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Abstract

Type Ia supernovæ (SNæ Ia) are extremely powerful stellar explosions used for
measuring cosmographical distances and constraining parameters of the cosmologi-
cal model via standardisation: the process of inferring their intrinsic brightness from
properties of the observed light curves. Inference from current data sets (≈2000 ob-
jects) is already dominated not by statistical noise but by systematic uncertainties and
modelling choices. The very near future promises vast amounts of new data (∼100 000
SNæ Ia), accompanied by new modelling challenges like the unavailability of spec-
troscopic classification and precise redshift measurements.

Embedded within the framework of neural simulation-based Bayesian inference
(SBI), this thesis presents solutions for no-compromise analyses of future large SN
surveys on three fronts: model realism, scalability, and probabilistic rigour. We de-
velop a modern GPU-accelerated simulator for SN light curves that incorporates re-
alistic uncertainties in the SN Ia flux template and physically motivated dust extinc-
tion in the host and Milky Way. We then use it to analyse a low-redshift SN Ia sam-
ple, inferring simultaneously all global and object-specific parameters with truncated
marginal neural ratio estimation in excellent agreement with conventional methods.
Moreover, we describe a procedure to construct calibrated regions with exact fre-
quentist confidence from the approximate Bayesian results. With minimal extra train-
ing and re-using simulations, we also perform fully Bayesian model comparison of
host mass-dependent standardisation and dust models, deemed extremely challeng-
ing computationally for high-dimensional problems. We furthermore demonstrate
scalable set-based neural inference from up to 100 000 mock SNæ Ia, elucidating the
biases introduced by model simplifications used for handling photometric redshift un-
certainties and selection effects. Finally, we combine SN and host-galaxy modelling
in a one-stop SBI framework for SN cosmology.



Абстракт

Свръхновите от типа Ia са изключително мощни звездни избухвания,
използвани за измерване на космични разстояния и определяне пара-
метрите на космологичния модел чрез процеса стандартизация, който
съотнася яркостта на свръхновите с други свойства на техните криви на
блясъка.Приобработката на около 2000-те свръхнови засеченидонасточ-
щиямомент вече преобладават нешумът в наблюденията и случайни от-
клонения, а систематичните неизвестни и избори в моделирането. Близ-
кото бъдещениобещава огромно количество нови данни (∼100 000 свръх-
нови Ia), съпътсвани от нови предизвикателства при анализа им, като
липсата на спектроскопски определения ипрецизниизмервания на чер-
веното отместване.

Настоящият труд, помещаващ се в областта на извеждането чрез си-
мулации и невроннимрежи, представя пробиви, позволяващи безкомп-
ромисен анализ на бъдещите обзори на свръхнови, на трифронта: досто-
верност на модела, приложимост и статистическа издържаност. Развит
е съвременен симулатор на криви на блясъка на свръхнови, ускорен от
графични процесори и внедряващ реалистична несигурност в шаблона
на яркостта имифизически обоснованoпоглъщане в съдържащата ги га-
лактика и в Млечния път. След употребата му в анализа на свръхнови Ia
от близкия космос чрез метода на пресеченoто невронно приближение
на отношението, едновременно са изведени всичкипараметри: общите и
тези присъщи на отделните обекти, в отлично съответствие с общоприе-
ти методи. В допълнениие е описан и похват за построяване на настрое-
ни уверителни интервали с точни честотни свойства от приблизителни-
те апостериорни вероятности. Следминимално допълнително обучение
и пре-използване на симулациите са сравнени моделите за стандарти-
зация, използващи масите на галактиките домакини и междузвездния
прах в тях, като за целта са използвани статистическите доказателства,
чието изчисляване е смятано за изключително предизвикателно за мно-
гоизмерни модели. Също така е изложено и разширяемо проучване на
до 100 000 симулирани свръхнови с невронна мрежа, работеща с мно-
жества, в което е изсветлено изкривяването на резултата вследствие на
опростявания в модела с цел взимане предвид на фотометрични измер-
вания на червеното отместване и неравни вероятности при избора на из-
вадка. Накрая свръхновите са съвместени със своите домакини в единна
рамка за извеждане на космологически заключения чрез симулации.
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Preface: The story so far

In the beginning, the Universe was created. the Universe
This made cosmologists very happy—because they suddenly had something to study

the evolution of—but also rather sad—because they only had one universe to study.
This Universe has—or rather had—a problem, which was this: over time, the expansion

set off by the Big Bang™ was slowing down under the gravitational influence of matter,
threatening to un-create the Universe in a BigBang™ . Many solutions were sought for
this problem, but most of these were largely concerned with the movements of stars within
galaxies or galaxies within clusters, which is odd because on the whole it wasn’t the stars
and galaxies that were slowing down.

And so the problem remained; matter was clumping together, and even some stars began
collapsing on one another.[citation needed]

Many of them were of the opinion that they’d all made a big mistake in being gravita-
tionally bound in the first place. And some said that even forming atoms had been a bad
move, and that they should go off in grand cosmic explosions called supenovæ.

And then, one Thursday, 80 years after one stone had tried to stop the Universe from
collapsing by adding a Greek letter to his equation, a group of astronomers enjoying this
remarkably homogeneous firework display discovered that there had been no problem all
along, and the Universe had been accelerating for the past four billion years.1 This time it
was right, it would work, and we would all eventually fade out of causality in a Big Rip™.

Sadly, however, before they could figure out the exact mechanism behind the supernova
eruptions, or why a certain subset of them seemed to have similar intrinsic brightnesses,
many new ones started being discovered, and the prospect of doing proper[clarification needed]

data analysis on them was lost forever.
This is not their story.
But it is the story of that ever intensifying fireworks display and some of its ramifica-

tions.

1 This made many theorists very happy because they suddenly had something to theorise about; and others
very perplexed because what they had already theorised was wrong by about 120 orders of magnitude.

1



It is also the story of a framework, a framework for Bayesian inference called simulation-
based inference: not a traditional framework and before this thesis rarely heard of or used
by supernova cosmologists.

Nevertheless, a remarkably powerful framework. Indeed, in many of the more relaxed
areas of science, it has already supplanted the great j2 fit as the standard inference method-
ology, for though it is approximate and uses black magic, or at least black-box estimators,
it scores over the older, more pedestrian work in two important respects. First, it is im-
mensely more flexible and faster; and secondly, it has the buzzwords “neural networks” in
its description.

But the story of this framework and all the issues in supernova cosmology that it can
resolve begins simply. It begins with Bayes’ theorem.

2



Part I

Simulation-based inference
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Chapter 1

Bayesian inference
The Bayes Drip*
by Stable Diffusion
“Thomas Bayes in a
white puffer jacket on
his way to drop the

sickest theorem in the
history of statistics”

Bayesianism is a philosophical approach to science founded on Bayes’s reasoning about
the information contained in causes about effects and in effects about causes [36]. At its
core, it puts both—causes and effects—on an equal footing, basing all considerations on
their joint probability,2 which thus embodies the entirety of a given model for the studied joint

modelphenomenon. Bayes’ famous theorem is nothing but a consequence of the two ways to
decompose the joint probability of two random variables3 (call them � and d):

p(�, d) = p(d | �) p(�) = p(� | d) p(d). (1.1)

The symmetry between � and d can be broken— and an interpretation of their roles
made— only by an empirical observation that identifies, arbitrarily, d as data, to which data
a concrete value do can be assigned. Inference is then concerned with the probability of inference
� (now identified as unknown parameters) conditioned on that value, i.e. the posterior parameters

posteriorp(� | d = do) and quantities derived from it (e.g. mean, standard deviation, etc.).
Along this line of interpretation, p(d | �), called the sampling distribution of the data, sampling

distributionrepresents the stochastic process— in the sense of the physical procedure4—from which
Bayesians philosophise do was realised.5 As such, it is the “objective” part of the model,
which recounts the ontology of an analysis.

2 or, in the common case of continuous random variables, probability density
3 For all the pomp and attempted cleverness throughout this thesis, I will, for the most part, allow myself not to
make a graphical distinction between random variables and their values. Furthermore, usually I will consider
them to be multi-valued, i.e. bolded “vectors”, combining many quantities from the model.

4 a statistical process, in contrast, describes the distribution/probability of a function, i.e. an infinite-
dimensional random variable

5 This view has an important consequence: it admits the possibility of other realisations do of the same random
variable. Such— counterfactual after the fact of observing do—data produced by an artificial recreation of
the data-generating process (a forward simulator) lies at the heart of simulation-based inference; but more on
that later.

5

https://commons.wikimedia.org/wiki/File:Pope_Francis_in_puffy_winter_jacket.jpg
https://stablediffusionweb.com/app/image-generator
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However, p(d | �) is not (typically) used by Bayesians in its capacity of a distribu-
tion6 but rather as a measure of probability, always conditioned on the observed data:
p(d = do | �). This is called the likelihood function and often labelled !do (�); its absence likelihood

functionis a prominent characteristic of this thesis.
This leaves us with the two terms p(�) and p(d), referred to as marginals because they marginals

represent the probabilities of one variable irrespective of the value of the other. The latter
is the marginal (average) likelihood: marginal

likelihood
p(d = do) ≡

∫
p(�, d = do) d� =

∫
p(d = do | �) p(�) d� . (1.2)

However, a more common name for it is evidence, alluding to its use in Bayesian model evidence
comparison (see section 3.1). Notice that eq. (1.2) represents a constant (that ensures proper
normalisation of the posterior) entirely determined by the observed do (under a given model
p(�, d)). As such, it is often ignored in Bayesian parameter inference.

On the other hand, the average posterior:

p(�) ≡
∫

p(�, d) dd =

∫
p(� | d) p(d) dd , (1.3)

is practically exclusively called the prior probability since it represents the (non-)existence prior
of knowledge about the “unknown” parameters.

Priors
The prior is often viewed as a modelling choice, owing to its independence from data. This
raises a philosophical question: what is the influence of this—seemingly arbitrary/subjec-
tive [244]—probability on the final result of Bayesian inference? That is, how informative
the prior is of the “unknown” parameters. Model builders have addressed this issue in a
variety of ways, motivated either by progress, integrity, or convenience.

Staying true to nomenclature and leaning on the rules of conditional probability (i.e.
eq. (1.1)), some studies explicitly incorporate empirical knowledge, in the form of the pos-
terior from a previous analysis of independent data d(�) , as a prior when confronting d(� �):

p
(
�, d(�) , d(� �)

)
= p

(
�, d(� �)

��� d(�))
�
�

�
�

p
(
d(�)

)
∝ p

(
d(� �)

��� �,���d(�)
)

p
(
�
��� d(�))︸      ︷︷      ︸

previous posterior

, (1.4)

6 This is reserved for—and the basis of— frequentist statistics and only used in a small area of the Bayesian
realm: posterior predictive considerations that derive the sampling distribution of subsequent analyses, con-
ditioned on the outcome of the present one, i.e. p(d | do).
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where p
(
d(�)

)
is ignored as constant as usual, and the observation of a particular value

for d(�) is assumed to not influence d(� �) , i.e. they are conditionally independent: d(�) ⫫conditional
independence d(� �) | �.

On the other hand, uninformative priors are designed to specifically reflect a lack of7uninformative
prior prior knowledge. Many a rookie Bayesian have been tempted to stipulate “uniform prior

uniform
distribution

probability over possible parameter values”, but such a statement rarely has a concrete
meaning due to the possibility of re-parametrisation. In fact, by re-defining the parameter

re-
parametrisation

space using a specifically chosen transformation � → �′, one can turn � ∼ U(�) into any
p(�′).8 However, re-parametrisation can also be exploited to the benefit of objectivity by
the constructing the Jeffreys prior: a distribution that is invariant under a particular sym-Jeffreys prior
metry (e.g. translation or scaling for location- and size-related parameters, respectively)
expected of the parameter space [see e.g. 244]. A final technique for objectivising the
prior, again due to Jaynes [244], is entropy maximisation, which, according to Shannon
[474], minimises its information content. This method can even incorporate conditions
like a bounded domain or previous constraints that do not take the form of a full posterior
distribution (e.g. point estimates).

Finally, a particular prior probability can be chosen in the interest of tractability, i.e. the
ease of deriving the posterior. Since this depends also on the likelihood, the prior needs to
be coordinated with it, e.g. via conjugation: the adoption, given a likelihood function, of aconjugate prior
form for the prior which results in a posterior of the same form [see e.g. 150]. This “con-
jugate update” procedure also facilitates reuse of the posterior as a new prior for analysis
of further data under the same likelihood (cf. eq. (1.4)).

In this thesis, the question of the prior choice will be only of marginal importance; that
is, wewill not be designing priors. Wewill simply bemanipulating the ones given bymodel
builders as part of complete joint distributions, and at that wewill aim to be as non-intrusive
as possible. As a rule, we will only make such changes that do not affect the final posterior
because they happen in regions of parameter space (almost) completely disfavoured by the
observed data, i.e. for which the likelihood (nearly) vanishes: p(d = do | �) ≈ 0. This
procedure in all its forms is presented in subsection 2.2.2.

7 or as little of it as possible, since, as Tak et al. [499] argue, “all prior distributions are informative”
8 This is indeed how random values are drawn from any distribution within a computer program: starting with
a sample fromU(0, 1).
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1.1 Bayesian hierarchical modelling Ontology
Complicated ontologies require a statistical representation that transcends the simple state-
ment eq. (1.1) of Bayes’ theorem. One example are so-called nuisance parameters (�), nuisance

parameterswhich are not of scientific interest9—e.g. instrumental calibration parameters or the phys-
ical model of SN Ia explosions— but are still a priori uncertain. In this case, we can
only describe the data-generating process (sampling distribution) as p(d | �, �) and obtain,
through eq. (1.1), the joint posterior p(�, � | d) when in fact we are seeking the marginal joint vs.

marginal
posterior

posterior:

p(� | d) =
∫

p(�, � | d) d� ∝
∫

p(d | �, �) p(�, �) d� (1.5)

(ignoring the evidence). This marginalisation cannot usually be performed analytically,
although in the absence—or in conscious denial—of prior knowledge about �, one may
assert a specific prior p(�, �) that simplifies calculations at the expense of objectivity.10

Another example are systems with a hierarchical structure in which stochasticity arises
on multiple levels: e.g. a population with uncertain global parameters  and local param- global and local

parameterseters �8 that determine the properties of each object 8 (out of #obj) in the population. If
noisy measurements

{
d8o

}
of the individual objects are made, inference can be performed

using the joint probability

p
(
,

{
�8

}
,
{
d8

})
= p

({
d8

} �� {�8}, ) p
({
�8

} �� ) p(). (1.6)

This is called a Bayesian hierarchical model (BHM), and its key characteristic is the as- BHM
sumption11 that objects are independent and identically distributed (i.i.d.), resulting in con- i.i.d.
ditional independence for their data and associated local parameters:

p
({

d8
} �� {�8}, ) p

({
�8

} �� ) → #obj∏
8

p
(
�8, d8

�� ) = #obj∏
8

p
(
d8

�� �8, ) p
(
�8

�� ) . (1.7)

BHMs are powerful tools for inference of the global/population parameters since they
allow information from all objects to be combined while properly accounting for two kinds pooling of

constraints
scatter vs. noise

of variance: population scatter of the latent12 values �8 ∼ p
(
�8

�� ) and observational noise

latent values9 to a particular researcher or their audience, that is
10 One (a mathematician, for example) might argue against this point, for an inspired choice may be considered

correct and justified for the same reason that theoretical physicists advocate for particular Lagrangians on the
basis of elegance or simplicity.

11 Otherwise, a distinction between “global” and “local”/“object-specific” cannot really be made, and the model
reverts to eq. (1.5).
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in d8 ∼ p
(
d8

�� �8, ) . Often, therefore, all local parameters are treated as nuisances, whose
number—and consequently, that of the possible a posteriori correlations that need to be
taken into account— scales with the number of objects considered. In this case, analytic
marginalisation can drastically reduce the problem complexity and, importantly, decouple
its dimensionality from the data set size:∫ #obj∏

8

p
(
d8

�� �8, ) p
(
�8

�� ) d�8 = p
({

d8
} �� ) .13 (1.8)

The convenience this affords the model builder, especially with regards to the availability
of established computational methods (section 1.2) for Bayesian inference, might over-
power their desire for adherence to nature and lead them to stipulate particular forms for
p
(
d8

�� �8, ) and/or p
(
�8

�� ) that simplify the computation in eq. (1.8).

Graphical representation
As a BHM grows in complexity to take into account more details of the data-generating
procedure,14 it becomes increasingly cumbersome to describe and communicate through
an explicit factorisation of the joint probability. Moreover, some model components may
be deterministic functions of other (stochastic or not variables), while others are treated asdeterministic

and fixed
quantities

fixed settings (global s and local
{
a8

}
), under which the joint model is evaluated; the latter

can equivalently be conceptualised as stochastic variables with delta-distribution priors

p
(
s, ,

{
a8

}
,
{
�8

}
,
{
d8

})
= p

(
,

{
�8

}
,
{
d8

} �� s, {a8
})
× X(s) ×

#obj∏
8

X
(
a8

)
. (1.9)

In such intricate cases, a graphical representation as a directed acyclic graph (DAG)—DAG
like the general one we show in fig. 1.2—is usually employed instead. Since any DAG can
be topologically sorted, i.e. ordered so that distributions are only conditions on already-
encountered quantities, it represents the forward model for the data-generating process.forward model
Determining the conditional probabilities needed to describe it in the reverse directionreverse model

(inference) (data→ parameters) is the goal of inference.
12 In the Bayesian literature [e.g. 335, chapter 34], latent random variables are any that are not observed, i.e.latent variable
 . In this thesis, however, by “latent” we will mean only object-specific parameters which can, in a sense, be
interpreted as the “true” values of measured quantities (and will in general refrain from using both terms).

13 This is again called a “marginal likelihood” like the evidence—a connection we will exploit in chapter 3.
14 For example, the distributions of various object-specific quantities might be controlled by separate popula-population

parameters tion parameters, while other global variables (e.g. the cosmological model and instrumental noise) directly
influence the data.
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p( | s)  p
(
�8
�� , s) �8 p

(
d8
�� a8, �8, , s) d8

s
f8 a8

8

Figure 1.2: Graphical representation of a generic hierarchical model that depicts its global
and local parameters ( & �8), the object-specific data (d8), and the various conditional
distributions (p(. . . | . . .)) relating them. It also includes fixed settings/inputs (s & a8) and
deterministic quantities (f8), which are usually omitted from the probabilistic description
for brevity, and indicates conditional independence with a “plate” around i.i.d. quantities,
specifying the indexing label (8).

1.2 More or less established methods Episte-
mologyFor all but the simplest models—hierarchical or not—and without resorting to convenient

assertions, assumptions, or approximations, the posterior does not have a simple analytic
form, and so Bayesian inference needs to be performed computationally. The “traditional”
approach is based on calculating the likelihood function (or its gradient) given the par-
ticular observed data and combining it with the prior. The posterior is then represented
either through samples from a stochastic chain, or via a trained surrogate approximation
that is easy to sample from and/or evaluate. Regardless of the method, in the presence of
nuisance parameters, they need to be inferred jointly with those of interest since only the
likelihood p(do |  ) of the full set of parameters  ≡ �∪ � is available for evaluation. The
marginalisation in eq. (1.5) can then performed, if required, on the level of samples from
p( | do) (by just ignoring their components corresponding to �) or analytically when a
suitable surrogate is used.

Below, we survey the “established” likelihood-based methods relevant to SN cosmol- likelihood-
based methodsogy, whose performance has been thoroughly studied and optimised in numerous previous

works (in SN cosmology and other areas of science and statistics). We will be using them
for two purposes. First, to provide motivation and justification for method development
aimed at aspects in which reliance on these techniques is inconvenient (scalability) or re-
strictive (realism and statistical rigour). And second, to cross-check (only in simplified
scenarios!) the results we derive via new methods we propose, thus demonstrating the
validity, credibility, and applicability of our approaches.
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MCMC Bayesian inference is most commonly performed through Markov chain MonteMCMC
Carlo (MCMC)15 sampling: a Markov process in which new values  new are proposedproposal

distribution from a distribution q
(
 new

��  old
)
conditioned only on the previous element  old in the

chain and accepted with a probability that makes p( | do) the stationary distribution of
the chain. The prevalent choice of acceptance criterion is Metropolis–Hastings (MH) [356,
202], whichmakes use of the ratio of joint probabilities for new/old parameters and the data:

p
(
accept

��  new,  old
)
= min

[
1,

q
(
 new

��  old
)

q
(
 old

��  new
) p

(
 old, do

)
p
(
 new, do

) ] . (1.10)

The proposal distribution for MCMC must strike a balance between independence andexploration vs.
exploitation efficiency: i.e., it must be able to propose uncorrelated samples in unexplored regions of

parameter space (e.g. undiscovered modes) while avoiding unlikely values that will be re-
jected. A simple strategy based on a random walk can achieve this in moderate dimensionsrandom walk
by setting the step size (i.e. the spread of a Gaussian proposal centered at  old) in proportion
to the covariance of the target (and the parameter dimension) [170, 40], which can be esti-
mated from an ensemble of chains [e.g. 180]. However, a random walk progresses slowlyensemble MC
(with the square root of the number of steps), leading to auto-correlated samples. More-
over, it scales poorly to high dimensions—and is hence extremely inefficient for BHMs—
due to the curse of dimensionality (the exponential abundance of “distant” space that even-curse of

dimensionality tually overwhelms any “locality” of the proposal), and the need to estimate a full covariance
matrix.16

HMC Hamiltonian (or hybrid)Monte Carlo (HMC) [133, see also 377] elevates MCMCHMC
to higher dimensions and produces largely independent samples via a global17 proposal that
follows the trajectory of a “particle” with a random “momentum” vector (introduced as an
auxiliary stochastic variable). Its dynamics is defined through aHamiltonian consisting of a
potential field given by the negative logarithm of the target density18 and a quadratic kinetic
termwith an arbitrary squaremass matrix (of dimension equal to the parameter space). Themass matrix
latter corresponds to the (inverse) covariance of the momentum proposal distribution, and
as such, it is usually set to an initial estimate of the target covariance (although in very high
dimensions, only its diagonal is usually kept [512]).19

15 For a historical overview and extended discussion, refer to Martin et al. [349].
16 The popular emcee package, for example, requests at least twice as many walkers as dimensions.
17 Beskos et al. [41] show that the number of steps required for an independent HMC sample scale only weakly

with the dimension as 3 1/4 .
18 Particles are thus “forced” towards regions of high probability, so HMC explores in linear time, rather than

quadratic for a random walk.
19 In contrast, Girolami & Calderhead [176], adopting the perspective of information geometry, argue for the

replacement of the mass matrix with a position-dependent (inverse) metric for the manifold on which Hamil-
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HMC’s position/parameter proposal relies on repeated evaluations of themodel’s gradi-
ent,20 ∇ ln p( , do) and an energy-preserving integration routine with tunable settings21 tuning
like the step size (adjusted based on the acceptance rate22) and the trajectory length (for
which the no-u-turn sampler (nuts) [225, 42] scheme is widely adopted).

In the past decade, HMC has greatly benefited from the development of frameworks for
probabilistic programming (discussed further in chapter 9), which automate the gradient
calculation and the tuning procedure and facilitate model re-parametrisations that make
the geometry of the problem easier to explore with Hamiltonian dynamics [43]. For all its
complexity, HMC is thus still the state-of-the-art exact high-dimensional likelihood-based
sampling method.

NS The MH algorithm has two major likelihood-based alternatives. The first, nested NS
sampling (NS) [481, 482, see also 20], is a form of MCMC designed to calculate the evi-
dence— the result of a multivariate integral (eq. (1.2)) as per the original intent of Monte
Carlo methods—that produces unequal-weight samples from the posterior as a by-product. unequal-weight

samplesIn NS, “live points” (samples) are drawn from the prior (usually transformed to the high-
dimensional unit cube) subject to a likelihood constraint, i.e. within an iso-likelihood con-
tour. This can be realised through a number of strategies, including rejection sampling (in
low dimensions and usually after constructing a simple analytical bounding volume [see
489, and references therein]), slice sampling [376, 199] (in moderate dimensions), or any of
the methods discussed above. However, even highly optimised NS implementations scale
at least cubically with the number of inferred/integrated parameters, making them unsuit-
able for high-dimensional inference.23 Nevertheless, NS remains among the few reliable

tonian dynamics is simulated, leading to improved performance, at the expense of a more complicated in-
tegration scheme and the need to explicitly specify the metric, for which they choose the expectation (over
data) of the joint’s Hessian (with respect to parameters): −Ed |  

[
m2

m 2 ln p( , d)
]
.

20 An algorithm essentially consisting of a single gradient step, Langevin Monte Carlo (LMC), also exists; since
it needs to be corrected for a non-unary acceptance probability, it is better known as Metropolis-adjusted
Langevin algorithm (mala).

21 An algorithm that has no tunable settings (on the surface) is Gibbs sampling [171, 169], which iterates over a Gibbs sampling
partition of  , sampling each group conditionally on the rest. (In fact, HMC can be viewed as a Gibbs sampler
for the joint distribution of parameters and momenta.) In certain cases, these low-dimensional conditionals
can be derived analytically, but in others, conditional MCMC sampling (within Gibbs) is still needed.

22 If energy is truly preserved, acceptance should be perfect, but the MH criterion is still checked in practice to
counteract integration errors: see Beskos et al. [41].

23 The difficulty of high-dimensional nested sampling comes from the simplicity (e.g. uniform) of the prior,
from which samples are to be drawn, and its discontinuous truncation at the iso-likelihood contour, both of
which immobilise the otherwise performant gradient-based methods. In a recent development, Cai et al. [78]
work around the hard boundary problem by using proximal MCMC [400, 135] to smear the constraint and
scale NS to millions of dimensions. However, even their method reverts to a simple random walk in the
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methods for likelihood-based evidence estimation for models with up to a few hundred
parameters.

VI As a general alternative to sampling methods, variational Bayesian inference (VI)VI
[see e.g. 51, 556] can be performed through optimisation of an explicit tractable proposalproposal

distribution distribution q� ( ) (within a family with variational (or hyper)parameters �) so that it
variational
parameters

approximates the posterior (given concrete data), thus avoiding the issues of MCMC. The
optimisation (maximisation) objective in VI is the evidence lower bound (ELBO) [466,

ELBO 263]24:

ELBO
[
q� ( ) ‖ p( , do)

]
≡ E ∼q�

[
ln p( , do) − ln q� ( )

]
= ln p(do)︸   ︷︷   ︸
constant

−E ∼q�
[
ln q� ( ) − ln p( | do)

]︸                                    ︷︷                                    ︸
≡KL

[
q� ( ) ‖ p( | do)

]
≥0

, (1.11)

closely related to the popular measure of similarity between distributions, the Kullback–KL divergence
Leibler (KL) divergence [298], which is minimised if and only if q� ( ) identically matches
the target, p( | do). In any case, the KL divergence is never negative, which elucidates
the name of the ELBO and makes its maximal value useful for approximate evidence-based
model optimisation25 albeit with severe caveats related to the choice of q� ( ) [267].

Once again, the expectation in eq. (1.11) cannot be evaluated analytically in general, or
at least requires lengthy model-specific calculations. Nevertheless, an unbiased estimate
of its gradient with respect to the variational parameters:

∇� ELBO = E ∼q�

[(
∇� ln q� ( )

) (
ln p( , do) − ln q� ( )

)]
, (1.12)

can be easily obtained by sampling from q� ( ) (tractable by design), which enables opti-
misation via stochastic gradient ascent [450]. Notice that eq. (1.12) does not involve thestochastic

gradient-
based
optimisation

model gradient and can be very noisy when estimated from a finite number of samples.
Ranganath et al. [437] proposed several methods to reduce its variance; instead, Kingma
& Welling [289] used the re-parametrisation trick:  → 5� (") for a suitably defined

re-
parametrisation
trick

differentiable deterministic function 5� and " sampled from a suitably defined constant
distribution q.26 This abstracts the stochasticity away from the hyperparameters, allowing

common case of a prior transformed to a uniform distribution on the unit cube.
24 more recently re-popularised by Kingma & Welling [289] in a slightly different, but relevant, context
25 in other words, maximum-likelihood estimation of higher-level hierarchical parameters
26 Re-parametrisation like this is possible for any continuous distribution, e.g. through its cumulative distribu-

tion function and a uniform distribution on the unit interval.

https://www.scientificamerican.com/article/fact-or-fiction-nasa-spen/
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the expectation and gradient to commute:

∇� ELBO→ E"∼q

[
∇�

(
ln p

(
5� ("), do

)
− ln q� ( 5� ("))

)]
, (1.13)

and the ELBO to be optimised using a simple application of the chain rule. With VI again,
probabilistic programming frameworks with automatic re-parametrisation and differenti-
ation of the sophisticated proposals described below (and of the joint as in HMC) are an
immense practical convenience.

The success of VI is largely dependent on the appropriate choice of a family of proposal
distributions that balances flexibility (i.e. the ability to accurately capture the desired fea- expressivity vs.

tractabilitytures of the posterior) with computational efficiency when sampling, evaluating (marginal)
posterior properties, and optimising. Assuming an overly restricted family, which cannot
faithfully represent p( | do), can have drastic consequences to the fidelity of inference re-
sults, both in terms of parameter constraints and model optimisation through the ELBO (as
an evidence proxy). The reason is that, as illustrated by Bishop [49, fig. 10.2], the ELBO is
mode seeking, i.e. it favours q� ( ) with reduced variance when they cannot exactly match mode-seeking

vs.
mass-covering

the target,27 which means that the final approximation (even if optimal within the varia-
tional family according to eq. (1.11)) may not have the desired coverage properties of the
posterior.

In its genesis [15, 395], VI almost exclusively assumed the so-called mean-field limit, mean-field VI
in which each parameter k8 is a posteriori independent of the rest,28 and the approximation
factorises, usually into a product of Gaussians:

q� ( ) →
∏
8

qb8 (k8) and e.g. qb8 (k8) = N
(
k8

�� `8, f2
8

)
, (1.14)

with optimised means and variances: � → �, �2 (which are the quantities that marginal
inference is ultimately interested in anyway). This, as discussed, can be catastrophic, if
the individual parameters are a posteriori correlated. Rising one level of sophistication
higher, the approximate posterior can adopt a structured covariance matrix reflecting these
a posteriori dependencies, which can be derived automatically from the a priori factori-
sation (i.e. the graphical representation) of a hierarchical model [e.g. 538]. Since dense
matrices are computationally demanding, however, some low-rank approximation has to
be made for large hierarchical models: e.g. by including all correlations among global pa-
rameters, among the local parameters of each individual object, and between global and
local parameters but treating each object as otherwise independent of the rest [267].

Nowadays, a plethora of flexible high-dimensional density estimation tools have been density
estimation27 In the extreme case of a delta distribution proposal, VI reduces to estimation of the maximum a posteriori.

28 but can still be informed by all the data in a hierarchical model, even if it represents an object-specific property
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developed that can add expressivity (e.g. higher-order correlations and moments; i.e., non-
Gaussianity) to the proposal. However, to be usable within the framework of ELBO max-
imisation, a density estimator must allow for both sampling and density (gradient) evalua-
tion, narrowing the choice to the group of models known as normalising flows (NFs) [seeNF
394, 55 for reviews]: optimisable nonlinear transformations with a tractable Jacobian ap-
plied to a random variable with a simple “latent distribution” (i.e. a glorious manifestation
of the re-parametrisation trick). NFs are implemented as neural networks, which allows
their training, usually targeting a single p( | do), to be amortised over many different dinference

amortisation by “conditioning” the flow [543, 347]: this facilitates simultaneous inference from i.i.d.
observations, e.g. for learning p

(
, �8

�� d8o) , but cannot account for hierarchical relations,
i.e. p

(
�8

�� {d8o
})

or p
(


�� {d8o
})
.

1.3 The case for likelihood-free inference29Ethics
Traditional Bayesian methods have—or rather had—a problem, which is this: they restrict“All models are

wrong but some
are useful” [61].

scientists (model builders) to models that are solvable rather than models that are correct.
This may prevent them from extracting the full information content of their observations,
e.g. by imposing the use of summary statistics as a compressed and supposedly simpler tosummary

statistics model representation of the data. The poor scalability of established techniques— espe-
cially when the model gradient is unavailable, or HMC fails to auto-tune, or in the pres-
ence of strong correlations—might force model builders into unsightly approximations,
including, but not limited to: adopting a convenient hierarchical likelihood that allows an-
alytic marginalisation; fixing stochastic components to point estimates in an analysis split
in stages; uncertainty quantification through variation (i.e. linear error propagation); and
j2 fitting.

The scientific insights derived with simplified models are, in general, different from
those that practitioners would have liked to obtain, had they had appropriate tools; and in
many cases, these “insights” will be wrong, i.e. will not have the properties of the Bayesian
posterior. We will repeated come back to this point throughout this thesis. And while most
issues, specifically in SN cosmology, can be addressed by a carefully constructed and pa-
tiently sampled BHM, there is one that has no solution within the likelihood-based frame-
work: even though the joint probability density p( , d) is defined for every model—after
all, this is what “model” means— it may not be calculable if no closed-form expressions
for p(d |  ) and/or p( ) are available.

29 not really free of a sampling distribution (which is always implicit in a model) or even free of a likelihoodimplicit
likelihood (which some methods end up approximating), but��� freed from reliance��� on evaluating probabilities
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Missing: the likelihood. In the most common case, the likelihood may not be tractable30
when modelling a complicated (usually deterministic) process through which probabili-
ties are impossible31 to trace. Examples particularly relevant to SN cosmology (see also
section 8.3) include the scheduling of telescope observations and their celestial footprint
(dependent on weather and balancing diverse scientific goals), tricky instrumental effects,
extracting sources and their properties from images, summarising data through model fit-
ting, and the large scale structure and dynamics in the Universe.

Missing: dimensionality. Another challenge for the likelihood framework are what we
coin un-dimensional®32 models, in which the dimensionality of the parameter and or data
space is itself a priori uncertain.33 Situations like this arise in a hierarchical setting when
not all objects in a population are observed (see our application to selection effects in chap-
ter 15) or when single observations are influenced by unknown numbers of objects (e.g.
when de-blending sources).

Missing: parametrisation. The final source of joint uncalculability is an implicit prior,34 implicit prior
usually of the kind attempting to incorporate common sense35 like “the source in a gravi-
tational lens image must look like a galaxy” [373, 2, 266, 3] or previous empirical findings
(e.g. the spectro-temporal flux distribution of SNæ Ia). The challenge in these cases is that
(a part of) the model is constructed in reference to external data (e.g. images of “galaxies”
or spectra of “SNæ Ia”, which are used to define these objects) instead of a probability
density in a particular parametrisation.

These hurdles to traditional Bayesian inference, along with the computational issues of
likelihood-based techniques that have often prevailed over the desire for scientific rigour,
are our motivation for developing an alternative analysis framework based not on the joint
probability (density) but merely on samples from it, which we present in the next chapter.

30 even if we set aside intractable integrals— that bane of all Bayesians—which are of practical concern if the
distributions of nuisance parameters live up to the name or if there is such a multitude of them (e.g. object-
specific parameters in a hierarchical model) that the dimensionality is beyond the reach of numerical methods
(including high-dimensional sampling)

31 or, if not entirely undoable, then at least, ludicrous
32 in reference to terminology of disruption like “un-conference”
33 A likelihood-based method for sampling such a model (or, in fact, any collection of models, each with its

own fixed dimensionality), known as reversible jump (or trans-dimensional)MCMC,was developed byGreen
[186, see also 187] and involves the construction of proposal distributions across dimensions.

34 One may call this an un-prior™ or un-model® since its foundations lie entirely—or as much as possible—
in data and empiricism, rather than in abstract model building.

35��� My model has no prior, it’s got its strong beliefs���





Chapter 2

Neural simulation-based inference

Simulation-based inference (SBI) is a suite of methods in which the model is explicated
not by the joint probability distribution but through a simulator36: a forward process from simulator
causes to effects. This has immediate and far-reaching consequences that align inference
with the origins of Bayesian reasoning exposed above. Firstly, it restores the symmetry
between quantities formerly known as “parameters” and “data”: it is up to the scientist to
identify which variables in the simulator are of their interest and which have been observed
in the real world, recording their (fully stochastic) values as pairs (�, d) defined as samples
from p(�, d). This obviates the need for explicit inference—or even definition—of nui-
sances: all SBI is marginal and performed naturally with samples. Secondly, it introduces marginal SBI
the notion of true values: accessible for both � and d in computer programs, but only for true values
the latter in the implementation regarded as the real world. Correspondingly, SBI strips
“real” data from its special status and regards it as simply another stochastic realisation
from the simulator.

Moreover, SBI locks model builders into conceptualising the studied phenomenon in
the forward fashion, doing away with large swathes of arbitrariness, since each aspect of the
model must fit within the simulator’s logical flow. This finally permits them to incorporate a
variety of processes from the physical world and elements of Bayesian reasoning that elude
a straightforward probabilistic description: e.g. data-driven priors and nuisance spaces with
arbitrary dimensions and distributions.

36 in fact, the etymology of “simulate” itself alludes to together/joint-ness

19
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Pre-neural SBI: approximate Bayesian computation
The idea of using simulations for inference37 found an early manifestation in approximateABC
Bayesian computation (ABC) [423, see also 480, 37], a likelihood-skimmed™ technique
that implements the conditioning on observed data via sampling. More formally, ABC
proposes parameters-of-interest–data pairs from p(�, d) and accepts them with probability
that is 1 when d ≡ do and 0 when the “distance” between them is much greater than Y. As
Y → 0, and so the acceptance criterion tends to a delta function ( Y (d, do) → X(d, do)),
the marginal distribution of �, i.e. the collection of � that happen to produce simulated data
equal—or sufficiently similar—to do, tends to the conditional at do, namely, the posterior
p(� | do). For a finite Y, the result is an average over posteriors from data “close” to do.

Being fully simulation-based, ABC is insensitive to the number of nuisances, which
are customarily ignored in simulations and thus marginalised. Still, the original parameter-
proposal distribution p(�) may be excessively wasteful, especially for highly constrain-
ing38 data that results to a narrow posterior. In such instances, ABC can be implemented
through traditional random-walk MCMC methods [348], with the likelihood replaced39
by  Y (d, do), whose average approximates it: Ep(d | �) [ Y (d, do)] ≈ p(do | �). ABC also
greatly benefits from iteratively refining the proposal (starting with p(�) and a large Y)
so that simulated data is increasingly more similar to do while progressively reducing Y
[479, 9].

Crucial to the success of ABC is the selection of suitable distance measure in datadistance
measure &
bandwidth

space, “bandwidth” Y, and criterion  that balance simulator efficiency (a major concern
for any rejection sampling-like algorithm) and fidelity of the approximated posterior. For
some forms of data, the choice may be obvious: e.g. for integers (counts), one may hope to
condition exactly by retaining parameters that lead to the same number of simulated events
as observed. The next simplest candidate is an L2 distance between vectors with an optional
arbitrarily specified covariance/metric: Δ2 ≡ Dist(d, do) → (d − do)>�−1(d − do), and a
sharp cutoff at Y:  = 1(Δ ≤ Y), or a Gaussian kernel  = exp

(
−Δ2/Y2) . Many other

distance/similarity measures exist and can be used in ABC [50].
However, some types of observations—for example, any collection of a priori unknown

size or order like light curves or population sub-samples— cannot be trivially compared
to mock realisations and need to be regularised first, adding another layer of arbitrariness.regularisation
Moreover, since ABC is founded on the idea of data-space locality, a direct application
to any high-dimensional data is cursed to fail, just like local sampling proposals in high-curse of

dimensionality
37 as opposed to elevating a given physical model (usually deterministic) from an elementary form, e.g. the law

of gravity, to some statement about observables, e.g. two-point correlations of large-scale structure
38 In the terms of ABC this is reflected in a stringent requirement for a small Y to ensure an accurate approxi-

mation of the posterior.
39 hence the skimmed qualifier
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dimensional parameter spaces. In this case, the data must first be summarised into a low- dimensionality
reductiondimensional (and often interpretable) space before proceeding with ABC.

However optimised, ABC retains one major flaw: it does not extract information from
the rejected examples and is not amortised; i.e. the whole procedure needs to be rerun for
different do.40 It also requires a multitude of tunable settings: summary and/or similarity
functions, acceptance criterion, and bandwidth, and at best produces an approximation to
the posterior. This explains why it is—at best—used as an introduction to more successful
SBI methods.

2.1 Flavours of neural SBI
The usability and performance of SBI gained a substantial boost— leading to a rise in
popularity41—by the introduction42 of (artificial) neural networks (NNs): universal ap- NN
proximators [see e.g. 24] that can be trained via optimisation of a suitably defined ob- objective fn:

win™ ≡ −lossjective functional. For applications within SBI, this most commonly takes the form of a
Bayesian risk, i.e. an expectation over p(�, d), which can be approximated by averaging Bayesian risk
over a simulated training set {(�, d)8}#train

8=1 . In rarer cases, training sets {d8}#train
8=1 sampled training set

from p(d | �fid) at fixed fiducial parameters may be requested.43 fiducial
parametersFor all its generality and convenience—and philosophical hauteur—, the use of an un-

conditioned simulator that samples from p(�, d)—in contrast to traditional sampling from
p(� | do)—has one seeming drawback: any inferencemethod needs to confront counterfac-
tual data during training. The framework has two responses: on one hand, it incorporates
sequential methods of restricting/conditioning the simulator so that it generates data that sequential

methodsresembles do (subsection 2.2.2); with the other hand it embraces this “weakness” and turns
it into a valuable and unique feature: amortisation, which, among other uses, allows for amortisation
verification of the inference procedure from both a Bayesian and a frequentist perspective,
as described in section 2.3.

40 Certainly, simulations can be saved and compared to the many do, but that can only speed up the first round
of sequential updates or would require excessively many simulations to fill the data space to within Y.

41 Consult the automatically collected references at https://simulation-based-inference.org/ and the
curated list of “awesome” applications at https://github.com/smsharma/awesome-neural-sbi.

42 A history and overview of neural networks and their training in practice is beyond the scope of this thesis
since they are nowadays taught in mostly any higher-education course and recognised with Nobel Prizes in
mostly any discipline.

43 Such can be obtained via reverse-ABC (CBA™), i.e. retaining only those samples from p(�, d) for which
� ≈ �fid, or by modifying the simulator to always sample �fid, which is usually straightforward (but see
section 4.1) since it usually factorises as p(d | �) p(�). However, this somewhat contravenes the essential
philosophy of SBI and borders on frequentism!

https://simulation-based-inference.org/
https://github.com/smsharma/awesome-neural-sbi
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Table 2.1: Summary and comparison of the principal neural SBI methods

summarisation density estimation density-ratio estimation
IMNN VMIM NPE NLE NRE

estimator s(d) q(� | d) q(d | �) r̂(�� , �� � , d) r̂(�, d)
target — p(� | d) p(d | �) p(d | �1)

p(d | �2)
p(d | �)

p(d) =
p(� | d)

p(�)
objective Fs(d) (�fid) I(�, s(d)) Ep(�,d) [q(. . .)] binary classification
inference downstream direct traditional* & frequentist

summaries
explicit: optimise

I(�, s(d))
explicit:

likelihood (ratio)
optimise

JS[p(� | s(d)), p(�)]local global
training prior X(�fid) any p(�) any

*MCMC with the approximate likelihood or re-weighting prior samples

NNs thus conclusively emancipate SBI from the likelihood— and any stand-ins for
it, in contrast to ABC—by learning functions of arbitrary d instead of particular values
at do: inference is said to be amortised. Granted, final scientific conclusions are drawnamortisation
by evaluating the trained network on do, but this is extremely rapid, while training and
inference verification (see section 2.3) can be performed even before data is available and
in parallel, exploiting modern hardware like graphics processing units (GPUs).GPU

Based on what (and how) NNs are taught, their use in SBI falls in three categories:
summarisation, density estimation, and density-ratio estimation. The principal methods
discussed below are summarised and compared in table 2.1. Another overview and further
discussion are given by Cranmer et al. [108], with references to applications automatically
collected online.44 A systematic benchmark was performed by Lueckmann et al. [331].

2.1.1 Neural data summarisation
If a high-dimensional data set is informative of a limited number of parameters, it can be
embedded into a lower-dimensional manifold of so-called summary statistics (s(d)) thatsummary

statistics preserve some—hopefully most, or even all—of the relevant information. Such a repre-
sentation is useful for two main reasons: first, it speeds up repeated evaluation at fixed data
do, e.g. for (approximate) likelihood-based inference; and second, the distribution of s is
simpler to learn and may be even (assumed to be) known or very well approximated ana-

44 simulation-based-inference.org and github.com/smsharma/awesome-neural-sbi

https://simulation-based-inference.org/
https://github.com/smsharma/awesome-neural-sbi
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lytically, e.g. by a Gaussian due to the central limit theorem. For some models, convenient
summaries can be derived from physical intuition, but, being arbitrarily handcrafted, these
may not be optimal (loosely speaking; optimality will be shortly defined in a number of
different ways).

As a particular example, consider analysis of large-scale structure (LSS). The “estab-
lished” summary statistic, the two-point correlation of galaxy counts as a function of spatial
separation [see e.g. 399, chapter 19] has been shown to be extremely lossy with respect to
the full field-level data [421] and even to other analytic summaries [498]. Hence, large
efforts [e.g. 303, 396] are underway to evaluate and characterise the performance of vari-
ous machine learning (ML)-based compression procedures whose goal is maximising the
scientific utility of modern data sets.

The simplest principled summaries take the form of parameter estimators �̂(d) and estimator
so are exactly as numerous as the parameters of interest. Estimators are derived via min-
imisation of a given measure of deviation from the true parameters averaged over a given
distribution. For example, the posterior mean, �̄(d) ≡ Ep(� | d) [�], minimises the Bayesian posterior mean
risk of squared error: Ep(�,d)

[
‖ �̂ − �‖2

]
and so can be directly learnt by a NN from sim-

ulations. Similar objectives can be derived also for arbitrary quantiles (e.g. the median) of
the posterior and for its higher-order moments [see e.g. 247, 249].

Also popular, and with a long tradition in frequentist inference, is the maximum likeli-
hood estimator (MLE), which, as is well-known, saturates—but only asymptotically—the
Cramér[106](–Aitken-&-Silverstone[5]–Fréchet[159]–Darmois[116])–Radhakrishna-Rao[434]
inequality, i.e. has the lowest variance achievable by any unbiased estimator. This precision
bound, known as the Fisher matrix [151]: Fisher matrix /

information

Fd(�fid) ≡ Ep(d | �fid)

[(
∇� ln p(d | �)

����
�fid

) (
∇� ln p(d | �)

����
�fid

)>]
= −Ep(d | �fid)

[
∇∇> ln p(d | �)

����
�fid

]
, (2.1)

has also widely be used as a measure of information content of summaries. Alsing &
Wandelt [7] observed straight from eq. (2.1) that a Fisher-optimal summary is the score score
vector∇� ln p(d | �) itself.45 This view unifies previous methods specialised to a Gaussian
sampling distribution: linear compression with moped®46 [502, 207] when the sampling

45 This is a consequence of the likelihood principle, which follows from the Fisher[151]–Neyman[380]–
Halmos-&-Savage[195] factorisation theorem (which Jaynes [245, section 8.5] calls a “trivial consequence
of the product rule of probability theory, […] no more to be questioned than the multiplication table”) and
states that the likelihood is a sufficient summary. sufficient

summary46 massively optimised parameter estimation and data compression [440], patent US6433710B1 expired

https://patents.google.com/patent/US6433710B1
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covariance is independent of the parameters of interest; and quadratic compression [501],
widely used for summarising the cosmic microwave background (CMB), for the converse
case that only the covariance depends on parameters.

Of course, the score is not available for models with an implicit likelihood, and the
MLE cannot be learnt from samples47 as easily as a mean or median. Nonetheless, the
Fisher matrix Fs(d) (�fid) given a tunable nonlinear summary represents a convenient op-
timisation target to train an information-maximising neural network (IMNN) [91]. WhileIMNN
this idea might be Platonically appealing, its realisation is more than cumbersome: it re-
quires, at every training step, estimation of the mean and covariance of p(s(d) | �fid) and a
differentiable simulator—or additional simulations at �fid ± X�—to estimate the mean’s
gradient; in addition, the summaries might need to be re-optimised if the initial fiducial
parameters are poorly chosen.

An alternative criterion is themutual information between parameters of interest � andmutual
information general—non-linear, arbitrary-dimensional48—summaries s(d), which equals the average

improvement (KL divergence) of the posterior with respect to the prior:

I(�, s) ≡ KL[p(�, s) ‖ p(�) p(s)] = Ep(d) [KL[p(� | s) ‖ p(�)]]
= Ep(�,d) [ln p(� | s)] − H (�), (2.2)

where H(�) is the entropy (self-information) in the prior, independent of data. The lastentropy
form in eq. (2.2) inspires a variational lower bound [34, cf. eq. (1.11)]49:

Ep(�,d) [ln p(� | s)] = Ep(�,d) [ln q(� | s)] + Ep(d) Ep(� | d) [ln p(� | s) − ln q(� | s)]︸                                    ︷︷                                    ︸
=KL[p(� | s) ‖ q(� | s)]≥0

, (2.3)

which the method of variational mutual-information maximisation (VMIM) [249] opti-VMIM
mises with respect to NN-parametrised s(d). Summaries derived with VMIM can be of
any dimension and are relevant across the whole parameter space. This approach itself is
also more in line with the spirit of SBI than Fisher maximisation—it only requires samples
from p(�, d)—but begs the question: how to produce a good enough approximate posterior
q(� | s), given a set of possibly lossy summaries, that saturates the variational bound and

47 Makinen et al. [337] described a two-NN setup (Fishnets) that targets the asymptotic MLE by estimating
simultaneously a vector and a positive-definite matrix (nominally, the score and Fisher information) and
forming an approximation to the single-step Fisher-scoring quasi-MLE: �fid + F−1 (�fid) ∇� ln p(d | �)

��
�fid

.
48 The linear summaries maximising mutual information (equivalent to MOPED) can be derived via canonical

correlation analysis (CCA) [229] and are again as numerous as the parameters of interest.
49 See also Poole et al. [414] for extended discussion of variational mutual-information estimation in the context

of representation learning.
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can be evaluated for many different pairs �, s(d) produced by the summariser-augmented
simulator. This naturally brings us to the next subsection and the quintessence of SBI.50

2.1.2 Neural density estimation
SBI is founded in the denial of explicit probabilities; however, scientific conclusions are
necessarily concerned with the posterior of different parameter values. Hence, the path
of least resistance/effort from simulations to inference is to learn a numeric representation
of the joint distribution p(�, d) from the simulated samples and proceed with traditional
inference techniques supplied with an explicit low-dimensional marginalised model.

Estimating the density p(x)—which in (neural) joint estimation (NJE) represents a NJE
concatenation of the parameters of interest and data: x ≡ [�, d]—from samples {x8}#train

8=1 —
i.e. simulations—is a well-studied statistical task51 that can be performed with traditional
kernel methods (KDE) [49, section 2.5.1] (in low dimensions) or with neural techniques like KDE
mixture density networks (MDNs) [48] and normalising flows (NFs), already discussed NDE
in the context of VI. Density estimation can in fact be regarded as the opposite process
(samples from p → density estimate q) to VI (known density p → samples from q) and is
consequently achieved through the same objective function, the KL divergence, but with
the roles of the two distributions flipped:

KL[p(x) ‖ q(x)] ≡ −Ep(x) [ln q(x)] + Ep(x) [ln p(x)]︸           ︷︷           ︸
constant

, (2.4)

which suggests a training procedure that simply maximises the “predicted” probability52 NLL∑
8 ln q(x8) across the training set. Of course, the non-negativity bound on the KL diver-

gence relies on the assumption that both p and q are properly normalised probability density
functions (PDFs), so optimisation must be constrained by

∫
q(x) dx = 1 (otherwise q can

be made arbitrarily large), which the particular architecture of NFs as glorified tractable
re-parametrisers achieves automatically. Importantly, NFs are also reversible by design,
i.e. their Jacobian, and hence q(x), can be easily evaluated.

50 Still, before proceeding, we must mention a final class of not-supervised summaries: autoencodings [e.g. 92]
and contrastive embeddings [e.g. 304]. These general (non-inference-specialised) low-dimensional represen-
tations are derived so as to preserve the “fidelity” and “diversity” (broadly and diversely defined) of the data
without reference to a specific (e.g. inference) task and just “happen to be” useful as SBI summaries.

51 In fact, Bishop [49, chapter 2] unorthodoxically (cf. Jaynes [245]) introduces the general notion of a distribu-
tion in relation to parametric density estimation whose solution is the MLE (cf. eq. (2.4)) of the distribution’s
parameters.

52 In the pessimistic and sloppy ML circles, this is equivalently perceived as minimising the negative log-
likelihood (NLL) loss. Information theorists, on the other hand, recognise −Ep(x) [ln q(x)] as the cross- cross-entropy
entropy.
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Recently, an alternative53 density-estimation technique, score-based / denoising diffu-diffusion model
(DDPM) sionmodelling [484, 485, 224, 486], has taken overML and canonised the above-mentioned

duality between the inference (forward) and sampling (reverse) processes (cf. also eq. (1.1)).forward/reverse
processes Its centrepiece is the introduction of an auxiliary variable x̃ with a tractable conditional dis-

tribution pf (x̃ | x) that reduces to a delta at x in some limit (f → 0 =⇒ pf (x̃) → p(x))
and learning its marginal “score”54 as a function off with a NN t̂(x̃, f) trained to optimise:

Epf (x,x̃)
[t̂(x̃, f) −∇x̃ ln pf (x̃)

2
]
= Epf (x,x̃)

[t̂(x̃, f) −∇x̃ ln pf (x̃ | x)
2

]
+ const. (2.5)

The left-hand side makes it clear that t̂ learns ∇x̃ ln pf (x̃), and so t̂(x, f = 0) approxi-
mates ∇x ln p(x), which is (the “score” of) the sought distribution. The—equivalent as
shown by Vincent [522]— right-hand side suggests a practical way for the calculation of
the objective that only depends on the tractable conditional “score”, for which a common
choice is∇x̃ ln pf (x̃ | x) ≡ (x̃ − x)/f, i.e. “degradation” with Gaussian noise. In practice,
the “de-noiser” (score estimator) of diffusion models is trained across a wide range of f
up to a level at which pf (x̃) ≈ N

(
0, f2) . Sampling and “likelihood” (probability density)

evaluation can then be performed by following the probability flow (with respect tof) [486]probability flow
associated to t̂, respectively in the reverse and forward directions by solving a differential
equation. Since this is far more computationally intensive than feeding backward through a
finite-(usually few-)layer normalising flow, corresponding shortcut discretisation schemes
[e.g. 487] for DDPMs have also been devised.

Once q( [�, d]) is trained to estimate p(�, d), inference can be performed simply by
evaluating it at do: q( [�, do]) ≈ p(� | do) p(do) ∝ p(� | do).55 While this achieves amor-
tisation and allows approximate posteriors—un-normalised, nonetheless— to be derived
relatively quickly for many different (real or simulated) data sets, NJE is rarely employed
because of its wastefulness in estimating the possibly very high-dimensional density/distri-
bution of d, which is anyway not queried in the end. In practice, a conditional probability—
the posterior or sampling distribution—is usually learnt instead.

Neural posterior estimation

The most popular approach to SBI is to directly target the object of interest, p(� | d),
through neural posterior estimation (NPE) [391], a conditioned counterpart of NDE inNPE
which d is provided to the NN as a context variable but only the distribution of the fewconditioning

context parameters of interest � is learnt—in fact, multiple density estimators can be trained inde-
pendently and simultaneously for a number of (not necessarily disjoint) parameter groupsparameter

group
53 but only seemingly: de-noising is the continuous limit of a normalising flow
54 Concordantly with calling the probability density p(x) a “likelihood”, in the literature on diffusion models,
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�6 (usually, each is one- or two-dimensional) if their marginals are of scientific interest but
not the correlations between them.

NPE requires minimal modification from NJE due to the general fact that an expecta-
tion Ep(0,1) over two random variables is optimised by any function 6̂(0, 1) that optimises
the conditional expectation Ep(0 | 1) at almost all 1 [309, theorem 4.1.1], leading to the
objectives

“likelihood” maximisation: argmaxqEp(�,d) [ln q(� | d)] given
∫

q(� | d) d� = 1; (2.6)

score56 matching: argmint̂ Epf (�,�̃,d)
[t̂(�̃, d, f) −∇�̃ ln pf (�̃ | �)

2
]
. (2.7)

Of the two, eq. (2.6) with explicitly normalised NFs is usually preferred due to its sim-
plicity and sufficient performance in this low-dimensional setup. Moreover, it allows for an
arbitrary conditioning context, e.g. a learnt summary representation d→ s(d), which can
be shared among the inference tasks (groups �6) and will be optimised, in terms of mutual
information, when training with eq. (2.6): cf. the VMIM objective eq. (2.3). A direct esti-
mate of the posterior density (rather than its gradient) through a NF also enables evaluation
of the credibility of highest posterior density (HPD) regions57 in �-space, which is partic- HPD credible

regionularly useful for inference verification (section 2.3). On the flip side, NPE enshrines the
prior into the trained density estimator, which presents a challenge to sequential learning
(see subsection 2.2.2) and to combining results across data sets [see e.g. 526].

Neural likelihood estimation

Through a similar application of conditional NDE, one can restore the “missing” sampling
distribution in an approach correspondingly called neural sampling-distribution (“likeli- NLE
hood”) estimation [393, 330]:

likelihood maximisation: argmaxqEp(�,d) [ln q(d | �)] given
∫

q(d | �) dd = 1; (2.8)

“score”58 matching: argmint̂ Epf (�,d,d̃)
[t̂(�, d̃, f) −∇d̃ ln pf (d̃ | d)

2
]
. (2.9)

“score” is incorrectly used to refer to the gradient of its logarithm with respect to the value of the random
variable: “score” t(x) ≡∇x ln p(x).

55 Similarly, a trained t̂( [�, d], 0) ≡
[
t̂� ( [�, d]), t̂d ( [�, d])

]
evaluated at do approximates the parameter-

gradient of the joint: t̂� ( [�, d]) ≈∇� ln p(�, d).
56 Sharrock et al. [478], Geffner et al. [168] call this neural posterior score estimation (NPSE), but the score NPSE
∇� ln p(d | �) can only be recovered if the prior is tractable or estimated as well.

57 Given a trained NF for x, i.e. a transformation x = 5 (z) where the base random variable has a tractable dis-
tribution q(z), the mass enclosed by a given iso-q(xo) contour is equal to that enclosed by the corresponding
iso-q

(
zo = 5 −1 (xo)

)
, which is easy to calculate by design.

https://en.wikipedia.org/wiki/Almost_all
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Inference from concrete do is then delegated to traditional methods (e.g. MCMC), with the
nuisance variables (i.e. those that are not provided in the conditioning context) already im-
plicitly marginalised during training, which drastically improves performance. If, however,
the prior density p(�) is not explicitly calculable— and hence “likelihood”-based tech-
niques remain inapplicable—, the posterior can still be represented through prior samples
re-weighted by F(�) ∝ p(do | �) ≈ q(do | �). Even though this is not as convenient andweighted

samples straightforward as direct sampling from a NPE, it is usually still fast (especially consider-
ing the reduced dimensionality  → �) since NN forward evaluations are extremely quick
and massively parallelisable (e.g. over the MCMC chains or prior samples).

As with NJE, however, the high-dimensionality of the learnt distribution is a major hur-
dle in training, so the vast majority of NLE applications are preceded by a summarisation
step. In fact, NLE can be seen as synonymous with data compression due to the likeli-
hood principle.45 However, owing to the difficulty of density estimation, the summaries are
usually explicitly and independently optimised beforehand, using the methods of subsec-
tion 2.1.1.

Nevertheless, NLE has one major advantage: it is completely decoupled from the �
prior, so that the model p(�, d) over which expectations are taken in eqs. (2.8) and (2.9)
(i.e. the training data) can be replaced with samples from any p(d | �) p̃(�), and the same
sampling distribution will be learnt. This is in contrast to NPE and allows for absolute
flexibility in sequential or active training (subsection 2.2.2), trivial combination of the (ap-
proximate) likelihoods from many independent observations, and non-Bayesian inference.

Lastly, trained NLEs find extensive use as emulators of laborious simulators (we willemulation
use one in chapter 16) that can reduce the computation time by many orders of magnitude,
still providing faithful samples from p(d | �).59 In that context, the NN is trained over a
wide distribution of input parameters designed specifically to encompass various use cases
(e.g. inference with differently constructed priors). Since this approach relies only on sam-
ples, it can be used to construct a non-parametric / entirely empirical implicit representation
of a phenomenon for which a simulator—and thus, a model—is entirely missing but data
is available.

58 Note that the learnt gradient in this case is with respect to the data, so it is not an estimate of the score, unlike
NPSE (sans the prior “score”)…

59 Often, an emulator is trained as a “shortcut” for a deterministic but expensive calculation, i.e. p(d | �) →
X(d(�)). In that case, it is enough to estimate only Ep(d | �) [d] as above, reducing emulation to the simplest
regression task.
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2.1.3 Neural ratio estimation
Density-ratio estimation is a paradigm for distribution learning entirely distinct from den-
sity or “score” estimation. Its keystone is the idea of representing the target p1(x) →
p(x | ; = 1) and another tractable p2(x) → p(x | ; = 2) as conditional (sampling) distribu-
tions in a model augmented by a categorical class label ; ∈ {1, 2}. Assigning a “uniform” class label
prior p(;) = const, the posterior probability for ; = 1 is p(; = 1 | x) = p1(x)/

(
p1(x) + p2(x)

)
,

so learning it allows the target p1(x) to be expressed through the tractable p2(x) and their
ratio r(x) ≡ p1(x)/p2(x), which can be any non-negative function (i.e. the normalisation density ratio
Ep2 (x) [r(x)] = 1 is a consequence and not a requirement of its definition).

This so-called “likelihood-ratio trick” [108] has thus transformed distribution estima-
tion, typically perceived as an unsupervised problem,60 into a supervised classification (un)supervised

learning
classification

task, which can be solved by any probabilistic classifier trained on labeled simulations

probabilistic
classifier

;, x ∼ p(x | ;) p(;): e.g. a random forest [e.g. 107] or logistic regression [e.g. 507], since
the Bayes-optimal decision criterion for label assignment is indeed based on the posterior
probability p(; | x) [e.g. 125, theorem 2.1].61

Moreover, following the previous discussion on posterior estimation, an approximation
for p(; | x)—and through it, for r(x)—can be obtained directly by optimising the usual62
forward KL divergence (eqs. (2.4) and (2.6)):

−KL[p(;, x) ‖ q(; | x) p(x)] + const = Ep(;,x) [ln q(; | x)], (2.10)

which expands into the binary cross-entropy (BCE): BCE

−BCE ≡ Ep1 (x) [ln q(; = 1 | x)] + Ep2 (x) [ln q(; = 2 | x)] . (2.11)

Training with this objective is achieved by simultaneously maximising q(; = 1 | x) with
samples from p1(x) while also maximising q(; = 2 | x) with samples from p2(x). Given the
simplicity of this parameter space, explicit enumeration (that adopts a suggestive parametri-
sation) is a viable strategy for implementing the estimator in a way that ensures non-
negativity and normalisation over ;:

q(; = 1 | x) ≡ f(ln r̂(G)) = r̂(x)
1 + r̂(x) and q(; = 2 | x) ≡ f(− ln r̂(G)) = 1

1 + r̂(x) , (2.12)

where f(G) ≡ [1 + exp(−G)]−1. Thus, neural ratio estimation (NRE) [107, 213] allows for NRE
60 In eq. (2.4), the target for q(x) is not explicit, and a normalisation constraint is necessary to form a stationary

point.
61 Devroye et al. [125] straight out define the posterior probabilities through this property.
62 But see Rosasco et al. [455], who expound on the variety of classification objectives that all lead to Bayes-

optimal classifiers, and Izbicki et al. [241, and references therein] for alternative— kernel or spectral—
methods of approximately computing r̂(x).
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the simplest NN architecture among SBI methods, embedding x in a single real number:
ln r̂(x) ∈ (−∞;∞) (which, as discussed represents an optimal summary), without explicitly
imposing any integral constraints. In these respects, it improves upon score matching (a
supervised regression that models as many NN outputs as the dimension of the randomregression
variable), data compression, and flow-based density estimation.

The above formalism has two incarnations useful for inference. One, inspired by the
Neyman–Pearson lemma [382] and targetedmostly at frequentist applications, is likelihood-likelihood-ratio

estimation ratio estimation [406, 107, 507], whereby the two compared distributions are p(d | ��)
and p(d | �� �). To amortise the result and allow for parametrised hypothesis testing andhypothesis

testing BayesianMCMC inference, �� and �� � are treated as conditioning variables63 by aNN clas-
sifier ln r̂(�� , �� � , d) trained with a BCE averaged across the prior p(��) = p(�� �) = p(�):

x→ [�� , �� � , d],
p1 → p(�� , d) p(�� �)
p2 → p(�� � , d) p(��)

}
=⇒ r(�� , �� � , d) ≡

p(d | ��)
p(d | �� �)

. (2.13)

Apart from amortisation, this formulation allows training with two independent samples
(�1, d1) and (�2, d2) from the same black-box simulator p(�, d); then the p1 and p2 are
represented by

[�1, �2, d1] ∼ p1 and [�2, �1, d1] ∼ p2

in a first step and

[�2, �1, d2] ∼ p1 and [�1, �2, d2] ∼ p2

in a second step, thus fully utilising both simulator runs.
On the other hand, it is more convenient for Bayesian applications, even simpler in terms

of NN inputs and training, and fully adherent to the symmetry between “parameters” and
“data”— the founding principle of Bayesianism disrespected by data compression, NPE,
NLE, and likelihood-ratio estimation— to target the triumviratio™ suggested by Bayes’
theorem:

x→ [�, d],
p1 → p(�, d)
p2 → p(�) p(d)

}
=⇒ r(�, d) ≡ p(�, d)

p(�) p(d) =
p(d | �)

p(d) =
p(� | d)

p(�) . (2.14)

By the first ratio, in this flavour of SBI (which we will synecdochally refer to as NRE), a
classifier network ln r̂(�, d) is trained with joint (dependent) and marginal (independent)joint-to-

marginal NRE 63 Whereas we made a distinction between the random variable and the condition for the NPE q(var | cond),
here the line is blurred since NRE always estimates a density between two distributions for the same random
variables. We will capitalise on this shortly.
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parameter–data pairs [213], coming, as above, from two independent simulation runs:

[�1, d1], [�2, d2] ∼ p1 and [�1, d2], [�2, d1] ∼ p2 . (2.15)

By the second ratio of eq. (2.14), this corresponds to a simple alteration of likelihood-ratio
estimation (eq. (2.13)): the replacement of one “hypothesis” with the marginal p(d), which
leads to increased accuracy of the approximation across the parameter space because the
“reference” distribution (p2 → p(�) p(d)) always covers the target p(�, d) [213, fig. 2].
Miller et al. [361] extend this concept to multiple contrastive64 � examples all drawn from contrastive NRE
the prior, explicitly teaching the network the parameter values that are unlikely to have
produced given data.

Finally, a joint-to-marginal ratio estimator provides a direct approximation (up to a
normalisation) of the likelihood/sampling probability p(d | �) ∝ r(�, d) ≈ r̂(�, d). Con-
sequently, NRE bears many resemblances to NLE: training examples can be generated
from any convenient alternative prior p̃(�); and many i.i.d. data can be jointly analysed
simply by summing the respective ln r̂

(
�, d(8)o

)
(but see section 4.2). Marginal inference

is still performed via traditional techniques or by simply re-weighting prior samples by
F(�) = r(�, d) ≈ r̂(�, d) (as per the last equality in eq. (2.14)).

���� Automatic summarisation within NRE

Acommon design choice for ln r̂(�, d), in which parameters and data enter on equal footing,
is to include a pure-data compression component d → s(d) (cf. NPE contextualisation
discussed above), to twofold benefit: firstly, this significantly reduces the time needed for
repeated evaluations at the same d (at do when evaluating the posterior and/or when re-
using the summary across inference tasks, i.e. for different groups �6); and secondly, s(d)
themselves are interpretable representations of the data, directly optimised for constraining
power. Concretely, a NRE of the form ln r̂(�, s), with s(d) a learnable function, maximises
the averaged Jensen–Shannon (JS) divergence [322] between the prior and the posterior JS divergence
resulting from the given compression:

JS[p(� | s), p(�)] ≡ KL
[
p(� | s) ‖ p(� | s) + p(�)

2

]
+ KL

[
p(�) ‖ p(� | s) + p(�)

2

]
= Ep(� | s)

[
ln

2 p(� | s)
p(� | s) + p(�)

]
+ Ep(�)

[
ln

2 p(�)
p(� | s) + p(�)

]
=⇒ Ep(d) [JS] = −BCE + const. (2.16)

64 Previously, Durkan et al. [134] had “unified” in a contrastive framework (that essentially enumerates/discre-
tises the parameter space) likelihood-ratio and posterior estimation, but their focus on the latter spawned an
unwieldy normalisation term that Miller et al. [361] cancelled via marginal examples.
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This connection and the fact that the same objective (JS ↔ −BCE) is simultaneously
maximised by a powerful classifier (ratio estimator) and minimised by a target distribu-
tion (posterior) that matches the reference (prior) is the mathematical foundation for the
formerly immensely popular generative adversarial network (gan) models [179].

Autoregressive NRE

Estimating high-dimensional65 density ratios from a limited set of training examples and/or
with a finitely expressive network is prone to inaccuracies. Moreover, it may be beneficial,
for the purposes of truncation / sequential inference (subsection 2.2.2), to place constraints
on any nuisance parameters correlated with those of interest, so as to reduce training data
variability.

Thus motivated, Anau Montel et al. [14] introduce autoregressive neural ratio estima-ARNRE
tion (ARNRE), in analogy with the eponymous NF architectures [290, 392, 234], which
reduces the complexity of inferring jointly all parameters in � to an ordered series of #6
low-dimensional ratio estimators that each learn a small group of parameters �6 (or even a
single parameter) conditioned on data and the values of the “previously” inferred �<6:

p(� | d) =
∏
6

p
(
�6

�� �<6, d)
=

∏
6

p
(
�6

)
p
(
�6

) p
(
�6, �<6, d

)
p
(
�<6, d

) =
∏
6

r
(
�6,

[
�<6, d

] )
p
(
�6

)
, (2.17)

where
[
�6

]#6

6=1 form a partition of the parameters of interest, i.e. their union is �, and eachpartition
pair is disjoint: ∪6 �6 = � and �61 ∩ �62 = ∅ ⇐⇒ 61 ≠ 62. Estimators

{
r̂6

}
for

all ratios
{
r
(
�6,

[
�<6, d

] )}
can be trained simultaneously (and naturally, any data sum-

marisers d → s(d) shared among them) with the same black-box-simulated examples
�, d →

{
�6

}
, d simply by interpreting differently which random variables are consid-

ered “parameters of interest” (unknown: �6) and which “data” (given: �<6, d). Still, the
choice of autoregressive ordering—dictating how much information is provided through
�<6 to the estimator of �6—is arbitrary, i.e. any factorisation is in principle valid; however,
Anau Montel et al. [14] argue for placing “first” (i.e. with least conditioning) the parame-
ters that can be inferred best solely from data; and moreover, the choice can be automated
(at least somewhat) through model introspection [e.g. 538].

It is important to recognise that the originally defined joint-to-marginal ratio r(�, d) ≠∏
6 r

(
�6,

[
�<6, d

] )
, which appears in eq. (2.17): their ratio is that between the joint priorjoint vs.

marginal prior

65 Even though NRE learns from high-dimensional distributions p(�, d) and p(�) p(d), its performance is
bounded by the size of the smaller among � and d (usually the former) because of eq. (2.14).
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p(�) and the product of marginals
∏
6 p

(
�6

)
. Naturally, this can be learnt66 by another NN,

but as already discussed, any prior can be readily used for NRE inference,67 and the
{
p
(
�6

)}
are easily accessible from simulations; even their densities, being low-dimensional, can be
robustly estimated with traditional techniques— if not already explicitly available due to
the prior structure of the model.

2.2 Inside the black box
The discussion of the preceding section adheres strictly to the principle of sample-based
learning, assuming that the simulator is a black box that can only stochastically draw from
p(�, d) (or possibly from p(d | �fid)). Pure SBI methods, as generally described, are ap-
plicable even in the absence of understanding of the model—or of the scientific goals of
inference—and in the Platonic setting of infinite network expressivity, training data, and
practitioner patience.

In this section, we aim to aid the machine learner cope with sums over limited examples
and gradient descent of weights and biases in lieu of expectations and functional variation;
and to re-attach them to the physical problem they are working on by unveiling the simu-
lator’s internals, extracting additional information from it beyond the values of stochastic
variables, modifying the distributions from which any or all of them are sampled, and ex-
ploiting—or at least referring to— the model’s particular conditional and/or hierarchical
structure.

2.2.1 Augmented training
While methods for learning purely from (�, d)8 ∼ p(�, d) are appealing, liberating, and
general, they can be complemented by additional information extracted from the simu-
lator/model if such is available, increasing the learning efficiency, i.e. the approximation
quality of a NN trained with a given finite number of simulator runs.

Outside of SBI, the joint probability p( , d) = p(d | �, �) p(�, �) and its gradient are
the only available means for inference, and albeit often inconvenient, they are still tractable
for vast classes of models. Moreover, frameworks for probabilistic programming with au-
tomatic differentiation (treated more comprehensively in chapter 9) allow a forward imple-

66 This is essentially the approach adopted by AnauMontel et al. [14, appendix A] through an auxiliary variable
that “switches” between autoregressive inference of the joint posterior and the joint prior with the same
network.

67 ARNRE corresponds to a particular choice of alternative prior p̃(�) = ∏
6 p

(
�6

)
for which the (original-)

posterior-to-prior ratio does factorise as r̃(�, d) = p(� | d)/ p̃(�) = ∏
6 r

(
�6,

[
�<6, d

] )
. From this formula-

tion, it is also evident that ARNRE is invariant to permuting the groups.
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mentation of the model (the simulator) to double as likelihood (joint probability) and score
(joint gradient) evaluator. Brehmer et al. [68, 67, 69] first detailed how these additional
quantities “mined”68 from the simulator can be used to construct conventional supervised
objective functionals that enhance training of summarisers, density, or ratio estimators.

Augmented training makes use of the theorem [309, theorem 4.2.3; see also 69, eq. (6)]
that estimating a joint quantity by minimising the mean squared error (MSE) results in its
conditional expectation:

6∗(1) ≡ argmin6̂ Ep(0,1)
[
|6̂(1) − 6(0, 1) |2

]
= Ep(0 | 1) [6(0, 1)], (2.18)

of which we already saw two examples.69 Identifying 0, 1 → �, (d, �) allows us to ap-
proximate the marginal score70 and the marginal likelihood ratio (eq. (2.13)) from their
counterparts calculated jointly with the nuisance parameters �:

6(0, 1) →∇� ln p(�, d | �) =⇒ 6∗ →∇� ln p(d | �), (2.20)
6(0, 1) → r(�̃, �, [�, d]) =⇒ 6∗ → r(�̃, �, d). (2.21)

Training objectives with eqs. (2.20) and (2.21) substituted in eq. (2.18) can be added in ar-
bitrary proportion (i.e. with a scaling hyperparameter) to the previously introduced expres-
sions: “predicted likelihood” (eq. (2.6)) and the BCE (eq. (2.11)), respectively, increasing
the benefits reaped from any given simulator run.

Notice, finally, that both opportunities for augmentation are in a sense differential: they
allow learning a function at (�, d) from nearby points (� + X� , d) by calculating the ex-
plicit probability for a “trajectory” connecting them through �. While joint-to-marginal
NRE is less amenable to augmentation because the “joint evidence”™ p(�, d) cannot be
evaluated, it already implements a “globalisation” measure to a similar effect by utilising
the marginals as reference distributions.

68 The biggest gold nuggets that can be mined from [107, 68, 67, 497, 69] are the abbreviations Carl, Rascal,
Cascal, Scandal, Alice(s), Sally, & Sallino.

69 namely, the posterior mean estimatorEp(� | d) [�] discussed above (0, 1 → �, d and 6 → �) and the “score”-
matching objective in eq. (2.5), where 0, 1 → x, x̃, and

6(x, x̃) →∇x̃ ln p(x̃ | x)
Bayes’
=⇒

theorem
6∗ (x̃) = Ep(x | x̃) [((((((∇x̃ ln p(x | x̃) +∇x̃ ln p(x̃)], (2.19)

since the first term famously vanishes as the data-averaged score, and the second does not depend on the
random variable x, so its expectation is trivial; cf. also the more general theorem 4.1.1 in [309] that we
applied to arrive at eq. (2.6)

70 This is equivalent to the “score”-matching eq. (2.19), but there an auxiliary variable (x̃↔ d) must be intro-
duced to establish the necessary conditional structure.
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2.2.2 Sequential training
Inference amortisation—i.e. training with diverse simulated data sets—comes at the price
of precision in the results for any one example, typically manifesting in weaker71 than
optimal constraints. This issue is similar to that of rejection-ABC: Ymust balance simulator
efficiency against the mixing of results from do+Xd; in modern SBI methods, a similar role
is assumed by the network’s interpolation capability and the density of training examples.
First introduced exactly in the context of ABC [479], sequential (targeted) training attempts sequential SBI
to improve the fidelity of the posterior approximation by focusing the simulator on examples
from the vicinity of the observed do.

In practice, often the only handle of control over the simulator is the sampling of �,
and so sequential methods amount to choosing a proposal prior p̃(�) so that the resulting proposal prior
distribution of mock data p̃(d) ≡

∫
p(d | �) p̃(�) d� assign a larger density72 to do than the

original p(d), i.e. a larger fraction of the training data be similar to do. At the same time,
p̃(�) must ensure that it also faithfully represents the � values associated with do, so the
usual choice for a parameter proposal is the current posterior estimate: p̃(�) ← q(� | d).
Given the new proposal, the estimator is iteratively retrained with a new training set from
p̃(�, d) ≡ p(d | �) p̃(�) until some convergence criterion is met (e.g. the estimate does not
change/improve noticeably).73

As already discussed, SBI methods that estimate the likelihood (NLE and NRE) can
train with samples from any p̃(�, d) ≡ p(d | �) p̃(�), and their result (provided idealised
convergence and matching support between p(�) and p̃(�)) will not change. Of course,
when performing inference on any particular example do, the originally intended p(�) must
be used.74 In contrast, methods for direct posterior estimation ingrain the distribution used
for training into the final result, so sequential NPE needs to re-weight the resulting posterior

71 That both NPE and NRE tend to be conservative can be understood informally by considering their learning
objectives eqs. (2.6) and (2.14): for a randomly initialised network, there is no preference for assigning
high probability to any one given �, or to classifying a (�, d) pair as either joint or marginal particularly
confidently, and so untrained estimators tend to represent the prior, i.e. they are unable to extract any useful
information at first and learn to do so increasingly well with training.

72 The largest p̃(do) is achievedwhen the proposal consists only of theMLE: p̃(�) → X
(
� − argmax� p(do | �)

)
.

Moreover, and more importantly in high-dimensions, it is also desirable that do is in the typical set of p̃(d) typical set
(containing the examples that the NN can learn best), which usually does not include the single highest-
probability values. We discuss and demonstrate this further in appendix 17.

73 Sequential SBI methods thus hover on the border of improper posterior-as-prior reuse in the same analysis,
i.e. “double counting” the data—and cross it multiple times in both directions.

74 But compare with ARNRE, which modifies the inferred likelihood/sampling distribution: p(d | �) →∏
6 p

(
�<6, d

�� �6) , and so also requires a modified prior
∏

6 p
(
�6

)
to be used in inference.



36 Chapter 2. Neural simulation-based inference

p̃(� | d) to arrive at the correct

p(� | do) = p̃(� | d)p(�)
p̃(�)

p̃(do)
p(do)

=⇒ q(� | do) ≡ q̃(� | do)
p(�)
p̃(�)

p̃(do)
p(do)

, (2.22)

where q̃(� | do) is the NPE trained with p̃(�, d). This correction invalidates the simple pro-
cedure57 for evaluating HPD credibilities and requires at least p(�)/ p̃(�) to be taken into
account when evaluating the posterior, bymultiplying a numerical q̃(� | do) or re-weighting
samples (the evidence ratio p̃(do)/ p(do) can be treated as a proportionality constant). Al-
ternatively, the correction can be applied during training via a modified objective

argmaxqEp̃(�,d)

[
p(�)
p̃(�) ln q(� | d)

]
given

∫
q(� | d) d� = 1. (2.23)

The optimal q(� | d) in this case is again the correct p(� | d), restoring all its original con-
venience. Moreover, training with a finite-sample approximation of eq. (2.23) can have
reduced variance with respect to eq. (2.6) if p̃(�) is chosen to be largest in the same re-
gions as p(�) ln p(� | d), as is well known from the theory of importance sampling [293],importance

sampling justifying the use of p̃(�) ← p(� | do). Yet, the variance of eq. (2.23) may still be high
since a simple transformation p(�) → p̃(�) cannot in general be optimal for all d.

Prior truncation

De-biasing sequential inference through importance re-weighting (either in training or dur-
ing evaluation) requires that the prior and proposal (or at least their ratio75) be tractable. A
simpler, yet often as effective, technique is prior truncation [359, 122]76:truncated prior

p̃) (do) (�) =
{

p(�)/2 if � ∈ ) (do),
0 otherwise;

with � ∈ ) (do) ⇐⇒
{

p(do | �) ≈ 0,
p(� | do) ≈ 0,

(2.24)

and the normalisation 2 ≡
∫
) (do) p(�) d�. As opposed to prior transformation, truncation

keeps p(�)/ p̃(�) constant while still restricting � samples to the region ) (do) of parame-truncation
region ter space that is relevant to a given observation. It corresponds to slicing through the joint

as illustrated in fig. 2.1, thus naturally enhancing the importance of retained parameters
and reducing the variance of simulated mock data. The effect on posteriors—perpendic-
ular slices through the joint— is minimal: they are simply re-scaled by the factor of the
retained mass inside ) (do); for do, this is by design close to unity but can be arbitrary for
other d̃ ≠ do. Nevertheless, since likelihood ratios are, naturally, retained, inference is
said to still be locally amortised, and thus, validation with credible regions can still be per-local

amortisation 75 that can, of course, be estimated from samples using NRE
76 introduced first in the context of NRE and then co-opted essentially without modification in NPE
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Figure 2.1: Elements of truncated Bayesian reasoning (cf. fig. 1.1).

formed, provided they fall fully within ) (do). However, the marginal data distribution is
arbitrarily distorted, depending on the discarded posterior mass for d̃; this can have dire un-
desired consequences, especially for high-dimensional parameter spaces, which we discuss
in appendix 17.

Defined in terms of the posterior and likelihood, which in generalmay not fully decrease
to 0, the truncation region is in practice constructed from the—assumed imperfect—best
neural estimates thereof. The approximate bound that is used either controls the likelihood
(relative to the maximum at �MLE) inside ) (d) to be higher than a pre-defined Y:

� ∈ ) (do) ⇐⇒ Y ≤
{
r̂(�, �MLE, do),
r̂(�, do)/r̂(�MLE, do);

(2.25)
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or the credibility of ) (d) to be arbitrarily close to unity:∫
) (do)

q(� | d) d� = 1 − Y. (2.26)

In this latter case, a degree of flexibility remains in choosing) (do); themost popular choice
is the corresponding HPD region that can be easily determined from a NPE and has the
minimum volume for a given Y. In contrast, for a posterior derived from a ratio estimator
(via (weighted) sampling) the natural ordering is according to the likelihood, leading to
highest-likelihood (HL) credible regions. Since all these alternatives should lead to theHL credible

region same result p̃(� | d) ≈ p(� | d), the choice is a matter of convenience.
Now that ) (do), has been determined, it remains to be applied to the simulator in a

successive truncation stage. The concrete procedure is highly dependent on the imple-truncation stage
mentation of the simulator, the dimensionality of �, and the shape of the truncation region.
In the simplest case of one-dimensional analytic p(�), samples from p̃) (do) (�) can be ob-
tained via inversion of the cumulative distribution function; we discuss this and other more
general procedures in subsection 9.1.2. In any case, rejection sampling is a viable option,
especially if parameters can be quickly proposed and accepted/rejected before the expen-
sive part of the simulator is initiated.

Active learning

A general alternative to sequential training is active learning, a method of Bayesian optimi-Bayesian
optimisation sation and decision-making [166] that does not target distillation in parameter and/or data

space and does not proceed in stages but rather continuously and deliberately proposes the
� values for which the result is sub-optimal. Since this results in a complicated and in-
tractable effective p̃(�), active learning is generally applied for NLE, with two classes of
acquisition rules considered: local (targeting inference from a particular do) and globalacquisition rule
(optimising emulation across the parameter space). Similarly to summarisation methods
(cf. eqs. (2.1) and (2.2)), these aim to maximise, respectively, precision and mutual infor-
mation [243, 330]. The optimisation in this case is with respect to the parameter value to
be sampled and needs to consider the uncertainty in the unconverged NN result, calculated
either using an ensemble or Bayesian neural network (BNN).ensemble / BNN
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2.3 Verification of amortised SBI
Besides scalability and flexibility, the other foundational advantage of SBI—in most of
its forms—over likelihood-based techniques is amortisation: the ability, after the upfront amortisation
cost of training, to rapidly analyse different data assumed to follow the same generative
model. Put otherwise, training in SBI teaches a procedure for performing inference77 that
can later be applied to i.i.d. observations from the real world or to different simulated data
in a variety of ways that can improve the final results from the target do. This is particularly
appealing to space scientists, who have long lamented their inability to perform controlled
experiments: they can on mock data.78

2.3.1 Training diagnostics
It is standard practice in deep ML to diagnose training using a validation set, explicitly validation set
extracted as a random sub-sample of the training data. This is crucial if simulation is com-
putationally intense or the training set is externally produced—or a set of “labelled” real-
world observations is used—and only limited samples from p(�, d) are available. During
optimisation, the same objective functional is evaluated separately with these “held-out”
examples to test for convergence and prevent overfitting. When, conversely, the simulator
is sufficiently “cheap” as to be callable online during training, i.e. at will when requested online training
by the optimiser, a permanent training set is never established, so a separate validation step
is not necessary.

Particularly to NRE, two other diagnostics are available, corresponding to global prop-
erties of the optimal classifier that are not strictly enforced; namely, following its definition
in eq. (2.14), the joint-to-marginal ratio satisfies

posterior normalisation: Ep(�) [r(�, d)] = 1, ∀d, (2.27)
likelihood normalisation: Ep(d) [r(�, d)] = 1, ∀�. (2.28)

While these are necessary criteria for a NN approximation r̂ to be optimal, they are not
sufficient, and even the trivial classifier r̂(�, d) = 1 (which does not extract any information
and returns the prior) fulfills them. Lastly, compliance with these normalisation conditions
can be explicitly promoted during training through a balancing objective [123], e.g. balanced NRE

77 hence our insistence on calling the learning objective a functional: because the NN represents a function
from data to some final result (likelihood, posterior, ratio) rather than the result itself, which is the goal of
likelihood-based methods

78 Of course, mock data cannot lead to scientific discovery like experimentation in the physical world. This
section will, therefore, remain firmly rooted in the assumption that the underlying model is a veracious rep-
resentation of the real Universe, and all performance verification methods discussed will be applied with
respect to that given model, leaving the question of its possible mis-specification to future work. model mis-

specification
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argminr̂

(
Ep(�,d)

[
r̂(�, d)

1 + r̂(�, d)

]
+ Ep(�) p(d)

[
r̂(�, d)

1 + r̂(�, d)

]
− 1

)2
, (2.29)

which penalises extreme ratios, i.e. overconfident results, while preserving the Bayes opti-
mal classifier as the global solution.

2.3.2 Coverage tests (P–P plots)��������� SICRET

After training is complete, amortisation79 allows us to verify and enforce certain prop-
erties of the inference procedure learnt by the NN so as to comply with the established
(Bayesian and frequentist) interpretations of “probability”. Specifically, we can examine
empirically (i.e. by analysing test data dt with known “true” parameters �t simulated ac-
cording to p̃(�t, dt)) the nominal credibilities under the approximate posterior q(� | dt)80:credibility

(nominal)
Wq(�t, dt) ≡

∫
Γ(�t,dt)

q(� | dt) d� , (2.30)

of given regions Γ in parameter space that include �t. As with truncation, the definition of
Γ is a matter of convenience, and most commonly, the HPD or HL region bounded by �t:

� ∈ ΓHPD(�t, dt) ⇐⇒ q(� | dt) ≥ q(�t | dt), (2.31)
� ∈ ΓHL(�t, dt) ⇐⇒ q(� | dt)/ p(�) ≥ q(�t | dt)/ p(�t) , (2.32)

is chosen for NPE or NLE/NRE, respectively.
Note that W is a deterministic scalar-valued function of �t and dt, i.e. a test statistic81 thattest statistic

encodes the inference procedure. Therefore, its cumulative distribution function (CDF), re-
sulting from the sampling of verification examples according to p̃(�t, dt), can be interpreted
as the coverage frequency of regions with a given nominal credibility W∗:coverage

frequency
(empirical)

Fp̃(W∗) ≡
W∗∫

0

Ep̃(�t,dt)
[
X
(
W′

�� Wq(�t, dt)
) ]

dW′ = Ep̃(�t,dt)
[
1
(
W∗ > Wq(�t, dt)

) ]
. (2.33)

Thus, the aptly named probability–probability (P–P) plot [see e.g. 173, section 4.8]P–P plot
79 In principle, the same procedures can be implemented for any non-amortised likelihood-based inference

technique as well, but at an immense computational cost.
80 represented as q(dt | �) p(�) or r̂(�, dt) p(�) for NLE or NRE, respectively; in any case, the procedures we

discuss here can be implemented with weighted samples (in sufficiently low dimensions so that sampling is
reasonably dense), so they are independent of the particular inference approach

81 A test statistic is like a summary s(d) but is also allowed to depend on the model (i.e. sampling-distribution)
“label” �.
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depicting F(W) can be used to confront the nominal credibility (posterior probability) as-
signed by approximate inference with its empirical properties. If F(W) > W, inference is
said to be conservative: results cover the “true” values more frequently than expected; and
if F(W) < W, on the other hand, it is said to be undercovering. Moreover, these statements
can be made in both Bayesian (FB) and frequentist (Ff) contexts by choosing appropriate
p̃(�t, dt).

Bayesian validation [105, 500, 214] A Bayesian interpretation of the empirical frequen-
cies can be made with validation data (and true parameters) simulated from the original
model: p̃→ p(�t, dt). Then, after defining the inverse mapping W−1

q (W∗, dt) as the ΓHPD/HL

that has nominal credibility W∗, given dt, so that

�t ∈ W−1
q (W∗, dt) ⇐⇒ W∗ > Wq(�t, dt), (2.34)

eq. (2.33) can be rewritten as

FB(W) ≡ Ep(dt)
[
Ep(�t | dt)

[
1
(
�t ∈ W−1

q (W, dt)
)] ]

. (2.35)

That is, a Bayesian P–P plot depicts the true credibility (mass of the true posterior), av- true credibility
eraged over all possible data, in regions of nominal W∗. While an exact posterior estimate
(q(� | d) → p(� | d)) naturally leads to a perfectly diagonal FB(W) → W, a variety of other
distributions have exactly the same property as well due to the mixing of the “analysis re-
sults” of different data, with different true parameters, within the expectation over p(dt).82
A trivial example is the prior, for which:

q(� | d) → p(�) =⇒ FB(W) → Ep(�t)
[
1
(
�t ∈ W−1

p(�) (W)
)]

= W. (2.36)

Consequently, a Bayesian P–P plot can serve as a diagnostic tool (cf. normalisation(s) of a
NRE) to identify improper learning but does not provide a direct means for rectifying it, and
so Bayesian inference remains approximate. Still, If the credible regions are constructed
according to the distance to random point (DRP) method [317], a diagonal P–P plot can be
made a sufficient condition for q(� | d) = p(� | d), but we will not explore this possibility.

����� Frequentist calibration Exact inference from possibly approximate results can be
achieved by re-defining inference. Instead of (posterior) probability densities, frequentist
statistics aims to produce regions � in parameter space with prescribed confidence (empir- confidence

(prescribed)
82 Delaunoy et al. [123] illustrate this point exactly by referring to ABC losing constraining power as the band-

width Y →∞.
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ical frequency) z of covering fixed true parameters �∗. Since the latter are unknown, and
� needs to be constructed solely from dt, the procedure needs to satisfy

Ep(dt | �∗) [1(�∗ ∈ �z(dt))] = z for all �∗ and z. (2.37)

This is a more constraining property that credible regions Γ = W−1
q (z, dt) are not guaranteed

to have, even when the true posterior is used since the expectation is taken over distributions
of data instead of parameters (and is not a probability mass like FB)—unless p(� | d) and
p(d | �) are trivially related, i.e. the prior is uniform.

Instead, confidence regions are usually derived via the Neyman construction [381] after
identifying a test statistic: usually the likelihood83 [114, 115, 351], which leads to smallest
� as per the Neyman–Pearson lemma [382]. The above discussion presents another oppor-
tunity: using the approximate credibilities of HPD/HL regions instead. If the prior of � is
uniform—and the approximate posterior is exact—, the two choices are equivalent since
the nominal credibilities are, in that case, monotonic with the likelihood. Otherwise, the
procedure we describe below takes into account the effect that the prior has on posterior
credibility and corrects for it implicitly. It also does awaywith concerns over the inaccuracy
in q(� | d)—i.e. incorrect coverage of credible regions—since any Neyman-constructed �
has guaranteed exact confidence.

Strategy 1. Building a confidence set from an approximate posterior:strategy 1

1. first, calculate a series of frequentist P–P plots

Ff (W | �∗) ≡ Ep(dt | �∗)
[
1
(
�∗ ∈ W−1

q (W, dt)
)]

(2.38)

for different fixed parameters �∗ across the support of the prior (i.e. the parameter
space); to this end, either explicitly generate test data {dt} from a conditioned simulator
p(dt | �∗) for each of a set of pre-defined values for �∗ (e.g. a grid), which requires a
very large number of simulations; or obtain a smoothed kernel-based approximation:

Ep(dt | �∗) [ 5 (�∗, dt)] = lim
 →X

Ep(dt | �t)U(�t) [ (�t | �∗) 5 (�t, dt)],

using a more reasonable number of random test examples �t, dt ∼ p(dt | �t)U(�t),
each of which contributes to the P–P plots of all �∗ near the sampled �t;

83 Frequentist inference considers the maximal (profiled) likelihood over the nuisance parameters, in keepingprofile
likelihood with the Neyman–Pearson lemma, whereas we always mean to marginalise them, or rather, avoid defining

them in the first place, relying on black-box simulation.
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2. then, given a confidence level z, derive the map of “threshold” credibilities Ŵ(�∗, z)
defined to satisfy Ff (Ŵ | �∗) = z (in practice, simply intersect each frequentist P–P
plot with z); this corresponds to defining a lower bound for the approximate posterior
density/likelihood (when using HPD/HL regions);

3. finally, for any given data, e.g. do, collect into the confidence set those � that bound
a nominal credibility smaller (i.e. have posterior density/likelihood larger) than the
“threshold”:

�z(do) ≡
{
� : Wq(�, do) ≤ Ŵ(�, z)

}
, (2.39)

with the interpretation84 that this construction dt → �z(dt)—and not this particular
�z(do)—includes with frequency z over dt ∼ p(dt | �o) the true parameters �o that
generated do, regardless of the true value �o.

�

Wq(�, do)

z

W−1
q (z, do)

Ŵ(�, z)

�z(do)

0

1

�

cr
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�∗ �∗ �∗

z

�∗

cr
ed

ib
ili

ty
,W

empirical coverage, Ff (W | �∗) Figure 2.2: (��� SICRET) Procedure for obtaining frequen-
tist confidence regions with exact coverage from an approxi-
mate amortized Bayesian posterior.
Top: by repeated draws of dt at fixed �∗, we obtain samples
for W(�∗, dt), from which we build its empirical cumulative
distribution, Ff (W | �∗) (red lines). The “threshold” Ŵ(�∗, z)
for regions to cover �∗ exactly with a given frequency (confi-
dence) z are indicated with green dots and determined as the
zth quantiles of Ff . The green line in the bottom panel con-
nects the dots at all �∗.
Bottom: �z(do), the region with confidence level z con-
structed from the observed data do, is that in which the
approximate credibility bounded by �: Wq(�, do) (red), is
lower than the threshold: Ŵ(�, z) (green). For comparison,
if q(� | d) matches the true posterior—and a uniform prior is
used—Ŵ(�, z) is constant across all � and equal to the tar-
get confidence level (purple line), so � matches the region
W−1

q (z, do) with credibility z.

84 that is apparently useful or sensible to frequentists…but consider that parameters and repeatability/exchange- frequentist

statisticsability are mathematical constructs, and transferring them to the “real” world (by designating true values)
does them as much a disservice as the projection of real objects onto the walls of Plato’s cave





Chapter 3

Neural simulation-based model selection

3.1 Bayesian model selection
Bayesian model selection85 is— simply—marginal inference of a superglobal categori- categorical

(discrete)
variable

cal hierarchical parameter M ∈ {"<}#mod
<=1 , and as such, it aims to derive the posterior

probability distribution p(M | do) given observations.
model posteriorAs in any Bayesian context, before confronting the data, a model selector must adopt

some model prior p(M), but since the domain ofM is discrete, a uniform prior p("<) = model prior
1/#mod is assumed in practically all cases; the alternative, of course, is to (re-)use a non-
trivial model posterior p

(
M

�� dprev
)
from a previous analysis.

"<

p(M) M

p(d | �,M)

 <

…

 2

 1

�

d

p(� | M)

Figure 3.1: Model selection as marginal super-
global inference with a Bayesian supermodel.
Note that the  < cannot be regarded as pa-
rameters in themselves: they represent the rel-
evant subsets of  = ∪< < that influence the
sampling distribution, given a particular value
M = "< (rather than any value of the  in con-
ventional BHMs); as a consequence, the dashed
lines indicate different execution paths, rather
than conditional structure.

85 We will use this terminology for its visual/aural qualities (in juxtaposition with the terms “simulation” and
“supernova”) but will be interested in inference over all models and not in simply selecting one.
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The central object of model selection, thus, is the model evidence86 p(do | M). Eval-model evidence
uated for a single given "<, however, it is meaningless: its value can be made arbitrary
by re-parametrisation of d. Instead, at least two models need to be compared through the
model-evidence ratio: p(do | "1)/ p(do | "2) , also known as Bayes factor, which is invari-Bayes factor
ant to the chosen data representation. Interpretation of Bayes factors—or posterior oddsposterior odds
p("1 | do)/p("2 | do) in case a non-uniform model prior is used— is notoriously subjec-
tive and usually qualified, following Jeffreys [250], on a scale from “not worth more than
a bare mention” to “decisive”. Such labels, however, are not necessary: the Bayes factor
is quantitatively the ratio of the probabilities that (the forward models associated to) each
model generate data d ≈ do.

Naturally, each "< may be parametrised by  <, which can, in general, be different in
size and/or composition and not necessarily disjoint.87 For the purposes of model selection,
however, they are all nuisances: ∪< < → �, and the problem can be familiarly restated
as inference of a single parameter of interest M → � in a Bayesian supermodel™, asBayesian

supermodel™ depicted in fig. 3.1, with a superjoint probability

p
(
M,

{
 <

}
, d

)
= p

(
d
�� { <}

,M
)
p
({
 <

} ��M)
p(M). (3.1)

This model can be sampled, but its peculiar and possibly trans-dimensional33 structure re-trans-
dimensional
MCMC

quires specialised—and very sophisticated—MCMC proposals [186, see also 16, 187].88
Instead, the discreteness of "<—which otherwise precludes the use of gradient-based
techniques— is usually exploited through enumeration, i.e. explicit independent calcula-
tion of

p(do | "<) =
∫

p
(
do

��  <, "<

)
p
(
 <

��"<

)
d < , (3.2)

for each"<, typically via nested sampling. This separates the execution traces and presents
a well-defined set of nuisances to be integrated out in each case–but, unlike sampling,
focuses on individually meaningless values and provides no mechanism for steering the
computational effort to the relevant (high-posterior-probability) models.

Whichever the technique employed, evidence-basedmodel selection echos the deficien-
cies of likelihood-based inference: disastrous scalability89 to high-dimensional parameter

86 Note that this is not the evidence p(do) =
∑#mod

<=1 p(do | "<) p("<), which is, as always, ignorable.
87 In case a certain parameter � ∈ ∩< < figures in all models, its model-averaged posteriormodel-averaged

posterior ∑#mod
<=1 p(� | do, "<) p("< | do) might be of scientific interest [e.g. 562]. This is nothing more than marginal

nuisance-parameter inference.
88 Of course, when the evidences of a large number #mod of models are magically tractable,M can easily be

marginally sampled [e.g. 469].
89 State-of-the-art NS methods of evidence calculation boast [e.g. 199, fig. 7] applicability to “hundreds” of

parameters, which can easily be exceeded even in non-hierarchical settings.
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spaces (especially for hierarchical models of numerous i.i.d. objects) and a reliance on the
tractability of the likelihood(s) and prior(s) and on explicit model parametrisations.

3.2 Simulation-based model selection ��������� SimSIMS

Model selection is a (discrete-)parameter inference task that can be accomplished with the
usual SBI tools90 trained on examples {(M, d): }#train

:=1 simulated from the p(M, d) that cor-
responds to eq. (3.1). In practice, this involves picking a model "< ∼ p(M) at random
from the model prior and then generating a d from the respective supersampling™ distri- supersam-

pling™
distribution

bution p(d | "<).
Recall, now, that we already discussed model selection! Replacing ; →M in eq. (2.10)

and letting it extend over {"<} instead of only {1, 2}, we can approximate the model pos-
terior with a q(M | d) that optimises

Ep(M,d) [ln q(M | d)] =
#mod∑
<=1

p("<) × Ep(d | "<) [ln q("< | d)] . (3.3)

(The prior factors p("<) are implicitly encoded in the abundance of training data from
each model.) The q(M | d) can be any valid categorical distribution: e.g. Radev et al.
[432] use a NN-parametrised regularised91 Dirichlet; more commonly throughout the ML
literature (and advocated by Radev et al. [432], Elsemüller et al. [143] for simulation-based
model selection), the NN is designed as a multi-classifier that directly outputs the (unnor- multi-classifier
malised log-)probabilities for all models: [ln r̂< (d)]#mod

<=1 , as unconstrained real numbers,
which are then again explicitly normalised:

q("< | d) ≡ r̂< (d)
/#mod∑
:=1

r̂: (d) . (3.4)

This parametrisation differs very slightly from a ratio estimator—which has #mod − 1
outputs (e.g. eq. (2.12) for #mod = 2), and one distribution is considered the “basis” of
comparison— in a way that does not matter to infinitely expressive networks trained on
limitless data sets. Nevertheless, many further ML tricks and alternative objective func-
tionals, recounted by e.g. Rosasco et al. [455], Jeffrey & Wandelt [248], can be employed
to (attempt to) improve performance, should the need arise in practice.

90 Alternative ML methods for evidence estimation based on posterior samples have been developed by e.g.
Heavens et al. [209], Jia & Seljak [255], McEwen et al. [353], Srinivasan et al. [491].

91 Their aim is to penalise confident model posteriors for data that is not representative of the simulator. We
will never consider such possibility… in this thesis.
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3.2.1 Verification of amortised model selection
Just like amortised (continuous-)parameter inference, properties of the approximate model
posterior q(M | d) can be tested and verified using validation data unseen during training.
Since the model space is discrete, we do not need to define “credible” or “confidence”
regions and can directly examine instead the probability (mass) apportioned to the truetrue model
model from which mock data has been simulated. This motivates two diagnostic tools
distinct from the ones presented in section 2.3: refinedness and reliability diagrams [120].

Refinedness is the average (approximate) posterior derived from data simulated accord-average
posterior ing to a given model:

Refinednessq(M | "<) ≡ Ep(dt | "<) [q(M | d)] . (3.5)

A refined (well trained) classifier would assign the most probability to the “correct” model,
leading to a pronounced diagonal. But unlike in usual ML applications,92 in which there
is usually a clear distinction between classes, i.e. the supports of each p(d | "<) are as-
sumed to not overlap— the “cat” model never produces an image that can be mistaken for
a “dog”—, Bayesian comparison of scientific models is in general expected to assign non-
zero posterior probability to all "< (i.e. produce non-zero off-diagonal entries), especially
in the presence of significant noise. Concretely, the refinedness of the true model posterior,

Refinednessp(M | "<) ≡ Ep(d | "<) [p(M | d)] =
Ep(d) [p("< | d) p(M | d)]

p("<)
, (3.6)

is the “covariance” of the posterior probabilities, considered as functions of data. The
prominence of the diagonal, therefore, depends both on how well q(M | d) approximates
p(M | d) and on how powerful the data inherently is in distinguishing the models.

Lastly, note from eq. (3.6) that Refinednessp(M | "<) ×p("<) is symmetric and sums
to the model prior both across rows (

∑
"<
→ p(M)) and columns (

∑
M → p("<)),

presenting two additional summary diagnostics that a converged q(� | d) must satisfy (the
row-wise normalisation is always ensured by the explicit normalisation).

Reliability is a neither-Bayesian-nor-frequentist P–P plot. It specifies a fixed “region”
in “parameter” space, i.e. a model "<, and a ?∗ ∈ [0; 1] and considers only those test

92 Classification performance in ML is often illustrated through a confusion matrix, which is equivalent to aconfusion
matrix refinedness diagram but the posterior estimator is first degraded into a delta distribution at the top-ranked,

i.e. most probable model.
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examplesM, d ∼ p(�, d) that lead to an approximate posterior probability of "< equal
to93 ?∗; it then determines the fraction among them that came fromM = "<: fraction

(empirical)
Reliabilityq("<, ?∗) ≡ p(M = "< | q("< | d) = ?∗). (3.7)

Thus, q("< | d) is treated as a deterministic function, corresponding to the credibilities
W(�, d) of section 2.3, but with Γ(�, d) → "<. One peculiar consequence of this is that
the reliability diagram is not guaranteed to span the whole range ?∗ ∈ [0; 1]: consider e.g.
completely uninformative data, for which the true model posterior is always equal to the
prior, leaving the reliability undefined except for at ?∗ = p("<). Where defined, how-
ever, a theorem94 [119] assures that a “well-calibrated”, i.e. exact, approximate posterior
q(M | d) → p(M | d) produces diagonal reliability plots: Reliabilityp("<, ?∗) = ?∗, for
any "<, i.e. any fixed “region” in “parameter” space. Indeed, this discussion resonates
with the natural interpretation of posterior probability.

3.2.2 Occam’s razor
Aristotle’s razor— the principle of ontological parsimony—professes the superiority of
inference (logical demonstration) from “fewer postulates, hypotheses, or premises” [17],
which has been interpreted, by the “orthodox” [245] school of statistics, as referring to
the multiplicity of model parameters.95 The motivation for this reading comes from the
so-called Bayesian information criterion (BIC) [470], which is related to the evidence of a BIC
BHM with # parameters, Gaussian marginal likelihood (in the sense of eq. (1.8); alter-
natively, any BHM with #obj →∞), and uniform prior (in the vicinity of the MLE):

p(do | "<) → p
(
do

�� MLE
)
×

(
2c
#obj

)#
× . . . (3.8)

93 in the vicinity of, since reliability diagrams are primarily a practical tool, and exact conditioning is impossible
on (non-categorical) samples

94 A theorem by Dawid [119] states that if an infinite number of independent events {Mt = "<}#t are consid-
ered, each of which having a certain (possibly different) probability, then the overall fraction of “successes”
equals the average probability:

qt ≡ q(Mt = "< | dt) =⇒ 1
#

∑
t 1(Mt = "<) → 1

#

∑
t qt as # →∞,

as long as the choice of events is independent of their outcome (lest the theorem be foiled by Maxwell’s
dæ mon). The reliability diagram is a special case where the selection is based on qt = ?∗ (note this does
not imply knowledge of the realisation ofMt). To a Bayesian—even a “well-calibrated” [119] one— , this
must sound absurd (and obvious): there are no realisations and fractions, just indicator variables that take
deterministically the values ∈ {0, 1} and expectations.

95 Jeffreys [250] places “the onus of proof [… ] on the advocate of the more complicated hypothesis,” meaning
one that introduces “new parameters in laws”.
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(ignoring terms independent of data and its size), indicating that models with fewer #
that can still assign as much probability to the observed data are preferred in the Bayesian
sense.

In less asymptotic scenarios, the principle attains a fundamentally different—and, ar-
guably, more significant—form. In fact, consider the evidence of anymodel, as in eq. (3.2):
values with vanishing likelihood but considerable prior probability still contribute to the
integration by reducing p

(
 <

)
in regions where the  < support do. The prior mass in

the latter (arbitrarily delineated) is called the Occam factor [190, 335, fig. 28.5], and theOccam factor
corresponding razor shaves off not parameters per se but superfluous parameter values—
more precisely, their prior probabilities.

But alas, recall that parameters are auxiliary constructs introduced to ensure tractabil-
ity of likelihood-based calculations. To SBI (essentially marginal), their existence is not
necessary, and exactly in this light do we— diSBIdents™— read William of Ockham’s
nominalist philosophy: “There is no universal [� or  ] outside the mind really existing
in individual substances [p(do | ) or p(do | M)] or in the essences of things [p(d | ) or
p(d | M)],” [272].

Instead, Bayesian model selection is directly concerned with the marginal sampling
distribution of the data variable, p(d | M), and automatically enforces parsimony on it; for
a model that generates a priori a large variety of data— regardless of whether by means
of a wide range of allowed parameter values or a large multiplicity thereof— cannot as-
sign a too-high probability to any of them and so will be renounced in favour of another
more specialised one [335, fig. 28.3]—provided that the latter, by chance or design, has
specialised exactly onto the observed realisation do.96

Still, for the “mind”, i.e. simulator/model/model-builder, parameters are an essential
concept, and the amortisation of simulation-based model selection offers a unique perspec-
tive on their impact and a motivates handle of control on Occam factors, as we describe
next.

96 Curiously, this may seem to contradict the principle that Aristotle [17] establishes immediately before orig-
inally formulating Occam’s razor in his Posterior Analytics: “universal demonstration is superior to partic-
ular”l a model that can predict a greater variety of observations should be preferred. However, to Aristotle,
“universal” concepts in fact bear the greatest specificity since they are defined in the purest/most precise
terms. That is, if our data = “the sum of this figure’s interior angles equal two right angles” and the models
are that it is either a “triangle” or an “isosceles triangle”, we should prefer the former since its “sampling
distribution” predicts little else than what has been observed, just as Aristotle would have us.



3.2. Simulation-based model selection 51

Visualisation with amortisation

The discussion of Occam factors is particularly relevant to comparisons of nested models97 nested models
("1 ⊂ "2), which share the same sampling distribution but represent different parameter
spaces, one a subset of the other. Often, for example, the “simplified” "1 fixes98 certain
parameters �f that e.g. control the strength of effects only considered in "2 to a specific
value �∗f (e.g. zero) instead of floating (i.e. inferring from data) them.

Now, the data generated by "1 will in general be much more concentrated than that by
"2 (see fig. 3.2), and any realisation from the latter that gets scattered due to noise within
the high-density regions of p(d | "1) will lead to an erroneous preference for the former—
a so-called type II error: the failure to reject the null hypothesis ("1). Minimising the
prevalence of such instances is the goal of experimental design, and so the extent " around experimental

design�∗f of the region in which this effect is expected is an important quantity, interpretable as a
detection limit. It can be determined by balancing two factors: the amount of noise, i.e. the detection limit
overlap between p

(
d
�� �∗f , "2

)
and p

(
d
�� �∗f + ", "2

)
, causing the data confusion99; and the

amount by which p(d | "1) = p
(
d
�� �f = �

∗
f , "2

)
dominates the marginal p(d | "2), which

depends on the additional parameter space considered by the latter: again, see fig. 3.2.
While detection limits are difficult to calculate from first principles for all but the sim-

plest models, they can be obtained by applying model selection to mock examples from
"2 with known true �f. Importantly, since the mapping �f → d is non-deterministic, the
posterior model probabilities and the Bayes factor cannot be expressed or depicted directly
as a function of �f; instead, the average trend (i.e. the weighted mean of the arrows in
fig. 3.2) needs to be extracted from analyses of numerous mock examples, ruling out the
possibility of likelihood-based (e.g. NS) evaluation.100 With amortised simulation-based
model selection, on the other hand, such exploration is trivial and requires nothing more
than plotting the validation results—which are anyway calculated during / at the end of
training as part of good ML practice. We show examples from our application to SNæ in
fig. 13.2.

97 In fact, some authors [e.g. 329, 547] consider ab initio the Occam factor as the contribution to the Bayes
factor of nested models formed by the ratio of their prior volumes.

98 One might rightfully, in this case, consider the models to have a different number of parameters altogether.
99 Conversely, data with true �f = �

∗
f from any of the two models may assign significant posterior probability

to various �f under model "2. This has given rise to a deplorable approach to nested-model comparison via
the posterior probability of �∗f under the augmented model. Crucially, this does not take into consideration
the Occam factor in any way—but is also, consequently, insensitive to the considerations presented below
regarding the amount of extra space.

100 An extremely laborious—and still approximate—poor man’s attempt at examining using likelihood-based
methods the distribution of Bayes factors in (hyper)parameter space is present in Benito et al. [38, fig. 10]
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`1 `2 `3 data, 3
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"1 : ` ∈ {`1}
"2 : ` ∈ {`1, `2}
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Figure 3.2: Marginal sampling distributions / evidences of three nestedmodels"1 ⊂ "2 ⊂
"3 as a function of the data variable. The models are mixtures of up to three distributions
at different locations: ` ∈ {`1, `2, `3}, which can be viewed as a simplified parameter
space, different portions of which are included in each model. Top: a given model is pre-
ferred over another when its p(3 | "<) is higher. The additional parameter/data space in
"3 with respect to "2 makes it less preferred in regions around `1, in which the two mod-
els are essentially the same—up to the normalisation—, “pushing” the decision boundary
further in parameter/data space from `1. Bottom: Arrows depict the possible Bayes factors
p(3 | "3)/ p(3 | "1) inferred from data sampled from ` = `2 (dashed in the top plot; the
arrow opacity follows the density/prominence of data at 3). Thus, even at “fixed parame-
ter”, i.e. mixture component, model comparison results may greatly vary depending on the
“noise” realisation. Nevertheless, the general trend is that the further in parameter space
the data is sampled from (e.g. at `3), the less likely it is that the Bayes factor will prefer the
restricted model.
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���� Occam’s axe™: truncation for model selection

Similarly, we previously aimed our truncation axe exactly at the same parameter-space
regions with exactly the same goal: increasing the marginal sampling density at (evidence
at) do, remarking that this does not modify posterior parameter inference (from do)—
provided truncation is at the highest105 hierarchical level of interest. Even though this is not
the case for  < withinmodel selection, now our goal is to modify inference (of the top-level
parameterM) in a desirable/interpretable way, and furthermore, our concerns with middle-
layer truncation (appendix 17) mainly refer to arguments of typicality in settings containing
i.i.d./exchangeable variables (object-specific parameters and/or data). Therefore,  <-space
truncation can be considered a viable procedure to counteract the effects (with regards to
the Occam factor) of the arbitrariness of prior selection when it is applied to distinguishable
parameters, i.e. the globals , which are not expected to suffer the caveats of appendix 17.

Concretely, we propose

Strategy 2. Truncated inference and trustworthy simulation-parsimonious model selection:

1. Perform truncated parameter inference separatelywith eachmodel, possibly deriving
model-averaged87 posteriors and truncation regions for any shared parameters.

2. Train a model-posterior estimator re-using the simulations from the last truncation
step, which represent only the regions in each model’s parameter space that are con-
sistent with the data at least to a minimal degree.

Althoughwewill not apply this strategy in the present thesis, we are currently preparing
a demonstration (on real data) in the ever-enticing (for obvious reasons) field of exoplanet
analysis, concretely to atmospheric “retrievals” [see e.g. 152], which allow for almost in-
definite—but arguably unwarranted—model sophistication.

https://www.dictionary.com/e/memes/ancient-aliens/




Chapter 4

Developments in hierarchical SBI

In this chapter, we develop methodologies that combine and build upon the concepts de-
scribed above, specifically targeting inference of Bayesian hierarchical models (BHMs)
with truncated marginal neural ratio estimation (TMNRE) [359], which will prove useful TMNRE
in the context of—and we will later apply to—supernova cosmology.

4.1 ����� Complete hierarchical TMNRE ��������� SICRET

Significant role in motivating the development of SBI methods plays the inconvenience—
and frequently, impossibility— of marginal likelihood-based inference of global/popula-
tion parameters in the presence of numerous object-specific nuisances. That is, often one
identifies in a hierarchical model  → �,

{
�8

}
→ �. Here, we are also interested in the

converse: inferring marginally the many �8 → �6, with  → � marginalised. In principle,
there should be no distinction when employing marginal SBI: a brute-force approach can
train bespoke posterior/ratio estimators for each �8 (of course, one or many subsets �86 of
the parameters of each object may instead be considered), conditioned on the full data set{
d8o

}
. The conditional independence of the objects on  (cf. section 1.1 and eq. (1.6)),

however, leads to two simplifications.
Consider the marginal posterior(s) being approximated:

p
(
�8

�� {d 9
})

=

∫
p
(
, �8, d8

�� {d 9≠8
})

d

p
(
d8

) =

∫
p
(
�8, d8

��� ,����
{
d 9≠8

})
p
(


�� {d 9≠8
})

d

p
(
d8

) . (4.1)

By defining an alternative global-parameter prior p̃8 () ← p
(


�� {d 9≠8
})
, inference of �8

can therefore be performed by conditioning only on data for the respective object, d8, rather
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Figure 4.1: Re-configuration of a BHM: when inferring marginally the object-specific pa-
rameters �8, data on other objects,

{
d 9≠8

}
, can be considered given/input and the model

re-stated to use the respective global-parameter posterior p
(


�� {d 9≠8
})

as an alternative
prior. Moreover, for large data sets, adding also d8 to the conditioning (the dashed line,
which technically creates a forbidden cycle) modifies the posterior very mildly, justifying
the use of the full p

(


�� {d 9
})

instead. This approach, convenient with SBI, is contrary to
traditional hierarchical inference that, conceptually, derives first constraints on local pa-
rameters

{
�8

}
and subsequently pools them to infer the .

than the full set. In fact, this re-configuration, illustrated in fig. 4.1, corresponds to the
original— literal— interpretation of the prior as representing information from indepen-
dent “previous” observations, i.e. of objects other than 8, and is a general statement about
BHMs. Importantly, all parameters that ensure conditional independence must be jointly
inferred.

When, furthermore, the number of observed objects is large, each one individually
contributes relatively little to constraining the global/population parameters101—indeed,
pooling the information across the data set is the main reason for introducing hierarchical
modelling in the first place. Therefore, we can approximate p

(


�� {d 9≠8
})
≈ p

(


�� {d8
})
→

p̃(), discarding the unwieldy 8-dependence of the alternative prior.
If the objects are furthermore identically distributed (i.e. are i.i.d.) and hence, exchange-exchangeability

able, local quantities (parameters and data) for different objects can be considered realisa-
tions of the the same random variables102: �8 → � and d8 → d. In case the BHM contains

101 Concretely, p
(


�� {d 9
})/

p
(


�� {d 9≠8
})
∝ p

(
d8

�� ) is approximately constant across the high-density regions
of p

(


�� {d 9
})
.

102 Note, accordingly, the lack of a plate in the re-configured graph in fig. 4.1, making the use of 8 unnecessary.
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object-specific settings a8 (see eq. (1.9) and fig. 1.2) that modify the data-sampling distribu-
tion (e.g. measurement noise, constraints from external analyses, or even the label 8 → a8),
exchangeability is still realised on the level of

{
(�, d, a)8

}
, since p

(
d8

�� a8, �8, ) is the same
for two objects if their corresponding parameters and metadata103 match. metadata

Thus, every run of the simulator results in #obj samples from

p(�, a, d | ) = p(d | a, �, ) p(� | ) p(a), (4.2)

where p(a) = ∑
8 X

(
a8

) /
#obj in accordancewith eq. (1.9) and is represented by the (fixed/given)

collection
{
a8

}
. In accordance with eq. (4.1), marginalising over the alternative global-

parameters prior p̃() ← p
(


�� {d8o
})

enables training a single posterior/ratio estimator
q(� | [d, a]) or r̂(�, [d, a]) that can be used to evaluate all object-specific marginal poste-
riors, given only the particular

[
d8, a8

]
. Note that the full data set

{
d8

}
need not be specif-

ically provided to the NN since the (global) information contained in is still extracted and
encoded during training.

A final simplification can be made when the observational noise is much smaller than
the population scatter.104 Then, local constraints are object-, as opposed to population-,
driven, and precise globally aggregated information in the form of p

(


�� {d8
})

is not neces-
sary. Therefore, credible results can still be obtained by using simply the original p() or—
to a better approximation and ease of implementation— the truncated global-parameters
prior p̃) ({

d8
o
}) (). This setup is particularly convenient for simultaneous global and local

SBI since the same simulations can be used for both tasks, and it does not require joint
inference of all , i.e. truncation can be marginal over smaller groups 6.

Still, often only some object-specific parameters can be precisely estimated from d8
alone while others require hierarchical pooling, i.e. only their population can be reliably in-
ferred (see chapter 12). In such cases, the information discardedwhen degrading p

(


�� {d8o
})
→

p̃) ({
d8

o
}) () (or even to the original p()) can be restored by explicitly providing

{
d8

}
—

or a global summary s
({

d8
})

—to the local-parameters posterior/ratio estimator: [d, a] → global summary[
d, a, s

({
d8

})]
. When trained as part of a combined global+local inference NN, the sum-

mary assumes the structural role of the global-parameters posterior and is the natural con-
ditioning context / data-input of the respective estimator, q

(


�� s({d8
}) )

or r̂
(
, s

({
d8

}) )
, as

illustrated in fig. 4.2.
103 So-called because it always appears as conditioning of probability distributions, i.e. is fixed. In fact, since{

a8
}
often represent (auxiliary) measurements that describe the particular realisation of the observing run,

their treatment as stochastically produced data (possibly resulting from an adjacent hierarchical process) is
an obvious opportunity for extending the model. In this thesis, such is the case of the SN redshifts, which
start off fixed and, after a series of improvements, end up explicitly inferred from external observations as
part of a unified analysis.

104 more formally, when the object-specific p(� | d, ) is significantly more concentrated than p(� | )



58 Chapter 4. Developments in hierarchical SBI
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8

Figure 4.2: Abstract structure of a combined global+local inference network (joint-to-
marginal ratio estimator as in our applications in part IV). The dashed arrows present two
alternatives for including global information in inferring local parameters: either explic-
itly conditioning the posterior/ratio estimator, or simulating training data according to the
estimated global posterior. Compare with the specified NNs used throughout part IV and
with the re-configured BHM in fig. 4.1.

Strategy 3. Complete truncated105 marginal SBI of a hierarchical model:

1. Infer the global parameters from the complete data set, truncating their prior so as
to tightly encompass the posterior p

(


�� {d8o
})
→ p̃) ({

d8
o
}) (). Inference and trunca-

tion may be marginal: p̃) ({
d8

o
}) () → ∏

6 p̃) ({
d8

o
}) (6), but must include all global

parameters,  = ∪66, so as to ensure conditional independence.

2. In the last truncation stage, record also any object-specific parameters of interest �86
for all objects in the simulations, collecting thus #obj × #train samples{{(

�8,:6 , d8,: , a8
)}#obj

8=1

}#train

:=1
that represent p

(
�6, d, a

�� {d8o
})

(4.3)

and use them for marginal SBI of p
(
�
�� a, d, {d8o

})
. The posterior for the parameters

of object 8 is obtained by evaluating the estimator given the relevant d8o and a8.
In general, the full data set (possibly summarised through s

({
d8

})
as part of global

inference) must also be supplied to the NN: q
(
�
�� [d, a, {d8

}] )
or r̂

(
�,

[
d, a,

{
d8

}] )
.

It can be omitted in two cases:
105 Truncation here refers to the global parameters. The extension/converse application of local truncation for

global inference—which proves significantly more challenging—is discussed in appendix 17; it also relates
to strategy 2, where we will be much more blasé about it.
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a) either the training data for local inference is re-generated with  ∼ p
(


�� {d8o
})

(in fact, the estimate thereof) or corresponding weights are used in training;
b) or the particular local parameter(s) �6 is/are deemed well enough constrained

solely from the respective object-specific data d8 and the truncated prior.106

A note on NRE for local parameters: In evaluating the posterior using a local-parameters
ratio estimator r̂(�, [do, a, . . .]) trained as above, reference is made to the prior p(�). As
always, this is the marginal from the original model, which for a BHM is the compound
distribution

∫
p(� | ) p() d, regardless of the training prior (i.e.

∫
p(� | ) p̃() d).

Since the p(�) is thus often intractable, simulating according to the truncated prior in-
stead of the (estimate of the) posterior p

(


�� {d8
})

has the additional advantage that the
training/validation samples can be used as the base distribution to be re-weighted by r̂ for
representing p

(
�
�� {d8

})
.

4.2 ����� Catalogue-based NRE ��������� RESSET

In section 1.1, we presented the simplest ontology of a BHM: in which the data on each ob-
ject is identically sampled (conditioned on some given object-specific settings). However,
this description crucially relies on the definition of an “object”, which we left abstract. In
fact, it is up to the data collector (observer) to define the available measurements, and they
may or may not align with the notion of an “object” as used within a BHM. For instance,
some astronomical data comes as an aggregate of signals from multiple sources that are
not immediately distinguishable. For this case, Anau Montel & Weniger [13] developed
a TMNRE methodology that defines and identifies individual “sources” only for the pur-
poses of truncation; they then need to correct the aggregate-based results for the effects of
this modelling choice.

More commonly, the objects are identifiable entities, but data is available only for a
non-random107 subset of the population determined by a given procedure that, in princi-
ple, represents three distinct processes: identifying the existence of an object (detection), detection
obtaining data for it (measurement), and including it (selection) in the collection analysed measurement

selectionin a particular study. Assuming that their outcome is binary108 (i.e. they always either fail

106 Under this hypothesis, including
{
d8

}
or s

({
d8

})
as a NN input can improve constraints but/or contribute

noise to the training procedure due to the additional network parameters needed to extract relatively little
additional information with respect to d8 .

107 If the subset were random, it would be indistinguishable from a smaller complete population.
108 Wewill briefly touch upon the possibility of partially missing data, i.e. the availability of distinctmulti-modal multi-modal

data on each object, in section 8.4.
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or completely succeed), detection +measurement + selection can be represented through a
single random variable ( indicating whether an object has ultimately been included (“de-
tected”: (8 = s for 8 = 1, . . . , #sel) or not (“missed”: ( 9 = m for 9 = #sel + 1, . . . , #tot) in
a released catalogue.catalogue

The indicator variables for all objects— observed or missed—thus have well-defined
values:

{
s8
}
and

{
m 9

}
, and must be considered given, i.e. part of the data alongside

the usual object-specific measurements
{
d8

}
(limited, of course, to observed objects 8),

with likelihood / sampling distribution p
(
(:

�� d: , ) , also called efficiency. In this pictureefficiency
(fig. 4.3), inference with missing data corresponds to marginalisation of

1. the un-observed
{
d 9

}
, defining the marginal efficiencymarginal

efficiency
p(( | ) ≡

∫
p(( | d, ) p(d | ) dd ; (4.4)

and since all objects are assumed to have the same sampling distribution109 p(d | ),
the indices {8} and { 9} are once again exchangeable, so a further combinatorial factor(#sel
#tot

)
must be taken into account when “selecting” the observed sample:

p
({

d8
}
,
{
s8
}
,
{
m 9

} �� #tot, 
)
=

(
#sel
#tot

) ∫ #tot∏
:

p
(
(:

�� d: , ) p
(
d:

�� ) d
{
d 9>#sel

}
=

(
#sel
#tot

) #sel∏
8=1

p
(
s8

�� d8, ) p
(
d8

�� )︸                   ︷︷                   ︸
= p

(
d8

�� s8 ,) p
(
s8

�� )
#tot∏

9=#sel+1
p
(
m 9

�� )
=

#sel∏
8=1

p
(
d8

�� s8, ) × Binom(#sel | #tot, p(s | ))︸                             ︷︷                             ︸
p
({
s8

}
,
{
m 9

} �� #tot,
)
≡ p(#sel | )

; (4.5)

2. the uncertain—a priori and a posteriori—total size of the population, #tot, which can
meaningfully depend on parameters of interest through a p(#tot | ):

p(#sel | ) =
∫

Binom(#sel | #tot, p(s | )) p(#tot | ) d#tot . (4.6)

Like any other a priori distribution, p(#tot | ) is to an extent a modelling choice. How-population size
(total)

109 This is, in fact, not a trivial statement: it means that objects 9 could have potentially been observed but were
not, owing to the particular realisation of their latent properties and observational noise.
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Figure 4.3: Re-configuration of a BHM for population inference from a non-random sub-
sample of the objects. In the original formulation (left: straightforward to implement as
a simulator), both the population size (#tot) and the data realisations of missed objects
(
{
d 9

}
) are unobserved and must be marginalised, making it intractable for likelihood-based

inference. Set-based SBI, corresponding to the simpler probabilistic model on the right, is
instead trained directly on simulated sets of data for “detected” objects and their stochastic
count.

ever, often concrete physical models are available for the expected abundance or rate
of occurrence of the category of objects considered, i.e. for the size of the population.
They usually express a deterministic relationship 〈#tot〉() that serves as the rate pa-
rameter of a Poisson distribution, simplifying the integral

p(#tot | ) → Pois[〈#tot〉()]
=⇒ p(#sel | ) → Pois[〈#tot〉() × p(s | )] .

(4.7)

All in all, inference can be reduced to the superficially simple likelihood / sampling
distribution illustrated in fig. 4.3:

p(D | ) =
#sel∏
8=1

p
(
d8

�� s8, ) × p(#sel | ), (4.8)

where by D we label the observed data set
{
d8

}
and its information-carrying cardinal- data set

ity #sel. Since both terms are wrought of intractable integration, they are extremely hard
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to calculate in practice, even if the efficiency p(( | d, ) is known.110 Furthermore, even
in the simplest realistic cases, this probability may be defined instead with respect to the
unobserved object-specific parameters, i.e. p(( | d, �, ), which adds another layer of com-
plexity through the requirement of calculating

p(( | d, ) ≡
∫

p(( | d, �, ) p(� | ) d� . (4.9)

Very often, moreover, and especially for complicated data resulting from an involved detec-
tion andmeasurement procedure and subjected tomore or less arbitrary selection criteria—
e.g. light curves used for SN cosmology—, no numeric expression for the efficiency at any
level is available, and instead, the integrals eqs. (4.4), (4.6), and (4.9) need to be calcu-
lated stochastically from simulations. Crucially, these estimates need to be performed for
the proposed  at every step of MCMC sampling if a likelihood-based approach is cho-
sen, Clearly, then, direct simulation-based inference— in which all marginalisations are
implicit— is the superior method to account for non-random sample selection.

4.2.1 Apologia of SBI with stochastic cardinality
“what I do not
know I do not
think I know
either” [Plato,
Apology 21d]

The direct SBI approach to solving eq. (4.8) and fig. 4.1, simulating mock D and using
them to train a posterior or ratio estimator, presents a peculiar challenge in that each ex-
ample may in principle have different cardinality, whereas traditional NNs, i.e. multi-layer

MLP
perceptrons (MLPs), require that their input size be pre-determined and fixed during train-
ing and evaluation. To circumvent this, a number of methods have been devised to work
either with individual objects, or to condition the simulator on the observed #sel (corre-
sponding with the different re-configurations of the original BHM), both enabling the use
of fixed-input-size NNs. Below, we survey them briefly, highlighting their crippling de-
ficiencies as motivation for stochastic-cardinality SBI with set-based networks, which we
introduce at the end.

SBI from individual objects [526, 168, 337] One obvious idea is to learn the likelihood
p(d | s, ) from a single observed object111 and then evaluate and combine it across the
data set

{
d8o

}
. This has numerous perceived advantages: it requires a simpler and more

110 The simplest case often employed in toy models— that of collecting the data that surpass a parameter-
independent detectability threshold, i.e. a signal-to-noise ratio (SNR) cut— is rarely realised in practice but
often used in simplistic analyses [e.g. 172, 163].

111 or, alternatively, the single-observed-object posterior p( | d, s) ∝ p(d | s, ) p() via e.g. NPE and then
take care to divide out the prior p() since it is still the individual likelihoods that compose; [see e.g. 526,
eq. (10) or 168, subsection 3.1]
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streamlined NN that inputs only a single object, less training (the task is— seemingly!—
simpler in proportion to the data), and O(#sel) times less memory (during training), while
allowing inference from future additions to the data (newly observed objects) without re-
training.

Nevertheless, this strategy does not address the information contained in the observed
counts (p(#sel | )) and, crucially, is only applicable when the observations are i.i.d. con-
ditioned on the inferred parameters, which is often not the case with marginal inference
and may thus enforce learning a much higher-dimensional likelihood than needed. More-
over, combining O(#sel) independent results is prone to accumulation of the inevitable
approximation errors—minor on the level of individual likelihoods/posteriors but magni-
fied thus O(#sel) times. For example, Wagner-Carena et al. [526, fig. 8] observed a bias
when combining inference from 1000 objects, while Makinen et al. [337] were able to
scale to (exactly) 104 only by training an additional fixed-input-size network to aggregate
the likelihood estimates, correcting the inaccuracy.

SBI from fixed-size collections [172, 163] Inference (and training) should then be per-
formed from the entire observed set, whose size is in general a priori unknown due to the
stochasticity of both population size and sample selection. Observations collapse uncer-
tainty in the latter, fixing #sel. In contrast, #tot remains uncertain also a posteriori and
makes conditioning the simulator (which follows the pre-configured (left-hand) variant in
fig. 4.1) on #sel—so that all training examples have the same (“correct”) cardinality, and a
fixed-input-size NN can be used—difficult and resource-intensive. For the only option to
implement this conditioning is usually rejection sampling,112 whose efficiency reduces with
the spread of a priori plausible data set sizes, i.e. as 1

/√
#sel , dropping prohibitively low

for large populations. The problem can be mitigated by allowing a range (cf. Y in ABC) of
acceptable #sel—especially if p(#sel | ) is not extremely informative—and re-sampling
to exactly #sel for input into the network, but this comes with all the previously discussed
caveats.

SBI training with unobserved data [13] The complete population, as opposed to non-
random subsets of it, is trivial to simulate from, once #tot is determined: it is simply a BHM
with #obj → #tot. This leads to the final alternative SBI strategy for eq. (4.8): learning
from random sets of fixed size #sel without reference to whether objects are observed or
missed and correcting the results post factum:

112 Note that rejection sampling at least naturally implements p(#sel | ) by only accepting  that lead to #sel,
i.e. following p( | #sel).
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#sel∏
8=1

p
(
d8

�� )︸        ︷︷        ︸
conventional
inference

×
#sel∏
8=1

p
(
s8

�� d8, )
p(s8 | )︸             ︷︷             ︸

correction for
selection effects

(4.10)

In practice, this involves first solving the usual inference task, for whichNLE/NPE/NRE
can be trained using sub-samples from the full simulation output

{
d8

}
∪

{
d 9

}
. To correct

this to eq. (4.8), eq. (4.10) accounts for selection effects113 through the ratioselection effects

#sel∏
8=1

p
(
s8

�� d8, )
p(s8 | ) =

#sel∏
8=1

p
(
d8

�� s8, )
p
(
d8

�� ) =

#sel∏
8=1

p
(
d8, s8

�� )
p
(
d8

�� ) p(s8 | )
. (4.11)

Noticing the similarity between this and eq. (2.14) and working within the usual framework
of SNR-cut detection akin to eq. (2.25), Anau Montel &Weniger [13] declare “detection is
truncation” and proceed to train a NRE for eq. (4.11) using the simulated detection labels
of mock populations scaled to size #sel:

(
,

{
(d, ():

}#sel

:=1

)
.

While easy to simulate training examples for, this approach has the major disadvantage
that the observed114 data

{
d8o

}
,
{
s8
}
cannot be regarded as a typical sample115 of the simu-typical set

lator, and so will fall outside the region in data space in which the inference networks have
been trained, leading to undefined—and often very biased—results. While this is subtler
to see for the data

{
d8o

}
,113 it is clear that the probability of sampling a large #sel number

of objects at random from the population and having all of them end up detected is van-
ishingly small. And even if training data were made somewhat representative through e.g.
a truncation procedure, combining the two terms in eq. (4.10) requires extreme precision
in the tails of each, for if selection effects are important, they strongly bias the first term;
and while the combination may vary reasonably over the extent of the final posterior, the
two range of each separate term is proportional to #sel and can thus reach many orders of
magnitude. An illustration of this effect for a Gaussian toy model is shown in fig. 4.4, while
appendix A in RESSET contains the equivalent for the simple BHM for SN Ia cosmology
we adopt in chapter 15.

113 the difference between the sampling distributions of observed objects and the total population or, equivalently,
between the posterior derived with and without regard for the probability of detection + measurement +
selection; concrete examples are discussed in subsection 8.3.6 and chapter 15

114 both in the sense of “real” and containing exclusively detected, etc. objects
115 This problem, discussed in appendix 17, is similar to that of hierarchical truncation: d plays the role of a

local parameter for the observation of (, whose distribution is, as Anau Montel & Weniger [13] exclaim,
being “truncated”.
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Figure 4.4: (��� RESSET) Illustration of catastrophic cancellation for the Gaussian toy
model. The data comprise 100 selected* objects (38 > 0) drawn from N

(
`, f2) indicated

by a star and with added “measurement” noise Y = 0.2. Depicted as blue and red gradients
and iso-log-likelihood contours are the two competing terms** from eq. (4.10) (normalised
to their respective maximum values within the prior range). The setup is engineered so that
they nearly cancel, leading to a combined likelihood p

({
38

} �� )/p({
s8
} �� ) (illustrated as

green filled 1- and 2-f contours) that peaks in the tail of both. Notice the magnitude of
the cancellation: across the 2-f region, where the combined likelihood is within e−2 of
the maximum, both terms individually change by a factor ∼ e100. Therefore, approximat-
ing each separately and then combining them could lead to large numerical inaccuracies.
See RESSET, fig. 8 for an equivalent demonstration for cosmological inference from 2000
SNæ Ia with selection effects (cf. chapter 15).
*realised through rejection sampling (the population size is considered independent of ` and f)
**Note that in this example, p

(
s8

�� 38 , ) ≡ 1 because the selection is deterministic.
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SBI with stochastic cardinality [453, 433, 143, 82, 210] Having established the need
for training with stochastic cardinality when dealing with a model for object catalogues,
we now need to select among the (small) variety of NN architectures that admit such
arbitrary-sized input: namely, between recurrent neural networks (RNNs), attention-based
(transformer) models, and deep-sets. The former two116 excel at dealing with ordered se-
quences and capturing intricate connections between pairs (or triplets, etc. as their depth is
increased) of objects in the input. In contrast, object catalogues are intrinsically unordered
collections whose Bayesian inference requires simple but global aggregation. Moreover,
their a priori unknown size is an informative feature in itself and can be immense.117

The architecture best suited118 to those characteristics of the problem is Zaheer et al.’s
deep set: a manifestation of their universal representation theorem [552, theorem 2] statingdeep set
that any function 5 :

{
G ∈ R3

}
→ R= that takes a set as input (and is thus invariant to

the order of its elements)119 can be represented via: an element-wise transformation q :
R3 → R<, a summation of the resulting features {q(G)}, and a post-processing function
d : R< → R=; i.e.

5 (-) = d
(∑
G∈-

q(G)
)
. (4.12)

Learning 5 (-) then consists of optimising two conventional, i.e. fixed-size/order-input,
NNs q̂ and d̂ to approximate the featuriser and post-processor.

The simplest application of a deep set in SBI is to derive a fixed-size summary s(D) ←
d̂
(∑

d∈D q̂(d)
)
and use it conventionally in downstream inference. This approach forces the

NN to extract the complete information from the set (i.e. encode the full posterior at all �
into s), straining the network capacity and requiring long training with a large number of
simulations. Nevertheless, it is the only option if relying on NLE or NPE for inference,
which consider the data separately from the parameters (either for density estimation or as

116 An important application of RNNs and transformers (with positional embedding) is natural-language pro-
cessing (NLP)—that has recently experienced great research interest and generated wide societal impact—,
in which, too, the data (sentences/text) is composed of an arbitrary number of units (words/tokens). We will
revisit them in the similar context of SN light-curve analysis in part II.

117 Only recently has the context window of large language models (LLMs) extended beyond 100 000 tokens—
a pessimistic estimate for the number of SNæ we hope to have the opportunity to analyse with SBI.

118 Over its main competitor, the set transformer [305] (used e.g. by Campeau-Poirier et al. [82], Heinrich et al.
[210]), the deep set architecture boasts a more favourable linear memory and computational complexity and
better information aggregation from large sets [see e.g. 210, fig. 2].

119 The concrete statement concerns only sets of elements from a “countable universe”, which excludes the real
numbers. However, in the digital universe™, everything is discretised and hence, countable, so we will not
concerns ourselves with mathematical subtleties. Nevertheless, we point the interested reader to Wagstaff
et al. [528] for extended discussion on the requirements for applicability (in worst-case scenarios) of Zaheer
et al.’s conjecture for varying-sized sets of real-number arrays (“vectors”).
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a conditioning context). In contrast, NRE combines the data and parameters at the onset,
allowing for a much more efficient construct, the (parameter-)conditioned deep set, conditioned

deep set
ln r̂(�,D) = d̂

(
�,

∑
d∈D

q̂(�, d)
)
. (4.13)

In the simplest scenario, in which the data are independent, conditional on �, this form can
trivially represent the optimal summary:

ln p(D | �) =
∑
d∈D

ln p(d | �), given d8 ⫫ d 9 | �, (4.14)

which cannot as straightforwardly be implemented as a s(D) that does not reference �.
Importantly, a similar expression can be learnt120 even in the presence of global nuisances,
but q̂ will not, in general represent exactly the individual-object sampling probability.

120 Capitalising on the connection between universal representation of sets and the equivalence of exchangeabil-
ity (permutation-invariance) and conditional independence, i.e. de Finetti’s theorem [561], Zaheer et al. [552,
eq. (3)] derive explicitly the expression for a deep-Finetti-set™, which implements the marginal likelihood
for the special but widely-applicable case of nuisances with a likelihood from the exponential family and a
conjugate prior.





Part II

Supernova cosmology

69





Chapter 5

Supernova cosmology for philosophers

Stripped of astrophysical jargon and millennial tradition, supernova cosmology can be seen
as a purely epistemic field that considers its objects (section 5.1) only insofar as the concor-
dance of their properties makes them useful for inference of background quantities (sec- utility
tion 5.2). That is, it is not interested in the essence of “supernovæ” but is content with essence vs.

representationemploying sufficiently faithful representations thereof, i.e. abstract models that re-fashion
espistemic ignorance as prior uncertainty. Since the field is, therefore, still not completely ignorance as a

prioragnostic of the particular real-world ontology it deals with, in this chapter, we briefly review
the conception/conceptualisation of supernova cosmology before elaborating its various
statistical descriptions in chapters 6 and 8.

5.1 A brief history of novælty
Novælty™ is a highly contentious topic, “part and parcel of a philosophical revolt against
the overweening pretensions of science,” i.e. determinism [492]. In an astronomical con-
text, the name novawas first used by Brahe [64] to refer to a new “star” that had appeared on
the night sky.121 About a year later—promptly, on cosmic scales—it disappeared, leaving
behind a dim remnant (discovered 380 years later [198]) and the conclusive refutation of
that most basic form of determinism: Aristotle’s static Universe. Only, it was no star at all,
since those take hundreds of thousands of years to “come into existence” and millions to

121 The appearance of a “guest” or “temporary” star, often also visible during the day, had always been a no-
table event: Chinese accounts, for example, take note of the explosions that left behind supernova remnants
RCW 86 [524, 542] and G347.3-0.5 [530, but see 149] as far back as 185 and 393 AD, respectively; they
even describe the brightness evolution and give a multi-band characterisation: “it was as big as half a mat; it
was multicoloured, and it fluctuated. It gradually became smaller and disappeared,” [496].

71



72 Chapter 5. Supernova cosmology for philosophers

subsequently “vanish” [354] (so as to fool Aristotle), whereas Tycho’s nova had transpired
on much shorter scales: it was an example of an astronomical transient.122transient

As more transients were observed, it became evident [30, 559, 362] that they can be
sorted into observational classes, hopefully signifying a similar categorisation of underly-classification
ing physical phenomena. At first, a broad distinction was made based on the total power
and duration of the events. It was later found that the less energetic and shorter transients,
also called cataclysmic (cleansing) variables [537], indeed originate from similar binary
systems involving a white dwarf (WD) star accreting material from its companion. A dwarfwhite dwarf
or classical nova then corresponds to a sudden increase in emission from the accretion disk
due to overheating or runaway thermonuclear fusion on the WD’s surface, respectively.
The released energy then leads to a negative feedback that quenches accretion, leaving the
system intact and prone to repeated in-nova-tion™.

In contrast, the more powerful events become catastrophic: they destroy their pro-
genitor system either entirely or to such an extent as to make replication impossible.123
While the initial classification of these so-called supernovæ (SNæ) again referred to theirsupernova
observational—this time spectroscopic—characteristics, i.e. the presence (type II) or ab-spectroscopy
sence (type I) of hydrogen lines, the division has since shifted to the physical scenarios they
represent [see e.g. 560, 99, fig. 1]. Concretely, on one hand, core-collapse supernovæ (CCCC SN
SNæ) [e.g. 76] result from the final disintegration of a (nominally, isolated) main-sequence
star following the exhaustion of its usable nuclear fuel and consequent gravitational col-
lapse of its core into a neutron star or a black hole. On the other hand, a thermonuclear
type Ia supernova (SN Ia) occurs when an accreting white dwarf starts fusing carbon inter-SN Ia
nally and explodes [232, 18, 387, 52] before reaching the critical Chandrasekhar mass. The
heavy elements synthesised in this rapid process then gradually decay (Ni → Co → Fe)
and release energy into the ejecta, leading to a sustained late-time brightness and even a
secondary peak in infrared wavelengths [19, 352].

While this overarching physical description of SNæ Ia has generally consolidated, cer-
tain aspects of the explosion mechanism remain uncertain, e.g. the role of rotation and
anisotropic detonation [147, 148] and the amount of nuclear fuel burnt and of radioactive
material created [for more details, see e.g. 505, 218]. Moreover, the exact nature of the
white dwarf’s companion—whether it is an “ordinary” star or another white dwarf, respec-
tively labelled a single- (SD) or double-degenerate (DD) progenitor scenario124—is still aprogenitor
heavily debated topic, which can have a significant reflection on the stellar environments

122 different from transits (e.g. of an exoplanet in front of its host), periodically variable stars, and wanderers
(e.g. planets or comets) in our Solar System, all examples of predictable celestial mutability, i.e. determinism

123 Their existence, then, is truly transient, implying, in turn, unique and genuinely new.
124 Of course, considering possibilities beyond these two, namely triple- and higher-order systems [436], and

“solitary” WDs in dense environments like stellar clusters is also a worthwhile endeavour.

https://www.etymonline.com/word/planet
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and populations in which SNæ Ia are likely to occur, as well as on their overall rate [424].
This all has led to the tentative institution of sub-classeswithin the Ia type125: subluminous sub-

classification(“1991bg”- and “2002cx”-like, also called type Iax [156])) and superluminous (“1991T”-
SLSNlike) [see 66, and references therein].

Despite the few outstanding challenges in their physical modelling and the mild evi-
dence for irregularities, SNæ Ia remain an “extremely homogeneous” [362] class, owing
to the specificity of their formation scenario, and exhibit in practice an intrinsic diversity
around peak of no more than a few magnitudes.126 In combination with their tremendous
power129 and ubiquity [100], this makes them ideal standard candles130: indicators of cos- standard candle
mological distances via the relation of absolute and apparent brightnesses (eq. (5.2)).

125 again defined with respect to observational (spectral) features rather than intrinsic properties
126 The traditional system of measuring “brightnesses”—(spectral) irradiance/flux density—in astronomy was magnitudes:

apparent &
absolute

introduced by Hipparchus of Nicæa, fleshed out by Ptolemy, and—after remaining more or less arbitrary for
the next 2000 years—systematised in its current form by Pogson [357]. It derives from the usual Ancient
Greek “exhaustive” categorisation of all stars (visible to them) into five roughly logarithmically-spaced (as
per the general Weber–Fechner law of human perception [145]) “classes”. Pogson’s quantitative version,
instead, assigns an overall ratio of exactly 100 across any five “degrees of magnitude” (or 100 1/5 ≈ 2.512
per magnitude) and selects a particular value 50 to serve as reference (null magnitude) when measuring a
physical quantity 5 :

< [mag] ≡ −2.5 log10 ( 5 / 50 ). (5.1)

For further details, more rigour, and practical considerations, refer to section 7.1.
Moreover, distinction is made between the apparent magnitude < of an object to a given observer and

the absolute/intrinsic brightness " , defined as that which it would attain were it in Euclidean space at a
distance of 10 pc (parsec)127 from the observer. At other distances 3 (and in other spaces), its (spectral) flux
density, i.e. brightness, will be attenuated over a (hyper-)spherical sector, whose surface ((3) ∼ 32 in our
everyday spatially flat three-dimensional Universe. Thus, the apparent magnitude < is related to " through
the distance modulus: distance

modulus
` ≡ < − " ≡ 2.5 log10 [ ((3)/((10 pc) ] = 2.5 log10 [( 3/10 pc )2] . (5.2)

In more exotic space (see below), the last equality has often been treated as reverse equivalence to define 3
in terms of observed and intrinsic brightness.

127 1 pc, in turn, equals 180 × 60 × 60/c ≈ 206 265 times the semi-major axis of the Earth’s orbit (the astro-
nomical unit128 ) [136, page 342*] or ≈3.26 ly (light-years)… The blame for these particular ratios is shared
between the Greeks, the Babylonians [246], and the number of days in a year.

128 Yes, astronomers would use any system of units but the metric…
129 The fusion energy released in each needs to exceed the gravitational self-potential of a white dwarf:

5–6 × 1043 J [505]; and since the nucleosynthesis in SNæ Ia is more rapid than beta decay, the excess is
dissipated entirely by photons (and velocity of the ejecta) and not by neutrinos as in a CC SN.

130 À propos, a candela (cd) is the SI unit of luminous intensity equal to the subjective brightness of a standard
wax candle.

a crandle™
(non-standard)

https://en.wikipedia.org/wiki/Template:SI_radiometry_units
https://en.wikipedia.org/wiki/R-process
https://en.wikipedia.org/wiki/Candela
https://en.wikipedia.org/wiki/Luminous_intensity
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5.2 A crash course in cosmologygraphy
To appreciate the importance of SNæ Ia, one first needs to gaze at the night sky and con-the night sky
sider: “Why is it dark?” For, Olbers—and Digges, Kepler, Halley, and Chesaux [201]—
thought, in a homogeneous universe, in which locations are not special (merely spatial),
the abundance of light emitters balances exactly the attenuation of light due to distance
(in fact, light is extinguished precisely by its spread in space: eq. (5.2)), and as a conse-
quence, in an infinity of space and time (so as to allow light—proven finite in speed131—
to reach an observer from all locations), implies that the night—and day—sky should be
infinitely bright, which it is not: a paradox (but actually simply a contraction between an
assumption and an observation). The resolution is, of course, to reject the hypothesis: the
Universe is not infinite (either in time and/or space) and/or our position (in space and/or
time) is special.

The study of alternatives to the Aristotelian world-order—of the history and future of
the Universe, its composition, and our place within and whenin™ it—is called cosmology.cosmology
For the purposes of this thesis, it suffices to refer the reader to Peebles [399] and here
summarise the two relevant Principles of physical cosmology:

1. Einstein’s general theory of relativity (GTR) [140] holds, and the Universe is homo-
geneous and isotropic on large-enough spatial scales. This implies that it is described
by the Friedman(n)–Lemaître–Robertson–Walker (FLRW) metric, with spatial curvatureFLRW

curvature
(spatial)

: ∈ (−∞;∞) and arbitrary time evolution encoded in a scale factor 0(C); in hyperspheri-

scale factor
cal132 coordinates:

dB2 = c2 dC2 − 02(C)
[
dA2 + (: (A) dΩ2] with (: (A) =

[
A sinc

(√
:A2

)]2
, (5.4)

where Ω measures solid angles, A radial distance, C time, and c the speed of light. We will
take a unitful : of dimension inverse squared length so as to make the scale factor unitless.

131 Incidentally, this also allowed Brahe’s “new star” to be conclusively confirmed as a regular SN Ia based on
observations of its reflection in interstellar dust (a light echo) [441, 295] more than four centuries after itslight echo
initial transpiration. Another kind of re-(super)nova-tion™ enabled by the finite speed of light (and causal-
ity/determinism): multiple imaging through a strong gravitational lens, has recently (re-)ignited h0pes of a
determination of the Hubble constant independent of the distance ladder [439, see also 178].

132 The use and choice of the same factor ( as in eq. (5.2) is intentional for the elegance of the overall presentation.
To the same effect, we take advantage of the continuity of complex trigonometric functions:

sinc(G) ≡ sin(G)
G

=
sinh(iG)

iG
→ 1 as G → 0, (5.3)

to handle gracefully all possible (negative, positive, or vanishing) curvatures.

https://hitchhikers.fandom.com/wiki/Krikkit
https://en.wikipedia.org/w/index.php?title=Gran_Turismo_(racing)&redirect=no
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Redshift In such a universe, egocentrism is afforded to everyone: i.e. the natural choice
of coordinate origin (A = 0 , C = 0) is the observation event: the location and present of coordinate

originthe observer. It is also the observer who sets the scale of the Universe through the units of A
and C, which fix 0(0) = 1. An important corollary concept is the cosmological redshift133 cosmological

redshift
Ic ≡ 0−1 − 1, (5.5)

which can by this definition be used as a label for time.134 It is paramount to understand that
Ic is, therefore, not equivalent to the observed (total) redshift of an object [see e.g. 117]: total redshift

(1 + I) = (1 + Ic) ×
(
1 + Ipec

)
×

(
1 + Igrav

)
, (5.6)

which for a supernova combines the effects of
• cosmological expansion,
• the total peculiar velocity of the source with respect to the observer, comprising the peculiar

velocitymotions of the SN within its galaxy, of the host and of the Milky Way with respect to
the CMB (taken as a cosmic frame of reference), and of the Sun and the Earth (the eppur si muove
latter three are usually explicitly corrected since they are precisely known [411, 412],
and a ICMB in the CMB frame is reported),

• gravitational redshift due to inevitable small-scale inhomogeneities of cosmic struc- gravitational
redshiftture and, possibly, surface gravity of the emitter.

Distances The metric eq. (5.4) is used for all purposes that concern distances or time
intervals: cosmography. In the spirit of egocentrism, this is usually135 reduced to assigning cosmography
labels A and C to observed events (assigning Ω, i.e. angular/sky coordinates, is unaffected sky location
by cosmology since the Cosmos is assumed isotropic), which is significantly simplified by
the fact that the two events (happening and observation) are by definition connected by a
light-like path (dB2 = 0 =⇒ 2 dC = 0(C) dA). Then, the spatial and temporal coordinates
of an event, also called the (radial) comoving distance and lookback time to it, are comoving

distance
(radial)

lookback time
�c(Ic) =

∫
dA =

∫
c dC
0(C) = c

∫
d0
0 ¤0 = c

∫
0

¤0 dzc , (5.7)

) (Ic) =
∫

dC =

∫
d0
¤0 =

∫
0

¤0 (1 + zc) dzc , (5.8)

133 which is entirely independent of velocities and Doppler shift [131], apart from having a similar effect on
light; but cosmology redshifts everything: energies, densities, temperatures… space and time themselves

134 provided that 0(C) is monotonic; but we will not concern ourselves with the contrary Big Bounce scenarios
135 Notable exceptions are the relative radial distance between source and lens used in gravitational lensing and

the relative transverse distance, i.e. projected size, of standard rulers [519].

https://www.imdb.com/title/tt0317705/quotes/?item=qt0361943&ref_=ext_shr_lnk
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where the limits of integration are implied. Thus, an important quantity—which fully
encodes the history of the Universe— has emerged: the relative time derivative of the
scale factor, also called the Hubble parameter: � (Ic) ≡ ¤0/0 . Its present-day value, theHubble

parameter &
constant

Hubble constant H0 ≡ � (0), sets convenient length/time scales (units128) for measuring
the Universe:

• the Hubble distance: DH ≡ c/H0 , is not the size of the Universe; for all we know, it
is infinite, but the (current) radius of the observable Universe is Ic →∞ in eq. (5.7);

• the Hubble time: TH ≡ 1/H0 , is not the age of the Universe (Ic →∞ in eq. (5.8));
• the critical density: dc ≡ 3

8c H2
0/G , which defines the notion of mass in cosmology.

2. The Universe consists of a mixture of perfect—collisionless and non-interacting—flu-composition of
the Universe ids: a concept that can be stretched to include also geometric factors like curvature and the

cosmological constant (Λ) [141],136 which exert unusual—but not unphysical— negativecosmological
constant pressure. Each of them is parametrised by a (dimensionless present-day) density parame-

density
parameter

ter Ω80 ≡ d80/dc and (possibly time-dependent) equation of state (EOS)w8 (Ic). The latter

EOS
determines its redshift133 law, i.e. the evolution of its mass/energy density:

redshift law
58 (Ic) ≡ d8 (Ic)/d80 = exp

[
3
∫
(1 +w8 (Ic))

dIc
1 + Ic

]
. (5.9)

Particularly, common “fluids” have a constant w8, which implies

58 → (1 + Ic)3(1+w8) =


(1 + Ic)4 radiation137 (wr = 1/3 ),
(1 + Ic)3 matter137 (wm = 0),
(1 + Ic)2 curvature (w: = −1/3 ),
const Λ (wΛ = −1).

(5.10a)
(5.10b)
(5.10c)
(5.10d)

136 Einstein’s attempt to restitute Aristotle, which he later called his “biggest blunder”, has since been re-branded
and resurrected—with an instrumental contribution from SNæ Ia—as (constant) “dark energy”.

137 In a cosmological context, “matter”/“radiation” refer to any non-/relativistic particles, respectively: i.e. bary-
onic and dark matter, on one hand, and primordial photons on the other. It is also conceivable to build models
where a species like sufficiently—but finitely— light neutrinos transition from relativistic to “classical” as
their density/temperature redshifts.

https://en.wikipedia.org/wiki/Cosmological_constant#cite_note-Biggest_Blunder-15
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A cosmological model specifies the natures ({w8}) and amounts ({Ω80}) of a universe’s
constituents, collectively comprising the parameters C which are of interest in cosmolog- cosmological

parametersical inference. Together with the Hubble constant (the “initial” condition), they determine
the full expansion history through the Hubble parameter, whose square equals the total
mass/energy density of the Universe by the first Friedman(n) equation138 [160, 161]: Friedman(n)

equation
�2(Ic, C) ≡ [� (Ic, C)/H0 ]2 = d(Ic)/dc =

∑
8

Ω80 58 (Ic), (5.11)

and so C can be constrained from simultaneous measurement of (cosmological) redshift
and distance (cf. eqs. (5.7) and (5.8)). In fact, one “data point”, at Ic = 0, is immedi-
ately available and allows one component—usually curvature as the least fluid-like— to
be eliminated in favour (expressed in terms) of the others:

� (0, C) =
∑
8

Ω80 = 1 =⇒ Ω:0 = 1 −
∑
8≠:

Ω80. (5.12)

Owing to their distinct scalings, each of the remaining components comes to dominate
the dynamics at different times (redshifts), and therefore, inquiries into each must consider
data from different epochs. For example, analyses of the cosmic microwave background
(CMB), an early-Universe probe, have determined Ωr0 ≈ 10−5 and Ωm0 ≈ 0.3 (matter–
radiation equality around Ic ≈ 3000) [101]. In contrast, measuring effectively curvature
requires observations from lower redshifts, e.g. of baryon acoustic oscillations (BAO) [e.g.
110] or SNæ Ia, which have hitherto been consistent with a spatially flat Universe (Ω:0 ≈ 0) flat Universe

(Ω:0 = 0)[101]. For their analysis, one can safely disregard the cosmological influence of radiation
and instead assume either the Λ–cold dark matter (ΛCDM) model, which supposes only ΛCDM
non-relativistic matter and a cosmological-constant: CΛCDM ≡ [Ωm0,ΩΛ0], or any exotic
dark-energy (DE) model [see e.g. 77]; a popular parametrisation for a non-trivial EOS is DE
w(Ic) = F0 + F0 Ic/(1 + Ic) [96, 323], which reduces to a Λ for F0 = −1 and F0 = 0.

138 which explicitates the time–time component of the Einstein field equations [140] for the FLRW metric
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5.2.1 Confrontational theses
The Hubble “constant” is widely regarded as a cosmological parameter alongside {Ω80}
and {w8}. In fact, it was the first— and only— one, initially appearing in the Hubble–
Lemaître [235, 313, 314, see also 327] “law”, which expresses the local limit of eq. (5.7)
as a linear relation between distance and cosmological redshift139:

�c =

∫
c dIc
�

�c� c/H0
=⇒ H0�c ≈ 2Ic. (5.13)

This Taylor-series approximation can be continued to derive a model-independent distancemodel-
independent
distance

expression in terms of universal cosmological parameters [e.g. 539, section 1.4]:

2= ≡
1

H=
0

d=0
dC=

����
C=0

=⇒


= = 1→ 1 the linear Hubble law, (5.14a)
= = 2→ −@0 cosmic deceleration, (5.14b)
= = 3→ 90 cosmic jerk, (5.14c)
. . . etc.

However, we do not regard H0 as a parameter of interest (H0 ∉ C) but instead as a fun-
damental constant that sets the system of units and whose value—commonly expressed128
in km/s/Mpc—cannot be measured without reference to other scales and so is immaterial
in purely cosmological analyses, like the ones from this thesis. Indeed, in all of what fol-
lows, the Hubble constant will be exactly degenerate with a parameter that sets the absolute
brightness scale, which is customarily defined for a distance of 10 pc but in cosmologymust
be related to DH (see fig. 6.1).

Still, at present, many researches— among them supernova cosmologists— are pre-
occupied with humanity’s evident inability to measure come to an agreement140 as to the
numerical value of H0. Naturally, this Hubble tension [see e.g. 127] arises only as a mis-Hubble tension
calibration between multiple (g)astrophysical phenomena assumed to be well understood:
e.g. the CMB, BAO, and SNæ Ia juxtaposed with the local distance ladder [188].

The luminosity distance �L(I, Ic)2 ≡ (: (�c(Ic)) × (1 + I)2 is widely used to expressluminosity
distance the combined influence on light of distance and redshift, which would not be harmful to

science if distance and redshift had a perfect one-to-one correspondence, but they do not
(cf. footnote 133 and eq. (5.13)). Suppose photons emitted with rest-frame wavelength _rrest vs. observer

frame and observed with _o = _r(1 + I), so:
139 In the initial—and still widespread— formulation H0A = EA , this is interpreted as a recession velocity, but

as remarked, it is instead the space between objects that is expanding while light is travelling.
140 I move (not really) to replace the cæsium hyperfine transition with the current age of the Universe in the SI

definition of a second and be done with it.
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• their energy is lower: ℎ2/_ ∝ (1 + I)−1;
• their rate of arrival is reduced as 1/ΔC ∝ (1 + I)−1;
• spectral intervals are dilated as 1/Δ_ ∝ (1 + I)−1 (i.e. the Jacobian of _r → _o).
Therefore, measurements of integrated flux scale overall as (1 + I)−2, whereas spec-

tral quantities as (1 + I)−3: refer to table 7.1. On the other hand, flux densities are af-
fected by distance—more specifically, by the (inverse of the) prefactor to dΩ2 in eq. (5.4):
(: (�c(Ic)) ≡ �M(Ic)2, called the (square of) the transverse comoving distance. transverse

comoving
distance

The luminosity distance combines the two effects for the convenience of broadband
photometry, but its common presentation in terms of a single redshift is misleading: it
is only valid if I = Ic, i.e. in the absence of significant peculiar velocities. Of course, if
Ipec � I—a general rule of thumb is I ¦ 0.03 ≈ 10 000 km/s/2—, identifying the two
and calculating the (transverse) comoving distance using the total redshift is admissible.

Lastly, when modelling light received at _o, one needs to consider the emission at the
shorter _r = _o/(1 + I) . Instead, for historical— read, incomprehensible, lost in time—
reasons, astronomers prefer to work in the same band, say X, in both the rest and ob-
server frames. This approach— typical of methods of (reverse) data analysis, rather than
(forward) modelling— then requires calculating the hypothetical apparent brightness in
(1 + I)X or the hypothetical absolute emission in X/(1 + I) using a presupposed spectral SED
energy distribution (SED) of the source and the notorious  X(I)-correction [544, 236, see  -correction
also 284], just so as to preserve an appearance of the distance modulus in the presence of
redshift:

` ≡ <X − "X = 5 log10(�L(I, Ic)/10 pc ) +  X(I). (5.15)

This whole discussion can be evaded by explicit construction of a forward model, as we
describe in chapter 11.





Chapter 6

Supernova cosmology for Nobel
laureates

Less than ideal standard candles in practice, SNæ Ia need to be massaged—much more
gently than other similar objects and concepts [188, 519, 228]—in order for their brightness
to be usable for precise cosmological distance measurements.

Spherical SNæ in vacuo Even if not (yet) derivable from first principles (i.e. through
physical modelling/simulation), the intrinsic brightness of any cosmic explosion can be
derived with a simple observational procedure—and a slew of assumptions (i.e. “first prin-
ciples”). Considering an expanding glowing sphere (e.g. the photosphere of δ Cephei or
the ejecta of any SN explosion), Baade [29, later followed by 65, 291, 527] reasoned that
its bolometric luminosity141 ! is determined by bolometric

luminosity• the sphere’s radius ', “measurable” through the radial142 velocity E' ≡ ¤', which
can be extracted from the object’s spectrum, and

• its temperature ) , “measurable”, or at least inferrable with standard methods from
photometry or spectroscopy, assuming thermal equilibrium and Planck’s law [410]:

! = 4c'2f)4 =⇒ ¤!
/
! = 2 E'/' + 4 ¤)

/
) , (6.1)

141 This is the astronomical term for the total flux (integrated across the full spectrum). The present argument can
be modified to consider the emission in a number of given bandpasses (>1 necessary just for the temperature
determination) since it already assumes a given spectral flux distribution.
À propos, an absolute magnitude system for bolometric luminosity and irradiance (flux density), which is
anyway not realisable in practice, can be relatively painlessly introduced by stipulating e.g. 3.0128 × 1028 W
and 2.518 021 002 × 10−8 W/m2 as the respective standards [340].

142 Under spherical symmetry, every motion is radial, but in principle, E' here does not necessarily stand for
motion along the line-of-sight to the observer.
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where f ≈ 5.67 × 108 W/m2/K4 is the Stefan–Boltzmann constant. Substituting ' from
the former and expressing the relative rate of change in luminosity ( ¤)

/
! ) as an (absolute)

rate of change in magnitude ( ¤" = ¤<)—which is independent of distance (and any other
constant relative modification to the brightness like extinction) because of the logarithmic
nature of the magnitude scale:

! = cf)4E'
[
ln 1001/5 × ¤< + 4 ¤)

/
)

]−2
. (6.2)

This allows calculation of ! from relatively scarce observations: a couple of photometric
measurements in a couple of bands to estimate the temperature and its derivative and a
spectrum to extract the ejecta velocity.

Elegant as it is, Baade’s method has two glaring flaws. Firstly, it is unrealistic: SNæ
are not (all and always) isotropic and opaque blackbodies,143 and while the latter can be
explicitly verified with spectral information, the former assumption is never robust: i.e.
there is no easy way to identify whether it holds and correct the result or discard the obser-
vation so as to not propagate incorrect conclusions otherwise. And secondly, it is still very
data-intensive: on one hand, it necessitates spectroscopic data and careful line modelling
to extract a precise and accurate E'; on the other, it calls for a differential measurement of
temperature— an abstraction that is expected to be ill-defined in non-idealised cases— ,
which is prone to large estimation errors. As an alternative to the latter, one can trace the
expansion through time and derive the radius absolutely, but that requires even more spec-
tra or assumptions (e.g. a free-“fall” expansion dictated purely by gravity and the initial
velocity imparted by the explosion). All in all, physical standardisation applies mainly in
Plato’s universe of universals.

Empirical standardisation144 shuns explicit physical modelling— in accordance with
the stated epistemological objective of supernova cosmology—and Platonic ideals in favour
of an analysis of, by and for real observations. By effectively utilising the entire pool of
data even for inference of individual-object properties, an empirical procedure can achieve
greater statistical power (certainty/precision) than the self-standardisation described above.145

143 According to Colgate [100], the blackbody assumption may apply only to the early phases of a SN Ia before
the effects of radioactive heating and emission take over and more broadly to CC SNæ.

143 I apologise to the poor Bayesian reader for this discussion. Standardisation is an unfortunate and inseparable
part of the history of SN Ia cosmology, and sometimes it is necessary to see the depths of hell in order to
appreciate heaven.

145 While the references to BHMing here should be clear, I note why it is not (usually) employed in processes like
self-standardisation: there is no noise, scatter, or uncertainty within Plato’s static reality of the Forms. That
is, physical modelling is conditional on perfect knowledge of the universals— the top hierarchical level—
instead of on parameteres with varying degrees of posterior probability inferred from i.i.d. observations.

https://en.wikipedia.org/wiki/Gettysburg_Address#%22Government_of_the_people,_by_the_people,_for_the_people%22
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The essence of empirical standardisation, therefore, is cohesion: the approach relies on
identifying a transformation of the observed data that leads to the least possible variance
(across a population of objects identified to be of the same type, e.g. SNæ Ia) while pre-
serving—better: distilling—the contained information about a problem of interest (e.g.
absolute brightness / distance). The SN Ia class146 already presents a fortuitous intrin-
sic homogeneity (see Minkowski’s remark above), which afforded Perlmutter [402, 403],
Schmidt and Riess [444] the 2011 Nobel Prize in Physics. Beyond relying on fortune,147
the simplest approach to constructing and strengthening cohesion is by identifying and “ex-
plaining” some of the observed variation in a quantity of interest through its correlation correlation vs.

causationwith other observable quantities (rather than in terms of causal connections with other
intrinsic properties). In statistical terms, this corresponds to the act of conditioning: the
variance of a conditional distribution p(H | G) is never greater than that of the corresponding
marginal p(H), which has integrated within it the additional variability of a p(G).

The most primitive procedure for standardisation of SNæ Ia was pioneered by Phillips
[408] and Tripp [513, 514] and remains, tragically, in wide use until today. In it, the “ab-
solute magnitude”148 " of a SN Ia is estimated by a linear combination of covariates x̂(d) covariates
deterministically extracted from data:

" B = "0 + � · x̂(dB) + n B, (6.3)

where B labels individual SNæ Ia (#SN in total considered). Empirical standardisation
strives to minimise the average residual scatter, f0 ≡

∑#SN
B=1 (n

B)2/#SN, across the analysed residual scatter
sample, i.e. the mean squared error (MSE) of the estimator from" B. Given pre-determined
covariates {x̂(dB)} → - and {" B} → . derived from the observed brightnesses149 <̂(dB)
of SNæ at known distances, standardisation corresponds to performing a linear regression linear

regressionto determine the standard SN Ia absolute magnitude "0 and correlation coefficients �.
standard SN Ia
correlation
coefficients

In cosmological inference, on the other hand, each distance modulus is calculated under

146 Sample selection is, of course, one way of ensuring homogeneity, but it sacrifices constraining power (if the
rejected examples are still informative but the inference procedure is not sufficiently sophisticated to process
them) and is prone to inadvertent biases: see subsection 8.3.6.

147 In the interest of fairness, both teams extended the simplistic one-parameter model
(standard absolute brightness at maximum + Gaussian noise) with corrections related to colour and
light curve shape, as we describe next, and even considered Malmquist bias, but given the quality and
quantity (42+ 16 = 58 SN Ia) of the data they analysed, the modifications hardly had any effect on the results
[403, fig. 5].

148 This is usually taken at peak in a specified band: traditionally B, but since this choice influences the power
of standardisation (the resulting cohesion), recently Avelino et al. [27, see also earlier references therein]
have advocated for standardisation in the near infrared (NIR). While this detail is immaterial to the general
argument presented here, it will influence later analyses (including chapter 12).

149 These should correspond in nature to the modelled absolute " chosen as per footnote 148.

https://european-union.europa.eu/principles-countries-history/symbols/eu-motto_en
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Figure 6.1: Proverbial SN standardisation using two covariates (represented as the colour
and size of the markers). Correcting for the bluer–brighter and broader–brighter correla-
tions results in the green points, which are much more concentrated (with a residual/in-
ternal scatter f0) around the true underlying model (green line, Cref), which allows it to
be picked from among alternatives (orange lines, random C). Note that the effects of "0
and H0 = h · 100 km/s/Mpc—to shift the Hubble diagram rigidly in magnitudes— are
completely degenerate, so one of them can be arbitrarily fixed.
*The redshifts in this visualisation are taken from [403], but the remaining values are fictitious.

assumption of the C and a cosmological redshift (cf. eq. (5.15)), and a non-linear fit for C
(possibly in conjunction with "0 and �) can be performed, as depicted in fig. 6.1.

The difficult part of standardisation is devising informative x̂ in the first place.150 In
keeping with the spirit of empiricism, early proposals relied on meticulous examination
of observational data and domain expertise to derive natural-intelligence optimised sum-
maries that reflect two intuitions (illustrated in fig. 6.1): bluer–brighter and broader–witchcraft

bluer/broader–
brighter

brighter. The former, expressed through the observed colours, is related to extinction,
which simultaneously dims and reddens light (but never brightens and bluens it); we ex-

150 An experienced data scientist might immediately resolve to principal component analysis (PCA) [465], butPCA
that was not a viable option in the data-poor days; and besides, PCA requires strictly structured data, i.e.
equal-dimensional for each B, which SN Ia observations are not: see section 7.1. Still, the empirical sum-
maries discussed in this paragraph (colours and shapes) are linear combinations of (regularised) data indeed
derivable with PCA.
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pound on this in subsection 8.3.3. The latter is a largely empirical observation that can
be parametrised through a measure of the light-curve shape: e.g. Δ<15(B), the increase in
B-band magnitude 15 days—found to “provide the greatest discrimination”—after maxi-
mum light [408, 197, see also 426, 427, 428].

The final option, preferred since [443, 402], is based on fitting a parametrised tem-
plate (discussed in section 8.1) to each light curve dB and using the recovered (e.g. MAP /
MLE) values as covariates. Note that this still corresponds to a deterministic—yet hardly
tractable— transformation (compression/summarisation) of the original data into estima-
tors of a model’s parameters: x̂(dB), through the fitting procedure. It also challenges the
interpretation of standardisation: it is more reasonable to believe—and more powerful in
practice (see section 8.2) to assume—that the absolute magnitude, an intrinsic property, is
related to the latent (true/intrinsic) values of the model’s (other) parameters rather than to
measurements thereof.

Accounting for measurement uncertainty is, in general, a major issue for empirical
standardisation, which ultimately reduces to a comparison of two deterministic estimators:

"̂ B ≡ <̂(dB) − `( Îc(dB), C) ↔ "̂ (dB) ≡ "0 + � · x̂(dB). (6.4)

The natural interpretation in this case is frequentist: uncertainties from the observables
(<̂(dB), x̂(dB), and—very importantly— Îc(dB), which estimates Ic from data) are prop-
agated linearly and combined in quadrature to form the variance of the estimator of the
residual:

n̂ B ≡ "̂ B − "̂ (dB) = (<̂(dB) − `( Îc(dB), C)) − ("0 + � · x̂(dB)) (6.5)

(fB)2 ≡
∑
G8 ,G 9

∈{<̂,x̂,Îc}

ΣG8G 9
m2n̂ B

mG8mG 9
=

(
fB
<̂

)2
+

(
fB
Îc

m`(I, C)
mI

����
I=Îc (dB)

)2

+
∑
Ĝ∈x̂
U∈�

(
UfB

Ĝ

)2
+ . . . (6.6)

where � is the observational covariance matrix, and we have omitted the cross-terms in the
expansion for clarity. This leads finally to the quintessential fitting objective / likelihood j2 fit
(see section 1.3) of orthodox SN cosmology [e.g. 192, and most followers thereof]:

−2!{dB} ("0, �, C) = j2 ≡
#SN∑
B=1

[
n̂ B (dB, "0, �, C)

]2

[fB (dB, "0, �, C)]2 + f2
0
, (6.7)

where the addition of f2
0 accounts for the scatter of the estimators in eq. (6.5) within the

population (in addition to their individual observational variances from eq. (6.6)). This still
falls short of proper probabilistic modelling on two counts:
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1. Since f0 is not known a priori, it also needs to be inferred, but a pure eq. (6.7) would
trivially set it to infinity. Instead, it is determined separately either

• prior to the fit, e.g. from external observations with diverse but known distances
or from sub-samples with unknown but similar distances, i.e. binned in redshift
[see e.g. 44, subsection 5.5]

• or—contentiously, yet commonly—by setting it so as to ensure that the best-fit
j2 per degree of freedom is unity. Naturally, this requires an iterative procedure
of re-fitting with different constant f0 until an anticipated convergence.

2. The � are present in the denominator of eq. (6.7) (they control the contribution of the
covariate uncertainties (fB

Ĝ
) to the total fB), and this can “bias” the fit towards larger

values than suggested purely from the numerator. In other words, eq. (6.7) allows
standardisation to increase the residual scatter without penalty. To counteract this,
Astier et al. [21, and followers thereof] fix � only in the denominator, i.e. perform
inference with fully fixed uncertainties and again re-iterate using the new best-fit
values.

These problems are not exclusive to standardisation: in fact, they will reappear in the
traditional procedure for correcting selection effects (cf. subsection 8.3.6); rather, they are
a general shortcoming of the frequentist approach to uncertainty in a hierarchical setting.



Chapter 7

Supernova cosmology for data scientists

7.1 Digital photometry: how raw can you go
A datum of photometry, 3, is a measurement, taken at time151 C and in band/filter f, of a
source’s photon153 flux density: photon flux

density
'f(C) ≡

∫
� (C, _)
ℎ2/_ )f(_) d_ , (7.1)

where h c/_ is a photon’s energy, and all quantities are, understandably, in the observer’s
frame. The spectral flux density � (C, _) is the prime object of source modelling/inference. spectral flux

densityBeyond the intrinsic brightness (spectral flux) Φ(Cr, _r) of the source itself (for SNæ Ia
described in section 8.1), naturally described in its rest frame, a model needs to account
for propagation effects, namely extinction— in the host and in the Milky Way (MW)— , propagation

effectsredshift, and distance, as we elaborate in chapter 11.
On the other hand, the transmission function )f(_) encodes all “instrumental” effects transmission

function
instrumental
effects

and specifications, which include the filter and camera wavelength responses and atmo-
spheric absorption (if the observation is ground-based). The former two are precisely mea-
surable in laboratory conditions and usually stable throughout the operation of an instru-

151 Naturally, this is given in more convenient coordinates than those used in cosmology (e.g. for the metric in
eq. (5.4)); namely, (as I said, for historical reasons) in (modified) Julian days (MJD) with origin exactly 166
years and one day before the deadline for submission of this thesis—arguably much less arbitrary than the
last coincidence of the solar (28 yr), lunar (19 yr), and Roman-taxation (15 yr) calendar cycles152 in 4713BC.

152 I am sure these were designed to be co-prime with least common multiple (ΛCM) 3× 4× 5× 7× 19 = 7980.
153 This is due to the use of charge-coupled devices (CCDs) in modern observatories—miniature photovoltaic CCD

cells that produce electricity from starlight via Einstein’s Nobel-worthy photoelectric effect (and more than a
century of engineering advances). The earlier photographic plates, on the other hand, measure total deposited
energy and typically have a highly non-linear response (in a variety of aspects) [275].
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Table 7.1: Radiometric terminology (co-opted from Wikipedia:Radiometry).

quantity symbol redshift distance

luminosity
{

(energy) flux ! ≡ Δ�/ΔC ∝ (1 + I)−2 (absolute)
spectral flux Φ ≡ Δ!/Δ_ ∝ (1 + I)−3 (absolute)

intensity
{

flux density � ≡ !/area ∝ (1 + I)−2 �M(Ic)−2

spectral flux density � ≡ Δ�/Δ_ ∝ (1 + I)−3 �M(Ic)−2

→ photon flux density 'f ≡
∫
�
/
�W (_) )f(_) d_

ment; in contrast, the latter varies based on the altitude of the source above the horizon—
published “filter” transmissions usually include the contribution of a unit of air mass (i.e.air mass
apply for observations near the zenith)—and atmospheric conditions, i.e. cloudiness. This
and the residual possibility of variation in the calibration of the optics and electronics—e.g.
across the focal plane / camera sensor—, makes determining the absolute normalisation154calibration
of )f a major challenge for astronomical measurements.

Instead, for every “pointing”, simultaneous auxiliary measurements are made of photo-photometric
standard metric standard sources, whose �0 is known (or prescribed).155 Ultimately, this results in a

noisy measurement of the experimental zero point: ZP, the magnitude of an (hypothetical)zero point
emitter that produces—under the specific conditions of each observation—an instrumen-
tal readout of 1ADU (an analog-to-digital unit128). The uncertainty in its determination isADU
usually expressed as a normal posterior, with mean and (usually small) standard deviation
released alongside the source measurements.

In combination with the photometric standard, for which a photon flux density '0
f can

be defined in analogy with eq. (7.1), the expected signal (number of photoelectrons, e−)signal [e−]
from the source can be written as

〈3〉src =
'f

(
CB,8

)
'0
f

100.4×ZP

gain
, (7.2)

where the gain is an instrumental setting156 that dictates the conversion between ADUgain [ADU/e−]
154 Alas, astronomy is not an absolute science: life would be too easy if it were. In fact, the magnitude system126

was devised exactly to measure brightnesses in practice through comparisons (ordering/sorting).
155 This attempt for astronomical absolution154 has created two[citation needed] major photometric standards defin-

ing separate magnitude systems: Vega and AB. The former is tied to the eponymous star (for historical rea-magnitude
system sons [35]) but not really [257]: its agnosticist definition (“<Vega ≡ 0 in any filter, now let’s move on”),

has later been restated in terms of experimental phenomena [203] and theoretical models (of white dwarf
as the simplest astrophysical object!) [53]. On the other hand, the AB(solute) system stipulates a standard
(null-AB-magnitude) �AB ≡ _2 × 103.56 Jy/c [390, with a “minus-sign” typo in the defining (unnumbered)
equation], leaving its practical realisation to the observers.

https://en.wikipedia.org/wiki/Template:SI_radiometry_units
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(readout) and photoelectrons (signal/data). Finally, the data is a Poisson realisation:

3 ∼ Pois(〈3〉src + 〈3〉bg), (7.3)

that contains a “noise” contribution from the electronics, scattering in the atmosphere (“sky
signal”, depending e.g. on theMoon’s phase and the time of night), and the continuous host
light. Calculating/measuring this background term is a science of itself [45, see eg], as it background
depends on a wide variety of factors: on the atmospheric seeing, diffraction in the optical seeing &

diffractionsystem, instrumental effects in the electronics (dark & readout current), the exposure set-
dark & readout
current

ting (integration time) and the telescopes’s light-collecting area, and on the procedure for
measuring fluxes, both of the transient as it is transpiring, and of its host.

A common simplification of the above (forward, in the style of our inference framework)
instrument description is calibration, which reduces the data to a Gaussian approximation data reduction
of the Poisson distribution in the well-known limit of a large rate 〈3〉src + 〈3〉bg � 1:

3 { N(〈3〉src + 〈3〉bg, 〈3〉src + 〈3〉bg)
=⇒ 3 − 〈3〉bg { N(〈3〉src, 〈3〉src + 〈3〉bg).

(7.4)

Now, the background level 〈3〉bg, whose a priori calculation is involved beyond feasibility,
as discussed above, can be measured from auxiliary data (1) of e.g. a sourceless sky and calibration data

(auxiliary)the transientless host (before/after the transpiration) to produce an estimate/or

1 ∼ Pois(〈3〉bg) ≈ 〈3〉bg, (7.5)

which is then subtracted from the observation to produce a calibrated “flux”157: calibrated flux

FLUXCAL ≡ 3 − 1, (7.6)

treated (and released) as the data. Its (Gaussian) uncertainty is calculated according to
eq. (7.4), which requires—circularly—knowledge of the “true signal” 〈3〉src. When for-
ward modelling, this is readily available through eqs. (7.1) and (7.2); for calibration pur-
poses, one can apply the same strategy as for the background:

FLUXCALERR2

{
≈ 〈3〉src(. . .) + 1 (semi-forward modelling),
≡ 3 ≈ 〈3〉src + 〈3〉bg (calibration).

(7.7)

156 It concerns digitalisation with limited precision (bits) and so may differ e.g. when determining the zero point
and the various backgrounds, which have different intensities.

157 Calibrated flux is a misnomer—beyond the fact that it measures, nominally, (photon) flux density—: e.g.,
since the Poisson distribution does not satisfy the linearity implied for the normal in eq. (7.4), and the back-
ground level is anyway estimated, its subtraction from a particular observation can result in negative calibrated
“flux”; this is a known problem, especially when expressing FLUXCAL in— logarithmic—magnitudes, usu-
ally dealt with by discarding problematic measurements: they evidently contain more noise than signal.
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Figure 7.1: Two approaches to instrumental effects (both apply independently to each point-
ing, labelled B as per subsection 7.1.1). A fully forward model considers the generating
process for all data: primary (3) and auxiliary (1). In contrast, calibration splits the data
into contributions from “signal” (assumed Gaussian) and “noise”/background (directly es-
timated from 1). The contribution of the signal to its own uncertainty (alternative dashed
lines) is either modelled directly (semi-forward model) or estimated directly from 3. No-
tice that this latter case creates a loop in the graph.

The two alternatives are depicted as dashed connections in the right-hand graphical model
in fig. 7.1. Notice that “calibration” results in a loop and so is, technically, improper: it
does not capture the dependence of the noise on the signal but rather fixes it to an estimate
based on the observed 3 and 1.

Finally, the assumed sampling distribution/likelihood under this approximation is

FLUXCAL { N
(
〈3〉src, (FLUXCALERR)2

)
. (7.8)

In this case, linear re-scaling does not modify inference—in contrast to the original Poisson
sampling—, so the ZP and gain can be set arbitrarily in a data release: common values are
ZP→ 25 or 27.5 or 30 mag and gain→ 1.

7.1.1 Transient photometry: light curves and surveys

A light curve (LC) comprises the # Bobs photometric measurements dB ≡
[
3B,8

]#B
obs

8=1 of a par-LC
ticular transient B. Essential for its interpretation is the associated metadata (cf. sections 1.1
and 4.2): the times, bands, gains, and zero points

[
(C, f, gain,ZP)B,8

]#B
obs

8=1 pertinent to each
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data point. In case of calibrated data, this also includes the background measurements and
the combined uncertainties

[
(1, FLUXCALERR)B,8

]#B
obs

8=1 .
A collection of light curves (and metadata), in turn, is a photometric survey (or com- survey

pilation): the data set {dB}#SN
B=1 analysed in SN cosmology. It is thus a catalogue, in the

sense of section 4.2, on two levels. Firstly, it is truly a data set D, for its size, the number of
observed (detected/selected) transients, #SN, is a priori undetermined. And secondly, each
light curve dB is a catalogue in itself: the number of observations and associated metadata,
even when pre-determined by e.g. a particular observing strategy, are in general different
among the transients.

Certainly, as with any catalogue, one can argue that the raw data has a much better
defined format: e.g. a collection of images (pixel readouts) taken at pre-determined times
and in pre-determined filters (this includes the auxiliary observations used for calibration).
It is the identification, i.e. detection, of objects that introduces the stochasticity of data
structure. Therefore, one may regard the catalogue size and metadata as entirely fixed (on
both levels) if one is certain that this will not affect inference: e.g. the assumed model
does not suppose a dependence of the observed counts on parameters of interest and/or
a procedure for sample selection is not considered. In such a scenario, the data set of
sets reduces to a simple array of size

∑#SN
B=1 #

B
obs, whose elements are identifiable by the data array

combined label B, 8, and the metadata reduces to simple object-specific settings, which
control the sampling distribution. We will adopt this streamlined approach for our initial
forays into SN data analysis in chapters 12 and 13.

7.2 The data delugesion
Before the end of the 19th century, supernovæ were being discovered “by chance” and
“by eye”— i.e. not very efficiently. S Andromedæ (SN 1985) was the first to be observed
through a telescope and located in a galaxy other than our own158 [see 30]. After the identi-
fication of the Ia type and the recognition of its excellent properties as a distance indicator,
targeted campaigns were instituted to discover SNæ Ia at cosmological distances. While
Norgaard-Nielsen et al. [386] discovered only one in two years, the Calán/Tololo survey
observed ∼30 “low-I” SNæ Ia in the following years [196, 197], and the Nobel-worthy
work of Perlmutter et al. [402, 403] and Riess et al. [444] added 58 objects at redshifts
reaching I = 1. Similarly to the Universe, the field then entered a period of accelerated
expansion, with discoveries streaming in from dedicated SN campaigns, general transient
searches, and extensive cosmological surveys alike: see table 7.2. By the moment of this

158 Of course, these did not exist— as universally recognised and accepted concepts—until after the Great
Debate of 1920 [475].
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writing, thousands of SNæ Ia have been observed both at low (I ® 0.1) and high redshifts
(up to and slightly beyond I = 1).

Despite its abundance, current SN Ia data remains scattered across redshift and wave-
length (see fig. 7.2) due to the variety of observational strategies employed through the
years. Moreover, each listed data set in table 7.2 has been produced with unique instrumen-
tation, usually with a somehow non-standard set of filters, different magnitude systems and
zero points, and sometimes even on different telescopes within a single survey. Moreover,
spectra are usually obtained, processed, and published separately and notoriously hard to
calibrate.159 On the contrary, deriving stringent cosmological constraints relies on tracing
consistently the absolute luminosities of SNæ Ia through as wide a redshift range as pos-
sible. This has motivated monumental efforts to compile, reconcile, and cross-calibrate
different low- and high-redshift surveys: notable examples include

• 463 SNæ Ia in Jones et al. [261] ≡ Foundation ∩ PS1MD ,
• 740 SNæ Ia in JLA [44] ≡ SDSS ∩ SNLS,
• 1701 SNæ Ia in Pantheon(+) [472, 473] ≡ JLA ∩ PS1MD ∩ various low-I,
• 2087 SNæ Ia in Union3 [460], a compilation of 24 sources.

The preferred approach [e.g. Supercal(-fragilistic): 471, 72] is to calibrate onto the mag-
nitude system of the instrument/survey with greatest overlap with the rest of the data sets:
e.g. Pan-STARRS. This highlights the importance of large observational efforts: other such
examples are the Dark Energy Survey (DES) and the Zwicky Transient Facility (ZTF).160

Large compilations naturally present a slew of systematic uncertainties: e.g. related to
the magnitude offsets between separate surveys (or telescopes). Even within monolithic
data sets calibration parameters abound: every single pointing includes supplementary
measurements to determine a zero point, sky and instrumental background, and the host
contribution (see section 7.1). A traditional Bayesian analysis quickly escapes the realm
of computational feasibility; instead, one of two simplistic approaches is currently adopted
for each of those nuisances:

• it is either assumed to be normally distributed and added in quadrature to a cumula-
tive “measurement noise” (FLUXCALERR, see section 7.1);measurement

noise • or it is fixed throughout an analysis, and its influence is determined by re-running
the whole inference pipeline for several (usually two) representative values in order
to “propagate” its “uncertainty”.

Needless to say, one can do better—and has to, in order to fulfill the statistical promise of
large observational data sets without introducing systematic biases.

159 see e.g. the procedure in Betoule et al. [44] and Kenworthy et al. [276]: spoiler alert, they give up
160 The calibration of the ZTF itself has been revealed to suffer a peculiar “pocket effect” biasing measurements

by ∼0.02mag, and as a result Rigault et al. [449, cf. fig. 2] warn against using its output for cosmology.
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Table 7.2: Summary (far from complete) of sources of SN Ia data in the 21st century, their
wavelength and redshift coverage. The hitherto active campaigns have incorporated exten-
sive spectroscopic followup and confirmation as a core part of their observing procedure,
unlike those expected in the near future.

survey #0 of SNæ Ia I bands1 references

SN Ia
targeted

CfA 1–4 346 <0.1 UBVRI [445, 253, 215, 216]
Loss 1&2 351 <0.05 BVRI [165, 493]
SNLS 252 0.15–1.1 griz [194]
Essence 213 0.1–0.81 RI [375]

CSP I&II 259 <0.137 ugri
BV YJH [297, 409]

SweetSpot 74 <0.1 JHK [541]
Deh0vils 83 <0.1 YJH [404]
Raisin 37 0.2–0.6 JH [262]

all-sky
transient

Foundation 225 <0.1 griz [157]
PS1MD 279 0.03–0.68 griz [472]
ZTF ongoing 3628 <0.3 gri [449]

all-sky2
cosmology

SDSS 1443(+677†) <0.5 griz [462]
DES 1635† 0.1–1.13 ugrizy [464]

low-blueshift
Universe

LSST 2025���� ∼105/yr† ®1 ugrizy [240, 302]

WFIRS 2027���� ∼103† <1.7–3 RZYJHF [231]

0 Numbers quoted here should not be treated as exact but indicative: e.g. as reported in abstracts and not as
used in analyses or contained in data releases…

1 The actual transmission of a “given” filter may differ significantly between instruments and pointings due to
atmospheric conditions.

2 Transients were still observed in narrow “drilling” fields.
† supernovæ classified based on their photometry (but possibly with precise host redshift information)
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Figure 7.2: SNæ Ia discovered in the last two decades and projections for the near future.
Top: redshifts of confirmed SNæ Ia with publicly available photometry frommajor surveys,
including estimates for future instruments (see table 7.2 for sources). Bottom: cumulative
number of observed SNæ (all types) and type Ia specifically with time, as well as counts
per survey.
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The low-blueshift™ Universe promises to completely disrupt the status quo in two re- near future
spects. On one side, the Vera Rubin Observatory’s Legacy Survey of Space and Time LSST
(LSST) [240], scheduled to begin by the end of 2025, is forecast to discover millions of
supernovæ over the following ten years [302, fig. 11.2]: many orders of magnitude more
than currently available (see fig. 7.2). In the NIR, it will be backed by the Rubin Space Tele-
scope (RST) [490] and its Wide-Field Infrared Survey (WFIRS) [231], while (unlensed)
detections with bigger telescopes like the European Extremely Large Telescope (ELT) are
predicted to reach Ic = 3 [60].

Future data will be almost exclusively photometric due to the excessive resource de-
mands of spectroscopy. This has drastic implications to transient typing125 and redshift es-
timation (see subsection 8.3.7 and subsection 8.3.2, respectively, for further details), which
are most reliably achieved with spectral information. In its absence, SNæ Ia (will) have to
be classified solely based on light curves—or analyses (will) need to be re-formulated to
rigorously handle contaminants (non-Ia transients) in the object catalogue. Similarly, red-
shift will need to be either extracted from the light curve or from auxiliary observations103: host data
e.g. targeted spectroscopic followup of host galaxies after161 transients have been identi-
fied or from archival data. This implies an additional analysis step: host identification,
which is not a trivial task in crowded and blended fields (see subsection 8.3.5). Instead,
the most ubiquitous source of redshift information will be the host photometry recorded by
the survey before/after the transient.

161 Measuring flux split over wavelength bins (spectroscopy) requires proportionally longer integration time with spectroscopy
respect to broadband (wavelength-integrated) photometry. This is not, in principle, a constraint that cannot
be overcome by technology: colossal multi-fiber spectroscopic galaxy surveys like Sloan Digital Sky Survey
(SDSS) and Dark Energy Spectroscopic Instrument (DESI) have achieved miracles for cosmology, given
enough time. Transients are a different beast, however: with them, time is a scarce commodity (evidenced
by the name), and their occurrence is random (cf. the “revolt against determinism”), which requires rapid-
response instead of massively coordinated strategies, as the ones currently employed. Robotic observatories
like Pan-STARRS, GOTO, and ZTF (which has a low-resolution (' ∼ 100) spectrograph) are a step in the
right direction, but spectroscopy cannot, almost by definition, keep up with photometry. Consider, simply,
that LSST light curves are expected to comprise approximately 50 broadband measurements each; this means
that spectroscopic followup of all discovered transients can in principle achieve only a similar ' ∼ 50 on
average.





Chapter 8

Supernova cosmology for statisticians

The exponential influx of SN data in the last two decades and the potential it holds for un-
covering some of the deepest mysteries of the Universe has motivated the development of
statistical models for its analysis that quickly surpass the sophistication of intuition-driven
standardisation. On the other hand, the epoch of LSST will bring about a step-like change
in both data quantity (much greater) and quality (somewhat lower due to the impossibil-
ity of spectroscopic follow-up), which will correspondingly introduce new challenges in
terms of computational and modelling requirements. In this chapter, therefore, we review
the existing methodologies for SN Ia cosmology and then discuss potential pitfalls in their
application to future data (i.e. identify areas that require improvement) before finally pre-
senting our vision for scalable and principled application of neural SBI in the field.

8.1 SN Ia templates
While SN Ia cosmology has remained largely empirical (with only few developments mo-
tivated by physical/mechanistic insight) since the practical breakthroughs of the 1990s,
the ensuing accumulation of high-quality observations has enabled a truly data-driven ap-
proach centered around the creation and utilisation of a parametrised template for the in- template
trinsic spectral flux timeseries Φ(Cr, _r) of SNæ Ia in their rest frame, which allows mod-
elling measurements beyond those at peak in a given band, i.e. extracting information from
/ standardising the full light curve.

A template is built from a large collection of photometric and/or spectroscopic data
compiled to span the times (phases)162 and wavelengths in which Φ is defined. Since ob-
servations measure spectral flux density in the observer frame, they first need to be cor-

162 The template epoch, C = 0, can be freely chosen and usually represents the peak (in e.g. the B band).

97
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rected for distance, time/energy dilation, and redshift (straightforward with spectroscopy
but more involved for photometry); and since the template is meant to represent the SN Ia-
intrinsic brightness, extinction along the line of sight needs to be taken into account. In
short, creating a template means inferring Φ(Cr, _r) from data.

To do this, one first needs to introduce a parametrisation. The simplest conceivable
template has no parameters and thus represents the standard (average) Φ(Cr, _r) of SNæ Ia
in (rest-frame) time and wavelength bins; such were built by Leibundgut et al. [310] (from
75 light curves) and Hsiao et al. [233] (from ∼600 spectra from ∼100 SNæ Ia). Simple
single-parameter extensions, heavily influenced by the standardisation framework, were
developed by Perlmutter et al. [402] (who allowed only for a uniform time-rescaling) and
Riess et al. [443] (who allowed for a time-dependent flux-rescaling): see fig. 8.1. The
latter—more flexible—approach led to the development of the MLCS (Multicolor Light-
Curve Shape) [443, 444, 252, 254] templates defined in a discrete set of  -corrected and
de-extincted broad bands.
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Figure 8.1: Two ways to standardise a light curve (green points) in terms of a standard
template (black line). This example uses salt with G1 = 3 (and 2 = 0) for the reference
and “observation” in both panels. Left: standardise first only the stretch in time (either
directly by a parameter B as in salt 1 or by adding G1 times a flux component constrained
to zero at the peak as in salt 2+); then shift (Tripp-correct) coherently in brightness by an
amount that ends up correlated with the stretch (UG1, black arrows). Right: directly model
the light curve with a “principal component” that is added to the reference in rtion to a “G1”.
This approach, adopted by MLCS and BayeSN, does not require post factum correction /
brightness standardisation. See also the similar fig. 18 in Perlmutter’s Nobel lecture [401]
and note the misrepresentation therein of MLCS [cf. 254, fig. 7].
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8.1.1 The de facto standard(isation)
salt

Salt (spectral adaptive light-curve template) [192, 193, 276] is a simple extension of mag-
nitude standardisation to a range of times and wavelengths that has emerged as the preferred
method for extracting covariates and deriving standardised distance estimates in all major
SN Ia cosmological studies [44, 472, 73, 109]. It falls within the larger framework of (func- functional PCA
tional) principal component analysis (PCA)-based templates, which includes also the more
recent snemo (supernova empirical models) [467] and sugar (supernova generator and
reconstructor) [308]. They consist of a Φ0 shared among all supernovæ (corresponding
to the standard template) and #PCA additional {Φ8} whose contributions to a particular
object’s brightness are controlled by parameters

{
GB8

}
(cf. eq. (6.3)):

salt : ΦB (Cr, _r) ≡ Φ0(Cr, _r) +
#PCA∑
8=1

GB8Φ8 (Cr, _r) + n B (Cr, _r). (8.1)

As in ordinary PCA,163 the number of components can be “objectively” determined by
examining the amount of residual variations n B (Cr, _r) for models with increasing #PCA.164
While snemo finds in it reason to employ up to 14 principal components, salt only uses
a single pair G1,Φ1, corresponding165 to early light-curve shape corrections. In addition,
both salt166 uses a fixed colour law with intensity (but not form) controlled again per- colour law
supernova by a parameter 2B:

salt : ΦB (Cr, _r) → ΦB (Cr, _r) × exp(2B CL(_r)), (8.2)

meant to represent extrinsic reddening due to the environment. The unfortunate contradic-
tion with the stated goal of the template as SN-intrinsic and the inability of the fixed CL
to anyway account for the observed extrinsic variations beyond the amount of extinction
has led to much controversy (see subsection 8.3.3) but little substantial modification to the
salt framework from the above description.

163 Template training procedures overcome the difficulties150 of inconsistent temporal and spectral sampling
(observations) among the different SNæ Ia through interpolation either of the template (spline-based in salt)
or of the observations (through Gaussian process regression in snemo and sugar).

164 Given a limited (finite) training set, eq. (8.1) can incorporate all of the n into as “few” as #SN components
(devolving {G8} into indicator variables), so an alternative stopping criterion is needed: e.g. comparing n with
the observational noise [see e.g. 308, fig. 2]. Via an independent method, the counting statistics of “twin”
SNæ Ia [144], Rubin [458] found an intrinsic dimension of the SN Ia spectral flux of “3–5”, but this does not intrinsic

dimensionin general correspond to the number of linear parameters required to span it.
165 In fact, in the first version of salt [192], G1 was forced to be Perlmutter et al.’s stretch factor B, making Φ1 a

not-exactly-principal component.
166 and, at the end of the day, also snemo and sugar after convoluted discussions
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Comparing the salt template eqs. (8.1) and (8.2) to eq. (6.3), we can assimilate the
template components and the colour law as extended correlation coefficients, and the per-
object parameters GB8 and 2B as the covariates. To “train” the template, they can all be
simultaneously fit167 to a collection of observations (photometric and spectroscopic) of a
training set of SNæ Ia by minimising the amount of residual variations n B (Cr, _r); i.e. by a
j2 fit extended from eq. (6.7), which results in estimates ĜB8 ({dB}) and 2̂B ({dB})—notice,
these depend on the full training set, which has determined the templates and, hence, the
meaning/nature of the per-object parameters. In practice, one also needs to resolve several
scaling degeneracies, most importantly168:

• between each Φ8 and its corresponding G8 by imposing on the latter unit estimator
scatter

∑#SN
B=1

(
ĜB8

)2 ≡ 1 across the training SNæ;
• similarly, between 2 and the colour law, by fixing the latter’s normalisation so as to
interpret the former as a colour parameter for historical reasons;

• the overall normalisation of the observed light of each SN Ia: ΦB → GB0Φ
B—i.e. its

spectral flux density—by fixing a correspondence G0 = 1 =⇒ <B = 10.5 at peak
for historical reasons.

The latter point has important cosmological implications: since the template represents
a latent (not directly observable) quantity, G0 needs to account simultaneously for the intrin-
sic brightness scale (per SN, i.e. " B) and the effect of distance (but without  -corrections,
which are taken into account explicitly by redshifting…). This means that additional (cos-
mological) information can be exploited in the fit by requiring that the normalisations of
SNæ at the same distance (i.e. redshift / in the same galaxy) be similar, up to the intrinsic
scatter f0. However, this pushes the boundary of non-forward non-Bayesian hierarchical
modelling, and instead, this information is extracted post factum from the estimators ĜB0 in
a separate cosmological fit.

Lastly, salt needs to model the significant residuals in order to faithfully represent ob-
servations. As per the discussion around f0 in eq. (6.7), salt incorporates “diagonal”, i.e.
uncorrelated across phase and wavelength, uncertainty of Φ0 and Φ1 (but not in CL, see
below), propagated linearly and combined in quadrature. Since the traditional j2 adjust-
ment would combine the residuals across all phases and wavelengths and leave a f0(Cr, _r)
largely undetermined, Guy et al. [193, subsection 6.1] assume its functional dependence
matches that of the propagated epistemic uncertainty (estimation variance of the template)
and re-scale it within bins. Kenworthy et al. [276, eqs. (3) and (15)] introduce a slight im-
provement and model it as a spline-based surface, similarly to the principal components,

167 In a slight departure from the present description, sugar pre-defines the covariates by extracting informa-
tive features from the spectrum “at” maximum light and then determines the non-principal components that
correlate with them.

168 See Kenworthy et al. [276, subsection 2.1]), from where we take the concrete examples here.
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and fit for it with the full Gaussian likelihood, which includes an uncertainty “regularisa-
tion” in the normalisation/entropy term.169 Still, the diagonal description f0 → f0(Cr, _r)
cannot capture brboadband variation caused by combination of the “scatter” at a range of
wavelengths, and so salt resolves to an ad-hoc  -correction uncertainty, which resembles
a learnt uncertainty in CL). As in canonical standardisation, these involved procedures
employed to determine and apply template variance [see also 113] are symptomatic of the
general unsuitability of reverse (model-fitting) methodologies for representing uncertain-
ties in a hierarchical setting.

Despite all the correspondence pointed out above, which imply that template modelling
can be a full replacement for standardisation at peak, it has been repeatedly found [e.g.
194, 44, 472, 276] that linear correlations between the derived salt ĜB1, 2̂B and ĜB0 still
remain170 and need to be corrected for by Tripp standardisation (eq. (6.3)) of the familiar
form " = "0 − UG1 + V2 + n as a result of two further modelling choices: the already
mentioned restriction of the colour law and the stipulation of a zero average flux in the B
band from the Φ1 component, which artificially splits the principal variation into a stretch
(Φ1) and a magnitude shift for historical reasons: see fig. 8.1.

8.1.2 The Bayesian SN Ia template
The appropriate approach to forward modelling and uncertainty quantification for the SN Ia
spectral timeseries template is Bayesian modelling of all ΦB as random functions (an ex- random

functiontension of the concept of a random variable to infinite dimensions, whereby the index of a
random array is replaced by the function’s argument(s)). This forms one of the founding
principles of BayeSN [341, 342, 344]: the Bayesian SN Ia template. Very similarly to
salt, etc., it represents the spectral flux as a PCA-like series expansion, albeit in magni-
tudes with respect to the Hsiao et al. [233] template171 rather than linear flux:

BayeSN: − 2.5 log10 [ΦB (Cr, _r)/ΦHsiao(Cr, _r) ]
= −19.5 + X" B +,0(Cr, _r) + \B1,1(Cr, _r) + n B (Cr, _r), (8.3)

where X" B and \B1—respectively, the residual coherent scatter (n in orthodox standardis-
ation (eq. (6.3))) and stretch (salt’s G1)—are now true random variables (i.i.d. across the
SN Ia population, i.e. object-specific parameters in a BHM) assigned population (hierar-
chical) priors (as detailed in fig. 8.2) in lieu of salt’s degeneracy-resolving (“a posteriori”)

169 instead of pure j2 adjustment—a win for science!… They still iterate fitting separately the template and the
uncertainty, of course…

170 Incidentally, Kenworthy et al. [276] improve upon previous salt models by explicitly decorrelating the ĜB1
and 2̂B from each other (across the training set)… but not from ĜB0.

171 which assumes the role of a photometric standard155 and is normalised to a "B = 0 in the Vega system
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Figure 8.2: (Intrinsic) BayeSN as a hierarchical functional model for SN Ia spectral flux
timeseries ΦB (Cr, _r) (note that,0,1 and n also are random functions parametrised by ran-
dom variables). Refer to Mandel et al. [344, subsection 2.5] for a full description.

constraints on estimators. Importantly, they are assumed (a priori) uncorrelated,172 and the
famous broader–brighter effect is instead encoded in the ,1 component, à la MLCS (cf.
fig. 8.1).

The template components ,0,1(Cr, _r) and the residual perturbations n B (Cr, _r) (per-
SN Ia) are also assigned prior processes (“distributions” of random functions) throughprocesses
discrete parametrisation on a fixed grid

[
tg, �g

]
in (rest-frame) phase and wavelength and

2-dimensional spline interpolation:

,0(C, _) = Spline2d
(
C, _; tg, �g,W0

)
, (8.4)

,1(C, _) = Spline2d
(
C, _; tg, �g,W1

)
, (8.5)

n B (C, _) = Spline2d
(
C, _; tg, �g, eB

)
. (8.6)

The arrays of spline knotsW0,1 (shared among all SNæ Ia) are assignedweakly constraining
priors (cf. fig. 8.2 and Mandel et al. [344, subsection 2.5]), allowing the template to be
learnt purely from data. On the other hand, {eB}#SN

B=1 explicitly model each SN Ia’s residual
variations. They are random arrays (each of size equal to the number of grid points) and are
a priori normally distributed with covariance split into a diagonal contribution �e (standard
deviation at each grid point, akin to f0(Cr, _r)) and a correlation matrix Re (no equivalent
in salt) among the different spectro-temporal regions, which are also given (a final layer of
hierarchical) priors. This makes eq. (8.3) a Gaussian process (GP)173 [see e.g. 438] withGP

172 and a posteriori for real data as well: see Mandel et al. [344, footnote 11]
173 Interestingly, this formulation for the 2-dimensional distribution of a SN Ia’s light is reminiscent of Karchev

et al.’s [267] description of source light in a gravitational lens, down to the nonlinear transformation (red-
shift/lensing) and intergation (within a filter/pixel) that relate the model to observations.
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mean function −19.5 + X" B +,0(Cr, _r) + \B1,1(Cr, _r) (itself hierarchically modelled with
a (non-Gaussian) process) and a non-explicit albeit interpretable covariance arising from
spline interpolation—which promotes smoothness— inbetween the grid points.174

The second tenet of BayeSN is proper and physicallymotivated colourmodelling, specif-
ically with respect to the variety of dust extinction laws that supernovæ are subjected to in extinction law
their variety of hosts. In glaring contrast to salt, BayeSN uses a parametrised colour law—
namely, the one derived by Fitzpatrick [153, hereafter F99]:

ΦB (Cr, _r) → ΦB (Cr, _r) ×
[
F99

(
_r; 'BV

) ] �B
V . (8.7)

This introduces two new parameters per SN:
• �BV is the extinction optical depth (strength), which is proportional to the logarithm optical depth
of the line-of-sight within the host and so is given a prior Expon(1/g ), controlled
by an a priori unconstrained average extinction g ∼ HC(1);

• 'BV is the F99 colour-law parameter, related to the properties of dust grains in the host
galaxy [e.g. 132] and identified with the total-to-selective extinction ratio for the B colour-law

parameterand V bands:
'V = �V/(�B − �V) ≡ �V/�B−V . (8.8)

The distribution of dust properties— read, the hierarchical priors for the i.i.d.
{
�BV

}
and{

'BV
}
—has been at the heart of a high-stakes methodological standoff in the literature,

whose resolution could afford a significant increase in the precision of SN Ia distance es-
timates through an explanation of a large fraction of the unmodelled (residual) scatter. We
comment further on the topic in subsection 8.3.3 and present two SBI contributions to the
subject in chapters 12 and 13.

Training BayeSN is very similar to salt—on the surface: the model is confronted with
redshift- and distance-corrected broadband-photometric and spectroscopic data, which for
the purposes of dust modelling, extends into the NIR, and the joint posterior of all parame-
ters (filled squares in fig. 8.2 and {(�V, 'V)B}) is inferred. However, BayeSN’s particularly
high-dimensional175 middle (object-specific) layer— the plate in fig. 8.2—poses a com-
putational challenge to likelihood-based techniques (even if only the global parameters are
of interest for constructing the template), and this has necessitated the use of specialised
high-dimensional algorithms: initially Gibbs sampling [341, 342], and then HMC (nuts)
with automatic differentiation in Stan and NumPyro [344, 184].

174 An alternative GP-based SN Ia model was developed by Kim et al. [285], who did not expand the mean
function beyond the Hsiao et al. template and used a more standard kernel-based covariance function.

175 The grid’s size—and that of eB—varies between implementations: 6 × 9 [344], 6 × 6 [509], 6 × 11 [535].
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Cosmological inference with BayeSN is yet to be conclusively demonstrated in a way
that makes full use of the model’s proper hierarchical structure. Certainly, it can be—
and has been [508, 262,176 126, 517177]—used to infer distances, given a fixed Φ model,
but this has required breaking the degeneracy with each SN’s average magnitude, i.e. with
the {X" B} parameters. Perplexingly, the cited studies all consider a priori uncorrelated
distances, relinquish the hierarchical prior X" B ∼ N

(
0, f2

0
)
in favour of an unconstrained

`B+X" B ∼ U(−∞,∞), derive per-SN independent distance moduli, and fit them (vs. exter-fitting ?!
nal redshift constraints) with a cosmological model; in fact, Thorp&Mandel [508] subtract
a fiducial cosmology and analyse the residuals in terms of various dust extinction config-
urations and intrinsic brightness differences in the SN Ia population rather than distance.
Instead, the natural approach is to extend the BHM to include (cosmology-)parametrised
distance moduli and model redshift constraints: thus, the cosmology (of interest) can be
derived directly while distances are a by-product.

8.2 Bayesian SN Ia cosmology
Proper— Bayesian hierarchical— SN Ia cosmology has been realised in a number ofBHM with LC

summaries studies, but only on the level of light-curve summary parameters, i.e. “covariates” as ex-
tracted for Tripp standardisation, mainly using (or representing) salt. Such analyses—
with cool names like Bahamas (Bayesian hierarchical modeling for the analysis of super-
nova cosmology) [345, 477], unity (unified nonlinear inference for type-Ia cosmology)
[459, 460], Steve [221], and bird-snack (Bayesian inference of dust law '+ distributions
using sn Ia apparent colours at peak) [536]; names like Simple-BayeSN [343]; and tremen-
dous missed opportunities like abyss+ (application of Bayesian graphs to SN Ia data anal-
ysis and compression) [334]—gracefully handle the interplay between population scatter
and observational uncertainties by leaning on the concept of latent (true) values xB of the
covariates, i.e. i.i.d. realisations of a random variable x, of which the estimators x̂B ≡ x̂(dB)
are noisy measurements for each SN Ia. In a BHM, the latter are also treated as realisa-
tions of a random variable, x̂, which represents the observables: a small change of notation
(x̂B → x̂B) but a giant leap in interpretation.

As previously alluded, the Bayesian worldview shifts standardisation (where needed,
e.g. for salt: cf. fig. 8.1) onto the latent layer, while also explicitating the “residual scatter”

176 In Jones et al.’s cosmological analysis of the Raisin survey, BayeSN is an awkward passenger taken along
for a ride by the main driver: the SN(oo)Py fitting code [74] (a NIR extension of MLCS.)

177 While most BayeSN analyses use HMC (nuts), Uzsoy et al. [517] demonstrated the application of (non-
amortised) VI, with a simple multivariate normal proposal, for inference from individual SN Ia light curves.
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as resulting from a population distribution (usually normal with standard deviation f0):

" B ∼ N
(
"0 + � · xB, f2

0

)
, (8.9)

The distance modulus: `
(
IBc, C

)
, a deterministic function of (true cosmological) redshift,

IBc, then converts " B to (latent) apparent magnitude, <B. To complete the data vector, noisy
measurements ÎcB178 and <̂B are made of each SN Ia, so that dB →

(
Îc
B
, x̂B, <̂B

)
. These are

related to the object-specific parameters: �B ≡
(
IBc, xB, " B

)
via a sampling distribution that

is, in general, not constrained to be diagonal in any way, i.e. any element of dB may depend
on any other quantity of possibly a different SN.179

The (Bayesian) hierarchy in SN cosmology is established by the population distribution population
distribution

p
(
IBc, xB, " B

�� ) = p
(
" B

�� xB,��IBc, )︸              ︷︷              ︸
“standardisation”

p
(
xB

�� IBc, )︸        ︷︷        ︸
SN Ia properties

& evolution

p
(
IBc

�� )︸   ︷︷   ︸
rate

, (8.10)

where  are the global parameters180 of the model. Among them are C and "0, �, f0—
in the Bayesian setting, Tripp standardisation is just a particular parametrisation of one of
the necessary conditional distributions. The remainder is more difficult to model. The last
term in eq. (8.10) is the cosmological rate of occurrence of SNæ Ia, which is very often SN Ia rate
overlooked in SN Ia cosmology with spectroscopic (i.e. precise) redshift estimates since
it contributes little to the cosmological constraints. Discussion on redshift modelling,103
especially with regards to future photometric-only surveys, is presented in subsection 8.3.2;
we use a common SN Ia rate parametrisation as a power law of

(
1 + IBc

)
[128] in chapter 15

and improve upon it with a physically motivated forward model in chapter 16.
On the other hand, p

(
xB

�� IBc, ) represents the distribution of properties within the SN Ia
population—and its redshift evolution (discussed shortly)—and thus requires more care.

178 This is an obvious simplification since the cosmological redshift is not directly measurable (cf. eq. (5.6)). We
defer the subtleties to subsection 8.3.2 and here simply remark that ÎcB always contains noise, e.g. related to
peculiar-velocity “subtraction”.

179 Of course, by de Finetti’s theorem [561] (see also footnote 120), such cases can only be artificially constructed
by “marginalising” some global parameter (if the SNæ are exchangeable, i.e. all relevant (meta)data is consid-
ered). Nevertheless, they are extremely common in SN Ia cosmology, in which the likelihood of summarised
data is represented as a Gaussian with non-trivial (dense) covariance matrix that attempts to combine statis- covariance

(stat. + sys.)tical and systematic uncertainties [see 103, and followers thereof], and so follows the “marginalisation” even
of the correlation coefficients � on top of the “usual” calibration parameters.

180 They, of course, require hierarchical priors, but these are largely a matter of convenience rather than physical
validity, and so usually uninformative or Jeffreys-inspired distributions are chosen (see references in this
section and section 14.1 for particular examples).
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For covariates that are parameters of a light-curve model (e.g. salt), it may be reasonable
to assume the empirical distribution of the estimated values for the relevant training set181
(e.g. [276, fig. 4]), but this is usually very different from high-redshift cosmological sam-
ples (although typically it is more “complete” in terms of sample selection (although the
requirement for spectroscopy might counteract magnitude completeness…)).

More commonly, however, the choice of p
(
xB

�� IBc, ) is made in the interest of some
computational tractability or other—cf. the discussion after eq. (1.8)—motivated also by
the fact that template training is usually implemented so as to “fix” it to a given distribution,
e.g. a unit normal for G1 (see above). For instance, the first SN Ia-cosmological BHM,
March et al. [345], is almost entirely solvable analytically, on account of being composed
primarily of normal distributions.182

Beyond light-curve summaries / template parameters, e.g. G1, 2 ∈ x, Bayesian standardi-
sation has been extended with other properties like the mass of the host galaxy [334, 477,
343, 221, 459, 460], the location of the SN within it [217], and the “re-brightening time”
[476, 121]. In general, any imaginable quantity G8 (see subsection 8.3.4) of which a mea-
surement Ĝ8 can be made (and described through a sampling distribution) can be included
within x (and x̂) and its utility for standardisation (at least to linear order) evaluated through
the posterior of its corresponding correlation coefficient U8.183

Beyond population modelling and rigorous uncertainty quantification, BHMing also
allows seamless accounting for probabilistic effects like complicated uncertainties (in lieu
of linear error propagation), e.g. in the template,184 calibration,185 and photometric redshift
estimation: Ibeams [451] (subsection 8.3.2); for sample selection: unity, Steve (subsec-
tion 8.3.6); and for non-Ia contamination: beams (Bayesian estimation applied to multiple
species) [299, 451] (subsection 8.3.7).

181 But beware that those may be affected by selection or estimation biases. As an extension, p
(
xB

�� IBc , ) is often
flexibly parametrised (e.g. as a skew normal in unity 1), selection effects are not modelled, and inference
is to be understood as representing the sample of selected objects: p(d | s, ), which of course, may not be
the same as the total population. The danger of doing this is to solidify the results from one study (e.g. the
template training) and use them in another setting for a differently constructed sample.

182 Crucially, this requires linearisation of the distance modulus for the purposes of redshift uncertainty propa-
gation (see Karchev et al. [269], appendix B for more details), which is justified only when the latter is small,
i.e. with spectroscopic information.

183 Estimators can also be correlated with one another in the orthodox “inference” / standardisation framework,
but this is far more prone to improper interpretation of uncertainties; indeed, it is highly dependent on the
noise / estimator variance. Moreover, Bayesian modelling presents a means for “hypothesis testing” (model
selection) that is easily spun out of parameter inference—and according to some, is more interpretable.

184 See e.g. Grayling & Popovic’s [184] mass-dependent spectral-timeseries modelling with BayeSN (even
though their analysis is not exactly in a cosmological context).

185 See e.g. unity [460, subsection 4.4]… for an example of room for improvement.
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8.3 Pitfalls
In this section, we discuss the major outstanding challenges in the field of SN cosmology,
how they have been approached in the literature—often in sub-optimal ways constrained
by tractability even in Bayesian settings— , some of the detrimental effects this has on
inference results in certain cases (hence the term “pitfalls”), and how a comprehensive
SN cosmological model/simulator should be formulated and solved (with SBI) in order to
extract maximum information from future large observational campaigns.

8.3.1 Scalability
However powerful, the Bayesian approach needs to be explicit29: it requires parametrisa- explicit

modellingtions of all considered—physical and statistical—effects in the hierarchy: for example, to
account for classification and sample selection, one introduces latent labels for the class and
selection status, and for variability in the spectral timeseries, an explicit vector eB for each
SN Ia. These need to be assigned prior probabilities and subsequently sampled simulta-
neously with the (usually very few) (global) parameters of interest in any likelihood-based
analysis, which presents a computational challenge even with current “modestly” sized
SN Ia collections, let alone the possibility of scaling to the 105–106 SNæ from LSST.

But alas, recall that parameters are auxiliary constructs (when they are not of inter-
est) and so can, at times, be avoided: e.g. by re-formulating the template as an implicit
Gaussian process (BayeSN → Kim et al.), through laborious analytical calculation of a
modified likelihood for selected samples (Steve, unity), or by enumeration of the models
for different classes, fitting with each (essentially), and averaging (beams).

Atmost of those times, the computational convenience of an analytical description (over
numerical marginalisation) is the sole motivation for adopting a particular convenient—
but otherwise arbitrary—probabilistic description for phenomena/effects that are known
to not exactly follow it. The prime example are linearly propagated Gaussian redshift un-
certainties (discussed shortly), instrumental effects (Pois → N , discussed in section 7.1),
and systematic effects expressed through a numerically estimated covariance179 [see 103]
for highly compressed—mostly hand-crafted (or intuition-inspired), hence possibly sub-
optimal—summary representations of the data.

Lastly, current analyses are often exclusively split into stages: first, a template is trained
(usually with different, more detailed, and more robustly observed and selected data); then,
distances are derivedwith a fixed template (with variability from the first stage incorporated
in a more or less principled manner); finally, cosmological constraints are derived from the
distances186 (and usually separately inferred redshifts), after modelling of (or “correcting”

186 The last step may differ based on the scientific goal of the analysis; e.g. Thorp & Mandel [508] investigate
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for) selection biases (subsection 8.3.6).
On one hand, this approach ignores available information and hierarchical constraining

power: e.g. the assumption of a particular cosmology and a set of true redshifts—if both are
sampled in aMCMC—“standardises” the fluxes and allowsmore stringent constraints to be
derived even from observations with uncertain redshift and unknown distance. And on the
other hand, partitioning an analysis can lead to a hard-to-trace bias181 from an unquestioned
re-utilisation of results derived in a different setting than that of a subsequent application.187

SBI counters all of the above arguments by definition:
• it is implicit: likelihood evaluation or explicit probabilities are not needed;
• it is marginal: only the parameters of interest are inferred;
• it is scalable: simulation and NN evaluation are linear189 in the size of the data set;
• it can implement end-to-end inference simply by compiling an appropriate simulator.

8.3.2 Redshifts (and velocities)
While the majority of the modelling effort devoted to SNæ Ia (and standard candles in
general) is expended on inferring distances (i.e. absolute and apparent brightnesses), it is
just as important to the final cosmological constraints to have access to cosmological(!)
redshift estimates that are as accurate as they are precise—e.g. Wojtak et al. [545] show
that a systematic offset ΔIc ∼ 10−5 can have a disproportionately larger impact (∼1%) on
dark-energy inference [see also 324, 237]—and to employ a statistical procedure able to

magnitude offsets (in other cases interpreted as distances) in relation to model selection of dust laws and a
magnitude step (subsection 8.3.3).

187 A curious point in that regard was made by Hogg & Villar [227, subsection 4] and applies to any data-drivenAmplifications
of training-set
biases

modelling (including non-simulation-based188 ML). Every result of a training/fitting/optimisation procedure
(e.g. a template) carries a sampling bias associated to the particular realisation of its training set (consider
estimating the mean of a distribution from a finite number of samples: the result will differ from the true mean
by an amount that reduces with the size of the “training set”). When the “optimal” result is employed in a
separate subsequent analysis of a larger sample (hence, with smaller statistical uncertainty than the estimator
variance of the first stage), the results will be biased. However, estimating the sample variance in the first
place requires a model for how the training set has been sampled—even in the frequentist interpretation—
i.e., a hierarchical prior/likelihood. In Bayesian terms, the problem can be neatly expressed and resolved by
considering—as per eq. (1.4)—a posterior derived from the first analysis as the prior for the second; or by
training the template while simultaneously performing “downstream” inference.

188 The training set in end-to-end SBI is much larger than the analysed datum, which is a singleton example.
This is in contrast to piecewise SBI approaches like learning a per-object likelihood, which also suffer from
amplification of training-set biases.

189 While someNN architectures (prominently, attention-based / transformers), have superficially quadratic com-
plexity, they can be accelerated without significant loss of performance [e.g. 305, 292, 98] or replaced by a
deep set with explicitly linear scaling, as we already discussed.
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properly account for their uncertainty. Thus, the redshift pitfall of SN Ia cosmology has
two entrances.

On one side, one needs to rigorously model all other sources of redshift besides cos-
mological expansion: eq. (5.6), since it is only the total redshift I that can be inferred from
the wavelengths of observed spectral features. The additional contributions come from
large-scale gravitational redshift in the cosmic neighbourhood of the Earth190 and the total
(line-of-sight) peculiar velocity of the light emitter191 with respect to the Earth. While the
motion of the Earth, Sun, and Milky Way can be rigorously accounted for [411, 412], the
bulk flow of distant galaxies is known only on average [e.g. 89, 58, 59],192 and the motion bulk flow

proper motionof a SN within its host is essentially193 unconstrainable, i.e. it can only be incorporated as
epistemic uncertainty.

Peculiar velocities and the local gravitational redshift do not, obviously, scale with Ic,
so they represent a relatively important effect only for small Ic. Early studies [e.g. 279],
therefore, discarded SNæ Ia with I ® 0.02. More recently, the standard approach to the
conversion between total and cosmological redshift has been essentially the same across all
cosmological (or not) SN Ia analyses: a mean bulk-flow velocity Êpec (converted to redshift)
is “subtracted” from the measured total Î (as per eq. (5.6)):

1 + Îc = (1 + I)
/ (

1 + Êpec
/
2
)
, (8.11)

and a largely arbitrary scatter, e.g.fÊpec = 150 km/s, is assumed to account for all remaining
redshift sources, in (quadratic) addition to the measurement uncertainty fÎ of Î:

f2
Îc
=

(
fÊpec

/
2

)2
+ f2

Î . (8.12)

This brings us to the other opening of the pit: propagating uncertainties (as always).
After noticing that the Gaussian description implied in eq. (8.12) is inappropriate when
fÎc ≈ Îc since, unlike Ipec, the cosmological redshift is strictly non-negative (and immedi-
ately closing our eyes to this fact), we can proceed as in eq. (6.6) to linearise the distance linear�����

propagation of
redshift
uncertainty to
magnitudes

190 which, if constrained, can be used to infer a local value of the Hubble constant [79, 118], distinct from that
at high redshifts.

191 It has been suggested by Foley [155] that the velocity of the SN Ia ejecta can be a significant source of redshift,
which furthermore depends on the phase since the luminous material decelerates with time after the initial
explosion, making I → I(Cr).

192 Recently, SNæ Ia have been used to constrain the nearby galactic bulk flow [129, 328]
193 but not quite: it may either be directly estimated from a comparison of the host spectrum (redshift) and

that of the SN (background subtracted), but this requires careful modelling of line profiles resulting from
an unknown explosion geometry; or since it is modellable through the dynamics of the host [47], the SN’s
proper motion may be constrainable through its host-centric position (see subsection 8.3.4)
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modulus (usually only in its low-Ic already-linear Hubble-law limit eq. (5.13)…) and derive
the magnitude / distance modulus “uncertainty” that corresponds to fÎc:

f` = fÎc
m`(Ic, C)
mIc

����
Îc

→
fÎc

/
Îc

ln 101/5 as Îc → 0. (8.13)

Linear propagation of redshift uncertainty is harmful to cosmological inference. It
always leads to a form of Eddington bias194 (introduced shortly): we demonstrate this in
fig. 14.5. Regardless of the redshift-estimation precision, there is always a data set size large
enough so that the bias is evident. Our results from chapter 14 show that, for a reasonable
photometric redshift uncertainty (fÎc = 0.04 × (1 + Îc)) and residual magnitude scatter
of f0 = 0.1, cosmological parameter inference is biased by 2 sigma already with 2000
SNæ Ia.

The solution (as always) is Bayesian hierarchical modelling. This requires, in the first
place, a prior for the cosmological redshift, usually expressed through the (comoving) vol-volumetric rate[

1/Mpc3/yr
]

umetric rate ' of SN Ia explosions (in the rest frame, hence the time-dilation factor) and
the evolution of the cosmological volume element [see e.g. 226, eq. (28)]:

p(Ic | ) ∝
'(Ic)
1 + Ic

m+c(Ic, C)
mIc

=
'(Ic)
1 + Ic

�3
c (Ic, C)
� (Ic, C)

[
sinc

(√
:�2

c

)]2
. (8.14)

The distribution of cosmological redshifts (of any given “probe”), therefore, depends on
the cosmological model, and so inference can be performed solely from redshift measure-
ments,195 without reference to brightness, standardisation, or the Hubble diagram—pro-
vided a faithful model for ' and the observational selection efficiency. In parallel with
the above discussion on the distribution of SN Ia parameters/covariates (especially foot-
note 181), ' is usually given a flexible parametrisation and inferred from data: in chap-
ter 15, we will do precisely that adopting a power law '0(1 + Ic)V [128].

The rate of SNæ Ia, however, is susceptible to physical modelling (at least much more
so than p(x | Ic, )) since their formation scenario is at least partially understood [424].
Combined with modelling of the star-formation rate (SFR) history [see e.g. 336] of theirSFR
hosts, the SN Ia delay-time distribution (DTD) allows principled forward representationDTD
of p(Ic | ) and reverse inference of its parameters, which can identify and constrain the
physics of SN Ia formation, as we demonstrate in chapter 16.

194 The case considered here corresponds to the illustration in fig. 8.5 with ` → G and Ic → H, instead of
the inverse setting we will discuss in relation with selection effects. The two conditions for Eddington bias
to arise: namely, a scatter in G, i.e. `, and non-constancy of its distribution, are ensured, respectively, by
eq. (8.13) and the nonlinearity of `, which implies that p(`) = p(Ic)

/
mIc` .

195 To first approximation, even the total number of detected objects is cosmologically informative.
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Photometric redshift estimation Apart from a prior, Bayesian inference (of cosmolog-
ical redshifts) requires a likelihood / sampling distribution to represent the measurement
process. Presently, large analyses are transitioning from fully spectroscopic (i.e. relying spec-I
on typing and, by extension, redshift estimation from a spectrum of the SN Ia itself) to
“photometric” (e.g. Amalgame [420] and DES [109]), but only with regards to classifica-
tion196; instead, redshifts are still being derived from follow-up (or archival) spectroscopy
of the host.197 Above, in eqs. (8.11) and (8.12), we presented the usual simplified Gaussian
description for both peculiar-velocity (Êpec ± fÊpec) and total-redshift (Î ± fÎ) estimation
appropriate in this setting.198 Typically, both uncertainties are of the same magnitude, with
the pure fspec

Î
≈ 10−4, which means that their proper combination is paramount to avoid-

ing biases as cautioned by Wojtak et al.; this calls for the construction and utilisation of a
peculiar-velocity+redshift BHM, like the one presented by Rahman et al. [435],199 in which
to incorporate the external constraints from bulk-flow measurements.

Unfortunately, most supernovæ detected in future surveys like LSST will not be fol-
lowed up spectroscopically.161 While the spectrum of the host might be (or eventually
become) available in sky regions that overlap with galaxy (i.e. non-transient) surveys like
SDSS or DESI, the primary source of redshift information for future SN cosmology will
be the transient survey’s own photometric observations. One possibility to extract it is to
focus solely on the SN’s light curve and either fit it with a freely redshiftable template like
salt [112], or to use a bespoke method like Photo-ISNthesis200 [429]. However, the more
popular—and more constraining [see e.g. 363]—approach examines the broadband mea-
surements of the host galaxy, taken before and/or after the transient [379]. While conve-
nient and much less demanding observationally and computationally, a host photo-I is still photo-I
highly uncertain, model dependent, and expected to deviate significantly from a Gaussian
approximation, even exhibiting multimodality in certain cases [311, see also 25, fig. 1].

These complications, in view of the general requirements of redshift estimates for un-
biased and precise SN Ia cosmology [324, see also 429, fig. 12], highlight the superiority
of proper—Bayesian hierarchical— redshift inference over simplistic error propagation.
Nevertheless, they also introduce a levels of intractability (i.e. photo-I constraints that may

196 The one prominent instance of purely photometric SN Ia cosmology is Ruhlmann-Kleider et al. [461], but
their methodology leans heavily on BBC, which we calumniate revile berate denounce in subsection 8.3.6.

197 In this case, the derived redshift does not include the contribution due to ejecta velocity and the SN’s proper
motion, but they are usually just lumped into fÊpec anyway…

198 Note, this refers to the calculation of the redshift uncertainty, not to its propagation onto magnitudes!
199 Incidentally, Rahman et al.’s goal is not (dark-energy) parameter inference per se but detecting (or rejecting)

an anisotropy in the expansion [see also 488]: a hypothesis we shun as a matter of principle
200 Curiously, and without realising explicitly advertising it, Qu & Sako combine a number of concepts from the

present thesis to present redshift inference through simulation-based NPE implemented as classification over
a discretisation of the parameter space.
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not be represented as analytical distributions) to a BHM that is already computationally
challenged by O(#SN) latent parameters for the true cosmological redshifts (and true pe-
culiar velocities).

The solution (as always) is SBI: it allows
• implicit marginalisation of (redshift) constraints represented as posterior samples
from external analyses;

• simultaneous transparent modelling of all relevant sources of redshift, as well the
correlations they induce (e.g. in SNæ from nearby regions of the bulk flow);

• unified inference of SN Ia properties (individual and population-level) and redshifts
from both the light curves and associated host photometry using a single inference
network, as we demonstrate in chapter 16.

8.3.3 “Interaction” with the host: dust extinction
Standardisation of the intrinsic brightnesses of SNæ Ia was first presented by Phillips [408]
in terms solely of a stretch covariate. Later, it was improved by Tripp201 [514] via the cru-
cial addition202 of a correction related to the observed B−V colour, which was understood
as an intrinsic correlation due to the explosion physics and clearly separated from the sim-intrinsic

bluer–brighter ilar (both in nature (brightness–colour) and in sense (bluer–brighter / redder–dimmer))
extrinsic effect of interstellar dust.extrinsic

redder–dimmer
(dust)

The superposition of the two phenomena means that observed properties of SNæ Ia
reflect neither accurately: see Mandel et al. [343, fig. 3]. As a consequence, studies which
interpret the colours and magnitudes of SNæ Ia solely in terms of dust extinction & redden-
ing [see references in 343] find optical depths (�V) and dust laws ('V) inconsistent with
other estimates, e.g. of the Milky Way; conversely, standardisation methods (like salt)
that consider the full brightness scatter of SNæ Ia (after stretch correction) as arising from
a correlation with colours infer a larger coefficient of proportionality than that appropriate
for the pure intrinsic relation due to the additional effect of dust. Moreover, standardisa-
tion via a single colour–brightness relation results in a poorer fit than using an appropriate
combination of the two relevant effects, as demonstrated by Mandel et al. [343], Brout &
Scolnic [71], Popovic et al. [418], who perform post factum corrections of salt param-
eters. Grayling et al. [185] compare quantitatively this “dust2dust” variant of the salt
framework203 to the principled modelling of BayeSN, whereas Brout & Riess [70] give a

201 to the extent that 25 years later a referee would insist that a manuscript refer to eq. (6.3), realised with the
salt G1 and 2 parameters, as the “Tripp formula” rather than “Phillips relationship”…

202 also with respect to Tripp’s earlier work [513]
203 Note that the salt template is till trained in the original way (for historical reasons), and so the inferred colour

law CL(_r) still incorporates a residual mixture of the dust and instinsic bluer–brighter effects.

https://en.wikipedia.org/wiki/Phillips_relationship
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Figure 8.3: (��� SIDE-real) Variations in rest-frame B (visible) andH (NIR) absolute mag-
nitudes at phase 0 (around maximum), as simulated by BayeSN, induced by varying each
of the free local parameters according to its fiducial hierarchical prior, with respect to a
reference value with X" = 0, \1 = 0, e = 0, �V = 0.1, 'V = 3. Numbers along the bottom
specify the standard deviation of magnitude variations in the two bands.

general overview of the modelling issues around dust that appear in SN Ia analyses.
Dust is an aspect of the physical (forward) model of SN— and not only— observa-

tions, whereas the issues mentioned above stem from an observation-centric (i.e. reverse)
perspective. They are non-existent in proper forward models like BayeSN: built, as elabo-
rated, specifically to encapsulate the physical properties and possible aleatoric variability
of dust extinction. Its modularity, i.e. clear separation of the SN-intrinsic brightness dis-
tribution204 and the external effects (dust extinction in the host and beyond, as we describe
in chapter 11), makes it easy to control the exact form of the dust law, so as to e.g. match
the model used in a simultaneous analysis of a SN’s host galaxies, for which the usually
assumed extinction curve is that of Calzetti et al. [80] rather than Fitzpatrick [153] (see
chapters 11 and 16). When a simpler representation through summary parameters suffices,
Simple-BayeSN or bird-snack can also be used for principled Bayesian dust modelling.

The population (hierarchical) properties of the dust in SN Ia host galaxies (p
(
'BV, �

B
V

�� ))
are more contentious. The Milky Way, for example, is most commonly assumed to have

204 Incidentally, BayeSN does model the intrinsic bluer–brighter correlation implicitly in the first principal com-
ponent,1 and so does not need explicit accounting for it, much like the stretch correction (cf. fig. 8.1).
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a single dust law and a variety of optical depths �V,MW(Ω) along different lines of sight,
as exposed by Schlafly & Finkbeiner [468], although recent efforts [e.g. 557] have un-
covered variations from the canonical 'V,MW = 3.1. Initially, a similar assumption was
made regarding other SN Ia-hosting galaxies, even within the BayeSN framework [e.g.
343, 344], but this epistemological certainty was soon relaxed by Thorp et al. [509], Thorp
& Mandel [508]— in fulfillment of BayeSN’s original promise— , and the possibility
of significantly different 'BV was accounted for (as always) by a flexible parametrisation
'BV |  ∼ N

(
`', f

2
'

)
(which includes the possibility of no scatter, f' → 0, i.e. a single

dust law across time and space). Then they let the data decide, leaning on the constrain-
ing power—specifically with respect to dust properties—of NIR observations, which are
minimally affected by interstellar extinction and therefore provide a convenient “anchor”NIR anchor
to which to relate the magnitudes in bluer bands205: see fig. 8.3 and note that variations in
the NIR are significantly lower than in the visible spectrum in most cases.

The same plot, however, highlights a hard truth about life SN Ia modelling: the effect
of dust-law ('V) variations is minuscule in comparison with the intrinsic brightness scatter
of SNæ Ia: the coherent scatter X" , the stretch-related brightening (measurable through
\1), and the residuals n . This means that independent dust inference for individual objects
is all but impossible: instead, constraints need to be pooled across the population with a
hierarchical model [509, fig. 5]. Nevertheless, the results of such an analysis, as wewill also
demonstrate in chapter 12, exhibit a heavy case of shrinkage: a statistical effect whereby allshrinkage
marginal 'BV posteriors concentrate toward the population mean (`'), are highly correlated
(i.e. a “systematic” shift in `' induced coherent offset of all 'BV), and attain—marginal!—
uncertainties similar to the population scatter (f'). Shrinkage is not a problem per se
but requires careful interpretation, especially of terms like “scatter”, “uncertainty”, and
“constraint”.

Lastly, dust-population modelling must satisfy two “physicality” constraints: �V > 0
and 'V ¦ 1.2, which represent, respectively, the obvious fact that dust only absorbs and
does not emit light206 and the physics of Rayleigh scattering [see 132]. In the context of
a dusty BHM, the former requirement is naturally incorporated in the support of the ex-
ponential distribution �BV ∼ Expon(1/g ) introduced above, whereas the latter needs to
be enforced on the assume N

(
`', f

2
'

)
via… truncation [509]. The goal here not com-

putational optimisation as when we introduced truncation to SBI, but the mathematical

205 This is partially a manifestation of the general sentiment that differential/slope measurements, e.g. colour
X − Y, are more precise if the two individual estimates are further apart.

206 Or does it?… See e.g. subsection c of Leja et al. [312] (and references therein): dust does emit due to being
heated by the various astrophysical processes that transpire throughout galaxies, but its light is re-processed
and emitted at very different wavelengths that that of the original radiation, so its effect on SN observations
is indeed purely extinctory (and reddening).
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formalism (eq. (2.24)) is exactly the same:

p
(
'BV

�� `', f') = {
N

(
`', f

2
'

) /
2(`', f') if 'BV ∈ [1.2;∞],

0 otherwise;
(8.15)

2(`', f') ≡
∫ ∞

1.2
N

(
`', f

2
'

)
d'BV , (8.16)

but now the normalisation 2 is not a simple rescaling but crucially depends on the pop-
ulation parameters, modifying their marginal likelihood in a way the favours broad 'V
distributions (i.e. a high f'), which would otherwise predict a number of objects with very
low—or even negative— 'BV in contradiction with the data. Further discussion and expla-
nation of the two effects can be found in Grayling & Popovic [184]. As a bottom line, `'
and f' no longer represent the mean and standard deviation, respectively, of p

(
'BV

�� ) but
are simply a… convenient flexible parametrisation.

8.3.4 Interaction with the host: additional standardisation
Beyond dust extinction, the astrophysics of galaxies can also influence the population of
SNæ they host. That is, it is possible to augment the model from eq. (8.10) with a set of
(latent) host parameters g: host parameters

p
(
IBc, gB, xB, " B

�� ) = p
(
" B

�� xB, gB,��IBc, )︸                  ︷︷                  ︸
modified

“standardisation”

p
(
xB

�� gB,��IBc, )︸            ︷︷            ︸
environment
dependence

p
(
IBc, gB

�� )︸        ︷︷        ︸
galaxy

evolution

, (8.17)

which act as conditioning for all the distributions previously considered (except that the
SN Ia rate is more conveniently expressed in terms of galaxy evolution referred to the DTD,
as we explained above and will demonstrate in chapter 16). To motivate their explicitation
in the hierarchical model, the host properties must be measured, possibly with noise: ĝB ∼
p(ĝB | gB, . . .), whence the usual game proceeds as with any SN-specific parameter: by
uncovering empirical connections among estimators.

Stellar mass "∗,207 commonly expressed in logarithmic terms: log10("∗/M� ), is cor-
related with mostly any galactic property208 and has therefore been extensively used as a
proxy to approximately account for the influence of “galactic astrophysics” in general (for
an excellent literature review, consult Thorp & Mandel [508]). Due to (previously) lim-
ited statistics and an already low residual scatter (∼0.1mag), the standard approach has

207 The asterisk stands for “star” / stellar, so as avoid confusion with an absolute (stellar…) magnitude.
208 See e.g. Heavens et al. [208], who express the full galaxy formation history through the observed stellar mass.
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been to split the sample along the median mass (typically around 1010.5 M�, although the
location of the mass split can be treated as a free parameter and optimised in terms of re-mass split
sulting standardisation) and allow different standard brightnesses " low

0 and "high
0 in the

sub-samples with low- and high-mass galaxies, respectively, while keeping the rest of the
global parameters shared.209 This is equivalent to fitting as usual after defining a mass-
related standardising covariate that takes on binary values: Ĝ"∗ ∈ {low: 0, high: 1}, and a
corresponding “correlation coefficient”, i.e. the so-called mass step210 Δ":mass step

" B = "0 + Δ" · ĜB"∗ + . . . , (8.18)

Accounting for significant measurement uncertainties in the stellar mass—which most
analyses do not, thus risking a trivial instance of Eddington bias— is problematic in this
formulation due to the discrete nature of ĜB"∗: Shariff et al. [477, see especially subsec-
tion 3.2], for example, achieve this by marginalising the class-assignment probabilities.
In any case, studies like Shariff et al. [477], Thorp & Mandel [508] generally attempt to
answer the question of whether additional standardisation is at all needed (after careful
consideration of all physical effects known to correlate with the stellar mass: e.g. a trend in
the dust population), or the scatter that remains is truly random by examining the posterior
probability of Δ" , which is not rigorous in the Bayesian sense.211 Of course, this approach
is undertaken because of the computational burden of proper model selection. We over-
come this with SBI in chapter 13 to conclusively resolve the question of the probability
of existence of a mass step when confronted with the possibilities of different dust-law
populations.

Local environment The (integrated) stellar mass of a galaxy is a global property and can
thus only statistically (i.e. on average) have an influence on the brightnesses (and other qual-
ities like stretch) of a SN Ia. If physical connections are to be sought, this must be done with
reference to local212 characteristics of the SN’s environment, i.e. the stellar population inprogenitor

population 209 unity, on the other hand, goes all in and allows all correlation coefficients to differ. Similarly, Grayling &
Popovic [184] experiment with training separate BayeSN templates for the two sub-samples.

210 more accurately, magnitude step across the split in host stellar mass
211 Consider, simply, that the space can be re-parametrised as Δ" → Δ"2, which will drastically alter the

quantitative results.
212 To this end, it must first be possible to resolve the position of the SN within its host: a task that may seemhost-centric

location daunting at first but is alleviated by a serendipitous quirk of the Universe’s hyperspherical (curved) geometry,
due to which the relation between projected size and distance—i.e. the linear size of an object that attains a
given angular scale on the sky—grows sub-linearly with redshift and even attains a maximum (around Ic ≈
1.6 in standard ΛCDM): see Hogg [226, fig. 2]. This means that a given telescope has a guaranteed minimal
resolving power regardless of distance: for example, the Rubin Observatory’s Simonyi Survey Telescope (that
will execute the LSST…), with its ΔΩ = 0 .′′2 angular pixel size, will be able to resolve details/separations at
least as small as ≈3 kpc at all redshifts [302].
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which it is embedded. Thus motivated, numerous studies have found evidence for such cor-
relations [446, 447, 448, 258, 260, 369, 370, 286, 287, 454, 456, 273, 274, 174, 175],213 but
definitive explanations of the causal channels—which will allow us to build a reasonable
forward model with which to perform principled inference—are still outstanding. Never-
theless, the avenue is open for applications of rigorous simulation-based model selection
(in the style of chapter 13) to assess the influence of local host properties and/or a pos-
teriori inference of a multitude of correlation/standardisation parameters from abundant
high-quality data like the low-redshift SNæ Ia collected by the ZTF.

Population evolution Since galaxies (and their (local) properties) evolve [364], the pop-
ulations of the SNæ Ia that occur in them do too:

p
(
xB

�� IBc, ) = ∫
p
(
xB

�� gB,��IBc, ) p
(
gB

�� IBc, ) dgB , (8.19)

where g acts as a nuisance parameter that can explain the tantalising clues [306, 384, 533]
of a redshift-dependence in the distributions of SN Ia properties and of the dust that affects
them [419, 510]. Therefore, this is a matter more of galactic astrophysics than of SN Ia
cosmology, and so, grounded in the fact that Rubin et al. [460] found no evidence for time
variation of the SN model independently of the galactic properties, we will not pursue this
matter further after simply remarking that SBI can be trivially used to simplify the fully
Bayesian time-evolving hierarchical unity analysis.

8.3.5 Host (mis-)identification
To extract (measure) any property— e.g. a photo-I, the dust law, or stellar mass— of a
SN Ia host, it first needs to be identified, which is not a trivial task in crowded and blended
fields revealed by deep observations. The standard “methodology”, developed by [191, see
especially fig. 1], is based on the (projected) distances between the SN and the centres of
nearby galaxies, normalised by the (projected) sizes of the latter: the so-called directional DLR
light radius (DLR).214 The candidate with lowest DLR is picked, and life SN Ia modelling
can go on as usual.

Roberts et al. [451] realised this can be a prominent source of redshift error and in-
cluded it into their comprehensive Ibeams BHM by introducing a latent variable to rep-
resent the assignment of each SN to its host from among a number of identified nearby
candidates, weighted a priori inversely to their separation (DLR). The redshift is then as-
signed a mixture distribution of the posterior inferences from each candidate host. In the mixture

distribution213 This reference list was compiled, almost in its entirety, by Matthew Grayling��������������������
214 The DLR, incidentally, can be used as a proxy for the local environment and hence, for standardisation [217].
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limiting example of host spec-Is, this collapses onto a choice of the redshift which best
matches the light curve (i.e. a comparison between separate redshift estimates from the SN
and from nearby galaxies). When, on the other hand, the host redshifts are not perfectly
constrained, their average represents a data-based prior on the SN’s total redshift I.

Exact modelling of these effects quickly escapes analytical description (e.g. Ibeams
is replete with Gaussian approximations), and so more recent studies [416, 431] rely on
forward simulations to better represent the host identification/association and redshift mea-
surement (or constraint-combination) process employed in real analyses and— simply—
elucidate its impact on the final results of inference…

Given the difficulty of designing an end-to-end explicit probabilistic model for (reverse)
host-galaxy identification, the best approach is clearly to directly use the faithful forward
simulations of the survey data acquisition and handling (mentioned above) for SBI.

• If, for example, a survey data release provides only a “best-guess” host, SBI will
learn to implicitly marginalise the uncertainty this introduces in the most efficient
way (given the data, e.g. by confronting the SN and host observations).

• If, alternatively, the final analysis has access to several potential hosts and their DLRs
andmeasured properties, SBI trained on simulated realisations of the process of their
compilation will learn to use the implied mixture distribution, provided the NN used
(e.g. a multi-modal transformer) is able to ingest such unconventional data.

8.3.6 Selection effects
Selection effects, introduced in section 4.2, are the bane of SN Ia cosmology.215 Two dis-
tinct types are prominent in SN Ia and can significantly bias parameter inference through an
offset in the Hubble diagram (as we illustrate in fig. 8.4), yet only one is routinely discussed
and accounted for.

They arise, in general, as a consequence of the preference for detecting brighter, bluer,
and longer lasting SNæ. Since these properties are correlated (among each other and) with
redshift and distance, this results in an offset of the observed sample from the total SN Ia
population, with only the latter tracing accurately the expansion history and following the
hierarchical distributions (and SN Ia template models) described in previous sections.

Malmquist bias [338, 339] hardly needs an introduction— it is the multi-faceted mod-
ification to the distribution of observed properties induced by a preference for selecting
brighter, bluer, and longer lasting SNæ Ia—or an illustration [see e.g. 346, fig. 1]. As a
simple consequence, the average brightness of the selected sample at a given redshift is

215 They are also the reason why BayeSN still has not yet been fully applied to cosmological inference.
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Figure 8.4: (��� RESSET) Two kinds of bias / offset of the Hubble diagram from the un-
derlying magnitude–redshift relation (black). A preference for detecting brighter objects
(Malmquist bias: blue) results in the the mean of the observed sample (green) appearing
brighter than that of the total population (orange). Eddington bias, which can be interpreted
as a preference towards more common objects, arises— also when no explicit selection
is performed— from the combination of a non-constant redshift distribution and signifi-
cant uncertainty in measuring the latter (e.g. photo-I): a simplified illustration is shown
in fig. 8.5. For the particular case of SNæ Ia, the two effects have opposite signs and can,
individually, and in combination, significantly bias cosmological inference.

shifted with respect to the total population:

mean Malmquist bias: 〈<̂ | s, I〉 < 〈<̂ | I〉 , (8.20)

and thus does not represent an accurate distance estimate. Moreover, since the strength
of this effect varies with redshift, it can convincingly mimic an alternative cosmological
expansion history, thus biasing parameter inference if unaccounted for.

Simultaneously, the spread of observed brightnesses is reduced:

Var(<̂ | s, I) < Var(<̂ | I), (8.21)

since “extreme” examples remain undetected. This is usually reflected in j2 fits (via a
modified f0(Ic) < f0), which can thus purport to attain better standardisation and enjoy
a false sense of security that amplifies the effects of any mis-modelling of the mean effect
(and those abound).
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H(Ĝ)
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Δ

Ĥ

Figure 8.5: (��� RESSET) Eddington bias: (Δ(Ĝ) ≡ 〈Ĥ | Ĝ〉 − H(Ĝ)) in the response variable
(Ĥ ≡ H(G) + noise) caused by scatter in the independent variable (Ĝ ≡ G + noise) combined
with a trend in its density. For simplicity, here the distribution of the latent G has only two
discrete values (G− and G+) with higher probability at G+. Noisy measurements (here Gaus-
sian with constant variance) are made at a range of Ĝ, and due to the prevalence of objects
with true G+, the response variable exhibits Eddington bias towards H(G+) and away from
the underlying H(Ĝ). Such a bias arises in qualitatively the same way for any continuous
distribution of G that varies significantly on the scale of measurement uncertainty and in-
dependently of the noise in Ĥ, as long as it does not depend on G.

Eddington bias [137] is a distinct and less well-known effect due to the preference for
selecting more common objects—even in the absence of explicit selection. In the context
of SN Ia cosmology, it arises when only noisy redshift estimates are available and the
distribution of SNæ is not constant with redshift: we illustrate this effect in fig. 8.5 with
an idealised setup. Since the SN Ia rate increases with redshift and so does their apparent
magnitude, more SNæ with a given measured Î have true redshift larger than that, rather
than smaller, and so

mean Eddington bias: 〈<̂ | Î〉 > <
(
Î, fid

)
. (8.22)

An additional, trivial, source of non-constancy in the redshift distribution is the “lack” of
SNæ with I < 0, which, as we demonstrate in SICRET, leads to an unavoidable offset
at low redshift and incorrect inference even without selection effects and with a perfectly
known redshift distribution.
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Traditional approaches Acceptance criteria for building cosmological SN Ia samples
are defined on two levels: during identification of astronomical transients using an arduous
difference imaging pipeline [see e.g. 281, 350, 463] (detection) and the subsequent selection
of a “high-quality”/cosmological SN Ia sample [e.g. 523, table 4], taking into account the
availability and quality of spectroscopic follow-up of the supernova and/or its host galaxy,
the fidelity of laborious light-curve model fits (e.g. with salt), and the outputs of black-box
NN classifiers (see below). This makes an exact treatment of selection effects from first
principles practically impossible, necessitating the development of approximate schemes
for mitigating the biases induced by selection, which fall into two major categories.

On the one hand is the typical two-step analysis, implemented as BBC (beams with bias BBC
correction) [277], which utilises a large preliminary simulation of the SN Ia population to
which the full selection procedure is applied, in order to calculate an average216 offset of
observed from true magnitudes217 as a function of redshift:

Δ<(I) ≡ <
(
Î, fid

)
−

〈
<̂ | s, Î, fid

〉
, (8.23)

This negates the selection bias for the specific choice of a (fixed) fiducial model: correlation fiducial model
coefficients, SN Ia rate with redshift, and, most importantly, cosmology. Note the degree
of contrivance required to calculate this “bias” correction: it essentially adjusts the data so
as to match a pre-specified model!218 Naturally, BBC with incorrect fiducial parameters
leads to incorrect cosmological inference (see fig. 8.6 and even fig. 4 at the source Kessler
& Scolnic [277]), which will become more visible (cf. Chen et al. [95]) with larger and
more constraining data sets.

While bias correction is an ad hoc procedure, more principled—BHM—frameworks
for SN Ia cosmology have also been developed. They explicitly derive the selection effi-
ciency for each SN as a function of all model parameters: object-specific (stretch, colour,
redshift, etc.) and global (cosmology, standardisation coefficients, rates, calibration, etc.),
and evaluate them at every step in an MCMC chain. But since it is unavailable from first
principles, current BHM frameworks resort to fast analytic approximations (e.g. a sim-
plistic hard magnitude cut [346]) and/or potentially inaccurate assumptions for its ana-

216 Alongside correcting the mean brightness–redshift trend, the assumed uncertainty around it can also be mod-
ified to take into account the reduction in the variety of observed SNæ Ia with respect to the total population:
see Kessler & Scolnic [277, subsection 5.3].

217 Since Kessler & Scolnic [277], the framework for bias corrections has been altered and augmented, notably by
Popovic et al. [417], and currently encompasses several variants with different “independent” and “response”
(i.e. corrected) variables beyond redshift and magnitude: namely, the SN stretch and colour and properties
of the host galaxy: see table 1 in Popovic et al. [417].

218 One can define a less preposterous correction towards the mean of the total population (
〈
<̂ | Î, fid

〉
), but this

fails to account for Eddington bias, as Ruhlmann-Kleider et al. [461], Chen et al. [95] demonstrate.



122 Chapter 8. Supernova cosmology for statisticians

1000 SNæ Ia
Ctrue = Cfid

0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

Ωm

F
0

[0.25, −0.8] [0.35, −1.0]
[0.30, −0.8] [0.25, −1.2]
[0.35, −0.8] [0.30, −1.2]
[0.25, −1.0] [0.35, −1.2]
[0.30, −1.0]

“de-biased” with
Cfid = [0.3,−1]
105 SNæ Ia, Ctrue =

0.2 0.25 0.3 0.35 0.4

−1.4

−1.2

−1

−0.8

−0.6

Ωm

F
0

0 1 2 3 4 5
bias of the mean in 2D sigmas

Figure 8.6: (��� RESSET) The inadequacy of traditional (selection-)bias correction for
large data sets when the fiducial parameters are not representative of the true values. The
mock data considered is described in subsection 15.3.3, and the analysis itself is detailed
in RESSET, appendix C. Left: Posteriors (1- and 2-sigma credible regions) from 105 mock
SNæ Ia generated with different cosmological* parameters Ctrue indicated by crosses. In-
stead of recovering the true parameters, “bias-corrected” posteriors trace the region in C-
space most consistent with the fiducial cosmology Cfid = [0.3,−1]. This characteristic
“banana”-shaped region is illustrated in pale grey through the 1- and 2-sigma credible in-
tervals from a bias-corrected analysis of 1000 mock SNæ Ia generated from the fiducial
model. Right: Magnitude of the systematic bias in the posterior mean in units of the sta-
tistical uncertainty (calculated from the posterior covariance matrix) as a function of the
true underlying cosmology. For each point, a different mock data set of 105 SNæ Ia was
generated and bias-corrected assuming the same Cfid. The black contours replicate the case
Ctrue = Cfid from the left panel. The systematic bias severely increases as one moves away
from the locus of degeneracy.
*The cosmological model is a flat Universe with DE evolving with a constant (but unknown) EOS F0.
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lytic marginalisation over unobserved objects219 [459, 460, 221]. Finally, Boyd et al. [62]
present an application of a neural density estimator trained on simulations as a very flexible
approximator for the intractable selection-affected probabilities of individual objects in a
simplified BHM for SN Ia cosmology from summary statistics. This approach, however,
still suffers from the poor scalability of sampling methods applied to large hierarchical
models and the caveats of the piecewise SBI approach.220

The correct approach: SBI with stochastic cardinality It is an ardent claim of the
present thesis that the correct approach to handling— rigorously— selection effects—
of arbitrary complexity and in arbitrary context— is through SBI trained on examples
with stochastic cardinality. We already enunciated our arguments in subsection 4.2.1 and
demonstrate an application to SN Ia cosmology in chapter 15.

8.3.7 Classification
One final ingredient of cosmological analyses remains to be considered: sifting out SNæ Ia
from among the many transients that are routinely observed, so as to ensure that inference
is applied to data that truly represent the modelled phenomenon. In practical terms, this
has been predominantly achieved through dedicated followup of the identified candidates, candidates
which results in very high-confidence (sub-)type determinations, taken subsequently for
given and true.221 The ability to realise this in practice, however, i.e. a survey’s spectro- spectroscopic

efficiencyscopic efficiency, is an integral part of its selection detection/selection procedure and can
thus weaken its output in two respects: first, by significantly reducing the final sample size,
and second, by introducing strong brightness-related selection effects. Consequently, there
has been a tendency towards formulating analyses so as to handle non-Ia contaminants contamination
without explicit/deterministic typing [222, 259, 109], which will become indispensable
when confronting future-sized data sets not susceptible to spectroscopic follow-up.

219 For instance, unity effectively assumes that the redshift distribution of the total population is independent
of redshift and is anyway chosen out of computational convenience.

220 In a private communication, Boyd et al. [62] have shared encouraging results that demonstrate the scalability
of their method to 50 000 objects (reliant on their nuts implementation) after arduous re-training of the
neural estimator. Still, their setup is intentionally simplified in order to enable this precision: they assume
the selection is independent of the global parameters varied in the secondary fit; and besides, the theoretical
considerations related to MCMC sampling and finite precision (including the discussion of training-set bias
amplification from footnotes 187 and 188) and the overall superiority of the end-to-end approach in terms of
elegance remain valid, but possibly not to a utilitarian. utilitarianism

221 Still, the classification scheme itself is not set in stone: it is, after all, empirical125 and judged solely based
on its ability to produce samples useful for cosmology. For example, SLSNæ, which are usually excluded
from standard-SN Ia analyses, have grown into a standard candle of their own, with a separate past [383],
present [239], and future [238, 256].
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Kunz et al. [299] had a first key (and surprising…) realisation in this regard: that un-
certainty (as to the type of a given object) is easiest (and most rigorously) handled in a
Bayesian framework: beams (Bayesian estimation applied to multiple species) [299], evenbeams
if the overall analysis is not Bayesian. As we already discussed in the context of host identi-
fication (subsection 8.3.5), the formalism represents the data on each transient by a mixture
model (in exact parallel with our previous discussion on NRE, model selection, and model
averaging):

p(dB | �) =
#mod∑
<=1

p(dB | "<, �) p("< | �), (8.24)

where {"<} are all the transient models considered, and � are the parameters of interest,
which are assumed to be super-modal, i.e. not associated with any"< or, otherwise, shared
among all (cosmology is of the former type). Evidently from eq. (8.24), beams requires
explicit models for the “contaminants” in order to define {p(dB | "<, �)} and derive with
them #mod constraints on � from each object222 by assuming, in turn, that its true class is
"<, before finally averaging the results in proportion to prior probabilities {p("< | �)},
which represent the expected overall abundances of objects from the different classes.

The beams procedure can, thus, be wasteful if objects are relatively unambiguously
classifiable, i.e. it is unsuitable for realising minor corrections due to a small (but not neg-
ligible) amount of contamination. Consequently, in recent years, the focus has shifted back
to (quasi-)deterministic classification, with the minor effects of contamination corrected by
the old-fashioned method of uncertainty inflation [see 283].

A principal driver for method development in this area has been the photometric LSSTplasticc
astronomical time-series classification challenge (plasticc)223 [504, 282, 223]: a large-
scale simulation of the various transients expected to be observed by LSST (in reasonable
proportions) meant to train and evaluate225 classification methods that use only photometry
as input. While later techniques (SuperNNova [367], SuperNNova [521], scone [430], and

222 In fact, the exposition here, like the original proposition and its applications, assumes conditionally indepen-
dent objects, which is admissible only if � represents all global parameters, but often179 not realised in the
practice of SN cosmology. In the opposite case, an exponential number ##SN

mod of results for �, corresponding
to all the possible classifications of #SN objects, must be considered.

223 preceded by the mere supernova photometric classification challenge [280] and superceded by the daunt-
ing224 extended LSST astronomical time-series classification challenge (elasticc) [374]

224 Francisco Förster, Anais Möller, private communication
225 plasticc poses an interesting challenge to purely data- (or simulation-)driven inference: covariate shift, i.e.

a mismatch between the distribution of training and evaluation/test data (see e.g. Autenrieth et al. [26] for
a general method for its resolution and the recent applications to photo-I estimation [25, 372]). Curiously,
covariate shift, as defined [371], does not affect posterior-density inference, by definition������������������������.
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Gagliano et al. [162]) have relied extensively on NNs, plasticc’s winner, avocado226 [57],
uses the antique time-tested boosted decision tree method.

Given that contamination is already handled in a simulation-driven manner, it is not a
big stretch������� to imagine simulation-based inference with mixed-SN samples: the classifi- SBI with

contaminationcation procedure employed by the real data acquisition and processing pipeline227 simply
needs to be applied as part of the simulation framework, alongside the already incorporated
detection and selection steps, and the SBI network trained on the realistically “contami-
nated” samples: it will then learn to implicitly consider all individual sampling distribu-
tions (in the proportion to which they are present in the “censored” data, i.e. cleaned of
obvious non-Ias) and provide the final result of eq. (8.24).

Interlude: neural networks for SN science
Prior to the works presented in part IV of this thesis, cutting-edge machine-learning and
neural methods were relatively rare in SN science. Neural SBI had been applied on a
number of occasions228 for cosmological inference from summary statistics [10, 8, 531,
534, 94], as a component of a BHM that corrects selection effects [62], and for inferring
the properties of individual SNæ Ia from interpolated229 light curves [520, 429]. These
studies found the capabilities of fixed-size NNs like MLPs and convolutional neural net-
works (CNNs) and the conceptual simplicity of NPE sufficient for their idealised purposes.
On the other hand, the RNN architecture emerged as the go-to choice for classification
[367, 521, 162, mentioned above] due to its ability to gradually accumulate live-streaming
information; and finally, in concert with the ground-breaking attention- and transformer-
based advances in NLP, multi-modal processing, and towards general artificial intelligence,
simpler (arguably) models found their way into un/semi-supervised learning of informative
fixed-size representations (summaries) from light-curve data [130, 368, 6, 558].

We expand this diversity with two new additions:
• the Super Tuple: a middle ground between a fully-connected (single-layer) percep-
tron and a CNN (spiritually) but in essence, a glorified GP / PCA;

• the conditioned deep set: a simple BHM-inspired extension to the scalable and ver-
satile stochastically-sized-set aggregator.

226 which bears a striking resemblance to the contemporary staccato (synthetically augmented light-curve
classification) [442], which also uses GP augmentation but replaces the boosted tree with a random forest…

227 for LSST, this will be outsourced to seven external data brokers, each of which will process the observational
data stream with separate—sometimes proprietary— tools and classifiers, which might pose an obstacle to
faithful simulation (but not to members of each respective broker…)

228 Honorary mentions go to the early non-neural ABC analyses [540, 251, 39] in the field.
229 using GP regression, as popularised by staccato and avocado
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8.4 The future: grand unified SN (Ia) cosmology
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Figure 8.7: Grand unified SN (Ia) cosmology.

In the preceding sections, we repeatedly found that current analyses adopt a piecewise
inference approach: e.g. deriving a template from low-redshift spectra, then fitting it to
measure distances; measuring total colour and then decomposing it into intrinsic and dust-
related; inferring host and SN properties separately and then correlating them a posteriori;
calculating an average de-biasingmagnitude shift and applying it as a fixed correction to the
data; classifying SNæ (or identifying hosts, or binning by stellar mass) and only afterwards
dealing with the uncertainties with ad hoc procedures.

In opposition to partial problem-solving, and inspired by rocket science, we now de-
scribe qualitatively our vision for a single-stage-to-cosmology pipeline, pieces of which
are developed and presented in the remaining parts of this thesis. In the spirit of SBI (and
since we already presented the required inference/methodological developments in part I),
the following exposition takes the form of a forward pass through a grand unified simulator
for future SN Ia (and adjacent) data, depicted in fig. 8.7.

In the beginning, we pick a cosmology C, which sets the expanding universe in motion
and allows us to also sample any other global parameters to complete , including: the
DTD (or a marginal SN rate), the SN Ia template globals (and similar models for other
transients we would like to model).

Then, we realise the galaxy model.230 First, we determine the total count of
230 If we feel particularly adventurous, we can run a full #-body+hydro simulation [294] or use a shortcut like
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galaxies in the universe (down to a given low-mass and high-redshift cutoff that we
expect to never be detectable under any circumstances: we have no proof they even
exist), #gal, as a stochastic (Poisson) sample from a model of structure formation.
Then, by current parametrisations, we draw that many (cosmological) redshifts
according to cosmic star formation (p

(
Iℎc

�� )) and stellar masses from a redshift-
dependent mass function (p

(
"ℎ
∗
�� IBc, )). Then, we synthesise stellar populations

by sampling star-formation histories conditional on the final "ℎ
∗ and galaxy ages

() ℎage = ) (∞)−)
(
Iℎc

)
). This gives us the galaxy properties gℎ, which include extinc-

tion parameters 'ℎV and �ℎV (or other parameterisation, depending on the employed
dust law (and notational convention)).

If we have data on the intra-host locations of our transients,231 we dis-
tribute different populations and dust extinctions as a function of galacto-
centric radius. We collect all intragalactic populations across all galaxies
in the universe, label each with ?, and ask of each: what is the rate of oc-
currence of SNæ Ia (and all other transients we have decised to model),
as calculated from the distribution of stellar ages and the DTD. Then we
multiply by the duration of the survey and sample—within each individual
population—the number of SNæ Ia, etc. that go off while we are looking.
In the vast majority of populations, this will be zero, but wewill end up with
#SN supernovæ correctly distributed according to local and host-averaged
rates. To each SN, we can now associate a stellar population (and dust):
B→ ? (one ? may have produced multiple B).

Alternatively, we can consider whole galaxies on average— i.e. each galaxy
contributes once its total stellar population and possibly a random sample of dust
properties to emulate spacial variety—and do as above (ℎ ↔ ?). In the end, we
have a list of transients of each type and their associated host properties.

It is time to sample SN parameters from p
(
xB

�� gB,��IBc, ) . Here, it is reasonable
to assume that the age of the universe at the time of each SN’s explosion (IBc) does
not play a direct role; rather, it is the properties of the particular stellar population
that determine xB, e.g. stretch and intrinsic colour.

Alternatively, if we are not modelling hosts, we can employ a shortcut marginal SN Ia
rate p

(
IBc

�� ) , e.g. a parametrised power law with a free normalisation, and sample red-
shifts from that. Depending on the level of sophistication we are eager to explore, we then
simulate the SN parameters independently or given the redshift (i.e. from an evolving or

Jerald. It’s just a matter of computational resources.
231 It has been found—a posteriori—that SNæ Ia, for example, follow total light [425], but this is not guaranteed

for other transients; this point requires domain expertise.

https://github.com/maurorigo/JERALD
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fixed population) p
(
xB

��
��I
B
c, 

)
. At this point, we similarly sample dust parameters. Lastly,

given the templates (models) for each transient type that God we sampled in the beginning
of the universe, we create the spectral flux timeseries of each object in its restframe and
extinguish it for dust and distance by 4c�2

M. No redshift yet.232
Now we model peculiar velocities. This is complicated and involved: it may suffice to

use external constraints with uncertainties like Rahman et al. [435]; or we might generate
plausible correlated velocity fields a priori assuming nonlinear dynamical theory.230 Once
we have those, we can calculate and apply the total redshift.

In any case, we should (have already) distribute(d) the SNæ across the sky and obser-
vational time. Now we simulate the survey. The LSST engineers and associated scientists
have done this numerous times using dedicated software [551]. This provides us with the
sequence of metadata (times, bands, zero points,233 sky background, instrument noise, etc.)
for the list of observations of the sky location of each of our simulated SNæ, which now
allows us to simulate light curves (i.e. a list of observed noisy measurements, possibly with
host light added as well (see closely below)). Passing them through the anticipated detec-
tion and selection procedure, e.g. through the full difference imaging pipeline, SNR trigger,
transient classifier, template fitter, and sample cuts results in our selected transient data set
{dB}#SN

B=1 and meta— treated now as auxiliary—data.
If we are modelling hosts, we subject them to the same observational torture

procedure: generate broadband fluxes from their sampled properties and simulate
the noise present in 10 yr co-add photometry:

{
dℎ

}
, the host side of our data set.

We may call it a day here and assume perfect host identification, i.e. dℎ(B); or we
can apply a deterministic method like picking the galaxy with least DLR for each
observed (detected) SN; or associate to each B a set of ℎ with corresponding DLRs,
resulting in the extraction of a mapping {B→ ℎB} or {B→ {ℎ}B} and possibly spa-
tially resolved observations ({d?}).

And this is how we say a universe is simulated. Others [294, 102, 301, 405, 463] say it
has already been done.

Finally, we may explore combining data sources. For example, some transients will be
followed up spectroscopically. From those data we might able to extract explicit redshift
and type (notice that until now, we have only been considering photometric observables
(band fluxes)) and form a multi-modal catalogue that represents one training example for
our neural network. Then we simply ask it: was this C sampled jointly or marginally with
the catalogue?

232 unless we want to account for peculiar velocity with respect to the host dust?
233 We can go as deep as wewant her, as we discussed. It will probably be sufficient to have a summary zero-point

measurement as a Gaussian with a small uncertainty, from which we sample
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Chapter 9

������ Clipppy: probabilistic programming

Clipppy������� is a convenience layer for inference and probabilistic programming in Python.
Originally designed to automate many common tasks related to defining, manipulating,
and exploiting forward models (while trying not to be annoying in the meantime), it now
incorporates—alongside venerable utilities for VI and interfaces to other packages formore
conventional Bayesian inference234—a full somewhat-fledged collection of SBI routines:
in fact, it contains the implementations of all primary inference methods presented and
used in this thesis, e.g. hierarchical and set-based TMNRE and neural model selection.

Clipppy’s foundation is the Pyro probabilistic programming (PP) framework235 [46], PP
which implements the idea of forwardmodelling: i.e. of representing amodel (a joint distri-
bution of several random variables) through one particular decomposition into an orderable
series of conditional probabilities:

p(�, �, �) ⇐⇒

0 ∼ p� = p(�); →

(
0, p�

)
1 ∼ p� = p(� | 0); →

(
1, p�

)
2 ∼ p� = p(� | 0, 1); →

(
2, p�

)
 ≡ trace, (9.1)

i.e. a stochastic program that walks a (particular) directed acyclic graph (DAG) of the
model, recording the computed distributions (p�, p�, p�) for each random variable it en-

������� https://github.com/kosiokarchev/clipppy and JOSS, in prep. Clipppy grew out of a set of
command-line utilities for orchestrating VI fits known as pyrofit, and so “CLI” initially stood for the more
common “command-line interface”. An alternative name was pyrattt: Pyro at the terminal.

234 e.g. emcee [158] (affine-invariant MH MCMC) and dynesty [489] (nested sampling)
235 While they are usually described as “languages”, Pyro and its JAX-based [63] counterpart NumPyro [407]

(as well as the other big PP framework, PyMC [1]) do not define an explicit syntax—unlike bugs (Bayesian
inference using Gibbs sampling) [333], Stan [88, 87], and Turing.jl [167] (to list but a few)—but pro-
vide their functionalities using existing constructs (functions, contexts, etc.) of the Python general-purpose
programming language.
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https://github.com/kosiokarchev/clipppy
https://joss.theoj.org/
https://github.com/cweniger/pyrofit-core
https://en.wikipedia.org/wiki/Probabilistic_programming#List_of_probabilistic_programming_languages
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counters (�, �, �) and randomly sampled values of each (0, 1, 2)—used for computing
the downstream distributions—into a so-called trace. Immediately, this allows evaluationexecution trace
of the joint probability of the particular sampled values by simple multiplication:

p(0, 1, 2) = p� (0) × p� (1) × p� (2). (9.2)

In addition, Pyro makes use of PyTorch’s [398] automatic differentiation (AD) engine toautograd
calculate the gradient of ln p(0, 1, 2) with respect to all variables via the chain rule:

m ln p(0, 1, 2)
m0

=
m ln p(0)
m0

+ m ln p(1 | 0)
m0

+ m ln p(2 | 0, 1)
m0

,

m ln p(0, 1, 2)
m1

=
m ln p(1 | 0)

m1
+ m ln p(2 | 0, 1)

m1
,

m ln p(0, 1, 2)
m2

=
m ln p(2 | 0, 1)

m2
.

(9.3)

The true power of PP, however, lies in its ability to manipulate the forward pass, of
which the quintessential example is conditioning on a given value by simply assigning itconditioning
instead of sampling from the relevant calculated distribution (but still recording the latter):

p(�,� | � = 1o) ⇐⇒

0 ∼ p� = p(�); →

(
0, p�

)
1 ← 1o; p� = p(� | 0) →

(
1o, p�

)
2 ∼ p� = p(� | 0, 1o); →

(
2, p�

)
 ≡ cond. trace. (9.4)

The product of probabilities from this conditioned trace is proportional to the posterior
probability of �,� at the randomly sampled 0, 2 (given � = 1o) and can therefore be
used as a low-effort-required “likelihood” (unnormalised posterior) evaluator for MCMC-
proposed parameter values 0new, 2new →  new by conditioning on them as well as on
1o → do. In combination with AD, a PP framework can thus automatically implement
any method for likelihood-based (reverse) inference given only an appropriately expressed
forward model.
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9.1 Clipppy for SBI
Apologia bis After this author’s conversion to the SBI ideology (and TMNRE’s emer-
gence as his inference method of choice), Clipppy assumed a new role as the repository of
his custom implementations236 of the methods he applies in his research (part IV). Since we
already covered the techniques themselves in part I and the implementation details that we
left out do not represent significant advances over other similar software237 (in the opinion
of this author)—with the exception (in the same opinion) of the elegance of their software software design

vs.
engineering

design (but not necessarily engineering), which allows easy extension and code reuse— ,
we will presently discuss only two aspects of the pipeline.

9.1.1 Stochastification
Clipppy contains extensive utilities for easily defining forward models238 interfaced with
Pyro’s tracing mechanisms. Here I only highlight its two main features.

• The Sample class represents a random variable through its distribution, i.e. one line in
eqs. (9.1) and (9.3); at runtime (i.e. in a forward pass), it first computes the distribution
and them samples a value from it. Sample implements a sophisticated procedure for
representing arrays of i.i.d. variables and handling them in parallel using batching; this
extends even to batches of sets with unequal cardinalities, which will prove immensely
useful in chapter 15

• The Stochastic class transforms a deterministic function’s arguments into random
variables that are sampled (evaluated) before every invocation; i.e. it declares a simple
parametrised forward (sub-)model. Most commonly, the computed values—which can
also be en-Capsule-ated and reused across the model without re-evaluation—are the
result of a Sample component, although no restriction is placed by Stochastic: they
can be fixed values of any type or come from other non-Sample calls, including other
Stochastics.

236 to the negative dismay of his doctoral co-advisor, author of the prominent Swyft (stop wasting your��������������
time) [358, 360] library

237 The community seems to be gravitating towards the aptly named sbi [503] package, which I too would
recommend for beginners, i.e. scientists who want to solve a trivial scientific problem that has nonetheless
long evaded them because of dimensionality or tractability issues; nevertheless, “practitioners” of SBI, i.e.
researchers developing methods to tackle new types of inference challenges seem to prefer working within
their own frameworks… see e.g. the lists at simulation-based-inferemce.org and awesome-neural-
sbi.

238 In fact, Clipppy defines its own “language”235 (using YAML) for specifying graphical models structurally
rather than procedurally, which allows introspection/modification even before the forward pass.

https://simulation-based-inference.org/software/
https://github.com/smsharma/awesome-neural-sbi
https://github.com/smsharma/awesome-neural-sbi
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9.1.2 Truncation
Sequential and active learning are intrusive techniques that require modification of the prior
within a forward model, i.e. a higher-level conditioning on a given distribution. Clipppy
provides utilities for implementing this in general and for constructing truncated univariate
and low-dimensional multivariate distributions on the fly (i.e. when the relevant stochastic
site is encountered). These hypotheses already cover the majority of scientific use cases,
in which the priors are simple, analytic, and generally separable over the model’s (global)
parameters.

Clipppy’s constrained univariate distribution: ConUnDis
[
p- ; Gmin, Gmax

]
, represents aConUnDis

truncated version of p- ≡ p(- |. ) restricted to the interval [Gmin; Gmax). In a forward pass,
when the random variable - is encountered, Clipppy first computes p- given the upstream
values . = H, then samples an G using the inverse of the CDF:

G = F−1
- (D), with D ∼ U(F- (Gmin), F- (Gmax)). (9.5)

Consequently, Clipppy can only constrain in this manner analytic distributions for which
the CDFF- and its inverseF−1

-
are tractable. The final record in the trace is

(
G, ConUnDis

[
p- ; Gmin, Gmax

] )
,

and if its probability is requested, Clipppy computes it as

ConUnDis
[
p- ; Gmin, Gmax

]
(G) =

{
p(G | H)/2(H) for Gmin ≤ G < Gmax,
0 otherwise,

(9.6)

where 2(H) ≡
∫ Gmax
Gmin

p(G | H) dG = F- (Gmax) − F- (Gmin) is the normalisation, which we now
allow to depend on the upstream parameters for which p- was calculated. In fact, Clipppy
makes a separate note of all “constrained probabilities” 2 encountered in a trace since their
product is the ratio between the original and constrained model densities:

p(G, H) = 2(H) p̃(G, H) (9.7)

and can, therefore, be used to correct SBI trained with p̃(G, H).
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������ φυtorch: physics on steroids GPUs

φυtorch239 is an effort to collect high-performance utilities generally useful to physicists
who deal with computations (simulation, data analysis, etc.). It is similar to the immensely
popular CPU-only libraries: NumPy [200], SciPy [525], and Astropy [22, 23] (by which it
is inspired) but is based on PyTorch [398] and thus offers support for massive parallelism
on graphics processing units (GPUs) and seamless automatic differentiation (AD).

End-to-end differentiableGPU-based simulators are highly valuable for inference since,
apart from parallelising and accelerating computations, they enable high-dimensional score-
based analyses with HMC or VI (section 1.2) and can be used in the context of SBI to
enhance the training of neural networks as discussed in subsection 2.2.1 and eq. (2.20).
A number of such simulators (and emulators) have already been developed in cosmology:
e.g. for large-scale structure [366, 365, 54, 204, 205, 242, 318, 319, 320, 494, 300], strong
lensing [97, 267, 189, 164], gravitational waves [104, 138, 549], and other related fields
like stellar astrophysics [332], exoplanets [4, 181, 271, 230, 555], instrument modelling and
experimental design [415, 548, 321, 529, 495]. Particularly relevant to this thesis are the
differentiable stellar population synthesis code of Hearin et al. [206], the NN emulator of
galaxy photometry Speculator [11], and the NumPyro implementation of BayeSN [184],
as well as our own supernova light-curve simulator (SLiCsim), presented in chapter 11.

Currently, phytorch’s toolbox includes general-dimensional linear interpolation, poly- linear
interpolationnomial root finding, a growing collection of special functions, and two large sub-libraries:

quantitative
computation

• units, quantities, & constants: are the basis of physical reasoning; they are what
separates it from mathematics and connects it to the real world; phytorch implements
the concept of a “Quantity” (similar to Astropy’s) that combines a value and a unit quantity

(value × unit)and tracks the changes to both throughout a computational graph, while also providing
239 https://github.com/kosiokarchev/phytorch and JOSS, in prep.; the name is a play on “physics

(φυσικη) in PyTorch”, “py”→ “phi/φ”, and “future” and in code is (de-)stylised as phytorch.
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https://github.com/kosiokarchev/phytorch
https://joss.theoj.org/
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checks of consistency: i.e. for every (numerical) operator240 of PyTorch, phytorch
defines a set of admission criteria for the inputs and a rule for the units of the output;

• cosmology: modelled after Astropy’s eponymous module, phytorch provides a wide
array of cosmographic functionalities implemented formodels within the FLRW-metric
family: ΛCDM and the most popular parametrisations of evolving dark energy; the
structure is as abstract and modular as possible so as to allow flexibility, code reuse,
and easy extension / addition of functionality; the key component, which ultimately
compute distances in the different models, are the (currently) two drivers: a numerical
integrator reliant on torchdiffeq [93] that is general as to the cosmological model
but limited as to parallelism and speed, and a custom analytic (and analytically differ-
entiable) driver, which we describe in extensive some minor details next.

����� Analytic auto-differentiable ΛCDM cosmography��������� AADcosmo

All of the cosmological simulators listed above require calculating cosmographic distances
(see section 5.2), which are a key ingredient in the modelling and data analysis of standard
candles, sirens, and rulers, volumetric rates and densities, the cosmic microwave back-
ground radiation, Ly α forests in quasar spectra, as well as in the studies of galaxy properties
and evolution. In the general case, cosmographic calculations require evaluating integrals
like eqs. (5.7) and (5.8) numerically, which is both slow and not trivially parallelisable,numerical

integration while requiring a further numerical integration for the gradient calculation [93]: this is the
adjoint method approach chosen by the prominent jax-cosmo library [81].

For certain special cosmologies, analytic results have been discussed in the literature
and implemented e.g. in Astropy. For example, the comoving distance in a (spatially)
flat ΛCDM universe (Ω:0 = 0) can be expressed using the Gauss hypergeometric functionflat ΛCDM
[31], the Legendre elliptic integrals [355, 553, 554, 142], which are also applicable in the
non-flat case [146, 506, see also references therein], and the Carlson elliptic form [326].241
Dabrowski & Stelmach [111] present a general solution, i.e. valid also in the presence of ra-
diation and curvature, that makes use of theWeierstrass elliptic function.242 Finally, Valken-
burg [518, appendix B] use Carlson’s basis to solve for the time coordinate by considering
the slightlymore general Lemaître–Tolman–Bondi (LTB)metric [315, 316, 511, 56], which
describes the evolution of spherically symmetric but not necessarily homogeneous “dust”
(i.e. cosmological fluid, not a SN-cosmological pitfall).

240 Propagating units backwards with the automatically computed gradients is a work in progress.
241 Liu et al. mention the applicability of Carlson’s formulation to the non-flat case but do not elaborate.
242 which is, in my opinion, more of theoretical than of practical importance since methods for its numerical

evaluation are hard to come by
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In AADcosmo, I describe the first unified analytic framework for cosmographic dis-
tance calculations applicable to the general Λ–cold dark matter cosmology with non-zero ΛCDMr
curvature and in the presence of radiation (ΛCDMr). My solution is based on the Carlson
elliptic integrals [83]— special functions that form an alternative to Legendre’s basis [307] special function
more suitable to analytic rather than geometric problems—and boasts two key advantages
to other formulations. First, the fast and rapidly converging algorithms for evaluation of the
Carlson integrals243 [84] make their massively parallel implementation for GPUs straight-
forward. Moreover, their derivatives can also be calculated analytically and without ref-
erence to additional special functions, enabling automatic differentiation of the computed
distances with respect to the cosmological parameters. Below, I summarise the framework
before presenting a basic application within a toy model of SN Ia cosmology solved with
high-performance/dimensional gradient-enabled likelihood-based inference techniques.

ΛCDMr cosmography
The homogeneous and isotropic ΛCDMr cosmological model, which supposes the pres-
ence of classical (baryonic and dark matter) and relativistic (photons, etc.) fluids, as well
as cosmological constant-like dark energy and a general curvature—see section 5.2— , is
completely described by a dimensionless Hubble parameter (eq. (5.11)) of the form244

�2(I) = Ωr0(1 + I)4 +Ωm0(1 + I)3 +Ω:0(1 + I)2 +ΩΛ0, (10.1)

whereΩr0,Ωm0,ΩΛ0 ≡ CΛCDMr are the dimensionless parameters of ΛCDMr, and eq. (5.12)
sets Ω:0 = 1 − Ωr0 − Ωm0 − ΩΛ0. In what follows, it will be more useful (and insightful)
to reformulate eq. (10.1) in terms of its polynomial roots

{
A 9

}<
9=1:

�2(I) = U<
<∏
9=1

(
I − A 9

)
, (10.2)

where < = 4, U< = Ωr0 is the leading coefficient of the polynomial.245 This corresponds
to the re-parametrisation246 CΛCDMr → U<,

{
A 9

}<
9=1, which can be calculated with well-

known explicit algebraic formulæ [457] or established numerical methods, e.g. via the com-

243 In fact, these are the basis for some numerical implementations of Legendre’s integrals themselves [422].
244 Throughout this chapter, we will only mean cosmological redshift and drop the subscript.
245 One can consider equivalently the radiation-less case, for which < = 3 and U< = Ωm0.
246 Inspecting

{
A 9

}<
9=1 provides insight into the physicality of different cosmological parameters: notably, the

existence of a positive real root (only for certain CΛCDMr withΩm0 < 0 orΩΛ0 > 1: see fig. 1 in AADcosmo)
implies a divergence at finite redshift, i.e. “no Big Bang” as commonly labelled on plots.
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panion matrix247 [422, section 9.5]. A method for the efficient calculation of the JacobianJacobian
of this transformation is presented in AADcosmo, appendix A.

Cosmographic distances (reprise) are integrals of expressions containing � (I) along
redshift (cf. eqs. (5.7) and (5.8)). Here, we will shift away from our previous egocentric
perspective and allow measurements starting and ending at arbitrary I1 and I2 (but still
constrained to the line of sight):

�c(I1, I2) = DH ×
∫ I2

I1

dI
� (I) , (10.3)

) (I1, I2) = TH ×
∫ I2

I1

dI
(1 + I)� (I) . (10.4)

The Carlson symmetric elliptic basis
The integrals eqs. (10.3) and (10.4) cannot be expressed for general CΛCDMr as elementary
functions. However, when �2(I) is a polynomial of degree up to four, they are instances
of elliptic integrals, which can be reduced to a linear combination of a small set of basiselliptic integrals

elliptic basis functions. The Carlson symmetric form [83, see also 86] is the natural choice when dealing
with rational functions: by preserving the original permutation symmetry in the polyno-
mial roots, it unifies different cases that select between branches of the square root, thus
simplifying the end result. The functions which form the basis for reduction are:

'� (G1, G2, G3) ≡ 1
2

∫ ∞

0

dI√
(I + G1) (I + G2) (I + G3)

, (10.5)

'� (G1, G2, G3, F) ≡
3
2

∫ ∞

0

dI
(I + F)

√
(I + G1) (I + G2) (I + G3)

. (10.6)

It is useful to introduce also the degenerate versions:

'� (G1, G2) ≡ '� (G1, G2, G2), (10.7)
'� (G1, G2, G3) ≡ '� (G1, G2, G3, G3). (10.8)

All Carlson integrals are well-defined for all complex G1, G2, G3 except the non-positive reals
(for which the integrand has poles along the integration path) and for all non-zero F (the
Cauchy principal value is assumed if F ∈ R<0). '� and '� are symmetric in {G1, G2, G3},
while '� is only symmetric in {G1, G2}, and '� is not symmetric.

247 Matrix formulations are advantageous since ML libraries and hardware are usually highly optimised for the
operations involved. In some cases, numerical stability might even be better than when using the analytic
formulæ directly.
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Computing derivatives of the Carlson integrals is closed, i.e. does not require any other closed
frameworkspecial functions [86, eq. (19.18.1); 546]:

m'�

mG3
= −'�/6, (10.9)

m'�

mG3
=

1
2
'� − '�
F − G3

, (10.10)

m'�

mF
=

3
2

{
F2'� − 2F'� +

∏3
8=1
√
G8

F
∏3
8=1 (F − G8)

−
(
=∑
8=1

1
F − G8

)
'�

3

}
, (10.11)

where '� and '� are evaluated at (G1, G2, G3), and '� at (G1, G2, G3, F).248 Derivatives
with respect to G1 and G2 are obtained by symmetry, while those of '� and '� via their
respective definitions and the chain rule.

Explicit formulae
The final formulæ249 for the comoving distance and lookback time in terms of the Carlson
symmetric integrals are

�c(I1, I2) = DH ×Ωr
− 1

2
0 × 2ΔI × '�

(
D2

12, D
2
13, D

2
23

)
, (10.12)

) (I1, I2) = TH ×Ωr
− 1

2
0 ×

2ΔI
A8 + 1

×

×
{
'�

(
D2

12, D
2
13, D

2
23

)
−

[
(ΔI)2

3
38 938:38;

385
'�

(
D2

12, D
2
13, D

2
23, D

2
85

)
+ '�

(
B285, @

2
85

)]}
, (10.13)

248 In eqs. (10.10) and (10.11) the limits have to be explicitly implemented when arguments are repeated (e.g.
F = G8 or G8 = G 9 : see [546] for details). The same applies to higher-order derivatives. In general, the limits
of repeated arguments either have to be evaluated numerically or hard-coded.

249 These but scratch the surface. I have also considered (and implemented in phytorch) a third quantity: the
absorption distance, used predominantly in the analysis of the Ly α forest and is related to the intersection absorption

distanceprobability of the line of sight with objects of constant comoving number density and proper cross section.
For clarity and brevity, I omit it from this thesis, but the formulophilic reader can feast their eyes on the mon-
strosities that are eqs. (3.9) and (B.3) in AADcosmo. Moreover, AADcosmo (and phytorch) contains the
explicit formulæ for the radiation-less case, which are less frightening to behold and arguably more applicable
in practice. Finally, the general reduction schemes of Carlson [85], Gray [183], sure to please any positronic
brain with their algorithmic elegance, are also included in phytorch, both numerically and symbolically. elegance
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where {8, 9 , :, ;} is any permutation of {1, 2, 3, 4}, ΔI ≡ I2 − I1, 38 9 ≡ A 9 − A8 (with the
special cases 380 ≡ −1 and 385 = −(1 + A8)), and

D8 9 ≡
√
I2 − A8

√
I2 − A 9

√
I1 − A:

√
I1 − A; +

√
I1 − A8

√
I1 − A 9

√
I2 − A:

√
I2 − A; ,

D2
85 ≡ D

2
8 9 − (ΔI)2 × 38:38;

3 95

385
→ D2

80 ≡ D
2
8 9 − (ΔI)2 × 38:38; ,

B285 ≡ @
2
85 + (ΔI)

2 × 3:53;5
3 95

385
→ B280 ≡ @

2
80 + (ΔI)

2,

@2
85 ≡

(I1 + 1) (I2 + 1)
(I1 − A8) (I2 − A8)

D2
85 → @2

80 ≡
D2
80

(I1 − A8) (I2 − A8)
.

Admittedly, these expressions are not pretty, nor is analytically deriving their gradi-beauty
ent—with respect to CΛCDMr no less— easy. But the sequence of algebraic steps they
represent is trivial for a computer program, like phytorch’s cosmology module, to imple-
ment and trivial for an autograd engine like PyTorch’s to backpropagate through.

Application: basic Bayesian SN Ia cosmology
The cosmographic utilities of phytorch were used for all “large and involved” analyses in
part IV, although differentiability is rarely needed with SBI. Still, for some comparisons
with “traditional” methods, where propagating redshift uncertainty passes through the gra-
dient of the distance modulus (eq. (8.13)), and hence of the (luminosity…) distance, we do
employ the fast and parallelisable AD framework presented above.

Here, we perform a first demonstration of the scalability of high-dimensional inference
afforded by a GPU-accelerated and end-to-end differentiable likelihood for SN cosmol-
ogy.250 We define a simple yet non-trivial (i.e. not analytically exactly marginalisable)
model, presuming to have measured with noise the (cosmological) redshifts and derived
perfectly standardised distancemoduli251 of a complete sample252 of #SN confirmed type Ia
SNæ. A priori, we take a simple analytically parametrised gamma distribution of redshifts:

IBc ∼ W(2, V) ∼ IBc exp
(
−VIBc

)
, (10.14)

which resembles (qualitatively) a SN Ia population observed with conventional brightness
selection (cf. fig. 15.3) but is in reality just the toy model used by Ibeams. For both ob-

250 Soon after (according to some accounts [516], simultaneously), Uzsoy et al. [517] applied VI for non-
hierarchical inference from individual SN Ia light curves with an even simpler MVN proposal.

251 i.e., ignoring uncertainties in the standardising covariates and correlation coefficients, or measurement un-
certainties altogether, leaving—crucially—only the residual scatter f0

252 In fact, it only needs to be independent of the global parameters, i.e. a random sub-sample.
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(a) Example mock data with 1000 SNæ Ia.
Top: histograms of the true and measured
redshifts, IBc and ÎcB, in comparison with the
Ic prior, also used to draw IBc in the simu-
lator. Bottom: observed Hubble diagram as
dots and the underlying true relation as a line.

(b) Graphical representation of the toy
model of SN Ia cosmology, also used
to generate mock data. V, f0, fI are
(fixed) model inputs in this example while
CΛCDM ≡ Ωm0,ΩΛ0 and

[
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]
are being

jointly inferred from data d ≡
[
( Îc, ˆ̀)B

]
.

Figure 10.1: Mock SN Ia data and the model used to generate and analyse it.

servables, we assume uncorrelated normal sampling distributions253:

Îc
B ∼ N

(
IBc,

(
1 + IBc

)2
f2
I

)
, (10.15)

ˆ̀B ∼ N
(
`B, fB0

)
, (10.16)

where the (true) distance modulus is calculated deterministically from the cosmological
model and the (true cosmological) redshift: `B ≡ `

(
IBc, C

)
. For simplicity, and because ra-

diation does not affect distances at low redshift (as discussed), wewill assume the radiation-
less (Ωr0 = 0) ΛCDM with free parameters CΛCDM ≡ [Ωm0,ΩΛ0]. Finally, because the
example is already far removed from reality, wewill simply fix V = 3, fI = 0.04, f0 = 0.14.
This model is depicted graphically in fig. 10.1b and used to generate mock data sets254 with
number of SNæ Ia ranging from 1000 to 106: the smallest of them is depicted in fig. 10.1a.

253 Wemake a slight meaningful distinction between the two, for in an “equivalent” likelihood, one would assume
the redshift uncertainty scales with the observed ÎcB rather than true IBc .

254 This study is likelihood-based so the data is fixed, both in size and order, so it is in fact an array d ≡
[
( Îc, ˆ̀)B

]
.
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Ωm0

Ω
Λ

0

1000 SNæ Ia

Ωm0

10 000 SNæ Ia

Ωm0

100 000 SNæ Ia

Ωm0

Ω
Λ

0

1 000 000 SNæ Ia

0.2 0.3 0.4

0.5

0.6

0.7

0.8

0.9

0.26 0.3 0.34 0.29 0.3 0.31 0.296 0.3 0.304

0.695

0.7

0.705

Figure 10.2: Posterior 1-, 2-, and 3-sigma credible regions (with 39.3, 86.5, and 98.9%
credibility, respectively) for Ωm0 and ΩΛ0 from mock data (according to the model in
fig. 10.1b) with increasing numbers of observed type Ia supernovæ. Blue ellipses are re-
sults of a VI fit as described in the text, while the red contours were derived with HMC
(only performed up to 10 000 SNæ Ia and only up to 2-sigma shown). Note the different
scales for each plot. The values used to produce the mock data are indicated with a star.

Results from HMC sampling and VI fits to the mock datasets are presented in fig. 10.2.
Because of the computational cost of HMC (generating 1000 posterior samples with 10 000
SNæ Ia took ≈2 h on a high-end workstation), it was only applied to the datasets with 1000
and 10 000 SNæ Ia. In contrast, VI can analyse quickly (in ≈1 h on the same workstation
with an NVIDIA A100 GPU) up to 106 SNæ Ia. To enable this, it resorts to a partial
multivariate normal (PMVN) proposal distribution, which accounts for correlations among
the two cosmological (global) parameters and between them and each individual SN’s latent
redshift but ignores additional posterior correlations between different SNæ: full details
are given in Karchev et al. [267, subsection 4.2]. Due to the conditional structure of the
model, a PMVN is sufficient in this case, especially for large observed samples when the
cosmological posteriors do approach Gaussianity. (HMC makes no such assumptions, so
its results can be considered a more accurate representation of the true posterior.)

While the particular results of fig. 10.2 are not a focus of this thesis, we note that VI
is successful and efficient for this simple model, with the posterior size shrinking in each
dimension as 1/

√
#SN, as expected, and covering the parameter values used to produce

the mock data. Extending the inference to more realistic models and real data, however,
requires significant improvements to the guide so that correlations in high dimensions are
properly accounted for (e.g. a dense covariance matrix, a normalising flow, or a score-
matching proposal). Regardless, time (and section 1.3) showed that VI—and likelihood-
free inference in general— is generally a dead end for SN Ia cosmology.dead end



Chapter 11

������ SLiCsim: light curves for the ML era

SLiCsim255 is theworld’s first generic GPU-accelerated auto-differentiable supernova light-
curve simulator. It is partly a port to the PyTorch ecosystem of the sncosmo [33] package
and partly an attempt to re-build the concept of SN simulation from the ground up256 with a
focus on performance through batched parallelism and with ML/SBI applications in mind.

Simulating a SN (Ia) in SLiCsim involves three main component classes: a Source
model subjected to propagation Effects results in the integrated photon flux density at
a requested (observer-frame) time in a given filter (eq. (7.1)); this is then input to an
Instrument that produces the final mock datum. All components are parametrised, and
all parameters can be provided explicitly for a given forward evaluation. Thus, although
SLiCsim itself only handles deterministic (“physical”) aspects of a simulation, it can be

255 https://github.com/kosiokarchev/slicsim; the code was introduced and first used in SIDE-real
256 after more than a decade of reliance on SNANA [278]: the field’s de-facto standard. It is telling as to the SNANA

philosophy of SNANA that its name evokes the analysis of SNæ rather than their simulation; and indeed, a
large fraction of its functionality concerns fitting light-curve models (MLCS, salt, etc.) to observed data
and dealing with probabilistic effects like selection corrections (BBC is an indispensable and inseparable
part of SNANA) post-fitting. Still, on the side of its simulator (snlc_sim.exe…), SNANA has accumulated
over the years an overwhelming number of bells and whistles (many related to details of the observation
procedure—SNANA is how raw you can go—and many related to post-fit / analysis methodologies, suddenly
parachuted in the middle of a forward simulation: e.g.  -corrections and parametrised efficiencies) and as a
result has all but monopolised the trust of the community. While it has facilitated most of the excellent SN Ia
cosmology realised since its inception, SNANA’s opinionated, bespoke, and restrictive design—not to mention
installation, configuration, and input/output, although those have been improving— imposes a significant
barrier-to-entry on proponents of models and techniques that somehow contradict SNANA’s method (pursuit
of knowledge). For example, SNANA is not built for Bayesian inference; yet the developers of BayeSN have
found themselves hammering its sizable latent layer into SNANA’s rigid light-curve model specification so as
to perform a selection-bias-corrected non-fully-Bayesian cosmological analysis to the field’s satisfaction.
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https://github.com/kosiokarchev/slicsim
https://github.com/RickKessler/SNANA
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transformed into a stochastic forward model through Clipppy’s utilities. Furthermore,
within the simulator, all parameters broadcast against each other to easily produce con-broadcasting
venient batches of simulations—without shape-incompatibility errors if some care and
thought are employed. This leads to massive performance gains when the SLiCsim is de-
ployed (transparently with PyTorch and φυtorch) on a GPU. Lastly, SLiCsim makes use
of φυtorch’s framework for quantitative computation, i.e. assigns and manipulates physical
quantities with units—from the emission in erg/s/Å to the signal in e−.

A Source defines the spectral flux distribution (total emitted energy per unit time andSource
unit wavelength interval) of a supernova (in its rest frame): ΦB

r (Cr, _r) ≡ Φ(Cr, _r; xB, ), as
a function of input SN-specific and global parameters (e.g. a stochastically sampled tem-
plate). Currently, only SN Ia models are implemented: salt, snemo, and BayeSN (and the
underlying Hsiao template), with various pre-trained versions of each available. In addi-
tion, as alluded, BayeSN can be simulated a priori by making any/all template parameters
(those outside the plate in fig. 8.2) stochastic as part of .257

The SN’s light is then modified by a number of parametrised Effects, each of whichEffect
takes the output quantity of the previous one (starting withΦB

r (Cr, _r)) and produces a (gen-
erally) different quantity. In the order that “light” encounters them:

1. Extinction
(
e.g. 'BV, �

B
V
)
from dust in the host is modelled—as per BayeSN’s second

tenet and eq. (8.7)— explicitly and separately from the intrinsic ΦB
r as a simple rest-

frame wavelength-dependent multiplication. The various parametrisations from Fitz-
patrick [153], Calzetti et al. [80], Fitzpatrick & Massa [154], Noll et al. [385], Kriek &
Conroy [296] are available.258

2. Redshift(IB) represents the combined effect of cosmic expansion and all peculiar ve-
locities. It takes as input the total redshift IB and has the effects of dilating wavelength
and phase and suppressing luminosity three-fold as described above:

ΦB
o(Co, _o) =

ΦB [ Co/(1 + IB) , _o/(1 + IB) ]
(1 + IB)3

. (11.1)

Naturally, Redshift does not include distance-related dimming.

3. Distance
(
�B

M
)
transforms a luminosity into an intensity (cf. table 7.1) over a sphere:

�Bo (Co, _o) =
ΦB

o(Co, _o)
4c

(
�B

M
)2 , (11.2)

257 Note that BayeSN’s residual perturbations eB → n B (Cr, _r) can still be sampled even when the template’s
mean and principal component are fixed.

258 These were extracted from the extinction package [32].

https://pytorch.org/docs/stable/notes/broadcasting.html
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assuming three-dimensional space. Importantly, the transverse distance to the super-
nova, �B

M, need not be defined in a cosmological context or in terms of a redshift. It
is simply given as a quantity in units of distance (usually Mpc), possibly derived from
calibrated measurements. Nevertheless, when a
CosmologicalDistance

(
IBc

)
effect is intended, the correct distance to use here is the

transverse comoving—and not the luminosity—distance:

�B
M ≡ �M

(
IBc

)
=

√
(: (�c(IBc)) = �c

(
IBc

)
sinc

(√
: (�c(IBc))2

)
, (11.3)

where by taking a square root, we have assumed we do not cross a metric divergence.259

4. Extinction
(
�BV,MW, '

B
V,MW

)
from dust in the MW is equivalent to that in the host but

is applied in the observer frame,260 and since comprehensive constraints are available
from various observations, the relevant parameters are often fixed to measurements
from e.g. Schlafly & Finkbeiner [468], based on the SN’s sky location.

5. Phaseshift(ΔCB) is finally needed to account for the translation invariance of ordi-
nary—as opposed to egocentric cosmological— time keeping151:

Co = C − ΔCB, (11.4)

where ΔCB is the common-clock time that corresponds to the origin of the Source
model’s phase coordinate.261 Wavelengths are, instead, absolutely defined, so _r = _.

Thus, we have reached the top of the Earth’s atmosphere. Converting from the spectral
flux density � (C, _) to a photometric measurement 3 is the purpose of an Instrument, Instrument
as we described in detail in section 7.1. SLiCsim can calculate both “raw” photoelectron
counts (eq. (7.3)) or calibrated fluxes (eq. (7.8)), provided the relevant instrumental (point- pointing

metadataing) metadata:

aobs ≡
{ (C, f, gain, ZP, 〈3〉bg) for a CountsInstrument, (11.5)
(C, f, FLUXCALERR) for a FluxcalInstrument .262 (11.6)

259 See fig. 1 in AADcosmo, which was deemed too insignificant for exposition in this thesis.
260 This is implicit in the placement of this Effect after Redshift; a slight inconsistency might arise due to

the motion of the Earth and Sun within the frame of Galactic dust, but this is hardly important for sweeping
broadband photometry.

261 This also takes care of the finite speed of light, if anyone was curious.
262 As mentioned, calibrated fluxes are typically expressed with irrelevant gain = 1 and ZP = 27.5 mag.
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A survey is represented in SLiCsim through the concept of a Field, which may containField
multiple (#SN) SNæ all observed—and hence simulated—under the same conditions. It
is a data structure that encapsulates the magnitude system used and an array of metadata[
a8

]#obs
8=1 for each of #obs pointings. The number of supernovæ and the observational meta-

data may be stochastically simulated (from a rate model for the former (cf. eq. (8.14)) and
via e.g. LSST’s rubin_sim [551] for the latter) or fixed to actual values for an already
conducted survey. The latter strategy, which we adopt in chapter 12, explicitly conditions
the simulator on #SN ↔ #sel, which is inappropriate for modelling surveys that suffer se-
lection effects, as we explained in subsection 4.2.1; in such cases, the more involved fully
stochastic setup must be implemented.263

The final output from simulating a Field is an ordered list of (ordered lists of) mockphotometric
data vector measurements d ≡ [dB]#SN

B=1 ≡
[ [
3B,8

]#B
obs

8=1
]#SN
B=1 . Combined with the observational metadata,

as well as meta information aSN identifying each object (see section 12.2 for a concrete
example), these can be transformed into a set of (sets of) mock measurements:

D =
{{

aB,8obs, 3B,8
}
, aBSN

}
, (11.7)

whose structure and sizemay vary from realisation to realisation. In this form, it is easy also
to simulate and combine mock observations from multiple fields: indeed, in an extreme
scenario of a targeted/follow-up survey (like the CSP, which we analyse in chapters 12
and 13), every SN is a field entire of itself.

Simulating galaxy photometry can be achieved simply by defining a ConstantSourceConstant
Source which does not vary with time. To it, too, the Effects listed above can be applied (although

the effect of “host” dust extinction is commonly includedwithin intrinsic galaxy-light mod-
els) and its photometry calculated through the same Instrument. Currently, only an ex-
perimental interface to a custom PyTorch port of the Speculator-α emulator [11] has
been implemented for use in chapter 16, but even at this level, it already allows coordinat-
ing the simulated properties (e.g. dust extinction, progenitor population, etc.) of SNæ and
their hosts, as we envisioned.

263 Assuming that a survey is designed before it is performed, i.e. its time/filter scheduling is not influenced by
ongoing observations (and hence cannot contain useful information), the survey specification can still be fixed
to the observed metadata, but the SNæ and their placement within Fields must still be realised stochastically:
see e.g. the recent skysurvey package.

https://github.com/lsst/rubin_sim
https://en.wikipedia.org/wiki/Devotions_upon_Emergent_Occasions
https://github.com/justinalsing/speculator
https://github.com/MickaelRigault/skysurvey
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Chapter 12

SN Ia dust extinction with NRE ��������� SIDE-real

applied to real data

In this chapter, we present the first fully simulation-based hierarchical analysis of the light
curves of a population of low-redshift SNæ Ia. We focus, on one hand, on building a
complete hardware-accelerated and parallelisable Bayesian forward model for photometric
SN Ia surveys, implemented with SLiCsim and Clipppy. It includes stochastic variations
in each SN’s spectral flux (based on a pre-trained BayeSN model), probabilistic extinction
from dust in the host and in the MilkyWay, the effects of redshift and distance, and realistic
instrumental noise. Secondly, we present efficient complete hierarchical inference of the
SN Ia absolute magnitudes and host-galaxy dust properties, both at the population level
and of the parameters of the individual objects. Using TMNRE and a bespoke network
architecture we call a Super Tuple, we implicitly marginalise over 4000 latent variables
(for a set of ≈100 SNæ Ia) while analysing directly the uncompressed collection of light
curves, thus circumventing the expensive individual-object fitting stage present in all cur-
rent studies. Exploiting the amortisation of our inference procedure allows us to obtain
coverage guarantees for the results through Bayesian validation and frequentist calibration.
Furthermore, we show a detailed comparison with joint likelihood-based inference, imple-
mented through Hamiltonian Monte Carlo, on simulated data and then apply the trained
TMNRE to the light curves of 86 SNæ Ia from the Carnegie Supernova Project, deriving
marginal posteriors in excellent agreement with previous work and alternative methods.
While here we focus on parameter inference, in the following chapter, we will use the same
simulator to perform Bayesian model selection of the dust and brightness populations of
SNæ Ia; moreover, coupling the forward model to the inference machinery demonstrated in
later chapters will let us analyse high-redshift surveys and derive stringent and principled
cosmological constraints.
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Table 12.1: SN Ia parameters, (hierarchical) priors and values used to generate mock data
in SIDE-real. For local parameters, the support and size of the sampled “vector” are listed.
See also fig. 12.1 for a (directed) graphical representation of the model.

parameter prior mock value

BayeSN template W0,1 fixed M20
�e

BayeSN “stretch” parameter \B1 N
(
0, 12) ∈ R⊗#SN

BayeSN residual variations eB N(0,�e) ∈ R#grid⊗#SN

covariance of eB �e fixed M20
abs. magnitude offset X" B N

(
0, f2

0
)

∈ R⊗#SN

abs. magnitude scatter f0 HalfCauchy(0.1) 0.088

host dust-law parameter 'BV N
(
`', f

2
'

)
∈ [1.2;∞)⊗#SN

“mean” 'BV `' U(1.2, 5) 3.0
“st. dev.” 'BV f' HalfNormal

(
22) 0.5

host optical depth �BV Expon(1/g ) ∈ R⊗#SN
+

mean opt. depth g HalfCauchy(1) 0.329

cosmological redshift IBc fixed = IB

total redshift IB fixed = ÎB

measured redshift ÎB fixed K17

MW dust-law parameter 'V,MW fixed 3.1
MW optical depth �BV,MW fixed = �̂BV,MW

measured �BV,MW �̂BV,MW fixed SF11

time offset ΔCB U(±7.5 d) 0 ∈ [±5 d]⊗#SN

0with respect to an initial estimate, SEARCH_PKMJD

12.1 Forward modelling probabilistic SN Ia light curves
The forward model used in SIDE-real is depicted fig. 12.1, while its random variables and
the hierarchical distributions they are simulated from are detailed in table 12.1. We use the
SLiCsim code, developed originally for the present application and described in detail in
chapter 11.

In brief, we use a Source based on the BayeSN template derived by Mandel et al.
[344, hereafter M20] from 79 nearby SNæ Ia with high-quality optical and NIR obser-
vations. It defines a 6 × 9 grid spanning the (rest-frame) ranges C ∈ [−10; 40] d and
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ÎB
IB

IBc

�̂B
+,MW �B

+,MW

U(±7.5 d) ΔCB

[obs]#
B
obs

8

[SN]#SN
B

Figure 12.1: The forward model for SN Ia light curves. Green and blue shadings indicate,
respectively, the global and SN-specific parameters, and the purple circle is the data (we
use the simplified FLUXCAL-based instrument model (eq. (7.8))). Double-stroked boxes are
different SLiCsim components described in chapter 11. In this particular study, the (fixed)
model inputs are the BayeSN template (W0,1, �e), externally measured Milky-Way dust-
law and optical depths ('V,MW, �BV,MW), redshifts (ÎB), the cosmological model, and the
survey specification (metadata), including flux uncertainties (FLUXCALERR).
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_ ∈ [0.3; 1.85] µm. We fix its principal components W0,1 and the common covariance
matrix �e of the residual variations to their posterior means from M20, leaving only the
coherent scatter f0 as a free SN-population parameter and 44 variables controlling the in-
trinsic brightness of each SN Ia: X" B, \B1, and the 42-component array eB (the perturbations
are fixed to zero at the extreme wavelengths of the grid, reducing the free eB to 6 × 7).

We apply host-related dust Extinction (eq. (8.7)) parametrised by the F99 law and
place population priors for the object-specific 'BV and �BV as proposed by Thorp et al. [509],
Thorp & Mandel [508], Grayling & Popovic [184] and explained previously. Concretely,
we restrict the support of the Gaussian-shaped 'BV hyperprior to [1.2;∞) as in eq. (8.15)
(using Clipppy’s truncation utility). This modifies the interpretation of `' and f' (which
no longer represent the population mean and standard deviation) and affects, albeit mildly,
their inferred values (consult Grayling & Popovic [184] for further discussion). In total,
host dust is described by three population parameters and two further SN-specific variables.

Instead, we account for MW dust deterministically: following Schlafly & Finkbeiner
[468, hereafter SF11], we assume an isotropic F99 dust lawwith 'V,MW = 3.1 and perfectly
measured MW optical depths �BV,MW at the sky locations of the SNæ, extracted from the
SF11 maps. These assumptions can be easily relaxed and the MW dust properties inferred
or marginalised with SBI similarly to those of the hosts.

This study does not aim to demonstrate proper redshift inference (see chapters 14 to 16).
Instead, it targets a small well-observed SN Ia sample for which spectroscopy is available;
therefore, we assume perfect measurements of the total redshifts: ÎB = IB. When generating
and analysing mock data, we will furthermore disregard non-cosmological contributions
and set also IBc = IB = ÎB. In contrast, peculiar velocities are present in the real data we
consider and need to be accounted for. For the purposes of comparison with previous work,
we will extend debase our pipeline by using corrected redshift estimates ÎcB (as described
in Thorp & Mandel [508, hereafter TM22]) and augmenting the f0 with an additional SN-
dependent magnitude uncertainty propagated linearly from a peculiar velocity correction
uncertainty of 150 km/s as lamentingly described in eqs. (8.12) and (8.13):

X" B { N
(
0, f2

0 +
(
fB`

)2
)

with fB` ≡

√
(150 km/s/c)2 + f2

Î

Îc
B × ln 10−1/5 . (12.1)

Moreover, because the sample is at low redshift and offers no prospects of constraining
cosmological parameters, we will adopt a fixed264 flat ΛCDM model with matter density
Ωm0 = 0.28 and Hubble constant H0 = 73.24 km/s/Mpc and use it to calculate fixed
CosmologicalDistances from the (fixed) ÎcB.

264 Part of the motivation for making this choice was the desire for comparison with TM22 and (as we describe
below) with the likelihood-based BayeSN code, which at the time did not have hierarchical-distance fitting
functionalities.
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Finally, we use the simplified264 Gaussian description of calibrated fluxes (a Fluxcal
Instrument) with fixed FLUXCALERRB,8 for all observations (since detailed descriptions
of the CSP observations— zero points, gains, and background fluxes— are not available
in SNANA) and a toy model for the uncertain time of maximum— i.e. Phaseshift—by
allowing it to fall within a 15-day time window around an initial estimate (SEARCH_PKMJD).

12.1.1 Fake Mock data�������
For the purposes of validating the inference procedure, we generate mock data designed to
mimic the third data release of CSP, as presented in Krisciunas et al. [297, hereafter K17]
and included in SNANA [278]. We extract the list of observation times (CB,8), bands (fB,8), and
noise estimates265 (FLUXCALERRB,8) for each pointing for each SNæ Ia in the data release,
their spectroscopic redshift (ÎB) and the Milky Way colour excess �B−V, which we convert
into �̂BV,MW = 3.1 × �B−V (since we assume isotropic 'V,MW = 3.1 for the Milky Way).
These constitute the metadata, i.e. the inputs to the graphical model in fig. 12.1 (together
with the M20 template).

Since the M20 model, which we use both to generate and analyse the mock data, was
not trained on u-band observations and outside the rest-frame time range [−10; 40] d, we
exclude the corresponding entries from our CSP-like setup. For the global parameters (f0,
`', f', g), we set ground-truth values as listed in table 12.1, informed by the posterior
means reported in M20, whereas the object-specific ones we sample from their priors,266
also listed in table 12.1.

The mock data set contains #SN = 134 SNæ Ia with a total of
∑#SN
B=1 #

B
obs = 13 202 flux

measurements.267 Figure 12.2 depicts it four times, coloured according to the values of
the different SN-local parameters. The impact of �V and \1 are clearly evident as gradi-
ents (shifts) of the light curves, while that of X" and 'V less so, in accordance with the
earlier discussion (fig. 8.3), and this has an impact on hierarchical inference, as we will
demonstrate in section 12.3. Notice also the reduced spread148 of SN Ia light curves in
the infrared bands, where measurements allow disentangling pure-magnitude from colour-
and-magnitude variations (respectively described by X" and 'V).

265 To facilitate the likelihood-based comparison, we increase very small reported FLUXCALERRs to be at least
0.01mag, as has also been done for the real data.

266 For ΔCB , we restrict the mock values to the range [−5; 5] d in order to avoid boundary effects.
267 For the mock data that we generate ourselves, we consider all SNæ from the CSP data release, instead of the

restricted “clean” sample in subsection 12.1.2.
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Figure 12.2: Mock light curves that we generate and analyse, corrected for cosmological
distance (but not for redshift). While we work entirely in linear (flux) scale, for presenta-
tion purposes, this figure is in magnitudes. Each column shows the same light curves but
coloured according to a different SN-local variable, as indicated on the top. Each row is
a different CSP band: from bluest (top) to (infra)reddest (bottom). Different SNæ might
have observations in different sets of the bands. All plots have the same scale and limits:
notice that the diversity in redder bands is smaller, owing partly to the weaker effect of dust
extinction. See also fig. 8.3.
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12.1.2 Real data�������
We also consider a real data set comprising the light curves of 86 non-peculiar SNæ Ia from
CSP identified and analysed by TM22. As mentioned, for each SN we have two separate
(fixed) redshifts: IB = ÎB and IBc = Îc

B, the former acting to redshift the light curves, while
the latter is only used to calculate CosmologicalDistances.268 To further match TM22’s
setup, we also fix the standard deviation of coherent residual scatter f0 = 0.088 and the
time offsets ΔCB = 0 instead of inferring them for this data set.

12.2 Hierarchical NRE with the Super Tuple™
We approach the inference task with joint-to-marginal neural ratio estimation as intro-
duced in subsection 2.1.3 and expounded for the solution of a hierarchical model in sec-
tion 4.1. In principle, we could use the simplest fully-connected multi-layer perceptron
(MLP), inputting a data vector formed by the concatenation of each SN’s light curve:
d1 ‖ d2 ‖ . . . ‖ d#SN , but this architecture would (mostly) unnecessarily connect individual
raw observations of different SNæ, introducing excessively many network weights while
providing no obvious way to extract object-specific summaries.

Instead, we introduce a network architecture that can ingest the peculiar data that a
collection of light curves is and output simultaneously all the requested ratios as in fig. 4.2;
I call it the Super Tuple,269 and we found it is fast to train (both in terms of number of
steps and time per step) and with present-day data sets achieves the best performance while
requiring reasonable resources.

The Super Tuple’s layout is based on the realisation that survey data d ≡ [dB]#SN
B=1 simu-

lated as above (see also chapter 11) is a tuple: an ordered (indexable) collection of different- tuple
sized objects, whose structure— crucially— does not change between mock realisations
due to the conditioning on the number of observed SNæ and the observation metadata. As

268 As discussed in Grayling & Popovic [184], dust inference is only mildly affected by the peculiar velocity
model, which mainly trades off against the residual scatter f0.

269 Initially, following the reformulation of the data vector into a nested set of sets as in eq. (11.7):

d ≡
[ [
3B,8

]# B
obs

8=1
]#SN
B=1 → D ≡

{{
aB,8obs, 3

B,8
}}

(12.2)

I preferred—for its elegance and generality—a nested unconditioned, i.e. plain, deep set architecture (for the elegance &
generalityconditioned one had not been invented yet), which was proving dramatically slow to train (but still trainable,

given enough time). For the application in SIDE-real, I finally succumbed and overnight before a talk I had to
give at a conference implemented and trained the dumbest architecture I could think of, fully conditioned on
the data structure—a usual driving force in network design—and implemented using a for loop; of course, for loop�����
it performed way better (in terms of training/validation win) and in a fraction of the time. In the name of
science, we went ahead with it, but I gave it the affectionate name супер тъпа (“super dumb” in Bulgarian).

https://www.youtube.com/watch?v=ktNt-69TixI
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a key first step, therefore, we use a collection of #SN distinct learnable embeddings of theembedding
unequal-length dB into a space of fixed dimension:

fffB ≡ SNEmbedB (dB). (12.3)

We found that even a single linear layer (per SN)works well in our particular setup. The em-
beddings are stacked along a batch dimension and processed in parallel by a single shared
component to derive final featurised representations of each supernova:

dddB ≡ SNHead(fffB). (12.4)

These can be perceived as a standardised summary representation of each light curve and
will later serves as the primary source of information for object-specific inference.

Information across the tuple is then aggregated using a data-“set” Summariser:Summariser

SSS ≡ Summariser
(
[dddB]#SN

B=1

)
. (12.5)

We use a simple fully connected summariser that initially concatenates [dddB]#SN
B=1 . While this

approach is memory- and compute-intensive, it is simple, and in chapter 14 we will show
that it does scale to the expected ∼105 SNæ even on current (early 2020s) hardware. We
prevent overfitting in this layer via stochastic dropout [220].dropout

Finally, a number of ratio-estimator networks estimate ratios. For a group of global
parameters of interest 6:

global: ln r̂(6, d) = RatioEstimator6
(
WWW6,SSS

)
, (12.6)

and similarly for the local parameters of interest �B6 of object B:

local: ln r̂
(
�B6, d

)
= RatioEstimator�6

(
___B6,SSS,ddd

B, aBSN
)
, (12.7)

where aBSN ≡
[
ÎB, �̂BV,MW

]
are the object-specific settings/metadata (cf. eq. (1.9), fig. 1.2, ,

and section 4.1), which completely identify the SN whose parameters are being inferred.
As we noted previously, the presence of the global SSS accounts for a posteriori correlations
between the parameters: i.e. we infer the posterior p(�B | {dB}) instead of p(�B | dB). In
a hierarchical model in which {�B} are a priori conditionally independent given global
parameters , i.e. p({�B} | ) =

∏
B p(�B | ), this corresponds to the marginalisation∫

p(�B,  | d) d instead of simply p(�B | d, ) as was done in previous hierarchical SBI
analyses of permutation-invariant data [453, 210].
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Figure 12.3: Architecture of the Super-Tuple-based complete hierarchical neural ratio es-
timator. Solid lines represent linear connections (followed inside the MLPs by batch nor-
malisation and ReLU non-linearity). Dashed lines, on the other hand, connect layers that
are duplicated for presentation (identity operation). When multiple parameter groups are
being inferred, there are multiple parameter heads, whereas here only one is shown for clar-
ity. Notice the similarity with fig. 14.2, the main addition here being the SN-embedding
layers: #SN distinct components (thus coloured diversely) with different input sizes but
the same output dimension, which allow the [fffB] to be stacked into a single tensor along
a batch dimension and processed in parallel before being flattened out for input into the
summariser.
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Table 12.2: Details about the components of the Super Tuple: their input and output dimen-
sions and specific implementations. For all components, we use MLPs, indicating here the
number and size of the hidden layers as MLP(=hidden × 3hidden). Each hidden layer consists
of a fully connected layer, batch normalisation, and a ReLU non-linearity. Inputs are also
whitened (shifted and scaled by the mean and standard deviation of the training set). The
size of global-parameter groups is denoted with < = 1, or 2 for the group [`', f']. The
network is also depicted in fig. 12.3.

component inputs ∈ space → output ∈ space implementation

[SNEmbedB]#SN
B=1 dB ∈ R#B

obs → fffB ∈ R256 Linear
(
# Bobs → 256

)
SNHead fffB ∈ R256 → dddB ∈ R32 MLP(2 × 256)
Summariser [dddB] ∈ R32×#SN → SSS ∈ R256 MLP(3 × 256)
ParamHead6 6 ∈ R< → WWW6 ∈ R256 MLP(2 × 256, 256)
RatioEstimator6 WWW6, SSS ∈ R256+256 → ln r̂(6, d) ∈ R1 MLP(3 × 256) + LeakyPOP
ParamHead�6 �B6 ∈ R1 → ___B6 ∈ R16 MLP(1 × 128)
SummaryHead�6 SSS ∈ R256 → SSS�6 ∈ R16 MLP(1 × 128)

RatioEstimator�6 ___B6, SSS�6 , dddB, aBSN ∈ R16+16+32+2 → ln r̂
(
�B6, d

)
∈ R1 MLP(3 × 128)

To enhance the network expressivity, we first “featurise” the raw parameters by passing
them through a ParamHead , whose output WWW6 is concatenated to the dataset summary and
input into the global ratio estimator. For latent-variable estimators, ___B6 ≡ ParamHead� (�B)
is concatenated with a processed SSS�6 ≡ SummaryHead� (SSS), which extracts the relevant
summaries fromSSS, with the pre-processed datadddB, andwith the auxiliary inputs aBSN. Lastly,
to enhance constraining power when the posterior is significantly more concentrated than
the prior, we use the leaky parity-odd power (pop) activation layer [248] on the output of
global-parameter ratio estimators.

All network components (SN embedders, the global summariser, and all ratio estima-
tors) are implemented as MLPs with batch normalisation and rectified linear unit (ReLU)
non-linearities. Details about layer sizes are given in table 12.2, and the network is de-
picted in fig. 12.3. We train using the joint-to-marginal BCE objective (eqs. (2.11), (2.14),
and (2.15)) as implemented in Clipppy and summed over all marginal parameter groups
(i.e. � representing, in turn, each of the global parameters and each of the local parameters,
summing also over the #SN SNæ).
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12.2.1 NRE training

We implent and train a neural ratio estimator based on the Super Tuple architecture in
Clipppy. Concretely, we targetmultiple parameter groups—global 6 ∈ {g, f0, [`', f']}
and local �B6 ∈

{
ΔCB, \B1, �

B
V, X"

B, 'BV
}
—simultaneously by training separate ratio estima-

tors for each at the same time as a single data pre-processor d→
[
[dddB]#SN

B=1 ,SSS
]
.

We generate a training set of 256 000 mock survey realisations and use 6400 additional
examples for validation, plotting posteriors, and calibration. To prevent overfitting, while
training, we resample the instrumental noise (eq. (7.8))— this effectively augments the
training set while avoiding the expensive part of the simulator—and stochastically “drop
out” 50% of the summariser input [220]. We optimize using Adam [288] with the de-
fault PyTorch momentum settings, a decaying learning rate schedule (W = 1/1.5 every
10 epochs) over 100 epochs, and with mini-batch size of 128 examples. The results we
present below use the checkpoint that performed best on the validation set. Training on
one NVIDIA A100 GPU took ≈5 h to converge, in addition to ≈30min needed to generate
the training set. Evaluating a single set of marginal posteriors then takes on the order of
milliseconds.

12.2.2 Validation with HMC

To validate our NRE results, we run a likelihood-based analysis (using the hierarchical
likelihood that corresponds to the forward model in section 12.1) with HMC and consider
the resulting posterior the ground truth. We use the code outlined in [184], which is based
on the implementation of nuts [225] in NumPyro. We run 4 chains and draw 500 samples
each after 500 burn-in steps, which takes ≈30min when run in parallel on 4 NVIDIA A100
GPUs. We verify convergence using the Gelmann-Rubin ' number, the effective sample
size, and other standard diagnostics as described in Grayling & Popovic [184]. We remind
the reader that, as any likelihood-based method, this HMC analysis requires sampling the
joint posterior of all model parameters, including in this case 4 global parameters and #SN×
(5 + 42) = 6298 object-specific ones, most of which describe the residual light-curve
variations through eB. In contrast, our SBI methodology implicitly marginalises eB and
estimates 3 global (since we group [`', f']) and 5 SN-specific marginal posteriors (the
latter evaluated #SN times for the final results).
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Figure 12.4: Inference results from the mock data set. Top: moments of the marginal posteriors of
the local parameters of the #SN supernovæ, as indicated in the top-left corner of each plot. Means
(standard deviations) are shown in teal (ochre) with scale indicated below (above) the plot. The
abscissa (ordinate) coordinate comes from the HMC (NRE) posterior, so that the diagonal indicates
matchingmoments from the twomethods. Middle: the same per-object marginal posteriors (mean±
1 standard deviation) plotted against the true values in the simulation. Only every third error bar is
plotted for clarity. Bottom: posterior densities (in the 2-dimensional plot, 1- and 2-sigma credible
regions) for the global parameters, as inferred by HMC and NRE, compared with the prior density
and the true value used to simulate the mock data. Shaded regions indicate the truncation used for
re-training the `'–f' NRE, depicted in the inset (the estimators for g and f0 were not re-trained).
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12.3 Results and discussion

12.3.1 Comparison of marginal posteriors for the mock data
We plot the marginal NRE posteriors, evaluated by weighting prior samples from the vali-
dation set by r̂(�, d), in fig. 12.4 compared with the ground-truth marginalised HMC pos-
teriors and the true parameter values used to generate the mock data.

We observe excellent agreement between NRE and HMC posteriors for the global pa-
rameters: g, f0, [`', f'], with similar uncertainties from the two methods and relative
shifts of at most about 1f. Since the ratio estimator for [`', f'] is the most challenging,
we re-trained it after truncating the global-parameter priors, as described by Miller et al.
[359] and illustrated in the figures.

Similarly, SN-local parameters, with the exception of 'BV, are very well recovered and in
agreement with HMC.A detailed comparison of the first twomoments of the 1-dimensional
marginal posteriors is shown in the top row of fig. 12.4. In general, NRE exhibits slightly
larger uncertainties for most parameters, as was previously observed in SICRET. It is im-
portant to note that 'BV inference is almost entirely population-driven. Since constraints
from individual objects are weak, the hierarchical structure induces shrinkage, as we an-
ticipated. This is not an artefact of the inference procedure used but rather a feature of the
hierarchical model itself, and is observed for both NRE and HMC. Thus, small changes in
the `'–f' posterior shift all the 'BV marginals coherently, leading to similar offsets from
the HMC results for individual objects. We note that, while the #SN + 2-dimensional joint
`'–f'–

{
'BV

}#SN
B=1 posterior can be studied using HMC, with NRE, we only derive marginal

posteriors [however, see 14, 325].

12.3.2 Results on real data
Similarly, for the real CSP data (subset, as described in subsection 12.1.2), we plot the
marginal posteriors for all free SN-specific and global parameters in fig. 12.5 in comparison
with previous results from TM22, who also relied on HMC. The NRE- and HMC-derived
posteriors are in good agreement with about 1-sigma offset and similar sizes, as was the case
when analysing the simulated data set. In fig. 12.6, we focus specifically on population-
level dust inference, depicting the Bayesian results derived with the two methods as well
as regions with calibrated exact (frequentist) confidence. Since the NRE is already nearly
optimal, this procedure returns almost exactly the regions of corresponding credibility,
serving as further reassurance of their correctness.270

270 For completeness, refer to appendix A in SIDE-real, where we perform both Bayesian validation and fre-
quentist calibration, as described in subsection 2.3.2, of the global real-data inference network.
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Figure 12.5: Inference results from the real data set. Top: comparison of marginal local-
parameter posterior moments derived with NRE and HMC. Bottom: posteriors for the
global parameters. See fig. 12.4 for more details.

Summary and outlook

We have presented detailed marginal neural simulation-based inference in the context of a
hierarchical model of SN Ia light curves that incorporates realistic intrinsic (to each SN)
and extrinsic (due to dust properties of the host galaxy) variability. By training a neural net-
work to approximate the likelihood-to-evidence ratio with a training set of simulated light
curves based on the Carnegie Supernova Project (CSP), we have derived marginal posteri-
ors for the parameters of the populations of SNæ Ia and their hosts: the mean and standard
deviation of dust-law parameters 'BV, the average optical depth g, and the residual scatter
of SN Ia absolute magnitudes f0, and simultaneously inferred marginally the parameters
of all ≈100 SNæ Ia. After validating the approach on simulated data, we have analysed
the light curves of 86 real SNæ Ia observed by the CSP [297] and selected by Thorp &
Mandel [508]. In both cases, we observe excellent agreement between our SBI results and



12.3. Results and discussion 163

2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

`'

f
'

86 SNæ Ia from CSP
NRE (this work)
HMC (TM22)

2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

`'

f'

conf. region (exact)
cred. contours (NRE)
cred. contours (HMC)

−0.2 −0.1 0 0.1 0.2
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Figure 12.6: Population-level dust inference fromTM22’s subset of 86 CSP SNæ Ia. Left: a
zoom-in of the respective panel in fig. 12.5, showing our NRE marginal posterior and that
of TM22. Right: confidence regions (purple shade) with exact calibrated one- and two-
sigma confidence (≈39 and ≈86% in two dimensions). The coloured background depicts
the “threshold” credibility offset by the prescribed (two-sigma) confidence (in terms of
standard-Gaussian “sigmas”). Consult subsection 2.3.2 and SIDE-real’s appendix A for
the full details.

a baseline likelihood-based analysis as in Thorp & Mandel [508], Grayling et al. [185].
Concretely, posteriors for g and f0 are in perfect agreement from the two methods, as well
as the marginals for most local parameters (ΔCB, \B1, �BV, X"

B). For the latter, SBI exhibits
a slightly bigger uncertainty (by ≈10%). Results for the dust-law parameters 'BV and their
population are also in good agreement, with only a small offset of about 1f between NRE
and HMC observed. As we illustrated in figs. 8.3 and 12.2, 'BV have a minuscule impact
on the data in comparison with the remaining variability, which makes them the hardest to
infer and leads to hierarchy-dominated results: i.e. inference of one 'BV depends on observa-
tions of all SNæ, regardless of the analysis methodology (likelihood- or simulation-based).
In light of this extremely challenging learning task, the neural network exhibits excellent
performance, having learned to extract and route the relevant information without access
to the full high-dimensional likelihood but solely from training examples.
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The precision and accuracywe achieve are largely due to the Super Tuple network archi-
tecture, which we have introduced to address the issue that each supernova in a survey has
a different number of observations at different times and in different bands (thus, a survey
is a tuple: an ordered collection of different-sized objects). It consists of: a single bespoke
linear layer embedding each SN individually into a common-dimensional space; a shared
fully connected SN post-processing sub-network applied in parallel to the embeddings of
all SNæ; and a fully connected summariser combining the results. It is as expressive and
fast to evaluate and train as conventional fully connected networks (taking a few hours to
converge with training data generated in∼30mins, in the same ballpark as highly optimised
likelihood codes) but manages to fully extract the relevant information before overfitting.

In the present work, we have made a number of simplifying assumptions—e.g. fixing
the Milky-Way extinction parameters and using a simplified Gaussian instrument descrip-
tion—that do not affect significantly the results in the low-redshift, fairly small-size, high-
signal-to-noise case we consider. These do not represent a challenge to the SBI inference
pipeline, i.e. do not require any modification to the procedure described here beyond im-
plementation within the forward simulator (a framework for which we already presented in
(SLiCsim)). Moreover, the simulator and network employed here are already sufficient for
applications beyond hierarchical inference—namely, ground-breaking principled Bayesian
model comparison in the presence of formidably numerous nuisance parameters as an an-
swer to pressing questions regarding the distributions of SN Ia magnitudes and theirs hosts’
dust properties, as we describe in the following chapter.

Lastly, in order to perform cosmological inference from near-future photometric-only
data sets, we will need to account for two crucial probabilistic effects: redshift uncertainty
and selection effects (including contamination). While the former can be addressed within
the current framework—provided a suitable model for the process of measuring redshifts,
as we will demonstrate in chapter 14— , the latter will require us to retire (improve upon)
the Super Tuple architecture so as to be able to simulate and learn from examples with
stochastic (a priori unknown) size: see subsection 4.2.1. We present our alternative solu-
tion—the conditioned deep set neural network—in chapter 15 with a simple model based
on summary parameters but still envision the spirit of the Super Tuple to return when con-
fronting stochastic collections of light curves, which will again need to be embedded into a
common-dimensional space before being input into the deep set. In that setting, the fixed-
input-size first layer of the Super Tuple will need to be replaced either with a more flexible
linear embedding— i.e. a Gaussian process regression—or with a more sophisticated re-
current or attention-based neural network. These tools have already been applied to real
data of individual SNæ (as we already presented) and are just waiting to be applied for
hierarchical—and cosmological— inference.
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Simulation-based SN Ia model selection ��������� SimSIMS

SimSIMS is a first, brief,271 and impactful application of the neural classification-based
Bayesian model selection technique—which we presented in section 3.2— to pressing
questions regarding host-dependent SN Ia standardisation and dust extinction (subsections
8.3.3 and 8.3.4). Concretely, we address the interplay between
• the possibility of an offset between the intrinsic brightnesses of SNæ Ia hosted by low-
and high-(stellar-)mass galaxies: a mass/magnitude step,210 and

• different population models for the host dust, which may be influenced by other galaxy
properties and give rise to an apparent (empirical) correlation with stellar mass.

We base this work on the hierarchical models of Thorp & Mandel [508, hereafter TM22]
and the data they analyse: the same optical and NIR light curves of 86 non-peculiar SNæ Ia
from the CSP [297] for which we performed parameter inference within one model272 in
SIDE-real (subsection 12.3.2). Here, we use essentially the same simulator—with the
modifications presented below, which implement the different probabilistic hierarchies—
to perform principled model comparison by deriving explicit posterior model probabilities
(and hence, Bayes factors) after implicitly marginalising over 4000 nuisance parameters.
The amortized nature of our technique allows us to validate it on simulated data and ex-
plore the dependence of its results on underlying parameter values, thus visualising and
quantifying Occam’s razor. When applied to the real CSP light curves, our method prefers
a model with a single dust law and no magnitude step, disfavouring (based on SN Ia data
alone) different dust laws for low- and high-mass hosts with odds in excess of 100:1.

271 SimSIMS was presented at the NeurIPS’s ML & the physical sciences workshop, which imposes a 4-page
(pre-review) submission limit. Incidentally, the paper was also materialised in roughly 4 days, including low-hanging

fruitsetting up the model-selection pipeline in Clipppy and running it with the already-present simulator setup.
272 In the nomenclature of this chapter, the model from SIDE-real is M0, global.
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https://ml4physicalsciences.github.io/2023
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13.1 The selection of models
We consider purely hierarchical modifications to the light-curve modelling framework we
used in chapter 12, which is based on the BayeSN probabilistic SN Ia spectral timeseries
parametrisation, towith dust extinction from the host andMilkyWay, redshift, distance, and
instrumental effects subsequently applied. We preserve the vast majority of the simulator
settings from our previous parameter-inference application: i.e., we keep fixed the pre-
trained M20 template, the MW dust law and optical depth, and distances derived from
a fiducial flat ΛCDM cosmological model (Ωm0 = 0.28 and H0 = 73.24 km/s/Mpc for
"0 = −19.5) and cosmological redshifts corrected for peculiar velocities from [89]. This
still leaves 47 parameters per SN (42 of them describing the residual correlated light curve
variability) for a total of more than 4000 for the analysed data set with 86 SNæ Ia.

In SimSIMS, we consider a further standardising covariate / “SN ”-specific parameter:
the host stellar mass, treating it simply as a fixed metadatum, adopting the values released
with SNANA,273 and ignoring their uncertainties when splitting into sub-populations across
a fixed274 threshold of log10("

split
∗ /M�) = 10.5, resulting in a 49/37 split.

Finally, we identify six distinct models, formed by assumptions for:

• the pre/absence of a magnitude step, Δ" , between275 low- and high-mass hosts:

M0 : X" B ∼ N
(
0, f2

0

)
; (13.1)

dM : X" B ∼
{
N

(
0, f2

0
)

if " B
∗ ≤ "

split
∗ ,

N
(
Δ", f2

0
)

if " B
∗ > "

split
∗ .

(13.2)

On the additional free parameter we place a uniform prior

Δ" ∼ U(−0.2, 0.2), (13.3)

while keeping the original broad prior on f0 from table 12.1. This makes M0 nested
within dM, so the extents of these priors will directly influence the final Bayes factors,
as we illustrated in fig. 3.2 and will explore in fig. 13.2.

273 Their source in SNANA is listed once as “??” and then as “XXX”������������������������… TM22 refer to Uddin et al. [515],
whose estimates, as determined post-factum,271 do not match the SNANA values… In fact, Uddin et al. [515,
fig. 4], in turn, expose differences of up to 0.3 dex with previous analyses [378, 75]—none of which seem to
be the SNANA source, and so the mystery continues… Real data�������data mining

274 As we remarked, "split
∗ is usually optimised by looking for the threshold that results in greatest separation

between the magnitudes of the two sub-samples: this corresponds to the frequentist profile likelihood ap-likelihood
profiling proach, which has no place cannot easily be incorporated in a Bayesian model-selection framework, which

relies on marginal likelihoods— impact appraisal pending.
275 Our Δ" has opposite sign to TM22: here, Δ" < 0 corresponds to brighter SNæ Ia in more massive hosts.
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• the population of host dust-law parameters 'BV (in all cases restricted to the range
[0.5; 6] as in TM22):

global : 'BV = `'; (13.4)

local : 'BV ∼ N
(
`', f

2
'

)
; (13.5)

split : 'BV ∼

N

(
`lo
'
,
(
flo
'

)2
)

if " B
∗ ≤ "

split
∗ ,

N
(
`hi
'
,
(
`hi
'

)2
)

if " B
∗ > "

split
∗ .

(13.6)

The three dust models are thus also (recursively) nested. For the population param- моделёшка™
(modelyoshka)eters (in all of them) we use the same priors as in TM22 (essentially the same as in

table 12.1).

13.2 Validation and exploration
We compose a neural-network classifier / model-posterior estimator from the data sum-
mariser of the Super Tuple in section 12.2 (cf. eqs. (12.3) to (12.5)) and a final linear
transformation giving the unnormalised model probabilities (cf. eq. (3.4)):

r̂< ( [dB]) ≡ Linear(Summariser( [SNHead(SNEmbedB (dB))]) → #mod). (13.7)

We train it to optimise eq. (3.3), approximated via 96 000276 examples from each of the 6
models (i.e., adopting a uniformmodel prior), using Adam [288] and a OneCycle learning-
rate schedule [483]. Simulating the 576 000 mock survey realisation and training until
convergence (for about 100 000 steps) on a single NVIDIA A-100 took about 1 h each.

After the upfront cost of training, neural simulation-based model comparison is amor-
tised, and this opens up possibilities—all but impossible with traditional techniques—for
verification and exploration/interpretation of its results, which we briefly explore now.

We plot in fig. 13.1 the refinedness and reliability of the trained classifier (see subsec-
tion 3.2.1 for the details), evaluated on held-out simulations. The prominent diagonal in
fig. 13.1a indicates that on average the network assigns high probabilities to the true model
from which data is generated. A faint “resonance” can be seen, suggesting “confusion” of
M0 and dM, but we remind the reader that, in general, the refinedness is a function both of
the classifier’s performance and of the intrinsic power of the data to distinguish between the
models (in turn related to the broadness of the priors used within them). On the other hand,
diagonal reliabilities (fig. 13.1b) are a more direct indicator of the classifier’s good overall
calibration, meaning that its results can indeed be interpreted as frequencies/probabilities.

276 chosen so as to fit the full training set in GPU memory at once
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(a) Refinedness: each row shows the pos-
terior over models (as labelled above), av-
eraged over a collection of data simulated
with the model indicated on the left. A
prominent diagonal indicates on average
confident and correct classification.

(b) Reliability: the fraction of the examples
to which the NN assigned a given probabil-
ity (abscissa) to a given model (colour) that
indeedwere generated with that model. Ad-
herence to the diagonal signifies well cali-
brated probabilities.

Figure 13.1: Verification of amortised classifier-based model selection.

Moreover, owing to amortisation, we are able to explore Bayes factors (ratios of evi-
dences, or equivalently, posterior odds for a uniformmodel prior) across a range of ground-
truth parameters of simulated data. Figure 13.2, which compares nested models (local→
global in `'–f' space and dM → M0 in Δ"–f0 space), clearly demonstrates Occam’s
razor: data resulting from parameters sufficiently close to the location of the nested model
(f' = 0 or Δ" = 0) predominantly favour the simpler model (yellow/red regions). We
also observe that, naturally, a step in magnitudes is harder to detect when their scatter (f0)
is larger. A scatter in 'BV (i.e. f' > 0) is also harder to detect when `' is large because, in
that region, the effect on data is smaller due to the non-linear nature of the dust law.
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Figure 13.2: Occam’s razor: Bayes factors (equivalent to posterior odds with a uniform
model prior) for different simulated datasets as a function of the input parameters. In the
left panel, we compare the hypothesis of a diversity in the host dust laws (local), which
reduces to a single global dust law when f' → 0, while marginalising over the unknown
magnitude step and intrinsic sctter. On the right, we examine the preference for a non-zero
magnitude step (dM vs. M0) as a function of its size and the intrinsic scatter, assuming a single
but unknown (marginalised) 'BV distribution. The solid black lines indicate parameters
leading to equal posterior odds on average over the the chosen priors: see fig. 3.2.

13.3 Results and controversy
Finally, we apply the trained classifier to the real CSP data and present the results (nor-
malised model probabilities and log10 Bayes factors) for all 6 models in fig. 13.3. Highest
probability is assigned to the simplest model, which supposes no split according to mass
and a single dust law (characterised by a universal `'). No preference for a mass step is
given, regardless of the dust model, while in general, a nonzero spread in 'BV is mildly dis-
favoured (by a factor ≈2). A split in the dust-law distribution between low- and high-mass
hosts is clearly disfavoured, regardless of the magnitude step, with a Bayes factor of ≈100,
contrary to the conclusions of both Thorp & Mandel [508] and Brout & Scolnic [71].

In fig. 13.3, we also present posteriors (derived via NRE trained as in chapter 12 on the
same simulations used for the model-comparison network), which support the conclusions
stated above. In agreement with TM22, we find a magnitude step of Δ" ≈ −0.05, and
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Figure 13.3: Results from the CSP data. Left: the posterior over models (bottom) and (top)
log10 Bayes factor with respect to the highest-ranked model (no magnitude step, global
dust law). Right: approximate marginal posteriors (1f and 2f HPD credible regions) from
NRE, trained as in chapter 12 and reusing simulations from the model-selection run. The
`'–f' plot compares the posteriors for

[
·low, ·high

]
from the split model with the result

for a single dust-law distribution (local/“no split”). The Δ"–f0 plot compares posteriors
from the same two models. The shaded strip there denotes the 95% (2f in one dimension)
HPD region from the split model and is in excellent agreement with TM22 (2f error bar
above).

approximately 2f away from 0, with the results only mildly affected by the dust model. We
find a larger valuef0 ≈ 0.2 (cf.≈0.1 in TM22) since this quantity in our analysis absorbs all
residual variability present in the data, including peculiar velocity uncertainties, which we
do not model explicitly. All of the global dust-parameter posteriors are in good agreement
with TM22’s fig. 8, and we obtain similar posteriors when treating low- and high-mass
hosts separately as when we assume a single dust distribution (after marginalising over
Δ" in all cases). This justifies the split dust model being strongly disfavoured, due to its
considerably larger prior volume due to the two additional parameters.
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Conclusion
Enabled by neural SBI, we have performed Bayesian model comparison on an unsolved
problem in cosmology that requires realistic modelling of SN Ia light curves and marginal-
ising over thousands of latent variables. A demonstration of Occam’s razor, our results
from low-redshift SN Ia data favour a global dust law and no magnitude step (with 45%
posterior probability up from 16.7% a priori). The existence of a magnitude step or a dis-
tribution of 'BV remain plausible (with posterior odds of approximately 1:2), while a split
in global dust populations across log10("

split
∗ /M�) = 10.5 is disfavoured with odds in ex-

cess of 100:1. These results are in contradiction with previous analyses even though we
obtain similar “intermediate” results: this highlights the importance of performing end-to-
end principled and rigorous analyses, instead of resorting to ad hoc procedures in order to
handle the computational intractability of this high-dimensional and hierarchical model-
comparison problem. We emphasise, however, that Bayesian model comparison is always
dependent on the prior volumes considered, which includes the fixing (delta distribution)
of components like cosmology, redshift and mass uncertainties, and peculiar velocities.

The scalability of our approach allows it to be applied to much larger data sets than
demonstrated here, both present and future, with even more sophisticated Bayesian models
(e.g. marginalising out the location of the mass split, or extending the mass standardisa-
tion beyond a binary split or with other host-related covariates), and more realistic sim-
ulators (self-consistently estimating redshifts and peculiar velocities, including selection
effects and non-Ia contamination), ushering in277 the era of principled simulation-based pomp
fully Bayesian SN Ia cosmology.

277 And indeed, soon after SimSIMS—unrelatedly or not—Ocampo et al. [388, 389], Goh et al. [177] published
a number of cosmological model-comparison works employing NN classifiers (and containing no mention
of SimSIMS, which was a first-of-its-kind study in the field�����). We, unperturbed, have instead moved on
to usher in principled eras in other fields like exoplanetary atmosphere retrievals.





Chapter 14

SN Ia cosmology with TMNRE ��������� SICRET

(scaling to 100 000)

In SICRET, we take a step back from raw light curves, astrophysical modelling, and real
data and look to the future: the aim of this chapter is to prove that a truncated marginal
neural ratio estimation (TMNRE) analysis can deliver accurate and precise posteriors for
cosmological parameters from future-sized data sets, which are expected to contain on the
order of 105 SNæ Ia and thus fall beyond the computational capabilities of likelihood-based
methods for all but the simplest models (cf. subsection 8.3.1). To this end, we generate
mock data of different sizes (kept fixed during NRE training) from a deceptively simple
Bayesian hierarchical model (BHM) inspired by Bahamas (itself based on the salt light-
curve parameters G1, 2). In this idealised case, for which traditional inference is valid, we
use it to verify the precision of our SBI-derived constraints, which exhibit optimal scaling
up to 100 000 SNæ Ia. After one minor— but critical— addition: photometric redshift
uncertainty, we demonstrate that a model simplified so as to be solvable with sampling
methods quickly goes catastrophically astray when applied to a large photometric survey
while our SBI pipeline delivers consistently unbiased results.

From a technical side, in this study we use iterative truncation to systematically restrict
the prior ranges of the 11 global parameters of the model (among them cosmology) and
deliver maximally precise and still accurate results with a simple fully connected MLP net-
work. Following global inference, we employ the methodology described in section 4.1 to
marginally, but simultaneously, infer the 100 000 SN-specific standardised absolute bright-
nesses (which are the target of conventional fitting/standardisation analyses) and demon-
strate that they too have the expected accuracy and precision. Finally, once again we val-
idate and calibrate our final results— for the parameters of ΛCDM cosmology— as an
added measure of their robustness.

173
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Figure 14.1: A simple BHM for SN Ia cosmology. Once again, blue / green squares are SN-
specific / global parameters, and the purple circle is the data vector. In SICRET, the fixed
model inputs are

[
ÎBc

]
and �̂. Notice that the redshift-related “sub-graph” is inverted with

respect to the usual “forward” flow, corresponding to using external redshift constraints.

14.1 Bayesian SN Ia cosmology with summaries

We begin by describing the simulator used for the present analysis (for generating both
mock observations and training data): not a particularly daunting task since in this chapter,
we model SNæ Ia only through summary statistics with analytic distributions, as per the
tradition of Bayesian hierarchical SN Ia cosmology. Still, probabilistically, the model is
similar to that presented before and consists of: a layer of parametrised population distri-
butions, O(#SN) SN-local parameters (redshifts, brightnesses, and light-curve parameters)
exhibiting intrinsic scatter, and a simplified observational model accounting for “measure-
ment” noise. It is depicted and detailed in its entirety in fig. 14.1 and table 14.1.
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Table 14.1: SN Ia parameters, (hierarchical) priors and values used to generate mock data
in SICRET. SN-specific parameters are sampled randomly, while the “observed” red-
shifts ÎBc and covariance matrix �̂ are taken from Pantheon (with replacement: see sub-
section 14.1.3). See also fig. 14.1 for a (directed) graphical representation of the model.

parameter prior mock value

latent redshift IBc N
(
ÎBc,

(
1 + ÎBc

)2
f2
I

)
∼

measured redshift ÎBc fixed Pantheon
redshift uncertainty f2

I W−1(0.0003, 0.0003) 0.042

correlation coefficients U U(0, 1) 0.14
V U(0, 4) 3.1

abs. magnitude " B
0 N

(
"̄0, f

2
0
)

∼
mean abs. mag. "̄0 N

(
−19.3, 22) −19.5

residual mag. scatter f2
0 W−1(0.003, 0.003) 0.12

salt “stretch” GB1 N
(
Ḡ1, '

2
G1

)
∼

G1 prior mean Ḡ1 N
(
0, 102) 0

G1 prior st. dev. 'G1 logU
(
10−5, 102) 1

salt “colour” 2B N
(
2̄, '2

2

)
∼

2 prior mean 2̄ N
(
0, 12) 0

2 prior st. dev. '2 logU
(
10−5, 102) 0.1

data covariance �̂ fixed Pantheon

DM density Ωm0 U(0, 2) 0.3
DE density ΩΛ0 U(0, 2) 0.7
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14.1.1 SN Ia model: Bahamas������
We represent the “physical” aspect of SNæ Ia through the Bahamas [345, 477] analytical
hierarchical model, which represents a straightforward Bayesian extension to the orthodox
(Phillips/Tripp/salt) standardisation procedure. In it, the standardising covariates are el-
evated to SN-specific (often called “latent”) random variables and assigned hierarchical
prior distributions. Concretely, we will assume that each of a fixed number #SN observed
SNæ Ia has absolute magnitude148 deterministically given by278

" B = " B
0 − UG

B
1 + V2

B, with stochasticity transferred279 to " B
0 ∼ N

(
"̄0, f

2
0

)
, (14.1)

where the usual residual scatter is now understood as the standard deviation of the pop-
ulation of " B

0 around a mean/standard SN Ia absolute magnitude "̄0. The standardising
covariates are assumed to follow similar normal population distributions

GB1 ∼ N
(
Ḡ1, '

2
G1

)
and 2B ∼ N

(
2̄, '2

2

)
, (14.2)

and their parameters are assigned uninformative priors: normal for the means, an inverse-
gamma distribution for the residual scatter, and log-normal for the stretch and colour vari-
ances, as listed in table 14.1. Lastly, for the effect of cosmology (we use ΛCDM), we
consider the trivial distance modulus (eq. (5.2)) calculated with the luminosity distance,
assuming  -corrections have been applied (eq. (5.15)) to produce directly the “apparent
brightness” <B

<B = " B + `
(
IBc, C

)
. (14.3)

14.1.2 Observables
Up to this point, the present model is a mild extension of the toy we used in the previous
application in chapter 10, with the addition of two extra linear local parameters. Where it
differs significantly is in the model for observables. On the side of the redshifts, instead of
explicitly modelling the measurements (after assuming a rate-based prior as per eq. (8.14),
or an eq. (10.14)-like approximation thereof), we rely on an external analysis of indepen-
dent auxiliary data (e.g. galaxy photometry) to have derived a Gaussian280 posterior:

IB ∼ N
(
ÎBc,

(
1 + ÎBc

)2
f2
I

)
, (14.4)

278 the minus in front of U is conventional so that a positive correlation implies broader–brighter.
279 In comparison with the previous N

(
"̄0 − UGB1 + V2

B , f2
0
)
, this re-formulation brings the salt statistical de-

scription closer to that of BayeSN ("B
0 = "̄0 + X"B).

280 We remind the reader that this is not a fully appropriate description of photometric redshift estimates, regard-
less of the size of the assumed uncertainty: see the discussion in subsection 8.3.2.
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where ÎBc is the estimated281 cosmological redshift, and f2
I is its variance scale. In the

context of a subsequent cosmological analysis, this is interpreted as a prior for the cosmo-
logical redshift of each SN Ia: compare fig. 14.1 with figs. 10.1b and 15.2 and note the
subtle differences between eq. (14.4) and eq. (10.15); accordingly, f2

I is treated as a free
global parameter (for which we assume an inverse-gamma prior).

For the SN Ia observables (summary parameters) observables

yB ≡
[
<B, GB1, 2

B
]
→ dB =

[
<̂B, ĜB1, 2̂

B
]
, (14.5)

Bahamas considers a non-factorised sampling distribution179; i.e., instead of a collection
of independent observations {dB}, the data is a vector d ≡ [dB] of length 3#SN formed by
concatenating measurements of the three observables of all SNæ. Following the standard
formalism, a joint multivariate normal sampling distribution is assumed:

d ∼ N
(
[yB], �̂

)
(14.6)

where �̂ is a possibly dense 3#SN×3#SN covariancematrix that—more or less faithfully—
encodes the statistical and systematic uncertainties related to extracting estimates of yB
(hopefully, unbiased: whence the use of the concatenated parameters as the distribution’s
mean) from the underlying raw data. It, like the

[
ÎBc

]
, is part of the present BHM’s (fixed)

settings but is in reality derived from data: e.g. the statistical contribution to �̂ is formed
by the uncertainties in fits to the individual light curves, which extract estimators ĜB0, ĜB1,
2̂B. In a holistic SBI pipeline, therefore, even �̂ would need to be stochastically simulated,
which presents an enormous bottleneck due to the necessity to perform the fits for every
simulated data set. As we discuss in SICRET—and demonstrated in chapter 12— , the
appropriate path forward is to bypass the fitting stage with an end-to-end inference network
trained on comprehensive simulations.

14.1.3 Survey specification: mimicking Pantheon
The model/simulator requires two inputs: the vector of redshift estimates,

[
ÎBc

]
, and the

observational covariance, �̂. When simulatingmock, we built these based on the then state-
of-the-art Pantheon compilation [472], so that the mock SNæ Ia has a realistic distribution
of redshifts282 and reasonably sized observational uncertainties, appropriate for each SN’s

281 Since this is not a random variable in our model— indeed, it is a fixed input to the simulator (fig. 14.1)— ,
we adopt the previous estimator-like notation: an un-leap.

282 Since future large surveys will observe SNæ with a different distribution of Ic from Pantheon, owing to
their different selection probabilities, and since the statistical power of a SN Ia sample for cosmological
parameter inference depends strongly on this distribution, our posteriors from 105 SNæ Ia should be taken as
an indication rather than prediction of possible future constraints.
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redshift. We select #SN supernovæ from Pantheon (with replacement when #SN is larger
than the compilation size283) and concatenate their reported redshifts into

[
ÎBc

]
and stack

diagonally their individual parameter covariance matrices
[
�̂
B] (each of size 3 × 3) to form

a block-diagonal �̂ for this proof of concept. Thus, we can define SN-specific metadata

aBSN =
[
�̂
B
, ÎBc

]
(14.7)

with which to identify the 284 the individual SNæ.

14.2 Super Massive hierarchical TMNRE
The goal of SICRET is to demonstrate and validate the scalability of our combined global
and local inference procedure (presented in section 4.1). In spirit, this is a similar task to the
one we performed in SIDE-real (chapter 12), with the simplifying difference that now the
input data d consists of summary parameters and can be decomposed into a collection of
same-sized elements: d → [dB], unlike the tuple of light curves we considered before.285
Correspondingly, the inference network we use—depicted and detailed in fig. 14.2 and ta-
ble 14.2—is even simpler than the Super Tuple: its defining characteristic now irrelevant,
the bespoke embedding layer SNEmbedB is simply removed, and the three “measurements”
of each supernova directly serve as the “embeddings”:

dB ≡
[
<̂B, ĜB1, 2̂

B
]
→ fffB, (14.8)

which are featurised into dddB = SNHead(dB) as in eq. (12.4). The feature array is then
summarised using the same fully-connected SSS = Summariser( [dB]) component. Ineffi-
cient and inelegant as this solution might admittedly be, it is simple and delivers excellentelegance

simplicity results, as we will show shortly. And even with 100 000 SNæ/ feature vectors of dimen-
sion 32 and summary size of 256 neurons, i.e. approximately a billion parameters, it is far
from the sizes of modern-day AI systems. Still, in the next chapter, we will finally depart
from the fully-connected paradigm and, with the conditioned deep set, be able to handle
varying-sized input with a parametrisation independent of the survey size.

283 Nominally, the Pantheon data release contains 1048 SNæ Ia, but for two of them (“16232” and “PTF10bjs”)
the reported parameter covariances are not positive definite�������… so we only use 1046������������������������

284 Note that this is not possible with a dense �̂ since in that case it is in fact impossible to separate the objects,
e.g. due to the possibility of re-parameterisation / linear transformation of d, which scrambles the information
of any set of delineated “objects”.

285 The term for an ordered collection of equal-sized objects is array, or “масив” (massive) in Bulgarian, so Iarray
call the network used here Super Massive—which it is indeed due to its fully connected Summariser layer.

https://www.youtube.com/watch?v=Xsp3_a-PMTw
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Figure 14.2: The Super Massive inference network—named after the dense / fully con-
nected layer [dB] → Summariser—as used in the last truncation stage, in which the
(global) cosmological parameters C are inferred simultaneously with the 100 000 standard-
ised absolute brightnesses

[
" B

0
]
. Refer to fig. 12.3 for details on the depiction and note the

omission (here) of the light-curve embedder SNEmbed and the connection between SSS and
the local-parameter ratio estimator.
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Table 14.2: Details about the components of the Super Massive NN. See the caption of
table 12.2 for details about the notation and fig. 14.2 for a graphical depiction.

component inputs ∈ space → output ∈ space implementation

SNHead dB ∈ R3 → dddB ∈ R32 MLP(3 × 128)
Summariser [dddB]#SN

B=1 ∈ R
32×#SN → SSS ∈ R256 MLP(2 × 256)

ParamHead6 �6 ∈ R< → WWW6 ∈ R256 MLP(2 × 256)
RatioEstimator6 WWW6, SSS ∈ R256+256 → ln r̂(6, d) ∈ R1 MLP(3 × 256)
RatioEstimator"0 " B

0 ∈ R
1 → " B

0 ∈ R
1 Identity

AuxHead �̂
B, ÎBc ∈ R9+1 → aaaB ∈ R16 MLP(3 × 128)

RatioEstimator"0 " B
0 , ddd

B, aaaB ∈ R1+32+16 → ln r̂
(
" B

0 , d
)
∈ R1 MLP(3 × 256)

Since the (mock) data analysed in this chapter are much larger than the collection we
considered in previously, the procedure for performing inference is more involved (still, its
core philosophy remains unchanged). Concretely, it proceeds in two phases, as described in
section 4.1. In the initial phase, we employ iterative truncation (implemented in Clipppy)
for inference of the global parameters. This proceeds in stages, startingwith the priors listed
in table 14.1, truncating them repeatedly286 after evaluating the re-trained ratio estimators
on the target do, and terminating when none of the parameter ranges shrink by more than a
factor of 2. Only then is a ratio estimator for local parameters RatioEstimator�6 trained;
moreover, we make use of the observation from section 4.1 that global truncation already
approximately encodes the information inSSS that is relevant in this second inference phase,287
so we omit it from the inputs:

local: ln r̂
(
�B6, d

)
= RatioEstimator�6

(
�B6,�SSS,ddd

B,aaaB
)
. (14.9)

The last architectural modifications from the network used in chapter 12— besides the
component/layer sizes—are purely cosmetic (and may have thus remained unnoticed in the
re-production of eq. (12.7) into eq. (14.9)): we featurise the SN-specific metadata aBSN →
aaaB ≡ AuxHead

(
aBSN

)
in parallel with the SNHead from eq. (12.4) and do not featurise the

latent parameters (ParamHead→ Identity) this time around.288

286 We use simple “rectangular” truncation preserving 99.99% of the approximate posterior mass (eq. (2.26)).
287 This assumes that inference of a given group of local parameters of interest �6 is not hierarchy-dominated,

as was the case of 'B
V in chapter 12.

288 These intuitive choices are motivated by the author’s experimentation with black magic, i.e. NN design.black magic
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14.3 Experiments and results
In this section, we demonstrate and validate our inference procedure with mock data. We
first elaborate on the application of TMNRE to infer global model parameters and pro-
duce calibrated frequentist confidence regions in the space of cosmological parameters by
analysing a data set of 100 000 mock SNæ Ia generated with the full forward model de-
scribed above. We also demonstrate ultra high-dimensional marginal NRE on the latent
parameters: specifically, on the standardised absolute magnitudes " B

0 . Then, we inves-
tigate the scaling properties of our method by comparing its results to those of MCMC
sampling for mock data generated by a simplified tractable model, which, however, is a
poor description of real data (i.e. of data generated by the full nonlinear model).

14.3.1 Simultaneous inference from 100 000 SNæ Ia
We apply TMNRE to mock data sets containing between 103 and 105 SNæ Ia, all with
the same global parameter values listed in table 14.1 but with different latent realisations.
For each sample size, we generate a distinct survey specification: a collection of observed
redshifts, ẑ, an observational covariance, �̂, and a target data do. We then train a Super
Massive inference network for groups representing each individual global parameter in
fig. 14.1, except that we infer the C → CΛCDM ≡ [Ωm0,ΩΛ0] jointly. We train with
640 000 simulated examples in each truncation stage, randomly generated on demand so online training
as to avoid overfitting,289 and re-initialise the network for each stage. The full procedure for
105 SNæ Ia took around 12 h (≈2 h per stage), with the runtime dominated by the simulator
and a memory footprint largely due to the network’s dense summarising layer.

Results from the trained networks in each stage (r̂(6, do) × p(6) numerically evalu- NRE posterior
on a gridated on grids) are illustrated in figs. 14.3 and 14.4 for the data set with 105 SNæ Ia. At first,

not all parameters are constrained: e.g. U and V are learnt appreciably only after two trun-
cations, when the training data variance is reduced enough by constraining the rest of the
parameters. On the other hand, the obvious approximate degeneracy in the cosmological
parameters (@0 = Ωm0/2−Ωde0) is immediately picked up by the network, as indicated by
the narrow strip in the first panel of fig. 14.4. Note that the posteriors in the initial stages
are much larger than later ones even though training has largely converged (as evidenced
by the loss stabilising): this is due to the limited network capacity and demonstrates the
need and utility of truncation.

289 Hence, we do not include dropout as in the summariser of the Super Tuple. Unfortunately, this strategy is
only applicable to very fast analytic probabilistic programs and much less so to more sophisticated “physical”
simulators of e.g. light curves.
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Figure 14.3: Approximate posteriors (blue and finally green filled curves) for the non-cosmological
global parameters at sequential stages of truncation (each row is a stage) in the analysis of 105 SNæ Ia.
The orange line shown the prior density (the same across stages), which gets truncated to the unshaded
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The final cosmological posterior we obtain by training with the final truncated pri-
ors for all global parameters but only inferring the cosmological parameters in order to
utilise the full flexibility of the data pre-processor network. After performing this proce-
dure with all-sized target data, we derive the TMNRE results presented in fig. 14.5, where
we also compare with constraints derived by a traditional likelihood-based analysis using
a simplified version of the model intended to make it tractable for MCMC, relying on lin-
ear propagation of redshift uncertainties (eq. (8.13)): see mphotoz in subsection 14.3.2.
This approximation significantly biases the cosmological results (as we anticipated in the
discussion of Eddington bias), with the effect’s severity increasing with the sample size.
Furthermore, propagating uncertainties only linearly artificially enlarges the expected scat-
ter, which leads to overconfident results (evidenced by the tightly constraining, yet biased,
MCMC posteriors in fig. 14.5) when these variations are not present in the data. In con-
trast, marginal NRE places no restrictions on the model and produces unbiased posteriors
with correct uncertainties290 even from 100 000 SNæ Ia.

Calibrated confidence regions for the cosmological parameters (as described and al-
ready demonstrated for dust-population inference in fig. 12.6) are shown in fig. 14.6. We
note that, even though the approximation is in some regions conservative and in others
under-covering by a few tens per cent (at 68% nominal credibility), this corresponds to
only small inaccuracies in the size of the inferred posterior, which would not affect scien-
tific conclusions and can in any case be calibrated away.

Marginal inference of 100 000 SN-specific parameters is performed after global trun-
cation is finalised, simultaneously with the retraining of the final cosmological posterior.
After training the local-parameter RatioEstimator�6 , we use simulator samples (the ones
used in training) to represent the prior and re-weight them using the neural ratio estimate:
see the note in section 4.1. We can then calculate moments or build histograms to represent
the marginal NRE posteriors.

We present marginal results for the standardised absolute magnitudes, 6 → "0, of
#SN = 105 SN Ia simulated with spectroscopic redshifts (i.e. setting fI = 0) since data
with photometric redshift uncertainty is too weakly constraining in the parameters of an
individual SN Ia: the marginal posteriors nearly coincide with the constrained effective
prior. In this case, as describe below, we can also perform the global inference withMCMC
and then use the samples to obtain latent-variable posteriors, which we consider as ground
truth. In fig. 14.7, we compare their moments to moments of the marginal NRE posteriors.

290 We verify the correctness of NRE results with analyses of mock data generated from the linearised Bahamas
(mphotoz), for which MCMC produces appropriate (ground-truth) posteriors. In fig. 9 of SICRET, we ob-
serve a similar level of similarity between the two methods as we did in fig. 12.4, even from 100 000 SNæ Ia.
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regular HPD region with 99.99% estimated credibility. The prior used is always flat across
the depicted range, and green lines denote the values used to produce the mock data.
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prior range is the extent of the plots), while the respective calibrated (exact) confidence
regions are shown in purple. (b) Threshold nominal credibility* required for 68.4% confi-
dence: cf. fig. 12.6, where the same quantity is expressed in relative sigmas.
*See SICRET’s fig. A1 for its derivation from the calibration plots of individual pixels.

NRE learns to correctly identify the location and size of the latent-variable posteriors.
There are small deviations from the ground truth for extreme values: where the posterior
(and thence, the data) falls in the tail of the prior, and so the network has seen few similar
examples during training, and when the posterior is tightly constraining (i.e. has a small
standard deviation). In the latter case, the NRE estimate is again conservative.

14.3.2 Validation of scaling properties
In this subsection, we investigate quantitatively the scaling (with #SN) of cosmological
constraints derived as above, verifying that it follows the behaviour of traditional analyses.
In order to not bias������� the comparison (i.e. so that we can consider the MCMC posteriors
correct unlike in fig. 14.5), we generate mock data from a simplified/linearised model (de-
scribed fully in SICRET, appendix B [following 345, 477]) that we then use for MCMC
inference and training NREs. To this end, we consider two settings:
• specz: we imitate spectroscopic redshift estimation by setting fI → 0; in this case,
the layer of SN-specific parameters is analytically exactly marginalisable [345, 477];
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Figure 14.7: Comparison of marginal posterior moments (left: mean, and right: standard
deviation) for the standardised absolute magnitude,

{
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}
,* derived with NRE and MCMC.

The values themselves are plotted in the top row, while the bottom panels show the dif-
ference of means and ratio of standard deviations. The analysed mock data contains 105
SNæ Ia with spectroscopic redshifts as described in the text. All 105 NRE posteriors were
produced by one single inference network, whereas the MCMC results required an initial
global sampling step and lengthy post-processing (see SICRET, appendix B1). The clus-
tering of posterior variances at specific values is due to the sampling with replacement of
the Pantheon observational covariances when generating mock data.
*Since we omit the connection between the global summary SSS and the local-parameter ratio estimator, infer-
ence of the SN-specific properties is fully permutation-invariant (provided the relevant metadata aBSN), so we
write them as a {set} rather than an [array].

• mphotoz: “photometric-like” redshift uncertainties, modelled implicitly as an increase
of the distance modulus uncertainty / residual scatter as in eq. (8.13); assuming this,
the redshifts are not introduced in the first place, and the “remaining” SN-specific pa-
rameters can once again be analytically marginalised (see SICRET, appendix B), while
fI is still an unknown parameter to be inferred / marginalised.
We consider, in turn, increasing sample sizes between #SN = 103 and 105 SNæ Ia,

spanning the range from current to near-future surveys. In each case, we generate 10 data
realisations with the same global parameters (from table 14.1) but with random SN-specific
properties. We perform the MCMC analysis using the affine-invariant sampler imple-
mented in emcee (and interfaced through Clipppy and phytorch’s auto-differentiation
for uncertainty propagation to the original probabilistically programmed forward model),
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sampling all 11 global parameters (10 for specz) for 1000 steps (discarding the first 200
as burn-in) with 50 chains. For each sample size #SN and data type (speczor mphotoz)
we then train a neural ratio estimator for the cosmological parameters only. We imitate the
last stage of iterative truncation by constraining the prior of each global parameter so that
it contains (to within 5f) the MCMC posteriors from all 10 analysed data sets. Once the
inference network is trained, the 10 NRE posteriors can easily be evaluated as above.

The behaviour of NRE’s precision and accuracy291 across the range of SN Ia sample
sizes is presented in fig. 14.8, alongside “ground-truth” inference with MCMCWe confirm
that NRE posteriors are consistently larger than their MCMC counterparts by up to a few
tens per cent per parameter. Still, both MCMC and NRE posterior sizes clearly scale as
1/
√
#SN per parameter, while the offset of themean is proportional to the standard deviation

for both MCMC and NRE analyses, as expected in a purely Gaussian model. This means
that the inference network succeeds in combining the information from the large number of
observed objects. Overall, NRE achieves comparable accuracy and precision to traditional
inference across the sample sizes considered, and we do not observe signs of bias.

Summary and conclusion
We have presented a proof of concept for scalable and model-agnostic Supernova Ia cos-
mology using TMNRE (SICRET). After demonstrating the systematic bias that can be
introduced by oversimplifying aspects of the data-generation process, e.g. uncertainties in
measured redshift, we have presented SBI posteriors for cosmological parameters from
105 mock SNæ Ia simulated from the Bahamas model. Exploiting the local amortisa-
tion of TMNRE inference, we have derived regions with exact frequentist confidence,
which— in combination with validation of its Bayesian coverage properties and detailed
comparison290 with ground-truth likelihood-based analyses on mock data from a simpli-
fied tractable model—strengthen our trust in the inference procedure. Moreover, we have
presented a method to simultaneously infer the latent parameters of all 105 SNæ Ia with
a single small neural network that takes advantage of the truncation of global-parameter
prior ranges. We have verified the marginal posteriors we derive for standardised absolute
magnitudes against ground-truth MCMC (in the case of spectroscopic redshifts). Finally,
we have shown that the inference network is able to extract the relevant information even
from a large numbers of SNæ Ia realistically expected of future observational campaigns.

291 We measure precision through the determinant of the approximate-posterior covariance: size ≡
√
|〈CC>〉|,

and accuracy with the offset of the mean from the ground-truth: bias2 ≡ |〈C〉 − Ctrue |2, where averages are
over q(C | d). Even though these two quantities have the same dimensions for our 2D cosmological posteriors,
we caution against comparing them directly since the former represents a volume in parameter space, while
the latter is the square of a length.
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Figure 14.8: Comparison of the accuracy (top) and precision291 of NRE (blue) andMCMC
(green) posteriors for data of different sizes generated and analysed with the linearised
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∝ 1/#SN (i.e. 1/

√
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over 10 data realisations, and in the bottom panel, the shaded areas additionally show the
range of values across the different mock data sets.



Chapter 15

Ratio estimation for SN selection effects ��������� RESSET

(now you detect it, now you don’t)

RESSET292 presents the last substantial methodological advance required for the appli-
cation of SBI to realistic cosmological SN Ia samples: the ability to account for sample
selection (and contamination, althoughwe do not explicitly demonstrate this here). In it, we
address, on one hand, the arbitrariness of the “state-of-the-art” bias-correction procedure,
which can lead—in the best case—to deceptive confidence and otherwise to wildly biased
results; on the other hand, we overcome the issues that plague any hierarchical likelihood-
based inference strategy: namely, the requirement for its probabilistic exlicitation and for
joint sampling of an exponentially growing parameter space— even if one is ultimately
interested in O(1) cosmological parameters.

To this end, we introduce set-based truncated autoregressive neural ratio estimation STAR NRE
(STARNRE), a simulation-based approach that makes use of a conditioned deep set NN and
combines efficient high-dimensional global inference with sub-sampling-based truncation
in order to scale to very large survey sizes while training on sets with stochastic cardinality.
Applying it to a simplified SN Ia model that consists of standardised brightnesses and
redshifts withGaussian uncertainties and a selection procedure based on the expected LSST
sensitivity, we demonstrate precise and unbiased inference of cosmological parameters and
the redshift evolution of the volumetric SN Ia rate from ≈100 000 mock SNæ Ia. Our
method bypasses the latent layer and delivers marginal results, imposing no restrictions on
the simulator’s output size (in fact, it naturally extracts useful information from it) and the
nature of individual objects. It can thus handle an arbitrarily complicated selection and
classification procedure and be applied to complex data like light curves in the future.

292 which stands, alternatively, for “retribution for the set!” after the initial failed sub-optimal269 application of
the unconditioned deep set architecture to the fixed-structure nested-“sets” data analysed in SIDE-real

189
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15.1 Conditioned deep set: the little NN that could
As we already established, selection effects are most straightforwardly accounted for by a
simulator that produces faithful mock catalogues of selected objects. This requires, on one
hand, treating their count as explicitly informative and, on the other, being able to learn
from simulated collections of different sizes, as we depict in fig. 4.3. Our solution for both,
inspired120 by the conditional structure of the forward model itself, is the conditioned deep
set: a minimal NN architecture that can be implemented with standard fixed-input–output-
size components as we described schematically in eq. (4.13).

In this section, we describe the particular implementation that we use in RESSET,
which is a slight extension to eq. (4.13) for use in the autoregressive framework we describe
shortly. Each autoregressive global-parameter293 neural ratio estimator (cf. eq. (2.17)) is
implemented as a separate conditioned deep set: since the featuriser takes the parameters
as input, we cannot reuse the summary across groups 6 as before. Moreover, in the interest
of numerical performance, instead of summing, we average the featurised set elements and
append the cardinality to the output.294 The final NN structure, depicted in fig. 15.1, is thus

ln r̂6
(
�6,

[
�<6,D

] )
= d̂6

(
�6, �<6,SSS6, #sel

)
with SSS6 ≡

1
#sel

∑
d∈D

q̂6
(
�6, d

)
. (15.1)

As per tradition, all featurisers, q̂6, and post-processors, d̂6, are implemented as MLPs
with three layers of 128 or 256 neurons, respectively, and ReLU non-linearities preceded

293 We do not consider SN-specific parameter inference… yet, so we will use �6 to mean 6.
294 It is good practice to keep inputs to fully connected NN layers close to zero with order-unity scatter, which

is the typical range of nonlinearities. However, the output of the summation operator trivially scales with the
cardinality of the input set, so we artificially extract this source of variations.
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by layer normalisation295 [28]. For added expressivity, parameters passed to d̂6 are first
embedded in 32 dimensions by a small MLP with two hidden layers of 64 neurons.

15.2 STAR NRE and fuzzy business
Finally, we present a strategy that combines the scalability and flexibility of conditioned
deep set NNs with the ARNRE formulation,296 which allows high-dimensional sequential
truncation and thus alleviates the burden of simulation-based inference with “big data”
both in terms of training time and memory required for storing and processing simulations.
The scheme relies on the intuition that inference from one small subset of the data is, in
general, less constraining than a full analysis, yet unbiased if the sub-sampling is random—
much like intermediate results during truncation. Therefore, we introduce the similar in
spirit “sub-sampling stages”, in each of which we train with increasingly bigger sets before
reaching the size of the target data.

Strategy 4 (STAR NRE). When analysing a given data set of #sel objects with a simu-
lator tuned to generate total populations of size #tot ∼ p(#tot | ) (resulting in “selected”
samples with #sel ∼ p(#sel | ) from eq. (4.6)), we initially simulate much smaller exam-
ple/mock setsD of nominal size ≈ #sel/: , either by randomly sub-sampling297 D or tuning random subset
the simulator so as to generate linearly smaller populations, which can often be achieved
through a setting298 that modifies

〈#tot〉() → 〈#tot〉()/: (15.2)

(cf. eq. (4.7)); in this case, it is important that the setting controls only the total number of
objects and not (the distribution of) their properties.

295 The use of layer- instead of batch normalisation is beneficial for two reasons: first, it is slightly faster since
it does not need to track running statistics; and second, because it does not depend on the input data, we can
reuse network components across training tasks, i.e. truncation and cardinality stages. Still, we perform one-
off data-set “whitening” by shifting and re-scaling all NN inputs (parameters and data) by their respective
means and standard deviations from the training set.

296 The autoregressive nature of the ratio estimator is not important for the present discussion: it is implemented
so as to enable precise joint constraints for the global parameters of interest in the interest of truncating
nuisance parameters, which was also the original motivation for its introduction by Anau Montel et al. [14].
Further discussion on joint vs. marginal inference from (sub)sets (which refers to the benefits of ensuring
conditional independence) can be found in RESSET, appendix B.1.

297 in fact; partitioning, by assigning each element of D to a random subset D with equal probability, which
effectively transforms a small number of large simulations into a larger number of smaller examples

298 For astronomical transient surveys, good candidates are the sky area covered and the survey duration, which
we introduce in eq. (15.7); in fact, their product forms the proportionality constant in eq. (8.14), which is the
actual handle we use.
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Once we have generated a… set of examples {D8}#train
8=1 , we proceed to train on them a

conditioned deep set-based ARNRE as usual and evaluate it,299 independently, on : subsets
forming a partition of the original data:

Do →
{
Do, 9

}:
9=1 with ∪ 9 Do, 9 = Do and Do, 9 ∩Do,8≠ 9 = ∅. (15.3)

This results in : “sub-posteriors” (posterior-to-marginal-prior ratio estimates multiplied by∏
6 p

(
�6

)
as in eq. (2.17)), which we average into a “fuzzy” joint posterior estimatefuzzy business

:∑
9=1

p
(
�
��Do, 9

)
:

≈ 1
:

:∑
9=1

∏
6

r̂6
(
�6,

[
�<6,Do, 9

] )
p
(
�6

)
, (15.4)

which is naturally wider than p(� |Do)
?300
=

∏
9 p

(
�
��Do, 9

)
and rough (due to sub-sampling

variance), hence “fuzzy”. We use its contours only to define a truncation region (see
eqs. (2.25) and (2.26))301 and then re-train the ratio estimator on constrained samples, ini-
tialising it with the trained network parameters from the previous stage. If the constraints
using the current : do not improve significantly, we switch to a smaller : , i.e. to generating
bigger training sets. In this case, again, we re-use the previous NN parameters. As a result
of this iteration between restricting the parameter space fromwhich examples are simulated
(i.e. the usual truncation scheme) and increasing the size of example data sets used for train-
ing, the two components of the deep set network—the featuriser and post-processor—are
quickly and inexpensively pre-trained on small simulations and only fine-tuned on bigger
more computationally and memory-intensive ones. We note that the final results are always
derived from a network that is trained and evaluated on full-size (not sub-sampled) data.

15.3 Proper modelling of SNæ Ia for cosmology
This section presents a simplified model for cosmological inference from SNæ Ia in the
presence of selection effects. For a change,302 we consider the possibility of evolving dark

299 Deriving joint posteriors from an ARNRE in practice requires MCMC since re-weighting samples or evalu-
ating the ratio estimator on a grid—the strategies we relied on in chapters 12 and 14—are not appropriate for
the high-dimensional setting that ARNRE usually targets. Instead, we resort to Clipppy’s emcee integration.

300 This equality is only valid if the individual objects— and hence the subsets
{
D 9

}
are independent, condi-

tionally on � cf. footnote 296.
301 The procedure of “fuzzy” truncation is fully elaborated in RESSET, appendix B: see especially fig. 9 and

note the further complication related to sampling from the truncated prior, for which we once again resort to
emcee, with a crude bound estimate implemented through dynesty.

302 It does away with the firstsecond-order degeneracy seen in fig. 14.4 and makes the biases introduced by
unprincipled selection-effects modelling clearer to illustrate; besides, it represents a scientifically more inter-
esting question that goes beyond simply retrieving precise values within a given parametrisation of nature.

https://www.youtube.com/watch?v=Pfcy15ZUE2c
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Table 15.1: SN Ia parameters, (hierarchical) priors and values used to generate mock data
in SIDE-real. Notice that unlike tables 12.1 and 14.1, there are no redshift-related inputs
(metadata). See also fig. 15.2 for a (directed) graphical representation of the model.

parameter (hyper) prior mock value / range

DM density (Ic = 0) Ωm0 U(0, 1) 0.3
DE density (Ic = 0) Ωde0 1 −Ωm0 0.7
DE EOS Fde U(−2,−0.5) −1

SN Ia rate at Ic = 0 '0 N
( [

2.5
1.5

]
,

[
0.52 −0.24
−0.24 0.62

] )
2.5 ×10−5 h3

70/Mpc3/yr
low-I rate exponent V 1.5
high-I rate exponent W fixed −0.5
rate “break” Ibreak fixed 1

true redshift IBc Pois(d〈#tot〉/dIc ) ∈ [0;∞)⊗#tot

redshift estimate Îc
B N

(
IBc,

(
1 + IBc

)2
f2
I

)
∈ [0;∞)⊗#tot

redshift uncertainty fI U(0, 0.06) 0.04

observed magnitude <̂B N
(
"0 + `B, f2

0
)

∈ (−∞;∞)⊗#tot

mean abs. mag. "0 U(−20,−19) −19.5
mag. scatter / noise f0 U(0, 0.2) 0.1

detection indicator (B p
(
(B

�� IBc, <̂B
)

∈ {m, s}⊗#tot

energy: a cosmic fluid with constant equation of state (EOS) F0 ≠ 1 (in general), but
constrain the spatial curvature to Ω:0 = 0 =⇒ Ωde0 = 1 − Ωm0. Beyond that, the for-
ward model we use here (depicted graphically in fig. 15.2 and detailed in table 15.1) is an
extension of our first demonstration from chapter 10—we adopt the same data-sampling
distribution for (photometric-like) uncertain cosmological redshift estimates and standard-
ised brightnesses / distance moduli303 from eqs. (10.15) and (10.16)—in two respects: we
present a more involved description of the SN Ia rate—which gives rise to the redshift
distribution—and, titularly, a nontrivial selection procedure.

303 After SICRET,279 we return to the original formulation from eq. (8.9), in whichf0 is realised as observational
noise on "0 + `B (which RESSET writes as "̄ + `B�������������) rather than a population scatter of "B

0 (eq. (14.1)).
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'0, V C "0

Pois(〈#tot〉) d〈#tot〉/dIc

#tot IBc `B <B

fI N
(
IBc ,

(
1 + IBc

)2
f2
I

)
N

(
"0 + `B , f2

0
)

f0

Îc
B

<̂Bp(S | . . .)

(B

B → #tot

Figure 15.2: A simple BHM for SN Ia cosmologywith sample selection. This is the forward
formulation, which represents the total population and is easy to implement as a simulator
(cf. fig. 4.3). Considering only “selected” SNæ Ia ((B → s) re-configures it so that selection
effects are implicitly accounted for.

15.3.1 Volumetric SN Ia rate
Following from eq. (8.14), the expected redshift distribution304 of all (including unde-
tected) transients of a given type within the surveyed volume,298 Ω) , where Ω is the surveysurvey volume =

sky area ×
duration

sky area (in steradian or deg2), and ) is the survey duration (in Earth years), is:

d〈#tot〉
dIc

= Ω) × '(Ic)
1 + Ic

m+c(Ic, C)
mIc

(15.5)

and depends on the cosmological model. For SNæ Ia, we use a comoving volumetric rate
as in plasticc (table 2):

'(Ic) = '0 ×
{
(1 + Ic)V, Ic ≤ Ibreak;
(1 + Ic)W (1 + Ibreak)V−W, Ic > Ibreak;

(15.6)

with slope W = −0.5 above Ibreak = 1 [231, after 452, 182]. In practice, the high-redshift
rate will not influence our analysis since LSST is not expected to detect SNæ Ia above Ibreak.

304 technically, the rate function of an inhomogeneous Poisson process

https://en.wikipedia.org/wiki/Poisson_point_process#Inhomogeneous_Poisson_point_process
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At low redshift, we use the estimates of Dilday et al. [128]305 from SDSS:

'0 = (2.5 ± 0.5) × 10−5 h3
70/Mpc3/yr, 306

V = 1.5 ± 0.6,
with corr('0, V) = −0.8

(15.7)

as a 2-dimensional correlated Gaussian prior. The rate parameters will be much better
constrained with future large samples, as we show in section 15.4—assuming the general
functional form of eq. (15.7) is correct. In chapter 16, we will finally transcend this ar-
bitrariness and tie the rate of SN Ia occurrence with the evolution of galaxies and stellar
populations.

Given particular values for '0, V, and cosmology, one can integrate307 eq. (15.7) to de-
rive the expected size of the “total”307 population, obtain a realisation #tot ∼ Pois(〈#tot〉)
(in accordancewith eq. (4.7)) and then sample thatmany redshifts in proportion to eq. (8.14).
After simulating redshift and magnitude measurements according to the sampling distri-
butions in table 15.1/fig. 15.2, the total population is fully fleshed out, and it only remains
to determine the collection of selected objects, as we describe next.

15.3.2 LSST-like selection probability
In practice, a SN Ia is detected using difference imaging and selected for inclusion in cos-
mological analyses based on the quality of its light curve (number of observations in dif-
ferent bands pre/post peak and quality of a fit with e.g. salt). Since we are building a toy
model that only includes the SN’s redshift and apparent brightness at peak, our detection
criterion will be correspondingly simplified. For the probability of detection & selection
(which we call selection for short), we adopt a simple criterion based on the expected LSST
fiveSigmaDepth for the band in which the SN peaks based on its redshift: at Ic = 0, the
peak of SNæ Ia is generally in the blue part of the spectrum; we assume at 4385Å: the
effective wavelength of the B band. The fiveSigmaDepth depends on a variety of factors
[124, 550] and in simulations shows significant variations; therefore, for each supernova,
we compare <̂B to a random simulated fiveSigmaDepth,308 and if <̂B is lower (brighter),

305 Dilday et al. [128, subsection 6.4.1] give 2.6+0.6−0.5, but we use 2.5 as in plasticc and a symmetric uncertainty
for simplicity.

306 Notice the scaling by h70 ≡ H0/70 km/s/Mpc, which makes predictions (inference) about total number
counts, which depend on H0, independent of the particular value used in simulations (analyses).

307 up to a sufficiently high upper bound that under no a priori allowed , a SN can be conceivably detected with
a higher redshift; we integrate up to Ic = 2

308 We use the baseline_v2 run of the LSST’s rubin_sim [551], but the survey details do not affect this
simplified model.

https://github.com/lsst/rubin_sim
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Figure 15.3: Bottom: The selection efficiency adopted in this work (colour axis) as a func-
tion of the SN’s true redshift and measured magnitude with some threshold contours as la-
belled. A white line indicates the Hubble diagram under the fiducial cosmological model,
with up to 3f0 uncertainty/scatter around it. Top: Number (density per unit redshift) of
SNæ Ia under the fiducial cosmological and rate models as a function of their true redshift:
expected total number in orange and expected selected count in green. The backdrop de-
picts their ratio p

(
s
�� Ic, fid

)
≡

∫
p(s | Ic, <̂) p

(
<̂

�� Ic, fid
)
d<̂, i.e. the average along all <̂

of the bottom plot weighted by the white shaded region.

the SN is selected. We thus assume, for the purposes of this toy model, that while the
wavelength/band of the peak changes, its magnitude does not; i.e. we ignore the necessity
for  -corrections.

Due to the stochasticity of the depth simulator (which reflects a variety of observa-
tional conditions), it defines a complicated selection probability, p

(
s8

�� Ic, <̂)
that depends

on <̂ and Ic—notice, the true redshift rather than the noisy estimate Îc. We illustrate
it, in comparison with the fiducial population of SNæ Ia, in fig. 15.3. Thus, in general,
p
(
sB

�� ÎcB, <̂B
)
≠ 1, even for data on objects that ended up being selected; instead, calculat-

ing it requires averaging p
(
sB

�� IBc, <̂B
)
over the posterior p

(
Ic

�� {ÎcB, <̂B
})
, which makes it

practically intractable even in this extremely simplified scenario because of the significant
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redshift uncertainty assumed. However, the selection procedure can be easily realised in a
forward simulator: given a collection of (true) redshifts and magnitudes generated as de-
scribed above, each object is stochastically detected/selected with probability p

(
sB

�� IBc, <̂B
)
;

after all, the simulator always has access to the necessary latent variables.
For real observations, the selection procedure will be far more complex [see e.g. 302,

subsection 11.2.1], based on criteria like number of detections in a variety of bands, effi-
ciency of obtaining reliable redshift estimates, correctly classifying transients usingmachine-
learning models, etc., and will be only representable through simulations: the essential im-
pediment to likelihood-based techniques, which our simplified model already exhibits and
which we naturally overcome through stochastic-cardinality SBI.

15.3.3 Mock data
To demonstrate our inference procedure, we generate a mock data set Do from the model
described above with parameter values as listed in table 15.1. We adjust298 the survey
volume309 so that 100 000 SNæ Ia are expected to be detected under fiducial values; for
our particular stochastic realisation, the precise number is #sel = 105 287.

This mock data set was depicted in the illustration of Malmquist and Eddington biases
in fig. 8.4. We remind the reader that due to the latter—which arises from the combination
of a varying rate (non-constant redshift distribution) and significant redshift-estimation
uncertainties—not even the complete (total) population follows the cosmological model
(i.e. the white line in fig. 15.3) when binned according to “observed”310 redshifts ÎB, leading
to a significant bias in naïve—or naïvely bias corrected—fits when the data is constraining naïveté
enough, as we demonstrated in fig. 8.6.

15.4 Unbiased results
Following STAR NRE,

1.1. we start training with examples from 1/50 of the total survey size (i.e. we adjust Ω)
so that

〈
#obs | fid

〉
≈ 2000),

1.2. truncate the parameter space, preserving only values consistent with a “fuzzy” posterior
(eq. (15.4)) formed from analysing 50 disjoint subsets (eq. (15.3)) of the mock data Do,

1.3. and fine-tune the network on new, targeted examples.

309 Ω) ≈ 1600 deg2 · yr, although the correspondence Ω) ↔ #sel from this toy example will not hold for
more complicated selection procedures; for comparison, the LSST will cover roughly 20 000 deg2, a smaller
fraction of the SN population will pass the selection criteria employed in practice.

310 In fact, the concept itself of an “observed redshift” is dependent on the assumption of Gaussianity, whose
inapplicability we already brought up (repeatedly).
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2. Then, we increase the survey size tenfold (
〈
#obs | fid

〉
≈ 20 000) and repeat, starting

with the previously trained network.
3. Finally, we repeat using the full survey size, this time doing one extra step of truncation

to ensure properly converged results.
For each of these (7) stages, we generate 64 000 training examples (with 6400 more used
for validation), which takes <30min, and train on 4 (8 for the last stages) NVIDIA A100
GPUs using the Adam optimiser [288] until convergence, usually achieved withing 3 h (per
stage).

The results from the final stage for each survey size (cardinality stage) are shown in
fig. 15.4. As expected, they are progressively more concentrated around the parameters
fromwhich the mock data were generated. To appraise the amount of information extracted
by our inference procedure (i.e. the strength of the constraints it produces), in the inset of
fig. 15.4, we compare the marginal posterior for the cosmological parameters from the final
stage of STAR NRE to alternative approaches:
• On one hand, we perform fully hierarchical Bayesian analysis (with latent redshifts
marginalised numerically via integration on a grid) of complete data, i.e. that has no
magnitude-based selection and all SNæ Ia up to a given cutoff true redshift are in-
cluded.311 While complete data is naturally more constraining due to the additional
presence of high-redshift objects and correspondingly higher statistics, such an analy-
sis would in practice be limited to a low redshift of about Ic ≈ 0.6 (in our setup: see
fig. 15.3) with the infeasible requirement of selecting the objects based on true redshift
(so that the analysis is computationally tractable). STAR NRE manages to extract in-
formation beyond the completeness limit, effectively correcting the selection bias and
delivering constraints comparable to those from the similarly sized complete data (up
to Ic ≈ 0.8, where the selection probability drops to 50%).

• We also compare our result with a traditional j2 fit to “de-biased” selected data—im-
portantly, with the fiducial model used for calculating bias corrections matching the one
from which the mock data were simulated—and analysed with redshift uncertainties
propagated linearly to magnitudes, again assuming the fiducial model and disregard-
ing the intrinsic SN Ia rate. Even if the resulting constraints appear more stringent
that ours, this is largely due to the optimal choice (made before analysing the data) of
a fiducial cosmology close to the true model, which, as we demonstrated in fig. 8.6,
is indispensable for obtaining systematically unbiased posteriors even for the simplest
SN model such as ours. In reality, the selection procedures and bias corrections are far
more complicated, making bias-corrected fits extremely prone to systematic bias.

311 This true-redshift cutoff is still a kind of selection criterion, but—as opposed to a cutoff in measured
redshift—the correction associated with it is a simple re-normalisation of the redshift prior, which we account
for by calculating the size of the population below the cutoff and including it in the hierarchical likelihood.
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Figure 15.4: Two-dimensional projections of the joint 7-dimensional “fuzzy” posteriors
(39 and 86% HPD credibility) in successive cardinality stages (in different colours as indi-
cated in the legend). Inset: comparison of our final result with alternative likelihood-based
analyses of complete sub-samples as well as the full selected mock data de-biased with
fiducial parameters set to their true values.
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Conclusion
We have presented a simulation-based analysis framework to handle large data sets affected
by selection biases. The cornerstone of our approach is the use of a conditioned deep set
NN, which allows training data to have varying cardinality as a result of realistic end-to-end
stochastic simulation of the underlying population and selection procedure. This enables
full modelling freedom and straightforward inference contrary to non-set-based methods.

Beyond the network architecture, the strategy we have developed, dubbed STAR NRE,
facilitates applications to very large catalogues by pre-training on random sub-samples,
whose size is gradually increased in “sub-sampling stages”, interspersed with traditional
prior truncation. This benefits the deep-set featuriser, which learns an object-by-object
transformation of the individual data and can thus be trained on small sets. The final
result, however, is derived after fine-tuning the network (particularly important for the
post-processor, which aggregates all observed objects) on full-size simulations. Thus, our
methodology imposes no condition of statistical independence on the set elements: i.e.
allows even marginal inference, and owing to the target simulations achieves optimal pre-
cision all while implicitly correcting any conceivable selection biases.

For our current demonstration, we have used a simplemodel of SN Ia cosmology, which
nevertheless, still captures the important Malmquist and Eddington biases, the latter of
which will be of increasing importance for future large and photometric-only samples,
yet is currently rarely considered in the literature. Moreover, it incorporates (and can be
used to extract information about) the volumetric rate of SNæ Ia and its evolution with
redshift, which will be the centrepiece of the next chapter, where the analysis will follow
the exact same strategy but with a more involved simulator extended to model host data and
extract all auxiliary information required for analysing SNæ like photometric redshifts, dust
extinction, and standardising covariates. The natural next step, therefore, is unification with
the explicit framework for light-curve simulation, which we used in chapter 12, by using
any of the existing LC featurisers mentioned previously to handle their irregular structure
before input into the conditioned deep set for global cosmological inference.

We have thus presented the final piece of methodological development required for
scalable simulation-based SN Ia inference. What remains is to build a simulator that faith-
fully represents our vision of a The future: grand unified SN (Ia) cosmology and reap the
full benefits of upcoming transient surveys.



Chapter 16

���� One with the environment: combined
inference of galaxy redshift and SNæ

CIGaRS is a work-in-progress proof of the concept of unified inference of SN Ia and host
properties in an interconnected Bayesian hierarchical model as in fig. 8.7. In this chap-
ter, we present its current implementation, which combines an extension of our SICRET
description of salt-like SN Ia standardisation with the Prospector [312, 532] full spec-
tral model of galaxies via two “interaction” channels: self-consistent dust modelling via
Simple-BayeSN to transfer the physicallymotivated galaxy extinction onto the SN Ia colour;
and a rate of SN Ia occurrence tied to the host’s stellar population via a phenomenological
(parametrised) delay-time distribution (DTD) indicative of the progenitor scenario(s).

The observables we consider are meant to represent data from a photometric-only sur-
vey like the LSST: on one side, we will assume noisy estimates of the SN Ia312 light-curve
parameters, as if derived from independent fits (or—better—by a bespoke LC-summariser
NN or estimatedmarginally as in chapters 12 and 14); and, on the side of the313 hosts, only
broadband photometry in the LSST ugrizy filters. Notice: no explicit/external redshift es- SN Ia

cosmology
without
explicit
redshifts

timates; instead, we directly model the data from which they are typically314 extracted.
Our goal in this setting will be twofold: inferring the cosmological parameters and con-

straining the DTD, whereby we target jointly the constituents and evolution of our Universe
and the astrophysics of stellar populations. To this end, we will once again employ S(T)AR
NRE, exactly as described in chapter 15.

312 Again, non-Ia contamination can easily be included, provided an explicit model for its observables.
313 It will be interesting to consider also host (mis-)association, which will be easy to realise in the forward model

by simply associating the probable host(s)’s photometry with the particular SN’s LC/summaries.
314 In the present implementation, this is only the host observables, which we (and the community in general)

have determined provide superior photo-I constraints—when available; but a fuller analysis will be able to
extract redshift information also from the SNæ’s light curves, e.g. with Photo-ISNthesis or traditional fitters.

201



202 Chapter 16. CIGaRS

16.1 Properer modelling of SNæ Ia and their hosts for
cosmology

A grand unified description of SN Ia cosmology (e.g. fig. 8.7) is a diptych formed by the
largely independent representations of host and transient data, joined by s causal connec-causality
tion relating the occurrence and intrinsic properties of SNæ to the stellar populations from
which they originate, as well as by the coincidence of extrinsic effects to their light: mostcoincidence
prominently, dust extinction. Below, we present a toy model that incorporates schemati-
cally these connections and follows them through to (mock) observables (save for the de-
pendence of the SN population properties on the host, which would include e.g. evolution
and local-environment modelling and inter-host localisation).

16.1.1 Galaxies and their photometry
Comprehendingsive galaxy modelling [364] is far beyond the scope of this thesis; instead,
wewill adopt the utilitarian approach and resort to an off-the-shelf forwardmodel for galac-utility
tic spectral flux: Speculator-α [11], which satisfies two important criteria:

• it is fast: Speculator is a NN emulation framework (which resorts to 50-component
PCA for initial compression / final decompression, i.e. it resembles a SN Ia tem-
plate); we have transcribed in PyTorch and incorporated as a ConstantSource in
SLiCsim its version trained on Prospector-α [312] simulations of stellar popula-
tion synthesis (SPS); this allows quickly generating mock galaxy photometry with
minimal additional effort;

• it has a convenient Bayesian parametrisation [532, Prospector-β], which includes
the “hooks” to which to attach the DTD (an age-binned distribution of stellar agesstellar

population SFH) and an extinction law which to affect SNæ hosted by the galaxy: Prospector
uses the Kriek & Conroy [296] dust model,315 controlled by a parameter X, which
we convert into an 'V via the latter’s definition eq. (8.8). We also identify galaxy-
modellers’ g2 as �V.

We have implemented Prospector-β as a probabilistic program in Pyro, and while
the details are not crucial, it is important to note that it is not hierarchical, i.e. does not
include global/population parameters, and the distribution of the various properties (im-
portantly to us, masses and dust) are a priori independent. To “fix” this and implement the
expected/observed causal connections, we include the empirical relations of Alsing et al.

315 Which is different from F99—otherwise it wouldn’t have a distinct name…—and a LC-based SN +host
model must consider this in order to be self-consistent; moreover, it must consider that the average dust which
affects the integrated host photometry might not be representative of that at the location of the supernova,
which must be taken into account as we discussed in relation to the local SN environment.
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[12, eqs. (14) and (15)]:

�ℎV ∼ N
(
0.2 + 0.5 ReLU

(
lg SFRℎ

)
, 0.22

)
, (16.1)

Xℎ ∼ N
(
−0.095 + 0.111�ℎV − 0.0066(�ℎV)

2, 0.42
)
, (16.2)

where the star-formation rate (SFR) is themost-recent (current) component of SFHℎ. More-
over, the marginal distribution p(Ic, "∗) (which is the first step of Prospector-β forward
sampling, similarly to the SN Ia rate) is independent of cosmology316 (cf. the dashed line
in fig. 8.7). This can be relaxed by modelling large-scale structure formation from the first
Principles of physical cosmology.

For this demonstration, we sample a bank of 1 000 000 i.i.d. galaxy parameter vectors

gℎ ≡
[
Iℎc , SFHℎ, 'ℎV, �

ℎ
V, . . .

]
(16.3)

from Prospector-β and generate the respective absolute ugrizy photometry (Redshifted
but not yet affected by CosmologicalDistance) with Speculator-α. When compiling
a final mock survey, we choose a random C and calculate apparent brightnesses m(C)
(using the transverse comoving distance). Then, we add noise (optimistically, 0.01mag)
and evaluate detectability of each host— for the particular realisation of cosmology and
noise—by comparingwith the “5f co-add depth” fromBianco et al. [45]. This represents a
sharp (deterministic) selection criterion (ℎ = (

(
m̂ℎ

)
that determines the sample of selected

galaxies in each simulator run, within which317 we proceed to generate SNæ Ia.

16.1.2 SNæ Ia in hosts
Each galaxy’s SFHℎ =

[
SFHℎ

8

]7
8=1 is an array of masses, each associated with a given age

C8 (with respect to the moment the galaxy is observed), that represent the total amount of
stars formed at different times. The SN Ia DTD expresses what fraction of them explode as
SNæ Ia per unit time interval; that is, the rate (in the observer’s frame) of SN Ia occurrence
from a specific galaxy’s specifically old population is

'ℎ8 = ) ×
SFHℎ

8 × DTD(C8)
1 + I . (16.4)

316 Prospector-β does rely on an assumed WMAP [219] )age (Ic), however, for building the history of star
formation, but we do not expect this to have an effect on the simulations relevant to SNæ Ia or to our inference

317 This is an implicit selection criterion on the SNæ: we only consider, in other words, SNæ for which we can
observe and uniquely identify the host (with certainty), which is usually not a stronger requirement than the
cuts typically applied to cosmological SN Ia samples.
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Following Heringer et al. [211, 212], we will assume a power law (set to zero before
100Myr to allow for the creation of a white dwarf):

DTD(C) = � × ( C/Gyr )BM�−1 yr−1; (16.5)

log10 � ∼ N
(
−12.15, 0.12

)
, (16.6)

B ∼ N
(
−1.34, 0.22

)
. (16.7)

The double-degenerate formation scenario in which the twoWDs lose energy through grav-
itational radiation corresponds to an exponent B = −1 is slight tension with current results.
Thus, a precise determination of B—or, better, of a more flexible functional form (e.g. con-
taining a weighted combination of multiple components for the different possible formation
channels)—offers a unique vantage point onto SNæ Ia as physical phenomena rather than
mere tools for distance measurement.

In our forward model, we evaluate eq. (16.4) for all stellar populations of all galaxies
that were observed,317 and, given the survey duration,298 obtain Poisson realisations for the
number of SNæ Ia that explode in a specific galaxy’s specifically old population: sum-
ming those within and across the galaxies gives, respectively, #ℎSN (from fig. 8.7) and #tot
(the size of the total population). This procedure allows us to unique identify the “local
environment” from which each simulated SN originated and to, possibly, assign different
properties based on that information, although we do not do this at present.

Instead, for each of the #tot SNæ, we generate observables according to Simple-BayeSN.
This is very similar to Bahamas and the model we used in chapter 14 but contains three
modifications concerning colour. The first is that, as in any BayeSN, extinction due to
dust—which results in external reddening— is explicitly accounted for by splitting the
apparent colour into an intrinsic 2int and the host-dust colour excess [343, eq. (5)]:intrinsic colour

2B = 2Bint + �
ℎ(B)
V

/
'
ℎ(B)
V , (16.8)

where the dust parameters used for each SN refer to those used to simulate its host’s light,
achieving self-consistent modelling. Correspondingly, the (Phillips/Tripp) colour–magni-
tude standardisation coefficient V refers only to 2int, while the dimming effect of extinction
is again explicitly implemented (assuming magnitudes are in the B band) [343, eq. (4)]:

" B = " B
0 − UG1 + V2int +

(
'
ℎ(B)
V + 1

)
�
ℎ(B)
V

/
'
ℎ(B)
V . (16.9)

And lastly, Simple-BayeSN allows for a correlation between G1 and 2int via a new “colour-
standardisation” coefficient U2 (empirically found to be close to zero) [343, eq. (20)]:

2Bint ∼ N
(
2̄ + U2GB1, f

2
2

)
. (16.10)
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After applying observational noise (here we use the simple �̂B = 0.0121, but a starting
point towards sophistication of this modelling aspect are the priors on observational (co)-
variances listed in Boyd et al. [62]) and a detection/selection procedure (the LSST-inspired
one from subsection 15.3.2), we have finished the SN Ia side of the forward model. Finally,
we build a mock survey as a set whose elements combine each SN Ia’s observables (and,
when it is not trivial/fixed, the metadata �̂B)318 and the photometry of their host:

D =

{(
<̂B, ĜB1, 2̂

B,��̂�
B
, m̂ℎ(B)

)}#sel

B=1
. (16.11)

16.2 Preliminary results and outlook
As a preliminary proof of concept (and so that the analysis can more or less be com-
pleted on time for inclusion in this thesis), we generate a “small” sample of, on expec-
tation, 1000 (in “reality”, 1080) SNæ Ia. To analyse them, we train ARNRE to infer
�6 ∈ ["0, [�, B], U, V, U2, [Ωm0,ΩΛ0], f0] from 64 000 simulated surveys (all at the same
) setting as the mock and with the G1 and 2 population parameters, Ḡ1, fG1 , 2̄, f2 fixed
to the values in table 14.1 for simplicity) with the same conditioned deep set as in sec-
tion 15.1. We show results from the first stage (no truncation yet…) in fig. 16.1 and note
that they can definitely benefit from an extended andmore careful training, which we expect
to significantly improve the least constrained (currently) parameters: C and f0.

Overall, we receive fig. 16.1 with optimism as it shows that the network is able to optimism
learn—at least to a certain extent—all parameters; most significantly

• � and B, which describe the DTD and explicitly connect the two panes of our diptych;
• "0 and V, whose estimation requires taking into account both the SN Ia luminosities
and colours and inferring the 'ℎ(B)V , �ℎ(B)V from the host photometry;

• cosmology, for which the results resemble the initial stages in fig. 14.4, so we con-
jecture that the NN has indeed learnt to extract redshifts from mℎ(B)— lest it has
uncovered a method for cosmological inference without redshifts.

In the same framework, we can easily integrate non-Ia contaminants with phisically
grounded rates and correlations with host properties, as well as any parametrised model
for population evolution and/or local-environment dependence and extrinsic effects like
peculiar velocities and weak lensing due to large-scale structure. Incorporating, finally, an
explicit forward model for the light curves of all transients we are considering and for their
summarisation using a classifying/summarising NNs will allow the ultimate principled and
verifiable all-in-one analysis of LSST’s hard earned massive data.

318 Recall that in end-to-end SBI, systematics can always be included in the forwardmodel instead of a dense/non-
trivial covariance since the SNæ are exchangeable: this is, after all, why we represent data as a set.
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Figure 16.1: First application of SBI to a (lesser) unified SNæ-Ia-and-hosts model (mock
LC-summary data of 1080 SNæ Ia with identified and detected hosts (ugrizy broadband
phtoometry) analysed with ARNRE and no truncation… yet; the priors are uniform across
the extents of each plot, except for the DTD parameters; our results are joint over these 9
global variables (with the rest kept fixed), but we show only these projections as represent-
ing scientific interest). After a simple extension of the simulator and re-using our existing
inference framework, we are able to constrain all parameters (although further training is
advised) in a single independent analysis that does not rely on explicit redshift measure-
ments, exposing a promising avenue for the future of SN Ia cosmology.



Epilogue

As a large language model, I can certainly summarise the thesis in the style of the author:
In this thesis, we have applied and extended the framework of simulation-based infer-

ence (SBI) in the field of supernova cosmology, with a focus on principled and scalable
Bayesian analysis that can evade the pitfalls of current and future data and deliver no-
compromise results for cosmological parameters. After surveying the different flavours
of neural SBI, we have described several extensions to the method of truncated marginal
neural ratio estimation in the setting of a large hierarchical model, as well as a method for
calibrating its output and deriving constraints with a guaranteed confidence level.

We have then summarised the historical and cosmological background of SN Ia re-
search and demonstrated their exponential expansion. In anticipation of future instruments,
expected to discover and obtain data for orders of magnitude more transients than currently
available, we have outlined a number of methodological challenges and highlighted how
failing to take certain statistical and modelling effects properly into consideration— e.g.
host dust extinction, all sources of redshift and their uncertainties, and samples selection—
can lead to significantly biased results. We have argued that SBI is the methodology of
choice for addressing them and elucidated out vision of a grand unified analysis of SN Ia
and galaxy data that incorporates all conceivable physical details.

To this end, we have developed modern high-performance codes for physics and prob-
abilistic modelling in general and SN Ia (and adjacent-data) simulation in particular and
applied them to a series of analyses of real andmock data with increasing sophistication and
scale. We have targeted the light curves of ≈100 low-redshift SNæ Ia and inferred simulta-
neously all their object-specific parameters and their populations. We have then performed
the first principled Bayesian model comparison in the field, addressing the interdependence
of magnitude standardisation and dust extinction and deriving results contrary to previous
findings. Moreover, we have demonstrated the scalability of our framework to ≈100 000
SNæ Ia using a novel set-based truncation strategy making use of a minimal but power-
ful conditioned deep set neural network. Finally, we have shown a glimpse of our unified
inference setup, which we envision to be the baseline for SN Ia cosmology in the future.
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See ya later, simulator!

A supernova explosion
over the Miramare castle;
painting in the style of Van Gogh
– DALL·E
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Chapter 17

Simulation-based
hierarchical truncated inference

Truncation was an essential part of the analyses we have presented in part IV as it allowed
us to obtain sufficiently precise results with finite network and training data. We even de-
scribed strategies 2 to 4, which relate truncation to various hierarchical settings, concretely:

• strategy 2: truncating “nuisance” parameters in the Bayesian supermodel (fig. 3.1),
where of interest is the high-level indicator variableM.

• strategy 3: truncating global parameters to facilitate object-specific inference
• strategy 4: truncating global parameters while increasing the constraining power of
the data (its size).

In them, we never considered (out loud) truncating the local parameters of the i.i.d. (ex-
changeable) objects we analysed, even though we did place constraints on them in figs. 12.5
and 14.7. In fact, within the (stochastic-cardinality) simulators we use for catalogue-based
inference (chapters 15 and 16), we cannot truncate local parameters since these are not
defined a priori, i.e. before conditioning on the observed data (particularly its size) and
placing labels (e.g. the metadata we used in SICRET, notably absent in RESSET) on the
objects.

In this appendix, we demonstrate the danger that truncation of object-specific param-
eters (whenever well defined, i.e. in fixed-#obj models) poses to population inference in
high-dimensional settings (i.e. in the presence of many i.i.d. observations and hence local
parameters). Assume a hierarchical model that factorises as

p
(
,

{
�8

}
,
{
d8

})
=


#obj∏
8=1

p
(
d8

�� �8,��) p
(
�8

�� ) p(), (17.1)

i.e. where the global parameters that we are interested in do not influence the final sampling
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distribution but only the population of �8. Now assume that we have constrained �8 to some
truncation regions )�8 (not necessarily the same) such that p

(
d8

�� �8 ) ≈ 0 outside them for
each 8. By defining truncated priors319

p̃
(
�8

�� ) ≡ p
(
�8

�� ) × 1(
�8 ∈ )�8

)
28 () with 28 () ≡

∫
)�8

p
(
�8

�� ) d�8 , (17.2)

we can write the original model as

p
(
,

{
�8

}
,
{
d8

})
=

∏#obj
8=1 2

8 ()
1
({
�8 ∈ )�8

})︸            ︷︷            ︸
correction

×

#obj∏
8=1

p
(
d8

�� �8 ) p
(
�8

�� ) × 1(
�8 ∈ )�8

)
28 ()

 p()︸                                                   ︷︷                                                   ︸
p̃
(
,

{
�8

}
,
{
d8

})
, (17.3)

where p̃
(
,

{
�8

}
,
{
d8

})
is our truncated simulator, and 2() ≡ ∏#obj

8=1 2
8 () is a correction

factor320 that accounts for the re-normalisation of the probabilities in the middle hierarchi-
cal layer and must be taken into account for global inference, e.g. by using it in the NREre-weighted

NRE training
(hanc marginis
exiguitas non
caperet)

optimisation objective while training.
The preceding statement and eq. (17.3) must ring a bell: it is the same, in spirit, as

eq. (4.10). Realising that selection is truncation, Anau Montel & Weniger [13] used the
truncation formalism to represent selection in their simulator, estimating all the necessary
corrections. However, we were less enthusiastic about this and demonstrated in fig. 4.4
how the infer-as-usual–correct strategy can be detrimental to the SBI approach due to large
cancellations that require excessively (i.e. unrealistically) precise estimates. Conversely,
in fig. 17.1, we illustrate the similar effect in the arguably more interpretable setting of
high-dimensional object-specific truncation.

Using the usual Gaussian toy model _8 ∼ N(0, f) we generate #obj draws, truncate in
a region _8o±3Y around the realised values, and plot the resulting “correction” 2(f). Both
the “unconstrained” and “well-unconstrained” cases result in trivial modifications:

Y →∞ =⇒ 2(f) → const, (17.4)
Y → 0 =⇒ 2(f) → p

({
_8o

} ��f)
. (17.5)

In the “interesting” case of similar noise and scatter and for large samples, truncation intro-
duces a significant shift between the two terms in eq. (17.3) just as in fig. 4.4: we quantify

319 Clipppy’s ConUnDis can do this in parallel over all i.i.d. _8 , provided they are one-dimensional.
320 We assumed above that the problematic denominator 1

({
�8 ∈ )�8

})
cancels with a similarly vanishing

p
(
d8

�� �8 ) to prevent divergences
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Figure 17.1: The danger of hierarchical truncation
illustrated with a Gaussian toy model. Top: the cor-
rection factor as a function of the global parameter
(the population standard deviation) compared to the
likelihood of the sampled values, which is the target
of SBI. For intermediate noise values, the two are
significantly different, whichmeans that results with
truncated simulations would need to be severely—
and precisely—corrected. Left: The JS divergence
between the two (normalised across f ∈ [0; 2]) for
different noise/scatter and sample size; brighter is
higher (more different), and the “noise” comes from
sampling variance.

it via the JS divergence for different #obj and Y/f . The bottom line is that, exactly as we
discussed in relation to handling selection, the necessity of precise estimation over many
orders of magnitudes all but precludes successful SBI with large numbers of independently
truncated local parameters.





Abbreviations

ΛCM least common multiple
ΛCDM Λ–cold dark matter
SN supernova
SN Ia type Ia supernova

ABC approximate Bayesian computation
AD automatic differentiation
ADU analog-to-digital unit
ARNRE autoregressive neural ratio estima-

tion

BAO baryon acoustic oscillations
BCE binary cross-entropy
BHM Bayesian hierarchical model
BIC Bayesian information criterion
BNN Bayesian neural network

CC SN core-collapse supernova
CCA canonical correlation analysis
CCD charge-coupled device
CDF cumulative distribution function
CDM cold dark matter
CfA Harvard-Smithsonian Center for Astro-

physics
CMB cosmic microwave background
CNN convolutional neural network
CPU central processing unit
CSP Carnegie Supernova Project

DAG directed acyclic graph

DD double-degenerate
DDPM de-noising diffusion probabilistic

model
DE dark energy
Deh0vils Dark energy, H0, and peculiar

velocities using infrared light from
supernovæ

DES Dark Energy Survey
DESI Dark Energy Spectroscopic Instru-

ment
DLR directional light radius
DM dark matter
DRP distance to random point
DTD delay-time distribution

elasticc extended LSST astronomical
time-series classification chal-
lenge

ELBO evidence lower bound
ELT Extremely Large Telescope
EOS equation of state
Essence Equation of state: supernovæ

trace cosmic expansion

FLRW Friedman(n)–Lemaître–Robertson–
Walker

gan generative adversarial network
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218 Abbreviations

GOTO Gravitational-wave Optical Tran-
sient Observer

GP Gaussian process
GPU graphics processing unit
GR general theory of relativity
GW gravitational wave

HL highest-likelihood
HMC Hamiltonian Monte Carlo
HPD highest posterior density

i.i.d. independent and identically distributed
IMNN information-maximising neural net-

work
IR infrared

JLA joint light-curve analysis
JS divergence Jensen–Shannon divergence

KDE kernel density estimation
KL divergence Kullback–Leibler diver-

gence

LC light curve
LLM large language model
LMC Langevin Monte Carlo
Loss Lick Observatory supernova search
LSS large-scale structure
LSST Legacy Survey of Space and Time
LTB Lemaître–Tolman–Bondi

mala Metropolis-adjusted Langevin algo-
rithm

MAP maximum a posteriori
MCMC Markov chain Monte Carlo
MDN mixture density network
MH Metropolis–Hastings
MJD modified Julian day
ML machine learning
MLE maximum likelihood estimator

MLP multi-layer perceptron
moped massively optimised parameter es-

timation and data compression
MSE mean squared error
MVN multivariate normal
MW Milky Way

NDE neural density estimation
NF normalising flow
NIR near infrared
NJE neural joint estimation
NLE neural likelihood estimation
NLL negative log-likelihood
NLP natural-language processing
NN neural network
NPE neural posterior estimation
NPSE neural posterior score estimation
NRE neural ratio estimation
NS nested sampling
nuts no-u-turn sampler

P–P plot probability–probability plot
Pan-STARRS Panoramic Survey Telescope

and Rapid Response System
PCA principal component analysis
PDF probability density function
plasticc photometric LSST astronomi-

cal time-series classification chal-
lenge

PMVN partial multivariate normal
pop parity-odd power
PP probabilistic programming

Raisin SN Ia in the IR
ReLU rectified linear unit
RNN recurrent neural network
RST Rubin Space Telescope

SBI simulation-based inference
SD single-degenerate
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SDSS Sloan Digital Sky Survey
SED spectral energy distribution
SFR star-formation rate
SLSN superluminous supernova
SNLS SuperNova Legacy Survey
SNR signal-to-noise ratio
SPCC supernova photometric classification

challenge
SPS stellar population synthesis
STAR NRE set-based truncated autoregres-

sive neural ratio estimation

TITS-PMS truncated inference and trust-
worthy simulation-parsimonious

model selection
TMNRE truncated marginal neural ratio es-

timation

VI variational inference
VMIM variational mutual-information

maximisation

WD white dwarf
WFIRS Wide-Field Infrared Survey
WMAP Wilkinson Microwave Anisotropy

Probe

ZTF Zwicky Transient Facility





Symbols

Statistics and inference
U(0, 1) uniform distribution on [0; 1]
N

(
`, f2) normal distribution with mean ` and variance f2

Pois(G) Poisson distribution with rate parameter G

d data array
D data set (unordered, includes information in its cardinality)
D a random subset of D
s(d) summary statistics

 all parameters of a Bayesian hierarchical model
� parameters inferred in a given study (“of interest”)
� nuisance parameters (not of interest, including global and object-specific)
 global parameters in a hierarchical model
�8 local (specific to object 8) parameters in a hierarchical model
a metadata (object/pointing-specific settings)
�fid fiducial parameter values

�6 one of a number of groups of parameters of interest
q(� | d) (possibly neural) posterior estimator
r(�, d) joint/marginal = likelihood/evidence = posterior/prior ratio
r̂(�, d) (possibly neural) r estimator
) (do) truncation region
p̃) (do) (�) truncated prior

F Fisher matrix/information
I mutual information
H entropy
W (nominal) Bayesian credibility

221



222 Symbols

z frequentist confidence

Cosmology
C the cosmological parameters
H0 ≡ � (C = 0) Hubble parameter and its present value (the Hubble “constant”)
Ωr0 relative present-day radiation density
Ωm0 relative present-day total matter density
Ωde0 relative present-day dark energy density
F0 equation of state of dark energy
@0, 90 present-day deceleration and jerk parameters

I total redshift (including cosmological and peculiar velocity)
Ic cosmological redshift
�c(Ic, C) radial comoving distance
�M ≡ �c sinc

(√
:�2

c

)
transverse comoving distance

�L(Ic, C) ≡ �M/(1 + Ic) luminosity distance
`(Ic, C) ≡ −2.5 log10

[
(�L/10 pc)2

]
distance modulus

SNæ
"0 standard absolute magnitude of SNæ Ia
f0 residual magnitude scatter after standardisation
G1, 2 salt “stretch” and “colour” parameters
U, V stretch- and colour-related standardisation coefficients
�V extinction in the V band
'V total-to-selective extinction ratio: �V/(�B − �V)

FLUXCAL & FLUXCALERR calibrated “flux” (signal) and “noise”

' (comoving) volumetric rate (in the rest-frame) of SN Ia occurrence

g parameters of the host galaxy
"∗ stellar mass of the hosfget galaxy
Δ" magnitude step across the split in host stellar mass
"� solar mass: 2 × 1030 kg
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