J corresponds to flipping a spin in the bulk of the
system, ∆EJ = 6J to flipping a spin in one of the borders of the square lattice,
and ∆EJ = 4J, finally, to flipping one of the corner spins. When the driving
perturbation ϵ is weak, single spin-flip excitations represent the lower ex-
cited states of the system, and we may expect them to play a dominant role
in the dynamics. In a L× L square lattice with OBC we have 4 excited states
with energy gap ∆EJ = 4J (obtained by a single spin-flip at the corners), 4L
excited states with gap equal to ∆EJ = 6J — the 4(L − 2) states obtained
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by a single spin-flip on the 4 sides, plus 8 states obtained by flipping two
adjacent spins at the corners — and finally (L− 2)2 states with ∆EJ = 8J,
obtained via a single spin-flip in the bulk.

The role of these single-flip excitations in the dynamics reflects in the
power spectrum of the magnetization. Apart from the peak at ωτ = π, due
to the period-doubling of the magnetization induced by the perfect driving,
the next higher contribution comes at ωτ = π± 6Jτ mod 2π, for small ϵ:
here the dynamics of the system is mostly confined on lattice boundaries.
Notice that the energetically most favorable transitions toward the corner
spin-flip states (the 4Jτ peak), get suppressed with the system size since
their number is not extensive.

Similarly, in Fig. 4(d) we plot the power spectrum corresponding to the
magnetisation reported in Fig. 4(c). Since here ϵ = 0.1 is larger, we are
approaching the continuum of the spectrum, and the picture outlined above
is going to break down; in practice, the isolated quasi-particle excitations
cannot be exactly identified in single spin flips. Nonetheless, the peak at
ωτ = π, indicating the presence of DTC order, is getting higher for larger
system sizes, meaning that the time-crystalline response is getting more
robust.

So far, the numerical finite-size analysis gives evidence of a stable DTC
response for finite values of the kick perturbation ϵ. Of course, increasing ϵ
we expect the DTC response to break down, eventually. In the following, we
characterize, at least qualitatively, such transition. In order to do so, we ana-
lyzed the long time average of the stroboscopic magnetization (−1)nm(n) as
a function of ϵ for different system sizes, see Fig. 5. Even though we are far
from the thermodynamic limit, we expect a ferromagnetic to paramagnetic
dynamical phase transition with ϵc ∈ [0.1, 0.2]. Indeed, for ϵ ≲ 0.15, the av-
erage magnetization data manifest a global increasing trend with the lattice
size dimension L; on the contrary, when ϵ ≳ 0.15, the average magnetization
is going to zero as L grows larger.

Notice that, for weak perturbation, ϵ < 0.05, we are able to simulate big
systems with hundreds of lattice sites since the auxiliary dimension of the
MPS remains relatively small. Increasing the strength of the perturbation
greatly reduces the system sizes we can handle, down to N ≈ 36. For this
reason, we cannot quantitatively describe the exact nature of such transition.

2.5.3 Dynamical transition in the relaxation dynamics

To complement the analysis of the dynamical phase transition outlined in
the previous section, we further look at the evolution of the stroboscopic
magnetization and we study the initial decay of the order parameter be-
fore reaching the asymptotic equilibrium. As stated before, in the case of a
one-dimensional kicked Ising model it has been proved that in the thermo-
dynamic limit the order parameter decays to zero as |m(n)| ∼ e−γn with
γ ∝ |ϵ|3; thus here we inspect whether a similar relation occurs also in the
two-dimensional case.

In 2D the situation is more delicate, due to the presence of a reasonable
stable DTC response for ϵ ≲ 0.15. In this sense, the extrapolated decay
only represents a transient toward a stationary value which can be zero or
different from zero depending on the non-equilibrium dynamical phase the
system ends up.

In order to obtain an estimate of γ, we fitted the absolute value of the
magnetization with the function Ae−γn, using only the first kicks (whose
number depends on how fast the magnetization decays and on the number
of kicks we are able to numerically evolve), for the different system sizes. In
Fig. 6(a) we show a representative example of the time evolution of the order
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Figure 6: (a) Solid lines: evolution of the magnetization for a 5× 5 system, dashed
lines: exponential decay Ae−nγ for fitted values of γ and A. (b) Decay
rates γ against ϵ for different system sizes. In the thermodynamic limit, we
expect that the γ before the vertical dashed line is identically vanishing.

parameter for a 5× 5 lattice for different values of ϵ and their relative best-fit
initial transient |m(n)| ∼ e−γn. We then repeated the procedure for larger
system sizes. Once again, we stress that for large systems and high values of
ϵ we are able to time evolve the many-body state just for a few kicks, which
are not enough in order to determine the stationary magnetization, but they
turn out to be sufficient to evaluate the decay rate. Our analysis suggest
that γ, in the region where the order parameter is expected to decay toward
zero (no-DTC response), increases as a power law γ ∼ |ϵ|α with α ≈ 4. In
practice, by increasing the dimensionality of the problem, the decaying rate
of the magnetization is not just quantitatively increased, but rather “non-
perturbatively” modified, passing from γ ∼ |ϵ|3, in 1D, to γ ∼ |ϵ|α, in 2D.

This is somehow related to the presence of long-lived domain-wall exci-
tations, which slow down the decay of the fully polarized initial state. In
practice, when |ϵ| ≪ Jτ, the length of the interface between different mag-
netic domains becomes a quasi-conserved “charge”.

2.6 high-frequency limit

The picture emerging from the previous analysis is compatible with a dy-
namical phase transition driven by the strength ϵ of the kick perturbation.
Besides the evidence of a dynamical transition in the way, the order pa-
rameter is decaying — discussed at the end of the previous section —, the
two phases are also characterized by a change in the stationary properties
of the system, which undergoes a transition from a long-lasting long-range
ordered ferromagnetic phase to a paramagnetic (disordered) phase. It is pos-
sible to understand the nature of this transition by studying the expected sta-
tionary behavior of the system induced by the periodic kicks. As a matter
of fact, the system under investigation is non-integrable, thus its stationary
properties are expected to be captured by a canonical Gibbs ensemble, at
least in an intermediate “pre-thermal” regime [45], before a final infinite
temperature state is possibly attained. In order to do so, let us introduce the
Floquet Hamiltonian Heff as follow

U = KϵV ≡ e−iτHeff . (152)
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Figure 7: (a-b) Stroboscopic evolution of the second moment of the magnetization
with J = 1 and τ = 0.1(a), τ = 0.25(b). The dashed lines are the relative
thermal average computed in the 2D quantum Ising thermal state at late
times. (c) Comparison between time averages (solid lines) and thermal av-
erages (dashed lines) as a function of the kick perturbation ϵ. The shaded
area represents the standard deviation.

If we define Kϵ = eA and V = eB, henceA = iϵ
∑
j Zj and B = iJτ

∑
⟨jj ′⟩ XjXj ′ ,

the Floquet Hamiltonian can be formally computed from the Baker Camp-
bell Hausdorff (BCH) series

−iτHeff = A+B+
1

2
[A,B]

+
1

12
([A, [A,B]] − [B, [A,B]]) + · · · . (153)

The evolution of the system after n periods, therefore, reads

|ψn⟩ = e−inτHeff |+⟩ , (154)

meaning that the evolution is effectively described as the quench dynamics
under Heff of the generally excited initial state |↑ ... ↑⟩.

Since our system is not integrable which implies that Eigenstate Thermal-
ization Hypotesis [52, 53] is generically expected to hold [54, 55], we do
expect that, after the initial transient, the time averages of local observables
should relax toward thermal averages computed in the Gibbs ensemble [54,
56]

ρ =
e−βHeff

Z
, (155)

where the partition function is Z = Tr
(
e−βHeff

)
, and the inverse temper-

ature β has been fixed by the equivalence between micro-canonical and
canonical ensemble, namely

⟨+|Heff|+⟩ = Tr
(
ρHeff

)
, (156)
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which is nothing more than the conservation of the effective Hamiltonian
expectation value. These considerations allow us to compute the thermal
average of the order parameter

⟨m⟩β =
1

N

∑
j

Tr
(
ρXj

)
, (157)

at an effective inverse temperature β given by the specific quench protocol,
and thus effectively making a bridge between the time-dependent Floquet
problem and the finite-temperature behaviour of a system with a very com-
plicated effective Hamiltonian Heff.

Notice that, this picture holds if and only if the formal series in Eq. (153) is
convergent. Indeed, the natural guess on the Floquet dynamics is that, since
the driving breaks the energy conservation (where here energy refers to
the expectation value of the Ising Hamiltonian), and we are dealing with an
ergodic system, we expect to eventually heat the system towards the infinite-
temperature state, i.e., the maximally entropic state. On the other hand, it
has been proven that, in the high-frequency driving limit, a quasi-conserved
Hamiltonian is expected to constraint the dynamics up to a time τ∗ which
scales exponentially with the driving frequency; this emergent conservation
law prevents the system from heating up and lets it evolve towards a meta-
stable long-lived prethermal state [45].

Since we cannot explore exponentially large times with our numerics,
we cannot infer if the plateaux we found in the previous section are ac-
tually meta-stable or infinitely lived. Nonetheless, for the non-interacting
1D case, the quadratic Floquet Hamiltonian Heff can be computed exactly
in the thermodynamics limit, thus implying that the BCH expansion is con-
vergent, and the long-time limit of the Floquet dynamics has to match with
the Generalised Gibbs Ensemble constructed with post-quench Bogoliubov
fermions [44]. In the 2D case, the system is no longer integrable, and the
effective Hamiltonian Heff is much harder to compute and control: if it is a
local Hamiltonian sustaining long-range magnetic order, then a clean DTC
response is expected to survive, at least for a suitably large time, after which
the effect of possible small non-local terms might appear [45].

Again, since the Floquet operator in Eq. (152) is Z2-symmetric, the time-
crystal response we observed in the previous section should be related to
the ferromagnetic to paramagnetic finite-temperature phase-transition of an
effective quantum spin model in two-dimensions. If universality holds, for
a sufficiently small perturbation, we may expect that, in the meta-stable
regime, all the critical properties of our model can be extracted by those
of the two-dimensional transverse field quantum Ising model, whose phase
diagram is known since 80s [57]. The absence of a genuine time-crystal for
short-range Hamiltonians in 1D, and its existence in 2D is indeed a conse-
quence of the Peierls argument [58]. Indeed, since in a short-range quantum
Ising model there is no long-range order at finite temperature in 1D, we
expect that in a short-range kicked quantum Ising model there is no DTC
order for ϵ ̸= 0 in 1D. Analogous considerations hold for the stochastic dy-
namics of a 2D classical kicked Ising model in which the non-equilibrium
stationary state is in the Ising universality class [59].

We are going to show that this thermodynamic picture holds in a simple
case in which we are able to approximate Heff. Indeed, in the high-frequency
regime when Jτ, ϵ ≪ 1 at the lowest order in Jτϵ we may neglect all the
commutators of A and B in the BCH expansion and approximate

Heff = −J
∑
⟨jj ′⟩

XjXj ′ − h
∑
j

Zj +O
(
J2τϵ2

)
, (158)

where h = ϵ/τ plays the role of an effective transverse field. Because of the
Z2-symmetry, the thermal average ⟨m⟩β is identically vanishing. In order
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to study the finite-temperature spontaneous symmetry-breaking we need to
evaluate the second moment of the magnetization, namely

〈
m2
〉
β
=

1

N2

N∑
jj ′

Tr
(
ρXjXj ′

)
, (159)

and compare it with the time evolution under the Floquet dynamics

m2(n) =
1

N2

N∑
jj ′

⟨ψn|XjXj ′ |ψn⟩ . (160)

In Fig. 7(a-b) we compare the asymptotic thermal averages with the stro-
boscopic dynamics of the magnetisation fluctuations in a 4× 4 system, for
two different choices of the period τ. Thermal averages have been computed
with a generalization of the TDVP algorithm after a Wick rotation in imagi-
nary time [16]. In particular, we observe that the time-evolved m2(n) is kept
oscillating around the corresponding thermal averages; as expected, by in-
creasing ϵ the agreement is getting worse, due to the error in the truncation
of the BCH expansion. Finally, in Fig. 7(c) we compare the thermal equilib-
rium data of the second moment of the magnetisation with the asymptotic
time averages, for two choices of τ. We find a good agreement among the
two curves for small enough values of ϵ and τ, where deviations are typi-
cally O(max((Jτ)2, ϵ2)). As a matter of fact, this analysis suggests that the
stationary properties of the system are well described by the effective 2D
Ising Hamiltonian, for a characteristic time which scales as ∼ 1/(τJ2ϵ2).

2.7 conclusions and outlooks

We studied the evolution of a clean two-dimensional quantum Ising model
periodically kicked with imperfect global spin flips. We compared the stro-
boscopic evolution of the magnetization with the one obtained in the one-
dimensional kicked Ising model, and by a size-scaling analysis exploiting
TDVP calculations, we showed the possibility of realizing a DTC with a two-
dimensional clean system. Moreover, in the high-frequency limit, we studied
a metastable regime wherein local time averages are in perfect agreement
with thermal averages computed over an effective Floquet Hamiltonian. We
pointed out that this quasi-stable time-crystalline response is closely related
to the existence of a long-range ordered phase at finite temperature, which
may survive for exponentially long times.

Let us remark that the non-equilibrium protocol we have studied can be
implemented on currently available quantum platforms, such as trapped
ions or superconducting qubits [60–63]. In principle, quantum hardware
with long coherence times and a small gate noise could outperform the
results obtained by means of tensor-network techniques.

Finally, it is worth to further investigate the connection between stable
time-crystalline response and finite-temperature long-range order. In this
respect, it would be interesting to study periodically-driven dynamics of
other different interacting models and lattice topologies, with and without
frustration, which may or may not sustain long-range order at finite temper-
ature.



3H Y B R I D S TA B I L I Z E R A N D T E N S O R - N E T W O R K
M E T H O D S

Due to their unique characteristics and wide-ranging applications, the Clif-
ford group and stabilizer states play a crucial role in quantum information
theory. Specifically, in the context of quantum error correction and quantum
computation, the Clifford group, comprising a subset of unitary operators,
and stabilizer states, a specialized class of quantum states, together establish
a robust foundation which makes managing and understanding quantum
systems simpler.

One of the most striking features of stabilizer states is that, despite their
high potential for entanglement, they can be described and manipulated us-
ing classical computational resources. This classical tractability is attributed
to the fact that operations within the Clifford group, when applied to stabi-
lizer states, do not increase the computational complexity beyond classical
limits.

In this chapter, we present methods to improve and enhance tensor net-
work algorithms by leveraging the stabilizer formalism.

3.1 the pauli group

In the next sections, we introduce some fundamental concepts of the stabi-
lizer formalism, beginning with the Pauli group, which comprises the iden-
tity operator I and the three Pauli operators represented as follows Pauli operators

(1 0
0 1) = 𝕏(0 1

1 0) =

𝕐(0 −i
i 0 ) = ℤ(1 0

0 −1) =

X̂ = ∑
i,j

| i⟩⟨j | = |0⟩⟨1 | + |1⟩⟨0 |𝕏
i

j

̂Y = ∑
i,j

| i⟩⟨j | = − i |0⟩⟨1 | + i |1⟩⟨0 |𝕐
i

j

̂Z = ∑
i,j

| i⟩⟨j | = |0⟩⟨0 | − |1⟩⟨1 |ℤ
i

j

(161)

where the tensors are given by the usual expressions

(1 0
0 1) = 𝕏(0 1

1 0) = 𝕐(0 −i
i 0 ) = ℤ(1 0

0 −1) =

X̂ = ∑
i,j

| i⟩⟨j | = |0⟩⟨1 | + |1⟩⟨0 |𝕏
i

j

̂Y = ∑
i,j

| i⟩⟨j | = − i |0⟩⟨1 | + i |1⟩⟨0 |𝕐
i

j

̂Z = ∑
i,j

| i⟩⟨j | = |0⟩⟨0 | − |1⟩⟨1 |ℤ
i

j

ℍ1
2 (1 1

1 −1) = 𝕊(1 0
0 eiπ/2) = 𝕋(1 0

0 eiπ/4) =

(162)

The complete set of these operators forms the Pauli group for a single qubit,
denoted as P = {σµ}3µ=0, where σ0 = I, σ1 = X, σ2 = Y, and σ3 = Z. These
operators satisfy the orthogonality relation given by

Tr(σµσν) = 2δµν. (163)

Consider a system with N qubits and identify the local computational
basis {|0⟩ , |1⟩} with the eigenstates of the σ3 Pauli matrix, such that σ3 |s⟩ =

45
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(−1)s |s⟩. Any operator acting on a single qubit can be decomposed in terms
of the Pauli matrices and the identity matrix. Using this local basis, using a
boldface apex µ to identify the set {µ1, . . . , µN}, we can construct a generic
Pauli string (or Pauli Product) asPauli string

Σµ = σµ11 σ
µ2
2 · · ·σµNN , (164)

where Σµ is an element of the tensor product of the N-qubit Pauli group
PN = P⊗N and has the following diagrammatic representation

σ1σ2 . . . σN = σ1 σ2 σN. . . |σ′ 1 . . . σ′ N⟩⟨σ1 . . . σN |

.

(165)

In subsequent discussions, whenever the subscript denoting the qubit is
unnecessary, it will be omitted for the sake of notation simplicity.

The Pauli strings are therefore a complete basis for any operator O acting
on the many-body Hilbert space H = {|0⟩ , |1⟩}⊗N, namely

O =
∑
µ

OµΣ
µ (166)

where the coefficients are given by

Oµ = Tr(OΣµ)/2N, (167)

and we used the orthogonality condition Tr(ΣµΣν) = 2Nδµν. When asso-
ciated with the local operator σµj , we may construct the operator-valued
matrix Oj =

∑
µO

µ
j σ
µj , such that we get the compact notation for the

original operator itself O = O1O2 · · ·ON. It is worth noting that the most
straightforward example of an operator with an exact Pauli-based MPO rep-
resentation (with a bond dimension of one) is a general Pauli string Σµ.
Another useful example which admits an MPO representation with bond
dimension one is a projector on a computational basis state |s1, s2, . . . sN⟩,
since |s⟩⟨s| = (σ0 + (−1)sσ3)/2.

3.2 stabilizer states and the clifford group

Given a pure quantum state |ψ⟩, a unitary matrix U is said to stabilize |ψ⟩ if
|ψ⟩ is an eigenstate of U corresponding to the eigenvalue 1, i.e.,

U |ψ⟩ = |ψ⟩ (168)

We do not ignore the global phase. The collection of unitary matrices that
stabilize a state forms a group, denoted by stab(|ψ⟩). Specifically:Stabilizer group

• If both U and V stabilize |ψ⟩, then their product UV also stabilizes |ψ⟩.
• If U stabilizes |ψ⟩, then its inverse U−1 also stabilizes |ψ⟩.
• The identity matrix I stabilizes all states |ψ⟩.

Generally, to identify the generators of the stabilizer group of a quantum
state it is required an exponential number of parameters. However, a partic-
ular class of quantum states can be characterized by a significantly smaller
group, namely, the intersection of the stabilizer group with the Pauli group,
represented as S(|ψ⟩) ≡ stab(|ψ⟩) ∩ PN. Indeed, according to a theorem by
Gottesman and Aaronson [64], for an N-qubit state |ψ⟩, the following state-
ments are equivalent:Stabilizer states
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• |ψ⟩ can be constructed from |0⟩⊗N using only CNOT, H, and S gates.

• |ψ⟩ can be constructed from |0⟩⊗N using only CNOT, H, S gates, and
measurement gates in the computational basis.

• |ψ⟩ is stabilized by precisely 2N Pauli operators.

• |ψ⟩ is uniquely determined by S(|ψ⟩).
Since we are constructing circuits utilizing only CNOT, H, S, and measure-
ment gates (i.e., a stabilizer circuit), we define any state generated by apply-
ing the stabilizer circuit to |0⟩⊗N as a stabilizer state.

A Clifford operation is a special unitary quantum operation. Indeed, we
can decompose it into a stabilizer circuit containing the minimal set of H
(Hadamard), S (phase gate), and CNOT (control-not) gates, whose matrix
form in the computational basis are given by Clifford unitaries

(1 0
0 1) = 𝕏(0 1

1 0) = 𝕐(0 −i
i 0 ) = ℤ(1 0

0 −1) =

X̂ = ∑
i,j

| i⟩⟨j | = |0⟩⟨1 | + |1⟩⟨0 |𝕏
i

j

̂Y = ∑
i,j

| i⟩⟨j | = − i |0⟩⟨1 | + i |1⟩⟨0 |𝕐
i

j

̂Z = ∑
i,j

| i⟩⟨j | = |0⟩⟨0 | − |1⟩⟨1 |ℤ
i

j

ℍ1
2 (1 1

1 −1) = 𝕊(1 0
0 eiπ/2) = 𝕋(1 0

0 eiπ/4) =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

=
(169)

Formally, an operator C is a Clifford operation if, for any Pauli string P,
the conjugated operator C†PC is also a Pauli product. This property allows
Clifford operations to be characterized, up to a global phase, by their ac-
tion on Pauli strings. The Gottesman-Knill theorem leverages this property to
state that stabilizer circuits can be perfectly simulated in polynomial time
on a probabilistic classical computer. The efficiency arises precisely on the
fact that Clifford gates map Pauli strings to other Pauli strings, allowing
the state of the quantum system to be tracked using a polynomial number
of classical operations. This implies that while stabilizer circuits can create
highly entangled states, they do not offer a computational speedup over
classical algorithms. Stabilizer tableaux

A stabilizer tableau is a representation of a Clifford operation that directly
encodes how the operation conjugates each generator of the Pauli group.
The generators Xq and Zq are used for each qubit q affected by the opera-
tion; note that Yq = iXqZq is fully determined by the transformations of Xq
and Zq. For example, consider the stabilizer tableau for the composition of
the Controlled-Z and Controlled-X gates (C ≡ CXCZ):

tableau(C) =

X1 Z1 X2 Z2

± − + + +

1 Y Z Z Z

2 Y I X Z

(170)

Each column in the tableau specifies how C conjugates one of the four
generators of the two-qubit Pauli group. For instance, the column labeled
X1 indicates that C conjugates X1 into −Y1Y2, meaning that C†X1C = −Y1Y2.
Let us see how to use the tableau for a Pauli string

C†X1Y2C = iC†X1CC
†X2CC

†Z2C = −iY1Y2Z1X2Z1Z2 = −Y1 (171)

Any qubit not mentioned in the tableau remains unaffected by the operation.
For example, if Xq does not appear in the tableau, it is implied that the
operation conjugates Xq into Xq.
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For a stabilizer tableau to be valid and accurately represent a Clifford
operation, it must preserve the commutation and anticommutation relation-
ships among the Pauli products. The Pauli products in the tableau’s columns
must commute or anticommute in the same manner as their corresponding
generators. Specifically, the column for Xa must commute with the columns
for Xb and Zb, but, it must anticommute with the column for Za. Addition-
ally, a valid tableau cannot have missing columns. If a row for qubit q is
present, there must be columns for the generators Xq and Zq.

Despite their strength and utility, the Clifford gates do not form a univer-
sal set of quantum gates. Some gates outside the Clifford group cannot be
arbitrarily approximated with a finite set of Clifford operations. An example
is the T gateMagic T-gate

(1 0
0 1) = 𝕏(0 1

1 0) = 𝕐(0 −i
i 0 ) = ℤ(1 0

0 −1) =

X̂ = ∑
i,j

| i⟩⟨j | = |0⟩⟨1 | + |1⟩⟨0 |𝕏
i

j

̂Y = ∑
i,j

| i⟩⟨j | = − i |0⟩⟨1 | + i |1⟩⟨0 |𝕐
i

j

̂Z = ∑
i,j

| i⟩⟨j | = |0⟩⟨0 | − |1⟩⟨1 |ℤ
i

j

ℍ1
2 (1 1

1 −1) = 𝕊(1 0
0 eiπ/2) = 𝕋(1 0

0 eiπ/4) =
(172)

Indeed, the following shows that the T gate does not map a Pauli string to
another Pauli string

T†ΣT = (I cosπ/8− iZ sinπ/8)Σ(I cosπ/8+ iZ sinπ/8) (173)

= Σ cos2 π/8+ZΣZ sin2 π/8−
i

2
(ZΣ− ΣZ) sinπ/4,

i.e., if Σ = X we get T†XT = X cosπ/4− Y sinπ/4. Despite this limitation, the
Clifford group, when supplemented with the T gate, forms a set of universal
quantum gates for quantum computation. This means that any quantum
operation can be approximated to arbitrary precision using a combination
of Clifford gates and the T gate.

quantum magic — Non-stabilizerness acts as a measure to evaluate
the resource known as quantum magic, indicating how far a quantum state
is from being a stabilizer state. Similarly, it may reflect the number of magic
gates within a quantum circuit to prepare a state ρ. Several measures have
been suggested to quantify magic as a resource. Among the most common
is the Stabilizer Rényi Entropy (SRE), defined for a quantum state ρ as

Mn(ρ) =
1

1−n
log

∑
Σµ∈PN

1

2N
Tr(ρΣµ)2n. (174)

where we are summing over all the N-qubit Pauli strings Σµ = σµ11 ...σµNN

3.3 hybrid stabilizer matrix product operators

We can leverage upon the stabilizer formalism to deal with one of the most
challenging task in quantum physics, the simulation of the unitary dynam-
ics of a many-body system. The significance of this investigation is twofold.
Firstly, it propels scientific advancements in fields such as condensed mat-
ter physics and quantum chemistry, where large, error-corrected quantum
devices are still under development [65]. Secondly, it enables a critical as-
sessment of the quantum advantage claims by state-of-the-art devices [66,
67].

This unitary evolution, which involves numerous qubits and a vast array
of unitary gate operations, requires a high degree of entanglement to en-
code the wave function. Such a requirement poses a substantial challenge to
current classical numerical methods, particularly those based on tensor net-
work [15, 16, 68]. While tensor network based techniques efficiently manage
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relevant entanglement by controlling the auxiliary space dimensions χ of the
ansatz, they face inherent limitations. For instance, in the one-dimensional
MPS framework, the computational complexity is held at O(Nχ3), limit-
ing the maximum entanglement that can be effectively encoded into the
wave function. Unfortunately, it is well-known that generic unitary evolu-
tion introduces correlations across the system, propagating linearly with
time, which leads to a linear increase in entanglement. As a result, the MPS
bond dimension grows exponentially, ultimately causing the breakdown of
the classical simulation [69–71].

Often, in physics, the primary interest lies not on the full evolution of
the many-body wave function, but rather on the expectation values of lo-
cal observables; and, as expected, this remains one of the most challeng-
ing, yet fundamental, problem in many-body physics, i.e., the calculation
of ⟨ψ|U†OU |ψ⟩, for a generic unitary evolution U and local observable O,
starting from a state with relatively short-range correlations [72, 73].

As previously demonstrated, when the unitary evolution is governed by
a Clifford operator, the computational complexity of evaluating the expec-
tation values of local observables reduces from exponential to polynomial
in the number N of qubits [74–78]. Significantly, the quantum complexity
of such tasks depends not only on entanglement but also on a critical quan-
tum resource known as non-stabilizerness (or Magic). The interplay between
these two factors can deeply influence computational feasibility [79–92]. De-
veloping sophisticated classical algorithms that can effectively manage both
entanglement and non-stabilizerness is crucial.

Here, first of all, we detail our development of a hybrid stabilizer and
tensor network scheme aimed at disentangling MPS. This method enables
the precise computation of expectation values over longer circuits depths
using a fixed amount of resources, denoted by χ.

Specifically, we model the evolution into a tensor network evolution cou-
pled with a Clifford operations. Using the stabilizer formalism, we apply the
Clifford operator to the local observable, continue the state’s evolution using
tensor network techniques, and then calculate the expectation value of the
conjugated observable. Then, in a second part, we will explore techniques
to enhance the Time-Dependent Variational Principle (TDVP) algorithm by
incorporating the stabilizer formalism, further broadening the scope and
efficiency of our computational methods.

3.3.1 Transformation of local gate under Clifford Operations

Let us consider the unitary group, composed of all unitary matrices acting
on N qubits, generated by the elementary gates: Hadamard (H), phase (S),
Magic (T ), and the entangling controlled-NOT gate (CNOT). The latter, es-
sential for building up correlations, acts on two qubits. Using these gates,
one can implement any quantum circuit [93–95]. Focusing on the subset
H, S,CNOT, these generate the Clifford group, which maps any Pauli string
to another, modulo a ±1 phase [74]. Despite the potential for significant
entanglement, operations within the Clifford Group preserve the low com-
putational complexity characteristic of Pauli strings.

The key interplay in our discussion is between a generic Clifford unitary
and the non-stabilizer generator, specifically the Magic gate T = eiπ(σ

0−σ3)/8.
For broader applicability, we consider a generic rotation Rµ(θ) = e−i(θ/2)σ

µ

as a method to inject non-stabilizerness into the many-body wave function,
noting that T ∝ R3(π/4). Utilizing the Pauli-based MPO formalism, we can
easily manage any Clifford transformation combined with a Magic gate or
a local rotation.
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We want to model, with tensor network, an arbitrarily complex Clifford
operation C on N qubits and a local rotation gate Rµl (θ) acting on qubit l.
This gives rise to the following Pauli-based MPO decompositionLocal rotation

conjugation
C†Rµl (θ)C = I cos θ/2∓ iΣγ sin θ/2 = T1T2 · · ·TN, (175)

where the transformation relies on the property C†σµl C = ±Σγ, with in-
dices γ = γ1, . . . γN depending on the Clifford transformation and the local
rotation.

The operator-valued MPO, diagonal in the auxiliary basis, has a maxi-
mum bond dimension of two, taking the form of a controlled-Pauli gate. We
denote the coefficients c ≡ cos(θ/2) and s ≡ sin(θ/2) as ϕ = {ϕ0, ϕ1} =

{c1/N, (∓i s)1/N}. Indeed, we have that

Tk =

(
ϕ0Ik 0

0 ϕ1σ
γk
k

)
, (176)

for k = 2, ..., N− 1, and the boundary vectors

T1 =
(
ϕ0I1 ϕ1σ

γ1
1

)
, TN =

(
ϕ0IN

ϕ1σ
γN
N

)
. (177)

Therefore, it is apparent that it takes the following form in terms of a con-
trolled Pauli matrix gate (where we omitted the subscript)

̂𝕋 = (ϕ0 ̂σ0 0
0 ϕ1 ̂σγn) → ⟨i | ̂𝕋αβ | j⟩ =

σγ1

j1

i1
ϕ

⟨i1, …iN | Ĉ†R̂μ
l (θ)Ĉ | j1, …jN⟩ =

σγ2

j2

i2
ϕ

σγN

jN

iN
ϕ

σγn

j

i
ϕ

α β (178)

where the indices {α,β} span the two-dimensional auxiliary space.
The entire tensor network layer for the Clifford-transformed rotation gate

is thus represented

̂𝕋n = (ϕ0 ̂σ0 0
0 ϕ1 ̂σγn) → ⟨i | ( ̂𝕋n)αβ | j⟩ =

σγ1

j1

i1
ϕ

⟨i1, …iN | Ĉ†R̂μ
l (θ)Ĉ | j1, …jN⟩ =

σγ2

j2

i2
ϕ

σγN

jN

iN
ϕ

σγn

j

i
ϕ

α β

(179)

This representation highlights that when γn = 0 for some n, the physical
and auxiliary spaces become locally disconnected, simplifying the network’s
complexity.

Importantly, the auxiliary space associated with each magic layer func-
tions similarly to an additional qubit, forming a two-dimensional tensor
network as depicted in Fig. 8. In this configuration, all local coefficients ϕ
are inserted into a single auxiliary qubit state |θ⟩ = c |0⟩ ∓ is |1⟩, which ac-
counts for the phase rotation.

3.3.2 Stabilizer Matrix Product Operator

As outlined earlier, our aim is to develop an efficient algorithm for com-
puting the non-equilibrium dynamics of the expectation value of local op-
erators, particularly Pauli strings. Specifically, we focus on calculating the
expectation value as expressed below:

⟨ψ|U†ΣµU |ψ⟩ , (180)
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Figure 8: Tensor network contraction in the stabilizer MPO formalism. (a) Example
of 3 layers of Clifford and Magic operations acting on 4 qubits initialised in
|0000⟩; the network is contracted with its complex conjugate to compute the
expectation value of a two-point function. (b) The transformed network, in
the stabilizer MPO formalism, exhibits a bi-dimensional grid comprising
Pauli gates σγij (as depicted with subscripts only in the figure), controlled
by auxiliary qubits |θi⟩ ≡ cos(θi/2) |0⟩ ∓ i sin(θi/2) |1⟩ (and

∣∣θ∗i
〉
), which

serve to induce slight entanglement between each individual row and all
columns, i.e. the physical qubits. The majority of the entanglement is in fact
effectively accounted for through a straightforward transformation of the
original Pauli string. Finally each row of the entire network is contracted
to the not normalised state |X⟩ ≡ |0⟩ + |1⟩. (c) Folded tensor network in
the Pauli basis as a bi-dimensional grid of W̃ij 4-order tensors, whose
entries coincides with those of the W (see main text) after discarding the
coefficient ϕ0 and ϕ1 which here are absorbed in the definition of the |θi⟩
boundary vectors.

where |ψ⟩ denotes a state with short-range correlations. Despite the com-
plexity, any unitary matrix can be broken down into a sequence (arbitrarily
deep) of local Magic gates interspersed with Clifford circuits [93]. Conse-
quently, we model our unitary as

U = RjMCM · · ·Rj2C2Rj1C1, (181)

with M representing the total number of single-qubit Magic gates in the
decomposition, and jm indicating all the parameters of the local rotation
Rjm .

This decomposition generally leads to exponential computational com-
plexity due to the unbounded amount of entanglement introduced by each
Clifford layer. By strategically disentangling from the rightmost layer insert-
ing C1C

†
1 as a disentangler for Rj1C1 |ψ⟩,

C1C
†
1Rj1C1 |ψ⟩ = C1T1,1T1,2 · · ·T1,N |ψ⟩ , (182)

we progressively simplify the computation. Repeating this approach through
all layers, we construct a stabilizer MPO as follows Stabilizer Matrix

Product Operator

U = CTM · · ·T2T1, (183)

where each layer Tm is defined as:

Tm = C†
1 · · ·C†

mRjmCm · · ·C1 = Tm,1Tm,2 · · ·Tm,N, (184)
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for m ∈ 1, 2, . . . ,M, with the Clifford unitary C = CM · · ·C1, and Tm MPO
of bond dimension 2. Consequently, the expectation value simplifies to:

⟨ψ| T†
1 · · ·T

†
MΣ

νTM · · ·T1 |ψ⟩ , (185)

where Σν = ±C†ΣµC. This stabilizer MPO configuration significantly re-
duces the entanglement in comparison to the original unitary process. Ad-
ditionally, horizontal contraction of the network during computation, as il-
lustrated in Fig. 8, may mitigate the growth of temporal entanglement [96–
98] relative to vertical contraction, potentially leading to a zero state due to
the matrix elements vanishing.Folded tensor

network Let us finally mention that this technique can be exploited in conjunction
with the folding scheme where basically Eq. (185) can be evaluated as

Tr(ΣνTM · · ·T1 |ψ⟩⟨ψ| T†
1 · · ·T

†
M). (186)

We can indeed represent the folded TN as∑
µ

Y
µ1
1 · · ·Y

µN
N σµ1 · · ·σµN . (187)

Applying a new layer of the network induces a transformation of each local
tensor according to (here we omit the subscripts to simplify the notation)

Yµ →
∑
ν

WµνYν (188)

where Wµν, is a diagonal matrix acting on a four dimensional auxiliary
space, whose entries are

Wµν =
1

2
Tr[σµTσνT†]

= diag(|ϕ0|2δµν, ϕ0ϕ∗
1Γµν, ϕ

∗
0ϕ1Γνµ, |ϕ1|

2Sµδµν), (189)

where

Γµν = Γ∗νµ = Tr(σµσνσγ)/2 = iε0µνγδµ⊕νγ, (190)

and

Sµ = Tr(σµσγσµσγ)/2 = −(−1)δµγ+δµ0+δγ0 (191)

and γ accounts for the Pauli matrix appearing in T. In the previous defini-
tions, ε0µνγ is the Levi-Civita symbol, µ⊕ ν is indicating the bit-wise xor
between the indices (see Fig. 8(c) for a graphical representation of the folded
network).

The strategy outlined in this section can be applied in various scenarios.

3.3.3 Random Clifford T-doped circuit

Our initial investigation focuses on random Clifford T-doped circuits. These
circuits are made up ofm brick-wall shaped random Clifford layers of depth
D, each followed by a Tj gate targeting a randomly selected qubit j, as de-
picted in the left panel of Fig.9.

We apply this approach to a system of N = 40 qubits initialized in the
state |0⟩⊗N, subjected to M = 20 intertwined brick-wall Clifford and local
T-gate layers. The entanglement entropy for the half-chain, averaged across
50 realizations and shown in the right panels of Fig. 9, demonstrates this
setup’s efficacy for both D = 1 and D = 6 depths. Notably, our protocol, by
effectively disentangling the state with a fixed resource allocation χ, extends
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Figure 9: Random Clifford T-doped circuit. Left panel: sketch of the evolution. Right
panels: evolution of the half-chain entanglement entropy of the state
evolved according to the stabilizer-MPO formalism (dots) vs the standard
full state entanglement entropy (solid lines). The system size is N = 40.

the feasible simulation depth compared to the traditional sequential gate
application (indicated by solid lines). Notice that, multiple T gates acting
simultaneously on the system can be addressed within the same setup.

Moreover, as illustrated in Fig. 10, we track the evolution of the aver-
aged temporal-entanglement entropy S n,m associated with the observable
O = σ3

N/2
. For each random configuration, O is transformed through suc-

cessive Clifford layers tailored to the specific m setting. Specifically, follow-
ing the process outlined in Fig. 8(b), for each fixed evolution depth m, the
left boundary auxiliary vector is systematically extended horizontally, pro-
gressively adding physical layers from n = 1 to n = N. At each step, the
symmetric bi-partited entanglement entropy is computed. Although in this
setup the horizontal contraction does not lead to a significant advantage
in terms of the employed resources, it paves the way for further studies in
more specific settings.

3.3.4 Random Clifford Floquet Dynamics

In this section, we investigate Floquet dynamics induced by the repeated
application of a single period evolution operator on the initial state |0⟩⊗N: Random

U(1)-symmetric
Clifford kicked
Floquet dynamicsUm =



N∏
j=1

R1j (π+ 2ϵ)


Cm (192)

where m represents the step, and Cm are random U(1)-symmetric Clifford
gates acting on N qubits. In particular, these gates commute with the oper-
ator M =

∑
j σ
3
j /N, simulating typical Floquet behavior within a random

Clifford framework [1, 21, 44, 63, 99]. The only deviation from perfect mag-
netization oscillation arises from a finite ϵ.
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A general operator of the U(1)-symmetric Clifford group is constructed
as follows [100]:

eiϕ


 ∏
1⩽i<j⩽N

CZνijij





N∏
j=1

S
µj
j


Pn (193)

where µj ∈ {0, 1, 2, 3}, νij ∈ {0, 1}, ϕ ∈ [−π, π], and Pn is a permutation oper-
ator on n qubits, potentially using up to N(N− 1)/2 swap operations. Addi-
tionally, S = diag(1, i) is the single-qubit phase gate, and CZ = diag(1, 1, 1,−1)
is the Controlled-Z gate. For our analysis, the global phase factor is irrele-
vant; thus, we set ϕ = 0.

It is important to note that the highly non-local nature of the Clifford
unitary layers Cm makes this setup challenging for standard Time Evolv-
ing Block Decimation (TEBD) algorithms [68], yet it is well-suited for our
stabilizer MPO approach.

Here, we derive an analytical expression for the decay of magnetization
throughout the evolution in a random Clifford Floquet setup. Henceforth,
we denote by C a random Clifford operator from the U(1)-symmetric Clif-
ford unitaries, which preserves magnetization. Let Mz =

∑N
i=1 Zj/N be the

magnetization operator. We aim to evaluate

Zj(m) = ⟨0 . . . 0|C†
1R

† . . . C†
mR

†ZjRCm . . . RC1|0 . . . 0⟩

= Tr
(
ZjRCm . . . RC1 |0 . . . 0⟩⟨C|†1 R† . . . C

†
mR†

)

=
〈
Zj
∣∣(R⊗ R∗)(Cm ⊗C∗

m) . . . (R⊗ R∗)(C1 ⊗C∗
1)
∣∣0 . . . 0, 0 . . . 0

〉

(194)

with R =
∏N
j=1 R

1
j (π+ 2ϵ). Rewriting the discrete parametrization for the

generic Clifford as C = CZν⃗Sµ⃗P, we can graphically represent the quantity
we are averaging as shown in Fig. 11.

The average in the three terms, i.e., permutations P, S gates, and controlled-
Z gates, appearing in the decomposition of C can be performed indepen-
dently. Everything becomes immediately simpler by noticing that the aver-
age of the local S gates reads

S =
1

4

3∑
µ=0

Sµ ⊗ Sµ∗ = |00⟩⟨00|+ |11⟩⟨11| . (195)

The correlated action of CZ in two replicas of the system is thus trivial
no matter the qubits on which it acts. Specifically, labeling with c (c ′) the
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Figure 11: Sketch of the average over the U(1)-symmetric Clifford group, see the text
for additional details.

control qubit of the system (replica), and with t (t ′) the target qubit of the
system (replica), we have:

CZct ⊗ CZc ′t ′ (|00⟩⟨00|+ |11⟩⟨11|)cc ′ ⊗ (|00⟩⟨00|+ |11⟩⟨11|)tt ′ =
=(|00⟩⟨00|+ |11⟩⟨11|)cc ′ ⊗ (|00⟩⟨00|+ |11⟩⟨11|)tt ′ . (196)

Additionally, each permutation acts identically on the state and its replica.
Apart from the application of the Zj gate, the system is permutation invari-
ant, hence any permutation contributes equally to the average.

We thus define the operator [R1(π + 2ϵ) ⊗ R1∗(π + 2ϵ)]S (brown boxes
in Fig. 11) for which the states |00⟩ ± |11⟩ are eigenstates with eigenvalues 1
and − cos(2ϵ) respectively. Consequently, allN− 1 qubits where Zj does not
appear will contribute with (−1)m for a m-layer evolution to the average in
Eq. (194), and the only nontrivial contribution comes from the single qubit
on which Zj acts, yielding Zj(m) = (−1)m[cos(2ϵ)]m.

Fig. 12 displays the stabilizer MPO evolution of the averaged magnetiza-
tion and entanglement entropy across various random realizations and for
two distinct bond dimensions. We compare these numerical results with the
exact analytical expression for average magnetization:

Mz/N(m) = (−1)m(cos 2ϵ)m. (197)

We observe a strong correspondence between the analytical predictions and
the numerical simulations for small ϵ values, a result unattainable with con-
ventional tensor network methods.

3.4 clifford dressed tdvp

Simulating non-equilibrium dynamics in quantum many-body systems is
challenging due to the exponential growth of Hilbert space and complex en-
tanglement, often addressed by MPS which efficiently represent one-dimensional
quantum states [15, 16, 68, 101–106].
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A common method for simulating the non-equilibrium dynamics of a
MPS wave function is to use Trotterization on the evolution operator. This
process converts continuous Hamiltonian dynamics into a sequence of dis-
crete, localized unitary gates acting on neighboring qubits, forming the core
of the Time-Evolving Block Decimation (TEBD) scheme [68]. TEBD effec-
tively manages real-time evolution by breaking down the complex, global
evolution into simpler, local interactions.

On the other hand, the Time-Dependent Variational Principle (TDVP)
method updates the MPS parameters directly within its specific variational
framework [19, 20]. TDVP keeps the quantum state as an optimal MPS ap-
proximation throughout its evolution, offering a more precise representa-
tion of the system’s dynamics. This is particularly useful for extended sim-
ulations and in situations with rapid entanglement increase. TDVP is cru-
cial for investigating quantum dynamics such as quantum quenches [107],
transport phenomena [108], and entanglement dynamics [109, 110], where
conventional methods may not suffice due to the exponential growth of the
Hilbert space.

Regardless of the method used, a quantum system in a non-equilibrium
state undergoes quantum information scrambling, seen as entanglement
spreading across the system [69, 70]. In the MPS framework, it manifests
as an uncontrolled increase in the bond dimension. Consequently, after a
certain time, this exponential growth in complexity results in a decline in
the accuracy of the wave function’s approximation because the MPS can no
longer effectively encapsulate the system’s entanglement.

As discussed in earlier sections, integrating the MPS framework with the
stabilizer formalism presents notable challenges [64, 111, 112]. Indeed, strate-
gically manipulating the wave function to manage quantum correlations
can significantly enhance classical algorithms simulating quantum dynam-
ics. Notably, circuits using only Clifford gates remain tractable on classi-
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Figure 13: Clifford orbits. The evolution of the state |ϕ0⟩, driven by the successive ap-
plication of U1 and U2, is transformed according to a modified evolution
path Ũ2Ũ1. In this new trajectory, each intermediate state is strategically
adjusted within its respective Clifford orbit to significantly reduce the en-
tanglement in its MPS representation. This approach ensures that the MPS
wave-function maintains a lower entanglement throughout the evolution,
enhancing the efficiency and accuracy of the simulation.

cal systems, which allows high entanglement yet efficient classical simula-
tion through the tableaux algorithm [64, 74–77]. This suggests that entangle-
ment alone does not necessarily complicate classical simulations of quantum
states.

Recent advancements have been made in this area, highlighted by the
development of an efficient algorithm for identifying the stabilizer Pauli
strings in an MPS [89, 113]. Further progress includes the creation of the
stabilizer tensor network ansatz [114] and the introduction of Clifford en-
hanced MPS (CMPS) [115], which are quantum states formed by applying
a Clifford unitary to an MPS. These innovations represent significant steps
forward in the practical application of MPS within quantum computational
frameworks.

An optimization algorithm for these states, specifically aimed at ground
state searches, has effectively augmented the Density Matrix Renormaliza-
tion Group (DMRG) with Clifford circuits, as proposed in Ref.[116]. Addi-
tionally, hybrid Clifford tensor network algorithms have been introduced in
Refs.[2] and [117]. Building on these developments, the subsequent sections
will explore a novel approach that integrates a Clifford-based disentangle-
ment scheme with the TDVP algorithm, aiming to reduce the complexity of
simulating out-of-equilibrium quantum systems.

3.4.1 Clifford disentangled 1-TDVP

The common scenario we explore involves the dynamics generated by the
Hamiltonian H0, starting with the system in a short-range correlated initial
state (e.g., a product state) at time t = 0. The subscript zero in H0 indi-
cates that the Hamiltonian is in its "bare" form, unaltered by any Clifford
disentanglers.
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Figure 14: Clifford dressed evolution. (a) Clifford dressed TDVP steps, the disentan-
gling routine optimally selects local Clifford two-qubit gates by minimiz-
ing the bipartite entanglement entropy, then sweeps along the chain up to
a number of Clifford bi-layers of depth D. (b) At the end of the disentan-
gling procedure, we obtain the Clifford dressed state |ψ̃(tm)⟩. The optimal
Clifford transformation Cm is encoded using the stabilizer tableau and
applied to the diagonal MPO Hamiltonian Hm−1, preserving its diagonal
structure. (c) The effective operators for the next TDVP step are iteratively
constructed from the MPS of the Clifford dressed state in mixed canonical
form, and the MPO of the Clifford dressed Hamiltonian.

Our main focus is on evolving the state and monitoring local observables
that are important for experiments. This includes calculating the expectation
value of Pauli strings

⟨ψ(0)| eiH0tΣµe−iH0t |ψ(0)⟩ . (198)

Typically, the time evolution of the state is implemented by dividing time
into small intervals, dt. The state, approximated as an MPS with a set bond
dimension χ, is evolved using the single-site 1-TDVP scheme [20].

However, the entanglement entropy typically grows unboundedly, mak-
ing the MPS representation inadequate as a wave function ansatz beyond a
certain short time threshold. This is where Clifford-inspired disentangling
strategies become relevant.

At each time step m ∈ {1, . . . }, corresponding to time tm = mdt, a suit-
able Clifford transformation Cm is applied to the state |ψ(tm)⟩ to reduce
the entanglement in the new stateDisentangled wave

function
|ψ̃(tm)⟩ = Cm |ψ(tm)⟩ . (199)

The disentangling routine, known as "entanglement cooling" [115, 118–
121], modifies the Hamiltonian as follows

Hm = CmHm−1C
†
m. (200)

This transformation can be efficiently executed using the stabilizer tableau
formalism [122].

Practically, we can rewrite the original discrete evolution

⌊t/dt⌋−1∏
m=0

e−iH0dt |ψ(0)⟩ (201)

as a Clifford dressed evolution (see Fig. 14(a)):Clifford dressed
evolution

⌊t/dt⌋−1∏
m=0

e−iHmdtCm |ψ(0)⟩ , (202)
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where C0 = I is the identity operator, and the product is understood to
be in reverse order. The Clifford dressed evolution iteratively constructs the
final CMPS resulting in [115]

C⌊t/dt⌋−1 · · ·C1 e−iH0t |ψ(0)⟩ . (203)

Additionally, at each time step tm, any Pauli string of interest for measure-
ment is transformed as

Cm · · ·C1ΣµC†
1 · · ·C†

m. (204)

Note that we assume the application of a Clifford disentangler at each time
step in the TDVP integrator. However, this is not strictly necessary. The
entanglement cooling routine could be applied less frequently, for instance,
every k time steps, to reduce computational overhead while still controlling
entanglement growth.

The disentangling routine constructs the optimal Clifford operator itera-
tively by sweeping over two-qubit Clifford unitaries that connect neighbor-
ing sites in a checkerboard pattern [115, 118], with the number of bi-layers
denoted by D (see Fig. 14(b)). The optimal two-qubit Clifford gate is se-
lected by searching through a subset of 720 Clifford tableaux with positive
sign [122] and choosing one at random that minimizes the von Neumann
entanglement entropy. While the sign of the tableau does not affect the local
Singular Value Decomposition (SVD) of the MPS tensors, it may influence
subsequent minimizations, prompting us to reintroduce a random sign from
the 24 possible configurations. This process is repeated, sweeping sequen-
tially back and forth across the entire chain.

We employ the 1-TDVP scheme, a symplectic integrator, to evolve the
state from tm to tm+1, projecting the dressed Hamiltonian Hm using the
MPS tensors of the Clifford-enhanced state

|ψ̃(tm)⟩ = A
s1
L · · ·A

sn−1
L A

sn
C A

sn+1
R · · ·A

sN
R |s1, . . . , sN⟩ , (205)

which is in mixed canonical form with respect to the central site n. This
setup allows us to define the effective Hamiltonian (see Fig. 14(c))

Heff
m(n) =

O(N)∑
k

JkLmk (n− 1)⊗ σµ
m
k
n ⊗ Rmk (n+ 1), (206)

remaining diagonal in the operator auxiliary dimension, as Hm is kept di-
agonal in the Pauli basis. The couplings Jk are associated with each Pauli
string. A similar transformation is applied for Keff

m(n), with further details
on the TDVP algorithm in the context of MPS provided in Ref. [20].

3.4.2 Clifford Dressed 1-TDVP Numerical Experiments

We benchmark our algorithm on the following bare Hamiltonian Benchmark
hamiltonian

H0 =Jx1

N−2∑
j=0

σ1j σ
1
j+1 + J

y
1

N−2∑
j=0

σ2j σ
2
j+1+

+Jx2

N−3∑
j=0

σ1j σ
1
j+2 + h

N−1∑
j=0

σ3j . (207)

Specifically, after fixing the MPS bond dimension χ, that is the amount of
employable resources, we compare the standard 1-TDVP with our novel
strategy where the Clifford disentangler routine is invoked every k time
steps (for various values of k).
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Figure 15: (a) Average magnetization and (b) half-chain entanglement entropy for
the critical transverse field Ising model. (c) Half-chain magnetization and
(d) half-chain entanglement entropy for the XX model. (e) Average mag-
netization and (f) half-chain entanglement entropy for the next-to-nearest-
neighbors Ising chain. Black lines represent free-fermions (upper and cen-
tral panels) or ED results (lower panel). Solid green lines are TDVP data.
Markers indicate the Clifford disentangler, applied every k time steps (see
legend in the upper panel). In all panels we set N = 20, χ = 128.

Firstly, we consider two integrable cases by setting Jx2 = 0 in Eq. (207).
Specifically, the critical quantum Ising chain Jy1 = 0, Jx1 = −h = 1 prepared
in the fully polarized state |00 . . . 0⟩ along the z direction, and, the XX model
with Jx1 = J

y
1 = 1 and h = 0 prepared in the Néel state |0101 . . . 01⟩. Fi-

nally, we consider the non-integrable next-to-nearest-neighbors Ising model
by setting Jx2 = Jx1 = −h = 1 and Jy1 = 0 prepared in |00 . . . 0⟩.

During the time evolution, we monitor the dynamics of the bipartite en-
tanglement entropy at the midpoint of the chain, noting discontinuities each
time a Clifford disentangler is applied.

To assess the algorithm’s ability to accurately reproduce the expectation
values of local observables (which may become non-local post-Clifford dress-
ing), we measure the half-chain magnetization σ3

N/2
in the XX model. This

model possesses a U(1) symmetry, ensuring conservation of total magnetiza-
tion. Conversely, in the Ising model, we compute the average magnetization
Mz/N =

∑N−1
j=0 σ3j /N. These quantities, which are not conserved, undergo
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Figure 16: Error on expectation value of observables (same observables as in Fig.15).
(a)(c)(e) Integrated error ϵ(t), and (b)(d)(f) integrated error at final time ϵT
(T = 8). (a)(b) Critical transverse field Ising model. (c)(d) XX model. (e)(f)
Next-to-nearest-neighbors Ising chain. Solid lines are TDVP data. Markers
indicate the Clifford disentangler, applied every k = 10 time steps. We set
N = 20 and explore different bond dimensions χ (see legend in the upper
panel).

nontrivial evolution. The XX model and the critical nearest-neighbors Ising
model are exactly solvable, allowing us to validate our numerical results
against exact solutions derived from free-fermion techniques. For the next-
to-nearest-neighbors Ising model, we rely on comparisons with exact diago-
nalization (ED) calculations.

We define a measure of the error up to time t as the integrated distance be-
tween the exact expectation value of an observable O(t) and the correspond-
ing value obtained with either TDVP or Clifford enhanced TDVP denoted
as Õχ(t) (for fixed χ), i.e. Integrated error

ϵ(t) =
1

t

∫t
0

∣∣Õχ(t ′) −O(t ′)
∣∣dt ′ . (208)

We also define the integrated error at final time as ϵT = ϵ(T). As mentioned,
in our case O corresponds to either the average magnetization or the on site
half-chain magnetization.

Fig. 15 displays the results for the observable evolution and the half-chain
entanglement entropy in all analyzed models for a fixed bond dimension
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χ = 128 and system size N = 20. The corresponding panels in Fig. 16 illus-
trate the evolution of the error ϵ(t) for k = 10.

For the critical Ising chain, as shown in Figs. 15(a) and 15(b), our ap-
proach effectively limits the growth of entanglement entropy and enables
us to achieve higher precision in magnetization dynamics compared to the
standard 1-TDVP, which becomes ineffective around t ≈ 5 due to the entan-
glement exceeding the bond dimension χ.

Remarkable results are observed for the XX model in Figs. 15(c) and 15(d),
where the 1-TDVP simulation breaks down around t ≈ 2. The Clifford
dressed evolution closely matches the exact solution for significantly longer
times, demonstrating several orders of magnitude improvement in precision
using the same resources.

Finally, Figs. 15(e) and 15(f) pertain to the non-integrable setup, where
disentangling the evolved state poses greater challenges than in the previ-
ous scenarios. Nonetheless, the evolution of the Clifford dressed observable
appears to align with the results provided by exact diagonalization (ED) for
χ ⩽ 128. The integrated error, unlike in other case studies, does not indicate
a significant advantage.

3.5 conclusion & outlook

In this Chapter, we have introduced two complementary strategies aimed at
enhancing the simulation of quantum many-body dynamics. First, we devel-
oped a hybrid method that incorporates the stabilizer formalism with ten-
sor network techniques, specifically through our stabilizer MPO approach,
which efficiently leverages Clifford transformations to disentangle quantum
states. This method significantly reduces the complexity of unitary evolu-
tion, facilitating the computation of expectation values of Pauli strings and
enabling extended simulation depths beyond standard techniques. Further-
more, we have enhanced the standard single-site 1-TDVP algorithm by in-
tegrating optimized Clifford disentanglers to manage entanglement growth
effectively.

The potential for future research is vast. Immediate directions include op-
timizing Clifford disentanglers more effectively, potentially by introducing
finite temperature strategies or optimizing multiple local gates simultane-
ously to avoid sub-optimal local minima. An extension to the two-site TDVP
(2-TDVP) is also envisioned, which would involve applying a two-qubit Clif-
ford disentangler to disentangle the state prior to SVD, thereby maintaining
locality while managing entanglement efficiently. Additionally, there is sig-
nificant potential for utilizing our methods in benchmarking quantum de-
vices by facilitating precise comparisons between classical simulations and
quantum hardware performance.

Moreover, a crucial theoretical question remains unanswered: how to quan-
titatively assess the effectiveness of our ansatz and distinguish between
quantum states that can be significantly Clifford disentangled and those for
which it is infeasible. Investigating the entanglement spectrum statistics may
provide insights into the irreversibility of entanglement and help elucidate
the full scope of our methods’ benefits and limitations [120, 121].
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Part III

M O N I T O R E D Q U A N T U M S Y S T E M S

In the third part, we explore the dynamics of open quantum
systems, with a particular emphasis on monitored quantum sys-
tems and measurement-induced phase transitions. We focus on
unraveling the Lindblad equation, which describes the evolu-
tion of the density matrix in open quantum systems subject to
non-Hamiltonian dynamics. We explore various unraveling tech-
niques and their implications for system dynamics, highlighting
the interplay between system-environment interactions and mea-
surement processes.





4M O N I T O R E D Q U A N T U M S Y S T E M S

Quantum systems at zero temperature, described by a Hamiltonian H =

H1 + gH2 with non-commuting parts [H1, H2] ̸= 0, can exhibit different
phases depending on the parameter g. By adjusting g, quantum fluctuations
may induce a transition in the many-body ground state, known as a quan-
tum phase transition [123, 124]. This interplay between non-commuting op-
erators is fundamental in quantum mechanics, influencing correlations and
frustration in many-body systems.

In reality, quantum systems are not perfectly isolated and interact with
external environments. Studying open systems is essential for accurately
describing quantum evolution observed in experiments. Isolated systems
evolve unitarily according to the Schrödinger equation, but external inter-
actions introduce non-unitary and stochastic dynamics [125, 126]. This in-
teraction causes phenomena such as decoherence and dissipation, offering
insights into the link between quantum and classical dynamics [127], and is
vital for developing quantum technologies [128].

Recently, the study of monitored systems, where measurement appara-
tuses act as environments, has gained attention. Quantum measurements af-
fect system dynamics through stochastic back-action. Any potential stochas-
tic evolution is called a quantum trajectory [129–132]. The average state re-
sults from averaging over these trajectories and, under typical assumptions,
evolves according to the Lindblad equation, which erases the details of the
measurement protocols [125]. Conversely, quantum trajectories can be de-
rived by unraveling the Lindblad equation [133–137], with different proto-
cols leading to diverse noisy dynamics such as quantum jumps or diffusion
[138–140].

By focusing on the properties of the ensemble of quantum trajectories, we
identify a series of non-equilibrium phase transitions known as measurement-
induced phase transitions (MIPT). This effect is similar to transitions driven
by the non-commutativity between generators of unitary dynamics and mea-
sured operators, leading to distinct stationary states. In fact, analyzing full-
counting statistics of quantum trajectories reveals phenomena not typically
visible in ensemble averages [141–144], such as measurement-induced en-
tanglement phase transitions (MIPT) [4, 145–172], quantum error correction
and information scrambling, [173, 174], and dynamical purification [175–
177]. This has been investigated in quantum circuits [14, 145, 149–151, 168,
178–189], quantum spin systems [154, 190–201], trapped atoms [202], and
trapped ions [203–205].

Specifically, regarding the growth of entanglement, we observe a shift
from the expected bipartite entanglement entropy growth over time in a
closed system, as described by the Cardy-Calabrese quasiparticle model.
[69, 109, 206, 207], where, the system thermalizes (in a generalized Gibbs
sense), characterized by highly entangled eigenstates that scale extensively
with volume [208–210]. In contrast, projective quantum measurements in-
hibit entanglement growth, illustrated by the quantum Zeno effect [211–
215], where continuous measurements interfere with the system dynamics.
However, the average entanglement entropy can still transition between log-
arithmic and area law phases at critical measurement strength, or display
purely logarithmic scaling depending on the stochastic protocol [156]. A
logarithmic growth of entanglement entropy is intriguing, as the average
state is expected to be effectively thermal, hinting at a critical, conformally-
invariant phase. Similar findings exist for free-fermion random circuits with
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temporal randomness [216], recently extended to higher dimensions [217],
and for Majorana random circuits [218, 219]. The persistence of logarith-
mic entanglement entropy in the thermodynamic limit remains debated, as
different models and protocols yield varied conclusions. For instance, [164]
demonstrates that stationary entanglement entropy averages show area-law
behavior at any finite measurement rate in the thermodynamic limit. A log-
arithmic scaling remnant appears only for finite sub-system sizes, with a
characteristic scaling law between sizes and measurement rate established.

In the next chapters, we will present results concerning the full count-
ing statistics of monitored quantum systems. However, before that, we will
revisit some notions related to monitored quantum systems.

4.1 measurement protocols

Measurement in quantum mechanics is a fundamental aspect that signifi-
cantly influences the state of a quantum system. The nature of quantum
measurements can be broadly categorized into two types: projective (or
strong) measurements, which are typically associated with quantum jumps,
and weak measurements.

4.1.1 Quantum Jumps

Consider a quantum many-body system, with the total Hilbert space H =⊗
jHj being the tensor product of single-particle Hilbert spaces Hj. If the

system is isolated from the environment, it evolves according to the Schrödinger
equation

|ψ(t)⟩ = e−iĤt |ψ(0)⟩⟩, (209)

where Ĥ is the full interacting Hamiltonian of the system and |ψ(0)⟩ is the
initial state.

Assume that the unitary dynamics are sporadically disrupted by local
measurements. Each local Hilbert space Hj is briefly coupled to a measure-
ment apparatus that measures a local observable Ôj =

∑K
k=1 okΠ

(k)
j , where

ok are the possible outcomes and Π
(k)
j are the corresponding projection

operators. These measurements occur at discrete time intervals dt with a
characteristic rate γ. When a measurement occurs, the state |ψ⟩ is projected
according to Born’s ruleStrong projective

measurement

|ψ⟩ →
Π
(k)
j |ψ⟩
√
P(k)

, (210)

with probability P(k) = ⟨ψ|Π(k)
j |ψ⟩. According to this protocol, the evolu-

tion of the many-body state |ψ(t)⟩ depends on the series of measurement
events and their results, featuring occasional quantum jumps that are sud-
den transitions in the quantum system. Notice that the quantum state is
pure during the entire evolution.

4.1.2 Weak-measurements

Here, we introduce the concept of weak-measurements and derive the stochas-
tic Schroedinger equation (SSE) for continuously monitored quantum dy-
namics [131, 220].

A weak measurement is a measurement that extracts partial information
from a quantum system. The traditional way of describing a quantum mea-
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surement, referred to as von Neumann projective measurements, is to write
the state of the system into the eigenstates of a given observable O, namely

|ψ⟩ =
∑
a

ca |a⟩ , O =
∑
n

oa |a⟩⟨a| . (211)

The probability P(a) of measuring oa and thus projecting the state of the
system into |a⟩ is |ca|

2. The state of the system state therefore transforms as Generalized
measurement

ρ = |ψ⟩⟨ψ| −→ ρf = |a⟩⟨a| = ΠaρΠa

Tr{ΠaρΠa}
, (212)

with P(a) = Tr{ΠaρΠa} = |ca|
2. Such a measurement leaves completely

projects ρ in an eigenstate of the observable, thus extracting maximal infor-
mation.

Generalized measurements are described in terms of POVMs, i.e. pos-
itive operator-valued measures. Consider a set of operators La such that∑
a L

†
aLa = I. The measurement process can be described in a similar fash-

ion by transforming

ρ −→ ρf =
LaρL

†
a

Tr
{
LaρL

†
a

} (213)

with probability P(a) = Tr
{
LaρL

†
a

}
.

The following simple model provides a clear illustration of a weak pro-
jective measurement. Consider a two-level ancilla, represented by the eigen-
states {|+⟩ , |−⟩} of the Pauli matrix σz, initially prepared in the state

|a⟩ = |+⟩+ |−⟩√
2

. (214)

The ancilla is coupled to the system of interest, represented by the state |ψt⟩.
Let both the ancilla and the system evolve over a time ∆t under the unitary
evolution operator, ÛS+A(∆t)

ÛS+A(∆t) |ψt⟩ |α⟩ = (L+ |ψt⟩) |+⟩+ (L− |ψt⟩) |−⟩ , (215)

where L± = ⟨±|ÛS+A(∆t)|a⟩ act exclusively on the system’s Hilbert space.
Following this evolution, a projective measurement acts on the ancilla along
the z-axis, resulting in the outcome a = ±1. As a result, the back-action of
the measurement places the system in the state

|ψt+∆t⟩ =
La |ψt⟩√

⟨ψt|L†aLa|ψt⟩
. (216)

4.1.3 Continuous limit

Let us now consider the continuous limit ∆t → 0. We have to derive the
explicit form of the operators L±. If we want to measure the observable X,
let us consider the coupling between a system S and an ancilla A of the form

HS+A = H+ λXσy . (217)

We now take the limit ∆t→ 0, scaling lambda in such a way that γ = λ2∆t

is kept constant. Expanding the propagator U we have

US+A = e−i(∆tH+
√
γ∆tXσy)

= 1− i∆tH− i
√
γ∆tXσy −

1

2
γ∆tO2 +O(∆t3/2)

(218)
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We thus obtain for the L±

L± =
1√
2

(
1− i∆tH∓

√
γ∆tX−

1

2
γ∆tX2

)
. (219)

In order to compute the norm, we expand

L†aLa =
1

2
− a
√
γ∆tX , (220)

while the corresponding probabilities become

P(a) =
1

2
− a
√
γ∆t ⟨X⟩ . (221)

It follows that

|ψt+∆t⟩ = |ψt⟩− iH∆t |ψt⟩− a
√
γ∆t(X− ⟨X⟩) |ψt⟩

+
3

2
γ∆t⟨X⟩2 |ψt⟩− γ∆t⟨X⟩X |ψt⟩−

1

2
γ∆tX2 |ψt⟩

(222)

Finally, we have to put this in the form of a stochastic equation. To this
aim we observe that the measurement outcome a is a random variable that
satisfies

a = −2
√
γ∆t⟨X⟩ , a2 = 1 . (223)

Let us thus introduce Yt =
√
∆t

∑
t ′⩽t a: in the limit ∆t→ 0 this converges

to a continous stochastic variable such that

dY = −2
√
γ⟨X⟩dt+ dξ , (224)

where ξt is a real Wiener process (i.e. dξ = 0 and dξ2 = dt). Replacing
a→ dY/

√
∆t and using (224) in the limit ∆t→ 0, we recoverContinuosly

monitored quantum
system d |ψ⟩ = −iHdt |ψt⟩+(√

γ(X− ⟨X⟩)dξ− γ

2
(X− ⟨X̂⟩)2dt

)
|ψt⟩

(225)

4.1.4 Lindblad Dynamics Average State

Here, we discuss the evolution of the mean quantum state ρ = |ψ⟩⟨ψ| by
averaging across all the realization of the noise

dρ = |dψ⟩⟨ψ|+ |ψ⟩⟨dψ|+ |dψ⟩⟨dψ|. (226)

The time evolution of ρ can be described by

dρ
dt

= −i[H, ρ] −
γ

2
[X, [X, ρ]] , (227)

depicted in a master equation of the Lindblad form. The observable X func-
tions as the jump operator, representing the interaction with the external en-
vironment. Given that the jump operator is Hermitian, for any finite dimen-
sion N, the Lindblad dynamics will evolve towards the maximally mixed
state within any symmetry sector of the Hilbert space, thereby erasing all
initial state information of ρ(0) except for invariant subspaces [131, 221]. In
the absence of symmetry, ρ(t → ∞) ∝ I across the entire Hilbert space.
It is important to note that various measurement protocols yield the same
average quantum state.
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A BM1 M2

A BM1 M2

Figure 17: Entanglement Swapping: initially (A,M1) and (M2, B) are entangled. Af-
ter measuring M = (M1,M2) in the Bell basis, we entangle (A,B), estab-
lishing a quantum correlation previously absent.

4.2 local measurements have a non-local effect on entan-
gled states

Before analyzing the role that projective measurements play in many-body
systems, as a warm-up let us start our analysis by exploring the phenomenon
of measurement-induced entanglement swapping, demonstrating the non-
local effects that local measurements can have on entangled states; see Fig.
17 for a scheme of the process.

To illustrate this concept, we consider a simple four-qubit system involv-
ing two distant components, Alice (denoted as qubit A) and Bob (denoted
as qubit B), and a composite system M represented by qubits M1 and M2,
which will be measured.

Let us introduce the Bell basis {
∣∣Φ±〉 ,

∣∣Ψ±〉} of a pair of qbits

∣∣Φ±〉 = 1√
2
(|00⟩ ± |11⟩) , (228)

∣∣Ψ±〉 = 1√
2
(|01⟩ ± |10⟩) . (229)

We begin with an initial state where Alice and Bob share a Bell state with
the composite system M, so that the global system state |ψ⟩ is given by

|ψ⟩ =
∣∣∣Φ+
AM1

〉 ∣∣∣Φ+
M2B

〉
(230)

=
1

2

(∣∣0A0M1

〉
+
∣∣1A1M1

〉)(∣∣0M2
0B
〉
+
∣∣1M2

1B
〉)

.

Next, we want to perform a projective measurement on the composite sys-
tem M in the Bell basis. To this extent it is convenient to write the state |ψ⟩
in terms of the Bell pairs of M

|ψ⟩ = 1

2

[
|0A0B⟩

∣∣Φ+
M

〉
+
∣∣Φ−
M

〉
√
2

+ |1A1B⟩
∣∣Φ+
M

〉
−
∣∣Φ−
M

〉
√
2

+ |0A1B⟩
∣∣Ψ+
M

〉
+
∣∣Ψ−
M

〉
√
2

+ |1A0B⟩
∣∣Ψ+
M

〉
−
∣∣Ψ−
M

〉
√
2

]
. (231)

The measurement results in the generation of one of the following entan-
gled pairs between Alice and Bob, each occurring with equal probability Entanglement

swapping
|ψ1⟩ =

∣∣Φ+
AB

〉 ∣∣Φ+
M

〉
, |ψ2⟩ =

∣∣Φ−
AB

〉 ∣∣Φ−
M

〉
,

|ψ3⟩ =
∣∣Ψ+
AB

〉 ∣∣Ψ+
M

〉
, |ψ4⟩ =

∣∣Ψ−
AB

〉 ∣∣Ψ−
M

〉
. (232)
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Our simplified model highlights the non-local characteristics of quantum
systems, where local measurements performed on one segment of the sys-
tem can instantaneously influence the entangled relationships among dis-
tant particles. Specifically, when measurements are conducted non-locally
in the Bell basis—a fundamental set of states used to demonstrate quantum
correlations—the system M establishes a quantum correlation between com-
ponents A and B that was not previously present. This behavior underscores
the intriguing aspect of quantum entanglement, where actions on one part
of the system can affect other parts instantaneously, regardless of the dis-
tance separating them. This phenomenon, often described as spooky action at
a distance, vividly illustrates one of the most profound and debated aspects
of quantum theory, as discussed in foundational works such as J.S. Bell’s
paper on the EPR paradox and non-locality [222].

4.3 measurement induced phase transition

As stated in the introduction to this chapter, there has been a considerable
fascination with MIPT. Unlike traditional phase transitions driven by ther-
mal fluctuations or external fields, MIPTs are driven purely by the effect
of quantum measurements on the state of the system. This makes MIPT a
purely non-equilibrium phenomenon, depending crucially on the dynamics
introduced by the measurement process, including the rate, strength, and
nature of the measurements.

Recently, there has been growing attention to the behavior of average en-
tanglement entropy dynamics. Let us review the main results. Specifically,
let p = γdt denote the probability of a measurement occurring, with γ rate
of measurement. We can identify a critical threshold pc that separates two
distinct phases. When p > pc frequent measurements inhibit the propaga-
tion of correlations in a quantum system, obstructing the spread of informa-
tion. In this phase, dubbed the quantum Zeno phase, the entanglement has
an area-law scaling. Conversely, when measurements are sparse enough,
that is p < pc, the entanglement follows a volume-law scaling, allowing
quantum correlations to propagate throughout the system. The results are
summarized in Fig. 18.

Experimentally, MIPT have been observed in various platforms, such as
superconducting qubits and trapped ions, where the controlled application
of measurements is feasible. These experiments not only test the theoretical
predictions, but also explore the practical consequences of MIPT, such as
their impact on quantum coherence and the ability to maintain entangled
states. Moreover, for quantum computing, understanding MIPT is important
because it relates directly to how information is processed and maintained
in a quantum system. This can be exploited for quantum error correction,
where measurements are used to protect information against decoherence.

4.4 mean state and quantum trajectories

In the next chapters, we want to change back the point of view by restoring
the usual connection to the well established way of characterizing quantum
phase transitions: namely, by identifying a possible local-order parameter
and by inspecting its full counting statistics.

In particular, since a monitored evolution is implemented by an unital
dynamical quantum map, then the completely mixed state is a fixed point
of the dynamics. We therefore expect the dynamics to bring the mean state
(apart from symmetry protected sectors of the Hilbert space) toward the
trivial infinite temperature one. Therefore, we say that averages computed
with the mean state are known a priori.
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S(t) ∼ t0

S(t) ∼ ln(t)
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Figure 18: Entanglement growth: varying the probability of applying a measure-
ments’ operator p there are three different phases, for p > pc we are
in the Quantum Zeno phase in which there is no growth of entanglement,
if p < pc the measurements are too sparse and the entanglement as a
volume-law growth, finally for p = pc we are in the critical phase in
which the entanglement grows logarithmically.

On the other hand, we may consider single quantum trajectories described
by a set of not-averaged density matrices ρt,ξ = |ψt,ξ⟩⟨ψt,ξ| where ξ repre-
sents a single realization of the stochastic protocol. We then consider aver-
ages of a functional of our state F[ρ] over the set of quantum trajectories, it
is apparent that

F[ρt] ̸= F[ρt,ξ], (233)

as long as F is not a linear functional of ρt,ξ. As a simple example we observe

that the purity of our states Tr
{
ρ2t,ξ

}
= 1 for the set of quantum trajectories

(since the state is always a product state), meanwhile since the mean state is
generically mixed we have Tr

{
ρt
2
}
< 1.

Let us now consider an operator A and a set of quantum trajectories ρt,ξ.
Given a certain fixed realization of the measurement protocol ξ we can de-
fine a quantum probability Quantum statistics

over each trajectory
Pt,ξ(a;A) = Tr{δ(A− a)ρt,ξ} (234)

of obtaining certain outcomes from the eigenvalues of A. Given that this
distribution is linear in ρt,ξ, following the previous discussion, we have
that the average of the distribution over the set of quantum trajectories

Pt(a;A) = Pt,ξ(a;A) = Tr{δ(A− a)ρt,ξ}, (235)

is a deterministic quantity known a priori, which is completely described by
the dynamics of the mean state. Furthermore, all the moments of Pt,ξ(a),
i.e.

〈
Ant,ξ

〉
= Tr{Anρt,ξ} (236)

are linear functionals of ρt,ξ and therefore display a deterministic a priori
dynamics. Despite this we can consider the cumulants of the distributions
(234) over the set of quantum trajectories which result in non-linear func-
tional of ρt,ξ. In particular, the n-th cumulants of the distribution is given
by

Kt,n(A) = ∂
n
λ log

[
Tr
{
eλAρt,ξ

}]∣∣∣∣
λ=0

. (237)
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As for instance, we may write the second cumulant

Kt,2(A) = Tr
{
A2ρt,ξ

}
− Tr{Aρt,ξ}

2 = Tr
{
A2ρt,ξ

}
− Tr{Aρt,ξ}

2, (238)

which is clearly given by an average of a non-linear functional of ρt,ξ.
We are going now to construct a different probability distribution whose

second moment is the very same non-linear contribution of the former cu-

mulant Tr{Aρt,ξ}
2. Indeed, we may consider a classical probability obtained

by considering N different trajectories and computing the average of the
observable over each realization of the stochastic protocol ξ

at,ξ = Tr{Aρt,ξ}, (239)

in the limit of N → ∞ the averages over this set will be distributed accord-
ing to a probability distributionProbability

distribution
expectation values

Pt(a;A) = lim
N →∞ 1

N

N∑
ξ=1

δ(at,ξ − a) = δ (Tr{Aρt,ξ}− a) (240)

not dependent on the particular realization ξ and non-linear in ρt,ξ. Then,
we can consider the moments of the latter distribution

µt,n(A) =

∫
Pt(a;A)anda, (241)

which in this case are non-linear functionals of ρt,ξ. As a clarifying example,
let us consider the second moment

µt,2(A) =

∫
Pt(a;A)a2da = lim

N →∞ 1

N

N∑
ξ=1

[Tr{Aρt,ξ}]
2 = Tr{Aρt,ξ}

2. (242)

As it is apparent, there is a close connection among the cumulants of Pt,ξ(a;A)
and the moments of the distributions {Pt(a;Ak)}k∈N. This is due to the fact
that it is possible to compute the n-th cumulant of Pt,ξ(a;A) with a linear
combination the moments of {Pt(a;Ak)}k⩽n.



5F U L L C O U N T I N G S TAT I S T I C S I N T H E M O N I T O R E D
Q U A N T U M I S I N G C H A I N

In this chapter, we study the competition between the unitary dynamics
and the random projective measurements in a quantum Ising chain coupled
to an environment which continuously measures its transverse magnetiza-
tion. For this particular model several works have discussed the relation-
ship between measurements and entanglement transition. In particular in
Refs [169, 196, 223], the authors considered the one-dimensional quantum
Ising model coupled to an environment which continuously measures its
transverse magnetization focusing in the quantum state diffusion protocol
[139, 224] and in the quantum jump [225]. They found a sharp phase transi-
tion from a critical phase with logarithmic scaling of the entanglement to an
area-law phase. Instead, the Ref. [194] presents the transverse Ising model
with two non-commuting projective measurements and no unitary dynam-
ics showing the entanglement transition between two distinct steady states
that both exhibit area law entanglement.

In particular, we investigate how the stationary probability distribution of
magnetizations and its momenta (and cumulant) are affected by the moni-
toring of local degrees of freedom. In particular, upon increasing the ratio γ
between measurement rate and Hamiltonian coupling we find a transition
from a correlated to a uncorrelated phase.

5.1 model

The Ising Hamiltonian (with no transverse field) reads

H = −J

L−1∑
j=1

σxj σ
x
j+1 (243)

where σαj are the local Pauli matrices, such that [σαp , σ
β
q ] = 2iδpqϵ

αβγσ
γ
p.

Here we consider open boundary conditions (OBC). The Hamiltonian is
invariant under the action of the global spin flip operator P =

∏L
j=1 σ

z
j . In

the following we enforce such symmetry and work in the invariant sector
with P = +1.

Using the Jordan-Wigner transformation

σxℓ =

ℓ−1∏
j=1

(1− 2nj)(c
†
ℓ + cℓ), σ

y
ℓ = i

ℓ−1∏
j=1

(1− 2nj)(c
†
ℓ − cℓ), σzℓ = 1− 2nℓ,

(244)

where {ci, c
†
j } = δij and ni ≡ c†ici, the Hamiltonian takes the form

H = −J

L−1∑
j=1

(c†j − cj)(c
†
j+1 + cj+1). (245)

Within the approach we will be using in the next sections, it is convenient
to replace the fermions cj with the Majorana fermions (here we define two
sets of operators through the apexes x and y)

axj = (c†j + cj), a
y
j = i(c†j − cj), (246)

75
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which are hermitian and satisfy the algebra {aαi , a
β
j } = 2δijδαβ, and such

that one has

σxj =

j−1∏
m=1

(iayma
x
m)axj , σ

y
j =

j−1∏
m=1

(iayma
x
m)ayj , σzj = ia

y
j a
x
j . (247)

In terms of the Majorana fermions, the Hamiltonian readsClassical Ising
Hamiltonian with

Majorana fermions
H = J

L−1∑
j=1

[
i

2
a
y
j a
x
j+1 −

i

2
axj+1a

y
j

]
=
J

2
a†Ta, (248)

where we defined the vector a† = (ax1, . . . , a
x
L, a

y
1 , . . . , a

y
L), and identified

the 2L× 2L couplings matrix

T =

[
0 H

H† 0

]
(249)

with Hpq = −iδp,q+1 for p, q in {1, . . . , L}. Introducing the unitary ma-
trix V = (v1, . . . , v2L), (i.e. V†V = I2L×2L), whose column vectors are
parametrised as

vq =
1√
2

(
ϕq

−iψq

)
, (250)

we get from the eigenvalue equation Tvq = ϵqvq the following coupled
equations

−iHψq = ϵqϕq, (251)

H†ϕq = −iϵqψq. (252)

We can notice here that these equations are invariant under the simultane-
ous change ϵq → −ϵq and ψq → −ψq. So, to each positive eigenvalue,
ϵq > 0, corresponds a negative eigenvalue ϵq ′ = −ϵq with the associated
eigenvector vq ′ = (σz ⊗ IL×L)vq. From these equations it is straightfor-
ward to obtain two decoupled eigenvalue equations HH†ϕq = ϵ2qϕq and
H†Hψq = ϵ2qψq. Since HH† and H†H are real symmetric matrices, their
eigenvectors can be chosen real and they satisfy completeness and orthogo-
nality relations.

In the specific case of the Ising Hamiltonian in Eq. (248), those matrices are
already diagonal (with one eigenvalue equals to zero, and L− 1 eigenvalues
equal to one), specifically (HH†)pq = δpq − δp1δq1 and (H†H)pq = δpq −

δpLδqL. Choosing the coefficients ϕpq = δpq for p and q in {1, . . . L}, leads to
ψpq = −δpq−1 for q in {2, . . . , L} and ψp1 = −δpL. This implies V†TV =

σz ⊗ HH†. From the Majorana field we get the following diagonal Fermi
operators corresponding to positive energies

ηq =
1

2

L∑
p=1

[
ϕpqa

x
p + iψpqa

y
p

]
=
1

2

[
axq − iayq−1

]
, for q = 2, . . . , L

(253)

and η1 = [ax1 − ia
y
L]/2. They satisfy canonical anticommutation relations

{ηq, η
†
p} = δpq. From those, the inverse relations reads

axq = ηq + η†q, ayq = i[ηq+1 − η
†
q+1], (254)

with ayL = i[η1 − η
†
1], leading to the diagonal Hamiltonian

H =

L∑
q=1

ϵq η
†
qηq − J(L− 1), (255)



5.2 protocol 77

with ϵp = 2J(1− δp1). From the previous relations, the unitary time evolu-
tion of the Majorana operators can be easily worked out

axp(t) = cos(ϵpt)axp − sin(ϵpt)a
y
p−1, (256)

ayp(t) = sin
(
ϵp+1t

)
axp+1 + cos

(
ϵp+1t

)
ayp, (257)

where periodic boundary conditions in the indices are intended, namely
0→ L and L+ 1→ 1.

For a Gaussian state all the information is encoded in the two-point cor-
relation function of the Majorana operators, namely Correlation Matrix

Majorana operators
time evolution

A = ⟨a · a†⟩ =
(

Axx Axy

Ayx Ayy

)
, (258)

which under the classical Ising Hamiltonian evolve from time s to time s+ t
according to A(s+ t) = R(t)A(s)R†(t), with

R(t) =

(
Rxx(t) Rxy(t)

Ryx(t) Ryy(t)

)
, (259)

whose matrix elements are

Rxxpq(t) = cos(ϵpt)δpq (260a)

Ryypq(t) = cos
(
ϵp+1t

)
δpq (260b)

Ryxpq(t) = sin
(
ϵp+1t

)
δpq−1 (260c)

Rxyqp(t) = − sin(ϵpt)δpq+1 (260d)

5.2 protocol

We prepare the system in the symmetric (P = +1) ground state of the Hamil-
tonian in Eq. (243), namely the GHZ state

|ψ0⟩ =
1√
2
[| · · · ↑ · · · ⟩+ | · · · ↓ · · · ⟩] (261)

where here | ↑⟩ and | ↓⟩ represents the eigenstates of σx with eigenvalues
respectively +1 and −1. This initial state is described by a correlation matrix
whose matrix elements are

Axx
pq = Ayy

pq = δpq Axy
pq = −iδpq+1 Ayx

pq = +iδp+1q, (262)

where once again, PBC in the indices are intended, i.e. L + 1 → 1; as ex-
pected, the initial correlation matrix would be unaffected by just the unitary
evolution generated by the Ising Hamiltonian in Eq. (243). However, the sys-
tem experiences random interactions with local measuring apparatus such
that the full time-dependent protocol becomes highly non-trivial. In practice,
with a characteristic rate γ, for each single lattice site k, the local magnetiza-
tion along z is measured, i. e. σzk =

∑
σ σP

(σ)
k . Here σ = ±1 are the possible

outcomes of the measurements, and P(σ)k = (1+ σσzk)/2 is the projector to
the corresponding subspace.

Let us stress that both the unitary evolution and the local projective mea-
surements keep the state Gaussian in terms of the Majorana fermions. While
the former comes straightforwardly from the fact that exp(−itH) is Gaus-
sian; the latter may not be immediately visible from the simple structure of
the projectors Pσk . However, it is easy to show that

P
(σ)
k = lim

x→∞ exσσ
z
k

Tr(exσσ
z
k)
, (263)
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thus also being a Gaussian operator in terms of Majorana fermions. Finally,
let us mention that the protocol also preserves the spin-flip invariance, the
state thus remaining always in the P = +1 sector.

For the aforementioned reasons, during the entire dynamics, the full in-
formation of the state is completely encoded within the two-point functions
A
αβ
pq = ⟨aαpaβq⟩, and all higher-order correlators slipt into sums of products

of the two-point function only, according to the Wick theorem.
Since σzk operators acting on different lattice sites commute, we can mea-

sure the local spins in any arbitrary order; specifically, if at time t the k-th
site has been measured, following the Born rule, if the outcome is σ = ±1,
then the state |Ψ(t)⟩ transforms into P(σ)k |Ψ(t)⟩/

√
⟨Ψ(t)|P(σ)k |Ψ(t)⟩. The re-

sulting state remaining Gaussian, we can thus focus on the two-point func-
tion A

αβ
pq (t) which completely characterises the entire system. The recipe is

the following: for each time step dt and each site k, we extract a random
number qk ∈ (0, 1] and only if qk ⩽ γdt we take the measurement of σzk.
In such case, we extract another random number pk ∈ (0, 1], and the two-
point function immediately after the projection to the σzk local eigenstates
becomes (in the following we omit the time dependence in order to simplify
the notation)Correlation matrix

after strong
projective

measurement Aαβ
pq |σ =

2

1+ iσA
yx
kk

[
1

4
Aαβ
pq +

iσ

4
⟨{aαpaβq , aykaxk}⟩−

1

4
⟨aykaxkaαpaβqa

y
ka
x
k⟩
]

(264)

where σ = +1 if pk ⩽ 1/2+ ⟨σzk⟩/2, otherwise σ = −1.
The second term can be easily evaluated using the Wick theorem obtain-

ing

⟨{aαpaβq , aykaxk}⟩ = 2A
yx
kkAαβ

pq +(Aαx
pkA

βy
qk +Axα

kpA
yβ
kq )−(Aαy

pkA
βx
qk+A

yα
kpA

xβ
kq).

(265)

Finally, using the fact that

aαpa
β
qa
y
ka
x
k = −4δpkδqkδ

αyδβx + 2δqkδ
βyaαpa

x
k + 2δpkδ

αyaxka
β
q(266)

+ 2δqkδ
βxa

y
ka
α
p − 2δpkδ

αxa
y
ka
β
q + ayka

x
ka
α
pa
β
q , (267)

after a bit of algebra, also the last term in Eq. (264) can be explicitly decom-
posed as follow

⟨aykaxkaαpaβqa
y
ka
x
k⟩ = −Aαβ

pq − 4δpkδqk

(
δαyδβx − δβyδαx

)
A
yx
kk − 2δqkδ

βyA
yα
kp+

+ 2δpkδ
αyA

yβ
kq − 2δqkδ

βxAxα
kp + 2δpkδ

αxA
xβ
kq.

(268)

5.3 lindbladian dynamics of the averaged state

In this work, we study observables affected by the continuous monitoring of
the system. Before doing so, it is important to stress the differences between
quantum trajectories and mean states [153]. The mean state of our proto-
col is defined as the average of the density matrix over the measurements
outcomes

ρt = |ψt⟩⟨ψt| (269)

where with (. . . ) we denote the average over the measurement protocol.
The projective measurement protocol, relies on the fact that, at every single
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measurement step, we know which lattice sites are measured, together with
the outcomes of the measurements as well.

However, if we do not know whether the lattice site k-th is measured and
no information about the measurement is retained, then a generic state ρ
transforms accordingly to the quantum mechanic prescription as follow

ρ→ Mk(ρ) =

(
1−

γdt

2

)
ρ+

γdt

2
σzk ρσ

z
k, (270)

where γdt is the probability that a single site is measured, after a discretiza-
tion of the continuum time evolution has been applied. Therefore, after a
time step dt the entire system with L lattice sites transform according to

ρ→ e−idtH[ML ◦ · · · ◦M2 ◦M1(ρ)]eidtH. (271)

The discrete protocol in the previous equation can be easily implemented
in a tensor network algorithm, where each measurement operation Mk is
easily implemented as a transformation of the local tensor in the MPO rep-
resentation of the mixed state ρ.

From an analytical point of view, if we are interested in the continuum
limit of Eq. (271), where dt → 0 with fixed γ, we can keep the first order
terms in the composition of the measurement string, obtaining

ML ◦ · · · ◦M2 ◦M1(ρ) =
(
1− L

γdt

2

)
+
γdt

2

∑
k

σzk ρσ
z
k +O(dt

2) (272)

Combining the previous expansion with the unitary part in the evolution,
we finally get the following Lindblad master equation Lindblad equation

∂tρ = −i[H, ρ] +
γ

2

L∑
k=1

(
σzk ρσ

z
k −

1

2
{σzkσ

z
k, ρ}

)
, (273)

where we used the fact that (σzk)
† = σzk and (σzk)

2 = 1.

average state full counting statistics — In our protocol, the
initial state |ψ0⟩⟨ψ0| admits a MPO representation whose local tensors for
each lattice site k are

Γk =




|↑⟩⟨↑ | 0 0 0

0 |↑⟩⟨↓ | 0 0

0 0 |↓⟩⟨↑ | 0

0 0 0 |↓⟩⟨↓ |




(274)

=
1

2




1+ σx 0 0 0

0 σz − iσy 0 0

0 0 σz + iσy 0

0 0 0 1− σx



,

and both left and right boundary vectors are given by l⃗ = r⃗ = (1, 1, 1, 1)/
√
2.

Once again, here |↑⟩ and |↓⟩ represents the eigenstates of σx with eigenval-
ues respectively +1 and −1. In particular, even under the action of the local
transformation Mk (which does not change the MPO auxiliary dimension),
the averaged state remains always an eigenstate of the classical Ising Hamil-
tonian Hxx. In other words, the unitary part in Eq. (271) does not play any
role, and the only contribution to the averaged state evolution comes from
the nested application of Mk on each lattice site. In addition, each single
operator in the diagonal MPO Γk, transforms independently.
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The local dynamics induced by the nested transformations of Mk can be
easily solved in the Pauli matrix representation of each local state. Indeed,
discarding the index k for a sake of clarity, and expanding a generic local
density matrix as ρ =

∑
µ cµσ

µ, we easily get

cµ(t) =
∑
ν

M(t)µνcν(0), with M(t) =




1 0 0 0

0 e−γt 0 0

0 0 e−γt 0

0 0 0 1




. (275)

Using this last result with the initial condition in Eq. (274) we obtain

Γk(t) =
1

2




1 0 0 0

0 σz 0 0

0 0 σz 0

0 0 0 1



+

e−γt

2




σx 0 0 0

0 −iσy 0 0

0 0 iσy 0

0 0 0 −σx




. (276)

The time evolved averaged state is therefore described by ρ(t) = l⃗ ·∏L
k=1 Γk(t) ·

r⃗, and it relaxes toward the infinite temperature state within the Z2 symme-
try sector with P = 1, namely ρ(∞) = (1+ P)/2L.

In addition, the averaged generating function of the moments of Mxℓ can
be easily computed as follow

Tr{eλM
x
ℓ ρ(t)} = t

1

2

{
[cosh(λ/2) + e−γt sinh(λ/2)]ℓ

+[cosh(λ/2) − e−γt sinh(λ/2)]ℓ
}
, (277)

5.4 numerical results

In order to examine the melting of the ferromagnetic order of the Ising
chain under continuous projective paramagnetic measures, we will consider
the following observables

Mzℓ =
1

2

∑
j∈ℓ

σzj , Mxℓ =
1

2

∑
j∈ℓ

σxj , Mxxℓ =
1

4

∑
i ̸=j∈ℓ

σxi σ
x
j , (278)

and study the classical distribution Pt of the averages computed over a set
quantum trajectories or, when this will not be possible, the cumulants of
Pt,ξ.

We recap here the numerical procedure that implements the continuous
measurement protocol. We remark that, since we are working with an evo-
lution that preserves the state Gaussian, the correlation matrix A contains
all the information of the system. The starting point of the dynamics is the
GHZ state whose correlation matrix is given in Eq. (262). The system is
then evolved unitarily by dt with Eqs. (260), then we apply the projective
measurement step. To do so, sequentially projective measurements of the
z-magnetization on each site are applied with probability pmeas = γdt, thus
transforming the system correlation matrix A as pointed out in Eq. (264).

In our simulations, in order to set a time scale, we evolve our system
up to a fixed time which depends on gamma, we chose tf = T/γ. This
means that, on average, for each choice of γ the same number of projective
measurements are executed. Indeed, we have tf/dt time steps where with
probability γdt for each of the L sites a projective measurement is done. This
implies an average number of measurements of

Nmeas =
tf
dt
Lγdt = TL, (279)
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Figure 19: Local z-magnetization computed on single realization of a quantum tra-
jectory. Left panel: γ = 0.1; Right panel: γ = 10.

−2 0 2

m/
√
`

0.0

0.5

1.0

1.5
√
`
P

(m
;M̂

z `
)

γ = 0.1

(b)

` = 16

` = 32

` = 64

` = 96

Gaussian

−9 −6 −3 0 3 6 9
m

0.00

0.05

0.10

0.15

P
(m

;M̂
z `
)

` = 18

(a)

γ = 10.00

Binomial

Figure 20: Stationary probabilities of the subsystem paramagnetic magnetization. (a)
regime of fast measurements γ = 10, the numerically probability (ob-
tained from an histogram) is compared to a binomial distribution. (b)
sparse measurements regime γ = 0.1 the numerically probability (ob-
tained from an histogram) is compared to a Gaussian distribution. Details
on the normalization of the two histograms are in the main text.

in our simulations T = 20, L = 128 then, on average, each realization of
the stochastic protocol consist of Nmeas = 2560 projective measurements.
Furthermore, in the following, for each choice of the parameters, we chose
a set of N = 200 quantum trajectories.

In the following paragraphs, we study how the initial ferromagnetic order
melts under the influence of repeated measures.

5.4.1 Paramagnetic Magnetization

First of all, we start by analyzing the dynamics of the paramagnetic mag-
netization, we will denote with |0⟩ and |1⟩ the two eigenstates of σz with
eigenvalue 1 and −1 respectively. In Fig. 19 we show the evolution of the
local z-magnetization

mz(j, γt) =
1

2
Tr
{
σzj ρt,ξ

}
, (280)

for a single realization of the stochastic protocol and two different choices
of the measurement rate γ. It is apparent that, due to the quantum Zeno
effect [212, 213], increasing the measurement rate, local regions in which
the magnetization is frozen appear. On the other hand, if measurements are
sparse in time we expect a completely random evolution of the system.
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Figure 21: Distribution of the magnetization Mzℓ on a sub-lattice of size ℓ centered in
the middle of the spin chain in the stationary state γt ≫ 1. The values of
the distribution are extracted form an histogram.

To be more quantitative, we are going to analyze the behavior of Pt
(
mzℓ ;Mzℓ

)

in the stationary case for which γt≫ 1 by defining the distribution

P(m;Mzℓ ) =
1

tf − t0

∫tf
t0

Pt (m
z
ℓ ;Mzℓ )dt, (281)

where (. . . ) denotes the time average, in our simulations we chose t0 such
that γt0 = 5, we will study the aforementioned limiting case of fast mea-
surements γ≫ 1 and rare γ≪ 1.

We start our analysis by the limit case in which γ ≫ 1 we are con-
stantly monitoring all the sites of the system, the unitary evolution thus
becomes negligible, and therefore we are effectively blocking the system in
the product state outcome of first measurement. Since we are starting from
the ferromagnetic GHZ ground state, the first measurement outcome with
equal probability is one of the product states |τ1 . . . τL⟩, with τj = 0, 1 for
j = 1, ..., L. Since in this limit the state is blocked in the first measurement
outcome we have that P(mzℓ ) will be equivalent to the quantum probability
P(mzℓ ;Mzℓ ) of obtaining from the state a certain eigenvalue of Mzℓ . Thus

P(mzℓ ) will be the discrete binomial distributionDense measurements

P(m;Mzℓ ) =
1

2ℓ

(
ℓ

mzℓ +
ℓ

2

)
mzℓ ∈ −ℓ/2, . . . , ℓ/2, (282)

In Fig. 20(a), for γ = 10, we compare the numerical distribution obtained
from an histogram to the theoretical prediction obtaining a good agreement.
Since we want to compare this distribution to a discrete one, we normalized
the histogram such that the sum over all the heights of the distribution in
each bin is equal to one.

On the other hand, the case in which γ≪ 1 means that measurements are
diluted in time and that the information can propagate along the chain. We
then have a dynamics dominated by the unitary evolution which may pro-
duce an entangled state by propagating the defects generated from the pro-
jective measurements. In first approximation, in the limit of γ≪ 1, we found
from the numerics that the local magnetization mz(j, γt) is distributed in
[−1/2, 1/2] with a variance σ2 ≈ 1/16. From the central limit theorem, we
thus find that the subsystem magnetization is distributed as a Gaussian
centered in zero with standard deviation σ

√
ℓ, and thus its probability dis-

tribution is given bySparse measurements

P(m;Mzℓ ) =

√
16

2πℓ
exp

[
−
16(mzℓ )

2

2ℓ

]
. (283)
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Figure 22: Second moment of the subsystem paramagnetic magnetization Mzℓ
rescaled with the size of the subsystem. If γ < 4 there is a perfect matching
between data, after the phase transition we witness a different behavior
of the magnetization. Error bars are given by the error of the mean.

In Fig. 20(b), for γ = 0.1, we compare the numerical distribution obtained
from an histogram, now normalized such that the integral over the bins is
equal to one, to the Gaussian distribution obtaining a good agreement.

Finally, in Fig. 21, for γ = 0.1, 2, 2.5, 4 and ℓ = 6, 18 we plot the distribu-
tions of the subsystem magnetizations. Qualitatively, as it is suggested by
the plot, there is a crossover from a Gaussian distribution to the binomial
one. Furthermore, for values of the measurement rate around the critical
value of the measurement induced phase transition γc ≃ 4, the distribution
starts to develop peaks in correspondence of mzℓ ∈ −ℓ/2, . . . , ℓ/2 which are
the values of the eigenvalues of Mzℓ .

In order to study the latter behavior more deeply, in Fig. 22 we plot, for
different subsystem sizes, the value of the second moment of the subsystem
magnetization, rescaled with the subsystem size, against the measurement
rate γ

µ2(M
z
ℓ ) =

1

tf − t0

∫tf
t0

Tr
{
Mzℓρt,ξ

}2
dt (284)

where once again γt0 = 5 and γtf = 20. When γ is less than 4, so that the
dynamics is in the long-range correlated region of the phase diagram, there
is a perfect match of the data points. Increasing the value of γ we witness
spreading of the averages, meaning that we are in a different regime.

5.4.2 Ferromagnetic Magnetization

We are now going go study the behavior of the ferromagnetic magnetization
along x in the stationary state. We can not proceed as in the previous section.
Indeed, due to the Z2 symmetry of the protocol and of the initial state
⟨σxj ⟩ = 0 in any site and all the times. This result in a trivial distribution of
the ferromagnetic magnetization

Pt(m;Mxℓ ) = δ(m) ∀ t. (285)

On the other hand, we can consider the quantum probability

Pt,ξ(m;Mxℓ ) = Tr{δ (Mxℓ −m) ρt,ξ}, (286)

and compute the generating function of the cumulants. In particular we
studied the fourth cumulant. Despite it has a non trivial a priori evolution,
it does not contain any relevant information on the measurement-induced
phase transition, due to the fact that we could not have access to sufficiently
large subsystems.
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Figure 23: (a) Stationary probability distribution of Mxxℓ for ℓ = 28 integrated for
5 < γt0 < 20. (b) Variance of mxxℓ extracted from the probabilities distri-
butions, the errorbar is given by its fluctuation.

5.4.2.1 Probability of Mxxℓ

In order to overcome the limitations described in the previous paragraph,
we considered the full counting statistics over the trajectories of the follow-
ing observable

Mxxℓ =
1

4

∑
i ̸=j∈ℓ

σxi σ
x
j . (287)

To extract information on the spectrum of Mxxℓ , we rewrite its expression as
follow

Mxxℓ =
1

4

∑
i,j∈ℓ

σxi σ
x
j −

ℓ

4
=
1

4

(∑
i∈ℓ

σxi

)2
−
ℓ

4
=

(
2Mxℓ

)2
− ℓ

4
. (288)

The maximum eigenvalue Mxxℓ corresponds to ℓ(ℓ − 1)/8 while the mini-
mum is −ℓ/8. Since we consider an evolution starting from the GHZ state we
start from the maximum of value of ⟨Mxxℓ ⟩ and evolve towards a stationary

state. In Fig. 23(a) we show the stationary classical probability P(m;Mxxℓ )

for a subsystem of size ℓ = 28. In the case in which γ ≫ 1 the system is
not far form an eigenstate of Mzℓ thus the distribution is well described by
a δ(m), we expect thus that all the moments of the distribution in this limit
to be equal to zero. On the other hand, decreasing the value of γ the distri-
bution transition towards a distribution centered in mxxℓ = 0 with a width
that increases decreasing the value of γ. Indeed, in Fig. 23(b) we plot the
width of the aforementioned distribution for different values of the subsys-
tem size, which decreases with the measurement rate γ. We see that (Mxℓ )

2

could witness the measurement induced phase transition since crossing the
critical value γ ∼ 4 the width changes dramatically behavior with the sub-
system size: in the Zeno-like regime (namely for γ > 4), the fluctuations are
basically suppressed; instead, for γ < 4 they show a remarkable dependence
with the ℓ, already for relatively small sizes.

As a matter of fact, although this behavior seems not as clean as what
we have found for the paramagnetic magnetization, the ferromagnetic fluc-
tuations have the paramount advantage to keep the extensive (with the sub-
system size) character only when entering the strongly correlated phase. In
other words, while µ2(Mzℓ ) is expected to show a non-analytic behavior at
γ ≃ 4 in the thermodynamics limit; µ2(Mxxℓ ) is not just non-analytic at the
transition point, but in addition it clearly characterizes the entire correlated
phase already looking at small subsystems.
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Figure 24: Non a priori contribution to the fourth cumulant. Left panel: evolution
of the fourth cumulant towards the stationary state. Right panel: time
averaged fourth cumulant in the stationary state (after γt0 = 5), the error
bars are estimated as the standard deviation of the time average, inset
log-linear plot of the mean values. Subsystem size ℓ = 10.

cumulants ferromagnetic magnetization — Since we are inter-
ested in the statistics of the order parameter Mxℓ = 1

2

∑ℓ
j=1 σ

x
j , in a subsys-

tem of ℓ contiguous lattice sites, we do identify Fℓ(λ) via

eFℓ(λ) ≡ ⟨eλMx
ℓ ⟩, with Knℓ = ∂nλ Fℓ(λ)|λ=0 , (289)

as the generating function of all cumulants Knℓ of the subsystem magnetiza-
tion. From the large deviation theory we may expect Fℓ(λ) ∼ ℓF̃(λ) for ℓ≫ 1,
where F̃(λ) is the large deviation function. However, this relies on the exten-
sive behavior of the cumulants, which is violated in the initial GHZ state.
For such reason, it is worth to investigate at the average over the quantum
trajectory dynamics of the ratio Fℓ(λ)/ℓ = log⟨eiλMx

ℓ ⟩/ℓ.
The computation of the subsystem generating function is a very hard task

mainly because σx is a nonlocal operator in terms of Majorana fermions. By
exploiting the Z2 symmetry of the measurement protocol, we have

Fℓ(λ) ≡ Gℓ(λ) + ℓ log cosh(λ/2), (290)

with

Gℓ(λ) = log
⌊ℓ/2⌋∑
n=0

tanh(λ/2)2n
ℓ∑

j1<j2<···<j2n

⟨σxj1σ
x
j2
· · ·σxj2n⟩, (291)

where the ordered indexes {j1, . . . , j2n} are in the interval [1, ℓ]. Here we
decided to highlight the nontrivial part Gℓ(λ) of the generating function,
whilst the second term in Eq. (290) simply gives the infinite temperature
contribution. Indeed, we may define the non a priori contribution κn of the
cumulants as

∂nλ Fℓ(λ)|λ=0 = κn + ℓ ∂nλ log cosh(λ/2)|λ=0 , (292)

so that κn ≡ ∂nλGℓ(λ)
∣∣
λ=0

. The evaluation of Gℓ(λ) reduces to the compu-
tation of the generic string ⟨σxj1σ

x
j2
· · ·σxj2n⟩. Following Ref. [226], it can be

evaluated as the Pfaffian of a skew-symmetric real matrix which explicitly
depends on the particular choice of the indices:

⟨σxj1σ
x
j2
· · ·σxj2n⟩ = (−1)Ljn(Ljn−1)/2 pf


F
yy
jn G

yx
jn

G
xy
jn Fxxjn


 (293)

where we used the shorthand notation jn ≡ {j1, . . . , j2n} for the full set of
indices, and Ljn =

∑n
k=1(j2k − j2k−1). The real matrices Fjn and Gjn (Fjn
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being also skew-symmetric) have dimensions Ljn × Ljn and entries given
by [48]

(Fyyjn )mp,nq = −i⟨aypayq⟩+ iδpq = −iAyy
pq + iδpq (294)

(Fxxjn )mp,nq = −i⟨axp+1axq+1⟩+ iδpq = −iAxx
p+1q+1 + iδpq (295)

(Gyxjn )mp,nq = −i⟨aypaxq+1⟩ = −iAyx
pq+1 (296)

(Gxyjn )mp,nq = −i⟨axp+1ayq⟩ = −iAxy
p+1q (297)

with {p, q} ∈ [j1, j2 − 1] ∪ [j3, j4 − 1] ∪ · · · ∪ [j2n−1, j2n − 1] and where the
indices mp and nq run in {0, . . . ,Ljn − 1}, and have the function of shrink-
ing all together the intervals. The knowledge of the Majorana correlation
functions together with the representation (293) are the basic ingredients to
compute the generating function in Eq. (291).

We note that, due to the Z2 symmetry of our system, all the odds cu-
mulants are null. Moreover, for the same reason the second cumulant has a
trivial a priori evolution since

Kt,2(M
x
ℓ ) = Tr

{
(Mxℓ )

2ρt,ξ
}
− Tr

{
Mxℓ ρt,ξ

}2
= Tr

{
(Mxℓ )

2ρt,ξ

}
, (298)

since the non-linear contribution is equal to zero. The first non-trivial con-
tribution is therefore the fourth cumulant, namely

Kt,4(M
x
ℓ ) = Tr

{
(Mxℓ )

4ρt,ξ

}
− 3Tr

{
(Mxℓ )

2ρt,ξ
}2
, (299)

where the second term does give a non-linear contribution. In Fig. 24 we
plot the time evolution of the non a priori part of the fourth cumulant, i.e.
κt,4, and its time average in the stationary state

κ4(M
x
ℓ ) =

1

tf − t0

∫tf
t0

κt,4(M
x
ℓ )dt, (300)

with γt0 = 5 and for a subsystem of size ℓ = 10, and where again (. . . )

denotes a time average in the stationary configuration. Increasing the value
of the measurement rate γ, we find an exponential decay of the station-
ary value of the 4-th cumulant towards zero, namely the infinite tempera-
ture value. On the other hand, the non-trivial time-evolution does not con-
tain any relevant information on the measurement-induced phase transition.
This is probably due to the fact that we could not have access to sufficiently
large subsystems. As a matter of fact, the numerical evaluation of the full
counting statistics is a very involved procedure, which scales exponentially
with the subsystem dimension, thus not allowing to reach thermodynamic
relevant sizes.

5.5 conclusion

The interplay of local measurements and unitary evolution can give rise to
phase transitions, manifesting in, e.g., either delocalized, strongly entangled
or localized, weakly entangled conditional states.

In this work, we investigated the quantum quench dynamics in a quan-
tum Ising chain under local projective measurements of the paramagnetic
magnetization Sz.

Very much like in a classical equilibrium situation, when non-commuting
observables compete in driving a system accross a quantum phase transi-
tion; here the unitary driving and the projective measurements compete in
creating or destroying the local order.
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In a genuinely statistical sense, different quantum trajectories naturally
fluctuate under our dynamical map; this gives rise to non-equilibrium proba-
bility distributions of local quantities which contain signature of paramount
yet elusive transitions, going much beyond the simple dynamics of the mean
state.

In particular, during the time evolution, by computing the statistics of the
expectation values of the system magnetisation in the z direction, we are
able to distinguish different regimes, namely different phases. Starting from
the strong measurement phase, increasing the imperfection rate, the distri-
bution changes from a bimodal distribution into a Gaussian distribution, the
transition point being located at measurements rate γc ≃ 4, in agreement
with what have been observed for the entanglement entropy transition [196].

As a matter of fact, our approach, based on the observation of the statis-
tics of local quantities, is naturally related to what is done in the nowadays
experiments. However, especially for devising projective-measurement pro-
tocols in the real quantum world, the ultimate challenge, which need to be
addressed yet, remains the post-selection problem: namely the possibility to ex-
perimentally reproduce the same trajectory ρt,ξ many many times, without
being affected by the exponentially inefficient measurement-induced post-
selection.





6U N R AV E L I N G O F L I N D B L A D E Q U AT I O N A N D F U L L
C O U N T I N G S TAT I S T I C S

In this chapter, we investigate quantum systems that are coupled to a mea-
suring apparatus, analyzing their evolution based on unitary dynamics in-
terrupted by projective measurements. We focus on the scenario where pro-
jective measurements occur at a fixed rate γ, which aligns naturally with
Poissonian statistics for waiting times between successive measurements. In
order to get analytical predictions the measurements are applied across the
entire Hilbert space, thus projecting the system onto an eigenstate of the
measured observable.

To demonstrate our method, we present results for two key examples: a
single qubit measuring its magnetization and a free hopping particle mea-
suring its position. Consequently, we provide an exact method for calcu-
lating the probability distribution of the expectation value of observables
averaged over the set of quantum trajectories.

6.1 protocol

Let us consider anN-level quantum system described by a time-independent
hamiltonian H, whose unitary evolution is governed by U(t) = e−iHt. In
addition, all along the evolution, we couple the system to a measuring ap-
paratus that project, with a fixed measurement rate γ, the evolved state in
to an eigenstate of the observable

A =

N∑
a=1

νa |a⟩⟨a| , (301)

such that [A,H] ̸= 0. At time t = 0 the system has been prepared in a fixed
state |ψ(0)⟩ corresponding to an eigenstate |a0⟩ of A. We are interested in
evaluating the probability distribution of the expectation value of a generic
observable O =

∑
a oa |a⟩⟨a| commuting with A, i.e. Probability

distribution
expectation valuesPO(x; t) = δ ( ⟨ψξ(t)|O|ψξ(t)⟩− x) , (302)

with t > 0. Here, the over-line is indicating the average over the quantum
trajectories, where each trajectory comprises a sequence of unitary time evo-
lutions interspersed with instantaneous projective measurements of A at
random times, and is labelled by an integer ξ. A sketch of our dynamical
protocol is shown in Figure 25. Considering this protocol, we can split this
average by putting apart the contributions for different n clicks of the mea-
suring apparatus. For each n the system is projected in one of the eigenstates
of A at times {sj}, with j = 1, . . . , n such that 0 < s1 < · · · < sn < t. We
define

PO(x; t) = P(n>0)O (x; t) + P(0)O (x; t) , (303)

where P(0), P(n>0) are respectively the no-click (n = 0) and click (n > 0)
contributions to the probability distribution of ⟨ψξ(t)|O|ψξ(t)⟩. Now we
proceed with the rewriting of these two quantities, explicitly specifying for
P(n>0) the contribution coming from events with nmeasurements and sum-
ming over n = 1, 2, 3, ... (see [138] for a similar approach). Moreover, we have

89



90 unraveling of lindblad equation and full counting statistics

Figure 25: Scheme of the dynamical protocol. We consider a system prepared in a
fixed initial state |ψ(0)⟩ = |a0⟩, undergoing random projective measure-
ments of an observable A (see Eq. (301)). Measurements occur with a fixed
rate γ at times s1 < s2 < ..., whereas in the intervals (sj, sj+1) the sys-
tem follows an unitary time evolution. Different quantum trajectories are
labelled by the integer ξ. The ensemble of states |ψξ(t)⟩ defines the prob-
ability distribution function of ⟨ψξ(t)|O|ψξ(t)⟩ (right).

to integrate over the possible measurement times sj and summing over their
possible outcomes aj. We obtain

P
(0)
O (x; t) = e−γtD(x, a0, t)

P
(n>0)
O (x; t) =

∑∞
n=1 γ

ne−γt×
×∑

a1,...,an
T
∫t
0 ds1 . . .dsn p(x, t|sn, an; . . . ; s1, a1; 0, a0),

(304)

where

D(x, a, t) ≡ δ
(
x− ⟨a|U†(t)OU(t)|a⟩

)
(305)

and p(x, t|sn, an; ...; s1, a1; 0, a0) is the conditional probability density of get-
ting the average value x at the final time t, given that the system was found
in the eigenstates {

∣∣aj
〉
} of A at times {sj}. T denotes the time-ordered prod-

uct. The term γne−γt is the Poisson weight associated to the n−measurements
events (the factor 1/n! is removed since inside the time-ordered integral the
events labelled by 1, 2...n occurs at fixed times s1 < s2 < ... < sn). Since the
measurement process is Markovian, we have that

p(x, t|sn, an; . . . ; s1, a1; 0, a0) =

= D(x, an, t− sn)p(sn, an|sn−1, an−1) . . . p(s1, a1|0, a0), (306)

where the delta contribution can be rewritten as

D(x, a, t) = δ
(
x−

N∑
a ′=1

oa ′ p(t, a ′|0, a)
)
, (307)

and gives the contribution to the probability due to the last time-interval
(sn, t). In addition, the transition probabilities between eigenstates of A
read 1

p(s ′, a ′|s, a) ≡ Ta ′,a(s
′ − s) =

∣∣ 〈a ′∣∣U(s ′ − s)
∣∣a
〉∣∣2. (308)

1 Transition probability matrices, such as T, obtained by calculating the modulus square of each
element of a unitary matrix, are frequently referred to as unistochastic matrices in the literature.
These matrices form a subset of the bistochastic matrices. [227]
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Let us assume that the transition matrix T can be diagonalised, i.e. T(s ′ −
s) = V D(s ′ − s)V† with eigenvalues Dα,β(t) = dα(t)δα,β, and time-
independent unitary matrix V whose columns are the orthonormal eigen-
vectors 2. Notice that, since T(t) is a bistochastic matrix, d1(t) = 1 is the
largest eigenvalue for any time t, meanwhile as a consequence of the Per-
ron–Frobenius theorem |dα(t)| ⩽ 1 for α = 2, . . . ,N, where the equal-
ity holds in case of degeneracy [228, 229]. In addition, since

∑
aTa,b =∑

bTa,b = 1, the eigenvector associated to largest eigenvalue is simply
given by Va,1 = 1/

√
N. Now let us focus on the nontrivial P(n>0)O (x; t).

For each order n and fixed states {a0, an}, the sum over all the the possible
intermediate outcomes can be rewritten as∑

a1,...,an−1

Tan,an−1(sn − sn−1) · · ·Ta1,a0(s1) =

=

N∑
α=1

Van,α

n∏
j=1

dα(sj − sj−1)(V
†)α,a0 , (309)

with starting time s0 = 0. We thus get

P
(n>0)
O (x; t) =

= e−γt
∞∑
n=1



∫t
0
γdsn

N∑
an=1

D(x, an, t− sn)

N∑
α=1

Van,αIn,α(sn)(V
†)α,a0




(310)

where we defined the time-ordered integrals

In,α(sn) =

∫sn
0
γdsn−1 dα(sn − sn−1) . . .

∫s2
0
γds1 dα(s2 − s1)dα(s1),

(311)

which satisfy the following recursive relations
I1,α(s1) = dα(s1),

In,α(sn) =

∫sn
0
γdsn−1 dα(sn − sn−1)In−1,α(sn−1), n > 1.

(312)

In Eq. (310) the sum over n can be safely taken, since sn and an are dum-
mies variables. Thus, we can introduce Iα(s) =

∑∞
n=1 In,α(s) which satisfy

the following linear Volterra integral equation of the second kind

Iα(s) − dα(s) =

∫s
0
γds ′ dα(s− s ′)Iα(s ′). (313)

Exploiting the Laplace transform of the integral kernel, i.e. L [dα](z) =∫∞
0 e

−ztdα(t)dt, we can easily solve the previous equation obtaining

Iα(s) = L −1

[
L [dα](z)

1− γL [dα](z)

]
(s), (314)

where L −1[. . . ] is the inverse Laplace transform. As expected, it easy to
show that

L [Iα](z) =
L [dα](z)

1− γL [dα](z)
=

∞∑
n=1

γn−1L [dα]
n(z) =

∞∑
n=1

L [In,α](z), (315)

2 It is assumed here that the transition matrix is diagonalizable. Although, as far as we know, this
property does not derive from the mathematical properties of T, we are not aware of physical
cases in which T is not diagonalizable.
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thus identifying L [In,α](z) = γn−1L [dα]
n(z). We can finally collect all

those results, further simplify and finding the following general expression
for the probability distribution

P
(n>0)
O (x; t) = e−γt

N∑
a=1

N∑
α=1

∫t
0
γdsD(x, a, t− s)Va,αIα(s)(V

†)α,a0 . (316)

Let us finally mention that using this expression we can easily compute the
k-th moment of the distribution, defined as

〈
xk
〉
PO

=
∫

dx xkPO(x; t) =

⟨ψξ(t)|O|ψξ(t)⟩k. The first moment (k = 1) is particularly simple, since it
does reduce to the expectation value of O over the averaged density matrix
|ψξ(t)⟩ ⟨ψξ(t)| whose dynamics is fully described by the Lindblad equation
(see 6.4.2). In particular, using that

∑
bTa,b(t− s)Vb,α = dα(t− s)Va,α,

we easily get

⟨x⟩PO = e−γt
N∑
a=1

oaTa,a0(t)+

+ e−γt
N∑
a=1

oa

N∑
α=1

Va,α

[∫t
0
γds dα(t− s)Iα(s)

]
(V†)α,a0 ,

(317)

which can be further simplified exploiting Eq. (313), finally obtaining

⟨x⟩PO = e−γt
N∑
a=1

oa

N∑
α=1

Va,αIα(t)(V
†)α,a0 . (318)

Let us stress that the simplified expression in Eq. (318) applies only for
averages of operators O which are diagonal in the eigenbasis of the moni-
tored observable A (i.e. when [O,A] = 0). Every time we are interested in
higher moments or probability distribution of non-diagonal operators, the
computation have to be carried out from scratch, basically starting from
Eq. (316). Finally, due to the properties of the transfer matrix T, the sta-
tionary limit t → ∞ of the previous average can be easily taken; in fact,
only α = 1, with I1(t) = eγt, will contribute to the sum over α, leading to
⟨x⟩PO → 1

N

∑N
a=1 oa, where we used the fact that Va,1 = 1/

√
N. As ex-

pected from the Lindblad dynamics, it does correspond to the expectation
value of the operator O over the infinite temperature state 1

N

∑N
a=1 |a⟩ ⟨a|.

6.2 two-level system

We start by considering a continuously monitored two-level system. Despite
their simplicity, two-level systems are the fundamental building block of the
most studied quantum many-body systems and therefore understanding
their behavior is crucial. The system consists of a single spin-1/2, whose
unitary evolution is governed by the following hamiltonian

H = −Jσx, (319)

where σα are the Pauli matrices with α = x, y, z and
[
σα, σβ

]
= 2iϵαβγσ

γ.
The system is continuously monitored along z with a rate γ (therefore
A = σz). We will denote with |σ⟩ = |+1⟩ , |−1⟩ the eigenstates of σz with
eigenvalue σ = ±1 respectively. We consider a two-level spin which starts
from |+1⟩ and we want to evaluate

Pσz(x; t) = δ ( ⟨ψξ(t)|σz|ψξ(t)⟩− x) = P(n>0)σz (x; t) + P(0)σz (x; t) , (320)
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i.e. the probability distribution of the expectation value of O = σz. It is easy
to find that T(t) = cos(Jt)2I + sin(Jt)2σx, and V = (σz + σx)/

√
2 whose

columns are the eigenvectors of σx. As expected d1 = 1 and d2(t) = cos(Ωt),
where Ω = 2J is the splitting between the energy eigenvalues of the system.
Notice that, from these eigenvalues we can derive two recursion relations
as in the integral equations (312), then, since d1 = 1 we immediately get
I1(s) = eγs. In the following, we will simplify the notation I2(s) = I(s).
Finally, we notice that D(x, σn, t − sn) = δ

(
x − σn cos(Ω(t− sn))

)
, from

which we can compute the no-click contribution

P
(0)
σz (x; t) = e−γt δ

(
x− cos(Ωt)

)
. (321)

In order to find the full probability distribution, we can use equation (316)
to write

P
(n>0)
σz (x; t) =

e−γt

2

∫t
0
γds

∑
σ=±1

δ(x−σ cos(Ω(t− s))) [eγs + σI(s)] (322)

For a better understanding of the solution, we do not apply the Laplace
method to solve the integral equation (313) for I(s). Instead, we differentiate
it twice with respect to s, which yields the following differential equation
for I(s)

Ï = γİ−Ω2I (323)

with the initial conditions I(0) = 1 and İ(0) = γ. This is the equation of
motion of an “anti-damped” harmonic oscillator (since γ > 0). The solution
can be found easily using standard methods [230], obtaining

I(s) = eγs/2
[

cosh
(
Γs

2

)
+
γ

Γ
sinh

(
Γs

2

)]
, (324)

where we defined the following characteristic frequency Γ =
√
γ2 − 4Ω2. As

expected, we find three different regimes depending on the sign of γ2−4Ω2.
Let us analyze the behavior of the function e−γs/2I(s). When γ < 2Ω, we
have that Γ is an imaginary quantity. Therefore, we find a regime in which
the function oscillates with a frequency of Ω

√
1− γ2/(4Ω2), which is lower

than the natural frequency Ω. When γ = 2Ω, we get the critical regime for
which the function e−γs/2I(s) becomes linear, (1+ γs/2). Finally, if γ > 2Ω,
it grows exponentially with a rate γ/2

√
1− 4Ω2/γ2 smaller than γ/2.

Let us finally consider the Dirac-delta function contribution. Solving for
x− σ cos(Ω(t− s)) = 0, we easily get

s̃k = t± 1

Ω
arccos(xσ) +

2πk

Ω
, k ∈ Z. (325)

Using the properties of the Dirac-delta distribution, we can rewrite it as

δ(x− σ cos(Ω(t− s))) =
∑
k∈Z

δ(s− s̃k)

Ω
√
1− x2

. (326)

Since in Eq. (322), the integral is taken over a finite interval [0, t], we need
to constraint the solutions s̃k in Eq. (325) only to those falling in that re-
gion. However, we may relax that condition by explicitly introducing the
Heaviside step function θ(x), such that Eq. (322) finally reads

P
(n>0)
σz (x; t) =

γe−γt

2Ω
√
1− x2

∑
σ=±1

∑
k∈Z

[
eγs̃k + σI(s̃k)

]
θ(t− s̃k)θ(s̃k) ,

(327)
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Figure 26: Upper panels: the time-dependent probability distribution Pσz(x; t) for
a two-level system (Ω = 1). The white continuous line represents the no-
click contribution P(0)(x; t) in Eq. (321). We set γ = 0.2 (left), γ = 2.0
(center) and γ = 5.0 (right). Lower panels: the distribution Pσz(x; t) for
Ωt = 1, 5, 10 and the same values of γ. Dotted lines represent the delta
peak corresponding to the no-click contribution P(0)(x; t).

where s̃k implicitly depends on x and t as well. In Figure 26, we plot the en-
tire distribution Pσz(x; t). As expected, at early time the probability is highly
asymmetric, having support only in the vicinity of x = 1. The no-click term
is in fact localised at x = cos(Ωt) but its weight is exponentially suppressed
in time. The click contribution is also showing a nontrivial asymmetric evo-
lution and has a discontinuity corresponding to the value of the no-click
delta peak (see lower panels). Its behavior strongly depends on γ indeed:
in the oscillatory regime (γ < 2Ω), the probability distribution function
bounces back and forth between the two extremes x = ±1 of its domain; af-
ter many oscillations, the number depending on the value of γ, it is expected
to relax toward a symmetric distribution, the typical relaxation time being
τ = 2/γ. For γ > 2Ω the probability is not oscillating anymore and the re-
laxation time becomes τ = 2/(γ− Γ). Interestingly, as the measurement rate
is getting higher, the time needs for the magnetisation statistics to reach the
equilibrium becomes larger and larger, diverging as τ ∼ γ/Ω2.

The first moment of Pσz(x; t), namely the magnetisation average ⟨x⟩Pσz =

e−γtI(t), does coincide with the expectation value over the averaged state
(see 6.4.1). Nevertheless, our approach allows to easily compute the fluc-
tuations of the magnetization along the trajectories. Indeed, by means of
Eqs. (321) and (322), we can easily get the second moment of the distribu-
tion

〈
x2
〉
Pσz

= e−γt
∫t
0
γds cos(Ω(t− s))2eγs + e−γt cos(Ωt)2, (328)

which simplifies to

〈
x2
〉
Pσz

=
γ2 + 2Ω2

γ2 + 4Ω2
+

e−γt

2(γ2 + 4Ω2)

[
2γΩ sin(2Ωt) +Ω2 cos(2Ωt)

]
, (329)

and which cannot be computed using the a Lindblad approach since it cor-
responds to ⟨ψξ(t)|σz|ψξ(t)⟩2. In Figure 27, we represents ⟨x⟩Pσz ,

〈
x2
〉
Pσz

as a function of time for different values of the measurement rate γ.
Finally, let us mention that one can easily obtain the asymptotic stationary

distribution Pσz(x, t → ∞). Indeed, from a careful inspection of Eq. (322)
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Figure 27: First (left) and second (right) moment of the probability distribution
Pσz(x; t) for a two-level system (Ω = 1). Notice that the critical value
of γ = 2 leads to the fastest convergence to the equilibrium stationary
value of the average magnetization.

one can argue that for large time the contribution coming from I(s) is
bounded by e−γt

∫t
0 ds|I(s)|, thus decaying exponentially for large time. The

only term that survives and contributes to the asymptotic stationary distri-
bution is the one depending on eγs. Therefore, for any finite γ, the station-
ary distribution can be exactly evaluated as

Pσz(x) =
γ

2

∑
σ=±1

∫∞
0

ds δ(x− σ cos(Ωs))e−γs (330)

=
γ
[
e2γ arcsin(x)/Ω + 1

]
eγ arccos(x)/Ω

2Ω
(
eπγ/Ω − 1

)√
1− x2

, (331)

which, as expected, is an even function of x. Interestingly, all (non-vanishing)
stationary moments can be easily computed from the integral representation
of the probability, namely

〈
x2n

〉
Pσz

=

∫∞
0
ds e−s cos2n(sΩ/γ)

= 2F1(−2n,−n− iγ/(2Ω); 1−n− iγ/(2Ω);−1)
22n(1− 2inΩ/γ)

, (332)

while the odd moments are identically vanishing. In particular, when γ →∞,
〈
x2n

〉
Pσz

→ 1 for all n, confirming the fact that the stationary distribu-
tion converges to [δ(x− 1) + δ(x+ 1)]/2.

Observe that, having already taken the limit t → ∞ to derive the station-
ary distribution, the limit γ→ ∞ does not result in the distribution linked to
Zeno’s effect, namely δ(x− 1). To clarify, the order of limits matters, and to
obtain the Zeno’s effect distribution, one have to first take the limit γ→ ∞.

6.3 hopping particle

A free hopping quantum particle propagates in a lattice with a ballistic
spreading. However, there are ways to prevent or slow down the propa-
gation as, for instance, adding a disorder potential which induces Anderson
localization [231, 232]. Here, we show that the quantum Zeno effect due to
the coupling of the hopping particle to a measurement apparatus can also
results into a slowdown of the particle propagation [233, 234]. Related pro-
tocols have been studied in the context of quantum stochastic resetting, in
which the hopping particle is reset to the initial state with a certain proba-
bility [235].

We consider a simple hopping fermion on a 1D lattice, whose hamiltonian
reads

H = −Ω

L∑
j=1

(
c
†
jcj+1 + c

†
j+1cj

)
(333)
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with periodic boundary conditions (i.e. cj+L = cj). Here the lattice dimen-
sion L (even) plays the role of an infrared cutoff. In the following we will
take the limit L → ∞ whenever it will be unambiguous. The Fermionic
operator satisfy the canonical anti-commutation relations {ci, c

†
j } = δij. We

define the Fourier modes operators

c̃k =
1√
L

∑
j

eikjcj, cj =
1√
L

∑
k

e−ikjc̃k, (334)

such that {c̃p, c̃
†
q} = δpq, and k ∈ {−π,−π + 2π/L,−π + 4π/L, . . . , π}. The

Hamiltonian become diagonal in the Fourier representation, i.e.

H =
∑
k

ε(k)c̃†kc̃k, (335)

where ε(k) = −2Ω cosk. We now restrict the problem to the single-particle
sector of the hamiltonian, we can define the states |j⟩ = c†j |∅⟩ and |k̃⟩ = c̃†k |∅⟩,
which represents the particle in position j or with momentum k respectively.
Notice that ⟨j|k̃⟩ = exp(−ikj)/

√
L is the normalised wave function. Since H

commute with he total number of particles, the unitary dynamics can be
restricted in such sector and it is governed by the following single-particle
Hamiltonian

H = −Ω

L∑
j=1

(|j⟩⟨j+ 1|+ |j+ 1⟩⟨j|) =
∑
k

ε(k) |k̃⟩⟨k̃| . (336)

We consider the particle initial localised at the origin j = 0 of our lattice,
namely |ψξ(0)⟩ = |0⟩ for all trajectories ξ. We then suppose to continuously
measure, with a rate γ, the position operator

q =
∑
j

j |j⟩⟨j| . (337)

We are thus interested in the displacement of the particle along each single
trajectory, however, for symmetry reasons, when no measurement occurs (i.e.
γ = 0) the probability function of the outcome of ⟨q⟩t is time independent,
namely δ (x− ⟨q⟩t) = δ(0). This is not in contradiction with the expected
ballistic spreading under the free evolution, which can be extracted when
observing even power of q (see 6.4.2). Notice that, this is not true anymore
when γ ̸= 0. We are thus interested in the probability distribution function
of the particle displacement itself, namely

Pq(x; t) = δ ( ⟨ψξ(t)|q|ψξ(t)⟩− x) = P(n>0)q (x; t) + P(0)q (x; t), (338)

where in this case the no-click contribution is trivially given by P(0)q (x; t) =
e−γtδ(x), and we used the following results for the evolution amplitudes in
the thermodynamic limit

⟨j|U(t)|l⟩ =
∑
k

⟨j|e−itH|k̃⟩ ⟨k̃|l⟩

=

∫π
−π

dk
2π
ei[k(j−l)−2tΩ cosk]

= (−i)j−lJj−l(2Ωt), (339)

with Jn(x) being the Bessel function of the first kind. Now the transition
probability matrix reads Ti,j(t) = J

2
i−j(2Ωt), which is a circulant matrix due
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to translational invariance. Let us define the not normalised eigenvectors
whose component are Vn,k = e−ink, such that

(T(t)V)n,k =
∑
j

J2n−j(2Ωt)e
−ijk

= e−ink
∑
l

J2j (2Ωt)e
ilk ≡ Vn,k dk(t) (340)

where we identified the eigenvalues of the transfer matrix as

dk(t) =
∑
l

J2l (2Ωt)e
ikl = J0[ωkt], (341)

with ωk = 4Ω sin(k/2). Following Section 6.1, we can easily solve the in-
tegral equation (313) for Ik(s) =

∑∞
n=1 In,k(s) with kernel J0[ωkt]; the

Laplace transform reads

L [Ik](z) =
1√

z2 +ω2k − γ
=

∞∑
n=1

γn−1

(z2 +ω2k)
n/2

, (342)

and we can identify with L [In,k](z) the terms of the series expansion, thus
finally getting

In,k(s) =
√
πγn−1

(
s

2|ωk|

)n−1
2 Jn−1

2
(s|ωk|)

Γ (n/2)
. (343)

With a simple generalization of equation (310), we can write the click
contribution to the probability distribution as

P
(n>0)
q (x; t) = e−γt

∑
j

∫t
0
γds

∫π
−π

dk
2π

D(x, j, t− s)e−ijkIk(s), (344)

where, thanks to the properties of the Bessel functions, the delta contribution
reduces to D(x, j, t− s) = δ(x− j), which basically says that the probability
has only support on x ∈ Z. The entire probability distribution Pq(x; t) is
represented in Figure 28 together with some representative quantum trajec-
tories for different values of γ.

We have previously observed that the first moment of the probability dis-
tribution is identically vanishing due to the inversion symmetry. The second
moment instead gets a nontrivial contribution from the P(n>0)q part, thus
reading

〈
x2
〉
Pq

= e−γt
∫t
0
γds

∫π
−π

dk
2π


∑
j

j2e−ijk


 Ik(s), (345)

which can be further simplified using the identity
∑
j j
2e−ijk = −

∑
j ∂
2
ke
ijk =

−2πδ ′′(k), leading to

〈
x2
〉
Pq

= −e−γt
∫t
0
γds [∂2kIk(s)]

∣∣
k=0

=
4Ω2

γ2

[
(γt− 2) + e−γt(γt+ 2)

]
.

(346)

The second moment does behave differently depending on the time-scale,
showing the following scaling behaviour

〈
x2
〉
Pq

∼


γΩ2t3 γt≪ 1

4Ω2t

γ
γt≫ 1

. (347)
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Figure 28: Upper panels: the time-dependent probability distribution Pq(x; t) for
an hopping particle (Ω = 1). Red lines represents the standard deviation

±
〈
x2
〉1/2
Pq

as in Eq. (346). We set γ = 0.25 (left), γ = 1.0 (center) and γ =

5.0 (right). Middle panels: the distribution Pq(x; t) for Ωt = 1, 5, 10 and
the same values of γ. Dotted lines represent the delta peak corresponding
to the no-click contribution P(0)(x; t). Lower panels: the expectation value
⟨ψξ(t)|q|ψξ(t)⟩ for 20 trajectories and the same values of γ.
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Let us mention that the fluctuations of the Pq(x; t) distribution cannot
give information about the ballistic behavior at γ = 0, due to the inversion
symmetry. As a matter of fact, what Eq. (347) gives us is the leading term
for γ ̸= 0. In the asymptotic regime γt ≫ 1, it does coincide (as expected)
with ⟨x⟩P

q2
confirming the diffusive behavior for any finite measurement

rate. However, in the γt ≪ 1 regime, the O(γ0) term is missing, and it is
recovered in the expansion of ⟨x⟩P

q2
(see 6.4.2).

6.4 appendices

In this section, we provide two appendices related to the chapter.

6.4.1 Appendix A: Lindblad equation solution for the two level system

When we are interested in the dynamical map averaged over the quantum
trajectories, the measurement protocol outlined in the main text can be re-
formulated in terms of a Lindblad equation for the averaged density matrix
ρ(t) = |ψξ(t)⟩⟨ψξ(t)|. In fact, averaging over different trajectories does corre-
spond to relax both the information on whether the spin has been measured,
and the result of the measurement itself. See [236] for some results of pro-
jective measurement-based dissipation descriptions of Lindblad equations
for quantum spin systems.

In particular for a single spin undergoing projective measurements of σz

(see Sec. 6.2), the average state ρ transforms accordingly to

ρ(t) →
(
1−

γdt

2

)
ρ(t) +

γdt

2
σz ρ(t)σz, (348)

where γdt is the probability that the system is measured, after a discretiza-
tion of the continuum time evolution has been applied.

Combining the previous expansion with the unitary part of the evolution,
and taking the continuum limit dt → 0 with γ fixed, we finally get the
following Lindblad master equation

∂tρ = −i[H, ρ] +
γ

2
(σz ρσz − ρ) , (349)

with H = −Jσx. This equation can be easily solved by expanding the density
operator in the basis of Pauli matrices

ρ(t) =
1

2
I +

1

2

3∑
α=1

mα(t)σ
α, (350)

where mα(t) = Tr[σαρ(t)] and I is the 2× 2 identity matrix. The Lindblad
equation becomes a linear differential equation for the three components of
the magnetisation (mx,my,mz)

T , which reads

∂t



mx

my

mz


 =



−γ 0 0

0 −γ Ω

0 −Ω 0






mx

my

mz


 (351)

where Ω = 2J. The z component evolves following the differential equation
of a damped harmonic oscillator ∂2tmz = −Ω2mz − γ∂tmz, with initial
condition mz(0) = 1, ∂tmz(0) = 0. From the solution of such equation we
easily recover the result of the main text, namely

mz(t) = e
−γt/2

[
cosh

(
Γt

2

)
+
γ

Γ
sinh

(
Γt

2

)]
≡ ⟨x⟩Pσz (352)
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Figure 29: Upper four panels: average local particle density n(j, t) obtained from the
average state given by Lindblad equation (Eq. 355). Different measure-
ment rates are considered (i.e. γ = 0, 0.25, 1, 5), showing a clear transition
from ballistic to diffusive dynamics. Lower three panels: the local particle
density |⟨ψξ|j⟩|2 obtained from quantum trajectories at different measure-
ment rates (γ = 0.25, 1, 5).

with Γ =
√
γ2 − 4Ω2. In addition, we also gets

mx(t) = 0, my(t) = e
−γt/2 2Ω

Γ
sinh

(
Γt

2

)
. (353)

6.4.2 Appendix B: Lindblad equation solution for the hopping particle

In the case of the hopping particle, to analyze the dynamical map averaged
over quantum trajectories, we can again reframe the measurement proce-
dure as a Lindblad equation for the averaged density matrix ρ(t). When we
perform projective measurements of the particle’s position at a rate γ, the
average state ρ undergoes the following transformation in accordance with
the usual rules of quantum mechanics

ρ(t) → (1− γdt) ρ(t) + γdt
∑
j

πjρ(t)πj . (354)

Here, πj = |j⟩⟨j| represents the projectors over the lattice sites. The Lindblad
master equation can be obtained by taking the limit dt → 0 with a fixed
value of γ, resulting in

∂tρ = −i[H, ρ] + γ


∑
j

πjρπj − ρ


 , (355)
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with H as in Eq. (336). In the case of a system with finite size, we can solve
numerically the dynamical map

ρ(t+ dt) = ρ(t) − idt (Hρ− ρH) + γdt


∑
j

πjρ(t)πj − ρ(t)


 , (356)

and define the site densities n(j, t) = Tr
{
ρ(t)πj

}
as depicted in the upper

four panels in Fig. 29. In accordance to what have been discussed in the
main text, the averages over the probability distribution coincides with the
expectation values taken over the averaged state.

Now, we collect few results for the first moment of some relevant observ-
ables. In particular, from the probability distribution of a generic power qm,
by using the generic equation (318) we explicitly get

⟨x⟩Pqm = Tr{ρ(t)qm} = e−γt
∫π
−π

dk
2π

∑
j

jme−ijkIk(t) . (357)

By exploiting
∑
j j
me−ijk = im2πδ(m)(k), we obtain

⟨x⟩Pqm = ime−γt∂mk Ik(t)|k=0. (358)

As expected, ⟨x⟩Pq = 0, while the first non-vanishing average occurs for
m = 2, giving

⟨x⟩P
q2

=
4Ω2

(
γt+ e−γt − 1

)

γ2
∼


2Ω2t2 γt≪ 1

4Ω2t

γ
γt≫ 1

(359)

thus, we recover the ballistic behavior at early time (or for γ = 0), whilst
a diffusive behavior for any γ ̸= 0 at large time, with a diffusion constant
Dγ = 2Ω2/γ such that

〈
xq2
〉
∼ 2Dγt. This behavior has been observed in

the many-body description of the model, in particular studying the particle
current after quenching an initial domain wall configuration [153]. Due to
its linear nature, this exact result can be compared with the solution of
the Lindblad equation. Indeed, the average of q2 is also given by ⟨x⟩P

q2
=∑

j j
2n(j, t), where n(j, t) = Tr

{
ρ(t)πj

}
can be evaluated numerically (see

Fig. 29 upper panels), or analytically taking the average over the probability
distribution associated to πj

Pπj(x; t) = δ
(
⟨ψξ(t)|πj|ψξ(t)⟩− x

)
. (360)

Explicitly we get

⟨x⟩Pπj = n(j, t) = e
−γt

∫π
−π

dk
2π
e−ijkIk(t), (361)

notice that, as expected,
∑
j n(j, t) = 1, since I0(t) = eγt.
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An interesting playground for the investigation of MIPTs is given by long-
range interacting systems, in which the interactions between their different
components decay slowly (typically as a power-law function of the distance)
or do not decay at all, as in fully-connected models. Long-range physics has
recently attracted a lot of attention due its peculiar properties [237, 238] and
to the possibility of engineering such systems in experimental setups within
the context of atomic, molecular and optical (AMO) systems. Examples are
Rydberg atoms [239–241], trapped ions [242, 243], and quantum gases in a
cavity [244, 245], showing promising features for the development of quan-
tum technologies.

In this Chapter, we focus of the so-called Lipkin-Meshkov-Glick (LMG)
model, i.e. a ferromagnetic all-to-all interacting spin model with Z2 symme-
try. First introduced in the context of nuclear physics [246], the LMG model
has become a paradigmatic example used to exemplify plenty of non-trivial
dynamical behavior of long-range quantum systems [247–250], such as time-
crystals [99, 251–253], anomalous entanglement growth [254, 255], dynam-
ical phase transitions [255]. The interplay between long-range interactions
and monitoring has also been investigated [177, 256, 257], finding that the
range of the interaction can significantly alter even hinder MIPTs [160], as
well as the effect of the global losses in AMO systems [258]. Moreover, the
full-counting statics of the quantum trajectories in the open long-range spin
systems and also in the LMG limit, has been also recently studied [144].

Here, we focus on a different class of observables. In particular, we anal-
yse the stochastic dynamics of the expectation values of the global spin
on the quantum trajectories in the thermodynamic limit, discovering that
a phase transition is already present at the level of its ensemble average, a
quantity which for finite size is known to converge trivially to its infinite
temperature value. This signals a non-commutativity of the long-time and
large-size limits, that can be traced back to the fact that, while individual
quantum trajectories allow for a semiclassical description in the thermody-
namic limit, this is no longer true if one consider the ensemble average of
the quantum state. Let us notice that presence of a MIPT already at the pres-
ence of ensemble averages has a great interests as it allows to circumvent the
post-selection issue, since these quantities are linear in the quantum state.

7.1 monitoring and quantum trajectories

The evolution of a quantum system continuously interacting with a moni-
toring environment is intrinsically stochastic due to the random nature of
quantum measurements. As a consequence, its time evolution is described
by a stochastic Schrödinger equation (SSE). Many detection protocols exist
and here we focus on the case of weak Gaussian measurements [220], which
can be experimentally reproduced with a homodyne detection scheme [131,
220]. Considering a pure state evolving under the action of a Hamiltonian H
and continuous monitoring of observable X with strength γ, its SSE is given
by (see 4.1.2 for details) Stochastic

Schrödinger
evolution equation
monitored quantum
system

d |ψt⟩ = −iH |ψt⟩dt+
(
|v⟩γdt+ |u⟩√γdξ

)
, (362)

103
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Figure 30: (a) Evolution of the expectation value of a set of quantum trajectories. (b)
Probability distribution of the expectation values of the observable O over
the ensemble of quantum trajectories.

where dξ is a real Itō differential with dξ2 = dt and

|v⟩ = −
1

2
(X− ⟨X⟩)2 |ψt⟩ , |u⟩ = (X− ⟨X⟩) |ψt⟩ . (363)

The SSE is solved by an ensemble of quantum trajectories {|ψ(t)ξ⟩} in the
Hilbert space, each induced by a specific realization of the white noise dξ.
Correspondingly, the expectation values of an observable O evaluated along
a trajectory evolve along a classical stochastic process. According to Itō cal-
culus [229], we expand

d ⟨O⟩ = ⟨dψ|O|ψ⟩+ ⟨ψ|O|dψ⟩+ ⟨dψ|O|dψ⟩ , (364)

where ⟨O⟩ = ⟨ψ|O|ψ⟩ and ⟨dψ|O|dψ⟩ = γdt ⟨u|O|u⟩ as a consequence of
dξ2 ≈ dt. The stochastic differential equation satisfied by ⟨O⟩ is thenStochastic

Heisenberg evolution
equation monitored

quantum system
d ⟨O⟩ = idt ⟨[H,O]⟩+ ⟨{X− ⟨X⟩ , O}⟩√γdξ

−
γ

2
dt ⟨[X, [X,O]]⟩ .

(365)

7.1.1 Ensemble averages and full counting statistics

Let us introduce the average of the state of the system over all measurement
outcomes, namely ρ = |ψξ⟩⟨ψξ|, where · · · denotes the average over dξ.
From Eq. (362) it is immediate to find that the evolution over time of ρ is
described byLindblad Equation

dρ
dt

= −i[H, ρ] −
γ

2
[X, [X, ρ]] , (366)

that is a master equation of the Lindblad form. The observable X is playing
the role of the jump operator, which encode the interaction with the external
environment. As the jump operator is Hermitian, for any finite dimension
N the Linblad dynamics will evolve towards the maximally mixed state in
any of the symmetry sector of the Hilbert space, thus washing away all
the information contained in the initial state ρ(0) except for the presence of
invariant subspaces [131, 221]. If no symmetry in present then ρ(t→ ∞) ∝ I

over the whole Hilbert space.
In the same way, the averages along trajectories of expectation values fol-

low Lindblad dynamics since ⟨O⟩ = tr[|ψξ⟩⟨ψξ|O] = tr[ρO] ≡ ⟨O⟩ρ. Their
evolution is generated by the adjoint Lindbladian

d⟨O⟩ = idt⟨[H,O]⟩− γ

2
dt⟨[X, [X,O]]⟩ . (367)
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Analogously, for finite N we have that ⟨O⟩ will converge asymptotically to
its infinite-temperature expectation values for large times.

Although linear averages only admit trivial long-time asymptotic values,
it is important to note that important features of the ensemble of quantum
trajectories are hidden in the higher moments of the distribution. A promi-
nent example is the purity: starting from a pure state, while for any t > 0
ρ(t) will be a mixed state, asymptotically reaching the maximally mixed
state, individual trajectories remain pure, so that

Tr
{
ρ2

}
⩽ Tr

{
|ψξ⟩⟨ψξ|2

}
= 1 . (368)

In other words, the SSE carries more information than the Lindblad equa-
tion. Here, we want to go beyond the Lindblad approach and study statis-
tical properties of the ensemble of weak monitoring quantum trajectories.
As an example, as depicted in Fig. 30, we consider the characteristics of the
probability distribution of the expectation values of operators [4, 5, 259, 260]

P(x, t) = δ(x− ⟨ψξ|O|ψξ⟩) . (369)

7.2 monitored lmg model

Given a set of N spin-1/2 particles, each located in a lattice site j, the LMG
model is described by the following Hamiltonian LMG model

H = −
1

2N

∑
ij

σxi σ
x
j − h

∑
i

σzi , (370)

where σαj are the Pauli operators for each site, h is a magnetic field and the
1/N factor is the Kac scaling [261] that ensures the correct extensive scaling
of the energy. We are working in units such that  h = 1. The above Hamilto-
nian can be seen as a quantum Ising model in transverse field, in presence
of infinite-range ferromagnetic interactions. It is convenient to express it in
terms of collective spin operators Sα or, equivalently, of the reduced global
magnetization mα

Sα =
1

2

∑
j

σαj , mα =
Sα

S
=
1

N

∑
j

σαj , (371)

with α = x, y, z, S = N/2, so that

H = −
1

S
S2x − 2hSz = −

N

2

(
m2x + 2hmz

)
. (372)

As H and S2 commute, the unitary dynamics takes place in subspaces with
fixed S2 = S(S+ 1), S = 1, . . . ,N/2.

Let us now introduce a deformation of the the LMG model in which the
global spin Sz undergoes a continuous weak monitoring. Due to the global
nature of the montiored obsevables, the dynamics of the resulting SSE (362)
will share the same symmetry of the unitary evolution, so that the monitored
dynamics will also decompose into invariant subspaces with S2 = S(S+ 1)

fixed. In particular we choose the initial state to be fully-magnetized along a
specific spatial direction (not necessarily coinciding with the z-axis), so that
the dynamics will be confined on the subspace S = N/2 (m2 = (S+ 1)/S).
Such sector corresponds to the representation of spin N/2 of the total angu-
lar momentum, which is totally symmetric with respect to the permutation
symmetry of the LMG model. We will focus on the statistics of the expecta-
tion values of the global magnetization mα: in this case Eq. (365) takes the
form Monitored LMG

stochastic Heisenberg
equations
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d ⟨mx⟩ = 2h ⟨my⟩dt−
γ

2
⟨mx⟩dt+

√
γSdξ ⟨mz,mx⟩c ,

d ⟨my⟩ = ⟨{mx,mz}− 2hmx⟩dt−
γ

2
⟨my⟩dt

+
√
γSdξ ⟨mz,my⟩c ,

d ⟨mz⟩ = − ⟨{mx,my}⟩dt−
γ

2
⟨mz⟩dt

+
√
γSdξ ⟨mz,mz⟩c ,

(373)

where ⟨A,B⟩c ≡ ⟨AB+BA⟩− 2 ⟨A⟩ ⟨B⟩.

7.3 semiclassical limit

The unitary LMG model in the thermodynamical limit behaves semiclassi-
cally. In particular, collective spin operators in the large-N limit can be seen
as classical angular momentum variables. Formally, this is due to the fact
that the SU(2) algebra implies

[mα, mβ] =
i

S
ϵαβγmγ , (374)

so that 1/S plays the role of an effective Planck constant. Therefore, for
S≫ 1 there will be states for which the uncertainty over all the components
of mα is simultaneously small (i.e. O(1/S)). On such states one has

⟨mαmβ⟩ = ⟨mα⟩⟨mβ⟩+O(1/S) , (375)

which is key for the semiclassical description. This is the case for the dynam-
ics in the totally symmetric sector, where ⟨Sα⟩ = O(N) and the uncertainty
is of order O(1). In this sector, we can approximate the state with a coher-
ent spin state of spin S = N/2, i.e. the eigenstate of the projection of the
spin operators along the direction of ⟨S⟩ = (⟨Sx⟩ , ⟨Sy⟩ , ⟨Sz⟩). A summary
of the properties of coherent spin states is given in 7.6.1. Let us notice that
while the mean field approximation works along individual trajectories, as
we shall see in Sec. 7.3.2, it is not reliable for the Lindblad dynamics of the
mean state. Taking ensemble averages,

⟨mαmβ⟩ρ = ⟨mαmβ⟩ ≠ ⟨mα⟩ ⟨mβ⟩ = ⟨mα⟩ρ⟨mβ⟩ρ .

Indeed, while the expectation value ⟨·⟩ = tr{|ψξ⟩⟨ψξ| ·} is performed on a
pure state with ⟨Sα⟩ = O(N), which can be well approximated with a spin
coherent state, for the ensemble ⟨·⟩ = ⟨·⟩ρ = tr{ρ ·} the quantum expectation
value is computed on the highly mixed state ρ, that has no well-defined
mean-field limit. This is apparent for long times, as the Lindblad dynamics
will bring ρ(t) towardss the maximally mixed state in the totally symmetric
subspace, so that ⟨mα⟩ = 0, while ⟨mαmβ⟩ = (S + 1)/S · δα,β. For more
details we refer the reader to 7.6.3.

We will now briefly review the consequences of the mean field approx-
imation on the unitary dynamics, before extending the description to the
monitored case.

7.3.1 Unitary Evolution

Starting from a maximally magnetized state, the unitary evolution of the
magnetization is given by the Eqs. (373) with γ = 0, that become a coupled
system of ODEs for mα ≡ ⟨mα⟩

ṁ = −2(mxx + hz)× m (376)

thanks to the decomposition of Eq. (375). The approximation is consistent if
in the large S limit the state remains coherent, which is true because |m|2 is
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Figure 31: (a) Energy landscape of the unitary dynamics (γ = 0) for h = 0.3. As
h < 1, a separatrix H(mz, ϕ) = −2h is present (dashed white line). Tra-
jectories with energy < −2h correspond to librations (light blue curve),
otherwise to rotations (orange and purple curves). While in the vicinity
of mz = −1 the Hamiltonian flow remains close to the barrier during
the whole dynamics (purple curves), it will eventually drive the system
away from mz = 1, as the light blue and orange curves are close to the
separatrix. (b) Possible realization of a quantum trajectory in the phase
space for small γ = 0.01 (white solid line), for h = 0.02 and initial con-
ditions mz(0) = ϕ(0) = 0 (my(0) = 0, mx(0) = 1) superimposed to the
Hamiltonian energy landscape of the system, density plot. Parameters
γ = 0.01. As the noise is relatively small, on short timescales the evolu-
tion of the system remains close to the Hamiltonian flow. In spite of this,
as γ < γc(h) = 0.28, the mz = 1 barrier is repulsive, and the trajectory
converges asymptotically to mz = −1.

conserved and the state is fully polarized. To simplify the problem we can
introduce cylindrical coordinates

mx =
√
1−m2z cosϕ , my =

√
1−m2z sinϕ (377)

with mz ∈ [−1, 1] and ϕ ∈ [−π, π], which are convenient because ϕ is
canonically conjugate to the third component of the angular momentum
mz. This can be checked by noticing that the equations of motion Eqs. 376

become Hamilton equations ṁz = −∂ϕH, ϕ̇ = ∂mzH, where Classical
Hamiltonian

H(mz, ϕ) = −(1−m2z) cos2ϕ− 2hmz (378)
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is the classical Hamiltonian (which corresponds to the classical limit of
Eq. (372) expressed in terms the new variables). Quenches of the LMG
model undergo a dynamical phase transition. The dynamics will take place
on the level curves H(mz, ϕ) = E and, as those curves are closed, the dynam-
ics will in general be periodic. However, similarly to the classical pendulum
case, we can have two different kind of dynamics. While for h > 1 ϕ in-
creases by 2π over a period regardless of the initial condition (rotation); if
h < 1 for E < −2h, ϕ is bounded to oscillate between two extremal values,
|ϕ| < ϕmax (mod π) (libration). In latter case the time average of mx on a
trajectory is ̸= 0 (dynamical ferromagnet). The two classes of trajectories are
divided by the separatrix H(mz, ϕ) = −2h, i.e.

(1+mz) cos2ϕ = 2h | cosϕ| >
√
h , (379)

in correspondence of which the period of oscillation diverges. As a conse-
quence, while for h > 1 the Hamiltonian flow remains close to the absorbing
barriers mz = ±1 for an infinite amount of time, for h < 1 the dynamics
around mz = 1 takes place in proximity of a separatrix, so that it runs away
from the absorbing barrier on a logarithmic timescale (see Fig. 31(a)).

7.3.2 Monitored Evolution

In analogous fashion, we can describe the monitored LMG model in the ther-
modynamic limit by applying the semiclassical approximation to Eqs. (373).
Let us notice, however, that the effect of the limit S→ ∞ here is more subtle
due to the presence of the connected correlators

〈
mα,mβ

〉
c

which vanish
at the leading order if we factorize the expectation values. We thus need the
exact form of the first order correction in O(1/S) of Eq. (375) on a coherent
spin state, which is given by

〈
mαmβ

〉
c
=
1

S

(
δα,β − ⟨mα⟩

〈
mβ
〉)

+O(S−2) (380)

(see 7.6.1). By introducing once again the shorthand mα = ⟨mα⟩, for S≫ 1

we get another closed system of SDEs, analogous to Eq. (373)Semiclassical
approximation

stochastic Heisenberg
equations

dmx =
(
2hmy −

γ

2
mx

)
dt−

√
γdξmzmx (381a)

dmy =
(
−2hmx + 2mxmz −

γ

2
my

)
dt +

−
√
γdξmzmy (381b)

dmz = −2mxmydt+
√
γdξ(1−m2z) . (381c)

The equations imply

dm2 =
[
γdt

(
m2z − 1

)
− 2mz

√
γdξ

] (
m2 − 1

)
, (382)

so that if the initial state is chosen in the totally symmetric sector (|m| = 1)
the dynamics takes place on the unit sphere and the semiclassical approxi-
mation is consistent. This is expected, as in the large S limit, on the totally
symmetric subspace m2 ∼

〈
m2
〉
= (S+ 1)/S ∼ 1.

As the dynamics takes place on the surface of the sphere, it is convenient
to rewrite Eqs. (381) in terms of (mz, ϕ) defined in Eq. (377), thus finding

dmz = −2(1−m2z) sinϕ cosϕ dt+
√
γ(1−m2z)dξ

dϕ = 2(−h+mz cos2ϕ)dt .
(383)

Notice that mz = ±1 act now as absorbing barriers, since there dmz = 0 on
each realization. As expected, for γ = 0 the evolution reduces to the Hamilto-
nian dynamics of the unitary case, namely dmz = −∂ϕHdt+

√
γ(1−m2z)dξ,

dϕ = ∂mzHdt, with H(mz, ϕ) of Eq. (378). A possible realization of the
noisy dynamics in the phase space with small γ is shown in Fig. 31(b).
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Figure 32: Comparison between mz(t) for N = ∞, obtained averaging over the real-
izations of Eq. (383) (black dash-dotted line), and its finite N counterpart,
obtained by integrating the Lindbald dynamics. While for finite sizemz(t)
goes to zero at large times, this is no longer true for N = ∞. (a) S = ∞
and S = N/2 = 256 dynamics for h = 0.2, γ = 0.01 and initial conditions
mz(0) = my(0) = 0, mx(0) = 1. (b) Dynamics starting from the S = ∞
absorbing state mx(0) = my(0) = 0, mz(0) = −1, compared with finite
size dynamics S = N/2 ∈ [10, 150], for h = 0.3, γ = 0.25. As shown in
the inset, the timescale t∗ on which the finite size dynamics differs signifi-
cantly from the S = ∞ one (formally mz(t∗) = −0.9) grows polynomially
in S.

7.3.3 Non-commutativity of the limits

As already mentioned, for any finite N the Lindblad evolution of a maxi-
mally magnetized initial condition will converge towards the infinite-temperature
state of the maximal representation S = N/2. This implies

lim
N→∞ lim

t→∞mα = 0 . (384)

On the other hand, the evolution of mα in the thermodynamic limit is given
by Eq. (381) which, as already noticed, has two absorbing states in corre-
spondence of mz = ±1 (and thus mx = my = 0). This means that at large
times each realization of the system will end up in one of the two. Depend-
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ing on the initial state one of the two boundaries will be reached more easily,
implying that

lim
t→∞ lim

N→∞mz ̸= 0 , (385)

so that the large N limit will not in general commute with the large time
limit.

For finiteN, the Eqs. (383) are valid up to a timescale tEhr, known as Ehren-
fest time, after which the approximation (375) is known to break down [254]
(see also Fig. 32(a)). As tEhr can be seen as the timescale on which a phase
space packet of initial width 1/S acquires a O(1) spreading, its scaling of
tEhr with N depends strongly on the nature underlying the semiclassical
dynamics. While in the chaotic case tEhr ∼ lnN, Eqs. (383) describe an inte-
grable dynamics perturbed by the presence of noise, so that tEhr is expected
to grow polynomially N. This is confirmed by the numerical analysis re-
ported in Fig. 32(b), where the interplay between the large-N limit and the
long-time limit is investigated.

7.4 stationary probability distribution

In the next section, we will analyze more closely the asymptotic distribu-
tion of mz. Because of the presence of two absorbing walls, the probability
distribution of mz will asymptotically have the form

P∞(mz) = p+δ(mz − 1) + p−δ(mz + 1) , (386)

with p+ + p− = 1. In this case, two different scenarios are possible: either
both walls can be reached with finite probability, or one of the two is for-
bidden by the dynamics. A good order parameter capable of distinguishing
the two phases apart is thus p+, which can be expressed in terms of the
ensemble averages of mz as

p+ = lim
t→∞ lim

N→∞ 1

2
(1+mz(t)) . (387)

The resulting phase diagram as function of h and γ is plotted in Fig. 33: in
the h < 1 region, a finite phase with p+ = 0 is indeed present for small γ.
The boundary of the two phases meets γ = 0 at h = 0 and h = 1. Notice
that along the Linblad evolution one would identically have p+ = 1/2, as
p+ is linear in the state so that the possibility of using such a quantity as
an order parameter is a direct consequence of the non-commutativity of the
limits explored in Sec. 7.3.3.

The expected phase diagram is confirmed by an analysis of Eqs. (383).
The effect of the noise becomes crucial in the proximity of mz = ±1, as it
can push the dynamics towards the absorbing barriers. Remarkably, as in
this regime both the Hamiltonian and the noisy dynamics slow down, we
can treat their effects independently. In particular, close to the mz = −1

barrier, the Hamiltonian dynamics is always a rotation and it remains close
to the barrier at any time, so that we can ignore it. Let us denote the distance
between mz and the barrier as ∆z ≡ 1+mz. For ∆z≪ 1 one has

d(∆z) = 2
√
γ∆z dξ (388)

or, by introducing ∆z ≡ e−s

ds = 2γdt+ 2
√
γ dξ . (389)

It follows that s is a Gaussian variable centered around 2γt with a vari-
ance σ2 = 4γt: in this case the presence of the noise effectively pushes the
dynamics towards the absorbing barriers at all measurement strengths.
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Close to the barrier in mz = 1 an analogous line of reasoning can be
followed for h > 1. For h < 1, however, the Hamiltonian dynamics cannot
be neglected since in this case the flow runs close to the separatrix (379) (see
Fig. 31), which pushes the system away from the barrier. We thus expand
the equation for dmz in Eqs. (383) for small ∆z ≡ 1−mz ≪ 1, assuming that
ϕ and mz close to the separatrix that links them as in Eq. (379). At order
O(∆z) therefore we find

d(∆z) = 4
√
h(1− h)∆zdt+ 2

√
γ∆z dξ , (390)

or. in terms of ∆z ≡ e−s,

ds = 2
(
γ− 2

√
h(1− h)

)
dt+ 2

√
γ dξ . (391)

It follows that the mz = 1 barrier is attractive for the dynamics only when
γ > γc(h) ≡ 2

√
h(1− h). An alternative argument is given in 7.6.4. For

γ = γc(h) the evolution of ds becomes a simple Wiener process. This means
that a trajectory that starts close to the barrier mz = 1 has a probability
1/2 to remain close to it for large times. We thus expect p+ to be finite for
γ = γc(h), signaling a discontinuous phase transition.

In summary, for γ > γc both barriers are attractive, so that p+, p− will
both be finite, while the mz = 1 barrier becomes repulsive for γ < γc(h), so
that p+ = 0 (see also Fig. 31(b)). This explains the numerical phase diagram
of Fig. 33 even at the quantitative level, as the transition curve γc(h) we
foresee is in very good agreement with the numerical results. Notice also
that γc(h) does not depend on the specific initial condition chosen for our
system, while the specific values of p+ within the p+ ̸= 0 phase will in
general depend on it.

In particular, as mz(0) → 1, one will have p+ = 1/2, at γ = γc(h), p+ = 1

at γ > γc(h). In the regime γ ≫ h instead, the Hamiltonian dynamics can
be neglected on the whole phase space, leading to the single equation for
mz

dmz =
√
γ(1−m2z)dξ , (392)

which preserves the ensemble average of mz. We thus conclude that

lim
N→∞ lim

t→∞mz = mz(0). (393)

As shown in 7.6.5, in this limit also the full counting statistics at any time t
can be computed exactly.

7.5 conclusion & outlook

In this work, we explored the dynamics of the LMG model under con-
tinuous weak monitoring. We derived a set of noisy semi-classical SDEs
(Eq. (381)) for the expectation values of the magnetization of the system,
valid in the thermodynamic limit N → ∞. Our findings highlight a critical
distinction, as the large-N limit does not commute with the long-time limit.
While for any finite N the system asymptotically approaches a trivial steady
state under noise averaging, in the thermodynamic limit the system exhibits
a non-trivial asymptotic behavior, which is already visible at the level of en-
semble averages of the expectation values of the magnetization. We discov-
ered that for small enough magnetic fields, such quantities exhibit a MIPT
driven by the measurement strength. Our theoretical analysis was able to
provide a full quantitative characterization of this transition, which can be
explained in terms of a bifurcation of the stationary distribution in the ther-
modynamic limit, as the system develops two different attractive absorbing
states. Our predictions are corroborated by numerical results.
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Figure 33: Color plot of p+ as defined in Eq. (387) with initial conditions mz(0) =

ϕ(0) = 0 (my(0) = 0, mx(0) = 1). The phase p+ = 0 in which only
one absorbing barrier is attractive is clearly visible (black region), and
it matches the theoretical estimate γ < γc(h) ≡ 2

√
h(1− h) (white line).

While the form of such region is independent on the initial conditions, the
value of p+ for γ > γc(h) will in general depend on them. The possibility
of observing a phase transition by looking at observable averages is a
direct consequence of the non-commutativity of the limits examined in
Sec. 7.3.3.
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This study paves the way for further exploration of noise-induced phe-
nomena in other quantum many-body systems and highlights the potential
for using noise as a tool for probing and controlling quantum states. In par-
ticular, by demonstrating that continuous monitoring can induce non-trivial
effect in fully-connected models already at the level of ensemble averages,
our findings provide new insights into the interplay between monitoring
and quantum dynamics in long-range interacting systems. Although for fi-
nite N this behavior is only visible on an intermediate timescale 1 ≪ t ≪
tEhr, since tEhr grows algebraically in N, these timescale can become physi-
cally accessible. Moreover, as our order parameter p+ is linear in the quan-
tum state, the possibility of an experimental realization, e.g. in the context
of cavity setups, is not hindered by postselection issues.

Further investigations are needed in order to understand whether such
behaviors are robust or in presence of short-range couplings, which could
be obtained by means of a spin-waves analysis [144, 255]. Analogously, it
is worthwhile to investigate whether our theoretical picture still holds if
we replace our all-to-all model with slowly-decaying power-law decaying
couplings (i.e. strong-long range interactions [262]), as these are known to
give rise to a phenomenology which can be similar to the fully-connected
case up to thermodynamically large timescales [254, 263–265].

Finally, while our analysis focuses on the monitoring of a collective ob-
servable, which preserves the global symmetry of the LMG model, the im-
pact of local measurements on the dynamics of open, fully-connected, quan-
tum systems might reveal an interesting interplay between local and mean-
field effects.

7.6 appendices

In this section, we provide several appendices related to the chapter.

7.6.1 Appendix A: Coherent spin states

The so-called spin, or SU(2), coherent states are the generalization of the
usual coherent states of the harmonic oscillator to angular momentum states.
Like for the harmonic oscillator, they are a complete but not orthogonal set
of states and they minimize Heisenberg’s uncertainty relations [266–268].
Let us consider a single spin s (in our case, s = N/2). For every spatial
direction n = (sin θ cosϕ, sin θ sinϕ, cos θ) there is an associated coherent
spin state defined as

∣∣Ωθ,ϕ
〉
:= e−iθ(n×z)·S |s⟩ , (394)

which is also the maximum eigenstate of S · n. Their expectation values of
Sα have a clear geometric interpretation, as they are equal to the projections

⟨Sα⟩ ≡ ⟨Ωθϕ|Sα|Ωθϕ⟩ = nαS . (395)

Such result can be found by expanding in terms of the eigenbasis of Sz |m⟩
(m = −s, · · · , s) as

∣∣Ωθϕ
〉
=

s∑
m=−s

√(
2s

m+ s

)(
eiϕ sin

θ

2

)s−m(
cos

θ

2

)s+m
|m⟩.

An important property they satisfy is ⟨mαmβ⟩ = ⟨mα⟩⟨mβ⟩+O(1/S). Be-
low we derive it with the explicit higher-order correction that is necessary
for describing quantum trajectories in the semiclassical limit.
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7.6.2 Appendix B: Derivation of Eq. (380)

We now need to compute
〈
S
q
z

〉
=
〈
Ωθϕ

∣∣Sqz
∣∣Ωθϕ

〉
. Expanding again over

|m⟩ one finds

⟨Sqx ⟩ =
s∑

m=−s

mq
(

2s

m+ s

)
× (396)

×
(
1− cos θ

2

)s−m(
1+ cos θ

2

)s+m
≡ ⟨mq⟩b ,

where ⟨·⟩b represents the average over a binomial distribution, centered in
zero with p, q = (1± cos θ)/2. Thus we have

⟨Sz⟩ = ⟨m⟩b = s(p− q) = s cos θ , (397)
〈
S2z

〉
=
〈
m2
〉
b
= ⟨m⟩2b + 2spq = ⟨Sz⟩2 +

s

2
sin2 θ ,

and analogously ⟨Sx⟩ = s sin θ cosϕ, ⟨Sy⟩ = s sin θ sinϕ .
Expectation values like ⟨SxSz+ SzSx⟩ can be calculated analogously if we

employ

⟨m|Sx|n⟩ =
1

2

√
s(s+ 1) −mn

(
δm,n+1 + δm,n−1

)
, (398)

by expanding in the Sz basis we get

⟨SxSz + SzSx⟩ =
∑
m,m ′

√(
2s

s+m

)(
2s

s+m ′

)
ei(m

′−m)ϕ

(
sin

θ

2

)2s−m−m ′ (
cos

θ

2

)2s+m+m ′

×

× 1

2
(m+m ′)

√
s(s+ 1) −mm ′

(
δm ′,m+1 + δm ′,m−1

)

=

s∑
m=−s

√(
2s

s+m

)(
2s

s+m

)
(2m+ 1)

√
s(s+ 1) −m(m+ 1)

eiϕ + e−iϕ

2
×

×
(

sin
θ

2

)2(s−m)−1(
cos

θ

2

)2(s+m)+1

= cosϕ cot
θ

2

s∑
m=−s

(
2s

s+m

)
(s−m)(2m+ 1)

(
1− cos θ

2

)s−m(
1+ cos θ

2

)s+m

= cosϕ cot
θ

2

(
s+ (2s− 1)⟨m⟩b − 2⟨m2⟩b

)

= s(2s− 1) cos θ sin θ cosϕ+O(1) ,

(399)

where we have used
√
s(s+ 1) −m(m+ 1) =

√
(s−m)(s+m+ 1),

(
2s

s+m+ 1

)
=

(
2s

s+m

)
s−m

s+m+ 1
. (400)

In terms of ⟨Sα⟩ we thus get

⟨SxSz + SzSx⟩ = (2− s−1)⟨Sx⟩⟨Sz⟩+O(s−2) ,

⟨S2z⟩ = ⟨Sz⟩2 +
s

2

(
1−

⟨Sz⟩2
s2

)
,

(401)

or equivalently

⟨mx,mz⟩c = −s−1⟨mx⟩⟨mz⟩+O(s−2) ,
⟨mz,mz⟩c = s−1

(
1− ⟨mz⟩2

)
. (402)

The result for the other pairs of components can be easily obtained by cyclic
permutation of the indices, so that Eq. (380) follows.
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Figure 34: (a) Evolution of
〈
m2z
〉
− ⟨mz⟩

2
evaluated over the mean state; both

〈
m2z
〉

and ⟨mz⟩ are linear in the average state. (b) Validation of the semiclassi-
cal approximation along individual quantum trajectories. We show that〈
m2z
〉
− ⟨mz⟩2 for increasing S tends to zero uniformly in time, as in

Eq. (375). The figure refers to the same trajectory, i.e. same realization
of the stochastic process dξt, for different S. The initial condition is
my(0) = mz(0) = 0, mx(0) = 1, for h = 0.5, γ = 0.1. (c) As in panel
(b) averaged over the set of quantum trajectories.
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7.6.3 Appendix C: Semiclassic limit and ensemble averages

Here, we present numerical evidence to support the semiclassical approxi-
mation as described in Eq. (375). Specifically, in Fig. 34 we show that

〈
m2z

〉
= ⟨mz⟩2 +O(1/S) (403)

along individual quantum trajectories. This approximation is not valid if the
mean is computed on average state. Averaging over quantum trajectories
Eq. (403) provides

⟨m2z⟩ρ = ⟨m2z⟩ = ⟨mz⟩2 +O(1/S) , (404)

whereas the decoupling applied to ρ would give

⟨m2z⟩ρ
?
= ⟨mz⟩ρ2 +O(1/S)=⟨mz⟩

2
+O(1/S) . (405)

As illustrated in Fig. 34, ⟨m2z⟩ρ − ⟨mz⟩ρ2 does not converge to zero while it
does for individual trajectories and their averages. This means that classical
correlations among quantum trajectories cannot be neglected as m2z ̸= mz2.

7.6.4 Appendix D: Hamiltonian dynamics close to the separatrix

We will now give an alternative explanation to our results for the LMG
model. First, let us notice that the separatrix corresponds to H(mz, ϕ) =

−2h. If we thus consider energies E = −2h+ ϵ, with ϵ small, we get

mz(ϕ) =
1

cos2ϕ

(
h−

√
(h− cos2ϕ)2 + ϵ cos2ϕ

)
(406)

from which we see that the closest value to the barrier mz = 1 is in core-
spondence of ϕ = π/2, namely

mz(π/2) = 1−
ϵ

2h
. (407)

Let us assume that at t = 0 the system in in mz(π/2) so that ∆z(t = 0) ∝ ϵ.
For amll ∆z the typical timescale T(∆z) spent by a trajectory close to the
mz = 1 absorbing wall, can be estimated as the half-period period of the
trajectory with energy E = −2h+ ϵ, i.e.

T(∆z) =
1

2

∫π
0

dϕ
ϕ̇

=
1

4

∫π
0

dϕ
mz(ϕ) cos2ϕ− h

=
1

4

∫π
0

dϕ√
(h− cos2ϕ)2 + ϵ cos2ϕ

which, through the substitution u = cos2ϕ can be recast as

T(∆z) =
1

8

∫1
0

du√
u(1− u)

1√
(u− h)2 + ϵu

. (408)

For small ϵ, only the region close to u = h is going to contribute. By setting
u = h+

√
ϵũ we have

T(∆z) ≈ 1

8
√
h(1− h)

∫1/√ϵ
−1/

√
ϵ

dũ√
ũ2 + h

(409)

≈ 1

4
√
h(1− h)

(− ln ϵ) ≈ 1

4
√
h(1− h)

(− ln∆z) .
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By introducing once again ∆z = e−s, one has:

T(e−s) ∼
s

4
√
h(1− h)

(410)

As the Hamiltonian dynamics in mz critically slows down close to mz = 1,
for t < T(e−s). This happens for the trajectories such that

s < 4
√
h(1− h)t . (411)

As seen in the main text, however, the noisy dynamics close to the wall is
given by

ds = 2γdt+ 2
√
γdξ (412)

i.e. a Gaussian distributed around 2γt with a typical width ∼
√
t. The prob-

ability of having such a trajectory that fulfills the conditions (411) for large
times is thus null if 2γ > 4

√
h(1− h) = 2γc(h), so that in this range of

values the barrier is repulsive.

7.6.5 Appendix E: Large γ limit

We will now address the limit of large γ. We start from Eq. (392)

dmz =
√
γ(1−m2z)dξ (413)

It is convenient to set mz = tanh(s), τ = γt, so that

ds = tanh(s)dτ+ dξ (414)

(with dξ2 = dτ). This can be rewritten as Fokker-Plank equation for the
probability distribution P(s, t) of the form

∂τP(s, τ) = ∂s

(
V ′(s) P(s, τ) +

1

2
∂sP(s, τ)

)
(415)

with V = − ln cosh(s), P(s, 0) = δ(s− s0) and s0 = arctanh z(0). By means
of the substitution:

P(s, τ) = e−τ/2e−(V(s)−V(s0))ψ(s, τ)

= e−τ/2
cosh(s)

cosh(s0)
ψ(s, τ) (416)

with ψ(s, 0) = δ(s− s0), one has

∂τψ(s, τ) =
1

2
∂2sψ(s, τ) (417)

from which finally:

ψ(s, τ) =
1√
2πτ

e−(s−s0)
2/2τ . (418)

Coming back to P(s, τ) we have

P(s, τ) =
1

2 cosh s0

1√
2πτ

(
e−s0e−(s−s0+τ)

2/2τ+ (419)

+es0e−(s−s0−τ)
2/2τ

)
, (420)

which is the superposition of two Gaussian distributions traveling to the
left and the right respectively, with weights that depends on the initial con-
dition.
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From this, one can recover p± and the ensable average ofmz. For example

p+ = lim
τ→∞

∫∞
0

ds P(s, τ) =
es0

es0 + e−s0
=
1+ z(0)

2
(421)

and analogously for p−, so that we recover

lim
N→∞ lim

t→∞mα = p+ − p− = z(0) (422)
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