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Abstract

In this thesis, we consider the set of destabilising subvarieties associated to various geometric
partial differential equations (PDEs) of Monge-Ampère type arising in complex geometry,
including the J-equation, the deformed Hermitian Yang-Mills equation and certain gener-
alised Monge-Ampère equations. Each of these PDEs has an associated Nakai-Moishezon
type criterion characterising their solvability in terms of a certain stability condition in-
volving subvarieties. We show that the set of subvarieties that violate this criterion is finite
under certain mild hypotheses of positivity, which are always satisfied on compact Kähler
surfaces. We use the results to show that the locus of stable (or solvable) PDEs is open in
the locus of all the PDEs, and admits a locally finite wall-chamber structure whose walls
are cut out by equations involving certain rigid subvarieties.
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Introduction

In mathematics, as in other fields of human knowledge, an indication of the merit of an idea
is its being discovered by disparate and seemingly unrelated lines of enquiry. The notion of
stability has proven central to the study of at least two distinct areas of mathematics: the
construction of moduli spaces of geometric objects associated to a smooth projective variety,
and the solvability of many different classes of partial differential equations on compact
Kähler manifolds arising in geometry. Both of these lines of enquiry have benefited one
from the other and thereby propelled the field forward. From this point of view, the study
of stability conditions for their own sake has emerged as a fruitful and promising endeavor.
This thesis aims to study the destabilising subvarieties in the context of stability conditions
attached to certain geometric PDEs on compact Kähler manifolds.

The idea that in order to construct moduli spaces one should impose a stability condition
arose in algebraic geometry already in the theory of constructing geometric orbit spaces for
algebraic group actions, that is, geometric invariant theory. From there, the idea was taken
up by geometers into other contexts, most notably in constructing moduli spaces of vector
bundles on algebraic varieties, where the relevant stability condition was identified as slope
stability. If E is a vector bundle on a compact Kähler manifold X of dimension dimCX = n
with fixed Kähler class α, then E is said to be slope stable if, for all proper non-zero coherent
subsheaves S ⊆ E, we have

µα(S) =

∫
X c1(S) · α

n−1

rank(S) < µα(E) =

∫
X c1(E) · αn−1

rank(E)
.

Here, two seemingly distant threads of geometry become entwined in a beautiful cor-
respondence called the Hitchin-Kobayashi correspondence, established by the theorems of
Donaldson and Uhlenbeck-Yau.

Theorem (Donaldson [1], Uhlenbeck-Yau [2]). Suppose E is simple, that is, the space
H0(X,EndE) of global holomorphic endomorphisms of E is isomorphic to C. Then, the
following are equivalent.

1. For any choice of Kähler form ω ∈ α, there exists a Hermitian metric h on E whose
curvature form

√
−1
2π Fh satisfies the Hermitian Yang-Mills equation(√

−1

2π
Fh

)
∧ ωn−1 =

µα(E)∫
X α

n
ωn ⊗ IdE .

2. The vector bundle E is slope stable.

Thus, the slope stability of a simple vector bundle is both necessary and sufficient
for it to admit a solution of the Hermitian Yang-Mills equation. Other examples of this
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phenomenon include the important Yau-Tian-Donaldson conjecture. This conjecture, which
has been central to the subject of complex differential geometry, asserts that the existence
of a constant scalar curvature Kähler (cscK) metric in a given Kähler class is equivalent to
a certain algebro-geometric stability condition called K-polystability.

The cscK equation or the Hermitian Yang-Mills equation are just two examples of a
whole host of partial differential equations (PDEs) that arise in complex differential geom-
etry and whose solvability is conjectured or known to be equivalent to a numerical criterion
defining stability. An important subclass of these equations are those whose associated nu-
merical criterion involves checking that a certain inequality holds for intersection numbers
attached to all proper subvarieties. The most prototypical example of this kind of corre-
spondence is the complex Monge-Ampère equation. We explain how this correspondence
arises as the result of two important theorems in complex differential geometry. Let X be
a smooth projective variety of dimension n and let α ∈ H1,1(X,R) be a cohomology class
on X. Let Ω ∈ An,n(X) be a smooth volume form on X such that∫

X
τn =

∫
X
Ω.

Then, Yau’s solution of the Calabi conjecture can be stated as follows.

Theorem (Yau [3]). The following conditions are equivalent.

1. The cohomology class α is a Kähler class.

2. There exists a unique smooth Kähler form ω ∈ α such that

ωn = Ω.

On the other hand, if X is smooth and projective, then a theorem of Demailly-Paŭn
gives us a characterisation of the set of Kähler classes in terms of a numerical criterion
involving subvarieties.

Theorem (Nakai-Moishezon, Demailly-Paŭn [4]). The following conditions are equivalent.

1. The cohomology class α is a Kähler class.

2. For every proper irreducible subvariety V of X of positive dimension, we have∫
V
αdimC V > 0.

In this thesis, we shall be interested in equations which admit a similar Nakai-Moishezon
criterion. Among these, we shall focus mostly on the J-equation, certain cases of the
deformed Hermitian Yang-Mills equation, the Z-critical equations and generalised Monge-
Ampère equations.

These equations arise naturally in complex geometry and their study is central to many
different aspects of the subject. These include, but are not limited to, the constant scalar
curvature equation in Kähler geometry and the associated theory of moduli of K-stable
varieties, the study of mirror symmetry, the theory of Bridgeland stability conditions and
the associated theory of moduli of coherent sheaves. From the point of view of the present
thesis, however, all of these equations fit into the same setup, which we describe now.
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Overview
For the purpose of explaining the picture in generality, we deliberately avoid getting too
notationally precise or mathematically specific at this stage.

In each case, the PDE is specified by choosing a particular value Ω from a continuous
family of admissible parameters. What is sought as a solution of the PDE is a smooth form
ω ∈ α in a fixed cohomology class α ∈ H1,1(X,R), which is often Kähler. Whether or not
we can find the sought-after ω is characterised by certain inequalities involving intersection
numbers of cohomology classes ϑp(Ω), p = 1, . . . , n− 1 depending only on Ω, say∫

V
ϑp(Ω) > 0

for each p-dimensional subvariety V ofX. Our primary interest lies in the following question.

Question. Suppose the equation associated to the parameter value Ω cannot be solved.
What are the possible subvarieties V that violate the numerical criterion for solvability,
that is, for which subvarieties V (which we shall call destabilising subvarieties) do we have∫

V
ϑp(Ω) ≤ 0?

This question is quite well motivated. By understanding the geometric properties of
these subvarieties, we might be able, in certain cases, to rule out the existence of any desta-
bilising subvarieties and therefore conclude that the equation is solvable. By understanding
the cardinality of the set of destabilising subvarieties, we might get more precise informa-
tion about the solvability of the equations and the nature of optimal destabilisers, as we
continuously vary the parameters Ω defining the equation.

We shall see that, in all our cases of interest, under certain assumptions on the value of
the parameters Ω and cohomology class α (involving concepts of positivity), the subvarieties
violating the numerical criterion (which we shall call destabilising subvarieties) lie in the
non-Kähler locus of certain big cohomology classes τp(Ω), p = 1, 2, . . . , n − 1 determined
by Ω. In the case of n = 2, we use the Zariski decomposition of big classes to conclude
that the set of destabilising subvarieties is a finite set of curves of negative self-intersection.
In the case of n = 3, we use similar ideas of positivity to conclude that the union of
the destabilising subvarieties is an analytic subset VΩ of X, each one of whose irreducible
components is rigid in a precise sense.

There is another motivation to study the set of all destabilising subvarieties, which
comes from the abstract theory of stability. We now briefly explain this point of view.

The PDEs mentioned above should be understood as the ‘rank one’ case of families of
PDEs coming from stability conditions, that is, we should think of α as the first Chern
class c1(L) of a holomorphic line bundle on X, and think of the specific equations as being
the rank one case of a family of equations defined for each holomorphic vector bundle E of
arbitrary rank, or, indeed, any coherent sheaf F on X.

One such family of PDEs, the Z-critical equation, has been introduced by Dervan-
McCarthy-Sektnan [5] as a differential-geometric analogue of the notion of a Bridgeland
stability condition on DbCoh(X). From this point of view, one should expect features of
the theory of Bridgeland stability to arise also in the study of these Z-critical equations.
One such feature is the existence of a locally finite wall-chamber decomposition. We briefly
explain this now.
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The set of all stability conditions S has a natural topology which makes S into a smooth
manifold. Then, the locally-finite wall-chamber decomposition is the following phenomenon.
For each stability condition Z ∈ S, there exists an open neighbourhood U of Z together with
finitely many closed submanifolds Wi ⊆ U of (real) codimension one (the ‘walls’) having
the following property. If Ui is any connected component (a ‘chamber’) of the complement
of the union of the Wi in U , then the stability of an object E with respect to any element
Z1 ∈ Ui is equivalent to the stability of E with respect to any other element Z2 ∈ Ui.

If something similar occurs for the Z-critical equation, then it is good evidence that the
analogy with Bridgeland stability conditions works well. In this thesis, we find that under
a natural hypothesis, the ‘rank one’ case of some of the equations under consideration have
this property. We deduce this by observing that the analogue of the ‘walls’ are cut out by
the irreducible components of the set VΩ, which vary in a finite set when Ω varies in a small
open set.

Statements of results

We now state our main results more carefully in the special case of the J-equation. For the
sake of brevity and readability, we avoid making the analogous statements about all the
other PDEs at this stage, but precise statements will be made and proved in the main body
of the thesis.

Thus, let X be a compact Kähler manifold of dimension dimCX = n. Let α, β ∈
H1,1(X,R) be Kähler classes on X. Then, for every Kähler form θ ∈ β, the J-equation
seeks a smooth Kähler form ω ∈ α such that

nωn−1 ∧ θ = µα,βω
n (1)

where the J-slope µα,β = µα,β(X) is a topological constant, and µα,β(V ) for any analytic
subvariety V of X is defined to be

µα,β(V ) = (dimC V )
αdimC V−1 · β · [V ]

αdimC V · [V ]
.

The numerical criterion for stability in the case of the J-equation is due to the works of
Gao Chen [6], Datar-Pingali [7], and Song [8], and says that (1) is solvable precisely when
µα,β(V ) < µα,β(X) for all proper analytic subvarieties V of positive dimension. We call V
a destabiliser if µα,β(V ) ≥ µα,β(X) and an optimal destabiliser if it is a destabiliser and

µα,β − µα,β(V ) = inf
Z

(µα,β − µα,β(Z)) .

The triple (X,α, β) is called J-semistable (respective J-stable) if µα,β(V ) ≤ µα,β (respec-
tively µα,β(V ) < µα,β). Our results about the cardinality of the set of destabilising subva-
rieties can then be summarised as follows.

Theorem A. Suppose X is a smooth projective variety and α, β ∈ H1,1(X,R) are Kähler
classes and θ ∈ β is a Kähler form.

1. Suppose dimCX = 2. Then, there are only finitely many destabilising curves, each of
which is a curve of negative self-intersection.



xi

2. Suppose dimCX = 3 and τ2(α, β) = µα,βα − 2β is a big cohomology class. Then,
there exists a proper analytic subset Vα,β such that each irreducible component of Vα,β
is a destabilising subvariety and all destabilising subvarieties are contained in Vα,β.
If moreover (X,α, β) is J-semistable, then there exist only finitely many destabilising
subvarieties.

3. Suppose τp(α, β) = µα,βα − pβ is a (p + 1)-modified Kähler class for each p =
1, 2, . . . , dimCX − 1. Then, there exist only finitely many destabilising subvarieties.

Part 1 of Theorem A is the content of Theorem 2.9, Part 2 is Theorems 2.11 and 2.10
and Part 3 is Theorem 2.15.

For each Part of Theorem A, we have an accompanying statement about the rigidity of
the destabilising subvarieties.

Theorem B. Let (X,α, β) and θ be as in Theorem A.

1. Suppose dimCX = 2. Then, each destabilising curve is the unique effective analytic
cycle representing its homology class.

2. Suppose dimCX = 3 and τ2(α, β) = µα,βα− 2β is a big cohomology class. Then, each
irreducible component V of the set Vα,β is rigid in the following sense. If V = S is an
irreducible surface, it is the unique effective analytic cycle representing its homology
class. If V = C is a curve, then for each surface S containing C, either C is an
irreducible component of the singular locus of S or (the strict transform of) C is a
curve of negative self-intersection in (any resolution of singularities of) S.

3. Suppose τn−1(α, β) = µα,βα − (n − 1)β is a big cohomology class. Then, each desta-
bilising divisor is the only effective analytic cycle representing its homology class.

Part 1 of Theorem B is contained in Theorem 2.9, Part 2 is Theorem 2.14, while Part
3 is contained in Proposition 2.16.

Finally, each Part of Theorems A and B have an accompanying statement about the
wall-chamber structure.

Theorem C. Let X be as in Theorem A and let α1, . . . , αs ∈ H1,1(X,R) be a finite collection
of Kähler classes.

1. If dimCX = 2, let S ⊆ H1,1(X,R) be the set of Kähler classes.

2. If dimCX = 3, let S ⊆ H1,1(X,R) be the set comprising Kähler classes β such that
µαi,βαi − 2β is a big cohomology class for each i = 1, . . . , s.

3. If dimCX ≥ 4, let S ⊆ H1,1(X,R) be the set comprising Kähler classes β such
that µαi,βαi − pβ is a (p + 1)-modified Kähler class for each i = 1, . . . , s and p =
1, . . . dimCX − 1.

In each case, the open set S ⊆ H1,1(X,R) enjoys the following property. For each β0 ∈ S,
there exists an open neighbourhood U containing β0 and finitely many closed submanifolds
W1, . . . ,Wr of U of codimension one such that for each connected component Uj of

U \
⋃
k

Wk

and each i = 1, . . . , s, the triple (X,αi, β) is J-stable for some β ∈ Uj if and only if (X,αi, β)
is J-stable for all β ∈ Uj.
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Part 1 of Theorem A is contained in 3.5, Part 2 is Theorem 3.10 while Part 3 follows
from a special case of the more general Theorem 3.12.

We emphasise once again that this thesis contains analogues of Theorems A, B, and
C for the deformed Hermitian Yang-Mills equations, Z-critical equations and generalised
Monge-Ampère equations.

Outlook
A few remarks about the results and techniques of this thesis are in order. The use of
Zariski decompositions (rather than the Siu Decomposition Theorem, as in [9, Proposition
4.5], for example) and non-Kähler loci of big classes is a novelty. This allows us to control
the destabilising subvarieties while varying the cohomological data of the PDEs and thereby
enables us to deduce results about wall-chamber structure. The results obtained are the
first of their kind on the purely differential geometric side.

Along with obtaining some completely new results, the techniques also allow us to clarify
some previous results. For example, for the case of the J-equation, it was early observed
in the work of Song-Weinkove [9, Theorem 1.4] that on compact Kähler surfaces, a certain
geometric flow associated to the J-equation develops singularities along a finite union of
certain curves, confirming an expectation of Donaldson [10, Section 4.3]. The same was
observed in subsequent works about geometric flows associated to the deformed Hermitian
Yang-Mills equation on surfaces. In fact, our results show that the destabilising curves
are among this union, and each member of a minimal such union is a curve of negative
self-intersection. This is discussed in [11, Section 6].

The results of the thesis also relate to many open problems in the subject. Here, we
briefly highlight three important problems in complex differential and algebraic geometry
to which our results especially pertain.

The first is the problem of finding singular solutions to these PDEs when no smooth
solutions may exist, generalising the results of Guedj-Eyssidieux-Guedj-Zeriahi [12] for the
complex Monge-Ampère to a wider class of PDEs. A related problem is to study the
geometric flows associated to some of these equations following [9] or the recent work of
[13]. In both of these related problems, the destabilising subvarieties will likely play an
important role, as evidenced by previous results of these authors.

The second important problem is extending these results to ‘higher rank’, that is, we
should consider the vector bundle analogues of each of the PDEs. Here, the main difficulty is
that destabilising objects may now come in two different forms. In addition to there being
destabilising subvarieties, there might also be destabilising subsheaves of the associated
holomorphic vector bundle. However, some of the same considerations might apply to this
much more complicated setting. A special case of this setup has recently been considered by
Keller-Scarpa [14]. In their work, they term what we call stability as positivity and reserve
the term stability for the higher rank condition involving subsheaves (or conditions that
involve a mixture of both subsheaves and subvarieties). They propose general conjectures
that relate positivity, stability and the existence of solutions of the relevant PDEs.

A related problem to the above is clarifying the relationship of Bridgeland stability
conditions with the solvability of, for example, the deformed Hermitian Yang-Mills equation.
The correspondence here is not expected to be as exact as for the Hermitian Yang-Mills
equation, but there are interesting partial results by Collins-Shi [15], and Collins-Lo-Shi-Yau
[16].

The third important problem is understanding the role played by mirror symmetry.
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The solutions of the deformed Hermitian Yang-Mills equation can be seen as the mirrors of
special Lagrangian submanifolds in symplectic geometry on a Calabi-Yau manifold, under
the mirror map given by the Strominger-Yau-Zaslow [17] vision of mirror symmetry. It
would be interesting to understand if there exists any interpretation of the solutions of
more general PDEs as certain calibrated submanifolds of the mirror Calabi-Yau manifold.

Organisation of the thesis
We briefly explain the layout of the material in the thesis, as well as explain any overlap
with existing or future work, to avoid any potential issues of self-plagiarism.

Chapter 1 is mostly background about concepts of positivity in complex geometry, with
a view toward the case of Kähler manifolds. In Section 1.1 some important foundational
results are recalled, mostly without proof, but effort has been made to give precise references
to proofs available in the literature. Section 1.2, still mostly background, contains the
statements and gives complete proofs of a few key lemmas, probably all of them well-known
to experts, but for which no reference in the literature is readily available.

Chapter 2 is the heart of the thesis and contains all the main results regarding destabil-
ising subvarieties. Section 2.1 gives a brief overview of the various PDEs which are treated,
and also explains some of their various connections with each other and with important
problems in complex geometry, and recalls the associated Nakai-Moishezon criteria. Sec-
tion 2.2 deals with the important base case of surfaces. In Section 2.3, we treat the case
of the J-equation in higher dimensions. In Section 2.4 we introduce a certain subclass of
PDEs to which all of our considerations in Section 2.3 can be applied.

Chapter 3 is about the important application of the results of Chapter 2 to the problem
of describing wall-chamber structure. Once again, we have decided to present the case of
surfaces separately in Section 3.1. Higher dimensional results are then presented in Section
3.2.

Sections 2.2 and 3.1, have significant overlap with [11], and Sections 2.3, 2.4, 3.2 are
likely to have significant overlap with [18], which is currently in preparation. Although all
original results are joint with Sjöström Dyrefelt, the exposition of the material is meant to
emphasise the interests and the contribution of the author.
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Chapter 1

Positive currents in complex
geometry

In this Chapter, we recall some basic notions concerning positivity on compact Kähler
manifolds. Most of the material here is explained in great detail in [19] and [20], as well as
in [21] and the references therein. However, in Section 1.2 we take care to give complete
proofs of certain basic results that we require in our later arguments and for which no direct
statement is easily available in the literature.

1.1 Background on positivity
1.1.1 The sheaf of differential forms
Let X be a complex manifold of (complex) dimension n. Given an open neighbourhood
U ⊆ X the space of degree k (complex) smooth differential forms over U is denoted Ak(U).
We have a natural splitting

Ak(U) ∼=
⊕
p+q=k

Ap,q(U).

Here Ap,q(U) is the space of degree (p, q) forms over U , that is, those forms α ∈ Ak(U)
which can locally be written as ∑

I,J

αIJdzI ∧ dzJ

where αIJ are complex-valued smooth functions. In the above expression I = {i1 < · · · <
ip}, and J = {j1 < · · · < jq} are indexing subsets of {1, . . . , n}, and

dzI = dzi1 ∧ · · · ∧ dzip , dzJ = dzj1 ∧ · · · ∧ dzjq ,

dzi = dxi +
√
−1dyi, dzi = dxi −

√
−1dyi, xi = Re(zi), yi = Im(zi)

for any choice z1, · · · , zn of holomorphic local coordinates. By expressing

dxi =
1

2
(dzi + dzi), dyi =

1

2
√
−1

(dzi − dzi),

we see that there is an injective map

Ak
R(U) → Ak(U)

1
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from the space Ak
R(U) of real-valued degree k smooth differential forms over U . The image

of this map comprises precisely those forms α ∈ Ak(U) that are invariant under the complex
conjugation map given locally by

α =
∑
I,J

αIJdzI ∧ dzJ 7→ α =
∑
I,J

αIJdzI ∧ dzJ .

1.1.2 The sheaf of currents
Let U ⊆ X be an open subset of a smooth, oriented manifold of real dimension dimRX = n
and K a compact subset of U . Denote by Ak(U ;K) ⊆ Ak(U) the subspace of smooth
differential forms of degree k on U with support contained in K. Moreover, let Ak

c (U)
denote the union of Ak(U ;K) as K ranges over all compact subsets of U . The subspace
Ak
c (U) comprises precisely the smooth forms with compact support. If V ⊆ U is an open

coordinate chart with coordinates t = (t1, . . . , tn), for each compact subset K ⊆ V and
α ∈ Ak(U), set

νt,K(α) = sup
x∈K

sup
|I|=k

|αI(x)|, where
∑
|I|=k

αIdtI = α|V .

Each νt,K defines a seminorm on Ak
c (U) and we denote the collection of such seminorms for

all possible t and K by SN(U). Moreover, for each tuple s = (s1, . . . , sn) of non-negative
integers, let ∂stα ∈ Ak(V ) denote the form given by

∂stα =
∑
|I|=k

∂|s|αI
∂ts11 ∂t

s2
2 . . . ∂tsnn

dtI .

The following definition is due to de Rham, based on the concept of distributions introduced
by Schwartz.

Definition 1.1. A current of dimension k and degree n − k on U is a linear map T :
Ak
c (U) → C which is continuous in the following sense. For all compact subsets K ⊆ U

and all sequences {αj} belonging to Ak
c (U ;K) if ν(∂stαj) → 0 for all ν ∈ SN(U) and for all

s ∈ Zn≥0, then we have T (αj) → 0. If moreover ν(∂stαj) → 0 for all ν ∈ SN(U) and merely
for |s| = s1 + · · · + sn ≤ d already implies T (αj) → 0, then T is said to be of order d. A
current is of finite order if it is of order d for some d ≥ 0. The set of currents of dimension k
(or degree n− k) is denoted by Dk(U) (or Dn−k(U)). A current of dimension zero is called
a distribution. A distribution of order zero is called a measure.

Remark 1. If a current T ∈ Dk(U) is of order s, then T admits a unique extension to
continuous linear functional T : Csc (U,

∧k(T ∗X ⊗C) → C where Csc (U,
∧k(T ∗X ⊗C) is the

space of compactly supported k-forms with s-times continuously differentiable coefficients.
In particular, if T is a measure, then it is a continuous linear functional on C0

c (U,C). By the
Riesz representation theorem (see, for example, [22, Theorem 1.38]), for every coordinate
chart V ⊆ U carrying local coordinates t, there exists a unique complex Radon measure µ
(that is, a set-map in the usual sense of measure theory) on V such that

T (f) =

∫
V
fdµ for f ∈ C0

c (V,C).

This justifies the term measure for distributions of order 0. Sometimes, the two (closely
corresponding) senses of the word measure are deliberately confused, and one may write
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T (A) for a Borel set A to mean the measure of the set A with respect to the measure
determined by the distribution T .
Remark 2. As an immediate consequence of the definition, we see that a current is locally
a differential form with distribution coefficients. Indeed, if V is a coordinate chart and
T ∈ Dp(V ), then we can write

T =
∑
|I|=p

TIdxI

where TI is determined by T ∧ dxIc = TI ∧ dxI ∧ dxIc with Ic the set of complementary
indices to I. Now TI is a current of degree 0 but it can be identified with the distribution
T̃I(f) = TI(fdx1 ∧ · · · ∧ dxn). Then T is of order s, smooth etc. if and only if T̃I is of order
s, smooth etc. for all I and all coordinate open neighbourhoods V .

If U ⊆ V ⊆ X are open subsets, then it is clear that Ak
c (U) ⊆ Ak

c (V ) in a canonical way.
Thus, if T is a current of dimension k defined on V , then its restriction to Ak

c (U) defines a
current of dimension k on U . By a straightforward argument using partitions of unity with
compact support, one sees that the assignments U 7→ Dk(U) together with the respective
restriction maps define a sheaf on X, denoted Dk or Dn−k. For each open set U ⊆ X,
we equip the space Dp(U) with the topology of weak convergence, that is, a sequence of
currents Ti ∈ Dp(U) converges to T ∈ Dp(U) precisely when, for each α ∈ An−p

c (U), the
sequence of complex numbers Ti(α) converges to T (α), and in this case, we say Ti converges
weakly to T .

Since X is assumed oriented, every β ∈ An−k(U) (or, more generally, any differential
form β whose coefficients are locally integrable functions in each coordinate chart) defines
a current Tβ by the formula

Tβ(α) =

∫
U
β ∧ α for β ∈ Ak

c (U).

The map β 7→ Tβ defines an injective map of sheaves Ar → Dr. When T = Tα for some
smooth form α, one often says that T is smooth. A convenient abuse of notation (which we
shall often employ) will be to denote the current Tα also by α.

There is also a map of sheaves Dr ⊗Aℓ → Dℓ+r, T ⊗ α 7→ T ∧ α given by

(T ∧ α)(β) = T (α ∧ β)

and this is compatible with the above inclusion. It is also convenient to set α ∧ T =
(−1)rℓT ∧α. We can also extend the exterior differential to currents d : Dr → Dr+1, T 7→ dT
by the formula

dT (α) = (−1)r+1T (dα)

and with this definition, we have

d2 = 0, dTα = Tdα, d(α ∧ T ) = (dα) ∧ T + (−1)kα ∧ T for α ∈ Ak(U), T ∈ Dr(U).

Note that if T is of order d, then dT is of order at most d+ 1. We say T is normal if both
T and dT are of order zero. We say T is closed (respectively exact) if dT = 0 (respectively
T = dS for some current S). The current Tα associated to a smooth form α is always
normal and closed or exact according as α is closed or exact.

Another important example of a normal current is the current of integration along an
oriented, closed submanifold with boundary. Let Y ⊆ U be a closed subset that is also an
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oriented submanifold of dimension k (thus, Y may have non empty boundary ∂Y ). Let [Y ]
denote the assignment given by

[Y ](β) =

∫
Y
β|Y for β ∈ Ak

c (U).

This defines a current of order zero, and in fact by Stokes’ Theorem, we have d[Y ] =
(−1)n−k+1[∂Y ].

1.1.3 Cohomology of currents
Let X be an oriented, smooth manifold. The exterior derivative defined on currents
makes (D•(X), d) into a co-chain complex. Let us denote the cohomology groups thus
obtained by Hk

DR(X,C). Observe that there is a map of co-chain complexes (A•(X), d) →
(D•(X), d), α 7→ Tα, which induces a map Hk

dR(X,C) → Hk
DR(X,C), where Hk

dR(X,C) de-
notes the usual de Rham cohomology of X, that is, the cohomology of (A•(X), d). This
map is in fact an isomorphism. This is a consequence of the following Poincaré lemma for
currents.

Theorem 1.2 (Poincaré Lemma). Suppose U is any open subset of X which is diffeomorphic
to a star-shaped open subset of Rn, and T ∈ Dk(U) is a closed current.

1. If k > 0, then T is exact, that is, T = dS for some S ∈ Dk(U). Moreover, S can be
chosen smooth if T is smooth.

2. If k = 0, then T = Tc is the current associated to a constant function c.

Proof. See, for example, [20, Chapter I, Theorem 1.22 and Section 2.D.4].

Indeed, this lemma implies that the sheaf C of locally constant complex valued functions
is resolved by the two different acyclic complexes of sheaves (Ak, d) and (Dk, d). This, in
turn, means that the canonical map Hk

dR(X,C) → Hk
DR(X,C) is the composition of the two

isomorphism Hk
dR(X,C) → Hk(X,C) → Hk

DR(X,C). (See, for example, [23, Section 4.4].)
If X is a complex manifold of dimension dimCX = m. Corresponding to the decompo-

sition
Ak
c =

⊕
p+q=k

Ap,q
c

on X we get a direct sum decomposition of sheaves

Dk =
⊕
p+q=k

Dp,q.

In the same way as above, we can define the maps ∂ : Dp,q → Dp+1,q, T 7→ ∂T and
∂ : Dp,q 7→ Dp,q+1, T 7→ ∂T in such a way that ∂2 = ∂

2
= 0, d = ∂+∂. Just as in the case of

the sheaves Ap,q, the operator ∂ makes (Dp,•(X), ∂) into a chain complex with cohomology
groups Hp,q

D (X). The following result, called the Grothendieck-Dolbeault Lemma, is the
analogue of the Poincaré Lemma in this case.

Theorem 1.3 (Grothendieck-Dolbeault Lemma). Suppose U is an open subset of X which
is biholomorphic to a polydisc in Cn and T ∈ Dp,q(U) is a ∂ closed current.

1. If q > 0, then there exists a current S ∈ Dp,q−1(U) such that T = ∂S. If T is smooth,
then S can be chosen to be smooth.
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2. If q = 0, then T = Tα is the current associated to a holomorphic form α, that is,
α ∈ Ap,0(U) and ∂α = 0.

Proof. See, for example, [20, Chapter I, Theorem 3.29].

For entirely analogous reasons as for Hk
dR(X,C) we therefore obtain that Hp,q

D (X) ∼=
Hp,q

∂
(X), the usual Dolbeault cohomology groups, via the obvious map.

Thus, we can (and henceforth do) think of d-closed (respectively ∂-closed) currents as
representing de Rham (respectively Dolbeault) cohomology classes.

1.1.4 Positive currents on a complex manifold

Let X be a complex manifold and let U ⊆ X be an open subset of X. There is a complex
conjugation map An−q,n−p

c (U) → An−p,n−q
c (U), α 7→ α which induces a conjugate-linear

map of sheaves Dp,q → Dq,p, T 7→ T . We shall say that a current T ∈ Dp,p(U) is real if
T = T . The following definition is due to Lelong.

Definition 1.4. A current T ∈ Dp,p(U) is called positive if for every choice α1, . . . , αp ∈
A1,0(U), the distribution

T ∧ (
√
−1α1 ∧ α1) ∧ · · · ∧ (

√
−1αp ∧ αp) ∈ Dn,n(U)

is a positive distribution, that is, a distribution which assigns real non-negative values to
real-valued non-negative functions with compact support. If this is the case, we write T ≥ 0
and write T1 ≥ T2 if T1 − T2 ≥ 0. A smooth form α is positive if the associated current Tα
is so, and is strongly positive if T ∧ α is positive for all positive currents T . A current T is
strongly positive if T ∧ α is positive for all positive forms α.

Remark 3. Every positive current is necessarily real, and as the terminology suggests,
strongly positive forms and currents are also positive, but not conversely in general, ex-
cept when their degree is (0, 0), (1, 1), (n−1, n−1) or (n, n). Moreover, with this definition,
volume forms that define the same orientation as the canonical orientation of X as a com-
plex manifold are positive of degree (n, n), and (the (1, 1)-forms associated to) Hermitian
forms are positive of degree (1, 1).

Remark 4. Every positive current T ∈ Dp,p(U) is necessarily of order 0, that is, what we
have called a measure. To see this, we can assume T is a distribution, meaning p = n. Now
observe that if K is any compact subset of U then we can find a compact subset K ′ of U
and a real-valued function ψ with support contained in K ′ with the following properties:
firstly, that K lies in the interior of K ′, and secondly, that ψ has support contained in K ′

with 0 ≤ ψ ≤ 1 on U and ψ(x) = 1 for x ∈ K. Then, it is clear that for any real-valued
smooth function f with support in K, we have f ≤ (supx∈K |f(x)|)ψ, and therefore, by the
positivity of T , we have

T (f) ≤ C sup
x∈K

|f(x)|, C = T (ψ).

Thus, if {fk} is any sequence of smooth functions with support contained in K which
converges uniformly to zero, then the above shows that the real and imaginary parts of the
sequence {T (fk)} also converge to zero. This in particular shows that every closed positive
current is normal.
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One of the most important examples of a closed positive current is given by the current
of integration along a closed analytic subset Z ⊆ U of dimension p. This is defined by

[Z](α) =

∫
Zreg

α|Zreg for α ∈ Ap,p
c (U)

where Zreg denotes the smooth locus of Z. This integral is well-defined essentially because
the singularities of Z are of finite type, that is, they can locally be desingularised by a
finite-sheeted branched covering. (This is certainly not the case for arbitrary immersed
submanifolds of U .) This defines [Z] as a current of order 0 and degree (p, p). A straightfor-
ward calculation shows that in fact [Z] is a positive current. Moreover, it is easy to verify
that the restriction of [Z] on U \ Zsing is d-closed (where Zsing denotes the singular locus
of Z). It is a theorem of Lelong that [Z] is d-closed on all of U . (See, for example [19,
Theorem 1.18].)

Another important example of a closed positive current is the degree (1, 1) current
associated to a plurisubharmonic function. We briefly recall the definition.

Definition 1.5. Let U ⊆ Cn be a connected open subset. An upper-semicontinuous func-
tion u : U → R ∪ {−∞} is called plurisubharmonic if u is not identically −∞ and for all
x ∈ U ,

u(x) ≤ 1

2π

∫ 2π

0
u(x+ e

√
−1θζ)dθ

whenever ζ ∈ Cn \ {0} is such that B(x, |ζ|) ⊆ U .

A plurisubharmonic function is also subharmonic, that is, it satisfies the mean value
inequality. From this, it follows that that every plurisubharmonic function is in fact locally
integrable with respect to the Lebesgue volume form dλz on U , that is, for every compact
subset K ⊆ U , the integral ∫

K
|u(z)|dλz <∞.

Thus, one can define the current Tu ∈ D0(U) of order 0 and degree 0 given by

Tu(fdλz) =

∫
U
u(z)f(z)dλz, for f ∈ C∞

c (U,C).

Lemma 1.6. Let U ⊆ Cn be a connected open subset, T ∈ D0(U) a degree zero current on
U . Then, the following are equivalent.

1.
√
−1∂∂̄T is a positive current.

2. There exists a plurisubharmonic function u on U such that T = Tu is the current
associated to u.

Proof. See, for example, [20, Chapter I, Section 5].

In fact, the condition of plurisubharmonicity is invariant under holomorphic change of
coordinates, and thus the notion of a plurisubharmonic function makes sense on any complex
manifold. Moreover, the above result, by the help of the Grothendieck-Dolbeault lemma,
immediately implies the following fact about closed positive currents of degree (1, 1).

Corollary. Let X be a complex manifold and S ∈ D1,1(X) be a d-closed positive current.
Then, for every x ∈ X there exists an open neighbourhood U containing x such that S|U =√
−1∂∂Tu for a plurisubharmonic function u on U .
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1.1.5 Intersection numbers on compact complex manifolds
An important application of closed positive currents is a straightforward definition of in-
tersection numbers on a compact complex manifold X. Given closed analytic subvarieties
Zi of X of (complex) codimension pi the closed positive currents of integration [Zi] define
cohomology classes τi ∈ H2pi

dR (X,R).

Definition 1.7. The intersection number Z1 · Z2 · · · · · Zs is defined by

Z1 · Z2 · · · · · Zs =
∫
X
θ1 ∧ θ2 ∧ · · · ∧ θs

where θi ∈ A2pi(X) are smooth representatives of the cohomology classes τi.

Remark 5. Note that if
∑

i pi 6= dimCX in the notation of the above definition, then the
intersection number is by definition zero. Moreover, although it is not manifestly obvious
with this definition, Z1 ·Z2 · · · · ·Zs is in fact geometric, that is, if the intersection of the Zi is
transverse and therefore comprises k isolated points of multiplicity 1, then Z1 ·Z2 · · · · ·Zs =
k, and therefore this definition agrees, in the case X is a smooth projective, with the
intersection number as defined using algebraic geometry. In particular, if X is a compact
complex surface, and C,D are distinct irreducible curves in X, then C ·D ≥ 0.
Remark 6. Given cohomology classes αi and a closed analytic subvariety Z, we will often
use the notations

α1 · α2 · · · · · αs · [Z] =
∫
Z
α1 · α2 · · · · · αs =

∫
Z
θ1 ∧ θ2 ∧ · · · ∧ θs

where θi are smooth representatives of the αi.
Remark 7. Suppose Z ⊆ X is an analytic subvariety of X, and f : X̃ → X is any bimero-
morphic holomorphic map which admits a partial inverse defined on a Zariski open subset
U of X. If the smooth locus of Z is contained in U , then defining Z̃ to be the closure of
f−1(U ∩ Z) in X̃, we see directly from the definition that∫

Z̃
f∗α1 · · · · · f∗αs =

∫
Z
α1 · . . . αs.

These conditions are satisfied in any resolution of singularities of Z. This is a special case
of the projection formula.

1.1.6 Lelong numbers and generic multiplicities
One should think of a closed positive current as a singular analogue of a closed positive
form. In fact, the singularities of a closed positive current should be deemed as an important
feature of this theory, and carry geometric information about X. This is captured by the
concept of Lelong numbers, first introduced by Lelong.

Definition 1.8. Let T ∈ Dp,p(X) be a closed positive current on a complex manifold X and
let x ∈ X. Pick an open coordinate neighbourhood V of x carrying holomorphic coordinates
z = (z1, . . . , zn) centred at x. Let λz denote the Lebesgue measure on V with respect to
the coordinates zi and σT,z denote the positive measure on V given by

σT,z =
1

(n− p)!
T ∧

(√
−1

2
∂∂|z|2

)n−p
=

1

(n− p)!
T ∧

(√
−1

2

n∑
k=1

dzk ∧ dzk

)n−p
.
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The Lelong number ν(T, x) of T at x is the non-negative real number given by

lim
r→0+

σT,z(Bz(x, r))

λz(Bz(x, r))

where Bz(x, r) is the open ball of radius r around x in V , that is, the set {x ∈ V :∑
|zk(x)|2 < r}.

Remark 8. Here, we have abused notation in writing σT,z(Bz(x, r)) as explained at the end
of Remark 1. Note that the limit in the above definition always exists because the ratio of
σT,z(Bz(x, r)) and λz(Bz(x, r)) is a decreasing function of r.

The following theorem (due to Siu) highlights the intimate connection of closed positive
currents with complex analytic geometry and is foundational.

Theorem 1.9 (Siu). Let X be a complex manifold and T ∈ Dp,p(X) a d-closed positive
current. Then, the following statements hold.

1. The Lelong number ν(T, x) of T at the point x ∈ X does not depend on the choice of
holomorphic coordinates around x.

2. For every c > 0 the superlevel set Ec(T ) comprising the points x ∈ X such that
ν(T, x) ≥ c is a closed analytic subset of X of codimension at least p.

Remark 9. We will denote by E+(T ) the union of all the superlevel sets Ec(T ) as c > 0.
Thus, by the above Theorem, it follows that E+(T ) is a union of at most countably many
distinct irreducible analytic subvarieties of X.
Remark 10. It is a result of Lelong (see [19, Theorem 2.8(b)] that if T =

√
−1∂∂̄u is a closed

positive current of degree (1, 1) associated to a plurisubharmonic function u then ν(T, x) is
the supremum of ν ≥ 0 such that the function z 7→ u(z)−ν log |z−x| remains bounded in a
neighbourhood of x. This in particular shows that ν([Zf ], x) = ordx(f) for holomorphic f ,
where Zf is the zero locus of f and ordx(f) is the order of vanishing of f at x. Moreover,
ν(T, x) = 0 whenever T is smooth in a neighbourhood of x.

Given T ∈ Dp,p(X) a closed positive current, let us set

ν(T, V ) = inf
x∈V

ν(T, x)

for V any analytic subvariety. If V has codimension smaller than p, then Siu’s Theorem 1.9
of course implies that ν(T, V ) = 0. If the codimension of V is exactly p, then it turns that
T ≥ ν(T, V )[V ] and so T −ν(T, V )[V ] ∈ Dp,p(X) is again a closed positive current. One can
therefore ‘subtract off’ the p-codimensional components of E+(T ). The Siu decomposition
theorem says that this process can be carried out until no components of codimension p
remain.

Theorem 1.10 (Siu Decomposition Theorem). Let T ∈ Dp,p(X) be a closed positive cur-
rent. Then, the series

S(T ) =
∑

ν(T,Z)>0
codimZ=p

ν(T, Z)[Z]

converges weakly. Moreover, the remainder R(T ) = T − S(T ) is a closed positive current
such that all the irreducible components of Ec(R) for c > 0 have codimension strictly greater
than p.
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1.1.7 The ∂∂-lemma
From now on, assume that X is a compact Kähler manifold. This is the case in which
we shall be chiefly interested. Thus, the cohomology groups Hp,q(X,C) are all finite-
dimensional and the Hodge decomposition

Hk
dR(X,C) =

⊕
p+q=k

Hp,q

∂
(X)

holds. Moreover, the ∂∂-lemma continues to hold for currents. More precisely, we have the
following.

Lemma 1.11 (∂∂̄-lemma). Suppose X is a compact Kähler manifold and T ∈ Dp,q(X) is a
current of pure bidegree (p, q) which is d-exact, that is, T = dS for some S ∈ Dp+q−1(X).
Then, there exists a current u ∈ Dp−1,q−1(X) such that

√
−1∂∂u = T .

Proof. We only recall the proof for a real current T ∈ D1,1(X) of pure bidegree (1, 1). (This
is the only case which will be pertinent to the present thesis.) Let S ∈ D1(X) be such that
T = dS. Then, we also have T = dS̄, and so we can assume that S is real. Decompose
S = S(1,0) + S(0,1) into its bidegree components. Then, we have S(1,0) = S(0,1), ∂̄S(0,1) =
∂S(1,0) = 0. By the Grothendieck-Dolbeault lemma for currents, there exists an open cover
Uj of X such that on Uj we have S(0,1) = ∂̄vj for some vj ∈ D0(Uj). Clearly we then have
(by conjugation) that ∂v̄j = S(1,0) on Uj . Thus, on Uj , we obtain

dS = d(S(1,0) + S(0,1)) = d(∂v̄j + ∂̄vj) = ∂̄∂v̄j + ∂∂̄vj =
√
−1∂∂̄(2Imvj).

Let us pick a partition of unity ρj subordinate to Uj and define u =
∑
ρjuj where uj =

2Imvj . Then, on Uj we can calculate

T −
√
−1∂∂̄u = dS −

√
−1∂∂̄u =

√
−1∂∂̄

∑
k

ρk(uj − uk).

Let x be a point in Uj . Then, if x ∈ Uk we have
√
−1∂∂̄(uj − uk) = dS − dS = 0. This

means that uj − uk is a pluriharmonic function on Uj ∩ Uk, and therefore ρk(uj − uk) is
smooth around x. On the other hand, if x 6∈ Uk, then ρk vanishes in a neighbourhood of
x, and so ρk(uj − uk) is once again smooth around x. Therefore,

∑
k ρk(uj − uk) is in fact

smooth on each Uj , and so the current T −
√
−1∂∂̄u is a smooth form, say α. But then we

have
α = T −

√
−1∂∂̄u = d(S +

√
−1∂̄u).

But this implies in fact that α = dβ for a smooth form β. Indeed, this claim is equivalent
to the injectivity of the natural map H2

dR(X,C) → H2
DR(X,C), but this map is even an

isomorphism. Now, since X is compact and Kähler, every smooth d-exact form is ∂∂̄-exact
by the usual ∂∂̄-lemma for smooth forms. (See, for example, [24, Corollary 3.2.10].) Thus,
α =

√
−1∂∂̄f for some smooth function f . This means that we finally obtain

T =
√
−1∂∂̄u+ α =

√
−1∂∂̄(u+ f).

This proves the claim.

Remark 11. Note that the above proof works for any complex manifold X which satisfies the
following property: if a closed, real form α ∈ A1,1(X) satisfies α = dβ for some β ∈ A1(X),
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then α =
√
−1∂∂̄f for some smooth function f . More generally, one can drop the Kähler

hypothesis and work instead throughout with the group H1,1
BC(X,R), namely the group of

d-closed real currents of bidegree (1, 1) modulo the image under
√
−1∂∂̄ of the group of

currents of degree zero. However, since most of our considerations in the later Chapters
exclusively involve examining PDEs whose solution is a Kähler form or whose auxiliary
data include Kähler forms, we do not sacrifice any generality by imposing this hypothesis.
Many of the results that are stated in this Chapter nevertheless remain true if the group
H1,1(X,R) is replaced with H1,1

BC(X,R) throughout.

Let us denote by Hp,p(X,R) the image of closed, real currents in Hp,p

∂̄
(X)∩H2p

dR(X,C).
The above ∂∂̄-lemma 1.11 is very convenient from the point of view of parametrising closed
currents in a given cohomology class τ ∈ H1,1(X,R) that possess a very flexible form of
positivity.

Definition 1.12. A real (1, 1) current T ∈ D1,1(X) is called almost positive if T ≥ α for a
smooth, real (1, 1) form α ∈ A1,1(X).

Let τ ∈ H1,1(X,R) be a cohomology class and θ a smooth representative of τ . Then,
every closed current T ∈ τ can be written as T = θ +

√
−1∂∂̄u for some degree 0 current

u ∈ D0(X). Now, if T ≥ α is almost positive, then on each small coordinate chart U with
holomorphic coordinate z = (z1, . . . , zn), there exists some C > 0 such that, on U , we have

α+ C
√
−1∂∂̄(|z1|2 + · · ·+ |zn|2) ≥ 0,

and also θ =
√
−1∂∂̄f for a smooth function f on U . Then, T+C

√
−1∂∂̄|z|2 =

√
−1∂∂̄(f+

u+C|z|2) ≥ 0. By Lemma 1.6, it follows that u+f+C|z|2 is a plurisubharmonic function on
U . From this, we conclude that u is in fact locally integrable and can be locally written as
a sum of a smooth function and a plurisubharmonic function. This motivates the following
definition.

Definition 1.13. An almost plurisubharmonic function (or quasi-plurisubharmonic func-
tion) is a locally integrable function which can locally be expressed as the sum of a smooth
function and a plurisubharmonic function. If θ is a smooth representative of τ ∈ H1,1(X,R),
we denote by PSH(X, θ) the set comprising those almost plurisubharmonic functions u such
that θ +

√
−1∂∂̄u is a closed positive current.

Remark 12. Thus, every almost positive current T in the cohomology class τ ∈ H1,1(X,R)
can be written as T = θ +

√
−1∂∂̄u, where θ is a smooth representative of τ and u is an

almost plurisubharmonic function on X. If T = θ′+
√
−1∂∂̄u′ is another such representation

of T , then u− u′ is a globally defined smooth function on X. This is a consequence of the
(proof of the) ∂∂̄-lemma 1.11. The almost plurisubharmonic function u is sometimes called
the almost plurisubharmonic potential of T with respect to θ.

Given a closed almost positive current T in the cohomology class τ ∈ H1,1(X,R), we
can extend to T the concept of Lelong numbers by setting

ν(T, x) = ν(
√
−1∂∂̄u, x)

where u is any plurisubharmonic function defined on a neighbourhood of x such that T =√
−1∂∂̄(u+ f) for some smooth function f on U . Similarly, we can define ν(T,Z) for any

analytic subvariety of Z. One checks directly that this definition is independent of any
choices.
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1.1.8 Singularities of currents
The language of almost plurisubharmonic functions is convenient from the point of view of
studying the singularities of almost positive currents. This is made precise by the following
definition.

Definition 1.14. Let X be a compact Kähler manifold and u1, u2 almost plurisubharmonic
functions on X. We say that u1 is less singular than u2 and write u1 � u2 if there exists
C > 0 such that u1+C ≥ u2. Let T1, T2 be closed almost positive currents onX. We say that
T1 is less singular than T2 and write T1 � T2 if, whenever we can write Ti = θi +

√
−1∂∂̄ui

with θi smooth and closed, and ui almost plurisubharmonic, we have u1 � u2.

Remark 13. The pre-order relation � on closed almost positive currents in a given coho-
mology class generates an equivalence relation. If T1, T2 belong to the same equivalence
class under this relation, we say T1 and T2 have the same singularity class. Two closed
almost positive currents in the same singularity class have identical Lelong numbers. This
is a consequence of a theorem of Siu mentioned in Remark 10.

Given τ ∈ H1,1(X,R) and a real α ∈ A1,1(X), let us denote by τ [α] the set of closed
almost positive currents T in the cohomology class τ satisfying T ≥ α. The utility of the
above Definition 1.14 is in the following lemma.

Lemma 1.15. Let X be a compact Kähler manifold, τ ∈ H1,1(X,R) and α ∈ A1,1(X)
a real, smooth (1, 1) form. Then, for any (nonempty) family Tj , j ∈ J of closed almost
positive currents in τ [α], there exists an almost positive current infj Tj which is an infimum
with respect to the pre-order relation � and satisfies infTj ≥ α. Moreover, the singularity
class of any such infimum is unique and for every x ∈ X we have

ν(inf
j
Tj , x) = inf

j
ν(Tj , x).

Proof. See [21, Section 2.8].

By taking the family to be all of τ [α], we obtain the following useful corollary.

Corollary. Let X be a compact Kähler manifold, τ ∈ H1,1(X,R) a cohomology class and
α ∈ A1,1(X) a smooth, real form. Then, if τ [α] is non-empty, there exists a current
Tmin,α ∈ τ such that Tmin,α ≥ α and Tmin,α � T for all T ∈ τ [α]. Any other T ′ satisfying
the same properties as Tmin,α lies in the same singularity class as Tmin,α.

Another useful idea is the concept of analytic singularities.

Definition 1.16. A closed almost positive current T is said to have analytic singularities
if, whenever T = θ+

√
−1∂∂̄u with θ a smooth closed form and u almost plurisubharmonic,

then there exists a c > 0 such that on any sufficiently small open neighbourhood, the
restriction of u lies in the same singularity class as the function

c

2π
log(|f1|2 + |f2|2 + · · ·+ |fs|2)

for some local holomorphic functions f1, . . . , fs. The local functions fi generate an ideal
sheaf I called a sheaf of singularities of T , and T is said to have analytic singularities of
type (I, c).
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1.1.9 Regularisation theorem of Demailly
Here we briefly recall a regularisation result due to Demailly that allows us to approximate
any closed almost positive current by a sequence of almost positive currents in the same
cohomology class whose singularities are much better behaved.

Theorem 1.17 (Demailly Regularisation Theorem). Let X be a compact Kähler manifold
and let ω be a Kähler form on X. Suppose, T ∈ D1,1(X) is a closed almost positive current
in the cohomology class τ ∈ H1,1(X,R) satisfying the lower bound T ≥ α for some smooth
real form α ∈ A1,1(X). Then, the following statements hold.

1. There exists a sequence θk ∈ A1,1(X) of smooth, real forms in the cohomology class τ ,
and continuous functions λk on X such that θk converge weakly to T , λk(x) decrease
to ν(T, x) and θk ≥ α − Cλkω. Here, C > 0 is a constant depending only on the
curvature of (TX , ω) as a Hermitian vector bundle.

2. There exists a sequence of closed currents Tk in the cohomology class τ , and εk > 0
such that Tk converges weakly to T , εk decreases to zero, Tk ≥ α − εkω for each k,
and ν(Tk, •) converges uniformly to ν(T, •).

1.2 Positive cones in H1,1(X,R)

In this thesis, we shall be concerned with positivity conditions that require certain coho-
mology classes associated to geometric PDEs to lie in various positive cones in H1,1(X,R).
Here, we recall the definitions of all of these cones and prove some basic properties which
will be crucial to our later considerations. Thus, let X, be a compact Kähler manifold. The
cohomology classes that can be represented by Kähler forms comprise an open convex cone
called the Kähler cone, denoted KX , or simply K when no confusion is likely to occur.

Definition 1.18. Let τ ∈ H1,1(X,R) be a cohomology class. We say τ is

• pseudoeffective if τ can be represented by a closed positive current;

• nef if for all ε > 0, τ can be represented by a smooth form θε such that θε ≥ −εω;

• big if there exists some ε > 0 such that τ can be represented by a closed current T
with T ≥ εω. Such a current is called a Kähler current.

The pseudoeffective, nef and big classes comprise, respectively, the pseudoeffective, nef and
big cones, denoted EX ,NX and BX respectively.

Remark 14. Since any two Kähler forms mutually commensurate each other, the definitions
above do not depend on the choice of ω. This will be true for all the definitions of positive
cones that follow. It also follows easily from the definitions that E is the closure of the open
cone B and N is the closure of the open cone K.

Definition 1.19. Given a pseudoeffective class τ ∈ H1,1(X,R), the minimal multiplicity
ν(τ, x) of τ at x is given by

ν(τ, x) = sup
ε>0

ν(Tmin,ε, x)

where Tmin,ε = Tmin,−εω is a closed (1, 1) current of minimal singularities in τ [−εω]. If V is
any irreducible analytic subvariety of X, we set

ν(τ, V ) = inf
x∈V

ν(τ, x).
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Remark 15. Note that τ [−εω] is non-empty for all ε > 0 whenever τ is a pseudoeffective
class. Also, if 0 < ε < ε′, then it is clear that Tmin,ε ∈ τ [−ε′ω], so Tmin,ε′ � Tmin,ε and
therefore ν(Tmin,ε, x) ≥ ν(Tmin,ε′ , x) by Lemma 1.15. Thus, the supremum in Definition
1.19 is always well-defined and can be replaced with a supremum over any small open
interval with endpoint zero. Moreover, when τ is big, the supremum can even be replaced
by the formula ν(τ, x) = ν(Tmin, x), where Tmin is any closed positive current of minimal
multiplicity in τ . (See [21, Proposition 3.6].)

The following definition is due to Wu [25] and generalises the notion of a modified nef
class defined by Boucksom in [21].

Definition 1.20. Let X be a compact Kähler manifold of dimension n. A pseudoeffective
(1, 1) class τ on X is said to be nef in codimension q or (n− q)-modified nef if the minimal
multiplicity ν(τ, Z) = 0 for any irreducible analytic subvariety of codimension k ≤ q. These
classes comprise a closed cone MqN = Mn−qN , which we shall call the (n−q)-modified nef
cone and its interior MqK = Mn−qK the (n− q)-modified Kähler cone. A class τ ∈ MpK
is called a p-modified Kähler class.

Remark 16. We have an obvious inclusion of cones

N = M0N ⊆ M1N ⊆ . . . ⊆ MnN = E

and similarly for MiK. In particular, note that that MnK = B is the big cone. In fact, as
a corollary of a result of Paŭn (see Lemma 2 in [25]), we also have Mn−1N = M1N = N .
In [21], the cone Mn−1N is called the modified nef cone, where it is denoted simply MN .
Note, however, that our terminology of n-modified nef for the pseudoeffective cone contrasts
with the usage of the words ‘modified nef’ (especially in the sense of [21, Proposition 2.3]).
However, whenever convenient, we will call E , respectively B the n-modified nef, respectively
n-modified Kähler cones.

Definition 1.21. The non-Kähler locus EnK(τ) of a big class τ is given by

EnK(τ) =
⋂
T∈τ

E+(T )

where the intersection ranges over all Kähler currents T representing τ . Here E+(T ) is the
set comprising x ∈ X such that ν(T, x) > 0.

The following result is contained in [21] and plays a central role in obtaining finiteness
results about the set of destabilising subvarieties.

Theorem 1.22 (Boucksom). Let X be a compact Kähler manifold and τ ∈ H1,1(X,R) be
a big cohomology class on X. Then, the non-Kähler locus EnK(τ) is an analytic subset of
X and there exists a Kähler current T ∈ τ with analytic singularities such that E+(T ) =
EnK(τ).

Proof. See [21, Theorem 3.17(ii)].

1.2.1 The non-Kähler loci of big classes
A straightforward consequence of standard results and the above definitions that we shall
use is the following result.
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Lemma 1.23. Let X be a compact Kähler manifold of dimension n and let τ ∈ MnK be a
big class on X. Then, τ ∈ MpK on X if and only if every irreducible component of EnK(τ)
has dimension strictly less than p.

Proof. Fix a Kähler form ω on X. First suppose τ ∈ MpK. Then, we can find ε > 0 so
small that τ − 2ε[ω] ∈ MpN . Thus, for any V ⊆ X of dimension at least p, we have by
definition

ν(τ − 2ε[ω], V ) = 0.

In particular, we have
ν(Tmin,ε, V ) = 0

where Tmin,ε is a current of minimal singularities in τ − 2ε[ω] satisfying Tmin,ε ≥ −εω. But
then, the current

T = Tmin,ε + 2εω

lies in the class τ and satisfies T ≥ εω. Thus, T is a Kähler current in τ and satisfies
ν(T, V ) = 0 for all V ⊆ X of dimension at least p. Since EnK(τ) ⊆ E+(T ), we see that no
such V can be contained in EnK(τ).

Conversely, suppose that EnK(τ) does not contain any irreducible analytic subset of
dimension greater than or equal to p. Then, because τ is big, by [21, Theorem 3.17(ii)]
there exists a Kähler current T ∈ τ such that E+(T ) = EnK(τ). Because T is a Kähler
current, we can find ε > 0 so that T ≥ 2εω and τ − ε[ω] is a big class. In particular,
ν(T − εω, V ) = 0 for all V ⊆ X of dimension at least p. Let Tmin be any current of minimal
singularities in τ − ε[ω] satisfying Tmin ≥ 0. Then, by minimality, we have

ν(Tmin, x) ≤ ν(T − εω, x)

for all x ∈ X. Thus, ν(Tmin, V ) = 0 for all V of dimension at least p. Now, by [21,
Proposition 3.6(ii)], we have ν(Tmin, x) = ν(τ −ε[ω], x), and so we obtain ν(τ −ε[ω], V ) = 0
whenever V is of dimension at least p. Thus, τ − ε[ω] ∈ MpN . Since this holds for an
arbitrary Kähler class [ω], we obtain that τ ∈ MpK is a p-modified Kähler class.

We shall use Lemma 1.23 in conjunction with the following straightforward consequence
of results of Boucksom and Demailly.

Lemma 1.24. Let τ be a big cohomology class on a compact Kähler manifold X, and
ω1, ω2, . . . , ωp−1 be smooth Kähler forms on X. Then, for any p-dimensional subvariety V
satisfying V 6⊆ EnK(τ), we have∫

V
τ · [ω1] · [ω2] · . . . · [ωp−1] > 0.

Proof. By Boucksom’s Theorem 1.22, there exists a Kähler current with analytic singular-
ities T ∈ τ such that E+(T ) = EnK(τ). By rescaling ω1 if necessary, we may assume that
T ≥ ω1. By the regularisation thorem of Demailly (Theorem 1.17) there exist smooth forms
θk representing τ and continuous functions λk : X → R such that θk converge weakly to T ,
θk + λkω1 ≥ ω1 in the sense of currents and λk(x) decrease to ν(T, x). Since X is compact,
we can find smooth functions ρk : X → R such that for all x ∈ X we have

0 ≤ ρk(x)− λk(x) ≤ 2−k.
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Then, we obtain
θk + ρkω1 ≥ (1 + 2−k)ω1.

From this, it follows that

(θk + ρkω1) ∧ ω1 ∧ . . . ∧ ωp−1 ≥ (1 + 2−k)ω2
1 ∧ . . . ∧ ωp−1

as smooth measures on the regular part of V . Thus, we have∫
V
τ · [ω1] · . . . · [ωp−1] +

∫
V
ρkω

2
1 ∧ ω2 ∧ . . . ∧ ωp−1 ≥ (1 + 2−k)

∫
V
ω2
1 ∧ ω2 ∧ . . . ∧ ωp−1.

Now ρk(x) also converges to ν(T, x), and thus the sequence ρk of smooth functions converges
to zero almost everywhere on the regular part of V with respect to the measure ω2

1 ∧ ω2 ∧
. . .∧ωp−1. Thus, taking the limit and applying the bounded convergence theorem, we obtain
that ∫

V
τ · [ω1] · . . . · [ωp−1] ≥

∫
V
[ω1]

2 · [ω2] · . . . · [ωp−1] > 0.

We shall also need the following statement, which will be used to establish results related
to wall-chamber decompositions.

Lemma 1.25. Let X be a compact Kähler manifold and τ a (p+ 1)-modified Kähler class
on X. Then, there exists an open neighbourhood U of τ in H1,1(X,R) and a finite set
S = {V1, . . . , Vr} of irreducible p-dimensional subvarieties of X such that for all Kähler
forms ω1, . . . , ωp−1 and all τ ′ ∈ U whenever we have∫

V
τ · [ω1] · . . . [ωp−1] ≤ 0

then V ∈ S.

Proof. By the openness of the (p+ 1)-modified Kähler cone Mp+1K, we can find τ1, . . . , τℓ
such that

τ ∈ U = Int(conv(τ1, . . . , τℓ)) 6= ∅.

Here, Int(conv(τ1, . . . , τℓ)) denotes the interior of the convex hull of the classes τ1, . . . , τℓ.
Since τi is (p + 1)-modified Kähler, EnK(τi) contains no (p + 1)-dimensional irreducible
subvarieties of X. Let S be the union of all the p-dimensional irreducible subvarieties of X
contained in EnK(τi) for i = 1, . . . , ℓ. Now, let τ ′ ∈ U and ω1, . . . , ωp−1 be Kähler forms on
X. Suppose that we have ∫

V
τ ′ · [ω1] · · · · · [ωp−1] ≤ 0

for some p-dimensional irreducible subvariety V of X. Then, since τ ′ ∈ U , we can write

τ ′ =

ℓ∑
i=1

aiτi

where ai > 0 and
∑

i ai = 1. From this, it follows that∫
V
τi · [ω1] · · · · · [ωp−1] ≤ 0,

for some i, and this in turn implies (by Lemma 1.24) that V lies in EnK(τi), and therefore
V ∈ S.
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1.2.2 The divisorial Zariski decomposition

A classical theorem of Zariski [26] states that any effective divisor D on a surface can be
uniquely decomposed as a sum of Q-divisors D = Z + N where Z is nef, N has negative-
definite intersection matrix and Z ·N = 0. In [21] Boucksom generalised this decomposition
to arbitrary pseudoeffective classes on compact complex manifolds. We briefly go over the
construction.

Definition 1.26. Let τ ∈ E be a pseudoeffective class. The negative part of τ is the closed
positive current given by

N(τ) =
∑
D

ν(τ,D)[D]

where the sum runs over all irreducible divisors (analytic subvarieties of codimension one).
The positive part of τ is the cohomology class

Z(τ) = τ − [N(τ)].

The decomposition τ = Z(τ) + [N(τ)] is called the Zariski decomposition of τ .

Remark 17. The negative part N(τ) is well-defined, since it is at worst a convergent series,
being dominated by S(Tmin) (in the notation of the Siu Decomposition Theorem 1.10) where
Tmin is any positive current of minimal singularities in τ . What is remarkable, however, is
that this power series is actually a finite sum, and hence (the current of integration along) a
R-divisor. In fact, N(τ) is the unique positive current in its cohomology class, and, for this
reason, we will often confuse [N(τ)] with N(τ), preferring to write the latter even when we
mean the cohomology class [N(τ)].

The properties of the Zariski decomposition are summarised as follows. (See [21, Sections
3.2, 3.3].)

Theorem 1.27 (Boucksom). Let X be a compact Kähler manifold of dimension n and
τ ∈ H1,1(X,R) a pseudoeffective class. Then, the Zariski decomposition τ = Z(τ) + N(τ)
of τ possesses the following properties.

1. The postive part Z(τ) ∈ Mn−1NX is an (n− 1)-modified nef class.

2. The maps Z and N are projections, that is, Z ◦Z = Z,N ◦N = N,Z ◦N = N ◦Z = 0.

3. The negative part N(τ) is equal to the current of integration along an effective R-
divisor, that is,

N(τ) =

ℓ∑
i=1

ai[Ei]

for some ai > 0 and Ei ⊆ X analytic subvarieties of codimension one. The cur-
rent N(τ) is the unique closed positive current in its cohomology class. Moreover,
the classes [Ei] are linearly independent in H1,1(X,R). In particular, ℓ ≤ ρ(X) ≤
dimRH

1,1(X,R).

4. The map τ 7→ N(τ) is convex.
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1.2.3 Big classes on compact Kähler surfaces
Suppose X is a compact Kähler surface. Then, the nef cone NX and the modified nef cone
M2−1NX coincide. (See, for example, [21, Theorem 4.1].) Moreover, the prime divisors Ei
(in this case, curves) appearing in Theorem 1.27 (3) have a negative-definite intersection
matrix and this property characterises the negative parts of pseudoeffective classes on X.
(See [21, Theorem 4.5].)

In fact, the various different notions of positivity are much better behaved on surfaces.
In particular, we have the following theorem of Lamari [27, Theorem 5.3] characterising the
Kähler cone KX of a compact Kähler surface.

Theorem 1.28 (Lamari). Suppose X is a compact Kähler surface and α, β ∈ H1,1(X,R)
are cohomology classes such that α can be represented by a smooth, closed non-zero form ω
with ω ≥ 0. Then, β ∈ KX if and only if the following three conditions are satisfied.

1.
∫
X α · β > 0,

2.
∫
X β

2 > 0.

3. We have
∫
C β > 0 for every irreducible curve C in X of negative self-intersection.

Moreover, the intersection pairing on H1,1(X,R) given by

(α, β) 7→
∫
X
α · β

has signature (1, dimRH
1,1(X,R)− 1). This is a consequence of the Hodge Index Theorem.

(See, for example, [28, Theorem 6.33].) This fact allows one to give a sufficient numerical
criterion for a class α ∈ H1,1(X,R) to be big, which we now recall.

Let P+
X denote the open set of classes τ ∈ H1,1(X,R) such that

∫
X τ

2 > 0 and
∫
X τ ·α > 0

for some Kähler class α ∈ KX . It is clear that KX ⊆ P+
X . In fact, the set P+

X does not
depend on the choice of α. This is a consequence of the Hodge Index Theorem once again.
Indeed, if τ satisfies ∫

X
τ2 > 0,

∫
X
τ · α1 > 0,

∫
X
τ · α2 ≤ 0

for some Kähler classes α1, α2 ∈ KX , then we would have
∫
X τ · (rα1 + (1 − r)α2) = 0

for some r ∈ [0, 1]. This would contradict the fact that the intersection pairing has only
one positive eigenvalue, for then τ and rα1 + (1 − r)α2 would be two different orthogonal
positive vectors for the intersection pairing. The same argument yields the following.

Lemma 1.29. The open set P+
X ⊆ H1,1(X,R) is an open convex cone.

Proof. It is immediate that if τ ∈ P+
X , then so is rτ for any r > 0. It only remains to prove

that if τ1, τ2 ∈ P+
X , then so is τ1 + τ2. We clearly have∫

X
(τ1 + τ2) · α > 0.

Now ∫
X
(τ1 + τ2)

2 >

∫
X
2τ1 · τ2
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and we claim that
∫
X τ1 · τ2 > 0. Indeed, if

∫
X τ1 · τ2 ≤ 0, then we would have,∫

X
τ1 · (rτ2 + (1− r)α) = 0

for some r ∈ (0, 1]. But clearly ∫
X
(rτ2 + (1− r)α)2 > 0

so this contradicts the Hodge Index Theorem once again.

Thus, we get an inclusion of closed cones

NX = KX ⊆ P+
X

and so by duality (
P+
X

)∗
⊆ N ∗

X .

Now it can be verified, by explicit calculation after picking a basis of any vector space with
a pairing of signature (1, dimR V − 1), that P+

X is actually self-dual. On the other hand, it
follows by Lamari’s Theorem 1.28 that N ∗

X = EX = BX . (See, for example, [21, proof of
Theorem 4.1].) Thus, we have P+

X ⊆ BX and we obtain the following sufficient criterion for
big classes on surfaces.

Lemma 1.30. Let X be a compact Kähler surface and τ ∈ H1,1(X,R) be a cohomology
class satisfying ∫

X
τ2 > 0.

Then, either τ ∈ BX or −τ ∈ BX .

Proof. If α is any Kähler class, then by the Hodge Index Theorem,
∫
X τ · α 6= 0. Thus,

either τ ∈ P+
X or −τ ∈ P+

X .

Remark 18. It should be remarked that the above sufficient criterion for a class τ to be big
is far from necessary. Indeed, if p : X → P2 is the blowup of P2 in a point with exceptional
divisor E, the cohomology class τ of the closed positive current εω + [E] is clearly big for
any Kähler form ω on X and any ε > 0. However,

∫
X τ

2 < 0 for ε > 0 small enough,
because E2 = −1. On the other hand

∫
X τ · [ω] > 0. So ±τ 6∈ P+

X .
We shall make use of the following proposition when studying the set of destabilising

curves on surfaces.

Proposition 1.31. Let X be a compact Kähler surface with τ ∈ BX ⊆ H1,1(X,R) a big
cohomology class that is not Kähler. Then, there exists a (non-empty) finite set of irreducible
curves {E1, · · · , Eℓ} such that∫

E
τ ≤ 0 precisely when E = Ei for some i = 1, · · · , ℓ. (1.1)

Moreover, the intersection matrix (Ei · Ej) of the curves Ei is negative-definite and their
classes [Ei] ∈ H1,1(X,R) are linearly independent. In particular, ℓ ≤ ρ(X) ≤ h1,1(X) where
ρ(X) = dimRNS(X)R. Moreover, if X is projective, then ℓ ≤ ρ(X)− 1.
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Proof. Let us first assume that we are in the special case whereby the big class τ is not nef.
The Zariski decomposition of τ can be written as

τ = Z(τ) +N(τ)

where Z(τ) is a nef class and

N(τ) =
s∑
i

ai[Ei]

for a unique non-zero effective R-divisor

D =
s∑
i

aiEi

(with prime components Ej ⊆ X and aj > 0) such that the intersection matrix (Ei · Ej)
is negative-definite and the classes [Ei] are linearly independent in NS(X)R ⊆ H1,1(X,R).
Let E ⊆ X be any closed irreducible curve such that

∫
E τ < 0. But if E 6= Ej for any

j = 1, · · · , s then we have∫
E
τ =

∫
E
Z(τ) +

ℓ∑
i=1

aiE · Ei ≥
∫
E
Z(τ) ≥ 0

which contradicts our assumption on E. So we must have that E = Ej for some j =
1, · · · , s, and since the classes [Ei] are linearly independent in NS(X)R ⊆ H1,1(X,R), we
also have s ≤ ρ(X). Moreover, if X is projective, then NS(X)R contains at least one positive
eigenvector of the intersection form, so in that case ℓ ≤ ρ(X) − 1. To summarise, we have
proven that if τ is not nef, then there exist at most ρ(X) (and in case X is projective, at
most ρ(X) − 1) distinct curves E ⊆ X such that

∫
E τ < 0, all of which occur as prime

components of N(τ).
Now suppose, in full generality of the proposition, that τ is not Kähler. Fix a Kähler

form ω on X. Then, τ − ε[ω] is not nef but still contained in the big cone BX for any ε > 0
small enough. Now if

∫
E τ ≤ 0 for some curve E ⊆ X, we have

∫
E(τ − ε[ω]) < 0, so the set

of such curves is contained among the prime components of N(τ − ε[ω]), say E1, · · · , Es.
After relabelling if necessary, we may suppose

∫
Ej
τ ≤ 0 precisely for j = 1, · · · , ℓ. Then

clearly we have ℓ ≤ s ≤ ρ(X) (and if X is projective, s ≤ ℓ ≤ ρ(X)− 1). Finally, the claim
about the intersection matrix follows because any submatrix of a negative-definite matrix
is itself negative-definite.

Lemma 1.32. Let C be an open convex cone in a finite-dimensional vector space. Then,
any compact subset K ⊆ C is contained in the convex hull of finitely many points of C.

Proof. Without loss of generality, assume that K is connected. We may then choose an
open covering of K by means of open cubes Ci whose closure is in C. By compactness there
is a finite open subcover ⋃

i∈I,|I|<+∞

Ci.

Taking the convex hull of enough of the (finitely many) vertices of Cν , ν ∈ I, this set clearly
contains K.

As an immediate consequence, we obtain the following fact.
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Lemma 1.33. Let X be a compact Kähler surface and K be any subset of BX such that K lies
in the positive cone generated by the convex hull of finitely many classes τ1, τ2, . . . , τs ∈ BX .
Then, there exists a finite set S (depending only on K) of curves of negative self-intersection
such that for every τ ∈ K, if

∫
E τ ≤ 0, then E ∈ S. The cardinality of S is bounded above

by sρ(X) and by sρ(X)− s if X is projective.

Proof. Suppose that τ = r
∑k

i=1 aiτi, ai > 0, r > 0. Then
∫
C τ ≤ 0 implies

∫
C τi ≤ 0 for

some i. Hence C is in the set given by 1.31.



Chapter 2

Destabilising subvarieties

2.1 Overview of the PDEs
Our aim in this Section is to give a brief overview of the various PDEs that we shall treat, and
to introduce terminology and notation that will be used in the subsequent Sections. To each
PDE is associated, under certain hypotheses, a Nakai-Moishezon type criterion (involving
intersection numbers attached to subvarieties) which characterises when a solution exists.
We state, in each case, this criterion and briefly explain all the necessary hypotheses.

2.1.1 The J-equation
Let X be a compact Kähler manifold of dimension dimCX = n, and α, β ∈ KX be two
Kähler classes with ω ∈ α, θ ∈ β fixed smooth Kähler forms. Let H(ω) denote the set of
smooth Kähler potentials, that is, the set comprising those ψ ∈ PSH(X,ω)∩C∞(X,R) such
that ωψ = ω +

√
−1∂∂̄ψ is a Kähler form. Then, the J-equation seeks a smooth function

ψ ∈ H(ω) such that
nωn−1

ψ ∧ θ = µα,βω
n
ψ, (2.1)

where the cohomological constant µα,β is given by

µα,β = n
αn−1 · β · [X]

αn · [X]
.

Another formulation of the J-equation, equivalent to the above (2.1), is in terms of the
C∞(X,C)-linear endomorphism Rψ : T 1,0X → T 1,0X determined by

ωψ(Rψu, v) = θ(u, v) for every u, v ∈ C∞(X,T 1,0X). (2.2)

The endomorphism Rψ defined by (2.2) is sometimes also denoted ω−1
ψ θ. It can be checked

easily that Rψ is self-conjugate with respect to the Hermitian metric on T 1,0X induced by
ωψ, and as such, has real eigenvalues at each point. Another way to state (2.1) is then given
by

Tr(Rψ) = µα,β . (2.3)

The J-equation is closely linked to one of the main problems in Kähler geometry: de-
termining which Kähler classes α ∈ KX admit a constant scalar curvature Kähler (cscK)
metric, that is, a Kähler form ω ∈ α for which the function S(ω) determined by

nRic(ω) ∧ ωn−1 = S(ω)ωn (2.4)

21
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is identically equal to the (cohomological) constant

Ŝ(α) =
nc1(X) · αn−1 · [X]

αn · [X]
.

We briefly recall this connection of the J-equation with the cscK equation. For our fixed
smooth Kähler representative ω ∈ α, the cscK equation seeks a smooth function ψ ∈ H(ω)
such that

S(ωψ) = Ŝ(α). (2.5)
A solution ψ of this equation is a critical point of the Mabuchi energy functional M :
H(ω) → R, which can be expressed as

M(ψ) = Hω(ψ) + Jω−Ric(ω)(ψ)

where Hω, J
ω
θ : H(ω) → R are defined by

Hω(ψ) =
1

n!

∫
X

log
(
ωnψ
ωn

)
ωnψ,

Jωθ (ψ) =
1

n!

n−1∑
k=0

∫
X
ψωkψ ∧ ωn−k−1 ∧ θ −

µα,β
(n− 1)!

n∑
k=0

∫
X
ψωkψ ∧ ωn−k.

The functional Hω is called the entropy and Jωθ is referred to as Donaldson’s J-functional.
Solutions of the J-equation (2.1) are critical points of Jωθ .

If F : H(ω) → R is any functional, we say F is coercive if there exist δ > 0 and a
constant C such that

F (ψ) ≥ δJωω (ψ)− C for every ψ ∈ H(ω).

One of the major breakthroughs in the study of the cscK equation is the result of Chen-
Cheng [29] which says that (in the case X has a discrete automorphism group) the cscK
equation (2.5) admits a unique solution precisely when the Mabuchi energy M is coercive.
(In fact, they also proved that an adapted version of coercivity still implies the existence of
a cscK metric, even if the automorphism group of X is not discrete.)

It follows that α admits a cscK metric if Jω−Ric(ω) is coercive, since it is easy to see that
for any ψ ∈ H(ω), Hω(ψ) ≥ 0 in general. (In fact, it can be shown that Hω is in fact even
coercive in general.)

On the other hand Collins-Székelyhidi proved [30, Propositions 21, 22] that the solv-
ability of the J-equation (2.1) is equivalent to the coercivity of Jωθ . Therefore, whenever
−c1(X) is a Kähler class, the solvability of the J-equation for the triple (X,α,−c1(X))
implies the existence of a cscK metric in α. This is one way of producing many examples
of compact Kähler manifolds X and Kähler classes α such that α admits a cscK metric. In
fact, one can also go further than this, to the case when −c1(X) is assumed to be merely nef
(a case of considerable interest in the minimal model programme of birational geometry),
as in the works of Jian-Shi-Song [31] and Sjöstrom Dyrefelt [32].

In [6], Gao Chen proved a uniform version of the following Nakai-Moishezon criterion,
first conjectured (and proved in the toric case) by Lejmi-Székelyhidi [33], whose resolution
in general is due to the work of Datar-Pingali [7] (when X is a smooth projective variety)
and Song [8] (in full generality). Before stating this result, we introduce some notation. In
the spirit of slope stability, and following [13], we set

µα,β(Z) = (dimC Z)
αdimC Z−1 · β · [Z]
αdimC Z · [Z]

.
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and call µα,β(Z) the slope (or J-slope) of Z with respect to (X,α, β). We will abbreviate
(as we have already been doing) µα,β(X) = µα,β . The triple (X,α, β) is called J-stable
(respectively J-semistable) if for all proper irreducible analytic subvarieties Z of X, we
have

µα,β(Z) < µα,β (respectively µα,β(Z) ≤ µα,β),

and J-unstable if it is not J-semistable. We will often drop the prefix and refer to these
notions as simply stable or semistable.

Remark 19. Note that the term J-stability was first used in the literature for a different
(though not unrelated) notion involving test configurations, as in [33]. What we call J-
stability has been termed J-slope stability by Datar-Mete-Song in [13]. However, for the
sake of consistency with the rest of the thesis and other PDEs, we shall call this notion J-
stability, bearing in mind that it is the correct notion from the point of view of characterising
the solvability of the J-equation, as indicated by the following Theorem.

Theorem 2.1 (Gao Chen, Datar-Pingali, Song). Let X be a compact Kähler manifold of
dimension dimCX = n and α, β ∈ KX Kähler classes on X. Fix Kähler forms ω ∈ α, θ ∈ β.
Then, the following are equivalent.

1. There exists a smooth ψ ∈ H(ω), unique up to additive constants, solving the J-
equation

nωn−1
ψ ∧ θ = µα,βω

n
ψ.

2. The triple (X,α, β) is J-stable.

2.1.2 The deformed Hermitian Yang-Mills equation

Let X be a compact Kähler manifold as before, with β ∈ KX a Kähler class and α ∈
H1,1(X,R) a cohomology class (not necessarily Kähler). Fix θ ∈ β a Kähler form, and
ω ∈ α a smooth real (1, 1) form. Then, the deformed Hermitian Yang-Mills (dHYM)
equation seeks a smooth ψ ∈ C∞(X,R) such that the function Fψ ∈ C∞(X,C) determined
by

(θ +
√
−1ωψ)

n = Fψθ
n

is nowhere zero and has constant argument. This can only be the case if

Zβ(α) =

∫
X
(β +

√
−1α)n 6= 0,

in which case argFψ = φβ(α) where φβ(α) = argZβ(α) is the cohomological angle. The
dHYM equation is usually written in this notation as

Im
(
e−

√
−1φβ(α)(θ +

√
−1ωψ)

n
)
= 0. (2.6)

The dHYM equation was first derived by Leung-Yau-Zaslow in [34] as the counterpart
under mirror symmetry of the special Lagrangian condition on a Calabi-Yau manifold,
using the SYZ formalism of mutually dual torus fibrations. Thus, the dHYM equation is of
special interest to both mathematics and theoretical physics, and has attracted considerable
interest in both fields. (See [35] for a survey.)
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The dHYM equation is also related to the aforementioned J-equation. To explain this,
we reformulate the equation in a different way. Let Tψ be the C∞(X,C)-linear endomor-
phism of T 1,0X determined by the condition

θ(Tψu, v) = ωψ(u, v) for every u, v ∈ C∞(X,T 1,0X).

Then, Tψ is self-conjugate with respect to the Hermitian metric induced on T 1,0X by θ and
as such has real eigenvalues λi at each point. When α is a Kähler class and ωψ is a Kähler
form, then it is clear that Tψ = R−1

ψ , where Rψ is as defined by (2.2). An easy calculation
using holomorphic normal coordinates shows that

Fψ =

n∏
i=1

(1 +
√
−1λi)

and so we see that |Fψ| ≥ 1, and therefore Fψ is in fact nowhere zero in general. Moreover,
it follows that

argFφ =

n∑
i=1

arctan(λi) mod 2π.

Note that the function Φψ defined by

Φψ =
n∑
i=1

arctan(λi)

is a smooth, real-valued function on X taking values in (−nπ/2, nπ/2). (This is so because
the assignment mapping a conjugate-symmetric matrix A to the sum of the arctangents of
its eigenvalues is a unitary invariant function, and restricts to a smooth symmetric function
on the space of diagonal matrices. See, for example, [36, proof of Theorem 7.13].) When
we wish to emphasise the dependence of Fψ,Φψ etc. on θ, we shall write Fψ(θ),Φψ(θ) etc.

It is clear that if ψ solves (2.6), then we must have

Φψ = φβ(α) + 2πk (2.7)

for some integer k. It is a result of Jacob-Yau [37, Theorem 1.1] that the solutions of the
dHYM equation are unique, and so the quantity φ̂β(α) = φβ(α) + 2πk ∈ (−nπ/2, nπ/2),
called the lifted angle, is uniquely determined whenever a solution ψ of (2.6) exists. Without
assuming that a solution ψ exists, we can still define the lifted angle whenever there exists
some smooth function ψ0 for which Fψ0 takes values in some open half-plane. If this happens,
the lifted angle is by definition the unique representative φ̂β(α) of φβ(α) modulo 2π that
lies in the range of Φψ0 .

This always uniquely determines φ̂β(α) in the following sense: if ψ,ψ′ ∈ C∞(X,R) and
θ, θ′ ∈ β are such that both Fψ(θ), Fψ′(θ′) take values in some (potentially different) half-
planes, then Φψ(θ) − argFψ(θ) = Φψ′(θ′) − argFψ′(θ′) identically on X, so the two lifted
angles agree.

Definition 2.2. The triple (X,α, β) is said to have supercritical phase (respectively, hyper-
critical phase) if the lifted angle φ̂β(α) is defined and lies in the interval ((n− 2)π/2, nπ/2)
(respectively, ((n− 1)π, nπ/2)).
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Note that if there exists a ψ ∈ C∞(X,R) such that Φψ takes values in the interval
((n− 1)π/2, nπ/2), then it is clear that (X,α, β) has hypercritical phase. Moreover, in this
case α is a Kähler class, and a solution of the dHYM equation (if it exists) will necessarily
be a Kähler form.

The connection with the J-equation arises as follows. Suppose both α and β are Kähler
classes, with θ a fixed Kähler form in β and ωψ a Kähler form for some smooth ω ∈ α and
ψ ∈ C∞(X,R). Then, for any ε > 0, we have Tψ(εθ) = ε−1Tψ(θ), and so the (positive)
eigenvalues of Tψ(εθ) all converge uniformly to +∞ as ε → 0. This means the triple
(X,α, εβ) has supercritical phase for ε > 0 small enough. Moreover, a simple calculation
shows that for small values of ε > 0, the lifted angle φ̂εβ(α) satisfies

lim
ε→0

(
φ̂εβ(α)−

(nπ
2

− εµα,β

))
= 0.

On the other hand, for ε > 0 small enough, we have

Φψ(εθ) =
n∑
i=1

arctan(ε−1λi)

=

n∑
i=1

(
π

2
− arctan

(
ε

λi

))
=
nπ

2
− εTr(Tψ(θ)−1) +

ε3

3
Tr(Tψ(θ)−3)− . . .

where we have used the identity arctan(t) = π/2 − arctan(t−1) and used the power series
expansion of arctan around zero. Recalling that Tψ(θ)−1 = Rψ(θ), it follows that, uniformly
on X we have

lim
ε→0

ε−1(Φψ(εθ)− φ̂εβ(α)) = µα,β − Tr(Rψ(θ)).

Thus, the family of differential operators

ψ 7→ ε−1(Φψ(εθ)− φ̂εβ(α))

associated to the dHYM equations for the triples (X,α, εβ) converges to the differential
operator

ψ 7→ µα,β − Tr(Rψ(θ)

associated to the J-equation for the triple (X,α, β). This is sometimes expressed by saying
that the J-equation is the small volume limit of the dHYM equation. This observation is
due to Collins-Jacob-Yau [38].

We now state the Nakai-Moishezon criterion for the supercritical dHYM equation. For
this, it is convenient to define the complementary lifted angle by ϕ̂β(α) = nπ/2 − φ̂β(α).
Note that (X,α, β) has supercritical phase precisely when ϕ̂β(α) ∈ (0, π). In this notation,
the deformed Hermitian Yang-Mills equation seeks a smooth ψ such that

Im
(
e−

√
−1ϕ̂β(α)(ωψ +

√
−1θ)n

)
= 0. (2.8)

Under these assumptions, Chu-Lee-Takahashi [39] prove the following numerical criterion
characterising solvability of the dHYM equation.
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Theorem 2.3 (Chu-Lee-Takahashi). Let X be a smooth projective variety, β a Kähler class
on X and α a (1, 1)-cohomology class. Suppose (X,α, β) has supercritical phase. Then, the
following are equivalent.

1. For every Kähler form θ ∈ β, there exists a smooth ψ solving the deformed Hermitian
Yang-Mills equation (2.8).

2. For all proper irreducible subvarieties V ⊆ X, we have∫
V

(
Re(α+

√
−1β)dimC V − cot ϕ̂β(α) Im(α+

√
−1β)dimC V

)
> 0.

2.1.3 Z-critical equations
In [5, Section 2.1] Dervan-McCarthy-Sektnan introduced the notion of a Z-critical connec-
tion on a holomorphic vector bundle E → X on a compact Kähler manifold X of dimension
n, where Z is a choice of a polynomial central charge, as a differential geometric analogue (in
the case of vector bundles) of the abstract notion of a Bridgeland stability condition (intro-
duced in [40]). In their setup, the choice of a polynomial central charge Z = ZΩ is the data
of a triple Ω = (β, ρ, U) where β is a Kähler class, ρ = (ρ0, ρ1, · · · , ρn) ∈ Cn+1 is a stability
vector such that ρd/ρd+1 and ρn lie in the upper half-plane, and U ∈

⊕
iH

i,i(X,R) is unipo-
tent cohomology class, that is, a mixed-degree cohomology class whose degree zero part is
equal to 1. With this notation, for a fixed Kähler form θ ∈ β and a fixed smooth representa-
tive Ũ ∈ U , set Z̃Ω(E, h) to be the degree (n, n) part of the complex endomorphism-valued
form (

n∑
d=0

ρiθ
d

)
∧ Ũ ∧ ch(E, h)

where h is a Hermitian metric on E and ch(E, h) is the Chern-Weil representative of the
total Chern character ch(E) of E with respect to h. Then, the Z-critical equation is written

Im
(
e−

√
−1φ(E)Z̃Ω(E, h)

)
= 0 (2.9)

where the metric h is understood as the desired solution. Here, e−
√
−1φ(E) is the unique

cohomological constant that, modulo 2π, satisfies

φ(E) = arg
(∫

X

(
Z̃Ω(E, h)

))
and the imaginary part is understood as the anti-self adjoint component of the form with
respect to the metric h. More precisely, there is a map (·)† : An,n(EndE) → An,n(EndE)
that sends any (complex) endomorphism-valued (n, n)-form to its Hermitian conjugate.
Then the imaginary part of a form Θ is simply

Im(Θ) =
1

2
√
−1

(Θ−Θ†).

As mentioned above, the Z-critical equation is meant to capture, in the context of differential
geometry, the abstract notion of a Bridgeland stability condition on the derived category
of coherent sheaves of a smooth complex projective variety. From this perspective, one
should expect to see features of the theory of Bridgeland stability arise purely in terms
of the differential geometry of the Z-critical equation. One such feature is a locally finite
wall-chamber structure of the manifold parametrising stability data (see, for example [41,
Section 9]). Our main interest in the Z-critical equation is from this point of view.
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2.1.4 Generalised Monge-Ampère equations
Many different examples of PDEs arising in complex geometry (including the J-equation)
can be treated along similar lines in terms of their analytic properties, and admit similar
criteria for solvability. In an attempt to capture this wide class of PDEs, Pingali introduced
the term generalised Monge-Ampère equations. In the present thesis, we shall treat what is
technically only a special case of this fairly general class, which was treated by Datar-Pingali
[7]. The more general case of these equations also has been recently treated by Fang-Ma
[42].

Let X be a compact Kähler manifold of dimension dimCX = n and α, β ∈ KX be Kähler
classes, with ω ∈ α, θ ∈ β be fixed Kähler forms. Let c1, . . . , cn−1 ≥ 0 be constants and
f ∈ C∞(X,R) be a smooth function. Moreover, assume that the data satisfy cohomological
condition ∫

X

αn

n!
=

n−1∑
k=1

ck
(n− k)!

∫
X
βk · αn−k +

∫
X
fθn. (2.10)

Then the generalised Monge-Ampère equation (gMA) seeks a smooth function ψ ∈ H(ω)
such that

ωnψ
n!

=
n−1∑
k=1

ck
(n− k)!

θk ∧ ωn−kψ + fθn. (2.11)

It is more convenient to express the above equation using slightly different notation. For
any smooth (1, 1) form η, set

exp(η) =
n∑
k=0

1

k!
ηk

and for any multi-degree form Ω, let Ω[k,k] denote the degree (k, k) part of Ω. Then, the
gMA equation can be reformulated as

exp(ωψ)[n,n] = (exp(ωψ) ∧Θ)[n,n] (2.12)

where we denote by Θ the multi-degree form

Θ =

n−1∑
k=1

ckθ
k + fθn.

In this notation, we will say that (2.12) is the gMA equation associated to the triple
(X,α,Θ), only implicitly keeping in mind that Θ actually depends on a choice of ck, θ
and f .

The gMA equation (2.12) captures a lot of PDEs that arise naturally in complex ge-
ometry. For example, for Θ = µ−1

α,βθ, (2.12) reduces to the J-equation, while for Θ = fθ,
f > 0, it reduces to the complex Monge-Ampère equation. If Θ = κθp for an appropriate
cohomological constant κ satisfying (2.10), it reduces to the inverse Hessian equations.

The relevant Nakai-Moishezon criterion in this setting is due to Datar-Pingali [7, The-
orem 1.1] when X is smooth and projective. Recently, Fang-Ma [42, Theorem 1.10] have
obtained a more general result for X any compact Kähler manifold. Both of these results
hold under the assumption of a certain positivity condition on the data (X,α,Θ). A suffi-
cient positivity condition is stated precisely in [7, (1.2)], which we shall not recall explicitly.
However, it is worth remarking that the positivity condition, which is always satisfied if
f ≥ 0 in in the expression for Θ, is also satisfied in some cases when f(x) < 0 for some
x ∈ X.
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Theorem 2.4 (Datar-Pingali). Let X be a smooth projective variety of dimension n,
α, β ∈ KX Kähler classes on X, and ω ∈ α, θ ∈ β fixed Kähler forms. Let ck, k = 1, . . . , n−1
and f ∈ C∞(X,R) be such that (X,α, [Θ]) satisfies (2.10) and the positivity conditions [7,
(1.2)]. Then, the following are equivalent.

1. There exists a smooth ψ ∈ H(ω) that solves the gMA equation

exp(ωψ)[n,n] = (exp(ωψ) ∧Θ)[n,n]. (2.13)

2. For any proper subvariety V of X, we have∫
V

exp(α) · (1− [Θ]) > 0.

2.2 The case of surfaces
In this Section, we state and prove our results in the cases of the dHYM equation, J-
equation and the Z-critical equations on compact Kähler surfaces. The common theme in
all these cases is that all of these equations reduce to the complex Monge-Ampère equation,
and we are able to use the divisorial Zariski decomposition, which is very well-behaved for
surfaces. Except for minor changes in notation and terminology, this Section is contained
in [11].

2.2.1 The deformed Hermitian Yang-Mills equation
Let X denote a compact Kähler surface, and α, β ∈ H1,1(X,R) cohomology classes with
β ∈ KX a Kähler class. Fix a Kähler form θ ∈ β and a smooth representative ω ∈ α. Then,
the cohomological angle φβ(α) for the dHYM equation associated with the triple (X,α, β)
is given by

φβ(α) = arg
(∫

X
(β +

√
−1α)2

)
= arg

(∫
X
(β2 − α2) + 2

√
−1

∫
X
α · β

)
Clearly, if α = 0, then we can always solve (2.6), so assume α 6= 0. Let us first note

that if we have
∫
X α · β = 0, then we can also always solve (2.6) for the triple (X,α, β).

Indeed,
∫
X α · β = 0 implies, by the Hodge Index Theorem, that

∫
X α

2 < 0. But then,∫
X(β

2 − α2) > 0, so φβ(α) = 0. From this, we see that (2.6) reduces to

2ωψ ∧ θ = 0

or, equivalently,
2(
√
−1∂∂̄ψ) ∧ θ = −2ω ∧ θ. (2.14)

Let g ∈ C∞(X,R) be given by 2ω∧θ = gθ2. Then, (2.14) is equivalent to solving ∆θψ = −g,
which is just the Poisson equation, and can always be solved because∫

X
gθ2 =

∫
X
2ω ∧ θ = 2

∫
X
α · β = 0.

(See, for example, [43, Theorem 2.12].) Let us therefore assume from now on that
∫
X α ·β 6=

0. Then, the angle φβ(α) satisfies

cotφβ(α) =
∫
X(β

2 − α2)

2
∫
X α · β

.
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In this case, the dHYM equation (2.6) is equivalent to solving

(ωψ + cot(φβ(α))θ)2 =
(
1 + cot(φβ(α))2

)
θ2.

which is a complex Monge-Ampère equation for the class α + cot(φβ(α))β. Thus, in this
Subsection, we shall write

τ(α, β) = α+ cot(φβ(α))β.

Theorem 2.5 ([11]). Let X be a compact Kähler surface and let

K ⊆
{
(α, β) ∈ H1,1(X,R)×KX :

∫
X
α · β 6= 0

}
be a compact, connected subset. Then, there exists a non-negative integer ℓ ≥ 0 and curves
of negative self-intersection E1, · · · , Eℓ on X and a sign s = ±1 (depending only on K)
such that for all (α, β) ∈ K the following are equivalent.

1. For any choice of Kähler form θ ∈ β and any smooth representative ω ∈ α there exists
a smooth ψ ∈ C∞(X,R), unique up to the additive constants, which is a solution to
the deformed Hermitian Yang-Mills equation

Im
(
e−

√
−1φβ(α)(θ +

√
−1ωψ)

2
)
= 0.

2. For every curve E ⊆ X, we have

s

∫
E
τ(α, β) > 0.

3. For i = 1, · · · , ℓ, we have
s

∫
Ei

τ(α, β) > 0.

Proof. From the discussion preceding the statement of the Theorem, we see that for any
(α, β) ∈ K, we have ∫

X
τ(α, β)2 = (1 + cot2(φβ(α)))

∫
X
β2 > 0.

Moreover, by the Hodge Index Theorem, we also must then have∫
X
τ(α, β) · β 6= 0.

and so ±τ(α, β) ∈ P+
X . If −τ(α, β) ∈ P+

X , set s = −1, otherwise, set s = 1. Since K
is connected by assumption, s does not depend on the choice of (α, β) ∈ K. Now, the
continuous map{

(α, β) ∈ H1,1(X,R)×KX :

∫
X
α · β 6= 0

}
, (α, β) 7→ sτ(α, β)

takes K onto a compact subset K̃ of P+
X . Now, by Lemma 1.32, K̃ is contained in the

convex hull of finitely many points of P+
X and by Lemma 1.33, there exists a non-negative
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integer ℓ ≥ 0 and finitely many curves of negative self-intersection E1, · · · , Eℓ such that a
class τ ∈ K̃ is Kähler if and only ∫

Ei

τ > 0

for i = 1, · · · , ℓ. The proof that these curves satisfy the conclusion of the Theorem now
proceeds via a standard argument. For the sake of completeness, we recall this simple
argument.

Suppose (α, β) ∈ K is such that the dHYM equation (2.6) admits a smooth solution
ψ for a choice of Kähler form θ ∈ β and smooth representative ω. Then, from the above
discussion, we see that

(ωψ + cot(φβ(α)θ)2 = (1 + cot2(φβ(α)))θ2.

From this equality of forms, it follows that the (1, 1) form (ωψ + cot(φβ(α))) or its negative
is a Kähler form. Indeed, the equality obviously implies that ω + cot(φβ(α))θ is non-
degenerate and defines the same orientation as the Kähler form θ. On a surface, this
condition is equivalent to definiteness. But the topological fact that the class sτ(α, β) is in
P+
X ensures that the form s(ω + cot(φβ(α)) is positive-definite. This shows that the class

sτ(α, β) is a Kähler class, and proves that (1) implies (2).
It is obvious that (2) implies (3). Finally, let there be given any choice of Kähler form

θ ∈ β and a smooth representative ω ∈ α. Then (3) implies, by our choice of the curves Ei,
that the class sτ(α, β) is a Kähler class. By Yau’s solution of the Calabi conjecture [3], this
implies that we can find a smooth ψ ∈ C∞(X,R), unique up to additive constants, such
that

(ω + cot(φβ(α)θ +
√
−1∂∂̄ψ)2 = (1 + cot2(φβ(α)))θ2.

This shows that (3) implies (1).

Corollary ([11]). Suppose X is a compact Kähler surface that admits no curves of negative
self-intersection. Then, the deformed Hermitian Yang-Mills equation (2.6) always admits a
solution for any pair (α, β) ∈ H1,1(X,R)×KX , and any choice of Kähler form θ ∈ β.
Proof. If

∫
X α · β = 0, then we have already seen that we can solve the Poisson equation to

which (2.6) is in that case equivalent. Otherwise, take K = {(α, β)} in Theorem 2.5 and
observe that we must have ℓ = 0, so the third condition is vacuously satisfied.

Remark 20. The above Corollary might not be entirely new, as it can already be derived
(with slightly different hypotheses) from [44, Theorem 1.4], although in their work, the
emphasis is more on the study of a dHYM flow. We also remark that the above Theorem
2.5 is a special case of Theorem 2.8 below, but for the sake of clarity of exposition, we have
chosen to present it separately.

The following definition is natural in light of Theorem 2.5.
Definition 2.6. Suppose X is a compact Kähler surface and α, β ∈ H1,1(X,R) are coho-
mology class with β ∈ KX a Kähler class. Assume that

∫
X α · β 6= 0. Set s(α, β) to be the

sign of the non-zero real number
∫
X τ(α, β) · β. Then, the triple (X,α, β) is called (dHYM)

stable (respectively, semistable) if for all irreducible curves C ⊆ X, we have

s(α, β)

(
tan

(
arg
(∫

C
(β +

√
−1α)

))
+ cot(φβ(α))

)
> 0, (respectively ≥ 0). (2.15)

An irreducible curve C that does not satisfy the strict inequality in (2.15) is called a (dHYM)
destabilising curve for the triple (X,α, β).
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Remark 21. It is clear from the proof of Theorem 2.5, that (X,α, β) is stable if and only if
(2.6) admits a solution. Sometimes, we shall still call (X,α, β) (dHYM) stable if

∫
X α·β = 0,

even though in this case (2.6) degenerates to the Poisson equation. Since the latter always
admits a solution in our case, this abuse of terminology is relatively harmless in this naive
sense. Moreover, it remains harmless when considering families of dHYM equations. See
Lemma 3.1 below.

Moreover, we obtain the following Corollary.

Corollary ([11]). Suppose X is a compact Kähler surface and α, β ∈ H1,1(X,R) are coho-
mology class with β ∈ KX a Kähler class. Assume that

∫
X α · β 6= 0. Then, (X,α, β) has

only finitely many (dHYM) destabilising curves, each of which is a curve of negative self-
intersection. Moreover, the number of these curves is bounded above by ρ(X), the Picard
rank of X. If X is projective, then the number of destabilising curves is bounded above by
ρ(X)− 1.

Proof. From the proof of the Theorem, we can see that s(α, β)τ(α, β) ∈ P+
X ⊆ BX . More-

over, observe that each destabilising curve C satisfies∫
C
s(α, β)τ(α, β) ≤ 0.

Thus, we conclude by applying Proposition 1.31.

2.2.2 Z-critical equation
In this Section, our aim is to prove our main result about the Z-critical equation on surfaces.
Before embarking on the proof, we briefly fix some notation. Thus, let Ω = (β, ρ, U) be
the data of a polynomial central charge on a compact Kähler surface. Namely, ρ = ρ(t) =
ρ0+ρ1t+ρ2t

2 is a polynomial with non-zero complex coefficients subject to the constraints

Im(ρ2) > 0, Im
(
ρ1
ρ2

)
> 0, Im

(
ρ0
ρ1

)
> 0, (2.16)

and β and U are cohomology classes with β ∈ KX a Kähler class, and U = 1 + U1 + U2 ∈
⊕iH

i,i(X,R) a unipotent cohomology class (with graded components Ui ∈ H i,i(X,R)).
Then, for any holomorphic line bundle L→ X, we shall write

ZΩ(L) =

∫
X
ρ(β) · U · ch(L)

where ch(L) = 1 + c1(L) + c1(L)
2/2 ∈ ⊕iH

i,i(X,R) denotes the Chern character of L. We
shall moreover always assume that our choice of Ω is such that ZΩ(L) lies in the upper-
half plane for the holomorphic line bundle L under consideration. (In this case, we shall
informally say that Ω defines a polynomial central charge. This can always be achieved,
for example, by scaling θ 7→ tθ for t > 0 very large for any fixed L.) Then, the phase or
ZΩ-phase φ(L) = φΩ(L) of L (with respect to Z = ZΩ) is given by

φ(L) = argZΩ(L).

The ZΩ-critical equation is specified once a lift Ω̃ of Ω is fixed. Concretely, this means
that we fix a choice of Kähler form θ ∈ β and smooth representative Ũi ∈ Ui. Then we
define Z̃Ω(L, Ω̃, h) as the degree (2,2) part of the form

ρ(θ) ∧ Ũ ∧ ch(L, h)
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where Ũ = 1+ Ũ1 + Ũ2 and ch(L, h) is the Chern-Weil representative of ch(L) with respect
to a Hermitian metric h; namely

ch(L, h) = exp
(√

−1

2π
Fh

)
= 1 +

√
−1

2π
Fh +

1

2

(√
−1

2π
Fh

)2

with Fh the curvature (1,1)-form of the Chern connection associated to h. Then the ZΩ-
critical equation takes the form

Im
(
e−

√
−1φ(L)Z̃Ω(L, Ω̃, h)

)
= 0. (2.17)

This is a second order fully non-linear equation for the metric h.
In [5, Section 2.3] the authors derive the notion of a subsolution for the Z-critical

equation. (See [5, Definition 2.33].) They then prove that in our present special case where
X is a smooth projective surface, E = L→ X is a line bundle, and the lifted data (θ, ρ, Ũ)
satisfy the so-called volume form hypothesis, the existence of a subsolution is equivalent to
the existence of a solution. More precisely, define the forms η̃ = η̃(Ω̃, L) and γ̃ = γ̃(Ω̃, L)
by the formula

Im
(
e−

√
−1φ(L)Z̃Ω(L, h)

)
= c(χ2

h + χh ∧ η̃ + γ̃) (2.18)

where c ∈ R is a (non-zero) normalisation constant and χh =
√
−1
2π Fh is the curvature form

of (the Chern connection associated to) the Hermitian metric h. (This formula implicitly
assumes that φ(L) 6= arg(±ρ0) so the χ2

h term does not vanish in the expansion. See the
proof of Lemma 2.7.) As the authors observe in [5] after completing the square, the equation
is equivalent to solving (

χh +
1

2
η̃

)2

=
1

4
η̃2 − γ̃.

Then the (lifted) data Ω̃ = (θ, ρ, Ũ) are said to satisfy the volume form hypothesis for L if
the (2, 2)-form

1

4
η̃2 − γ̃ ∈ A2,2

R (X)

is a volume form on X.

Lemma 2.7. Let Ω = (β, ρ, U) be a choice of stability data defining a polynomial central
charge on a projective surface X, with a fixed lift

Ω̃ =
(
θ, ρ0 + ρ1t+ ρ2t

2, 1 + Ũ1 + Ũ2

)
,

and let L → X be a holomorphic line bundle on X such that φ(L) 6= arg(±ρ0). Then the
forms η̃(Ω̃, L) and γ̃(Ω̃, L) are given by

η̃(Ω̃, L) =
2

c0

(
c0Ũ1 + c1θ

)
, (2.19)

γ̃(Ω̃, L) =
2

c0

(
c0Ũ2 + c1θ ∧ Ũ1 + c2θ

2
)
, (2.20)

where ck = Im(ρk) cotφ(L)− Re(ρk).
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Proof. This is a straightforward computation. Writing χh for the curvature (1,1) form√
−1
2π Fh, we first note that ZΩ̃(L, h), that is, the (2, 2) part of the form(

ρ0 + ρ1θ + ρ2θ
2
)
∧ ch(L, h) ∧

(
1 + Ũ1 + Ũ2

)
,

is given by
1

2
ρ0χ

2
h +

(
ρ0Ũ1 + ρ1θ

)
∧ χh + ρ0Ũ2 + ρ1θ ∧ Ũ1 + ρ2θ

2.

Let us write e
√
−1φ(L) = A +

√
−1B where A,B are real numbers. By the hypothesis

that Ω defines a polynomial central charge, B > 0. Therefore, we can write e−
√
−1φ(L) =

B−1(cotφ(L)−
√
−1). Now observe that

Im(e−
√
−1φ(L)Z̃Ω̃(L, h)) = B−1

(
1

2
c0χ

2
h + (c0Ũ1 + c1θ) ∧ χh + c0Ũ2 + c1θ ∧ Ũ1 + c2θ

2

)
where ck = Im(ρk) cotφ(L) − Re(ρk). Now, if φ(L) 6= arg(±ρ0) then c0 6= 0 and the result
follows by comparing with (2.18).

Let us therefore set

η(Ω, L) =
2

c0
(c0U1 + c1β) ∈ H1,1(X,R), (2.21)

γ(Ω, L) =
2

c0

(
c0U2 + c1β ∧ U1 + c2β

2
)
∈ H2,2(X,R). (2.22)

Corollary. Let X,L and Ω be as in the Lemma. If

V (Ω, L) =

∫
X

1

4
η(Ω, L)2 − γ(Ω, L) > 0

then there exists a choice of lift Ω̃ that satisfies the volume form hypothesis for L.

Proof. Clearly, if the numerical inequality V (Ω, L) > 0 is satisfied, then the class

1

4
η(Ω, L)2 − γ(Ω, L) ∈ H4(X,R)

contains a volume form v. Fix any lift Ω̃0 = (θ, ρ, 1+Ũ1+Ũ2) of Ω. Then, by the ∂∂̄-lemma,
there exists a real valued (1, 1) form ζ on X such that

v =
1

4
η̃(Ω̃0, L)

2 − γ̃(Ω̃0, L) +
√
−1∂∂̄ζ.

Setting Ũ ′
1 = Ũ1 and

Ũ ′
2 = Ũ2 −

√
−1

2
∂∂̄ζ,

we see immediately from (2.19) that if Ω̃ = (ω, ρ, 1 + Ũ ′
1 + Ũ ′

2) then

v =
1

4
η̃(Ω̃, L)2 − γ̃(Ω̃, L)

is a volume form.
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We are now in a position to state and prove the main result for Z-critical equations on
surfaces.

Theorem 2.8 ([11]). Let X be a projective surface and L→ X a holomorphic line bundle
on X. Suppose K ⊆ KX × (C∗)3×

⊕
iH

i,i(X,R) be a compact subset such that each Ω ∈ K
defines a polynomial central charge ZΩ on X. Moreover, assume that for each Ω ∈ K, we
have V (Ω, L) > 0 and φ(L) 6= arg(±ρ0). Then, there exists a non-negative integer ℓ ≥ 0 and
finitely many curves E1, · · · , Eℓ on X, of negative self-intersection, such that the following
are equivalent.

1. For every Ω ∈ K and every lift Ω̃ satisfying the volume form hypothesis at L, the
ZΩ-critical equation admits a solution.

2. For i = 1, · · · , ℓ, we have

s(Ω, L)

(∫
Ei

c1(L) +
1

2
η(Ω, L)

)
> 0

where s(Ω, L) is the sign of the non-zero real number∫
X

(
c1(L) +

1

2
η(Ω, L)

)
· β ∈ R.

Proof. Let a compact subset K ⊆ KX × (C∗)3 ×
⊕

iH
i,i(X,R) be given such that each

element Ω = (β, ρ, U) ∈ K defines a valid polynomial central charge with φΩ(L) 6= arg(±ρ0)
and such that V (Ω, L) > 0. Recall that the topological constant φ(L) = φΩ(L) is chosen
precisely so that ∫

X
Im
(
e−

√
−1φΩ(L)ZΩ(L)

)
= 0.

In our notation, this is equivalent to

0 =

∫
X

(
c1(L)

2 + c1(L) · β(Ω, L) + γ(Ω, L)
)
=

∫
X

(
c1(L) +

1

2
η(Ω, L)

)2

− V (Ω, L).

Therefore, the inequality V (Ω, L) > 0 implies that the class σ(Ω, L) = c1(L)+
1
2η(Ω, L) has

positive self-intersection. So, by the Hodge-Index Theorem, either σ(Ω, L) or its negative
is in the cone P+

X . Let s(Ω, L) ∈ {±1} be defined by the condition that

τZ(Ω, L) = s(Ω, L)τ(Ω, L) ∈ P+
X .

Clearly, we have

s(Ω, L) = sign
(∫

X
σ(Ω, L) · β

)
.

Thus, the map

KX × (C∗)3 ×
⊕
i

H i,i(X,R) → H1,1(X,R), Ω 7→ τZ(Ω, L)

is continuous and takes K onto a compact subset K̃ = τZ(K) of P+
X . By Lemma 1.32, K̃

is contained in the convex hull of finitely many points of P+
X . Now, by Lemma 1.33, there
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exist finitely many curves E1, · · · , Eℓ of negative self-intersection such that for each τ ∈ K̃,
τ is Kähler if and only if ∫

Ei

τ > 0

for i = 1, · · · , ℓ. Finally, according to [5, Section 2.3.3] this is equivalent to the existence
of a subsolution for the ZΩ-critical equation, and by [5, Theorem 2.45], equivalent to the
existence of a solution. This completes the proof.

Corollary ([11]). Let X and L be as in the Theorem 2.8. Suppose X does not admit any
curves of negative self-intersection. Let Ω be a choice of stability data defining a polynomial
central charge ZΩ and such that φ(L) 6= arg(±ρ0) and V (Ω, L) > 0. Then, for any lift Ω̃
satisfying the volume form hypothesis, the ZΩ-critical equation admits a solution on L.

Proof. In Theorem 2.8, take K = {Ω} and note that necessarily ℓ = 0. Thus, the second of
the two equivalent conditions is vacuously true.

2.2.3 The J-equation
Much like the dHYM equation, the J-equation also reduces to the complex Monge-Ampère
equation on surfaces, and we can argue in a very similar way as for the dHYM equation. In
fact, the argument is simpler, since we do not have to worry about any degenerate cases.

Let X be a compact Kähler surface and let α, β ∈ KX be Kähler classes, with ω ∈ α, θ ∈
β fixed Kähler forms. Then, the J-equation seeks a smooth ψ ∈ C∞(X,R) such that

2ωψ ∧ θ = µα,βω
2
ψ. (2.23)

We recall that for any irreducible curve C of X,

µα,β(C) =

∫
C β∫
C α

,

is the slope of C and

µα,β =
2
∫
X α · β∫
X α

2
.

Recall also that C is called a destabilising curve for (X,α, β) if µα,β(C) ≥ µα,β .
By completing the square in ωψ, we can re-write (2.23) as

(µα,βωψ − θ)2 = θ2. (2.24)

In this Subsection, let us therefore define

τ(α, β) = µα,βα− β.

Then, (2.24) is a complex Monge-Ampère equation for the class τ(α, β). Moreover, we can
directly verify that∫

X
τ(α, β)2 =

∫
X
β2 > 0,

∫
X
τ(α, β) · α =

∫
X
α · β > 0.

Thus, τ(α, β) ∈ P+
X .
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Theorem 2.9 ([11]). Let X be a compact Kähler surface and let K ⊆ KX × KX be a
compact subset. Then, there exists a non-negative integer ℓ ≥ 0 and curves of negative
self-intersection E1, · · · , Eℓ on X (depending only on K) such that for all (α, β) ∈ K the
following are equivalent.

1. For any choice of Kähler form θ ∈ β and any smooth representative ω ∈ α there
exists a smooth ψ ∈ H(ω), unique up to additive constants, which is a solution to the
J-equation

2θ ∧ ωψ = µα,βω
2
ψ. (2.25)

2. For every curve E ⊆ X, we have ∫
E
τ(α, β) > 0.

3. For i = 1, · · · , ℓ, we have ∫
Ei

τ(α, β) > 0.

Proof. The discussion preceding the statement of the Theorem shows that the continuous
map

KX ×KX → H1,1(X,R), (α, β) 7→ τ(α, β)

maps the compact subset K onto a compact subset K̃ of P+
X . The rest of the argument is

identical to the proof of Theorem 2.5, except for the claim that the solution ψ should be in
H(ω). But this is obvious from (2.25), as µα,β > 0.

Corollary. Suppose X is a compact Kähler surface that admits no curves of negative self-
intersection. Then, the J-equation (2.25) always admits a solution for any pair (α, β) ∈
KX ×KX , and any choice of Kähler form θ ∈ β.

Proof. Take K = {(α, β)} in the Theorem. Then, ℓ = 0 and condition 3 is vacuously
satisfied.

Remark 22. The above Corollary is not new. In fact, it was already observed by Donaldson
in [10, Section 4.3], who first introduced the J-equation from the point of view of a moment
map. An interesting consequence of this (see [29, Corollary 1.7] is the fact that any compact
Kähler surface X with c1(X) < 0 and no curves of negative self-intersection admits a cscK
metric in every Kähler class. The interesting problem of classifying surfaces which admit a
cscK metric in every Kähler class is still open in general.

Corollary ([11]). Suppose X is a compact Kähler surface and α, β ∈ KX are Kähler
classes. Then, (X,α, β) has only finitely many destabilising curves, each of which is a curve
of negative self-intersection. Moreover, the number of these curves is bounded above by
the ρ(X). If X is projective, then the number of destabilising curves is bounded above by
ρ(X)− 1.

Proof. The proof of Theorem 2.9 shows that τ(α, β) ∈ P+
X ⊆ BX . Moreover, a curve C is

destabilising if and only if µα,β(C) ≥ µα,β , but this is equivalent to∫
C
τ(α, β) ≤ 0.

The conclusion then follows from Proposition 1.31.
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Remark 23. Let (X,α, β) be as in the Corollary. An interesting (though trivial) consequence
of these results is that we always have optimal destabilisers, that is, curves C that achieve
the infimum

µα,β − µα,β(C) = inf
C′
(µα,β − µα,β(C

′).

Since both µα,β(C) and µα,β are linear in β, the same C achieves this infimum if we replace
β by βt = tβ + (1− t)α. Moreover, it is a result of Sjöström-Dyrefelt [45, Theorem 5] that
this infimum computes, under certain hypotheses, the coercivity threshold of Donaldson’s
J-functional. This has some applications for the cscK equation. (See, in particular, [45,
Corollary 3].)

2.3 The J-equation in higher dimensions
Ideally, one would like to prove an analogue of Theorem 2.9 in all dimensions. However,
if dimCX ≥ 3, the J-equation does not reduce to a complex Monge-Ampère equation. Of
course, this in itself is not enough to show that the analogous statement does not hold in
higher dimensions. However, there are examples where the set of destabilising subvarieties
is not finite. One such example is given in this Section as Example 2.17. Nevertheless,
we aim to show that under certain positivity conditions, we can still get closely analogous
results about destabilising subvarieties.

2.3.1 Finiteness of destabilisers in three dimensions
Theorem 2.10 ([18]). Let X be a compact Kähler manifold of dimension dimCX = 3 and
let α, β be Kähler classes on X such that the triple (X,α, β) is J-semistable and the class
µα,βα − 2β is big. Then, there exist at most finitely many irreducible subvarieties Z ⊆ X
such that

µα,β(Z) = µα,β .

Proof. Observe that (X,α, β) is semistable but not stable precisely if there exists an irre-
ducible proper subvariety Z of X satisfies µα,β(Z) = µα,β , that is, if

(µα,βα− (dimC Z)β) · αdimC Z−1 · [Z] = 0.

Because µα,βα− 2β (and hence also µα,βα−β) is big, by Lemma 1.24, such a Z necessarily
satisfies Z ⊆ EnK(µα,βα− (dimC Z)β). Thus, if an irreducible surface S satisfies µα,β(S) =
µα,β , then S ⊆ EnK(µα,βα−2β) implies necessarily that S must be one of the finitely many
irreducible surface components of EnK(µα,βα− 2β).

Similarly, if C is an irreducible curve satisfying µα,β(C) = µα,β , then C ⊆ EnK(µα,βα−
β). If C is not one of the finitely many irreducible components of this analytic set, then
C ⊆ S for some irreducible surface in EnK(µα,βα − β). Suppose first that S is a smooth
surface. Then, we have

(µα,β(S)α− β)2 · [S] = β2 · [S] > 0,

and
(µα,β(S)α− β) · α · [S] = α · β · [S] > 0.

From this, it follows that the class (µα,β(S)α − β)|S is big on S and therefore by the
Proposition 1.31 there exist only finitely many curves C on S such that (µα,β(S)α−β)·[C] ≤
0. Moreover, by semistability of (X,α, β) we have µα,β(S) ≤ µα,β , so (µα,βα − β) · [C] ≤ 0
for only finitely many curves C ⊂ S, as desired.
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In case S is singular, let f : X̃ → X be any bimeromorphic morphism such that the
proper transform S̃ of S in X̃ is smooth and an isomorphism away from the singular set
of S. (Such a morphism always exists by Hironaka’s Theorems on Resolution of Singular-
ities [46]. More precisely, we need the complex analytic version of Hironaka’s Embedded
Desingularisation Theorem due to Włodarczyk [47, Theorem 2.0.2].) Then, f∗[S̃] = [S] as
currents and by the projection formula (see Remark 7), we have

µf∗α,f∗β(S̃) =
2f∗(α · β) · [S̃]
f∗(α2) · [S̃]

=
2α · β · [S]
α2 · [S]

= µα,β(S).

From this, we obtain (after another application of the projection formula) that

(µf∗α,f∗β(S̃)f
∗α− f∗β)2 · [S̃] = f∗(µα,β(S)α− β)2 · [S̃] = f∗β2 · [S̃] = β2 · [S] > 0.

Moreover, since α is a Kähler class, f∗α can be represented by a semipositive form on X̃
(and hence also on S̃) and we have

(µf∗α,f∗β(S̃)f
∗α− f∗β) · f∗α · [S̃] = f∗(α · β) · [S̃] = α · β · [S] > 0.

This implies, by Lemma 1.30 that the class f∗(µα,β(S)α−β) is a big class on S̃. As before,
it follows from semistability of (X,α, β) that

(µα,βf
∗α− f∗β)− (µα,β(S̃)f

∗α− f∗β) = (µα,β − µα,β(S))f
∗α

is nef on X̃, therefore also on S̃, and in particular, the class f∗(µα,βα − β)|S̃ is a big class
on S̃. Hence we conclude from the Proposition 1.31 that there are finitely many curves C̃
in S̃ such that µα,β(C̃) = µα,β . But this implies that if C ⊆ S does not lie entirely in the
singular locus of S, then its proper transform can only be one of the finitely many C̃ in S̃,
and this implies that there are at most finitely many destabilising curves C ⊆ S.

We have therefore proven that the destabilising subvarieties are among the finite list of

1. irreducible curve components C of EnK(µα,βα− β)

2. irreducible surface components S of EnK(µα,βα− 2β)

3. the irreducible curve components of the singular locus of S as S ranges over the surface
components of EnK(µα,βα− β)

4. for every irreducible surface component S of EnK(µα,βα − β) the curves C ⊆ S not
lying entirely in the singular locus of S whose strict transform, under any resolution
of singularities f : X̃ → X of S as above, occurs as an irreducible component of the
negative part of the Zariski decomposition of the class f∗(µα,βα− β) on S̃.

This concludes the proof.

Remark 24. We note that the choice of resolution f : X̃ → X of the irreducible surface
S ⊆ EnK(µα,βα−β) does not affect the set of potential destabilisers described in the proof.
More precisely, let fi : X̃i → X be two resolutions of S coming from Hironaka’s proof,
that is, the strict transform S̃i of Si in X̃i is smooth and fi is a composition of blowing
up repeatedly in points or smooth curves contained in the singular locus of (the strict
transforms of) S. Then, by resolving the indeterminacy of the rational map f−1

2 ◦ f1 we
get a common resolution g : X̃ → X with morphisms gi : X̃ → X̃i with fi ◦ gi = g for
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i = 1, 2. If we denote by S̃ the strict transform of S in X̃, then by what we said above
about Hironaka’s proof, gi : S̃ → Si is a composition of blowups in points of the smooth
surface Si. Now the formulas (see [21, Lemma 5.8])

(gi)∗N(g∗i f
∗
i (µα,βα− β)) = N(f∗i (µα,βα− β))

imply that the support of the negative part N(g∗(µα,βα − β)) comprises the strict trans-
forms of the irreducible components of N(f∗i (µα,βα− β)) plus a possible union of a divisor
supported on the exceptional locus of gi. Since this is true for g1 and g2, it follows that
for each curve C ⊆ S, if the strict transform C̃1 ⊆ S̃1 under f1 occurs as a component of
N(f∗1 (µα,βα − β)), then its strict transform C̃2 ⊆ S̃2 under f2 also occurs as a component
of N(f∗2 (µα,βα− β)), and vice versa.

Away from semistability, it may happen that there are infinitely many destabilising
subvarieties. However, in this case we still have adequate control over the destabilising
subvarieties in the following precise sense:

Theorem 2.11 ([18]). Suppose X is a compact Kähler manifold of dimCX = 3 and α, β
are Kähler classes on X such that µα,βα − 2β is a big class. Let Vα,β be the union of all
irreducible subvarieties Z of X with µα,β(Z) ≥ µα,β. Then, Vα,β is a proper analytic subset
of X.

Remark 25. In particular, Vα,β has finitely many irreducible components.

Proof of Theorem 2.11. If S is any destabilising irreducible surface in X, then we have∫
S
(µα,βα− 2β) · α ≤ 0

so by Lemma 1.24 we have
S ⊆ EnK(µα,βα− 2β).

Since by assumption µα,βα− 2β is big, there are always at most finitely many destabilising
surfaces. Let V2 be the union of all of these.

We must prove that all but finitely many destabilising curves C are contained in V2.
But a destabilising curve C likewise satisfies C ⊆ EnK(µα,βα − β). There are only finitely
many irreducible components of EnK(µα,βα− β) of dimension one. Assume therefore that
C is not an irreducible component of EnK(µα,βα − β). Then C lies instead in a surface
S ⊆ EnK(µα,βα− β). If S ⊆ V2, there is nothing to check. So, suppose S is not contained
in V2, that is, µα,β(S) < µα,β . Then, by the same argument as in the proof of Theorem
2.10 above, there exist at most finitely many curves C ⊆ S with µα,β(C) ≥ µα,β(S) and
therefore also only finitely many curves C with µα,β(C) ≥ µα,β > µα,β(S). This proves the
claim.

The proof of the theorem in particular yields the following useful corollary:

Corollary ([18]). Let (X,α, β) be as in the Theorem. Then, for each surface S ⊆ Vα,β
satisfying µα,β(S) ≤ µα,β there are only finitely many curves C ⊆ S such that µα,β(C) ≥
µα,β .

Proof. Observe that µα,β(S) ≤ µα,β is all one needs to conclude that the class µα,βα − β
is big on S. Then, if S is smooth, one applies Proposition 1.31 directly. Otherwise, one
proceeds as in the proof of Theorem 2.11.
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Lemma 2.12. Let α, βi, i = 1, 2 be Kähler classes on a compact Kähler 3-fold X such that
µα,βiα− 2βi is a big class for i = 1, 2. Then for any t ∈ [0, 1] we have

Vα,β1 ∩ Vα,β2 ⊆ Vα,tβ1+(1−t)β2 ⊆ Vα,β1 ∪ Vα,β2 .

Proof. This is an immediate consequence of

µα,tβ1+(1−t)β2(Z) = tµα,β1(Z) + (1− t)µα,β2(Z). (2.26)

Proposition 2.13 ([18]). Let α, βi be Kähler classes for i = 1, · · · , s on a compact Kähler
manifold X of dimension dimCX = 3 such that µα,βiα− 2βi is a big class for each i. Then
as β ranges over the convex hull conv(β1, . . . , βs) of β1, . . . , βs, the collection of irreducible
subvarieties of X occurring as irreducible components Vα,β is a finite set.

Proof. By the lemma, we have that

Vα,β ⊆
s⋃
i=1

Vα,βi (2.27)

as β ranges over conv(β1, · · · , β2). This implies that the irreducible surface components of
Vα,β are among the finitely many irreducible surface components of Vα,βi for i = 1, · · · , s.
Therefore, we only need to prove that the irreducible curve components of Vα,β only take
values in a finite set.

Denote by S1, · · · , Sn the finitely many irreducible surfaces occurring as irreducible
components of all the Vα,βi for i = 1, · · · , s, and let C be an irreducible curve component
of some Vα,β for β ∈ conv(β1, · · · , βs). Then, by (2.27) we have C ⊆ Vα,βi for some i.
If C is not contained in any Si, then C can only be one of the finitely many irreducible
curve components of Vα,βi . Thus, all the curves C that occur as irreducible components
of some Vα,β not contained in one of the Si are among the finitely many irreducible curve
components of Vα,βi for i = 1, · · · , s. It remains to treat the case of curves lying in some Si.

For each i = 1, · · · , n, consider the following partition

K = conv(β1, · · · , βs) = K
(i)
1 ∪K(i)

2 ,

where

K
(i)
1 = {β ∈ K | µα,β(Si) ≤ µα,β}, K

(i)
2 = {β ∈ K | µα,β(Si) > µα,β}.

Then, it is clear that Si occurs as an irreducible component of Vα,β for each β ∈ K
(i)
2 . On

the other hand, β 7→ µα,β(Si) − µα,β is a linear map. Thus, the closed set K(i)
1 is also

the convex hull of finitely many points, say β
(i)
1 , · · · , β(i)

ri . Now, if β ∈ K
(i)
1 and C is an

irreducible component of Vα,β lying in Si, then, by definition, we have µα,β(C) ≥ µα,β . But
then (2.26) implies that

µ
α,β

(i)
j

(C) ≥ µ
α,β

(i)
j

for some 1 ≤ j ≤ ri. But we also have that µ
α,β

(i)
j

(Si) ≤ µ
α,β

(i)
j

and thus, by the Corollary
to Theorem 2.11, there are only finitely many curves C in Si such that µ

α,β
(i)
j

(C) ≥ µ
α,β

(i)
j

.

Therefore, the irreducible components of Vα,β for β ∈ K are among the following finite list:
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1. the irreducible curve components of EnK(µα,βiα− βi) for i = 1, · · · , s.

2. the irreducible surface components S1, · · · , Sn of EnK(µα,βiα− 2βi) for i = 1, · · · , s.

3. the finitely many curves C in Si such that

µ
α,β

(i)
j

(C) ≥ µ
α,β

(i)
j

for i = 1, · · · , n, and j = 1, · · · , ri.

2.3.2 Ridigity of destabilisers in three dimensions
Aside from the production of a finite list of subvarieties that destabilise (or optimally
destabilise) the J-equation, it is also desirable to note that they have certain properties in
common. Most notably, we have the following rigidity statement in the case of threefolds.

Theorem 2.14 ([18]). Let (X,α, β) and Vα,β be as in the statement of Theorem 2.11.
Then every irreducible component of Vα,β is rigid. More precisely, every irreducible surface
component of Vα,β is the unique effective cycle representing its homology class, and every
irreducible curve component C of Vα,β satisfies the following: for every irreducible surface
S containing C, either C is an irreducible component of the singular locus of S or the
strict transform of C under any resolution of singularities of S is a curve of negative
self-intersection.

Proof. Let S be a surface component of Vα,β . Then the conclusion about S follows imme-
diately from Boucksom’s Theorem 1.27 noting that S is then an irreducible component of
the negative part of the divisorial Zariski decomposition of µα,βα − 2β − εβ for any ε > 0
small enough, and hence exceptional. (See the proof of Proposition 2.16 below for this last
claim.) Now let C be a curve component of Vα,β . Then, by the definition of Vα,β , it follows
that if S′ is any irreducible surface that contains C, then µα,β(S

′) < µα,β . Since X is
projective, we can always find some S′ with this property. But then the proof of Theorem
2.11 shows that either C is contained in the singular locus of S or the proper transform of
C is an irreducible component in the negative part of the Zariski decomposition of the class
µα,β(S

′)α−β on any resolution of singularities of S′. Thus, C has negative self-intersection
as a divisor in any resolution of singularities of S′.

2.3.3 Finiteness and rigidity in arbitrary dimensions
The same argument as for 3-folds can still be carried out on compact Kähler manifolds of
arbitrary dimension. However, the price to pay is that we must assume several positivity
conditions at once.

Theorem 2.15 ([18]). Let X be a compact Kähler manifold and α, β Kähler classes on X.
Suppose moreover that µα,βα − pβ ∈ Mp+1K is (p + 1)-modified Kähler on X for every
p = 1, 2, . . . , n − 1. Then, there exist at most finitely many irreducible subvarieties Z ⊆ X
such that

µα,β(Z) ≥ µα,β(X) = µα,β .

Moreover, each divisor D such that µα,β(D) ≥ µα,β is the unique effective analytic cycle
representing its homology class.
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Proof. Let 1 ≤ p ≤ n − 1 and Z an irreducible analytic subvariety of X of dimension p.
Note that µα,β(Z) ≥ µα,β is equivalent to∫

Z
(µα,βα− pβ) · αp−1 ≤ 0,

which implies, by Lemma 1.24 that Z ⊆ EnK(µα,βα − pα). But the class µα,βα − pβ ∈
Mp+1K is a (p + 1)-modified Kähler class. Thus, Z must be one of the finitely many p-
dimensional irreducible components of the proper analytic subset EnK(µα,βα−pβ) because
this set does not contain any irreducible subvarieties of dimension greater than or equal to
p+ 1 thanks to Lemma 1.23.

Finally, we point out the useful fact that in arbitrary dimension, we still have a rigidity
statement about destabilising divisors.

Proposition 2.16. Let X be a compact Kähler manifold and α, β ∈ KX be Kähler classes,
with θ ∈ β a fixed Kähler form. Suppose that τn−1(α, β) = µα,βα − (n − 1)β ∈ BX is a
big class. Then, there are only finitely many destabilising divisors D of (X,α, β), that is,
divisors D satisfying µα,β(D) ≥ µα,β.

Proof. If D is a divisor such that µα,β(D) ≥ µα,β , then D must lie in the non-Kähler locus
of τ = τn−1(α, β) = µα,βα − (n − 1)β. Now, let ε > 0 be so small that τ − εβ is still a
big class. We claim that ν(τ − εβ,D) > 0. Indeed, by Remark 15, if Tmin is any closed
positive current of minimal singularities in τ − εβ, then we have ν(τ − εβ,D) = ν(Tmin, D).
If ν(Tmin, D) = 0, then also ν(Tmin + εθ,D) = 0 because θ is a smooth Kähler form. But
Tmin + εθ is a Kähler current in τ , and therefore EnK(τ) ⊆ E+(Tmin + εθ), so D cannot be
in the non-Kähler locus of τ . This is a contradiction. Thus, ν(τ − εβ,D) > 0 and so D is
an irreducible component of the negative part N(τ − εβ) of the Zariski decomposition of
τ − εβ. The result then follows by Boucksom’s Theorem 1.27.

Example 2.17. Here, we recall an example (a special case of an example found in [25]) of
a manifold X of dimension n such that on X the cones MpK of p-modified Kähler classes
are all pairwise distinct (except, of course, M1K = M0K = K). To begin with, we proceed
in slightly more generality than we need. Let Y be a smooth projective variety and L a
very ample line bundle on Y . Let E denote the vector bundle

E = OY ⊕ (L⊗a1)⊕b1 ⊕ · · · ⊕ (L⊗ar)⊕br

on Y , where a0 = 0 < a1 < a2 < · · · < ar is a strictly increasing sequence of positive
integers and each bi is a positive integer. We shall denote by X = P(E∨) the projective
bundle of one-dimensional subspaces of the fibres of E → Y and π : X → Y the associated
projection map. Then (for r ≥ 1) we have

H1,1(X,R) = RH ⊕ π∗H1,1(Y,R)

where H = OP(E)(1) is the dual of the tautological sub-line bundle of π∗E. For i, j =
1, . . . , r, denote by Dij the divisor associated to the (dual of the) surjection

E ↠ OY ⊕ (L⊗a1)⊕b1 ⊕ · · · ⊕ (̂L⊗ai)⊕ · · · ⊕ (L⊗ar)⊕br .

where (̂L⊗ai) means we omit the j-th summand equal to L⊗ai . Note that the class of Dij

is equal to H − aiL (where we denote by L again the pullback π∗L). We can apply [25,
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Proposition 4] to deduce that the class aL+ bH is pseudoeffective (respectively nef) on X
if and only if b ≥ 0 and a+ arb ≥ 0 (respectively b ≥ 0 and a ≥ 0). Note that if aL+ bH is
pseudoeffective, then we can write

aL+ bH = (a+ arb)L+ bDrj for any j = 1, . . . , br

whence we see (since (a+ arb)L is nef) that the non-nef locus of every pseudoeffective class
of the form aL+ bH satisfies

Enn(aL+ bH) ⊆
br⋂
j=1

Drj .

In fact, the non-nef loci of pseudoeffective classes are much more constrained on X. Indeed,
whenever a+ apb ≥ 0 for any p = 0, 1, . . . , r, we can write the decomposition

aL+ bH = (a+ apb)L+ bDpj for any j = 1, . . . , bp.

This shows that ν(aL+ bH, x) = 0 for x 6∈ Vp where

Vp =
⋂
i≥p

bi⋂
j=1

Dij .

In other words, if a + apb ≥ 0 and b ≥ 0, the non-nef locus of aL + bH is contained in Vp,
which is a dp-dimensional smooth subvariety of X, with dp := n+ b1+ · · ·+ bp. This proves
that

Mdp+1K ⊇ {aL+ bH | a+ apb > 0, b > 0}.
On the other hand, let aL + bH be a big class, that is, a + arb > 0 and b > 0. Then,
according to the proof of [25, Proposition 5] we get that

ν(aL+ bH, Vp+1) ≥ min{t ≥ 0 | 0 ∈ (a+ t[ap+1, ar] + (b− t)[0, ap])}.

This implies that if a+ apb < 0 then we have

ν(aL+ bH, Vp+1) ≥ −a+ apb

ar − ap
> 0.

Since dp+1 = dimC Vp+1 ≥ dp+1, this shows that aL+ bH 6∈ Mdp+1K if a+ apb < 0. Thus,
we have shown that for p = 1, . . . , n+ r we have

spanR(L,H) ∩MpK = {aL+ bH | a+ aq−1b > 0, b > 0}

where q is the unique integer satisfying dq−1 < p ≤ dq. It is instructive to examine special
cases of this construction.

1. Let Y be a Riemann surface, r = n − 1, L any line bundle on Y of degree d > 0.
Set b1 = b2 = · · · = bn−1 = 1, then X = P(OY ⊕ (L∨)⊗a1 ⊕ · · · ⊕ (L∨)⊗an−1) is an
n-dimensional projective manifold. We see that the cones MpK are given by

MpK = {aL+ bH | a+ ap−1b > 0, b > 0} (2.28)

and hence are all pairwise distinct for all p = 1, · · · , n. Intersection theory on X is
given by the formulas

Hn = d

n−1∑
i=1

ai, Hn−1 · L = d, Hn−i · Li = 0 for i ≥ 2. (2.29)
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2. In the above special case, let Y = P1, L = OP1(1), r = 2 and a1 = 1, a2 = 3. Then,
X = P(OP1 ⊕ OP1(−1) ⊕ OP1(−3)). Let α = L +H and β = L + bH for b > 0. Let
us examine all the possible destabilising subvarieties for the J-equation on (X,α, β).
Denote by S and C respectively the subvarietes

S = P(OP1 ⊕OP1(−1)) ⊆ X, C = P(OP1) ⊆ X.

Making use of (2.28) and (2.29), one can show that the class µα,βα− 2β is big if and
only if b > 1/15. In the notation of Theorem 2.11 we then have

Vα,β =


S for 1/15 < b ≤ 5/26

C for 5/26 < b ≤ 2/9

∅ for b > 2/9.

In fact, if we let Destα,β denote the set of destabilisers, we have

Destα,β =


{S,C} for 1/15 < b ≤ 5/26

{C} for 5/26 < b ≤ 2/9

∅ for b > 2/9,

whereas for b ≤ 1/29, Destα,β contains infinitely many curves.

Remark 26. Let Y be a compact Kähler manifold of dimension n, L an ample line bundle
on Y , r = 1 and b1 = m + 1. Then X = P(OY ⊕ (L∨)⊕(m+1)) has dimension n +m + 1.
Then, for any big class of the form aL + bH, the non-nef locus is empty if and only if
a+ b ≥ 0, b > 0, and equal to P = P(OY ) ⊆ X if and only if a+ b < 0, b > 0. Thus, (writing
Mp

′K = MpK ∩ span(H,L)) we have

M′
0K = M′

1K = · · · = M′
n−1K $ M′

nK = M′
n+1K = · · · = M′

n+m+1K.

In this situation, Datar-Mete-Song [13, Theorem 1.6] have shown that if α = L + aH,
β = L+ bH, for a, b > 0, and ω0, θ are fixed Kähler forms in α, β respectively satisfying a
Calabi-ansatz, then, in the case that (X,α, β) is J-unstable, the J-flow with initial form ω0

converges smoothly away from P . It therefore seems natural to ask whether, under suitable
hypotheses, in the setting of Theorems 2.11,2.10 and 2.15 the J-flow should always converge
smoothly away from the union of some collection of destabilising subvarieties.

2.4 Factorisable equations

The nature of the arguments in the previous Section indicates that we should be able to
apply them to many more PDEs whose associated numerical criterion ‘factorises’ in an
appropriate sense, so that we can apply Lemma 1.24. In practice, this actually happens for
many geometric PDEs. Our aim in this Section is to make this notion of ‘factorisability’
precise. In order to proceed in sufficient generality to illustrate the ideas, we choose the
setting of the generalised Monge-Ampère equations.
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2.4.1 Factorisable generalised Monge-Ampère equations
Suppose X is a smooth projective variety of dimension dimCX = n, α, β ∈ KX are Kähler
classes with θ ∈ β a fixed Kähler form. Let (X,α,Θ) define a gMA equation, as explained
in Subsection 2.1.4, with

Θ =

n−1∑
k=1

ckθ
k + fθn

for a fixed Kähler form θ ∈ β ∈ KX . In the light of Theorem 2.4 we introduce the following
natural definition.

Definition 2.18. Suppose (X,α,Θ) satisfy the cohomological constraint (2.10) and the
positivity condition given in [7, (1.2)]. Then, we say that (X,α,Θ) is (gMA) semistable
(resp. stable) if for every proper irreducible analytic subvariety V ⊆ X we have∫

V
(exp(α) ∧ (1− [Θ]))[dimC V,dimC V ] ≥ 0 (resp. > 0).

If (X,α,Θ) is not semistable, we say that it is unstable. If V violates the above strict
inequality, we say that it (gMA) destabilises the triple (X,α,Θ).

In order to apply our techniques, we need to give precise meaning to the notion of
‘factorisability’. To this end, let us define the polynomials

P (y) =

n−1∑
k=1

cky
k

and for p = 1, . . . , dimCX − 1,

Qp(x, y) = (exp(x)(1− P (y)))[p] (2.30)

where by R(x, y)[p] we mean the degree p homogeneous part of the power series R(x, y). We
note that the polynomials Qp(x, y) only depend on the coefficients c1, · · · , cn−1 and not on
θ, f or α.

Definition 2.19. Let (X,α,Θ) satisfy the cohomological constraint (2.10) and the positiv-
ity condition given in [7, (1.2)]. We say that the triple (X,α,Θ) defines a factorisable gMA
equation if for each p = 1, . . . , dimCX − 1, the polynomial Qp(x, y) can be factorised as

Qp(x, y) = (x− rpy)Q̃p(x, y)

where

1. the constant rp ≥ 0,

2. the polynomial Q̃p(x, y) is a polynomial with non-negative real coefficients.

The cohomology class τp(α, [θ]) = α− rpβ is called the associated factor class at dimension
p (or of degree p).

Example 2.20. For k ≥ 1, let Θ = κθk where κ is the uniquely determined cohomological
constant

κ =
n!
∫
X [θ]

k · αn−k

(n− k)!
> 0.
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This choice of Θ defines an inverse Hessian equation. Then, for p < k we have

Qp(x, y) =
1

p!
xp

and for p ≥ k we have

Qp(x, y) =
1

p!
xp − κ

(p− k)!
xp−kyk =

(
x− κ1/kp y

)( 1

p!

p−1∑
r=0

κr/kp xp−1−ryr

)
,

where κp = p!κ/(p−k)! > 0. Thus we see that all inverse Hessian equations are factorisable,
with the associated factor class at each dimension p = k, . . . , dimCX − 1 given by

τp(α, [θ]) = α− κ1/kp [θ].

When k = 1 this corresponds to the J-equation.

Example 2.21. Let dimCX = 3 and define

Θ = cθ + dθ2 + fθ3

where c, d ≥ 0 are real constants and f is a smooth function such that the triple (X,α,Θ)
satisfies the cohomological constraint (2.10) and the positivity condition given in [7, (1.2)].
Then, we have

Q2(x, y) =
1

2
x2 − cxy − dy2 =

1

2
(x+ (−c+

√
c2 + 2d)y)((x+ (−c−

√
c2 + 2d)y)

and
Q1(x, y) = x− cy.

Thus, we see that the triple (X,α,Θ) always defines a factorisable gMA equation with
associated factor class at dimension two equal to

τ2(α, [θ]) = α+ (−c−
√
c2 + 2d)[θ].

Proposition 2.22 ([18]). Suppose X is a smooth projective variety, α, β ∈ KX are Kähler
classes with θ ∈ β a fixed Kähler form. Let ck ≥ 0 and f ∈ C∞(X,R) be such that (X,α,Θ)
satisfies the cohomological constraint (3.2) and the positivity condition given in [7, (1.2)].
Then, (X,α,Θ) defines a factorisable gMA equation.

Proof. We must prove that if Qp(x, y) is defined by (2.30), then it can be factorised as

Qp(x, y) = (x− rp)Q̃p(x, y)

where rp ≥ 0 and all the coefficients of Q̃p(x, y) are non-negative. It suffices to prove that
if hp(x) = Qp(x, 1), then each hp(x) can be factorised as

hp(x) = (x− rp)gp(x)

with rp ≥ 0 and gp(x) is a polynomial with non-negative coefficients, for then the claim will
follow by homogenising hp(x) and gp(x).

Now note that

hp(x) =
xp

p!
−

p∑
k=1

ck
xp−k

(p− k)!
.
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It is clear that hp(x) → +∞ as x → +∞, and h(ε) ≤ 0 for ε > 0 small enough, with strict
inequality if some ck > 0 for k = 1, . . . p. Therefore, hp(x) admits a non-negative real root.
Let rp be the largest non-negative real root of hp(x). Then, rp = 0 if and only if ck = 0 for
all k = 1, . . . , p. Now, we may write

hp(x) = (x− rp)gp(x)

where gp(x) is a polynomial with real coefficients. We must prove that all the coefficients
of gp(x) are non-negative. Clearly, if rp = 0, then all the ck = 0 for k = 1, . . . , p, so in that
case gp(x) = xp−1/p! certainly has non-negative coefficients. So we may assume that rp > 0.
Write gp(x) = Pp(x) −Np(x), where both Pp(x) and Np(x) have non-negative coefficients.
If Np(x) 6= 0, then let k0 be the smallest integer such that the coefficient of xk0 in Np(x) is
strictly positive. Since gp(x) has degree p− 1, k0 < p. Then, we have the identity

xp

p!
−

p−1∑
k=0

cp−k
k!

xk = xPp(x) + rpNp(x)− (xNp(x) + rpPp(x)).

The monomial xk0 occurs with non-zero coefficient on the right-hand-side of this identity
only in the terms rpNp(x) (where it has a strictly positive coefficient) and (possibly) in
xPp(x) (where it has a non-negative coefficient). On the other hand, all the coefficients of
xk with k < p have non-positive coefficients on the left-hand-side of this identity. This is a
contradiction. Hence, Np(x) = 0 and gp(x) = Pp(x) has non-negative coefficients.

Therefore, the factor classes τp(α, [θ]) are always well-defined for any triple (X,α,Θ),
and the notion of factorisable gMA equations is not restrictive, at least at the level of
generality allowed by gMA equations of the form (2.11). Another key feature of the factor
classes τp(α, [θ]) is that they are descending in p. More precisely, we have the following
result.

Lemma 2.23 ([18]). Let the triple (X,α,Θ) define a factorisable gMA equation. Then,
for each p = 1, . . . , n − 2, we have τp(α, [θ]) ≥ τp+1(α, [θ]) with strict inequality whenever
τp+1(α, [θ]) 6= α.

Proof. Since (X,α,Θ) defines a factorisable gMA equation, the polynomials Qp(x, y) fac-
torise as

Qp(x, y) = (x− rpy)Q̃p(x, y)

where rp ≥ 0 and Qp(x, y) has non-negative coefficients. Note that this implies that x 7→
Qp(x, 1) has at most one non-negative real root, namely rp. But it is easy to verify by
straightforward computation that

∂

∂x
Qp+1(x, y) = Qp(x, y).

If rp+1 = 0, or equivalently, τp+1(α, [θ]) = α, then the this implies that τp(α, [θ]) = α also,
and so τp(α, [θ]) ≥ τp+1(α, [θ]). So, suppose rp+1 > 0. Then, the factorisation of Qp+1(x, y)
above implies that the polynomial function x 7→ Qp+1(x, 1) has exactly one zero on the
positive real axis, namely rp+1. But since Qp(x, 1) = d

dxQp+1(x, 1) we see immediately
Qp(rp+1, 1) > 0. Thus, rp < rp+1 because x 7→ Qp(x, 1) has at most one non-negative real
root. This shows that τp(α, [θ]) > τp+1(α, [θ]).
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Proposition 2.24 ([18]). Let X be a smooth projective variety of dimCX = n. Suppose
(X,α,Θ) satisfies the cohomological constraint (2.10) and the positivity hypothesis given in
[7, (1.2)], and defines a factorisable gMA equation whose associated factor classes τp(α, [θ]) ∈
Mp+1K at dimension p belong to the (p+1)-modified Kähler cone, for p = 1, . . . , dimCX−1.
Then, there exist at most finitely many subvarieties that (gMA) destabilise (X,α,Θ).

Proof. Any destabiliser V of dimension p satisfies∫
V
τp(α, [θ]) · Q̃p(α, [θ]) ≤ 0.

Since Q̃p(α, [θ]) is a non-negative linear combination of powers of Kähler classes α and [θ],
by Lemma 1.24, V must therefore be contained in EnK(τp(α, [θ])). This is a proper analytic
subset not containing any (p + 1)-dimensional subvarieties, so V must be one its finitely
many irreducible components.

Remark 27. The above theorem applies to a subclass of Z-critical equations, given appro-
priate choice of stability datum. We explain a particular example of this more concretely
(though other examples are also possible), in the notation of Subsection 2.1.3. Let L be a
holomorphic line bundle on a compact Kähler manifold X of dimension n. Let us consider
unipotent cohomology classes of the form U = exp(A) where A ∈ H1,1(X,R) is any coho-
mology class such that A + c1(L) ∈ KX . Then, for any stability datum Ω = (β, ρ, exp(A))
where the stability vector ρ = (ρ0, ρ1, . . . , ρn) satisfies

bk =
Im
(
ZΩ(L)ρk

)
Im
(
ZΩ(L)ρ0

) < 0, k = 1, 2, . . . , n,

we obtain a gMA equation satisfying the positivity conditions given in [7, (1.2)] for the
Kähler class α = A+ c1(L) and

Θ =

n∑
k=1

bkθ
k

for any Kähler form θ ∈ β. Here, we have written

ZΩ(L) =

∫
X
Z̃Ω(L, h)

for some (hence any) choice of hermitian metric h on L.

We finally also point out that we get a much better result when dimCX = 3, just as in
the special case of the J-equation.

Theorem 2.25 ([18]). Suppose X is a compact Kähler manifold of dimension dimCX = 3,
α, β ∈ CX Kähler classes, with ω ∈ α, θ ∈ β Kähler forms. Let Θ = c1θ + c2θ

2 + fθ3 be
such that (X,α,Θ) satisfies the cohomological constraint (2.10) and the positivity condition
given in [7, (1.2)]. Suppose that the factor class τ2(α, β) of degree 2 associated to (X,α,Θ)
is big, and (X,α,Θ) is gMA-semistable. Then, there are finitely many curves and surfaces
that (gMA)-destabilise the triple (X,α,Θ).



2.4. FACTORISABLE EQUATIONS 49

Proof. The argument is very similar to the proof of Theorem 2.10. We sketch the parts
that are identical and elaborate on the parts that are different. Let us briefly recall the
notation. The polynomials Qp(x, y) for p = 1, 2 are given by

Q2(x, y) =
1

2
x2 − c1xy − c2y

2, Q1(x, y) = x− c1y.

Observe that if c1 = c2 = 0, then the equation reduces to the complex Monge-Ampère
equation and there are no destabilisers in this case. So we may assume that c1 > 0 or c2 > 0.
When the triple (X,α,Θ) is (gMA)-semistable, a destabilising surface S (respectively, a
destabilising curve C) satisfies∫

S
Q2(α, β) = 0, (respectively,

∫
C
Q1(α, β) = 0).

By what was said in Example 2.17, we can write

Q2(α, β) =
1

2
(α− r2β) · (α+ sβ)

where
r2 = c1 +

√
c21 + 2c2, s = −c1 +

√
c21 + 2c2.

It is clear that r2 > 0, s ≥ 0. Recall also that τ2(α, β) = α − r2β. Now, if S is a (gMA)-
destabilising surface, then by Lemma 1.24 we must have S ⊆ EnK(τ2(α, β)), and there
are only finitely many surfaces S which are contained in EnK(τ2(α, β)). Suppose C is a
(gMA)-destabilising curve. Then, we have∫

C
α− c1β = 0.

Now α− c1β ≥ α−r2β (either by direct observation, or by Lemma 2.23), so α− c1β is a big
class as well. Once again, by Lemma 1.24 this implies that C ⊆ EnK(α− c1β). Thus, C is
either an irreducible curve component of EnK(α− c1β) or C is contained in an irreducible
surface component S of EnK(α − c1β). It therefore remains to show that for each of the
finitely many surface components S of EnK(α − c1β), there are only finitely many curves
C ⊆ S such that ∫

C
α− c1β = 0.

But now we note that

1

2

∫
S
(α− c1β)

2 =

∫
S

(
1

2
α2 − c1α · β + c21β

2

)
=

∫
S
Q2(α, β) +

1

2
(c21 + 2c2)

∫
S
β2 > 0,

and
1

2

∫
S
(α− c1β) · (α+ sβ) =

∫
S
Q2(α, β) +

√
c21 + 2c2

∫
S
β · (α+ sβ) > 0.

This shows that, if S is smooth, then (α− c1β)|S is a big class on S. Now we argue exactly
as in the proof of 2.10 to conclude.

Remark 28. In fact, with exactly the same strategy of proof, one can also obtain the more
general analogues of Theorems 2.11 and 2.14 for the generalised Monge-Ampère equations
when dimCX = 3, making necessary adjustments as in the proof of Theorem 2.25.
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2.4.2 The supercritical deformed Hermitian Yang-Mills equation
Let X be a smooth projective variety of dimension dimCX = n and let α, β ∈ H1,1(X,R)
be cohomology classes on with β ∈ KX a Kähler class. Fix a Kähler form θ ∈ β.

In view of the Nakai-Moishezon type criterion given by Theorem 2.3, we introduce the
following natural definitions.

Definition 2.26. Suppose (X,α, β) satisfies the supercritical phase hypothesis. Then we
say that (X,α, β) is (dHYM-)semistable (resp. stable) if for every closed, proper, irreducible
subvariety V ⊆ X we have∫

V

(
Re(α+

√
−1β)dimC V − cot ϕ̂β(α) Im(α+

√
−1β)dimC V

)
≥ 0 (resp. > 0).

If (X,α, β) is not semistable, we say that it is unstable. If V violates the above strict
inequality, we say that it (dHYM-)destabilises the triple (X,α, β).

From the point of view of the Theorem 2.3, we are naturally led to consider the following
family of polynomials. Fix ϕ̂ ∈ (0, π) and p ≥ 0, and define

QdHYM
p,ϕ̂

(x, y) = Re(x+ iy)p − (cot ϕ̂) Im(x+ iy)p.

Lemma 2.27. The polynomials QdHYM
p,ϕ̂

(x, y) admit the factorisation

QdHYM
p,ϕ̂

(x, y) =

p−1∏
l=0

(
x− cot

(
ϕ̂+ lπ

p

)
y

)
. (2.31)

Proof. A straightforward calculation shows that QdHYM
p,ϕ̂

(x, y) admits p distinct roots given
by

(xl, yl) =

(
cos
(
ϕ̂+ lπ

p

)
, sin

(
ϕ̂+ lπ

p

))
for l = 0, . . . , p− 1. Now ϕ̂ ∈ (0, π) implies that yl > 0 and the result follows.

The above factorisation allows us to deduce the following analogue of Theorem 2.10.

Theorem 2.28 ([18]). Let X be a smooth projective variety of dimension n ≤ 4, β a Kähler
class on X and α a real (1, 1)-cohomology class. Suppose (X,α, β) has supercritical phase,
that is ϕ̂β(α) ∈ (0, π). If dimCX = 4 suppose moreover that ϕ̂β(α) ∈ (π/2, π). If the classes

τdHYM
p (α, β) = α− cot

(
ϕ̂β(α)

p

)
β

for p = 1, . . . , dimCX − 1 lie in the (p + 1)-modified Kähler cone, then there exist at most
finitely many (dHYM) destabilising proper irreducible subvarieties V ⊆ X.

Proof. By hypothesis, the class τdHYM
p (α, β) is (p+ 1)-modified Kähler, and the classes

α− cot
(
ϕ̂β(α) + πl

p

)
β
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for l = 1, . . . , p−1 are also Kähler. Indeed, ϕ̂β(α) ∈ (0, π) implies that cot((ϕ̂β(α)+π)/2) <
0, and ϕ̂β(α) ∈ (π/2, π) implies that

cot
(
ϕ̂β(α) + π

3

)
< 0, cot

(
ϕ̂β(α) + 2π

3

)
< 0.

Thus, in view of the factorisation (2.31) and Lemma 1.24, any p-dimensional irreducible
subvariety V such that∫

V

(
Re(α+

√
−1β)p − cot ϕ̂β(α) Im(α+

√
−1β)p

)
≤ 0.

must satisfy
V ⊆ EnK(τdHYM

p (α, β)),

but the latter set contains at most finitely many irreducible subvarieties of dimension p, since
it does not contain any (p+1)-dimensional subvariety and is a proper analytic subset of X.
Thus, V must be one of the finitely many irreducible components of EnK(τdHYM

p (α, β)).

Just as for the J-equation, we obtain a slightly sharper result in the three dimensional
setting, albeit under the condition that α is a Kähler class.
Theorem 2.29 ([18]). Let X be a smooth projective variety of dimension dimCX = 3. Let
α, β be Kähler classes on X such that (X,α, β) satisfies the supercritical phase hypothesis
and is (dHYM) semistable. Suppose the class τdHYM

2 (α, β) is big. Then, there are only
finitely many (dHYM) destabilising subvarieties of X.
Proof. If S is any destabilising surface in X, then the proof of the above theorem shows
that S ⊆ EnK(τdHYM

2 (α, β)) and so there are always at most finitely many destabilising
surfaces.

A destabilising curve C must satisfy
C ⊆ EnK(τdHYM

1 (α, β)) = EnK(α− cot ϕ̂θ(α)β).
If ϕ̂ = ϕ̂β(α) ∈ [π/2, π), then τdHYM

1 (α, β) is a Kähler class, so there are no such curves.
So, suppose ϕ̂ ∈ (0, π/2), i.e. cot ϕ̂ > 0. Now observe that by semistability, for any surface
S, we have

0 ≤
∫
S
(α− cot(ϕ̂/2)β) · (α− cot((ϕ̂+ π)/2)β) =

∫
S
(α− cot(ϕ̂)β)2 − (csc(ϕ̂))2

∫
S
α · β,

where we have used the identity cotx = cot 2x+ csc 2x. Thus, we have∫
S
(α− cot(ϕ̂)β)2 ≥ (csc ϕ̂)2

∫
S
α · β > 0,

∫
S
(α− cot(ϕ̂)β) · α ≥ cot(ϕ̂)

∫
S
α · β > 0.

Thus, if S is any surface component of EnK(τdHYM
1 (α, β)), and S is smooth, the class

τdHYM
1 (α, β) restricts to a big class on S and therefore we conclude as in the proof of

Theorem 2.10 above that S contains only finitely many destabilising curves. If S is singular,
we again conclude as in the proof of Theorem 2.10 above.

Corollary ([18]). Let X be as in the Theorem. Let α, β be Kähler classes on X such that
(X,α, β) has supercritical phase. Suppose the class τdHYM

2 (α, β) is big. Then, the union
V dHYM
α,β of all subvarieties of X that (dHYM) destabilise the triple (X,β, α) is a proper

analytic subset of X.
Proof. This argument is very nearly identical to the proof of Theorem 2.11 above after
making appropriate straightforward changes.





Chapter 3

Wall-chamber decompositions

One key motivation behind results like Theorem 2.5 and Proposition 2.13 is to understand
the nature of stability (and hence solvability) when we vary the PDEs in continuous families.
This motivation comes from analogous questions in algebraic geometry, where one finds that
if certain numerical invariants are fixed, the space of all stability data admits a locally finite
wall-chamber decomposition, with the notion of stability of any given object being the same
for each element in any given chamber. By analogy, one should therefore expect something
similar to happen in the case of PDEs. In this Chapter, we show that analogous results do
indeed hold in the case of surfaces for the J-equation, dHYM equation, and, under mild
and natural hypotheses, the Z-critical equations. In higher dimensions, we show that under
the positivity conditions described in the previous Chapter, we are still able to get closely
analogous results. These results are the first in the literature of their kind.

3.1 The case of surfaces
As in the previous Chapter, we single out the case of surfaces, both for clarity and because
the results are much cleaner.

3.1.1 The deformed Hermitian Yang-Mills equation
Let X be a compact Kähler surface and let D denote the ‘degenerate’ locus

D =

{
(α, β) ∈ H1,1 × (X,R)×KX : 2

∫
X
α · β = 0

}
where the equation (2.6) for the triples (X,α, β) reduces to the Poisson equation. Let
us recall from the previous Chapter that (2.6) is always solvable in this degenerate case.
We wish to prove that in fact, this remains true in an open neighbourhood U of D in
H1,1(X,R)×KX . In this Subsection, we shall once again write

τ(α, β) = α+

∫
X(β

2 − α2)

2
∫
X α · β

β

whenever 2
∫
X α · β 6= 0.

Lemma 3.1. Let X be a compact Kähler surface and D be as defined above. Then, there
exists an open subset U ⊆ H1,1(X,R) × KX containing D such that for every (α, β) ∈ U
with 2

∫
X α · β 6= 0, the triple (X,α, β) is (dHYM) stable.

53
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Proof. It suffices to prove that for each (α0, β0) ∈ D, there exists an open subset U contain-
ing (α0, β0) with the desired property. Therefore, let (α0, β0) ∈ D be given. Then, because
β0 is a Kähler class, there exists M > 0 such that both α0 +Mβ0 and −α0 +Mβ0 are
Kähler classes. Moreover, by the Hodge Index Theorem, since

∫
X α0 ·β0 = 0, it follows that∫

X α
2
0 ≤ 0, so we must also have that

N =

∫
X
(β20 − α2

0) > 0.

Let us define

U0 =

{
(α, β) :

∣∣∣∣∫
X
(β2 − β20)

∣∣∣∣ < N

4
,

∣∣∣∣∫
X
(α2 − α2

0)

∣∣∣∣ < N

4
,

∣∣∣∣∫
X
α · β

∣∣∣∣ < N

4M

}
.

This U0 is clearly an open subset of H1,1(X,R)×KX and contains (α0, β0). Now, if (α, β) ∈
U0 with 2

∫
X α · β 6= 0 then we have∫

X
(β2 − α2) >

N

2
> 0

and thence ∣∣∣∣
∫
X(β

2 − α2)

2
∫
X α · β

∣∣∣∣ > N

4
∣∣∫
X α · β

∣∣ > M.

Now if we set
U = {(α, β) ∈ U0 : (±α+Mβ) ∈ KX}

then U is still an open neighbourhood of (α0, β0) and for any choice of (α, β) ∈ U \ D the
class

τ(α, β) = α+

∫
X(β

2 − α2)

2
∫
X α · β

β

is either a Kähler class or the negative of a Kähler class. From the proof of Theorem 2.5,
it follows that the dHYM equation (2.6) is solvable for the triple (X,α, β), or equivalently,
that (X,α, β) is (dHYM) stable.

Let S(X, dHYM)Stab be the subset of H1,1(X,R) × KX comprising those pairs (α, β)
such that for any fixed Kähler form θ ∈ β and smooth representative ω ∈ α, (2.6) admits
a smooth solution ψ, unique up to additive constants. Note that D is disjoint from the
boundary ∂S(X, dHYM)Stab, and in fact lies in the interior of S(X, dHYM)Stab.

Theorem 3.2 ([11]). The boundary ∂S(X, dHYM)Stab is a locally finite union of smooth
submanifolds W of H1,1(X,R) × KX of (real) codimension one, each one of them cut out
by an equation of the form ∫

C
τ(α, β) = 0

for some curve of negative self-intersection C in X.

Proof. Let (α0, β0) ∈ ∂S(X, dHYM)Stab be a boundary point. Pick any open neighbourhood
V of (α0, β0) whose closure K is a compact subset of H1,1(X,R)×KX and which does not
meet D. The existence of such a V is guaranteed by Lemma 3.1. Now, we apply Theorem
2.5 to K and obtain a sign s ∈ {±1} and finitely many curves E1, . . . , Eℓ of negative self-
intersection such that for every (α, β) ∈ K, and hence for every (α, β) ∈ V , the triple
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(X,α, β) admits a solution of the dHYM equation (2.6) if and only if for every i = 1, . . . , ℓ
we have

s

∫
Ei

τ(α, β) > 0.

This shows that V ∩ ∂S(X, dHYM)Stab has boundary in V given by the finitely many loci

Wi =

{
(α, β) ∈ V :

∫
Ei

τ(α, β) = 0

}
.

It only remains to prove that any locus W of this kind is a smooth submanifold of V of real
codimension one. Note that if

W =

{
(α, β) ∈ V :

∫
E
τ(α, β) = 0

}
for any curve E, then W is the zero set of the function F : V → R given by

F (α, β) =

∫
E

(
α+

∫
X(β

2 − α2)

2
∫
X α · β

β

)
.

It is easy to verify that

d

dr

∣∣∣∣
r=0

F (α, (1 + r)β) =

∫
X β

2∫
X α · β

∫
E
β > 0

because β is a Kähler class. Hence zero is a regular value of F , and so W is a smooth
submanifold of codimension one.

Corollary. Let X be a compact Kähler surface. Then, S(X, dHYM)Stab is an open sub-
manifold of H1,1(X,R)×KX and contains D as a closed submanifold.

Proof. This is an immediate consequence of the Theorem.

With this Theorem in hand, we can finally state and prove our result about the locally
finite wall-chamber structure associated to the dHYM equations.

Theorem 3.3 ([11]). Let X be a compact Kähler surface and α1, . . . , αs ∈ H1,1(X,R)
be a finite collection of cohomology classes. For each β0 ∈ KX , there exists an open
subset U ⊆ KX containing β0 and finitely many closed submanifolds W1, . . . ,Wr of U of
codimension one such that for each connected component

Uj ⊆ U \
⋃
k

Wk

and each i = 1, . . . , s, the triple (X,αi, β) is (dHYM) stable for some β ∈ Uj if and only if
(X,αi, β) is (dHYM) stable for all β ∈ Uj.

Proof. Let β0 ∈ KX be given. If any (αi, β0) 6∈ ∂S(X, dHYM)Stab, then there exists an
open neighbourhood Vi of (αi, β0) in H1,1(X,R) × KX such that (X,α, β) is either always
dHYM stable or dHYM unstable for each (α, β) ∈ Vi. Thus, we may discard any such
αi without affecting the conclusion of the Theorem. Assume therefore that each (αi, β0) ∈
∂S(X, dHYM)Stab. By applying Theorem 3.2, we obtain open subsets Ui ⊆ H1,1(X,R)×KX

containing (αi, β0) such that Ui ∩ ∂S(X, dHYM)Stab has boundary in Ui given by finitely
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many walls W̃ij cut out by curves of negative self-intersection Eij , and such that for each
(α, β) ∈ Ui the triple (X,α, β) is (dHYM) stable if and only if

si

∫
Eij

τ(α, β) > 0

for all j. Then, we may take U to be the common intersection of the images of the slices
({αi} × KX) ∩ Ui under the projection H1,1(X,R) × KX → KX . This is an open neigh-
bourhood of β0 in KX . The walls Wij are given by the same process: we take the slice
({αi} × KX) ∩ W̃ij and project it to KX . Then, for β ∈ U the stability of (X,αi, β) is
determined by the signs of continuously varying quantities

β 7→ si

∫
Eij

τ(αi, β)

which are the same on each connected component of U \ ∪Wij .
It only remains to prove that each Wij is a smooth submanifold of KX . But this follows

easily from the proof of Theorem 3.2: Wij is the zero locus of the function G : U → R given
by

G(β) = F (αi, β) =

∫
Eij

τ(αi, β)

where F is as defined in the proof of Theorem 3.2 and zero is a regular value of G for the
same reason as that for F .

3.1.2 The J-equation
As we saw in the previous Chapter, the J-equation, being the small volume limit of the
dHYM equation, admits a very similar analysis. For the sake of avoiding repetition, we
shall therefore not give complete arguments, as they are nearly identical to the ones given
in the last Subsection.

Let X be a compact Kähler surface and let S(X, J)Stab denote the subset of KX ×KX

comprising (α, β) such that the triple (X,α, β) is J-stable. In this Subsection, we shall once
again write

τ(α, β) = µα,βα− β

for α, β ∈ KX .
Theorem 3.4 ([11]). The boundary ∂S(X, J)Stab is a locally finite union of smooth sub-
manifolds W of KX×KX of (real) codimension one, each one of them cut out by an equation
of the form ∫

C
τ(α, β) = 0

for some curve of negative self-intersection C in X.
Proof. The argument is almost identical to the proof of Theorem 3.2, applying Theorem
2.9 instead of Theorem 2.5. In the last part, we should define F by

F (α, β) =

∫
E
(µα,βα− β).

Then, a straightforward calculation yields
d

dr

∣∣∣∣
r=0

F (α, β + rα) =

∫
E
α > 0.

Thus, the loci W are smooth submanifolds of real codimension one.
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Corollary. Let X be a compact Kähler surface. Then, S(X, J)Stab is an open submanifold
of KX ×KX .

In the same vein, we obtain the result about the locally finite wall-chamber structure.

Theorem 3.5 ([11]). Let X be a compact Kähler surface and α1, . . . , αs ∈ KX be a finite
collection of Kähler classes. For each β0 ∈ KX , there exists an open subset U ⊆ KX

containing β0 and finitely many closed submanifolds W1, . . . ,Wr of U of codimension one
such that for each connected component

Uj ⊆ U \
⋃
i

Wi

and each i = 1, . . . , s, the triple (X,αi, β) is J-stable for some β ∈ Uj if and only if (X,αi, β)
is stable for all β ∈ Uj.

Proof. The argument is very nearly identical to the proof of Theorem 3.3. We omit the
details.

3.1.3 Z-critical equations
The following result can be seen as a first analogue of a locally finite wall-chamber structure
on the side of differential geometry for a wide family of PDEs associated to central charges
coming from the study of stability. (We draw the reader’s attention to [41, Proposition 9.4],
which gives a closely analogous result in the case of K3 surfaces to Theorem 3.6 below.)

Theorem 3.6 ([11]). Fix a finite set S of holomorphic line bundles Li → X (for i =
1, · · · , k) on a compact Kähler surface X. Let VS denote the set of triples Ω = (β, ρ, U) in
KX×(C∗)3×

⊕
H i,i(X,R) such that ZΩ(Li) lies in the upper half-plane, φΩ(Li) 6= arg(±ρ0)

and V (Ω, Li) > 0 for each i = 1, · · · , k. Let Ui denote the subset of VS comprising those
Ω such that for any choice of lift Ω̃ of Ω satisfying the volume form hypothesis for Li, the
Z-critical equation (2.17) admits a solution. Then, Ui is an open subset of VS and for
any compact subset K of VS, the set Ui ∩K is cut out by the finitely many real algebraic
inequalities

Wij(Ω) =

∫
Eij

τZ(Ω, Li) > 0, j = 1, · · · , ℓi

where Ei1, · · · , Eiℓi are the curves appearing in Theorem 2.8. In particular, if C is any
connected component of

K \
⋃
i,j

{Wij(Ω) = 0}

then for any i0 ∈ {1, · · · , k}, we have Ω ∈ Ui0 for some Ω ∈ C if and only if Ω ∈ Ui0 for
every Ω ∈ C.

Proof. The first claim is immediate from the proof of Theorem 2.8. The only thing that
needs justification is the last sentence. But if C is a connected component of

K \
⋃
i,j

{Wij(Ω) = 0}

then, for each value of i, j, the continuous assignment Ω 7→ Wij(Ω) must be non-zero and
take the same sign for every Ω ∈ C. Now fix a value i0 for i and note that for the finitely
many values of i, j, the signs of Wij on C are all positive or not all positive according as the
class τZ(Ω, Li0) is Kähler or not, according as Ω ∈ Ui0 or not, and this proves the claim.
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Finally, to justify the terminology of ‘wall-chamber’ decomposition that we have used
we explain why the loci

Wij(Ω) = 0

in the set Ui (in the notation of Corollary 3.6) are real codimension one loci. More precisely,
we have the following proposition.

Proposition 3.7 ([11]). Let L be a holomorphic line bundle and let V denote the set
comprising stability data Ω = (β, ρ, U) ∈ KX × (C∗)3 ×

⊕
H i,i(X,R) for which ZΩ(L) lies

in the upper half-plane, φΩ(L) 6= arg(±ρ0) and V (Ω, L) > 0. Let E be any curve on X such
that ∫

E
τZ(Ω, L) = 0

for some Ω ∈ V . Then the locus

WE =

{
Ω ∈ V :

∫
E
τZ(Ω, L) = 0

}
is a real codimension one submanifold of V .

Proof. Recall that the class τZ(Ω, L) is given, up to a sign, by

τZ = ±
(
c1(L) +

1

2
η(Ω, L)

)
,

where
η(Ω, L) =

2

c0
(c0U1 + c1β) = 2

(
U1 +

c1
c0
β

)
and ck = ck(Ω, L) = Im(ρk) cotφΩ(L)−Re(ρk). Recall that c0 6= 0; this is a consequence of
the hyphotesis that φΩ(L) 6= arg(±ρ0). Fix

Ω = (β, ρ0 + ρ1t+ ρ2t
2, U)

such that ∫
E
τZ(Ω, L) = 0

for some curve E and consider the family of stability data given by

Ωε =

(
β, ρ0 + ρ1t+ ρ2t

2, U +
ε∫

X β
2
β2
)

for ε ∈ R small. Then, we have

ZΩε(L) = ZΩ(L) +
ε∫

X β
2

∫
X
β2 · (ρ0 + ρ1β + ρ2β

2) · ch(L) = ZΩ(L) + ερ0.

Writing a = Re(ρ0), b = Im(ρ0), we get that

d

dε

∣∣∣
ε=0

cotφΩε(L) =
a ImZΩ(L)− bReZΩ(L)

(ImZΩ(L))2
= − c0

ImZΩ(L)
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recalling that c0 = b cotφΩ(L) − a 6= 0. (Throughout, we write ck = ck(Ω, L) for brevity,
reserving the more elaborate notation ck(Ωε, L) for the perturbed constants.) A simple
calculation now shows that

d

dε

∣∣∣
ε=0

c1(Ωε, L)

c0(Ωε, L)
= − 1

c0 ImZΩ(L)
(c0 Im ρ1 − c1 Im ρ0) = − 1

c0 ImZΩ(L)
Im
(
ρ0
ρ1

)
6= 0

the last inequality following from our hypotheses and the very definition of a stability datum.
This shows that the function

f(ε) =

∫
E
τZ(Ωε, L)

satisfies

f ′(0) =
d

dε

∣∣∣
ε=0

(∫
E
c1(L) + U1 +

c1(Ωε, L)

c0(Ωε, L)
β

)
= − 1

c0 ImZΩ(L)
Im
(
ρ0
ρ1

)∫
E
β 6= 0

and hence zero is a regular value of the map

Ω 7→
∫
E
τZ(Ω, L).

Remark 29. It is worth remarking that this wall-chamber decomposition cannot in general
be globally finite. Indeed, there exist Kähler surfaces which admit infinitely many distinct
curve classes with negative self-intersection. (For example, the blowup of P2 in nine points
in general position has infinitely many smooth rational curves of self-intersection −1.) If X
is any such surface, and E is any curve on X with negative self-intersection, then consider
the family of stability data given by

Ωr =

(
β,

r

E2

√
−1− 1∫

E β
t+

√
−1t2, 1 + [E]

)
where β is any Kähler class on X with

∫
X β

2 = 1 and r > 0 is a positive constant whose
value we shall vary in the range r ∈ (0, 2]. (In particular, we have set U2 = 0.) We wish
to consider the Z-critical equations associated to this family of stability data on the trivial
line bundle L = OX . One verifies quite easily that

ZΩr(L) = −1 +
√
−1

independently of r and therefore φΩr(L) =
3π
4 6= arg(± 2

3E2

√
−1) = ±π

2 . A straightforward
calculation then shows that

V (Ωr, L) =
E2(r − 2)

r
+

(
E2

r
∫
E β

)2

> 0

as r ∈ (0, 2]. In other words, all the hypotheses of Theorem 2.8 are satisfied. However,
another straightforward calculation shows that∫

E
τZ(Ωr, L) =

E2(1− r)

r
,
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so the assignment Ωr 7→
∫
E τZ(Ωr, L) changes sign as r crosses the value r = 1. In other

words, the stability data Ωr cross the wall

WE =

{
Ω :

∫
E
τZ(Ω, L) = 0

}
defined by the curve E. Thus, every curve of negative self-intersection gives rise to a wall
which has non-empty intersection with the space of admissible stability data for the trivial
bundle, and there are therefore infinitely many distinct walls whenever there are infinitely
many distinct curve classes with negative self-intersection.

Example 3.8 ([11]). We wish to present a concrete illustration of the results of this Section
(in particular the wall-and-chamber decomposition of Theorem 3.6) in a simple case. To this
end, we consider the classical example of the blowup π : X → P2 of P2 in two distinct points
p1, p2 ∈ P2. Let H denote the pullback of a line and Ei = π−1(pi), i = 1, 2 the exceptional
curves of the blowup. Then H1,1(X,R) is spanned by (the classes of) H,E1, E2. Moreover,
it is easy to check that X admits precisely three curves of negative self-intersection, namely
E1, E2 and T , the strict transform of the unique line passing through p1 and p2, whose class
in cohomology is equal to H − E1 − E2. (By the usual abuse of notation, we identify Ei
with c1(OX(Ei)) etc.) For s a complex number lying in the upper half-plane, let Ωs be the
stability datum given by the triple

Ωs = (β, U, ρs(t)) =

(
3H − E1 − E2, 1, 1− st+

s2t2

2

)
.

This stability datum satisfies all the requirements to define a polynomial central charge,
except perhaps the condition Im(s2) > 0, but this is merely a normalisation condition.
After fixing a choice of Kähler form ω ∈ β, one checks that solving the ZΩs-critical equation
on a line bundle L on X is equivalent to solving the equation(

χh − aω +
b2β2 − (c1(L)− aβ)2

2β · (c1(L)− aβ)
ω

)2

= b2

(
1 +

(
b2β2 − (c1(L)− aβ)2

2β · (c1(L)− aβ)

)2
)
ω2 (3.1)

for a Hermitian metric h on L. Here a = Re(s), b = Im(s), and χh is the curvature form√
−1
2π Fh of the metric h. (We will furthermore require that β · (c1(L) − aβ) > 0 for all line

bundles L under consideration.) In particular, we see immediately that the volume form
hypothesis is always satisfied. In fact, the equation (3.1) is equivalent to a dHYM equation
for the class c1(L)− aβ with auxiliary Kähler form bω.

Let L1 = OX(E1) and L2 = OX(T ). Then, one checks that for a < 1
7 , we have

β · (c1(Li) − aβ) > 0 for i = 1, 2. Moreover, from (3.1) we see that we can solve the
ZΩs-critical equation on Li if and only if

τ(Li,Ωs) = c1(Li)− aβ +
b2β2 − (c1(Li)− aβ)2

2β · (c1(Li)− aβ)
β

is a Kähler class. (The class τ(Li,Ω2) can never be the negative of a Kähler class, because
for b large and positive, it is clearly Kähler and s 7→ τ(Li,Ωs) is a continuous mapping into
the disjoint union ±P+

X .) A straightforward calculation (using the fact that E1, E2 and
T are the only curves of negative self-intersection) then shows that for i = 1 this happens
precisely when

W1(Ωs) =

∫
E1

τ(L1,Ωs) =
7b2 + 8a

1− 7a
> 0
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and for i = 2 precisely when

W2(Ωs) =

∫
T
τ(L2,Ωs) =

7b2 + 4(a+ 1)2 − 8

5− 11a
> 0.

This gives us a two-dimensional local slice of the wall-and-chamber decomposition which is
shown in the figure below.

Re(s)

Im(s)

1
7

(I)

(II)

(III)

(IV)
W2(Ωs) = 0

W1(Ωs) = 0

Figure 3.1: (I): only L1 is ZΩs-stable. (II): only L2 is ZΩs-stable. (III): both L1 and L2 are
ZΩs-stable. (IV): neither L1 nor L2 is ZΩs-stable.

One can make many different choices for varying the stability datum Ω, and carry out a
more general analysis of the above decomposition without much additional difficulty, as
long as one understands the boundary of the nef cone of X.

3.2 Higher-dimensional results
3.2.1 The J-equation in three dimensions
Let X be a compact Kähler manifold of dimension dimCX = 3 and let α, β ∈ KX be Kähler
classes. Recall that all our results in three dimensions about the set of destabilising subvari-
eties for the J-equation associated with the triple (X,α, β) hold under the assumption that
the class µα,βα− 2β be a big class. Under the same assumption, we can prove an analogue
of Theorem 3.2.

Let S+(X, J) denote the subset of KX×KX comprising those (α, β) such that µα,βα−2β
is a big class. We shall denote by S+(X, J)

Stab ⊆ S+(X, J) the subset comprising (α, β)
such that (X,α, β) is J-stable. Note that S+(X, J) is a non-empty open subset of KX×KX .

Theorem 3.9 ([18]). The boundary ∂S+(X, J)
Stab of S+(X, J)

Stab in S+(X, J) is a locally
finite union of closed smooth submanifolds W of S+(X, J) of (real) codimension one, each
one of them cut out by an equation of the form∫

C
(µα,βα− β) = 0

or ∫
S
(µα,βα− 2β) · α = 0
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for some curve C or some surface S, rigid in the sense of Theorem 2.14.

Proof. Let (α0, β0) ∈ ∂S+(X, J)
Stab be a point in the boundary. Pick an open neighbour-

hood U ⊆ S+(X, J) of (α0, β0) whose closure K is a compact subset of S+(X, J). By
Proposition 2.13, there exist finitely many irreducible surfaces Si and curves Cj such that,
for each (α, β) ∈ K, and hence each (α, β) ∈ U , each irreducible component of Vα,β (in the
notation of Theorem 2.11) is among the finitely many surfaces Si or curves Cj . This shows
that if (X,α, β) is not J-stable, then µα,β(Si) ≥ µα,β for some Si or µα,β(Cj) ≥ µα,β for
some Cj . Thus, we have

S+(X, J)
Stab ∩ U = {(α, β) ∈ U : µα,β(Si) < µα,β , µα,β(Cj) < µα,β for every i, j}.

This shows that S+(X, J)
Stab is an open submanifold of S+(X, J). Now note that each

component W of the boundary is the zero locus of a function F : U → R of the form

F (α, β) =

∫
V
(µα,βα− (dimC V )β) · αdimC V−1.

But zero is a regular value of F in view of the fact

d

dr

∣∣∣∣F (α, β + rα) = (3− dimC V )

∫
V
αdimC V > 0

as dimC V = 1 or 2, and α is a Kähler class. This shows that each W is a codimension one
smooth, closed submanifold of U .

Corollary ([18]). Let X be a compact Kähler manifold of dimCX = 3. Then, S+(X, J)
Stab

is an open submanifold of S+(X, J).

Theorem 3.10 ([18]). Let X be a compact Kähler manifold of dimension dimCX = 3
and α1, . . . , αs ∈ KX be a finite collection of Kähler classes. For each β0 ∈ KX such that
µαi,β0αi − 2β0 is a big cohomology class for each i, there exists an open subset U ⊆ KX

containing β0 and finitely many closed submanifolds W1, . . . ,Wr of U of codimension one
such that for each connected component

Uj ⊆ U \
⋃
k

Wk

and each i = 1, . . . , s, the triple (X,αi, β) is J-stable for some β ∈ Uj if and only if (X,αi, β)
is stable for all β ∈ Uj.

Proof. Just as in the proof of Theorem 3.5, the argument is very nearly identical to the
proof of Theorem 3.3, and therefore we omit the details.

3.2.2 Factorisable generalised Monge-Ampère equations
As a final application of these ideas, we illustrate how our arguments for the J-equation can
be generalised to a wider class of PDEs. As in the previous Chapter, we choose the setting
of generalised Monge-Ampère equations, all of which satisfy the condition of factorisable
introduced in Definition 2.19.

Let X be a smooth projective variety, with α, β ∈ KX Kähler classes and θ ∈ β a fixed
Kähler form. Recall that a gMA equation (2.12) is given by data (X,α,Θ) where

Θ =
n−1∑
k=1

ckθ
k + fθn
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with the ck ≥ 0 and f satisfying the cohomological condition (2.10) and the the required
positivity condition given in [7, (1.2)]. Recall moreover that the numerical criterion for
gMA equations says that the equation (2.12) is solvable precisely when∫

V
exp(α) · (1− [Θ]) > 0

for all proper irreducible subvarieties of X.
For the sake of clarity, we make another simplifying assumption. We assume that f = cn

is a constant. In this case, the positivity condition [7, (1.2)] simplifies considerably, and is
equivalent to demanding that the ck are not all zero. This includes the case of all inverse
Hessian equations.

The space of gMA equations with f = cn a constant is in a natural way a codimension
one closed submanifold of R+[y]n×KX ×KX where R+[y]n denotes the set of degree n non-
zero real polynomials in one variable y with zero constant term and all of whose coefficients
are either zero or strictly positive. (We note that R+[y]n × KX × KX is in a natural
way a manifold with corners.) We now explain this correspondence. Let (P (y), α, β) ∈
R+[y]n ×KX ×KX satisfy the cohomological condition (2.10) given by∫

X
exp(α) · (1− P (β)) = 0.

This locus of triples (P (y), α, β) is a smooth submanifold because it is the zero locus of the
function F (P (y), α, β) =

∫
X exp(α) · (1− P (β)) and we have

d

dr

∣∣∣∣
r=0

F (P (y)− ryk, α, β)) =
1

(n− k)!

∫
X
αn−k · βk > 0

where k is any positive integer such that the coefficient of yk in P (y) is non-zero. Such a k
always exists by assumption. Then, for any choice of Kähler forms ω ∈ α, θ ∈ β the triple
(P (y), α, β) corresponds to the gMA equation that seeks a smooth ψ ∈ H(ω) such that

exp(ωψ)[n,n] = (exp(ωψ) ∧ P (θ))[n,n], (3.2)

where P (θ) is the multi-degree form given by substituting θ for y in the polynomial P (y).
Let us denote by S(X, gMA) the set of triples (P (y), α, β) ∈ R+[y]n×KX ×KX that satisfy
the cohomological condition (3.2). Recall that by Proposition 2.22, each triple (P (y), α, β) ∈
S(X, gMA) defines a factorisable gMA equation. Let us denote by τp(α, β, P (y)) the asso-
ciated factor class of degree p, as given by Definition 2.19. We shall denote by S+(X, gMA)
the subset of those triples (P (y), α, β) such that the associated factor classes τp(α, β, P (y))
of degree p are (p + 1)-modified Kähler classes. Our aim is to prove a wall structure type
statement for the set S+(X, gMA).

Lemma 3.11. For each p = 1, . . . , dimCX − 1, the assignment

T : S(X, gMA) → (H1,1(X,R))n−1, (P (y), α, β) 7→ (τp(α, β, P (y)))
n−1
p=1

is continuous.

Proof. Recall that τp(α, β, P (y)) = α − rpβ, where x − rpy is the linear form given by the
factorisation

Qp(x, y) = (x− rpy)Q̃p(x, y).
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Here Qp(x, y) is the degree p homogeneous part of the power series exp(x)(1 − P (y)), and
Q̃p(x, y) has non-negative coefficients. By the proof of Proposition 2.22, it follows that rp
is uniquely determined as the largest real root of hp(x) = Qp(x, 1). But the roots of a
polynomial depend continuously on the coefficients.

Corollary ([18]). The subset S+(X, gMA) is an open subset of the manifold with corners
S(X, gMA).

Proof. This follows immediately from the Lemma and the fact that MpKX are open (by
definition) in H1,1(X,R).

Now, let (P (y), α, β) ∈ S+(X, gMA) be given. Using Lemma 1.25, we can find open
neighbourhoods Up ⊆ Mp+1KX of τp(α, β, P (y)) and finite sets Sp of p-dimensional irre-
ducible subvarieties of X such that for all τ ′ ∈ Up, all irreducible p-dimensional subvarieties
V and all Kähler forms ω1, . . . , ωp−1 whenever we have∫

V
τp(α, β, P (y)) · [ω1] · · · · · [ωp−1] ≤ 0

then V ∈ Sp. Let U = T−1(U1 × U2 × · · · × Un−1). Then U is an open neighbourhood
of (P (y), α, β) in S+(X, gMA). In fact, for any Kähler form θ ∈ β, if V is any (gMA)
destabiliser for the triple (X,α, P (θ)) then we have∫

V
exp(α) · (1− P (β)) =

∫
V
τp(α, β, P (y)) · Q̃p(α, β)) ≤ 0,

but since Q̃p(α, β) is a non-negative linear combination of products of powers of Kähler
classes α and β, we must have ∫

V
τp(α, β) · αr · βr−p−1 ≤ 0

for some 0 ≤ r ≤ p− 1. But since τp(α, β, P (y)) ∈ Up we get immediately that this implies
that V ∈ Sp.

Let us denote by S+(X, gMA)Stab the locus of those (P (y), α, β) such that (X,α, P (θ))
is (gMA) stable for any choice of Kähler form θ ∈ β.

Theorem 3.12 ([18]). The boundary ∂S+(X, gMA)Stab of S+(X, gMA)Stab in S+(X, gMA)
is a locally finite union of closed submanifolds W of S+(X, gMA) of (real) codimension one,
each one of them cut out by an equation of the form∫

V
exp(α) · (1− P (β)) = 0.

Proof. The local finiteness follows from the discussion preceding the statement of the
Theorem. The only claim that needs justification is that the boundary loci are sub-
manifolds of codimension one. But they are the zero locus of a function F of the form
F (P (y), α, β)) =

∫
V exp(α) · (1−P (β)). One can easily show that zero is a regular value of

this function.
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