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Abstract 

The determination of the three-dimensional str uct ure of large RNA macromolecules in solution is a challenging task that often requires the use 
of se v eral e xperiment al and comput ational tec hniques. Small-angle X-ray scat tering can provide insight into some geometrical properties of the 
probed molecule, but this data must be properly interpreted in order to generate a three-dimensional model. Here, we propose a multiscale 
pipeline which introduces SAXS data into modelling the global shape of RNA in solution, which can be hierarchically refined until reaching atomistic 
precision in explicit solvent. The low-resolution helix model (Ernwin) deals with the exploration of the huge conformational space making use of 
the SAXS data, while a nucleotide-le v el model (SPQR) remo v es clashes and disentangles the proposed str uct ures, leading the str uct ure to an 
all-atom representation in explicit water. We apply the procedure on four different known pdb str uct ures up to 159 nucleotides with promising 
results. A dditionally, w e predict an all-atom str uct ure for the Plasmodium falceparum signal recognition particle ALU RNA based on SAXS data 
deposited in the S A SBDB , which has an alternate conformation and better fit to the SAXS data than the previously published str uct ure based on 
the same data but other modelling methods. 
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ntroduction 

he incorporation of experimental data into the structural
odelling of nucleic acids is an increasingly common ap-
roach, which helps to scale down the sea of possible struc-
ures that computer algorithms can propose ( 1 ). Among these
xperimental techniques, small-angle X-ray scattering (SAXS)
s a handy tool for providing insight into the global shape and
ize of macromolecules in solution ( 2 ,3 ), which can be em-
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ployed to refine models or to guide molecular dynamics (MD)
simulations. The information provided by the SAXS curve is,
however, a 1D intensity profile of limited resolution, which
opens the questions of how to interpret and integrate this
data into an all-atom model. Although in principle the scat-
tering intensities can be calculated exactly from the atomic
coordinates, the effect of the hydration shell is not known in
a closed form, and it is usually taken into account through
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Figure 1. Representation of an RNA str uct ure under different levels of 
resolution: ( A ) Secondary str uct ure, ( B ) Ernwin, helix-based, ( C ) SPQR, 
nucleotide-based and ( D ) atomistic. A typical junction with clashes is 
shown in ( E ), while ( F ) is the same region after the refinement presented 
here. 
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different approximations in diverse tools. For example, an im-
plicit water model is used in PLUMED ( 4 ) and in the orig-
inal version of CRYSOL ( 5 ), but later versions of this soft-
ware employ dummy water beads to model the hydration
shell ( 6 ), in the same spirit as Fast-SAXS-pro ( 7 ). More com-
plex methods, such as WAXSiS ( 8 ) and Capriqorn ( 9 ) take
into explicit consideration the solvent effects, by analyzing the
SAXS contribution of an entire set of MD-generated trajecto-
ries, and subtracting the solvent effects obtained from an in-
dependent simulation of the buffer. In all these approaches,
there is a trade-off between speed and accuracy ( 10 ), which
has to be taken into account when dealing with large RNA
structures. 

There is also a variety of ways for building molecular mod-
els based on SAXS profiles. A common approach is to gener-
ate a huge number of structures and to afterwards select those
with the best match between the predicted SAXS profile and
the experimental data ( 11 ). SAXS intensities have also been
used to reweight or sample from MD simulations ( 12 ,13 ).
Other scattering profiles have been employed in a similar fash-
ion ( 14 ). These procedures, however, become less efficient with
increasing system size. A more sophisticated treatment uses
SAXS data during sampling. This idea has been applied to MD
simulations schemes, either in the form in guided sampling
( 15 ) or aiming at force-field refinement ( 16 ). By assembling
fragments based on the predicted secondary structure (similar
to the ones we use in the present work) and calling CRYSOL
in every sampling step, Gajda et al. ( 17 ) managed to gener-
ate good predictions for structures of up to 70 nucleotides.
Similarly, Dzananovic et al. ( 18 ) applied such an approach
to a viral three-way junction of roughly 50 nts length. Their
tool, called RNA Masonry ( 19 ), also performs fragment as-
sembly but uses the SimRNA ( 20 ) energy function in addition
to CRYSOL for the evaluation of every structure. For larger
RNA molecules, the program RS3D ( 21 ) can be used, employ-
ing a coarse-grained (CG) representation. In the same vein,
the CG model HiRe-RNA has also been extended to guide
its simulations with an energy function dependent on SAXS
intensities on structures up to 77 nucleotides ( 22 ). 

Here, we present an approach that is suitable for large
RNA structures due to the use of a coarse-grained repre-
sentation of the fragments based on the secondary structure,
which is hierarchically refined going through a higher resolu-
tion coarse-grained model until atomistic resolution. We in-
corporate SAXS data via the pair distance distribution func-
tion at every sampling step, which is more intuitively accessi-
ble to non-crystallographers than the intensity distribution in
reciprocal space. 

In addition to the possibility to search for a single best struc-
ture, we also describe an ensemble-based approach, which op-
timizes the SAXS profile of the ensemble as opposed to opti-
mizing an individual structure. This way, we account for the
intrinsic flexibility of large RNA molecules in solution. In the
refinement step, we propose a method for removing clashes
and fixing broken bonds, and pay special attention to the en-
tanglements, both in their detection and removal, and in the
possibility of forming tertiary contacts. 

The pipeline starts from the secondary structure and SAXS
data, which is used for defining a helix-based representation
in an improved version of the Ernwin model ( 23 ) for explor-
ing and adjusting the global shape of the RNA molecule. Af-
terwards, the best results are refined by means of the SPlit
and conQueR (SPQR) model ( 24 ), a nucleotide-level reso-
lution coarse-grained description. Finally, the structures are 
backmapped into an all-atom representation for further MD 

simulation in explicit solvent. This multiscale approach inte- 
grates the strengths of each representation in a way that it 
resembles the hierarchical folding of RNA. 

Materials and methods 

In this section we will first briefly describe Ernwin, and in- 
troduce the new features we have added to it and explain 

the incorporation of SAXS data into its energy function.
Later, after a brief introduction of the SPQR model, its ca- 
pabilities used into the refinement procedure will be exposed,
while the subsequent MD refinement will be explained in the 
Supplementary Data . Finally, we present the way our pipeline 
is assembled and tested. Overall, the different levels of resolu- 
tion of the pipeline are illustrated in Figure 1 , with an example 
of a three-way junction where several clashes are presented 

and removed after the refinement procedure. 

Coarse-grained structure prediction by Ernwin 

Our in-house RNA structure prediction tool Ernwin ( 23 ) as- 
sembles RNA 3D structures from fragments of known crys- 
tal structures, which are defined via the secondary structure 
elements (stems, interior loops, etc.). A rigid coarse-grained 

representation of these elements is used during sampling. 
As described previously ( 23 ), stems are parametrized by 

their length and the orientation of the minor groove along the 
helix. By assuming that each base pair of the helix contributes 
equally to the helix rotation, we can calculate ‘virtual’ residue 
and atom positions, which are in good agreement with the true 
positions. These virtual residue positions can be calculated on 

the fly and do not have to be stored. More interesting for 
sampling than stems are the internal loops which connect the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
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tems and introduce angles and offsets between them. Interior
oops and multi-loop segments are parametrized by the dis-
ance between and relative orientation of the adjacent stems
s well as the relative location of the stems’ minor grooves. 

rnwin energy terms 
e have previously shown how the reference ratio method can

e applied to the sampling of RNA structures ( 23 ): For a given
easure of interest, such as the radius of gyration, we supply
 target distribution of values taken from solved RNA struc-
ures. During sampling we compare the distribution of this
easure in our sampled structures to this target distribution

nd calculate a pseudo-energy based on their difference. We
se this pseudo-energy in a Metropolis–Rosenbluth–Hastings
ike accept-reject step and in this way fit the distribution of
he measure of interest over the sampled ensemble to the tar-
et distribution, irrespective of the distribution this measure
ould have without the use of an energy. 
During the last years, we have retrained the energy poten-

ials on the representative set of RNA 3D structures ( 25 ). Fur-
hermore, we have adapted the contributions of long range
nteractions (loop-loop interaction and A-Minor interaction)
o the energy function to better suit longer and more extended
NA molecules. See Supplementary Data Section 1.1 for more
etails. In addition, Ernwin can make use of known RNA 3D
otifs, i.e. loops with non-canonical base pairs ( 26 ,27 ); how-

ver, this feature is not used in the present paper. 
For fitting SAXS data, we replaced the radius of gyration

nergy by a pair distance distribution energy. See section ‘Fit-
ing the ensemble to the SAXS derived PDD’ below for details.

andling of multiloops 
 three-way junction has three single-stranded regions, but is

ully defined after sampling only two single-strand fragments,
s there are no degrees of freedom left for the third fragment.
n such situations, Ernwin originally only restricted the length
n 3D space that is spanned by the last segment (which we
ill call ‘broken’ multiloop segment ) and did not perform any

ampling. Unfortunately, this approach led to a bias in the dis-
ribution of sampled multiloop topologies and generation of
nrealistic conformations (see Results). 
Here, we explore new ways of assigning a fragment to

he broken multiloop segment and accept or reject the mul-
iloop conformation based on its fit. We choose to calcu-
ate this fit based on the deviation between the first stem of
he multiloop and the way we would place this exact same
tem after going around the junction according to the sam-
led fragments. See the Supplementary Data Section 1.2 and
upplementary Figure S1 for details on how we assign frag-
ents to the broken multiloop segment and how we bench-
ark them. 

ove sets 
he most straightforward way to go from one structure to

he next during sampling is by changing a single fragment.
ue to the fragment based approach, even a single fragment

hange can potentially change completely the overall confor-
ation, e.g. when we change the angle between two arms of an
NA. These big steps help with quickly exploring the confor-
ational space. However, as the individual parts of the RNA
olecule are not independent, in particular if they are linked

n a multiloop, big changes to certain fragments have a high
chance of introducing clashes or breaking the multiloop con-
straints, especially in large molecules with complex secondary
structure. As Ernwin rejects structures with clashes, this type
of sampling is often inefficient. 

For the present version of Ernwin we have added and tested
five alternative move types, which are all based on the idea of
moving more than one fragment at a time. Most suitable for
simple junctions is to move two or three connected fragments
of the same multiloop at a time. For very complex structures
we implemented a move type that consists of an exchange of
a single fragment followed by a relaxation step based on the
clash and multiloop constraints. The other move types and the
way we benchmark them are described in the Supplementary 
Data Section 1.3 . 

Fitting the ensemble to the SAXS derived PDD 

The observed SAXS pattern in reciprocal space can be con-
verted to the pair distance distribution function (PDD) in real
space via an indirect Fourier transform, and creating this pair
distance distribution function is a standard part of SAXS anal-
ysis using tools like GNOM ( 28 ). 

We interpret the PDD as a distribution of distances between
the atomic centers. Although this approximation neglects the
effects of the hydration shell, we have found that it is sufficient
to produce good simulation results. Ernwin has the option to
use one point (C1’) or three points (base, sugar and backbone)
per residue for calculating the pair distance distribution func-
tion. While one point per residue was sufficient for simulating
the braveheart lncRNA (636 nts) ( 29 ), we used 3 points in this
publication, as we were dealing with shorter RNA molecules.

We implemented two energy functions which act on the
PDD in different ways: Either as a potential on the area
between the two PDD-curves, or by applying the reference
ratio method to each histogram bin of the PDD individu-
ally. The latter approach is more powerful, as it operates
on the ensemble of sampled structures instead of just a sin-
gle structure. See the Supplementary Data Section 1.4 and
Supplementary Figure S2 for implementation details of these
approaches. 

Nucleotide-level refinement 

We employ the SPQR model to refine the reconstructed decoys
at nucleotide level. The model represents each nucleotide by
a phosphate bead and the nucleoside by an anisotropic par-
ticle. The interactions allow forming stacking, canonical and
non-canonical base pairs, and base-phosphate pairs, while the
sugar pucker and glycosidic bond angle states are additional
degrees of freedom of each nucleotide ( 24 ), and can be allowed
to change dynamically along a simulation. 

In the present framework, the structures with broken bonds
and clashes, which have an undefined SPQR energy, can be
treated with special energy terms which push the involved par-
ticles towards a finite-energy region. The definition of the en-
ergy terms and parameters are described in the Supplementary 
Data Section 2.1 . This relaxation is, however, not enough to
guarantee the aptness of the model, since it is common that
during the assembly steps the secondary structure elements be-
come entangled. SPQR detects and attempts to remove these
artifacts, and later proceeds to perform a search for the pos-
sible tertiary contacts proposed by Ernwin. These procedures

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
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Figure 2. Examples of links for identification and removal ( A ) Secondary 
str uct ure, ( B ) a hairpin and a stem linked, ( C ) ring representation of the 
link, ( D ) after clash and link remo v al and ( E ) ring representation. ( F ) Top 
view of the link, with triangulated surface of hairpin and ( G ) 
interpenetrated hairpin and stem, not detected with Gauss integral 
method. 
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Link detection and removal 
To detect and fix entangled secondary structure elements such
as hairpins, stems and internal loops, we represent each of
them as a closed ring, as depicted in Figure 2 A–E. In practice,
these rings are constituted by the segments that join the posi-
tions of consecutive phosphate, sugar beads and closing base
pairs. We then apply two approaches, previously reported in
the literature ( 30 ,31 ), which are combined for efficiency and
robustness. 

The first approach makes use of a known way in knot the-
ory of checking whether two rings are linked by evaluated the
linking number L , defined by the Gauss linking integral: 

L ( R i , R j ) = 

1 

4 π

∮ 
R i 

∮ 
R j 

( r i − r j ) 
| r i − r j | 3 · ( d r i × d r j ) , (1)

where the vectors r i and r j go along the rings R i and R j respec-
tively. L is the number of times that one ring winds around the
other one, which is zero if the rings are not linked. In our case,
we evaluate the integrals numerically along segments defin-
ing our ring elements. This approach has already been used in
the study of the topology of lasso-type proteins with disulfide 
bonds ( 30 ) and to characterize the topology of proteins ( 32 ). 

The second approach, which has also been tested in proteins 
( 31 ) and nucleic acids ( 33 ), consists in evaluating the number 
of times that the segments which compose a ring pierce the 
surface enclosed by another ring. In the present case, we con- 
sider such a surface as a set of adjacent triangles, formed by 
two consecutive vertices and the center of mass of the ring; a 
similar but simpler implementation than the one reported in 

( 31 ). Such a representation is illustrated in Figure 2 F. 
The Gauss integral procedure is in general slower, but it al- 

lows to include more complex objects in the analysis, such as 
three- and four-way junctions, which can also be defined as 
closed rings and can be difficult to define as a set of triangles 
due to their geometry. The piercing method, on the other hand,
permits the detection of rings crossed by elements such as in- 
ternal loops which can not be included into a closed ring or 
short backbone segments between consecutive stems. Most of 
the occurrences detected by this approach correspond exactly 
to the links detected by the Gauss integral evaluation, while 
false positives usually stand for the interpenetration of hair- 
pins and stems of spurious origin, which often involve a large 
number of clashes in an intricate manner as shown in Fig- 
ure 2 G. After the links are detected, a repulsive energy term 

is imposed between the nucleotides involved and specific vir- 
tual sites defined on each ring over a short simulation, which 

guides the relaxation process towards a disentangled confor- 
mation. An illustration of the different types of links men- 
tioned before as well as the definition of the virtual sites and 

repulsive energy terms for each kind of loop are contained in 

Supplementary Data Section 2.2 and Supplementary Figure S3 

in detail. In the current pipeline, the piercing method is used 

to detect the links, while both piercing and Gauss methods are 
employed after the relaxation process to confirm the aptness 
of the model. 

Tertiary contact search 

SPQR allows the introduction of a harmonic potential energy 
on the ERMSD between the simulated system and a reference 
structure (see Supplementary Data Section 2.3 ). This energy 
term can also be applied on arbitrary sets of nucleotides, and 

has been used for for enforcing secondary structure elements 
( 34 ) or complex geometries as in intraviral RNA ( 35 ). 

A short annealing simulation explores the conformational 
space around the unlinked, refined structure, in search for 
base pairs between nucleotides belonging to secondary struc- 
ture elements which interact according to the Ernwin energy 
function. The geometry of the found contacts is enforced lo- 
cally by a hard ERMSD restraint ( 36 ), while the rest of the 
nucleotides are pushed towards the original structure with a 
softer restraint. Parameters are described in Supplementary 
Data Section 2.4 . The result is a structure without clashes nor 
links; with the fulfillment of the possible tertiary contacts at a 
nucleotide resolution, and with a global structure as close as 
possible to the one proposed by Ernwin. 

Finally, an atomistic model is obtained from the assembly 
of template nucleotides on each of the coarse-grained sites,
taking into consideration the glycosidic bond angle and sugar 
pucker conformations. This step usually introduces minor ar- 
tifacts such a broken covalent bonds, which can be easily re- 
moved by a short all-atom MD relaxation. The structure can 

be further refined by introducing an explicit solvent, which is 
explained in detail in Supplementary Data Section 2.5 . The 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data


Nucleic Acids Research , 2024 5 

r  

S

B

T  

t  

g  

w  

t  

s  

2  

t  

t  

w  

s  

p  

e  

w  

s  

s  

m  

n  

t  

f  

s  

b
 

r  

f  

w  

c  

d

B

I  

R  

a  

t  

m  

L  

i  

t  

o  

t  

s  

 

s  

p  

p  

N  

-  

c  

t  

t  

a
 

c  

u  

f  

n  

u  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae602/7716198 by guest on 28 July 2024
esulting structure is thus suitable for further calculations of
AXS profiles including solvent effects. 

enchmark against solved PDB structures 

o benchmark our pipeline against structures from the pro-
ein database, we used the reference structure’s exact coarse-
rained pair distance distribution function (PDD) for the Ern-
in potential and the reference structure’s secondary struc-

ure as basis for the RNA model. We chose the following 4
tructures for our benchmark: 3R4F (66 nts), 4PQV (68 nts),
R8S (159 nts) and 1L9A (128 nts) based on their length and
he richness of their secondary structure. The selected struc-
ures do not have pseudo knots or large domains interacting
ith proteins. We then simulated 15 trajectories for each PDB

tructure with an energy function consisting of three com-
onents: The pair distance distribution energy, the A-Minor
nergy and the Loop-Loop interaction energy with different
eights for each trajectory. As successful sampling with a

trict separation between fragment library and benchmark
tructures have been shown previously ( 23 ) and we are now
ore interested the SAXS fitting and sampling efficiency, we
ow used a full fragment library from the whole representa-
ive set of RNA structures. We sampled 20 000–25 000 steps
or each structure, which is more than should be necessary for
mall to medium sized RNA molecules. The simulations took
etween 12 and 36 h with one core used per trajectory. 
We then selected two structure sets from each trajectory for

efinement with SPQR: the structure with the lowest RMSD
rom the native structure, which reports the best structure Ern-
in can produce, to test the ability of Ernwin to explore the

onformational space, and the structure with the lowest pair
istance distribution energy. 

enchmark against real SAXS data 

n contrast to proteins ( 37 ), no standard benchmark set of
NA molecules with known structures for which SAXS data
re also available has been published. Hence, we searched
he SASBDB ( https://www.sasbdb.org ) for SAXS data of RNA
olecules which would work well to benchmark our pipeline.
uckily, at the time this paper was started, a recent deposit

n this database, SASDK34, was ideal for this task: it con-
ains a reasonably sized RNA molecule (118 nt) which is free
f G-quadruplexes and overly complicated pseudoknots, and
he corresponding paper ( 38 ) contained a predicted all-atom
tructure which we could use for comparison with our results.

For our benchmark, we took the NMR based secondary
tructure restraints from Supplementary Figure S7 of the pa-
er we compare our results to ( 38 ) and added additional base
airs with RNAfold ( 39 ). This was achieved by modelling the
MR base-pairs as hard-constraints in RNA-fold ( RNAfold
C ), while leaving all other nucleotides unconstrained. The
onstraints and the final secondary structure can be found in
he Supplementary Data Section 3.1 . In contrast to other ter-
iary structure prediction programs, Ernwin does not predict
dditional base pairs, which made this step necessary. 

We performed simulations using Ernwin with an energy
ontribution from the experimental pair distance distribution
sing 3 points per nucleotide in the Ernwin model and per-
ormed 32 simulations, half of which using simulated an-
ealing and half with a constant temperature. Simulations
sed different weights for the energy function. The simula-
tion lengths were set to 1500, 3000 or 5000 steps. We recon-
structed a full-atom structure every 25 steps and calculated
the CRYSOL 3.0 χ2 for all of the all-atom structures. 

Later, we used SPQR to refine the structure with the best
χ2 of each trajectory. For interpretation of the results, we as-
signed stacking to the helices by manual inspection of pre-
dicted structures. 

Evaluation of χ2 

All reported χ2 values were calculated by CRYSOL 3.0 ( 6 )
over all-atom structures, which can be generated by the Ern-
win reconstruction or a backmapping after SPQR refinement.

Results 

Improvements to the Ernwin method 

We could improve the efficiency of sampling and the quality of
the predicted structures compared to previous versions of Ern-
win: By replacing distance-only junction constraints with frag-
ment based multiloop constraints, we strongly reduce the bias
in the sampled junction topologies. This can be seen from the
more structured (less uniform) distribution of angles between
adjacent stems, even if they are only connected by the broken
multiloop segment , as shown in Supplementary Figures S4 and
S5 and Supplementary Data Section 3.2 . 

Additionally, we could improve the sampling efficiency and
reduce the risk of getting trapped in a local minimum, by in-
troducing new move types which change more than one frag-
ment at a time. We can see that with the new move types, more
unique multiloop conformations can be sampled in the same
computation time (see Supplementary Tables S1 and S2 and
Supplementary Data Section 3.3 for a direct comparison). 

Benchmark of our pipeline against published PDB 

structures 

The benchmark of our pipeline against real PDB structures
showed two main results: 

(1) For the majority of structures, at least some trajectories
converged towards a conformation with a low RMSD
and good fit to the native structure. 

(2) We also had at least one trajectory for each PDB struc-
ture that did not converge towards the global minimum
but to an alternative conformation. These conforma-
tions often have a different arrangement of helices which
lead to a similar overall shape. This explains why they
are hardly distinguishable from the native conformation
based on the pair distance distribution function alone.
We will discuss this aspect in detail below. 

These two results make it clear again that the strength of
Ernwin is the exploration of the conformational space, while
additional filtering of the results is needed to find the correct
structure. When we use real SAXS data, we use CRYSOL for
this filtering step. Table 1 characterizes the sampling trajecto-
ries in terms of RMSD to the native structure. 

Structure 1L9A is an example of a structure where Ern-
win performs very well: It has a length of 128 nts, is highly
aspherical, making the SAXS profile and pair distance distri-
bution function of the structure very distinctive, and it has a
single multiloop with only three arms which could potentially
clash. The median and average RMSD after the last step of the

https://www.sasbdb.org
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
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Table 1. RMSDs of predicted str uct ures to the native PDB str uct ure 

RMSD (Å) between the native structure and: 

PDB Best PDD Best RMSD Candidate set 

Structure Structure min avg max 

1L9A 8 .299 5 .41 7 .24 16 .29 36 .35 
2R8S 15 .782 15 .198 15 .78 25 .80 32 .12 
3R4F 7 .439 3 .975 5 .87 9 .08 13 .77 
4PQV 13 .391 8 .387 8 .39 12 .75 17 .26 

The first column shows the RMSD of the structure with the best PDD, while 
the second column shows the best RMSD in the whole ensemble. The last 
three columns describe the candidate set, which is constructed by taking the 
best PDD structure of each trajectory. By using one structure per trajectory, 
we guarantee that they are completely independent of each other. Here, we 
give the best, average and worst RMSD in this candidate set. This shows 
that by constructing such a candidate set, we usually have at least one struc- 
ture with an RMSD similar to the best overall RMSD in this small pool of 
candidate structures. 
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Ernwin simulation were 11.9 and 15.4 Å, which is very good
considering the length of the structure. The best scoring (low-
est PDD energy) structure of all trajectories had an RMSD of
7 Å. These results show how well Ernwin really can perform
under good conditions. Figure 3 , panel A shows a plot of the
RMSD against the sampling step for all individual trajecto-
ries, whereas panel B shows one sampling trajectory for this
structure in more detail. 

Due to its length and secondary structure, 2R8S is the
most challenging of the 4 structures we took for our bench-
mark. The predicted structure with the best PDD energy has
an RMSD of 15.78 Å, which is also very close to the best
RMSD overall found in the ensemble. This structure shows
a good overall agreement of the global shape and conforma-
tion, but noticeable differences in the positions of individual
nucleotides, as can be seen in Supplementary Figure S6 . As
with most RNAs, we again experienced some trajectories that
got trapped in local minima with a reasonable PDD energy but
large RMSD and overall shape. For the characteristic interior
loop that introduces a 180 

◦ turn ( i1 ), we have 43 fragments in
our fragment library, and the correct fragment is recovered in
6.6% of all structures over all trajectories and is also present
in the best PDD structure. 

For 3R4F our benchmark shows lower RMSDs than for the
comparable 4PQV structure, because of the distinctive bulge
with five unpaired nucleotides. For this bulge, only four frag-
ments were available in our library, one of which was the cor-
rect fragment from 3R4F. This example shows how the knowl-
edge of a single fragment, e.g. via homologies or motif search,
could improve the overall predictions, and how Ernwin could
use homologies to its advantage. The predicted structure with
the best PDD energy has an RMSD of 7.4 Å to the native struc-
ture and is shown in Supplementary Figure S7 . One the other
hand, 4PQV has no distinctive loops and none of the best PDD
structures has fragments from 4PQV used for any interior or
multi loop. See Supplementary Figure S8 for an example of a
sampled conformation. 

The duration of an Ernwin simulation depends on the com-
plexity of the secondary structure (e.g. presence of complex
multiloops), on the number of simulation steps and on the
frequency of all-atom reconstructions (which are pretty slow).
While good results are often available after an hour, we typ-
ically let our simulations run overnight or over the weekend
to cover more simulation steps. 
SPQR refinement results are summarized in Table 2 . A large 
number of samples present links or piercings which can be 
detected and fixed by the methods presented here. The set 
of 1L9A contains a structure with a link between a three- 
way junction and an internal loop, which can be detected 

and removed after a minor redefinition of parameters, de- 
tailed in Supplementary Data Section 4.1 and Supplementary 
Figure S9 . 2R8S presents the largest number of links, given 

its size and compactness. An example of two stems linked is 
shown in Supplementary Figure S10 . From 10 hairpin-stem 

links detected in the whole pool of structures, 4 of them are 
involved in Ernwin contacts, which stresses the importance 
of the refinement for assessing the reliability of the structure.
3R4F is much less compact, and therefore, less topological 
artifacts are present, although there are links between two 

stems connected by an unstructured domain (illustrated in 

Supplementary Figure S11 ) and unable to form contacts ac- 
cording to the Ernwin energy function. In 4PQV, the links are 
frequently found between stems which are connected by an 

unstructured domain ( Supplementary Figure S12 ). Analysis of 
the RMSD between the refined and unrefined structures shows 
that the presence and removal of links does not produce a sub- 
stantial deformation of the structure. Moreover, the difference 
in this quantity can be attributed mainly to the clashes and the 
optimization of flexible loops during the refinement process. 

According to Table 2 , the number of contacts predicted by 
Ernwin and found in the exploration of SPQR is between 

27% and 48%, excluding 3R4F. Nevertheless, in 1L9A one 
of the A-minors present in the native structure is successfully 
recovered in 3 instances of the 6 where Ernwin predicts it 
(see Supplementary Figure S13 ), while for 2R8S, no native A- 
minors are observed. Further contact analysis of the structures 
shows that the contact search greatly improves when the sugar 
pucker and glycosidic bond angle states are allowed to change.
In fact, from a set of 150 structures selected randomly from 

the trajectories of 2R8S and 4PQV, the fixation of the pucker 
and glycosidic bond angle reduces the number of tertiary con- 
tacts found from 76 to 56 and from 183 to 97, respectively. 

Finally, we see from Table 2 that the refinement procedure 
does not introduce a large deviation in the global structure.
Visual inspection suggests that the highest RMSD differences 
correspond to the arrangement of clashed loops in general.
Moreover, when introducing the all-atom details, the average 
clashscore decreases from 115.5 to 5.9 for the four structures 
described here (details are presented in Supplementary Table 
S3 in the Supplementary Data Section 4.2 ). This opens the way 
for a further analysis of the SAXS data with a full description 

of the solvent using more sophisticated approaches which are 
beyond the scope of the present work. A typical refinement run 

in SPQR takes from 1.2 to 3.7 min in the structures analyzed 

in this section, without links, and 1.5 to 5.3 in their presence,
in both cases using a single processor of a desktop computer. 

Benchmark of our pipeline against real SAXS data 

We also benchmark our pipeline against real SAXS data for 
the Plasmodium falceparum signal recognition particle ALU 

RNA, which was deposited in the SASBDB database under 
the id SASDK34. Soni et al. ( 38 ) predicted ab initio struc- 
tures using the F ARF AR webserver, selected the best cluster 
of structures based on scoring with CRYSOL ( χ2 = 4.18) and 

then fitted the structures to the experimental SAXS data using 
SREFLEX ( 40 ) reaching a χ2 of 2.0 for their best model. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
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Figure 3. ( A ) The RMSD over the course of 8 trajectories, plus the median and average RMSD. ( B ) A successful trajectory, with some of the sampled 
conformations. 
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In our benchmark 14 out of 32 trajectories for the RNAfold
econdary structure reached a χ2 < 2 at least somewhere in the
imulation and 4 trajectories had a χ2 < 2 at the end of the
imulation. We refined the best structure of each simulation
ith SPQR. 
For most structures, the removal of clashes and links in-

reased the χ2 slightly (see Table 3 ). At the end, 7 out of the
riginal 14 structures still had a χ2 < 2, five of which had a
alue < 1.7 (see Figure 4 for an example). Further fitting the
est refined structure to the SAXS data using SREFLEX ( 40 )
nly slightly improved the χ2 from 1.492 to 1.481. 
Interestingly, the conformation of our best structure is dif-
ferent to the best prediction reported by Soni et al. ( 38 ). While
their prediction shows the helices H3 and H4 as collinear, we
find a better fit for stacking of helices H3 and H2 / 5, but still
confirm the overall Y-like shape. In our best model the con-
served UGU motif is at the beginning of a 180 

◦ turn which in
our model is facing towards the helix H2, but due to the non-
stretched conformation has ample space to fold out and for a
potential interaction with a protein (see Figure 4 D. As shown
in Table 3 , also other trajectories (and thus independent sam-
ples) favor conformations with the helix H2 / 5 in the stack.
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Table 2. Analysis of refinement 

PDB N Gauss N Pierce C Ernwin C SPQR RMSD N 

RMSD L 

(Å) (Å) 

1L9A 7 12 95 26 3.3 ± 1.4 3 ± 0.9 
2R8S 15 23 128 61 4.2 ± 1.5 4 ± 1.5 
3R4F 2 7 0 0 1.8 ± 0.1 2 ± 0.1 
4PQV 5 16 13 5 2.2 ± 0.8 2.4 ± 0.7 

The set of structures for each PDB has 30 structures. The number of links in 
the set is denoted by NGauss and NPierce, detected using the Gauss integral 
and piercing methods, respectively. The number of tertiary contacts found 
in Ernwin is CErnwin, while CSPQR is this number in SPQR representation 
after refinement. The average RMSD of structures that were not initially 
entangled is calculated between the unrefined and refined structures in SPQR 

format and denoted by RMSDN. RMSDL contains only linked structures. 
Averages are reported with standard deviation. 

Table 3. Description of the str uct ure with the lo w est χ2 of the best 
trajectories 

χ2 (Ernwin) χ2 (refined) Conformation 

1.302 1.492 H3 and H2 / 5 collinear 
1.473 1.844 unclear 
1.537 1.690 H3 and H2 / 5 collinear 
1.537 2.666 H4 and H2 / 5 collinear 
1.580 2.134 H4 and H2 / 5 collinear 
1.597 1.672 unclear 
1.628 2.962 H3 and H2 / 5 collinear 
1.699 1.924 H4 and H2 / 5 collinear 
1.729 3.524 unclear 
1.767 2.110 unclear 
1.782 1.551 H3 and H2 / 5 collinear 
1.834 2.976 H4 and H2 / 5 collinear 
1.875 1.765 H3 and H2 / 5 collinear 

The conformation was assigned by manual inspection. See Supplementary 
Table S4 in Supplementary Data Section S5 for an expanded version of this 
table that contains the values of the adjustable parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. ( A ) Str uct ure with the best χ2 for S A SDK34. Green is the 
original Ernwin prediction and blue is the str uct ure after refinement. ( B ) 
The best two independent predictions with final χ2 below 1.6 show a 
similar conformation with an RMSD of 7.7 Å to each other. In the image, 
they are both aligned to the volume calculated by Soni et al. ( 38 ) (not to 
each other) using SUPALM via the S A Spy Pymol plugin ( 41 ). The best 
prediction is shown in color and the second best is shown in gra y. ( C ) T he 
predicted scattering curve for the best Ernwin prediction plotted in front 
of the experimental data from Soni et al. ( 38 ).( D ) The UGU motif in our 
best prediction (colored in blue). 
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On the other hand, our best prediction with an architecture
similar to the prediction of Soni et al. ( 38 ) has a χ2 of 3.0, and
could be refined with SPQR and SREFLEX to a χ2 of 1.89. 

Considering the near-equal length of the three arms and
the fact that we are operating in a χ2 range that indicates a
‘not bad fit’ but does not indicate ‘the correct model’, it is not
surprising that multiple different conformations and arrange-
ments of the three arms can lead to good fits. Additionally,
one must not forget the intrinsic flexibility of RNA, especially
in such open conformations. The recorded SAXS data might
arise from a dynamical ensemble, not a single structure. Thus
such SAXS based all-atom predictions have to be combined
with biological insights and additional experiments to find the
correct solution. 

The links found and removed with SPQR are less frequent
in this case, given the lack of compactness. The few cases ob-
served involved adjacent elements or elements connected by a
short unstructured fragment, which did not exhibit tertiary in-
teractions. From the pool of 32 structures, only 4 had links de-
tected with the Gauss integral method and 10 with the pierc-
ing method. The average RMSD between the refined and un-
refined structures was of 2.8 ± 0.9 Å and 2 ± 1Å, for the
linked and not-linked models. The backmapping procedure
makes use of steered-MD simulations minimizing the RMSD
between the Ernwin prediction and the SPQR structure, as
described in the Supplementary Data Section 2.5 . On average,
the clashscore was reduced from 101.7 to 0.9. 

Finally, we used ARES ( 42 ) to score our best prediction as
well as several predicted alternative conformations with low
χ2 to assess the reliability of our models by other methods.
ARES returned a predicted RMSD of 8.5 Å (after SREFLEX) 
for our best prediction as well as for our prediction that closest 
matches the structure from Soni et al. ( 38 ) (after Ernwin, with 

a χ2 of 3) and values between 6.5 Å and 10 Å for other alter- 
native conformations. Note, however, that ARES was trained 

only on Rosetta-generated structures and it is unclear how 

well it performs for structures generated by other tools. 

Discussion 

Handling of junctions and ergodicity 

Junction and pseudo-knot conformations are crucial for the 
overall conformation of the RNA molecule. In a system with 

fragments based on secondary structure elements, sampling 
junctions is quite challenging. For this reason, the authors in 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
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Figure 5. Sampled str uct ures for 1Y26: It can be seen that the str uct ure 
at the top right of the table (low PDD-energy, high RMSD) adopts a 
similar global shape as the native str uct ure, but the arms of the junction 
are swapped. While the two hairpins are kissing in the native str uct ure, 
they are at opposing ends in this high-RMSD str uct ure. On the other 
hand, the str uct ure at the lo w er left (low RMSD, high PDD energy) looks 
o v erall similar to the native str uct ure, but is more compact than the 
native str uct ure. Note that this figure shows str uct ures before refinement 
with SPQR. 
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aing et al. ( 43 ,44 ) have developed a random forest approach
hat classifies the junction family and assigns a geometry be-
ore sampling the rest of the structure with their tool RAG-
OP ( 45 ). In contrast to this, it has always been an important

eature of Ernwin to give junctions the flexibility to change
uring sampling. Here we successfully integrated this into the
ramework of a fragment based approach by assigning frag-
ents to all junction segments. 
The sampling of multiloops as individual segments in Ern-

in requires the introduction of a constraint energy. Together
ith the clash energy, this causes certain conformations to
ave an infinite energy and therefore to be forbidden. This
eans that it is no longer clear whether the sampling is er-

odic, as the forbidden regions of the conformational space
ight for some RNA secondary structures separate the con-

ormational space into disjoint regions. We overcome this lim-
tation by using new move types which exchange more than
ne fragment at a time, thus opening new paths around the
orbidden zones of the conformational space. 

hallenges with estimating the pair distance 

istribution function 

y using the pair distance distribution function instead of the
cattering curve to guide our sampling, we avoid the problem
f calculating the scattering curve from the predicted RNA
tructure at every sampling step, but depend on the quality of
he PDD estimation from the scattering data. This conversion
s implemented in many standard tools, such as GNOM ( 28 )
nd these tools work very well in most situations. Still, there
s the potential for (severe) errors during the conversion from
 ( q ) to the PDD. First of all, care has to be taken that the con-
ersion program is suitable for RNA molecule and does not
se assumptions biased towards globular protein structures.
econdly, the transition from observed intensities to the pair
istance distribution function depends on an estimate of the
aximal interatomic distance in the unknown structure and a
rong value here can potentially cause hard to estimate errors

n the pair distance distribution function. This problem can be
ealt with by manually or automatically ( 46 ) calculating the
DD for different values of D max and selecting the PDD curve
ith the best properties. Obviously defining these properties

s not trivial. 
Our benchmarks show that at least for the structure we

sed, errors in the PDD caused by a wrong D max as input
o GNOM can be compensated quite well during Ernwin’s
ampling (see Supplementary Data Section 6 , Supplementary 
igures S14 and S15 ). 

uality of the pair distance distribution energy for 
tting towards SAXS data 

he benchmarks have shown that the use of the PDD energy
nables the model to sample structures in good agreement
ith experiment. Nevertheless we observe that robust predic-

ions require one to perform multiple simulation runs to make
ure the correct structure is among those that were generated.
n addition, we recall that multiple structures might have de-
enerate PDD-energy, thus making it difficult to identify the
orrect one. 

This situation is especially likely to happen for structures
ith several arms of nearly equal length, which exhibit a cer-

ain symmetry at the level of helix representation. For exam-
ple, the PDB structure 1Y26 (which was used exclusively in the
parametrization of Ernwin) represents a junction with three
arms of similar length. Figure 5 shows the native structure, a
sampled structure with low PDD energy, and low RMSD and a
sampled structure which has a low PDD energy despite having
a high RMSD. This case is a good example of structures where
the loop-loop interaction energy of Ernwin helps favoring the
correct structure more than the PDD energy does. 

Still, these limitations of the energy function made it neces-
sary to include a filtering step based on the χ2 score into our
pipeline. On the other hand, the energy is good enough to reli-
ably generate faithful structures in a significant percentage of
the trajectories, thanks to the ability of Ernwin to quickly and
efficiently explore the conformational space, although more
accurate estimations of the PDD could be used in the future
in order to improve the results. 

Why report a unique structure 

Although Ernwin is able to use ensemble based energies, we
have chosen to present a single ‘best’ structure for two rea-
sons: First of all, individual structures as illustrative exam-
ples of the ensemble are commonly used in biology to sim-
plify things. For instance, this is commonly done when re-
porting minimum-free-energy secondary structures for RNA.
Secondly, it is hard to validate ensemble predictions. On the
other hand, individual structures can be easily compared to
high resolution crystal structures. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae602#supplementary-data
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SAXS and SPQR 

We intentionally do not constrain the SPQR refinement with
SAXS data. Ernwin alone does a good job at predicting struc-
tures which fit the experimental SAXS pattern well, because
SAXS measures a global effect which does not depend on the
local orientations of individual nucleotides, which will be re-
fined with SPQR. On the other hand, SPQR does not greatly
distort the structures and can turn some models into a more
realistic fashion. We see that the good χ2 of our best predic-
tion is retained after the refinement, while for some other pre-
dictions, the agreement with the SAXS data gets moderately
worse. It would be interesting to see if this step of refinement
and relaxation without SAXS constraints helps to filter out
false positive predictions of Ernwin and to avoid overfitting,
but this will be the subject of future investigations due to the
lack of experimental structures with both SAXS and 3D struc-
tural data available at the moment. 

Conclusion 

We introduced here a truly multiscale methodology to propose
and reconstruct RNA structures up to 159 nucleotides subject
to SAXS experimental restraints. Our approach shows how
the conformational space can be explored efficiently using
the assembly of secondary structure based fragments, which
has been improved for sampling realistic multiloop conforma-
tions and for enhancing the exploration of the conformational
space by using different types of moves. 

By refining the structures with SPQR, it is possible to re-
move artifacts induced by the coarseness of Ernwin, which
deal with the clashes, topology and the possibility of imple-
menting the tertiary contacts at a nucleotide-level resolution.
Moreover, this refinement can be extended to other fragment
assembly methods, which are also affected by similar artifacts
( 31 ). The pipeline ends with the structures refined in all-atom
representation in explicit solvent, which allows to analyze fur-
ther effects of the buffer into the SAXS profile ( 10 ). 

Overall, our multiscale method takes the best of each rep-
resentation, and constitutes a powerful tool in the structure
prediction problem of RNA macromolecules in solution. 

Data availability 

The code of Ernwin can be downloaded at https://github.com/
ViennaRNA/ernwin . The code of SPQR can be downloaded at
https:// github.com/ srnas/ spqr . The best model proposed here
for SASDK34 is included in the Supplementary Data , un-
der different levels of refinement. Installation instructions and
tutorials are included in both websites. Refined and unre-
fined structures, SAXS data calculated for our best model and
source codes can also be found in https:// doi.org/ 10.6084/ m9.
figshare.26078686 . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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