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On a Conjecture About Higgs Bundles and
Some Inequalities

Ugo Bruzzo, Beatriz Graña Otero and Daniel Hernández Ruipérez

Abstract. We briefly review an open conjecture about Higgs bundles that
are semistable after pulling back to any curve, and prove it in the rank
2 case. We also prove some results in higher rank under suitable addi-
tional assumptions. Moreover, we establish a set of inequalities holding
for H-nef Higgs bundles that generalize some of the Fulton–Lazarsfeld
inequalities for numerically effective vector bundles.
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1. Introduction

The progenitor of the results discussed in this paper may be traced back
to a theorem by Miyaoka [20], which characterizes the semistability of a
vector bundle E on a smooth projective curve X in terms of the nefness of a
numerical class in the projectivized bundle PE: if

λ(E) = c1(OPE(1)) − 1
r π∗

1(c1(E)) ∈ N1(PE) ⊗ Q, (1)

where π1 : PE → X is the projection, and r = rkE, then E is semistable if
and only if λ(E) is nef (note that rλ(E) is the relative anticanonical class of
PE over X).
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1.1. Curve Semistable (Higgs) Bundles

The following theorem was proved in [21] and rediscovered in [6] in a slightly
different and seemingly stronger, albeit equivalent form. It may be regarded
as a higher dimensional generalization of Miyaoka’s theorem. Let X be an n-
dimensional smooth connected complex projective variety. For any coherent
OX -module F of positive rank define its discriminant as

Δ(F ) = c2(F ) − rkF−1
2 rkF c1(F )2 ∈ H4(X,Q).

Moreover, if E is a vector bundle on X, the class λ(E) is defined as in Eq. (1).

Theorem 1.1. Let E be a vector bundle on X. The following conditions are
equivalent:

(i) E is semistable with respect to some polarization H, and Δ(E) = 0;
(ii) for any morphism f : C → X, where C is a smooth projective curve, the

vector bundle f∗E is semistable;
(iii) the class λ(E) is nef.

(In Nakayama the condition on the discriminant was Δ(E) · Hn−2 = 0, but
via Theorem 2 in [24] this is readily shown to be equivalent to Δ(E) = 0
whenever E is semistable with respect to H.) We shall call curve semistable
the vector bundles satisfying condition (ii). It may be natural to wonder if
Theorem 1.1 also holds true for Higgs bundles. We recall that a Higgs sheaf
is a pair F = (F, φ), where F is a coherent OX -module, and φ : F → F ⊗ Ω1

X

is an OX -linear morphism such that the composition

φ ∧ φ : F
φ−→ F ⊗ Ω1

X
φ×id−−−→ F ⊗ Ω1

X ⊗ Ω1
X → F ⊗ Ω2

X

is zero. A Higgs bundle is a Higgs sheaf with F locally free. Semistability
and stability are defined as for vector bundles but only with reference to φ-
invariant subsheaves. Curve semistability is defined as for vector bundles. So
the Higgs bundle version of Theorem 1.1 is the following conjecture:

Conjecture 1.2. Let E = (E, φ) be a Higgs bundle on X. The following con-
ditions are equivalent:

(i) E is semistable with respect to some polarization H, and Δ(E) = 0;
(ii) for any morphism f : C → X, where C is a smooth projective curve, the

Higgs bundle f∗E is semistable.

(We shall state the condition generalizing the nefness of the class λ(E)
later on.) The fact that condition (i) implies condition (ii) was proved in
[6]. A motivation for expecting that the opposite implication may hold true
is Bogomolov inequality [14]: if E is a vector bundle on an n-dimensional
smooth projective variety, semistable with respect to a polarization H, then
Δ(E) · Hn−2 ≥ 0. The underlying vector bundle E of a semistable Higgs
bundle E = (E, φ) satisfies the same inequality, even when E itself is not
semistable [23]; i.e., semistability is a sufficient but non-necessary condition
for the non-negativity of the quantity Δ(E) · Hn−2, and one can imagine the
same happens for the vanishing of Δ(E) for curve semistable bundles.

We conjecture that the reverse implication holds true for any smooth
projective variety. In this paper we prove this when E has rank two; actually,
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we prove the implication in any rank when the Grassmannian of Higgs quo-
tients of some rank (to be defined later) has a component that is a divisor
in the full Grassmannian and surjects onto X. Then we prove that such a
component always exists in rank two.

1.2. Higgs Varieties

One easily shows that a curve semistable Higgs bundle is semistable with
respect to any polarization. So the nontrivial content of the conjecture is the
following statement:

A curve semistable Higgs bundle has vanishing discriminant.

Here curve semistability for Higgs bundles is defined as in condition (ii) of
Conjecture 1.2. Waiting for the conjecture to be eventually settled in the
positive or negative, it makes sense to prove it for specific classes of varieties.
The authors of [8] defined a Higgs variety X as one on which the conjecture
holds. The easiest case is that of varieties with slope-semistable cotangent
bundle of nonnegative degree, simply because in this situation the underlying
vector bundle E of a curve semistable Higgs bundle is itself curve semistable.
Starting from this one can identify other Higgs varieties, such as:

• Rationally connected varieties;
• Abelian varieties;
• Fibrations over a Higgs variety whose fibers are rationally connected;
• Bases of finite étale covers whose total space is a Higgs variety;
• Varieties of dimension ≥ 3 containing an effective ample divisor which

is a Higgs variety;
• Varieties with nef tangent bundle (in dimension 2 and 3 these were

classified in [10]);
• Varieties birational to a Higgs variety.

Moreover, in [7] it was shown that algebraic K3 surfaces are Higgs vari-
eties, and this was extended, using different techniques, to simply connected
Calabi–Yau varieties in [3]. Some results in the case of elliptic surfaces are
proved in [9]. A review of this problem updated to 2017 can be found in [18].

1.3. Contents

The main tool we use in this paper is the Higgs Grassmannian of a Higgs
bundle E = (E, φ), a notion that some of us introduced in [6]. This object
is defined in Sect. 2, where some of its basic properties are studied. It seems
quite difficult to find general results about the Higgs Grassmannian, but its
structure is quite clear in the case rkE = 2, and this is indeed the key
to the proof of the conjecture in the rank 2 case that we give in Sect. 4.2.
Actually in Sect. 3 we prove the conjecture assuming that the rank d Higgs
Grassmannian Grd(E) has a component that is a divisor in the full Grassmann
bundle Grd(E) which surjects onto X. Such a divisor always exists in the rank
2 case, due to the fact that the Higgs Grassmiannian of a rank 2 Higgs bundle
over a curve is never empty, thus providing a full proof of the conjecture in
the rank 2 case.
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The Higgs Grassmannian allows one to introduce a notion of numerical
effectiveness for Higgs bundles, a notion that “feels” the Higgs field. This
was studied in [4,5]. In the final Sect. 5 of this paper we show that Higgs
bundles that are numerically effective in this sense satisfy some inequalities
which generalize some of the Fulton–Lazarsfeld inequalities for numerically
effective vector bundles ( [13], see also [10]).
Notation and conventions. All varieties and schemes are over the complex
numbers, and, unless otherwise stated, all varieties are supposed to be con-
nected. A “sheaf” on a scheme X will be a coherent OX -module.

2. The Higgs Grassmannian

The Higgs Grassmannian is an object that parameterizes locally free Higgs
quotients of a Higgs bundle

exactly as the usual Grassmann bundle parameterizes locally free quo-
tients of a vector bundle. This was introduced in [6]. We recall here its defi-
nition and some of its properties.

2.1. Definition of the Higgs Grassmannian

Let X be a smooth variety over C. For a given rank r vector bundle E on
X, and for every d in the range 0 < d < r, we denote the Grassmann bundle
of rank d locally free quotients of E as Grd(E). Since Gr1(E) = PE we shall
use the latter notation. One has the universal exact sequence

0 → Sd → π∗
dE → Qd → 0

of vector bundles on Grd(E), where Qd is the rank d universal quotient bun-
dle, Sd is the corresponding kernel, and πd : Grd(E) → X is the projection.
If E = (E, φ) is a Higgs bundle, we form the diagram

0 �� Sd
ad �� π∗

dE ��

π∗
dφ

��

Qd
�� 0

0 �� Sd ⊗ Ω1
Grd(E)

�� π∗
dE ⊗ Ω1

Grd(E)

bd �� Qd ⊗ Ω1
Grd(E)

�� 0

(2)
The d-th Higgs Grassmannian of E, denoted Grd(E), is the subscheme of
Grd(E) defined by the zero locus of the composition bd ◦ π∗

dφ ◦ ad. By con-
struction, the restrictions of the bundles Sd and Qd to Grd(E) carry Higgs
fields induced by π∗

dφ, so that we have an exact sequence of Higgs bundles
on Grd(E)

0 → Sd → ρ∗
dE → Qd → 0.

The scheme Grd(E) may be singular, reducible, nonreduced, non-
equidimensional. On the positive side, it enjoys the analogous universal prop-
erty of the usual Grassmann bundles: if f : Y → X is a scheme morphism,
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and G is a rank d locally free Higgs quotient of f∗E, there is a morphism
g : Y → Grd(E) such that G = g∗Qd, and the diagram

Grd(E)

ρd

��
Y

g
�����������

f
�� X

commutes.
Now assume that X is projective. Given a rank r Higgs bundle E =

(E, φ) on X, for every 0 < d < r we define the following classes in N1(Grd(E))⊗
Q

θd(E) = c1(Qd) − d
r ρ∗

d(c1(E)). (3)

It was proved in [6] (see also [5]) that E is curve semistable if and only
if all classes θd(E) are nef. Note that θ1(E) is the restriction of the class
λ(E) ∈ N1(PE) ⊗ Q to Gr1(E). Here one can note a different behavior of
Higgs bundles as opposed to vector bundles: while in the latter case the
condition that the class λ(E) is nef is equivalent to curve semistability, in the
Higgs case one needs the nefness of all classes θd(E); see [6] for an example
of a rank 3 Higgs bundle on a curve with θ1(E) nef, θ2(E) not nef, which is
not semistable.

2.2. Higgs Numerical Effectiveness

In [5] by means of the Higgs Grassmannians a notion of numerical effective-
ness for Higgs bundles was introduced. It is a definition based on recursion
on the rank of the successive universal quotient bundles. Since we are going
to use this definition later on, we recall it here.

Definition 2.1. A Higgs bundle E = (E, φ) of rank one on a smooth pro-
jective variety is said to be Higgs-numerically effective (for short, H-nef) if
the underlying vector bundle E is numerically effective in the usual sense. If
rkE ≥ 2 we require that:

(i) All bundles Qk are Higgs numerically effective;
(ii) The line bundle det(E) is nef.

If both E and E∗ are Higgs-numerically effective, E is said to be Higgs-
numerically flat (H-nflat).

3. The Conjecture in any Rank

3.1. A Push-Forward Formula

We recall from [16] a push-forward formula for the Segre classes of the uni-
versal quotient bundle over Grassmann bundles πd : Grd(E) → X. Here X
will be a smooth projective variety of dimension n and E a rank r > 1 vector
bundle.
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Greek letters such as λ, μ will denote a partition, i.e., a finite nonin-
creasing sequence of natural numbers. We let

|λ| =
q∑

i=1

λi,

where λ = (λ1, . . . , λq), while π∗ will denote the push-forward of Chow
groups

π∗ : Ak(Grd(E)) → Ak−d(r−d)(X).

Moreover, we define the Segre classes of the vector bundle F on a variety X
by the formula

s(F ) =
dimX∑

i=0

(−1)isi(F ) =
1

c(F )

where c(F ) is the total Chern class of F (we follow the normalization of [12],
hence the minus signs).

Lemma 3.1. [15,16] Let Q be the rank d universal quotient bundle of a rank
r vector bundle E over X. The following push-forward formula holds:

π∗Δμ(s(Q)) = Δμ−ε(s(E)).

Here
(i) ε is the partition of length d whose elements are all r − d;
(ii) for every c ∈ A•(X), Δλ(c) is the Schur polynomial associated with λ

computed on the components of c in A•(X), that is,

Δλ(c) = det[cλi+j−i]1≤i,j≤n.

Corollary 3.2. Let χ = c1(Q). For N in the range d(r−d) ≤ N ≤ d(r−d)+n
one has

π∗χN =
∑

|λ|=N−d(r−d)

fλ+ε Δλ(s(E))

where fλ is the number of standard Young tableaux of shape λ. 1

Some notation and facts:

• A natural number k is regarded as a partition of length 1. For every k,
Δk(c) = ck, i.e., the degree k term of c. In particular,

Δk(c(E)) = ck(E), Δk(s(E)) = sk(E).

• Conjugate partitions: given a partition λ, let λ̄ be the conjugate parti-
tion, i.e., the partition which describes the conjugate Young tableau of
λ (the one obtained by flipping it with respect to its diagonal.) Then

Δλ̄(c(E)) = Δλ(s(E)).

1A standard Young tableau [2] is a Young tableau (say with b boxes) whose boxes are

labelled with the integers from 1 to b, in such a way that all rows and columns contain
increasing sequences of integers. To “have shape λ = (λ1, . . . , λq)” means that the i-th row

has λi boxes. Then fλ is the number of ways a Young tableau of shape λ can be labelled.
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• We shall denote by p(k) the partition made up by k 1’s. Then k and
p(k) are conjugate partitions, so that

Δp(k)(s(E)) = ck(E).

• An explicit formula for fλ is the following [11,19]. Let λ be a partition
of length q > 1. Then

fλ =
|λ|!∏q
i=1 	i!

∏

1≤i<j≤q

(	i − 	j), 	i = λi + q − i

We note that

fε+1 =
md

r
fε, fε+p(2) =

m(m + 1)d(d − 1)
2r(r − 1)

)fε

fε+2 =
m(m + 1)d(d + 1)

2r(r + 1)
fε

where m = d(r − d) + 1. So, setting n = 2, Corollary 3.2 yields

π∗χm−1 = fε, π∗χm =
md

r
fεc1(E) (4)

π∗χm+1 =
m(m + 1)d(d + 1)

2r(r + 1)
fε(c1(E)2 − c2(E))

+
m(m + 1)d(d − 1)

2r(r − 1)
)fεc2(E). (5)

3.2. The result

In this Section we prove the main result of this paper.

Theorem 3.3. Given a curve semistable Higgs bundle E = (E, φ) on a surface
X, if, for some d in the range 0 < d < r = rkE, the Higgs Grassmannian
Grd(E) has an irreducible component Z which is a divisor in Grd(E) and
surjects onto X, then Δ(E) = 0.

Proof. Using the Leray-Hirsch Theorem we define the classes βi ∈ Ai(X) by

[Z] = χ π∗β0 + π∗β1 ∈ A1(Grd(E)),

where [Z] is the class of Z in A1(Grd(E)) (for a version of the Leray–Hirsch
Theorem for Chow groups which applies to the present case see [17]). Recall-
ing equation (3),
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a rather lengthy computation yields2
∫

Z

θd(E)m =

∫

Grd(E)

θd(E)m � [Z] =

∫

Grd(E)

[χ − d
r
π∗c1(E)]m(χ π∗β0 + π∗β1)

=

∫

Grd(E)

[
β0χ

m+1 +

(
β1 − β0

md

r
c1(E)

)
χm

+

(
−md

r
β1 c1(E) +

m(m − 1)d2

2r2
β0 c1(E)2

)
χm−1

]

= −m(m + 1)d(r − d)

r(r + 1)(r − 1)
fε β0 Δ(E) = −m(m + 1)(m − 1)

r(r + 1)(r − 1)
fε β0 Δ(E).

In the last line, by integrating over X, we think of β0 and Δ(E) as integers.
β0 is positive by the following argument. Denote by πZ the restriction of πd

to Z, and by Zx its fiber at a point x ∈ X. We also denote Fx = π−1
d (x). We

assume that πZ is surjective so that by [1, Lemma 29.28.2] every irreducible
component of its fibers has either dimension d(r−d) or d(r−d)−1 (to apply
that result we need Z to be integral but we can achieve that by replacing it
with its reduced subscheme if needed). On the other hand, since πZ is proper,
by the semicontinuity of the fiber dimension (see e.g. [1, Lemma 37.29.5]) the
locus in X where the fiber Zx has dimension d(r−d)−1 is open. It is nonempty
because if all fibers Zx have dimension d(r − d) then Grd(E) would coincide
with Grd(E), a situation which we may exclude. So the generic fiber of πZ

has dimension d(r − d) − 1, the “expected dimension”. Hence for generic x,
Zx determines a class in A1(Fx). Since the restriction χx of χ to Fx is ample,

0 < [Zx] · χm−2
x = β0 χm−1

x ,

so that β0 > 0. So we get

Δ(E) ≤ 0 .

Now by the Bogomolov inequality Δ(E) ≥ 0 we obtain Δ(E) = 0. �

Note the “miraculous disappearance” of β1!

4. The Conjecture in Rank Two

4.1. A Non Emptiness Result

The following result is a key to our proof of the Conjecture in rank two.

Theorem 4.1. Let X be a smooth curve, which may be projective or affine,
and let E = (E, φ) be a rank 2 Higgs bundle on X. The Higgs Grassmannian
Gr1(E) of rank one Higgs quotients of E is not empty.

Lemma 4.2. Let X be a smooth curve (projective or affine), and let E =
(E, φ) be a rank 2 Higgs bundle on X. Assume that the Higgs Grassmannian

2From the second line we omit to write the pullbacks. We use the fact that integration on

Grd(E) is the push-forward to X followed by integration on X. The last line follows from
the insertion of Eqs. (4), (5) and some fractional calculus gimmickry.
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Gr1(E) of rank one Higgs quotients of E is empty. Then the Higgs field φ
induces a splitting of the exact sequence

0 → π∗
1Ω

1
X → Ω1

PE → Ω1
PE/X → 0. (6)

Note that since Gr1(E) is assumed to be empty, the Higgs field φ is
necessarily nonzero.

Proof. We refer to diagram (2). Note that Q∨
1 ⊗ S1 	 Ω1

PE/X . Define a map
s : Ω1

PE/X → Ω1
PE by letting

s = (b1 ◦ π∗
1φ ◦ a1) ⊗ idQ∨

1
.

Since Ω1
PE/X is a line bundle, and Ω1

PE is locally free, the morphism s is either
zero or is injective; but if it were zero, since the Higgs Grassmannian Gr1(E)
is the zero locus of the composition

b1 ◦ π∗
1φ ◦ a1 = s ⊗ idQ1 ,

the Higgs Grassmannian Gr1(E) would be the entire PE, and therefore would
not be empty. So we have an exact sequence

0 → Ω1
PE/X

s−→ Ω1
PE → R → 0

where R is by definition the quotient, which has rank one.
As the Higgs Grassmannian is empty, s has no zeroes, so that R is

locally free. We form the diagram

0 �� Ω1
PE/X

s �� Ω1
PE

r �� R �� 0

0 �� π∗
1Ω

1
X

i ��

h

��
g

��

Ω1
PE

p �� Ω1
PE/X

�� 0

(7)

We show that the morphism g = r ◦ i : π∗
1Ω

1
X → R cannot be zero. Indeed if

it were zero we would have a morphism h : π∗
1Ω

1
X → Ω1

PE/X which is not zero
as i = s ◦ h. However since the fiber degree of Ω1

PE/X is −2, the restriction of
h to each fiber of π is zero, i.e., h = 0, which is a contradiction.

Thus, g is nonzero, hence is injective. We prove it is an isomorphism.
We have an exact sequence

0 → π∗
1Ω

1
X

g−→ R → N → 0

where N has rank zero. For any fiber F of π1, by a standard argument, we
have an exact sequence

0 → OF → R|F → N|F → 0.

Since R has fiber degree 0, R|F is isomorphic to OF , so that N|F = 0. As
this holds for every fiber, N = 0, hence g is an isomorphism.
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Now we have a diagram

R

g−1

��
0 �� π∗Ω1

X
i �� Ω1

PE

r

�����������
�� Ω1

PE/X
�� 0

which shows that the sequence (6) splits. �

Proof of Theorem 4.1.. Note that the first line in diagram (7) splits as i◦g−1

is a section of r. Let t′ be a retraction of the morphism s. Then t = t′ ⊗ idQ

is a morphism Q1 ⊗ Ω1
PE/X → S1. Define ζ : π∗

1E → S1 as

ζ = t ◦ b1 ◦ π∗
1φ.

Then

ζ ◦ a1 = t ◦ b1 ◦ π∗
1φ ◦ a1 = (t′ ⊗ idQ1) ◦ (s ⊗ idQ∨

1
) = idS1

so that the first line in diagram (2) splits. But this is impossible as on each
fiber of π1 that sequence reduces to the Euler exact sequence. �

Corollary 4.3. Let E = (E, φ) be a rank two Higgs bundle on a smooth n-
dimensional projective variety X. The Higgs Grassmannian Gr1(E) has a
component of dimension at least n which surjects onto X.

Proof. If Gr1(E) does not have such a component, let Y be its image in X
(actually taking its reduced subscheme if it happens to be nonreduced), let
C be a curve in X not contained in Y , and let C ′ be C minus its intersection
points with Y , and minus its possible singular points. Then E|C′ has an empty
Higgs Grassmannian, a contradiction to Corollary 4.1. �

Remark 4.4. The splitting of the exact sequence (6) means that E is projec-
tively flat, i.e., PE comes from a projective representation π1(X) → PGL2(C)
of the fundamental group of X. This agrees with the result in [22], whose
authors, as a particular case of their equivalence of categories, prove that
semistable Higgs bundles on a curve are projectively flat. Note indeed that if
the Higgs Grassmannian is empty, the Higgs bundle is stable.

4.2. The proof

We start with the case dim X = 2, i.e., X is smooth projective surface. From
Corollary 4.3 we get that Gr1(E) has a component Z of dimension 2, and we
are in the hypotheses of Sect. 3.2, so that Δ(E) = 0.

This can be extended to the higher dimensional case dim X = n. Let H
be the class of an ample line bundle L = OX(D) and let Y be the intersection
of n − 2 generic divisors in the linear system |mD| for m 
 0. The result for
dimension 2 implies that

Δ(E) · Hn−2 = 1
mn−2 Δ(E|Y ) = 0.

So we have proved:

Theorem 4.5. Let E = (E, φ) be a rank two Higgs bundle on an n-dimensional
smooth projective variety. Then the following conditions are equivalent:
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(i) E is curve semistable;
(ii) E is semistable with respect to some polarization and the class θ1(E) is

nef;
(iii) E is semistable with respect to a polarization H, and

Δ(E) · Hn−2 = 0.

Proof. We know from [6] that (i) and (ii) are equivalent. The implication (ii)
⇒ (iii) was just proved. To prove (iii) ⇒ (ii) one can easily adapt the proof
of one of the directions of Theorem 1.3 in [6]. �

Actually condition (iii) can be strengthened to Δ(E) = 0. To see that
we need some preliminary results. In particular, we shall prove that rank 2
H-nflat Higgs bundles have vanishing Chern classes (H-nflat Higgs bundles
were defined in Definition 2.1).

Lemma 4.6. If E = (E, φ) is an H-nflat Higgs bundle of any rank over a
smooth n-dimensional projective variety X and Δ(E) · Hn−2 = 0, then all
Chern classes of E vanish.

Proof. One has c1(E) = 0 as det(E) is numerically flat and then the condition
on the discriminant implies ch2(E) ·Hn−2 = 0. By Theorem 2 in [24] E has a
filtration in (stable) Higgs bundles with zero Chern classes, whence the claim
follows (note that H-nflat Higgs bundles are semistable with respect to any
polarization, see [5]). �
Theorem 4.7. If E = (E, φ) is a rank two H-nflat Higgs bundle over a smooth
projective surface X then all Chern classes of E vanish.

Proof. Since H-nflat bundles are curve semistable by Theorem 4.5, if H is an
ample class in X, we have Δ(E) · Hn−2 = 0. Then Lemma 4.6 implies the
claim. �

We can now strengthen Theorem 4.5 in the following form.

Theorem 4.8. Let E = (E, φ) be a rank two Higgs bundle on an n-dimensional
smooth projective variety. Then the following conditions are equivalent:

(i) E is curve semistable;
(ii) E is semistable with respect to some polarization and the class θ1(E) is

nef;
(iii) E is semistable with respect to some polarization and Δ(E) = 0.

Proof. We only need to show that if (ii) holds then Δ(E) = 0. If H is an
ample class in X, from Theorem 4.5 we have Δ(E) · Hn−2 = 0, which is
equivalent to Δ(End (E)) · Hn−2 = 0. So the Higgs bundle End (E) is curve
semistable, and since c1(End (E)) = 0, the Higgs bundle End (E) is H-nflat
[5]. By Lemma 4.6 Δ(End (E)) = 0, that is, Δ(E) = 0. �

Actually we have a stronger result.

Theorem 4.9. Let E = (E, φ) be a Higgs bundle on an n-dimensional smooth
projective variety, such that the Higgs Grassmannian Grd(E) has an irre-
ducible component Z which is a divisor in Grd(E) that surjects onto X. Then
the following conditions are equivalent:
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(i) E is curve semistable;
(ii) E is semistable with respect to some polarization and the class θd(E) is

nef;
(iii) E is semistable with respect to some polarization and Δ(E) = 0.

Note that, contrary to the general situation, and due to the assumption
that Grd(E) has a divisorial component that surjects onto X, the nefness of
the class θd(E) is enough to have curve semistability (but assuming a priori
that E is semistable).

5. Inequalities for H-nef Higgs Bundles

We know from [10,13] that a nef vector bundle E on an n-dimensional smooth
projective variety satisfies, for every ample class H and for every 1 ≤ k ≤ n,
the inequalities

sk(E) · Hn−k ≥ 0,

where sk(E) are the Segre classes of E. In this Section, we prove a version of
these inequalities for H-nef Higgs bundles.

Theorem 5.1. Let E = (E, φ) be a rank r H-nef Higgs bundle over an n-
dimensional smooth projective variety. Assume that Z is an irreducible com-
ponent of the Higgs Grassmannian Gr1(E), and write its class in AN (PE),
where N is the codimension of Z in PE, as

[Z] =
N∑

i=0

π∗
1βi · ξN−i,

where βi ∈ Ai(X). Then for every 1 ≤ k ≤ n we have the inequality
r−1∑

i=0

βi · sk−i(E) · Hn−k ≥ 0

for any ample class H in X.

Proof. We first prove the inequality for k = n. Since E is H-nef, the hyper-
plane class ξ of PE is nef on Z. We shall use the identity [12, Sect. 3.1]

π1∗ξr+i−1 = si(E)

for 0 ≤ i ≤ n = dimX. Now we have

0 ≤ ξr+n−1−N  [Z] =
∫

PE

ξr+n−1−N �

N∑

i=0

π∗
1βi · ξN−i

=
N∑

i=0

∫

PE

ξr+n−i−1 � π∗
1βi =

r−1∑

i=0

βi · sn−i(E)

For k < n we have

0 ≤ (π∗
1H

n−k � ξr+k−1−N )  [Z] =
r−1∑

i=0

βi · sk−i(E) · Hn−k.
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Since 1 ≤ N ≤ r−1, the last summation in both equations may contain
terms with i > N but these are zero as βi = 0 in that range.

Remark 5.2. In the non-Higgs case we have β0 = 1, βi = 0 for i > 0 and we
recover the identities of [10,13] when the Schur polynomial is a Segre class.
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Matemáticas)
Universidad de Salamanca
Plaza de la Merced 1-4
37008 Salamanca
Spain
e-mail: beagra@usal.es

Daniel Hernández Ruipérez
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Real Academia de Ciencias Exactas
F́ısicas y Naturales
Madrid
Spain

Received: May 6, 2023.

Revised: August 1, 2023.

Accepted: August 12, 2023.


	On a Conjecture About Higgs Bundles and Some Inequalities
	Abstract
	1. Introduction
	1.1. Curve Semistable (Higgs) Bundles
	1.2. Higgs Varieties
	1.3. Contents

	2. The Higgs Grassmannian
	2.1. Definition of the Higgs Grassmannian
	2.2. Higgs Numerical Effectiveness

	3. The Conjecture in any Rank
	3.1. A Push-Forward Formula
	3.2. The result

	4. The Conjecture in Rank Two
	4.1. A Non Emptiness Result
	4.2. The proof

	5. Inequalities for H-nef Higgs Bundles
	References




