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Abstract
In this thesis, we study many–body systems both in and out of equilibrium. Though these two

setups are fundamentally different from each other, the phenomena that emerge due to interactions
in the former and the effects of non–reversible dynamics in the latter share many similarities.
Together with highly controllable synthetic quantum system experiments, these many–body setups
are a relevant topic of research in condensed matter physics, statistical physics, and quantum
information theory.

The first part of the thesis is dedicated to the many–body systems in equilibrium. Motivated
by the recent experimental advances in synthetic quantum systems, we investigate the behaviour of
interacting particles on ladder geometries. Specifically, the so–called Rydberg–dressing of atoms al-
lows one to experimentally realize Hubbard–like models with highly tunable long–range interaction.
The competition between these interactions and geometrical effect of the lattice (e.g. geometric frus-
tration) can lead to interesting equilibrium phases of the system. Moreover, one might encounter
scenarios where the system at the critical point has enlarged symmetry relative to its microscopic
Hamiltonian – a manifestation of an emerging phenomena. Using various analytical and numerical
tools, we study the phase diagram of interacting Rydberg–dressed atoms on square and triangu-
lar ladder geometries. We demonstrate that the interaction gives rise to a rich phase diagram,
accommodating conventional Luttinger liquids and the so–called cluster–Luttinger liquid phases.
Moreover, apart from usual Berezinskii–Kosterlitz–Thouless and Gaussian critical lines, the sys-
tem hosts a supersymmetric quantum critical point with an emerging Majorana degree of freedom.
These results can be relevant for experimentally studying the coupling of supersymmetric critical
points on lattice geometries.

In the second part, we explore many–body systems out of equilibrium. Namely, we study the
competition between the unitary evolution and dissipative effects upon the entanglement content
of the many–body system. By using the so–called quantum trajectory approach to unravel the
Markovian (i.e., memoryless) dynamics of the system, it has been demonstrated that depending on
the dissipation strength, the scaling of entanglement undergoes a phase transition – a phenomenon
known as measurement induced phase transition. Moreover, at the critical point the scaling of entan-
glement hosts features characteristic of conformal field theories. We generalize these considerations
to memoryful dissipative setups by introducing a diagrammatic method to unravel the dynamics
of non–Markovian many–body systems. Using the proposed analytical technique, corroborated by
direct simulations of the quantum trajectories, we demonstrate the stability of the measurement in-
duced phase transitions against the memory effects of the dynamics. The experimental setups that
study quantum systems are inevitably affected by a memoryful environment and thus the results
represent a step forward in the field of transitions induced by external baths.
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Part I

Rydberg atom arrays in ladder
geometries: a kaleidoscope of phases
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Introduction

Over the last ten years, ensembles of ground state atoms laser-coupled to Rydberg states and trapped
by means of optical potentials have demonstrated impressive capabilities of realizing strongly in-
teracting quantum dynamics under controlled and tunable experimental conditions [1, 2, 3, 4, 5,
6]. From the many-body perspectives, the opportunities offered by these settings profit from the
combination of very rich interactions properties between Rydberg states, including long-range char-
acters and spatial anisotropy, with a high degree of local control and manipulation [7]. Within such
settings, inter-particle interactions are indeed sizeable even at distances of a few microns – so that,
for instance, lattice potentials can be probed at the single site level with minimal experimental effort
when compared to conventional cold atoms in optical lattices operating in Hubbard-like regimes.

The dynamics of Rydberg atom arrays in the case of large lattice spacing between sites is often
described in terms of Ising or XY spin-1/2 models [8, 9, 10]. Starting from the observation of
dynamical crystallization reported in [1, 11], a plethora of phenomena has been observed, including
magnetic phases of one-dimensional (1D) systems [12], the first example of a topological phase in
a cold atom experiment [13], and ordered phased of two-dimensional (2D) arrays [14, 15]. One key
leitmotif of these experiments is that they are carried out in such a way that Rydberg states are
populated, making the dynamics so fast that atomic motion can most often be neglected as it is
slower than typical decoherence mechanism such as spontaneous decay of the Rydberg states.

An alternative, relatively unexplored setting is ground state atoms that are only weakly coupled
to Rydberg states [16, 17, 18, 19]: in this regime, up to timescales that are long compared to typical
sources of dissipation, the Rydberg state is only virtually populated – yet, it does have drastic
effects in determining the system’s coherent dynamics. In particular, it allows to engineer dynamics
that is somehow intermediate between conventional Hubbard models, and frozen Rydberg gases:
this results into generalized Hubbard models, where interactions combine a long-range, power-law
tail (van der Waals), with a short-range plateau, that is of widespread use in classical statistical
mechanics, and is often referred to as the soft-shoulder potential [9]. Even in their simplest instance
of a single scalar bosonic field in 1D, these types of interactions lead to exotic critical behavior,
including phases where the Luttinger theorem is inapplicable [20] and supersymmetric quantum
critical points [21]. The phenomenology is equally rich in 2D systems, where soft-shoulder potentials
have been linked to anomalous dynamics and glassy behavior [22, 23].

Opposite to the aformentioned cases, the transition regime between 1D and 2D systems is
poorly understood. The goal of this part of the thesis is to shed light on the latter, by investigating
the ground state phase diagram of soft-shoulder Hubbard models in square and triangular ladder
geometries. In addition to this theoretical motivation, a recent experiment [24] has realized many-
body dynamics of single-species Hubbard models with clustering interactions. In two-leg square and
triangular ladders, our findings below are [25, 26], in large part, motivated by such experimental
capabilities, and offer a clear theoretical pathway to investigate the effects of frustration within that
platform.

Apart from aformentioned experimental setups and various advanced tools of numerical sim-
ulations, such low-dimensional many-body problems on a lattice can be amenable to continuous
quantum field theoretical descriptions. For example, the so-called continuous phase transitions
are extremely interesting from the theoretical point of view. In the vicinity of the critical point,
the macroscopically large number of strongly correlated degrees of freedom limits the applicability
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of perturbation theory. Diverging correlation length renders the microscopic details (such as lat-
tice constant, individual interaction between the degrees of freedom) to be irrelevant and only the
global properties, such as symmetries of the Hamiltonian and dimensionality of the space, dictates
the properties of the system close to the criticality. This means that two different systems can
exhibit both qualitatively and quantitatively similar features at the critical point, if they share
symmetries and dimensionality. This phenomenon is known as the universality and the number
of different universality classes for continuous critical points is much less than the number of dif-
ferent physical systems that can undergo continuous phase transitions. Apart from the so-called
Gaussian criticality, in the following chapters we will review two additional universality classes: 1D
Ising and Berezinskii-Kosterlitz-Thouless (BKT) universality classes. By implementing conformal
field theoretical tools [27], Abelian bosonization and renormalization group approach [28], we will
demonstrate how the universal properties emerge when the system is close to criticality. Being
equipped with the understanding of these theoretical methods, we will apply the knowledge to more
complex many-body setups.
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Chapter 1

Quantum Ising model

In this chapter we will study the so called 1-dimensional quantum Ising model (QIM), a toy model
of interacting SU(2) invariant bosonic degrees of freedom on a lattice [29]. Apart from various
interesting features hosted by the model, our main goal will be to extract the underlying field theory
that governs the properties of QIM in the vicinity of the critical point. To achieve this, we will map
QIM onto the so-called Kitaev chain and demonstrate how quantum field theory (QFT) of massive
Majorana fermions emerge as one approaches the critical point [30]. We will show that at criticality,
the theory becomes scale invariant and one can implement conformal field theoretical (CFT) [27,
28] description to unravel the so-called Ising universality class. On the way to understanding the
Ising universality class, we will encounter the so-called Jordan-Wigner transformation (JW), when
mapping hard-core bosonic degrees of freedom on to fermionic. Another approach that demonstrates
"fermion–boson equivalence" will be discussed in the next chapter, in the context of the Heisenberg
XXZ model and Abelian bosonization [28].

The quantum Ising model is a paradigmatic toy model of a 1-dimensional magnetic system,
where nearest-neighbouring spin-12 degrees of freedom interact with each other. Apart from a
classical part of nearest neighbor interaction between x-projections of spin, QIM also includes a
transverse magnetic field that couples linearly to a transverse component of the spin. Since these
two components of spin operators do not commute with each other, the transverse magnetic field
turns the model fully quantum.

Being an exactly solvable quantum model, it has been extensively studied from many differ-
ent point of views and has been proven that QIM can accommodate conformal field theoretical
description, topological states and etc.

The Hamiltonian of a 1D Quantum Ising model is

ĤQIM = −J
(
N−1∑
n=1

σ̂xnσ̂
x
n+1 + λ

N∑
n=1

σ̂zn

)
, (1.1)

σ̂x and σ̂z are the Pauli matrices

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 1

)
. (1.2)

These matrices commute with each other if their site indices are different, however they obey
standard SU(2) algebra if their spatial indices coinside

[σαn , σ
β
n ] = 2iϵαβγσ

γ , {σαn , σβn} = 2δαβ. (1.3)

The quantum Ising hamiltonian consists of two terms - the first one favours ferromagnetically
ordered configurations of spins along x direction, while the second prefers paramagnetism. The
hamiltonian Eq.(1.1) possesses σ̂xn → −σ̂xn global Z2 symmetry. This transformation is generated
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by the so-called spin-flip operator

(−1)F =
N∏
i=1

σ̂zi ,
[
ĤQIM, (−1)F

]
= 0. (1.4)

The hamiltonian changes the sign under σzj → −σzj , σx2j → −σx2j transformation. This way, the
spectrum of the system is invariant under ĤQIM → −ĤQIM. This symmetry will later be identified as
a particle-hole symmetry of the model. Eq.(1.1) is time-reversal symmetric, since the time-reversal
operator is a complex conjugation operation K̂ and the hamiltonian is real.

For λ = 0 we have

ĤQIM = −J
N−1∑
n=1

σ̂xnσ̂
x
n+1, (1.5)

thus the global Z2 symmetry is spontaneously broken down and the model exhibits long-range order:

lim
|n−m|→∞

⟨σ̂xnσ̂xm⟩ = Q2 = 1 ⇒ ⟨σ̂xn⟩ = ±1 (1.6)

For λ ≪ 1 phase of the system remains qualitatively similar. In the opposite limit of λ → ∞,
infinitely strong magnetic field polarizes the spins along z direction and hence

⟨σ̂xnσ̂xm⟩ = 0. (1.7)

For 1≪ λ <∞ we have
lim

|n−m|→∞
⟨σ̂xnσ̂xm⟩ ∼ e−|n−m|/ξ. (1.8)

This way, since by from λ ≪ 1 to λ ≫ 1 regime is accompanied by a spontaneous breakdown of a
global Z2 symmetry, one can expect a quantum phase transition for some critical point λ = λc.

1.1 The Duality Transformation and Self-Duality for QIM

We pinpoint the exact value of λc by implementing the concept of self-duality [28]. We introduce a
duality transformation by defining µ̂xn+1/2 and µ̂zn+1/2 operators

µ̂xn+1/2 =

n∏
j=1

σ̂zj , µ̂zn+1/2 = σxnσ̂
x
n+1, (1.9)

where µ̂x,zn+1/2 squares to one and satisfy Eq.(1.3) algebra. Being a highly non-local operator in
original spin variables, the action of µ̂xn+1/2 on spin configuration is non-trivial:

µ̂xn+1/2| ↑1; ↑2; ↑3; ... ↑n−1;↑n; ↑n+1; ... ↑N ⟩x = | ↓1; ↓2; ↓3; ... ↓n−1;↓n; ↑n+1; ... ↑N ⟩x (1.10)

where µ̂xn+1/2 operator is known as the disorder operator, since it creates a domain wall and thus
disorders the spin configuration. Here the subscript |•⟩x denotes that we work in the basis states
of σ̂x operator. By expressing ĤQIM in terms of the disorder operators, we get

ĤQIM[σ]→ ĤQIM[µ] = J

(
−λ
∑
n

µ̂xn−1/2µ̂
x
n+1/2 −

∑
n

µzn+1/2

)
(1.11)
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Under the duality transformation the model is mapped onto itself and one can see that

ĤQIM[{σ};λ] = λĤQIM[{µ}; 1/λ] (1.12)

In the spirit of Kramers-Wannier duality, the model is self-dual and thus critical at λ = λc = 1.
Thus, we conclude that

⟨σx⟩ ≠ 0, ⟨µx⟩ = 0 if λ < 1,

⟨σx⟩ = 0, ⟨µx⟩ ≠ 0 if λ > 1.
(1.13)

1.2 The Jordan-Wigner Transformation

The Jordan-Wigner transformation is applicable to various one-dimensional spin problems. This
transformation maps the spin-12 operators onto creation and annihilation operators of spinless
fermions. Though the mapping is non-local, it allows one to extract the exact solution of vari-
ous spin-12 models, including QIM [31].

Consider the Pauli matrices Eq.(1.2). The eigenstates of σ̂z diagonal matrix are |↑⟩ and |↓⟩.
The corresponding raising and lowering operators σ̂± = σ̂x±iσ̂y

2 act in this 2-dimensional space as

σ̂+|↑⟩ = 0, σ̂−|↑⟩ = |↓⟩,
σ̂−|↓⟩ = 0, σ̂+|↓⟩ = |↑⟩. (1.14)

Now we introduce a spinless fermion, with the creation â† and annihilation â operators that
obeying the standard algebra

{â, â†} = 1, {â, â} = {â†, â†} = 0, (1.15)

The vacuum state |0⟩ is defined as a|0⟩ = 0 and by acting with â† on it we get â†|0⟩ = |1⟩. This
way, |0⟩ and |1⟩ form a basis for 2-dimensional fermionic space. |0⟩ and |1⟩ are eigenfunctions of
the particle number operator n̂ = â†â: n̂|0⟩ = 0× |0⟩ and n̂|1⟩ = 1× |1⟩. As a summary, we have

â†|1⟩ = 0, â|1⟩ = |0⟩
â|0⟩ = 0, â†|0⟩ = |1⟩.

(1.16)

The spin and fermionic cases show some similarity under the following identification

|↑⟩⇄ |1⟩, |↓⟩⇄ |0⟩ and σ̂+ ⇄ â†, σ̂− ⇄ â, σ̂z ⇄ 2n̂− 1. (1.17)

This correspondence is wrong for many body-systems, since the spin operators on different lattice
sites commute while the fermionic operators anti-commute. We can fix this issue by we attaching
non-local pre-factors

σ̂+j = e−iπ
∑j−1
k=1 â

†
kâk â†j , σ̂−j = e+iπ

∑j−1
k=1 â

†
kâk âj , σ̂zj = 2â†j âj − 1. (1.18)

The so-called "tail factor" N̂j = e−iπ
∑j−1
k=1 â

†
kâk counts the parity of fermions between sites 1 and

j − 1. Eq.(1.18) is known as the Jordan-Wigner transformation.
By employing the Jordan-Wigner transformation, we can reframe any spin-12 model as an equiv-

alent model of spinless fermions. Frequently, this can significantly simplify the process of solving
the model, while studying the properties of the fermionic model is equivalent to analyzing the spin
model and vice versa.
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1.3 Kitaev chain

In this subsection we apply Eq.(1.18) to the Quantum Ising model hamiltonian and map it onto the
so-called Kitaev chain [30, 32, 33]. Since the Kitaev chain is quadratic in fermionic fields, one can
diagonalize it exactly. This way, by studying the properties of the Kitaev chain, we automatically
extract information about QIM.

By transforming the QIM hamiltonian according to Eq.(1.18), we get:

ĤQIM → ĤKC = −λJ
N∑
n=1

(
2â†nân − 1

)
− J

N−1∑
n=1

(
â†nân+1 + â†nâ

†
n+1 + h.c.

)
(1.19)

Eq.(1.19) is describing a 1D p-wave superconductor, known in the literature as Kitaev chain. The
total number of particles is not conserved in Eq.(1.19), but the parity (−1)P = e−iπ

∑N
n=1 â

†
nân is.

Since we are interested in bulk properties, we put periodic boundary conditions. In general, for
the purpose of minimizing of the ground state energy, one imposes âN+1 = −(−1)N â1. Since we
are interested in the thermodynamic limit, we can fix N to be even and work with âN+1 = −â1. In
momentum space, Eq.(1.19) is written in the Bogoliubov–de Gennes form

ĤKC =
∑
k∈BZ

Ψ̂†
kĤkΨ̂k, Ψk =

(
âk
â†−k

)
(1.20)

Ĥk = h(k) · τ̂ , h(k) =


hx(k) = 0
hy(k) = J sin(kα0)
hz(k) = −J(cos(kα0) + λ)

(1.21)

with {τ̂α} being the Pauli matrices.
Since the parity operator and the Hamiltonian commute with eachother, both operators can

be diagonalized simultaneously. Due to this, the state of the system falls either into odd or even
sectors of the Z2 group. The particle-hole symmetry, generated by a charge-conjugation operator Ĉ,
would imply that there should exist a pair of states {|Ψ⟩; Ĉ|Ψ⟩} with energies {E;−E}. Therefore,
if {C, ĤKC} = 0, then the system has the particle-hole symmetry. In our case

Ĉ = τ̂xK̂, (1.22)

with K̂ being the complex-conjugation operator.
If the system has time-reversal symmetry, generated by a time-reversal operator T̂ , then there

exists a pari of state {|Ψ⟩; T̂ |Ψ⟩} with same energy E. If such symmetry exists in the model, then
[T̂ , ĤKC] = 0 and E(k) = E(−k), for all momenta k. For the case of spinless fermions, we have
T̂ = K̂ complex conjugation. This way, since (Hk)∗ = H−k, the system is time-reversal symmetric.

Since the model has both time-reversal and the particle-hole symmetry, the system is also chiral
symmetric. All of these symmetries are present in the bulk spectrum, extracted from Eq.(1.20,1.21)
:

E(±)(k) = ±E(k) = ±
√
h2z(k) + h2y(k) = ±J

√
1 + λ2 + 2λ cos(kα0). (1.23)

Due to particle-hole symmetry we have E+(k) and E−(k) = −E+(k) branches of spectrum, while
the time-reversal symmetry demands E(k) = E(−k) to hold.

The phases appearing for different signs of λ are related by a particle-hole transformation ân →
(−1)nâ†n, resulting in λ→ −λ.
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(a) (b)

Figure 1.1: (A) The trajectory (red line) of the vector ĥ(k) for |λ| > 1. ĥ(k) vector
traverses only an arc of the circle, therefore the winding number is 0; (B) For any |λ| < 1,

the winding number is 1.

Since the Hamiltonian does not conserve the number of particles, one needs to use the the
Bogoliubov transformation to diagonalize Eq.(1.20):

âk = cos(θk)ĉk − i sin(θk)ĉ†−k, tan(2θk) =
hy(k)

hz(k)
. (1.24)

Under Eq.(1.24) we get
ĤKC = −

∑
k∈BZ

E(k) +
∑
k∈BZ

E(k)ĉ†k ĉk, (1.25)

with the ground state of the system |GS⟩ defined as ĉk|0⟩ = 0 for all momentum k.
As evident from Eq.(1.23), the bulk spectrum becomes gapless for λ = ±1. Due to the particle-

hole symmetry of the model, we can say that only |λ| < 1 (weak coupling) and |λ| > 1 (strong
coupling) phases are distinct. The ground state of the system can be written down exactly

|GS⟩ ∝
∏

0<k<π

(
1 + φC.p(k)c

†
−kc

†
k

)
|0⟩, φC.p(k) = −i tan(θk). (1.26)

One can rewrite φC.p(k) in the real space, and interpret it as a wavefunction of the Cooper pair.
Important feature of φC.p(x) is that it behaves differently in the weak and strong coupling cases
[33]

|φC.p(x)| ∼
{
e−|x|/ξ, |λ| > 1
const., |λ| < 1

(1.27)

The fact that the Cooper-pair size is finite for |λ| > 1 and infinite for |λ| < 1 does not necessarily
imply that these phases are different from each other. To distinguish these two, we use the topolog-
ical characterization of the phases. From Eq.(1.21) we can define a normalized vector ĥ(k) = h(k)

|h(k)| .

Since hy(k) = −hy(−k) and hz(k) = hz(−k), the direction where ĥ(k) can point to for k = 0 and
k = π/α0 is restricted as

ĥ(0) = −sgn(1 + λ)ẑ = s0ẑ, (1.28)

ĥ(π/α0) = sgn(1− λ)ẑ = sπ/α0
ẑ (1.29)

where s0 and sπ/α0
are the signs of the kinetic energy respectively at k = 0 and k = π/α0 parts of

the Brillouin zone. When one varies the momentum k within the Brillouin zone, ĥ(k) vector will
move along the circumference of a unit circle. If s0 = −sπ/α0

, then the trajectory of the unit vector
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1.5 1.0 0.5 0.0 0.5 1.0 1.5
λ

2

1

0

1

2

E/J

Figure 1.2: The figure shows the eigenstates of Eq.(1.19) for various λ parameter, with
open boundary conditions. The spectrum is extracted for the system consisting of L = 16

sites.

will wind once around the origin (Fig.1.1b). If s0 = sπ/α0
, then the vector traverses a arc, without

zero winding number (Fig.1.1a). Topologically these are distinct trajectories, since it is impossible
to continuously deform one into the other. The Z2 topological invariant that distinguishes these
two regimes is

ν = s0sπ/α0
. (1.30)

To demonstrate the difference between ν = ±1 phases, we study the Kitaev chain with open
boundary conditions. For simplicity we set λ ≤ 0 and introduce a notation

µ = 1 + λ. (1.31)

In terms of a new variable µ, the weak and strong coupling limits are µ > 0 and µ < 0, respectively.
The low-energy sector of the model can be linearly approximated as Ĥk a Dirac Hamiltonian

Ĥk ≃ ∆kτ̂y − µτ̂z. (1.32)

Small momenta k correspond to long-wave physics, thus we can pass from a discrete to a continuum
description of the theory n→ x. Since the corresponding Dirac equation is massive, one should ex-
pect zero energy bound-states on the mass kinks [34]. Suppose that the mass depends on coordinate
µ→ µ(x) and has a kink profile

µ(−∞) < 0 strong pairing side (1.33)
µ(+∞) > 0 weak pairing side. (1.34)

We seek for a single-particle solution |ψ(x)⟩ with zero energy, satisfying ĤKC|ψ(x)⟩ = 0. Such a
solution is

|ψ(x)⟩ = 1√
2
e−

1
∆

∫ x
0 dx′µ(x′)

(
1
−i

)
. (1.35)

The operator γ̂ that annihilates this mode is

γ̂ =
1

N

∫
dwe−

1
∆

∫ w
0 dx′µ(x′) × 1√

2
(â(x)− iâ(x)) , (1.36)

where N is some normalization factor. By performing a phase transformation γ′ = eiπ/4γ̂, we see
that γ′ = γ′†. Thus, the zero-energy mode localized at the mass kink is a Majorana fermion. Due
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to the normalization, the zero-mode appears only µ > 0 and vanishes if µ < 0.
One can solve the model and extract the full spectrum of the model using exact diagonalization

method [35], shown on Fig.(1.2). As it can be seen, for −1 < λ < 1 and zero-energy state emerges
and they disappear for |λ| > 1.

For λ = 1 and λ = −1, the single-particle gap closes at k = ±π/α0 and k = 0 respectively.
By Taylor expanding the spectrum in the vicinity of the gap-closing momentum, one extracts a
low-energy single-particle spectrum. For λ→ ±1, we have

E(k) ≈ J
√
τ2 + (kα0)2, |τ | ≪ 1, |kα0| ≪ 1 (1.37)

with λ = ±1 + τ . As already anticipated from Eq.(1.32), the spectrum corresponds to a spectrum
of a massive relativistic fermion, with m(τ) ∼ |τ | mass. Since the mass gap and the correlation
length are related as ξ ∼ m−1, we get that

ξ ∼ |τ |−1, (1.38)

i.e. close to the critical point the correlation length diverges, with ν = 1 critical exponent, in
agreement with the exact solutions [27].

As one approaches τ → 0 critical point, ξ becomes larger relative to α0 lattice spacing. This
way, close to criticality we can pass from discrete lattice description to the continuum limit. At the
critical point, the excitation spectrum becomes

E(k) ≈ ∆|k|, ∆ = Jα0. (1.39)

1.4 Majorana fermions in Kitaev chain

In the previous subsection, we showed that the topological phase of the Kitaev chain is described
by a zero-energy mode of Majorana degree of freedom. For the sake of completeness, we briefly
analyze the topologicaly trivial and non-trivial phases using Majorana representation of the model.
The reader can skip this section, as the present content is not relevant for our further discussions.

Majorana fermions are introduced by multiplying order and disorder operators

ζ̂j = (−1)j σ̂xj µ̂xj+1/2 = âj + â†j , η̂j = iζ̂j σ̂
z
j = i(âj − â†j). (1.40)

Being hermitian field operators that square to unity, Majorana fermions obey the following algebra

{ζ̂j , ζ̂k} = {η̂j , η̂k} = 2δjk, {ζ̂j , η̂k} = 0. (1.41)

With open boundary conditions, the Kitaev chain in Majorana representation is

ĤKM = iλJ

N∑
j=1

ζ̂j η̂j + iJ

N−1∑
j=1

η̂j ζ̂j+1 (1.42)

and the corresponding parity operators is

(−1)P =

N∏
j=1

(−iζ̂j η̂j). (1.43)



12 Chapter 1. Quantum Ising model

A Majorana zero-energy mode Ψ̂ is described an operator, obeying the following conditions [36]

[Ĥ, Ψ̂] = 0, (1.44)
{(−1)P , Ψ̂} = 0, (1.45)
Ψ̂†Ψ̂|N→∞ = 1. (1.46)

According to these conditions, Ψ̂ operator maps a state between odd and even parity sectors.
Together with Eq.(1.44) and Eq.(1.46), we see that the energy spectrum of the system should be
the same in both parity sectors. Since we want the zero-energy mode to be localized at the boundary
of the system, the matrix elements of Ψ̂ should decay exponentially fast with respect to l distance
from the boundary. It has been shown [36] that the good candidate for the left and right edge zero
modes are

Ψ̂
(N)
left = ζ̂1 + λζ̂2 + λ2ζ̂3 + ... (1.47)

Ψ̂
(N)
right = η̂N + λη̂N−1 + λ2η̂N−2 + ... (1.48)

However, these operators do not commute with Hamiltonian:

[ĤKM, Ψ̂
(N)
left ] = JλN η̂L, [ĤKM, Ψ̂

(N)
right] = JλN ζ̂1 (1.49)

The commutation condition is exactly satisfied only if |λ| < 1 and N →∞. In this regime, operator
becomes normalized and thus the modes become exct zero-energy edge modes.

Thus, in the thermodynamic limit, for |λ| < 1 there are two exact Majorana edge zero modes
and the phase is topologically non-trivial. If |λ| > 1, the edge modes disappear and the system falls
in a topologically trivial phase.

1.5 Critical QIM and Relativistic Quantum Field Theory

As demonstrated in Eq.(1.37), in the vicinity of the critical point the spectrum becomes formally
relativistic. In this subsection we will derive a quantum field theory of a relativistic massive Ma-
jorana fermions in 1+1 dimensions, which is a valid description of QIM close to the critical point.
As already mentioned in Eq.(1.39), at the critical point the model becomes massless and thus
scale-invariant.

The components of Nambu-spinor Eq.(1.20) are not mutually independent, since Ψ̂†
k = Ψ̂T

−kτ̂x.
This means that Ψ̂k is real and thus a Majorana fermion spinor. In the continuum limit, the lattice
constant α0 → 0 and the coupling constant J → ∞, but their product is finite v = 2Jα0. The
Majorana field operators η̂i and ζ̂i in the continuum limit are:

η̂i →
√
2α0η̂(x), ζ̂i →

√
2α0ζ̂(x), (1.50)

η̂i+1 →
√
2α0η̂(x+ α0) ≈

√
2α0

(
η̂(x) + α0∂xη̂(x) +O(α2

0)

)
, (1.51)

ζ̂i+1 →
√
2α0ζ̂(x+ α0) ≈

√
2α0

(
ζ̂(x) + α0∂xζ̂(x) +O(α2

0)

)
. (1.52)

Using these rules, the Kitaev chain hamiltonian close to the criticality in the continuum limit is
expressed as:

ĤKM → ĤKM = i2λJ

∫
dxζ̂xη̂x + i2J

∫
dxη̂xζ̂x+α0 ≈ i

∫
dx
(
vη̂∂xζ̂ −mη̂ζ̂

)
+O(α2

0) (1.53)
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Due to the particle-hole symmetry of the model, we can concentrate only on λ > 0 regime. In this
case, the mass gap of the Majorana field is m = 2J(λ − 1). One can pass to the chiral Majorana
fields

ϕ̂R =
1√
2

(
η̂ − ζ̂

)
, ϕ̂L =

1√
2

(
η̂ + ζ̂

)
(1.54)

to obtain the hamiltonian of a relativistic massive Majorana fermion in 1+1 dimensions [28, 27]

ĤKM =

∫
dxΦ†

(v
2
(−i∂x)σ̂z +

m

2
σ̂y

)
Φ, Φ† = ΦT = (ϕR, ϕL) . (1.55)

In this representation, the global Z2 transformation corresponds to ϕR,L → −ϕR,L, while the duality
transformation is ϕR → −ϕR, ϕL → ϕL

1. Since during the duality transformation the mass term
changes the sign, the model is self-dual and thus a critical when m = 0:

ĤKM = i
v

2

∫
dx (ϕL∂xϕL − ϕR∂xϕR) . (1.56)

We can pass from real 1+1 Euclidean space R2
x,τ to a complex plane Cz,z

z = τ + ix, z = τ − ix. (1.57)

Here we have disregarded v
2 pre-factor for convenience, as it only sets the energy scale and is irrele-

vant for our discussion. The derivatives in the complex representation are ∂ ≡ ∂z = 1
2 (∂τ − i∂x) and

∂ ≡ ∂z. In Euclidean space, the equation of motion of Majorana fields show that ϕR(x, t) = ϕR(x−t)
and ϕL(x, t) = ϕL(x + t), meaning that they are the right and left moving fields, respectively. We
identify these fields as ϕR(x, t) ≡ ϕ(z, z) and ϕL(x, t) ≡ ϕ(z, z). The Euclidean action of the model
at the critical point is

S =

∫
d2z

(
ϕ∂ϕ+ ϕ∂ϕ

)
, (1.58)

which is a well-studied 2-dimensional Conformal Field Theory (CFT) [28], where ϕ and ϕ are the
so-called primary fields. Their scaling dimension ∆ϕ and ∆ϕ is defined as ϕ(λz) = λ∆ϕ(z) and
ϕ(λz) = λ∆ϕϕ(z), where λ is the re-scaling factor of the complex space.

The equation of motion δS = 0 dictates that:

∂ϕ(z, z) = 0, ϕ(z, z) = ϕ(z) Holomorphic, (1.59)
∂ϕ(z, z) = 0, ϕ(z, z) = ϕ(z) Anti-Holomorphic. (1.60)

The propagators then are [28]

⟨ϕ(z1)ϕ(z2)⟩ =
1

2π

1

z1 − z2
, ⟨ϕ(z1)ϕ(z2)⟩ =

1

2π

1

z1 − z2
⟨ϕ(z1)ϕ(z2)⟩ = 0 (1.61)

Consider a 2-point correlation function operators of ψ1 and ψ2

Γ(z1, z2) ≡ ⟨ψ1(z1)ψ2(z2)⟩. (1.62)

Generally speaking, Γ(z1, z2) will be diverging if z2 → z1. The leading contribution of the singu-
larity is determined by the corresponding scaling dimensions ∆1 and ∆2. Due to this, one may
substituteψ1(z1)ψ2(z2) product by some combination of other operators that are allowed in the the-
ory. If operators {ψk} and their derivatives form a complete set, then ψ1(z1)ψ2(z2)|z1→z2 product

1Alternatively one could define the duality transformation as ϕR → ϕR and ϕL → −ϕL
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is equivalent to

lim
z1→z2

ϕ1(z1)ϕ2(z2) = lim
z1→z2

∑
k

Cijk
|z1 − z2|∆1+∆2−∆k

ψk

(
z1 + z2

2

)
. (1.63)

Using this equivalence, we can extract the diverging contribution from the product of operators.
Only those ψk fields with ∆k ≤ ∆1 +∆2 will appear in the singularity, since otherwise the contri-
bution is regular. Eq.(1.63) is known as the Operator Product Expansion (OPE) [37] and in the
literature it is frequently expressed as

ϕ1(z1)ϕ2(z2) ∼
∑
k

Cijk
|z1 − z2|∆1+∆2−∆k

ψk

(
z1 + z2

2

)
. (1.64)

It must be noted, that the operator product expansion has a physical interpretation only if one uses
while taking expectation values with respect some state in the system.

If a generic model admits CFT description, then the OPE of the (anti-)holomorphic component
of energy-momentum tensor T with itself will always yield [27]

T (z1)T (z2) ∼
1

2

c

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂z2T (z2)

z1 − z2
, (1.65)

where c is the so-called central charge, which is theory dependent but a universal number. In the
case of 2-dimensional CFT of Majorana fermions, we have

T (z1) = −π : ϕ(z1)∂z1ϕ(z1) : (1.66)

with : • : denoting the normal ordering. Using Wick’s theorem, one can calculate such OPE and
show that c = 1

2 [27]. Moreover, Eq.(1.61) automatically means that the OPE for ϕ with itself to
be

ϕ(z1)ϕ(z2) ∼
1

2π

1

z1 − z2
. (1.67)

Generically, the OPE between T (z1) and a primary field ϕ(z2) is fixed to be

T (z1)ϕ(z2) ∼
h

(z1 − z2)2
ϕ(z2) +

1

z1 − z2
∂z2ϕ(z2), (1.68)

where h is the so-called conformal weight of ϕ. Again, using the Wick’s theorem, we have

T (z1)ϕ(z2) ∼
1
2

(z1 − z2)2
ϕ(z2) +

1

z1 − z2
∂z2ϕ(z2). (1.69)

Therefore, we get
(
hϕ = 1

2 ;hϕ = 0
)
. Identical calculations for the anti-holomorphic components

give
(
hϕ = 0;hϕ = 1

2

)
. The energy density operator of our model is ϵ(z, z) = iϕ(z)ϕ(z). Since

it is proportional to the mass term, we deduce that the scaling dimension is ∆ϵ = hϕ + hϕ = 1.
Knowledge of the central charge and the scaling dimension of ϵ energy density operator allows us
to identify the theory as the Minimal ModelM(4, 3) [38].
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In the Minimal ModelM(4, 3) with c = 1
2 , is is known that any correlation function that involves

a primary field ψ(z) must satisfies the following equation:(
3

4
∂2 −

N∑
i=1

∆i

(z − zi)2
−

N∑
i=1

∂i
z − zi

)
⟨ψ(z)ϕ1(z1)ϕ2(z2)...ϕN (zN )⟩ = 0. (1.70)

As we saw in Sec.(1.1), the critical Ising model can be described either by order σ(z, z) or µ(z, z)
disorder operators. The OPE for ψ(z)σ(z1, z1) and ψ(z)µ(z1, z1) are [28]

ψ(z)σ(z1, z1) ∼
µ(z1, z1)√
z − z1

, ψ(z)µ(z1, z1) ∼
σ(z1, z1)√
z − z1

. (1.71)

The correponding conformal weights for σ and µ are(
hσ;hσ

)
,
(
hµ;hµ

)
. (1.72)

Due to Kramers-Wanier duality, they should be equal hσ = hµ = h and hσ = hµ = h. Plugging
Eq.(1.71) in Eq.(1.70) gives

h = h =
1

16
, (1.73)

Using these conformal weight, the scaling dimension for σ(z, z) and µ(z, z) operators are ∆µ =
∆σ = h + h = 1/8 and therefore we can immediately deduce following the two-point correlation
functions

⟨σ(z1, z1)σ(z2, z2)⟩ ∼ ⟨µ(z1, z1)µ(z2, z2)⟩ ∼
1

|z1 − z2|1/4
. (1.74)

This way, at the critical point the spin-spin correlation function for QIM follows a power law with
η = 1/4 critical exponent. This result is in agreement with an exact solution [27].

The field theory of QIM close to the criticality can emerge naturally in various setups, as
anticipated from the phenomenon of universality [28, 29]. Moreover, continuous field theories such
as Eq.(1.53) can be implemented as a natural phenomenological description of more exotic regimes.
Such cases will be encountered in Sec.(4) and Sec.(5), where we use critical Ising field theory to
describe a super-symmetric critical points.
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Chapter 2

XXZ model and Abelian Bosonization

In this chapter we will study the so called Heisenberg XXZ model. Being a generalization of QIM,
it is a paradigmatic exactly solvable model [29] of interacting SU(2) spins and can be studied on
various lattice geometries. In this case, all three projections participate in pairwise interaction,
while for simplicity the external magnetic field is absent. Similar to QIM, the XXZ model contains
a single parameter |∆| ≤ 1 that drives the phase transition. Referred to as an exchange anisotropy,
∆ quantifies the imbalance of interaction strength along one specific direction relative to others.
Instead of exploring the exact Bethe ansatz solution [28], here we will be again interested in the
so-called asymptotically exact solutions. By implementing Jordan-Wigner transformation, together
with Abelian bosonization and renormalization group arguments, we will demonstrate that the
model remains critical for |∆| ≪ 1. The criticality is governed by a Gaussian conformal field
theory. We will show that the effective theory derived by bosonizing the model is compatible with
exact solution and the system remains critical for whole |∆| ≤ 1 regime. The bosonization tools
introduced in this chapter will play a central role in extracting and analyzing the effective field
theory for a more complex case discussed in Sec.(4) and Sec.(5).

The Hamiltonian for the so called spin−1
2 XXZ Heisenberg model on 1D chain with nearest

neighbor interactions reads as

HXXZ(∆) = J
N∑
i=1

(
Sxi S

x
i+1 + Syi S

y
i+1 +∆Szi S

z
i+1

)
(2.1)

where S is the spin vector residing on the site i of the lattice, each represented by 2 × 2 Pauli
matrices, S = 1

2σ. Here we impose a periodic boundary condition SN+1 = S1 and assume that
there are even N number of lattice sites. By choosing z as our axis of quantization, the model can
be re-written as

HXXZ(∆) = J
N∑
i=1

(
1

2

[
S+
i S

−
i+1 + S+

i+1S
−
i

]
+∆Szi S

z
i+1

)
, (2.2)

S± being the spin raising and lowering operators. Now it is clear that Sz part of the model is
responsible for (anti-)alignment of spins along z direction, while kinetic term S± takes care of the
propagation of spin excitations along the chain.

An important conservation law of Eq.(2.1) is that of a total magnetization along z axis:

Sz =
1

N

N∑
i=1

Szi , [Sz,HXXZ(∆)] = 0. (2.3)

Suppose we fix J to be positive coupling constant and thus consider an anti-ferromagnetic XXZ
model. The dimensionless parameter ∆ quantifies the deviation from an SU(2) invariant point. For
∆ → +∞, z − z interaction dominates and the ground state corresponds to the Neel state, with
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Z2 symmetry. Conversely, for ∆→ −∞, the ground state of the system is the ferromagnetic state,
again with Z2 symmetry. For ∆ = 1, the symmetry of the model is maximal, corresponding to
non-Abelian SU(2) group and for ∆ = 0, the symmetry corresponds to Abelian O(2) group.

Another important symmetry property of Eq.(2.1) Hamiltonian is the similarity transformation:
one can transform the spin operators as

Sxi → (−1)iSxi , Syi → (−1)iSyi , Szi → Szi . (2.4)

This transformation preserves the algebra between the spin operators, however under this transfor-
mation we get

HXXZ(∆)→ H̃XXZ(∆) = −HXXZ(−∆)

H̃XXZ(∆) = −J
N∑
i=1

(
Sxi S

x
i+1 + Syi S

y
i+1 −∆Szi S

z
i+1

)
.

(2.5)

This tells us that Hamiltonians HXXZ(∆) and −HXXZ(−∆) can be diagonalized in the same basis,
thus they share the physical properties and thus the overall physics is governed by the relative sign
of J and ∆. It should be noted that ∆ = ±1 points correspond to a fully is SU(2) symmetric
regimes. Since we have fixed J to be positive, then we can have two possible scenarios

1. If ∆≫ +1, then the system is anti-Ferromagnetic

2. If −∆≫ 1, then the system is Ferromagnetic

This two scenarios are valid both for HXXZ(∆) and H̃XXZ(∆). For convenience, we will be working
with H̃XXZ(∆) Hamiltonian.

Before passing to the next section, we need to mention the ground state and the excitation
structure in ∆ → ±∞ limits of the theory. Suppose we take H̃XXZ(∆ → −∞) case, then the
effective Hamiltonian becomes

H̃XXZ(∆) = −J |∆|
N∑
i=1

Szi S
z
i+1. (2.6)

In this limit, the model reduces to classical Ferromagnet, with doubly degenerate ground state of
aligned spins Fig.(2.1a). If the system absorbs a photon or a phonon, carrying s = 1 spin quantum
number, then this will induce a flip of a single spin. If one introduces weak kinetic term, then a
single excitation with spin s = 1 will start to propagate either to the left or to the right Fig.(2.1c).
The energy cost of the propagation is zero. These excitations are known as magnons, since they
carry spin s = 1.

In the opposite limit ∆→ +∞, we end up with a classical anti-Ferromagnet, where the ground
state corresponds to Neél state of anti-aligned spins Fig.(2.1b). As before, if the system absorbs a
photon with s = 1 and introduces weak kinetic term, then the spin excitation above the Neél state
will decay into two s = 1

2 spinons that will propagate to the left and to the right Fig.(2.1d).

2.1 From XXZ to interacting fermions

Using the Jordan-Wigner transformation Eq.(1.18), we can map H̃XXZ(∆) spin model onto the
model of interacting spinless fermions:

H̃XXZ(∆)→ Ĥ(∆) = H0 + Hint., (2.7)
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(a) (b)

(c) (d)

Figure 2.1: (a) Degenerate vacua of the ferromagnetic model; (b) Degenerate vacua of
the antiferromagnetic model; (c) Magnon excitations in the ferromagnetic ground state; (d)

Magnon decay into the pair of spinons in an antiferromagnet.

where the quadratic part is given by

H0 = −
J

2

(
N−1∑
i=1

(
a†iai+1 + a†i+1ai

)
−∆

N∑
i=1

ni −∆
N

4

)
. (2.8)

while the interaction becomes

Hint. =
J∆

2

L∑
i=1

nini+1, (2.9)

where ni = a†iai . It is crucial to note that the periodic boundary conditions for the XXZ model
does not necessarily translate to the same conditions for the fermionic operators. As we already
saw in Sec.(1.3), due to the Jordan-Wigner string, the fermionic operators are supplemented with
the boundary conditions depending on the total number of fermions Ne in the system

ai+N = −(−1)Neai. (2.10)

It is important to note that Eq.(2.7) conserves the total particle number Ne =
∑N

i=1 ni, which is an
immediate consequence of Eq.(2.3) conservation law.

∆ = 0 case in the original spin problem would yield XX model. Due to a planar O(2) symmetry,
the ground state expectation value of the total magnetization along z axis is ⟨Sz⟩ = 1

L

∑L
i=1⟨Szi ⟩ = 0.

On the other hand, using Jordan-Wigner transformation we have

⟨Sz⟩ = 1

N

N∑
i=1

⟨ni⟩ −
1

2
=

2Ne −N
2N

= 0 → Ne =
N

2
. (2.11)

This means that Heisenberg XX model is equivalent to a tight binding model at half filling.
Furthermore, since we typically operate in a thermodynamic limit N →∞, the boundary conditions
do not play a significant role. This way, we assume Ne to be even and work with anti-periodic
boundary conditions for the fermionic operators.

Passing to the momentum space as

aj =
1√
N

∑
k∈BZ

eijkα0ak, (2.12)
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we get
H0 =

∑
k∈BZ

ε(k)a†kak, ε(k) = −J cos(kα0) (2.13)

where the summation over momenta runs over the first Brillouin zone. In finite lattice limit, these
momenta are

k =
2π

N

(
n+

1

2

)
, n = −N

2
,−N

2
+ 1,−N

2
+ 2, ...,

N

2
− 1. (2.14)

Here the anti-periodic boundary condition Eq.(2.10) is taken into account.
As we have already seen, the half of the lattice sites are occupied by spinless fermions, ⟨ni⟩ = 1

2 .
For the state to be the ground state at zero temperature, the spectrum must be populated from the
lowest energy states first. That is the case, if all of the momenta within k ∈

(
− π

2α0
, π
2α0

)
region are

occupied. This way, the chemical potential is located at zero µ = εF = ε(±kF ) = 0, with kF = π
2α0

.

−π −π/2 0 π/2 π

kα0

1.0

0.5

0.0

0.5

1.0

ε(k)/J

(a)

0 2kF 4kF

qα0

0.0

0.5

1.0

1.5

2.0

ω(k, q)/J

(b)

Figure 2.2: (a) The figure shows the single particle spectrum Eq.(2.13) for L = 64. The
red circles correspond to the quantum states occupied by fermions. The blue line corresponds
to the chemical potential, that automatically turns out to be µ = 0 due to half filling of
the model; (b) The figure shows the full spinon excitation spectrum of XX model, shaded in
blue. The most important feature of this continuum is the linear growth of ω(k, q) for q ≈ 0

and q ≈ 4kF .

Using this construction of the ground state, we can extract the spin-spin correlation function
for XX model. Since Ŝzn = â†nân − 1

2 , using Wick’s theorem we have

⟨ŜznŜzm⟩ = −⟨â†nâm⟩⟨â†mân⟩. (2.15)

Using the structure of the ground state, we get

⟨â†nâm⟩ =
1

N

∑
k∈BZ

e−i(n−m)kα0⟨a†kak⟩ ≈ −
1

π

sin(π2 (n−m))

n−m . (2.16)

This way, the two-point spin-spin correlation function beocmes

⟨ŜznŜzm⟩ = −
1

π2
sin2(π2 (n−m))

(n−m)2
. (2.17)

This correlation function has few important features. Most importantly, it exhibits a power-law
decay of the correlation function and thus indicates that the theory is critical. Apart from the
smooth part of the correlator, one can see a term with a staggering factor eiπ(n−m) = ei2kF (n−m)α0

– a signature that the microscopic constituents of the model are fermionic in nature.
The simplest excitations above the ground state correspond to the particle-hole pairs. When

the system absorbs energy from the environment, these excitations propagate independently as free
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particles, with well defined energy and momentum. The excitation spectrum ω(k; q) of XX model,
i.e. free fermion model is gapless. For N ≫ 1 large systems, the excitation spectrum becomes a
continuum and it takes infinitesimally small energy to excite the system. Apart from ω(k; q) being
continuous, another important property of ω(k; q) is that for small momentum transfer |q| ≪ kF
very close to fermi momentum k ≈ ±kF

ω(k ≈ ±kF ; q) = ε(±kF + q)− ε(±kF ) ≈ ±vF q, vF = Jα0 (2.18)

the excitation spectrum becomes is linear and only depends on transferred momentum q.

2.2 Continuum limit

As we have already seen, having non-zero ∆ anisotropy parameter in XXZ Heisenberg model, renders
the corresponding fermionic model interacting - a solvable model using Bethe Ansatz, though the
solution is not trivial. Instead of attempting to seek the exact solution of the microscopic model
Eq.(2.8) even for small |∆| ≪ 1 anisotropy, one can try to extract the physics of the low-energy
sector and analyze the properties of the model at large distances. As we already saw in Sec.(1),
this type of approach turns out to be extremely insightful due to the universality classification of
physical models, allows one to use mathematical tools such as Renormalization Group approach
and etc. Moreover, a low-energy effective theories of many-body system is a useful guide for more
exact numerical computations.

Since we are interested in the low energy sector of the model, the quantum states that are far
below the Fermi energy do not participate and thus we do not need to know the full spectrum of
the model. As we already saw, in the low energy sector of the excitation spectrum, only the states
close to k = ±kF participate. This way, we can linearize the single particle spectrum close to the
fermi momenta: for k = kF , i.e. right branch of the spectrum we have

εR(k) = vF (kF + k), |k + kF | < Λ≪ kF (2.19)

and similarly, for the left branch we have

εL(k) = −vF (−kF + k), |k − kF | < Λ≪ kF . (2.20)

Using this approach, in Eq.(2.13) we only retain the momenta that are close either to the left or
the right branch of the spectrum

H0 ≈
∑
|p|<Λ

ε(p− kF )a†p−kF ap−kF +
∑
|p|<Λ

ε(p+ kF )a
†
p+kF

ap+kF =

=
∑
|p|<Λ

ε(p− kF )a†p−kF ap−kF +
∑
|p|<Λ

ε(p+ kF )a
†
p+kF

ap+kF ≈

≈
∑
|p|<Λ

(ε(−kF )− vF p)L†
pLp +

∑
|p|<Λ

(ε(kF ) + vF p)R
†
pRp =

=
∑
|p|<Λ

vF p
(
R†
pRp − L†

pLp

)
.

(2.21)

Eq.(2.21) corresponds to a formally relativistic theory of massless fermions, which propagate
with vF velocity. By linearizing the original bounded spectrum, we ended up with an unbounded
spectrum for left and right branches ϵR/L(p) = ±vF p. We assume that all energy states with p < 0
for right and all states with p > 0 for left branches are occupied - this way we have introduced an
infinitely full Fermi sea, denoting such state as |FS⟩.



22 Chapter 2. XXZ model and Abelian Bosonization

The corresponding spatial representation of Rp, Lp operators are

R(x) =
1√
N

∑
|p|<Λ

eipxRp, L(x) =
1√
N

∑
|p|<Λ

eipxLp, x = jα0 (2.22)

Since Rp and Lp operators describe physical fermions, one must check whether R(x) and L(x) are
physical fermionic fields or no. A straightforward way is to check the anti-commutation relations.

{R†(x), R(y)} = 1

N

∑
|p|<Λ

∑
|q|<Λ

e−i(px−qy){R†
p, Rq} =

1

N

∑
|p|<Λ

e−ip(x−y) ≈ α

π

1

(x− y)2 + α2
(2.23)

with α ∼ 1/Λ cutoff. This way, we see that the commutator, instead of being equal to the Dirac δ-
function, it is given by a Lorenzian of width α. However, the important point is that the δ-function
can be recovered using two equivalent ways:

1. The δ-function is recovered from α
π

1
(x−y)2+α2 if |x− y| ≫ α - i.e. at large distances the fields

satisfy the proper algebra

2. Remove the cutoff altogether, i.e. α → 0. This is equivalent to Λ → ∞, or in other words
taking the original lattice constant α0 → 0, j →∞ so that x = jα0 stays fixed.

The second way defines the continuum limit of the theory - one takes α0 lattice constant to be
infinitesimally small, while taking J infinitely large, so that their product vF = Jα0 stays finite.
Taking the continuum limit yields completely linear single particle spectrum at k = ±kF , while
sends the top and bottom edge of the spectrum to +∞ and −∞, respectively and thus introduces
the aforementioned infinite Fermi sea. The introduction of Dirac sea leads to important differences
between the vacuum properties of linearized and non-linearized models, for example - the vacuum
energy of the linearized model is EFS = ⟨FS|H0|FS⟩ = −∞. However, since we are interested in
the fluctuation above the Fermi sea, we can shift the energy scale and set ⟨FS|H0|FS⟩ to zero by
normally ordering the Hamiltonian:

H0 → H0 =
∑
|p|<Λ

vF p
(
: R†

pRp : − : L†
pLp :

)
(2.24)

In the continuum limit, the fermionic operators are modified in the following way

N∑
i=1

→ 1

α0

∫ L

0
dx aj →

√
α0a(x), with x = jα0 (2.25)

Using these rules, we get

a(x) = eikF xR(x) + e−ikF xL(x). (2.26)

Here R(x) and L(x) are smoothly varying fields. Plugging the continuum version of the fermionic
operators into the hamiltonian of XX model and normally ordering the result, we get

H0 = −
J

2

∫ L

0
dx

(
eikFα0 : R†(x)R(x+ α0) : +e

−ikFα0 : L†(x)L(x+ α0) : +h.c.

)

−J
2

∫ L

0
dx

(
eikF (2x+α0) : L†(x)R(x+ α0) : +e

−ikF (2x+α0) : R†(x)L(x+ α0) : +h.c.

)
.

(2.27)
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Since kF = π
2α0

, on the second line we have terms with e
−i π

α0
x
= (−1)x/α0 rapidly oscillating

pre-factors and they are dropped. This way, we have

H0 = −
J

2

∫ L

0
dx

(
i : R†(x)R(x+ α0) : −i : L†(x)L(x+ α0) : +h.c.

)
. (2.28)

Expanding the fermionic fields as R(x+ α0) ≈ R+ α0∂xR and L(x+ α0) ≈ L+ α0∂xL, we get

H0 = −ivF
∫ L

0
dx

(
: R†∂xR : − : L†∂xL :

)
≡ H(R)

0 + H(L)
0 . (2.29)

Thus we see that the Hamiltonians of L and R sectors completely decouple.

2.3 Abelian Bosonization

The field theory written in this manner, in terms of chiral R and L fields. The model possesses
UL(1) ⊗ UR(1) Abelian symmetry, meaning that the number of left and right moving fermions are
conserved independently. This is a larger symmetry relative to the original U(1). By defining the
UL(1) and UR(1) chiral currents operators as

JR =: R†R :, JL =: L†L :, (2.30)

we see that the aforementioned chiral U(1) transformations are generated

NR =

∫ L

0
dxJR, NL =

∫ L

0
dxJL. (2.31)

The chiral fields, say R field in Heisenberg picture reads as

R(x, t) = eitH
(R)
0 R(x, 0)e−itH

(R)
0 . (2.32)

Using the equation of motion ∂tR(x, t) = i
[
H(R)

0 , R(x, t)
]
, we get

∂tR(x, t) = −vF∂xR(x, t). (2.33)

Similarly
∂tL(x, t) = +vF∂xL(x, t). (2.34)

By passing to the so called light-cone coordinates x± = vF t± x, we get

∂−L(x, t) = 0, ∂+R(x, t) = 0, (2.35)

which means that L(x, t) = L(x + vF t, 0) = L(x+) chiral field moves to the left and similarly
R(x, t) = R(x− vF t, 0) = R(x−) moves to the right. If we include the light-cone coordinate in the
Fourier representation of the chiral fields, we get

R(x−) =
1√
N

∑
|p|<Λ

e−ipx−Rp, L(x+) =
1√
N

∑
|p|<Λ

eipx+Lp, x = jα0 (2.36)
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Due to this, the chiral current satisfy identical equations of motion and therefore

JL(x, t) = JL(x+), JR(x, t) = JR(x−) (2.37)

Let us calculate two point correlation functions for the chiral currents. During the calculations,
we will be taking the average with respect to the infinitely full Fermi sea, i.e. ⟨•⟩ ≡ ⟨FS| • |FS⟩.
First, we have a trivial correlation function

⟨JL(x+)JR(y−)⟩ = 0. (2.38)

Next comes the correlations functions of the currents with the same chirality index:

⟨JL(x+)JL(y+)⟩ = ⟨: L†
x+Lx+ :: L†

y+Ly+ :⟩ = ⟨L†
x+Ly+⟩⟨Lx+L†

y+⟩ (2.39)

Here we have used Wick’s theorem. The corresponding fermionic correlators can be computed
easily: by using L(x) = 1√

N

∑
|p|<Λ e

ipxLp in the correlation function we get

⟨L†
x+Ly+⟩ =

1

N

∑
|p|,|q|<Λ

e−i(px+−qy+)⟨L†
pLq⟩ =

1

N

∑
0<p<Λ

e−ip(x+−y+)
(2.40)

By replacing the sharp cutoff with a smooth one, we get

⟨L†
x+Ly+⟩ =

1

N

∑
0<p<Λ

e−ip(x+−y+) →
∫ ∞

0

dp

2π
e−ip(x+−y+)e−αp = − i

2π

1

(x+ − y+)− iα
. (2.41)

Similarly, since ⟨Lx+L†
y+⟩ = ⟨L†

y+Lx+⟩, we have

⟨JL(x+)JL(y+)⟩ = −
1

4π2
1

((x+ − y+)− iα)2
. (2.42)

From this correlation function we can extract the average of the commutator between JL(x+) and
JL(y+):

⟨[JL(x+), JL(y+)]⟩ =
1

4π2

(
1

((x+ − y+) + iα)2
− 1

((x+ − y+)− iα)2
)

=
i

2π
∂x+

(
α

π

1

(x+ − y+)2 + α2

)
=

i

2π
∂x+δ(x+ − y+).

(2.43)

Similarly for right sector, we get

⟨JR(x−)JR(y−)⟩ = ⟨R†
x−Ry−⟩⟨Rx−R†

y−⟩ (2.44)

with

⟨R†
x−Ry−⟩ = ⟨Rx−R†

y−⟩ =
i

2π

1

(x− − y−)− iα
(2.45)

and thus
⟨JR(x−)JR(y−)⟩ = −

1

4π2
1

((x+ − y+)− iα)2
(2.46)
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and this way we identically get

⟨[JR(x−), JR(y−)]⟩ =
i

2π
∂x−δ(x− − y−). (2.47)

An important fact has to be underlined. The extracted commutators of the chiral currents corre-
spond to the U(1) Kac-Moody algebra

⟨[JL(x+), JL(y+)]⟩ =
i

2π
∂x+δ(x+ − y+),

⟨[JR(x−), JR(y−)]⟩ =
i

2π
∂x−δ(x− − y−).

(2.48)

2.3.1 Sugawara Construction

One can try to re-write the free fermion Hamiltonian Eq.(2.29) in terms of chiral currents, defined
in Eq.(2.30). This step it what lays as the foundation of the Abelian and non-Abelian bosonization
- one starts with a fermionic theory and by implementing the Sugawara construction, rewrite the
original model in terms of bosonic degrees of freedom.

To demonstrate the Sugawara construction, we concentrate on the right chiral sector first

JR(x)JR(x) =: R†
xRx :: R†

xRx : (2.49)

Using point-splitting, we have

: R†
xRx :: R†

xRx := lim
ϵ→0

: R†
x−ϵRx−ϵ :: R

†
x+ϵRx+ϵ : . (2.50)

We use Wick’s theorem for the product of normal-ordered operators

: R†
x−ϵRx−ϵ :: R

†
x+ϵRx+ϵ := : R†

x−ϵRx−ϵR
†
x+ϵRx+ϵ : − : R†

x−ϵRx+ϵ : ⟨R†
x+ϵRx−ϵ⟩

− : R†
x+ϵRx−ϵ : ⟨R†

x−ϵRx+ϵ⟩ − ⟨R†
x−ϵRx+ϵ⟩⟨R†

x+ϵRx−ϵ⟩.
(2.51)

Here we have to use the equal time correlator

⟨R†
x−ϵRx+ϵ⟩ = −

i

4πϵ
, ⟨R†

x+ϵRx−ϵ⟩ =
i

4πϵ
(2.52)

and thus

: R†
x−ϵRx−ϵ :: R

†
x+ϵRx+ϵ :=: R†

x−ϵRx−ϵR
†
x+ϵRx+ϵ : +

i

4πϵ

(
: R†

x+ϵRx−ϵ : − : R†
x−ϵRx+ϵ :

)
− 2

(4πϵ)2
.

(2.53)

Firstly, we see that the last term is diverging as ϵ→ 0. To avoid this divergence, we normally order
the whole expression:

:
(
: R†

x−ϵRx−ϵ :: R
†
x+ϵRx+ϵ :

)
:=: R†

x−ϵRx−ϵR
†
x+ϵRx+ϵ : +

i

4πϵ

(
: R†

x+ϵRx−ϵ : − : R†
x−ϵRx+ϵ :

)
.

(2.54)

The first term is vanishing, since limϵ→0 : R
†
x−ϵRx−ϵR

†
x+ϵRx+ϵ := limϵ→0 : R

†
x−ϵR

†
x+ϵRx−ϵRx+ϵ := 0.

This way, we are left with
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∫ L

0
dx : JR(x)JR(x) :=

i

4π

∫ L

0
dx lim

ϵ→0

1

ϵ

(
: R†

x+ϵRx−ϵ : − : R†
x−ϵRx+ϵ :

)
≈ − i

π

∫ L

0
dx : R†∂xR :

(2.55)

Similarly, for the left chiral sector we have∫ L

0
dx : L†∂xL := −iπ

∫ L

0
dx : J2

L : (2.56)

Combining these results, we get

H0 = −ivF
∫ L

0
dx
(
: R†∂xR : − : L†∂xL :

)
→ πvF

∫
dx
(
: J2

R : + : J2
L :
)
. (2.57)

2.3.2 Bosonization dictionary

The striking result presented in Eq.(2.57) is that the free theory of Chiral Dirac fermions is equiv-
alent to a bosonic theory of Chiral Currents, formally known as the Tomonaga-Luttinger liquid
theory [29]. The equivalence of these two models is hidden in the fact that the correlation functions
of these two models are identical, thus knowing the correlators of one model is identical to knowing
the correlators of the second model and vice versa. In general, one could say that at this level the
fermionic model has been completely bosonized, however Tomonaga-Luttinger model can be further
expressed as a more familiar model of a quantum massless scalar field in 1+1 dimension

H =
v

2

∫
dx
(
: (∂xΘ)2 : + : (∂xΦ)

2 :
)
. (2.58)

The model of a scalar field respects the chiral decomposition

Φ = φL + φR, Θ = φL − φR, (2.59)

where the chiral fields obey the following commutation relations

[φR(x), φR(y)] = −[φL(x), φL(y)] =
i

4
sign(x− y), [φR(x), φL(y)] =

i

4
(2.60)

then model can be written as

H = v

∫
dx
(
: (∂xφL)

2 : + : (∂xφR)
2 :
)

(2.61)

this way, making a simple substitution vF → v and a further identification

JL =: L†L :∼ 1√
π
∂xφL, JR =: R†R :∼ 1√

π
∂xφR (2.62)

one maps a fermionic theory to a bosonic one. Eq.(2.62) is incomplete, as it only demonstrates how
one can express chiral densities in terms of bosonic fields. As we will see below, there exists other
fermionic bilinears that can not be expresed using chiral densities. To see the connection between
chiral fermionic operators R(L) and chiral bosonic fields φR(φL), one needs to implement the
compactification of bosonic theory. The bosonic model Eq.(2.61) is invariant under φR,L → φR,L+c
transformation, with c being a real number. On the other hand, the fermionic model respects U(1)
transformation in each chiral sector. Since the global symmetries (dictating such properties of the
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models as topological excitations) of these two models have to be identical, one needs to compactify
the bosonic theory, so that φR,L now becomes an angular variable. Using these considerations, one
deduces [27, 28, 39] that the relations between fermionic and bosonic fields are

R(x) ∼ 1√
2πα

ei
√
4πφR(x), L(x) ∼ 1√

2πα
e−i

√
4πφL(x). (2.63)

This way, Eqs.(2.62,2.63) form the so called Abelian bosonization dictionary. Using fermionic oper-
ators on the left-hand side and bosonic vertex operators on the right-hand side, this identification
reproduces identical correlation functions within their respective models. It should be noted that
these equations only represent a correspondence and should be used as an identity only while tak-
ing expectation values of corresponding operators. The bosonization technique will prove to be a
powerful tool to solve models of interacting fermions in 1D, by mapping it to a bosonic theory.
There is a wide variety of bosonic models that can emerge when bosonizing a fermionic theory,
but one can use techniques such as Renormaliation Group (RG) and derive asymptotically exact
result for bosonic and therefore for original fermionic theory. The bosonization technique is not
restricted only to Abelian symmetry groups and can be further extended to non-Abelian groups, as
demonstrated in Sec.(4) and Sec.(5)

2.3.3 Weak anisotropy case

As we have already seen, after using Jordan-Wigner transformation, the original XXZ heisenberg
model maps onto a problem of interacting spinless fermions:

H̃XXZ(∆)→ Ĥ(∆) = H0 + Hint., (2.64)

where the quadratic part is given by

H0 = −
J

2

N−1∑
i=1

(
c†ici+1 + c†i+1ci

)
(2.65)

and the interaction is

Hint. = J∆
L∑
i=1

(
ni −

1

2

)(
ni+1 −

1

2

)
. (2.66)

When ∆ interaction is sufficiently small, we assume that the single-particle spectrum of the model
is unchanged relative to the non-interacting case. Based on this assumption, one can pass to the
low-energy description of the interacting model and adopt all the discussion from the previous
sections:

H0 = πvF

∫
dx
(
: J2

R : + : J2
L :
)
, (2.67)

while for the interaction term we have

Hint = J∆α0

∫
dx

(
ρx −

1

2

)(
ρx+α0 −

1

2

)
. (2.68)
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with ρ(x) = c†(x)c(x). To avoid any diverging expectation values due to the infinite Fermi sea, one
has to normal order the whole product. The density operator can be expressed as

ρx =: ρx : +⟨ρx⟩ =: ρx : +
1

2
(2.69)

and thus we have

Hint = g

∫
dx : (: ρx :: ρx+α0 :) :, g ≡ J∆α0 = vF∆ (2.70)

At this level, our goal is to rewrite Hint in terms of U(1) chiral currents, if possible. Using the
Eq.(2.26) chiral decomposition of the continuous fermi field, we get

: ρ(x) := nx + e2ikF x : L†
xRx : +e−2ikF x : R†

xLx : (2.71)

where nx =: R†
xRx : + : L†

xLx :. Using this equation, for the density-density interaction we get

: (: ρx :: ρx+α0 :) :=: nxnx+α0 : +
[
e2ikFα0 :

(
: R†

xLx :: L†
x+α0

Rx+α0
:
)
: +h.c.

]
+Oumklapp

x,x+α0
, (2.72)

with
Oumklapp
x,x+α0

≡ e4ikF xe2ikFα0 :
(
: L†

xRx :: L†
x+α0

Rx+α0
:
)
: +h.c.. (2.73)

The problem with the so-called umklapp term Oumklapp is that it can not be expressed solely in
terms of the chiral currents. As we have mentioned, that the pre-factor of this term is ei4kF x, which
is not a rapidly oscillating term only when we are at half filling. The umklapp process describes
the scattering of a pair of left(right)-movers into right(left)-moving fermions. During this process
the transferred momentum is equal to 4kF and should be consistent with momentum conservation.
In a different setting of the model, being away from half filling (kF = π/2α0), this would violate
the momentum conservation. However, at half filling 4kF = 2π/α0, which is equal to the length of
the Brillouin zone and thus the excess 4kF momentum is transferred to the lattice vibrations. It is
known, that for small |∆| ≪ 1, the umklapp process renders to be irrelevant in the Renormalization
group analysis [28]. For current discussions, we drop the umklapp term, since the case of study of
this section is |∆| ≪ 1. This way, we have

: (: ρx :: ρx+α0 :) :=: nxnx+α0 : − :
(
: R†

xLx :: L†
x+α0

Rx+α0
:
)
: − :

(
: L†

xRx :: R†
x+α0

Lx+α0
:
)
:

(2.74)

The first term can be easily recognized as

: nxnx+α0 :=: (JL + JR)x(JL + JR)x+α0 : . (2.75)

For the second term, using Wick’s theorem, yields

:
(
: R†

xLx :: L†
x+α0

Rx+α0
:
)
:=− : R†

xRx+α0
L†
x+α0

Lx :

− : R†
xRx+α0

: ⟨L†
x+α0

Lx⟩− : L†
x+α0

Lx : ⟨R†
xRx+α0

⟩
(2.76)
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Using the equal time limit of two-point correlation functions Eqs.(2.41,2.45), we get

:
(
: R†

xLx :: L†
x+α0

Rx+α0
:
)
:=− : R†

xRx+α0
L†
x+α0

Lx :

+
i

2πα0

(
: R†

xRx+α0
: + : L†

x+α0
Lx :

) (2.77)

By expanding the last term in terms of the lattice constant α0, we get

:
(
: R†

xLx :: L†
x+α0

Rx+α0
:
)
:≈ − : R†

xRxL
†
xLx :− i

2π

(
: L†

x∂xLx : − : R†
x∂xRx :

)
+

i

2πα0

(
L†
xLx : + : R†

xRx :
) (2.78)

Similarly, we have

:
(
: L†

xRx :: R†
x+α0

Lx+α0
:
)
:≈ − : R†

xRxL
†
xLx :− i

2π

(
: L†

x∂xLx : − : R†
x∂xRx :

)
− i

2πα0

(
: L†

xLx : + : R†
xRx :

)
.

(2.79)

The sum of these two terms in he chiral current representation is

:
(
: R†

xLx :: L†
x+α0

Rx+α0
:
)
: + :

(
: L†

xRx :: R†
x+α0

Lx+α0
:
)
:= − : J2

R : − : J2
L : −2JRJL. (2.80)

Overall, we have

: (: ρ(x) :: ρ(x+ α0) :) :=: (JL + JR)x(JL + JR)x+α0 : + : J2
R : + : J2

L : +2JRJL

= 2
(
: J2

R : + : J2
L :
)
+ 4JRJL

(2.81)

This way, the whole weakly interacting model, being quartic in terms of fermionic operators, in
terms of bosonic the chiral currents becomes a quadratic, the so called Tomonaga-Luttinger liquid
model

H = (πvF + 2g)

∫
dx
(
: J2

R : + : J2
L :
)
+ 4g

∫
dxJRJL

=
πv

2

∫
dx

(
K : (JR − JL)2 : +

1

K
: (JR + JL)

2 :

) (2.82)

K ≈ 1− 2∆

π
, v ≈ vF

(
1 +

2∆

π

)
(2.83)

Here v is the renormalized fermi velocity and K is the so-called Luttinger parameter. It should be
noted that the exact value of Luttinger parameter is known from the Bethe Ansatz solution [28]

K =
π

2(π − arccos∆)
, (2.84)

and thus our results match the exact one in |∆| ≪ 1 limit.
Using a canonical transformation that preserves the Kac-Moody algebra of the currents, one can

further diagonalize the perturbed Tomonaga-Luttinger model. By parametrizing the transformation
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with a single parameter θ as

JL = cosh (θ) J̃L + sinh (θ) J̃R, JR = sinh (θ) J̃L + cosh (θ) J̃R, θ =
1

2
ln(K) ≈ −∆

π
(2.85)

gives

H =
πv

2

∫
dx
(
: (J̃R − J̃L)2 : + : (J̃R + J̃L)

2 :
)

(2.86)

2.3.4 Full bosonization of XXZ model

As we have shown in the previous section, the XXZ model express in terms of Chiral currents is

H = (πvF + 2g)

∫
dx
(
: J2

R : + : J2
L(x) :

)
+ 4g

∫
dxJRJL + g

∫
dxOumklapp

x,x+α0
. (2.87)

Using bosonization dictionary Eq.(2.62) for first two terms, we can write

H ∼ (πvF + 2g)

π

∫
dx
(
: (∂xφL)

2 : + : (∂xφR)
2 :
)
+

4g

π

∫
dx∂xφL∂xφR + g

∫
dxOumklapp

x,x+α0
. (2.88)

Before dealing with the umklapp term, we pass from chiral to canonical fields Φ and Θ, which gives

H ∼ vF
2

∫
dx

(
: (∂xΘ)2 : +

(
1 +

4g

πvF

)
: (∂xΦ)

2 :

)
+ g

∫
dxOumklapp

x,x+α0
. (2.89)

Since we are at half filling, we have

Oumklapp
x,x+α0

≡ − : L†
xRxL

†
x+α0

Rx+α0
: − : R†

xLxR
†
x+α0

Lx+α0
: . (2.90)

By implementing the bosonization dictionary Eq.(2.63), we get

Oumklapp
x,x+α0

∼ 1

(2πα)2

(
: ei

√
4π(Φ(x)+Φ(x+α0)) : +h.c.

)
≈ 1

2(πα)2
: cos(

√
16πΦ) : (2.91)

where we have used the Baker–Campbell–Hausdorff formula and Eq.(2.60) commutators. This way,
the bosonized version of XXZ model is

H ∼ vF
2

∫
dx

(
: (∂xΘ)2 : +

(
1 +

4g

πvF

)
: (∂xΦ)

2 :

)
+

g

2(πα)2

∫
dx : cos(

√
16πΦ) : (2.92)

To bring the equation to a canonical form, we re-scale the fields as

Φ =
√
Kϕ, Θ =

1√
K
θ (2.93)

which gives

H ∼ vF
2

∫
dx

(
1

K
: (∂xθ)

2 : +K

(
1 +

4g

πvF

)
: (∂xϕ)

2 :

)
+

g

2(πα)2

∫
dx : cos(

√
16πKϕ) : (2.94)
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If we constrain K as

K =
1√

1 + 4g
πvF

≈ 1− 2g

πvF
= 1− 2∆

π
(2.95)

then we get

H ∼ ṽF
2

∫
dx
(
: (∂xθ)

2 : + : (∂xϕ)
2 :
)
+

g

2(πα)2

∫
dx : cos(

√
16πKϕ) : (2.96)

with renormalized Fermi-velocity
ṽF =

vF
K
. (2.97)

This way, we see that XXZ model is mapped onto a well studied sine-Gordon model [28]. The
relevancy of the cosine perturbation is dictated by the value of K Luttinger parameter, since the
scaling dimension of the perturbation is

∆cos = 4K. (2.98)

Since the anisotropy parameter of the model ∆ is small, we get that the scaling dimension of the
perturbation is always larger than 2 and thus is always irrelevant, unless one artificially extends
the solution for larger values of ∆, where the bosonization scheme is not applicable anymore. Due
to this, XXZ model for a weak anisotropy parameter ∆, positive or negative, is always critical and
is described by a Gaussian model. In the language of CFT, this means that the theory is scale
invariant and has a central charge of c = 1.

One may use the bosonizaton technique to express the order parameters in terms of bosonic
fields. Sz(x) component of spin in the continuum limit is equivalent to a fermion density operator
Eq.(2.71):

Szj → α0S
z(x) ≈ α0ρ(x), ρ(x) = JR(x)+JL(x)+(−1)x/α0N(x) ≡ ρsmooth

x +(−1)x/α0ρstag.
x , (2.99)

where we have used the fact that kF = π
2α0

. Using bosonization dictionary, we get

Sz(x) ∼
√
K

π
∂xϕ(x) +

(−1)x/α0

πα
: sin
√
4πKϕ(x) : (2.100)

This expression can be useful, for instance, to express the spin-spin correlation function. Since the
weak coupling |∆| ≪ 1 theory asymptotically corresponds to a Gaussian model, the expectation
values of the fields are zero, however two-point correlation functions show a power-law decays. The
smooth part of the density operator gives

Gsmooth
x,y = ⟨ρsmooth

x ρsmooth
y ⟩ ∼ 1

|x− y|2 , (2.101)

with a universal critical exponent 2, while the staggered part gives

Gstag.
x,y = ⟨ρstag.

x ρstag.
y ⟩ ∼ 1

|x− y|2K , (2.102)

where the critical exponent of the staggered part depends on the anisotropy parameter ∆. The
smooth and the staggered part of the correlation functions properly extend Eq.(2.17) exact result
of ∆ = 0 to the case of small anisotropy |∆| ≪ 1.

As we have already mentioned, XXZ model has been solved exactly using Bethe ansatz and the
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whole phase diagram has been extracted [29]. It has been shown that XXZ model remains critical
for the whole −1 < ∆ < +1 region and the critical line terminate with fully SU(2) points at ∆ = ±1.
Moreover, when one crosses ∆ = +1 point, the system undergoes Berezinskii-Kosterlitz-Thouless
transition to a gapped anti-Ferromagnetically ordered phase. On the other hand, crossing ∆ = −1
corresponds to a first order phase transition to a ferromagnetically ordered phase.

2.4 Phenomenological Bosonization

In the previous section, we have introduced the Abelian bosonization and demonstrated the pre-
dictive power of it in the context of Heisenberg XXZ, or equivalently, in the context of weakly
interacting spinless fermions on 1D chain. The validity of the method strongly depends on the
assumption that the weak interaction does not modify the single-particle spectrum of the non-
interacting theory. One of the necessary conditions for the Abelian bosonization to be applicable is
the existence of linear spectrum in the vicinity of kF Fermi momentum (this condition also extends
to non-Abelian bosonization too). This, however, is not guaranteed when one passes to the limit of
strong interactions. In this regime, one has to rely on the so-called phenomenological bosonization
[39, 40]

The idea of phenomenological bosonization is based on the density-phase representation of par-
ticle creation and annihilation operators. We start with bosonic fields. A bosonic field can be
represented as

ψ(x) = eiθ(x)
√
ρ(x) (2.103)

where ρ = ψ†ψ is the particle density operator. Using this relation, one can derive the commutation
relations between the density and phase variables. The commutation relation for the Bosonic field
ψ is

ψ(x)ψ†(y)− ψ†(y)ψ(x) = δ(x− y) (2.104)

By multiplying both sides by ψ†(x) from the right and using Eq.(2.103), we get

[ρ(x), e−iθ(y)] = δ(x− y)e−iθ(y). (2.105)

Furthermore, by using the Taylor series for eiθ(y) exponent and [A,Bn] = nBn−1[A,B] identity, we
get

i
+∞∑
n=0

in

n!
θn(y)[ρ(x), θ(y)] =

+∞∑
n=0

in

n!
δ(x− y)θn(y) (2.106)

which is satisfied only if
[ρ(x), θ(y)] = iδ(x− y). (2.107)

This way we see that the phase and the density operator are mutually conjugate variable and satisfy
canonical bosonic commutation relation.

Now we move to a concrete example, where the bosonic particles are distributed along 1D chain
with α0 lattice constant. If the position of nth particle is xn, then the density operator of such
distribution is

ρ(x) =
∑
n

δ(x− xn). (2.108)

The position xn can be represented as xn = x0n + δxn, where x0n = nα0 is the equilibrium con-
figuration and δxn is the displacement of nth particle. If δxn = 0 for every n, then the particles
form a perfect lattice and the average density of particles is ρ0 = 1/α0. Instead of working directly
with the coordinate label xn, it is more convenient to introduce a field ϕ(x) that takes the values
2πn when x = xn. Using the new labeling of the coordinates of the particles, one can re-write the
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density operator as
ρ(x) =

∑
n

|∇ϕ(x)|δ(ϕ(x)− 2πn). (2.109)

Without loss of generality, one can choose ∇ϕ(x) > 0 for all x. Using the Poisson summation
formula, we get

ρ(x) =
∇ϕ(x)
2π

∑
p

eipϕ(x), p ∈ Z (2.110)

At this point, one can draw a similarity between Abelian bosonization and phenomenological
bosonization - since we are interested in the fluctuations above the perfect configuration of par-
ticles, we single out ρ0 contribution from ρ(x) as

ϕ(x) = 2πρ0x− 2φ(x), (2.111)

which gives

ρ(x) =

(
ρ0 −

∇φ(x)
π

)∑
p

ei2p(πρ0x−φ(x)). (2.112)

Plugging Eq.(2.112) in Eq.(2.107), we get[∇φ(x)
π

, θ(y)

]
= −iδ(x− y). (2.113)

This way we see that, θ and ∇φ(x)
π are the canonically conjugate variables and by integrating the

commutator, we get

Π =
1

π
∇θ, (2.114)

where Π is the canonically conjugate momentum to φ. This way, the phenomenological bosonization
establishes the connection between bosonic field operators ψ and canonically conjugate variables
θ, φ:

ψ(x) = eiθ(x)
√
ρ0 −

∇φ(x)
π

∑
p

αpe
i2p(πρ0x−φ(x)) (2.115)

where αp is a non-universal constan, related to the fact that one needs to take the sqaure root of ρ(x)
to obtain the final result. It should be noted, that to phenomenologically bosonize the fermionic
operators, one has to simply change 2p → 2p + 1 in the exponent in Eq.(2.115). It should be
noted that the phenomenological bosonization dictionary and the Abelian bosonization dictionary
Eq.(2.63) yield qualitatively the same result.

Being equipped with Eq.(2.115) equation, one can derive the corresponding field theory of the
microscopic model, which will necessarily be written in terms of θ and φ fields. For the sake of
demonstration, it is simple to see that the most RG-relevant contributions (∇φ)2 and (∇θ)2 can be
generated through density-density interaction and kinetic energy terms, respectively. The general
symmetry considerations narrow down the allowed terms in the theory, for instance if the system
has inversion symmetry x→ −x, then mixed terms like ∇φ∇θ are forbidden. This way, the allowed
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terms to the quadratic part of the theory is always

H0 ≈
v

2

∫
dx

(
K(∇θ)2 + 1

K
(∇φ)2

)
(2.116)

where v and K are the effective velocity and an effective Luttinger parameter of the Gaussian model.
The Gaussian part is then perturbed by an infinite hierarchy of all allowed operators in the theory,
corresponding to various harmonics p in Eq.(2.115). In case of a massless one-dimensional system,
all of these perturbing operators are irrelevant or rapidly oscillating, thus the quadratic model
remains quadratic. Since the Gaussian model is exactly solvable, one can extract all of the power-
law correlation functions of the theory. However, v and K are renormalized by the aformentioned
perturbing operators and thus their values strongly depend on the unknown microscopic details of
the model. Due to this reason, it is impossible to determine the real values of the velocity and the
Luttinger parameter and one has to rely on the numerical results. Though the result is generic and
straightforward for isolated 1D chains, the phenomenological bosonization can play a crucial role
to determining the possible perturbations of Gaussian model, if one couples 1D chains into 2 or
multiple-leg ladders.

2.4.1 Cluster Bosonization

It should be emphasized, that the phenomenological bosonization is not bound to be used only in
the context of single particle objects, as it was done in Eq.(2.108). One might encounter many-body
setups, where particles group up as clusters to minimize the energy due to interaction [20, 21]. In
general, the clusters can consist of different number of particles. For such scenarios, phenomenolog-
ical bosonization needs to be generalize to account such composite objects. Below we review such
a generalization, referred to as cluster bosinization,

To obtain the dictionary for cluster bosonization, we reformulate the density distribution ρ(x)
by coarse graining the particle distribution into the clusters. The corresponding cluster density
distribution for is

ρ(x) =

M∑
m=1

f(xm)δ(x− xm), (2.117)

where M is the number of clusters in the system and xm is the coarse grained coordinate of the
cluster, while f(xm) counts the number of particles in the corresponding cluster. By construction,∑

xm
f(xm) = N where N is the conserved total number of particles. As before, we define the cluster

field ϕ(x) accounting for the quantum fluctuations of the cluster density. By construction, the cluster
field is strictly monotonic and an integer multiple of π at the center of a cluster: ϕ(xm) = πm with
m ∈ Z, such that

ρ(x) = ∇ϕ(x)
M∑
m=1

f(xm)δ(ϕ(x)− πm). (2.118)

For the system of length L and periodic boundary conditions, we extend Eq.(2.118) over all space.
We set ϕ(x + L) = ϕ(x) + Mπ, such that for j = nM + m with 1 ≤ m ≤ M and n ∈ Z, we
get xj = xm modulo L, and we take IπM as the unit Dirac comb of periodicity πM . Then the
L-periodic Eq.(2.118) is

ρ(x) = ∇ϕ(x)
+∞∑
j=−∞

f(xj)IπM (ϕ(x)− πj) = N

M
∇ϕ(x)

+∞∑
q=−∞

Aq
π
e−i2qϕ(x), (2.119a)
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where we have used Poisson’s summation, and defined NAq, q ∈ Z, as the Fourier coefficients of
f(xj), a function of j of period M . The coefficients Aq = A∗

−q are not universal and depend on the
microscopic details of the model.

In the density-angle variables formalism, we define the amplitude of the cluster bosonic field as
the square-root of the coarse grained (or cluster) density, and the cluster angle is the associated
canonical conjugate variable. To construct these fields, we introduce ϕ′(x) 1 as

ϕ(x) = πνσx−√πϕ′(x), (2.120)

where σ =M/N and ν = N/L. The cluster density operator is

ρ(x) =

(
ν − 1√

πσ
∇ϕ′(x)

) +∞∑
q=−∞

Aqe
−i2q(πxσν−

√
πϕ′(x)). (2.121)

We define θ′(x) as the conjuguate variable of ∇ϕ′(x) such that[
θ′(y),

1

π
∇ϕ′(x)

]
= iδ(x− y). (2.122)

We deduce the expression for the cluster bosonic field ψ(x) in the density-angle formulation

ψ(x) = e−
i
√
π
σ
θ(x)

√
ν − 1√

πσ
∇ϕ(x)

+∞∑
q=−∞

αqe
−i2q(πxσν−

√
πϕ′(x)), (2.123)

where αq are the non-universal Fourier coefficients of the square root of the sum in Eq.(2.121).
As for conventional phenomenological bosonization, using Eqs.(2.121,2.123) one can extract the

effective bosonic field theory for cluster degrees of freedom. However, as before, the predictive power
of cluster bosonization is also limited and can only be used to deduce the possible relevant pertur-
bations to the theory. Once the phenomenlogical field theory is extracted, one has to supplement
the results with numerical simulations. As we will see in Sec.(4) and Sec.(5), cluster bosonization
can generate non-trivial perturbations to the massless bosonic theory. Moreover, using numerical
simulations we will see that these perturbations can indeed be relevant within certain regimes of
parameters.

It is worth concluding this chapter with few historical facts about the development of bosoniza-
tion [41]. In the context of condensed matter physics, in 1933-34 Felix Bloch showed that the
excitation spectrum of a 3-dimensional degenerate Fermi gas was entirely accounted by the density
fluctuations [42, 43]. Due to this, he deduced that the properties of the many-body fermionic system
could be approximately determined by far less number of bosonic degrees of freedom. Motivated
by this and by further developments by Pascual Jordan [44, 45, 46, 47, 48, 49], Sin-itiro Tomonaga
managed to fully describe the properties of a 1-dimensional Fermi gas by using only the density
operators, bosonic in nature [50]. Based on the advancements by Joaquin Luttinger [51], Daniel
Mattis and Elliot Lieb [52] – in 1974 Alan Luther, together with Victor Emery and Ingo Peschel,
demonstrated the equivalence between the bosonic Sine-Gordon model and the fermionic backscat-
tering Luttinger model [53, 54]. A year later, particle physicist Sidney Coleman showed that the
quantum Sine-Gordon model, a theory of interacting mesons and the Thirring model of interacting
massive fermions were equivalent [55]. Being unaware that the Thirring model of interacting mas-
sive fermions was known as the backscattering Luttinger model in the condensed matter physics
community, he later famously wrote in his paper:

1We used the factor
√
π in Eq.(2.120) to follow the convention chosen for Abelian bozonisation.
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We (Luther and himself) are also united in our embarrassment that we were incapable of reaching
this conclusion unprompted. (Our offices are on the same corridor.)

The work done by Coleman demonstrates the direct equivalence between bilinears of fermionic fields
and bosonic operators. Exactly one month later, Stanley Mandelstam published a paper where he
establishes direct correspondence between fermionic and bosonic field operators [56] – laying the
foundation of mathematically rigorous Abelian bosonization. In the seminal work of 1984, Edward
Witten developed non-Abelian bosonization [57]. For further reading, one can address some of well
known review articles [58, 59, 60], and for more in-depth exploration, consider the following famous
books [28, 29, 39, 41, 58, 61].
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Chapter 3

Synthetic Quantum Systems

Strongly correlated many-body quantum systems can exhibit many exotic and useful features. These
features can arise from various geometrical properties of the system or, most notably, due to the
rich variety of interactions between the constituents of the system. However, the same interactions
is what makes the problem of strongly correlated systems difficult to solve analytically. For past
decades, overcoming this difficulty has attracted attention of many physicist, leading to the de-
velopment of various analytical tools to find exact or approximate solutions of the corresponding
problems [27, 28, 39]. However, frequently the problem becomes intractable analytically and one has
to rely on numerical simulations instead, which typically becomes computationally expensive as the
size of the system increases. The attempts to overcome the complication of numerical simulations
has lead to the birth of different approaches, most notably Density Matrix Renormalization Group
method (DMRG) [62, 63, 64, 65] which has proven to be powerful tool to study many-body physics
in 1-dimensional systems and ladders. However, numerical algorithms come with limitations and
only offer applicability for very specific regimes.

A straightforward but hard way to proceed would be to experimentally study a system, whose
microscopic description coincides with the many-body quantum model of our interest. However,
it is easy to guess, that such systems rarely exist. An interesting and useful alternative is to
experimentally synthesize a quantum system and fine tune it’s the microscopic details, so that it
simulates the desired many-body system. Recent advances in modern experimental physics and
quantum information has lead to the creation of the so-called quantum simulators [66]. One of the
famous and successful representatives of such simulators are the Rydberg atoms trapped in optical
potentials [1, 2, 3, 4, 5, 6].

In this chapter, we introduce basic concepts of Rydberg atom quantum simulators, and discuss
some of the many-body problems that can be addressed in these experiments.

3.1 Rydberg atoms

A natural building block of a many-body system is an atom, which in turn is a many-body system
itself. However, there are certain elements that can be further simplified and described with a
reasonable accuracy as hydrogen-like atoms. These elements are the so-called Alkali metals, where
the outer shell is occupied by a single electron, while the core electrons partially screen the nucleus of
the atom. This way, one may think of an Alkali metal atom as a Hydrogen-like atom. The Hydrogen
atom problem has been solved nearly a century ago, thus one can use the results straightforwardly.
The deviations from Hydrogen-like properties can be accounted for using the framework of quantum
defect theory [67].

The energy spectrum of a Hydrogen-like atom consists of two regions - for E > 0, the continuum
of energy states correspond to ionized atom, while for E < 0, electron is in a bound state with the
atom, with quantized energy states
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En = −Ratom

n2
, n ∈ N (3.1)

with Ratom = R∞/(1 +me/matom) ≃ R∞ ∼ 107meter−1, were me and matom are the electron and
the atom masses, respectively. The energy spectrum only depends on n principal quantum number,
while it does not depend on azimuthal quantum number l and m the magnetic quantum number.

An important property of hydrogen-like atoms is that the orbital radius reff, i.e. effective size
of an atom, scales as ∼ n2. If one manages to excite the system to the state with relatively large
n, called the Rydberg state, then the effective size of an atom can become macroscopically large,
of order of 10 − 100nm [68]. The Rydberg states are essential building block of modern quantum
simulators, due to their large dipole moments and the controlability.

The atom can possess an angular momentum I, which can have three different origins: orbital
angular momentum L, electron spin S and the spin of the nucleus J. The Hamiltonian of the
simplified atom model commutes with all three types of angular momentum operators, thus leading
to a degeneracy of the energy of the state with respect to corresponding quantum numbers - for
the case of orbital angular momentum L, that is l and m quantum numbers. This degeneracy can
be lifted if one introduces the relativistic corrections to the model, lifting the degeneracy related
to l and m [69], or introduce external symmetry breaking terms such as magnetic field that splits
the energy degeneracy with respect to electronic and nuclear spin. Suppose we apply the external
magnetic field along z direction B = Bz, then additional term to the Hamiltonian will be

H′ = −µB (gJSz − gNJz)B (3.2)

where µB is the Bohr magneton, while g are the Landé g-factors [70]. If the external field is small,
then one obtains the Zeeman splitting of the degenerate energy levels. Taking the advantage of
the level splitting, one can precisely address the desired energy states and use them for quantum
simulations.

3.2 Jaynes–Cummings model

As we have seen in the previous chapter, by applying an external magnetic fields, one may obtain
even richer energetic spectrum of an atom. Accessing individual states and driving transitions
among them can turn an atom into a useful playground for quantum simulations.

Suppose than one applies an external driving force (e.g. electro-magnetic field) to an atom in
a way that it amplifies the transitions between the ground state |g⟩ and some excited state |e⟩,
while all the transitions between other states are strongly suppressed. In this regime, the atom can
be approximated as a two level system. This is possible in a single-mode cavity, where a radiation
mode with frequency ω drives an atomic transitions with a Rabi frequency Ω. This simplified model
has to be supplemented with an assumption, that the motion of atom is negligible, i.e. the average
kinetic energy of the atom is much smaller than ℏΩ. If this assumption is violated, then the atomic
motion can strongly influence the dynamics of coherent atom-light interaction. Suppose that the
kinetic energy of the atom is purely thermal energy Ekin. ∼ kBT . In a typical setups, the Rabi
frequency is of order Ω ∼ 106 Hz. This way, if we need the average kinetic energy of the atom to
be smaller than ℏΩ, than one needs to cool down the system T ≪ T ∗, with T ∗ ∼ 10−5K being the
upper threshold temperature when kBT

∗ ∼ ℏΩ. In this model, the Hamiltonian splits into three
parts:

H = Hatom + Hint. + Hfield. (3.3)

By setting the ground state energy of the atom to zero, one gets

Hatom = ℏωe|e⟩⟨e|. (3.4)
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The field Hamiltonian consist of the photon creation a† and annihilation a operators:

Hfield = ℏωa†a. (3.5)

Since we want to the most simple case of study of Hint., we limit ourselves with the interaction of
the electric field in the cavity, that is E ∼ a + a†, with the electric dipole moment of the atom
µ = |e⟩⟨g|+ |g⟩⟨e|. In this limiting case, the interaction hamiltonian will be

Hint. =
ℏΩ
2

(
|e⟩⟨g|(a+ a†) + h.c.

)
. (3.6)

The interaction hamiltonian contains two types of processes: |e⟩⟨g|a† describes the process when a
photons is emitted and the atom decays to the ground state (combined with the hermitian conjugate
process) and |e⟩⟨g|a, where the photon is absorbed and the system relaxes to the ground state. The
second kind of processes is strongly suppressed, since the energy cost is ∆E = ℏωe+ℏω and thus in
the rotating wave approximation Ω≪ ωe+ ℏω we can completely neglect it. This approximation is
valid if one couples the atom to optical radiation - in this case ω ∼ 1014 Hz and Ω ∼ 106 Hz. These
assumptions lead to the so called Jaynes-Cummings model, described by the following hamiltonian

HJC = ℏωe
1 + σz

2
+

ℏΩ
2

(
σ+a+ σ−a†

)
+ ℏωa†a (3.7)

with

I = |e⟩⟨e|+ |g⟩⟨g|, σz = |e⟩⟨e| − |g⟩⟨g|, σ+ = |e⟩⟨g|, σ− = |g⟩⟨e|. (3.8)

3.3 Rydberg atom quantum simulators

Over the last ten years, ensembles of ground-state atoms laser-coupled to Rydberg states in optical
lattices have shown outstanding aptitudes for realizing strongly interacting quantum dynamics under
controlled and tunable experimental conditions [1, 2, 3, 4, 5, 6, 7]. For example, a weak coupling
between the ground state and the Rydberg states [16, 17, 18, 19] (the Rydberg-dressing) generates an
effective long-range two-body interaction with a short-range plateau (the soft-shoulder potential [9])
and a power-law tail (van der Waals). The range of the plateau may reach a few microns such that
probing the single-site level is easier than conventional cold atoms systems operating in Hubbard-
like regimes. For a single scalar bosonic field in 1D, such an interaction induces exotic critical
behaviour such as cluster Luttinger liquids (CLL) where the Luttinger theorem is inapplicable [20]
and supersymmetric (SUSY) quantum critical points [21]. In 2D systems, it is associated with
anomalous dynamics and glassy behavior [22, 23].

The atom in the Rydberg state has orders of magnitude larger dipole moment, compared to the
one in the ground state. One may take the advantage of this fact and try to synthetically engineer
quantum systems, where the strong and long-range dipole-dipole interaction between electrically
neutral atoms in the Rydberg state gives the possibility to simulate exotic many-body systems. A
typical experimental setup would be cold atoms trapped in optical lattices, where one can carefully
access and select the suitable Rydberg states within each atom by shining them with lasers.

In what follows, we discuss two possible setups of Rydberg atom quantum simulators. Though
constituents of these two setups are the same, the different operational regimes yields qualitatively
different behavior of atoms.
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3.3.1 Rydberg atoms in the frozen regime

Suppose that one deals with a many-atom setup, were each atoms is held in place by optical tweezers,
thus strongly suppressing the spatial delocalization. Then one can shine a laser to each atom, with
Rabi frequency Ω and detuning ∆ = ωe − ω, coupling the ground state and the desired Rydberg
state. This setup can be effectively described by the Jaynes–Cummings model, where the photonic
part is in a coherent state. This way, the corresponding Hamiltonian for non-interacting atoms
becomes

H0 = ℏ
∑
i

(∆ni +Ωσxi ) , ni =
1 + σzi

2
. (3.9)

For simplicity we assume that every atom is coupled to the same Rydberg state. Apart the single-
particle contribution, one includes the interactions between the atoms as well. As we already know,
for hydrogen-like atoms (e.g. alkali metals), the average distance between the nucleus and the
electron scales as reff ∼ n2, n being the principal quantum number of the state, leading to large
dipole moments for n ≫ 1 Rydberg states. Due to this, two atoms in the Rydberg state can
interact with eachother via dipole-dipole interaction, that extends over the distances much larger
than the typical lengthscales associated with electronic wavefunctions. The interaction term in the
hamiltonian would be

Hint =
∑
i,j

Vi,j
µ̂iµ̂j
R3
ij

, (3.10)

where Rij is the distance between ith and jth atoms and Vij is some coupling constant between these
two atoms. Since the fully interacting model is not exactly solvable, we rely on the perturbative
approach instead. The interaction gives vanishing contribution at the first order, since the average
dipole moment of an atom is zero. Passing to the second order correction, the effective interaction
between the two atoms i and j in the Rydberg state becomes

Vi,j =
V0

|i− j|6 , V ∼ n11, (3.11)

which leads to the strong coupling Hamiltonian

H = H0 +
∑
i ̸=j

V0
|i− j|6ninj . (3.12)

In Eq.(3.12), one may recognize the Van der Waals interaction, that decays as 1/R6 with respect
to the interaction distance.

3.3.2 Rydberg dressing

Starting from the frozen regime, one can make a step further and introduce a large detuning ∆, to
weakly couple a non-Rydberg state, say the ground state |g⟩, to some Rydberg state |r⟩. In this
way, one virtually populates the Rydberg state, meaning that at the first order in the perturbation
theory, the |g⟩ ground state of the system will be modified and will acquire a small admixture of
the Rydberg state [7, 16, 17]:

|g̃⟩ ∼ |g⟩+ Ω

∆
|r⟩. (3.13)

We will be referring to |g̃⟩ as the Rydberg-dressed state. Before talking about the interaction be-
tween Rydberg-dressed atoms, it is worth mentioning that one will inevitably encounter dissipation
in such setups. Without Rydberg-dressing, one of the dissipative processes could be the decay of
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Rydberg state. The advantage of Rydberg-dressing is that it greatly enhances the lifetime of the
state and thus reduces the dissipative effects. To unravel the properties of interaction between the
atoms in Rydberg-dress states, we carry out perturbation theory up to the fourth order in Ω/∆.
For time being, we limit our discussion with two-atom scenario, but the arguments stay valid for
many-atom setup. For a pair of atoms, in the fourth order approximation there are two processes
when both atoms are in the Rydberg state and thus interact with each other. By neglecting the
numerical constant contributions that simply shift the energy scale, the effective interaction between
two particles r distance apart will be

Vint ≈
Ω4

∆3

1

1 +
(
r
rc

)6 , rc =

(
2∆

V0

)1/6

. (3.14)

In the literature Eq.(3.14) is known as the Soft-shoulder potential. Such an interaction had an
interesting and useful property: at short distances r ≪ rs, the interaction strength shows a plateau,
while for large distances r ≫ rs it decays as Van der Waals interaction Eq.(3.12). As we will see
in the following sections, such an interaction can be useful to experimentally realize Hubbard-like
models, where the density-density interactions are extended over many lattice sites. Long-range
interactions within low dimensional quantum systems can exhibit exotic quantum phases.
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Figure 3.1: (A) A pictorial representation of the experimental setup; (B) Experimentally
measured attractive potential, engineered by Rydberg dressing. Figure extracted from [24].

3.3.3 Experimental realisations

The setup presented in [24], experimentally studied the emerging physics using Rydberg-dressed
6Li atoms populated on a 2D optical lattice with α0 = 752nm lattice spacing, see Fig(3.1a). An
external magnetic field of Bz ≈ 591G is applied perpendicularly to the optical lattice plane. The
spin polarized 6Li atoms are initially prepared to be in |nl,ml,ms,mI⟩ = |2S, 0,−1/2, 1⟩ ≡ |g⟩ state.
The ground state is coupled to the Rydberg state |r⟩ ≡ |28P, 0,−1/2⟩ by shining 231nm laser along
the x direction, linear along Bz direction. Thus, these two states form the two dimensional space of
states |g⟩ and |r⟩. By changing the intensity and the detuning of the dressing light, one has a full
control over the soft-core interaction potential Eq.(3.14). This way, one has an experimental setup
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to simulate the dynamics of hard-core bosons governed by the following hamiltonian

Hfull = −t
∑
⟨i,j⟩

(
c†icj + h.c

)
+

1

2

∑
i,j

Vi,jninj +
∑
i

δini. (3.15)
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Figure 3.2: (a) Initially prepared CDW order. Tunnel-
ing along y direction is suppressed. (b) Density variation
along x axis in the initial CDW ordered state. (c) The
quench dynamics of initial CDW state. Figure extracted

from [24].

Here δi are the so-called single-particle light-
shifts, that originates from the lattice and
Rydberg-dressing light beams. By narrowing
the dressing beam and focusing it with 16.1µm
waist, the variation of δi along y direction be-
comes larger compared to t - typically greater
than 3t. On the other hand, the variation of δi
along x direction becomes negligible. This way,
to the first order approximation, we can drop
the light-shift term and neglect the tunneling
processes along y direction. This reduces the
effective hamiltonian to

Heff = −t
∑
⟨i,j⟩x

(
c†icj + h.c

)
+

1

2

∑
i,j

Vi,jninj ,

(3.16)
Therefore, this setup allows one to study ex-
perimentally study the physics of coupled 1-

dimensional t−V models with long-range interactions, with strongly suppressed tunneling between
the chains.

Within this setup, an interplay between the tunneling and the interaction was studied. By
fine tuning the the single-particle light shift δi and the detuning Ω, a nearest-neighbor repulsive
interaction was obtained Vi,j = V δi,i+1. To examine the competition between the tunneling and the
repulsion of the atoms, an initial charge-density wave (CDW) was prepared – with period λ = 4α0

and width w = 7α0. The density of particles in the peaks of CDW was chosen to be n ∼ 0.7,
see Figs.(3.2a,b). By observing the quench dynamics of the charge density wave for various ratios
V/t, it was determined that for non-interacting case the phase of CDW inverts at a times ∼ ℏ/t.
This is an expected outcome, due a coherent evolution of the system. On the other hand, for
sufficiently strong repulsion V/t ≈ 2.9, CDW order remains for larger times – an immediate effect
of the repulsion on the dynamics, Fig.(3.2c).
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Figure 3.3: Pictorial representation of the experimental
setup. Figure extracted from [71].

In a more recent setup [71], the authors
experimentally realized an effective 1D ex-
tended Bose-Hubbard model, by implementing
Rydberg-dressed atoms in an optical lattice. In
this case, 87Rb atoms are pumped in a sin-
gle plane of an optical lattice. Each atom is
prepared in |g⟩ = |F = 2,mF = 2⟩ ground
state. By using the folded lattice approach [72]
with α0 = 752nm, a 2D Bose-Hubbard model
is realized, with tunable J hopping amplitude
and fixed U/ℏ ≈ 35.8Hz on-site interaction
strength. Above this, by single-site address-
ing, up to three parallel and non-interacting
one-dimensional systems can be prepared. The
separation between each chain can be up to 3
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Figure 3.4: The figure shows the dynamics of the symmetrized two-particle density for
V/J = 0, 1.0(1), 2.0(2), 3.3(1), 4.9(2) (cases 1 to 5 , respectively) post-selected on two parti-
cles being present. Evidently, below the critical value of Vc (figures 1 and 2) the particles
spread independently, following a ballistic light-cone with group velocity 2Jα0/ℏ. Above the
critical point (figures 3 to 5), a slower light-cone emerges (highlighed with red dashed lines)

– corresponding to the bound pair’s expansion. Figure extracted from [71].

lattice sites, as shown on Fig.(3.3a). Each 1D chain contains experimentally tunable number of
atoms. As already mentioned, the tunneling along each chain happens with rate J , while inter-
chain tunneling is suppressed by applying a magnetic field along y direction with ∇By ≈ 350Hz/α0

gradient. As a next step, one off-resonantly shines the system with 297nm laser light along 1D
chains, thus inducing the coupling between the local ground states |g⟩ to corresponding Rydberg
state |r⟩ = |30P3/2,mj = 3/2⟩. The off-resonance ∆ is fine tuned in a way, that the effective dressed
interaction V extends over two nearest neighboring sites, as shown on Fig.(3.3a). In this manner,
the one experimentally realises a synthetic quantum system, where the dynamics is described by
the so-called extended Bose-Hubbard model

H = −J
∑
⟨ij⟩x

a†iaj +
U

2

∑
i

ni(ni − 1) + V
∑
i

nini+1. (3.17)

In this scenario, the authors tune the setup to U/J ≳ 11 and thus operate in the hard-core
regime, while also manage to reache relatively strong V/J ≃ 6− 10 repulsion strength. In Ref.[73],
it was theoretically predicted predict that bound states of atoms start to populate the system if the
interaction strength is sufficiently strong V > Vc, with Vc = 2J . By quenching the tunnel coupling
of the lattice, bound states of atoms has been detected (see Fig.(3.4)), as predicted by the theory.
Apart from the agreement with theoretical results, the group has applied stroboscopic sequence
of pulses to enhance the control over the interaction V . Such an approach for dressing has also
enhanced the expected Rydberg lifetime by one order of magnitude.
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Chapter 4

Phase diagram of Rydberg-dressed
atoms on two-leg square ladders:
Coupling supersymmetric conformal field
theories on the lattice

In this section we investigate the phase diagram of hard-core bosons in two-leg ladders in the
presence of soft-shoulder potentials. We show how the competition between local and non-local
terms gives rise to a phase diagram with liquid phases with dominant cluster, spin-, and density-
wave quasi-long-range ordering. These phases are separated by Berezinskii-Kosterlitz-Thouless,
Gaussian, and supersymmetric (SUSY) quantum critical transitions. For the latter, we provide
a phenomenological description of coupled SUSY conformal field theories, whose predictions are
confirmed by matrix-product state simulations. Our results are motivated by, and directly relevant
to, recent experiments with Rydberg-dressed atoms in optical lattices, where ladder dynamics has
already been demonstrated, and emphasize the capabilities of these setups to investigate exotic
quantum phenomena such as cluster liquids and coupled SUSY conformal field theories.

By utilizing a combination of field theoretical approaches based on bosonization [28, 39], and
numerical simulations based on exact diagonalization [74] and tensor networks [75, 76], we find
that two-leg soft-shoulder Hubbard models support a rich phase diagram (schematically depicted
in Fig.(4.1b)). In the weakly interacting regime, the system supports a fully gapless and a spin-
density wave phase, that are well captured via an Abelian bosonization field theory. In the limit of
strong intra-chain interactions, the system is effectively described by chains that are subjected to
clustering: remarkably, in such limit, despite the already strong nature of fractionalization due to the
inapplicability of the Luttinger theorem, finite inter-chain interactions immediately lock clusters,
giving rise to a single, ‘spin-locked’ cluster Luttinger liquid. We capture this regime utilizing a
phenomenological cluster bosonization field theory [40, 20, 21, 77].

Close to the (decoupled) single chain critical point, the models we consider offer an almost
unique possibility of investigating the controlled coupling of two supersymmetric (SUSY) conformal
field theories [78, 27]. This happens at intermediate interactions, where we are unable to construct
a microscopically justified quantum field theory. To describe such scenario, we instead propose a
phenomenological field theory. The emerging picture is that, for the case of square ladders, the
mutual interactions between the SUSY theories lead to the opening of a gapless phase with density-
wave quasi-long-range order that is absent in any interaction limit. This phase is separated from the
weak coupling phase by a Gaussian transition, and from the strong coupling phase by a conformal
critical line with central charge c = 3/2. We confront these predictions against extensive tensor
network simulations, including an analysis of entanglement properties as well as experimentally
observable correlation functions.
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4.1 Model Hamiltonian and overview of the phase diagram
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Figure 4.1: (A) Representation of the soft-shoulder (V ) Hubbard (U) square ladder of
Rydberg hard-core bosons. They hop (t) within a same leg of the ladder only. We depict a
range of 2 for the soft-shoulder interaction. (B) Phase diagram of the model. The weak cou-
pling regime displays a gapless phase composed of two Tomonaga-Luttinger liquids (TLLs)
in both charge and spin (mapped from the leg index) sectors (2TLL). Upon increasing V ,
first, the spin sector undergoes a Berezinskii-Kosterlitz-Thouless (BKT) transition (green
line) onto a spin-density wave (SDW); then, a Gaussian transition (blue line) drives the sys-
tem to a charge-density wave phase (CDW). At large interactions, a c = 3/2 transition (red
line) separates the CDW from a ‘spin-locked’ cluster Luttinger liquid (CLL). The transitions
lines at intermediate couplings relate to the effective field theory emerging from the two su-
perposed supersymmetric (SUSY) conformal critical points at U = 0 (red crossed-dot). At
U = 0, the two legs are independent and display TLL (1+1 TLL) and CLL (1+1 CLL)

phases separated by the c = 3 SUSY point.

We study a square ladder of spinless hard-core bosons at ν = 2/5 filling (on average two filled sites
for every five sites in each chain). The system Hamiltonian is schematically depicted in Fig.(4.1a),
and reads:

H = −t
∑
i,ℓ

(
b†i,ℓbi+1,ℓ +H.c.

)
+ U

∑
i

ni,+ni,− + V
∑
i,ℓ

rC∑
j=1

ni,ℓni+j,ℓ. (4.1)

where b†i,ℓ is the creation operator for hard-core bosons on site i of chain ℓ = +,− and ni,ℓ = b†i,ℓbi,ℓ.
t is the intra-chain hopping, U is the nearest neighbor inter-chain interaction amplitude, V is the
longer-ranged intra-chain interaction amplitude, and rC ∈ N. The density ν = 2/5 is chosen in such
a manner that, in the classical limit, the model supports clustering. In this model, the U(1) charges
of the two legs are conserved separately, making the Hamiltonian a U(1)×U(1) symmetric system.
There is no inter-chain tunneling but the two legs interact.

The model in Eq.(4.1) is directly inspired by the Rydberg experiments performed in Ref.[16].
There, a gas of atoms was weakly coupled to Rybderg p-state in the Paschen-Bach regime, resulting
in pairwise interactions of the type:

V (r) =
Vmax

1 + r6

r6S

, (4.2)

with both Vmax > 0 and rS easily tunable in both the transversal and longitudinal directions.
Tunneling between tubes was instead strongly suppressed leveraging on the comparatively large
quadratic Zeeman shifts from tube to tube. An alternative way to prevent inter-wire tunneling is
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to suppress it utilizing a higher potential barrier between the wires. Densities could be tuned via
changing the atom loading scheme.

The potential in Eq.(4.2) is connected to the model Hamiltonian above as follows. In a lattice,
when rS ∼ a0 with a0 being the lattice spacing, such potential is well approximated by a Heaviside
step function stepping down at r = rCa0 = Floor(rS/a0)a0. We take rC = 2 in Eq.(4.1) along the
legs and rC = 1 along the rungs. Note that anisotropic potentials could be generated in various
ways – either changing the relative lattice spacing along and perpendicular to the wire, or utilizing
dressing via p- and d-states under specific directions. The influence of longer-range terms (for V )
is known to affect clustering only at the quantitative level [20], so, throughout the work, we will
solely employ Eq.(4.1) with rC = 2 for the sake of clarity.

The red line (U = 0) of Fig.(4.1b) corresponds to two decoupled chains of known behavior [20,
21]. The phase diagram of a single chain displays a Tomonaga-Luttinger liquid (TLL) for 0 < V/t ≲
5.7, and a cluster Luttinger liquid (CLL) for V/t ≳ 5.7. A CLL behaves like a regular TLL, with
its elementary excitations behaving as propagating waves of local (over a few sites) clusters of filled
and empty sites. For ν = 2/5 such clusters minimizes the energy cost in V . Two semi-classical
cluster configurations are represented in Fig.(4.2a) and involve two clusters A and B in a ratio 1:2.
Both the TLL and the CLL have a central charge c = 1. They are separated by a SUSY conformal
phase transition point of central charge c = 3/2 at V/t ≃ 5.7 identified numerically [21]. The
low-energy field theory for this point is described by a combination of a compactified boson and a
real Majorana fermion.

By adding an interaction between two of these chains, we infer the rest of the phase diagram
Fig.(4.1b). We map the leg index to a SU(2) spin-1/2 degree of freedom. We show that a partial
spin gap opens as soon as U > 0 (and V > 0). At weak coupling (V/t ≲ 5.7) the leading instability
is a spin-density wave (SDW). At strong coupling (V/t ≳ 5.7), it is the CLL that is spin-locked. In
both cases, the central charge is c = 1. When V = 0, the ladder is equivalent to the fully gapless
Hubbard model described by a TLL with c = 2 (2TLL). At t < U ≲ V , we find a charge-density
Wave (CDW) leading instability (with c = 1) between the SDW and the CLL. We understand the
existence of this instability here as the consequence of the inversion of the sign of the mass of the
spin degree of freedom before clusterization when starting from the SDW and increasing both U
and V . We provide a cartoon picture of the dominant instabilities in Fig.(4.2).

(a) A B B B A B

(b)

C

(c) ∝ π ∼ 1.25a0

x

x
C+

C−

x

Figure 4.2: Cartoon pictures of the leading instability of the various phases in the single
chain and ladder model (for 2/5 filling). (a) Two of the possible semi-classical configurations
of the two clusters of hard core bosons A and B in a ratio 1:2. (b) TLL for only one chain.
C is the density-density correlations without the algebraic damping. (c) Spin density wave
along z-direction for the square lattice for a gapped spin sector. Such a wave propagates

with a momentum of ±2kF .

The SDW and CDW phases are separated by the Gaussian phase transition with c = 2. When
U = 0, the phase transition point at V/t ≃ 5.7 is the superposition of the two SUSY conformal
phase transition of each independent chain, hence c = 3/2 + 3/2 = 3. The CDW and the CLL are
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separated by the generalization of the supersymetric phase transition point existing at (V/t ≃ 5.7,
U = 0). This transition has c = 3/2 and may not be supersymmetric. The SDW and 2TLL
phases are separated by a Berezinskii-Kosterlitz-Thouless (BKT) transition (green dashed line in
Fig.(4.1b)). Note that the location of this BKT transition is predicted from the analytical results
at weak coupling regime and hard to locate precisely for the entire parameter range using numerical
tools used in this study.

We establish these results analytically in Sec.(4.2) starting from the two independent chain
coupled by the perturbative interaction U . We use Abelian bosonization in the weak coupling regime
or provide a phenomenological explanation using cluster bosonization for V/t≫ 5.7. Moreover, we
predict possible outcomes for the coupling between two SUSY conformal field theories close to
(V/t ≃ 5.7, U ≳ 0) using a phenomenological field theoretic approach in Sec.(4.3). We use exact
diagonalization and infinite density matrix renormalization group (iDMRG) method in Sec.(4.4) to
corroborate our theoretical results and predictions, and to uncover the phase diagram of Fig.(4.1b)
for large U/t.

We note that Ref. [79] studied a similar model as Eq.(4.1) but with an inter-leg interactions (U)
of range two (in diagonal) instead of zero like we do. This corresponds to a very different classical
limit, and reflects onto the fact that the phase diagrams, apart from weak coupling regions, are
generically distinct. In particular, there appears to be no similar scenario close to the SUSY point.

4.2 Analytical & phenomenological approach of weakly coupled legs

In this section, we derive our analytical results on the ladder model by starting from the two
decoupled chains that are either describe by massless single-particles (V ≪ t) or cluster liquids
(V ≫ t), to which we add the interaction U perturbatively. In the weak coupling regime (U, V ≪ t),
we use Abelian bosonization to predict the SDW phase, the 2TLL phase, and the BKT phase
transition in between (the dashed line in Fig.(4.1b)). In the strong V regime, we use cluster
bosonization to describe the properties of two interacting CLL, and how the interaction induces a
partial gap, leading to c = 1 CLL in the ladder geometry.

4.2.1 Weak intra-chain interactions: Abelian bosonization

In the weak coupling, we predict the existence of two phases: the 2 Tomonaga-Luttinger liquid when
V = 0 and the holonic phase with spin density wave leading instability when V > 0 (c.f. Figs.(4.2b,c)
for a cartoon picture). Formulated as a soft-shoulder Hubbard model of spinful fermions and using
Abelian bosonization, we show that the model in Eq.(4.1) describes a TLL with a mass term for
the spin degree of freedom which is relevant as soon as V > 0 at first loop of renormalization and
irrelevant when V = 0 (for the filling ν = 2/5). When U = 0, the model is gapless for both degrees
of freedom.

We obtain these predictions by bosonizing the Hamiltonian in Eq.(4.1) and obtaining explicit
formulae for the parameters of the low-energy field theory. Indeed, when both U = 0 and V = 0,
Eq.(4.1) describes two chains of free spinless fermions (via, e.g., a pair of Jordan-Wigner transfor-
mations) with an emerging conformal symmetry when taking the continuous limit. We therefore
study the weak-coupling low-energy properties of the system using standard Abelian bozonisation
techniques as detailed in Refs. [27, 39, 28]. We use the same conventions as in Ref. [28]:

ci,ℓ ∼ ψR,ℓ(x = i) + ψL,ℓ(x = i), (4.3a)

ψr,ℓ =
1√
2πa0

Ur,ℓe
irkF xei

√
π
2
(rϕc−θc+ℓ(rϕs−θs)). (4.3b)
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Here, ci,ℓ is the fermionic annihilation operator obtained from bi,ℓ after a Jordan-Wigner transfor-
mation, ψr,ℓ is the associated right (r = R) and left (r = L) moving fermionic field in the continuous
limit close to the Fermi points, ℓ = +,− denotes the chain index, a0 = 1 is the lattice spacing, Ur,ℓ
are the Klein factors such that {Ur,ℓ, Ur′,ℓ′} = 2δr,r′δℓ,ℓ′ , and kF = πν/a0 is the Fermi momentum
with ν = 2/5 being the filling factor for each chain. The bosonic fields ϕc, ϕs, θc, and θs are the
charge and spin fields and their respective dual fields.

The Hamiltonian in Eq.(4.1) in terms of the bosonic fields can be written as

H ∼ uc
2

∫
dx

(
Kc : (∂xθc)

2 : +
1

Kc
: (∂xϕc)

2 :

)
+
us
2

∫
dx

(
Ks : (∂xθs)

2 : +
1

Ks
: (∂xϕs)

2 :

)
− g⊥

4π2

∫
dx cos(

√
8πϕs),

(4.4)

where ∂x is the first derivative with respect to the spatial coordinate x, the colon denotes normal
ordering, and a0 is the lattice spacing (taken equal for both the x and y directions for simplicity).
The quantities

vF = 2t sin(2π/5), (4.5a)
usKs = ucKc = vF , (4.5b)
g⊥ = −2U, (4.5c)
g∥ = −2(U − 5V ), (4.5d)

Kc =
1√

1 + U+5V
πvF

, (4.5e)

Ks =
1√

1 +
g∥

2πvF

, (4.5f)

are the Fermi velocity vF , bare charge velocity uc, charge Luttinger parameter Kc at first order
in U/t and V/t, spin velocity us and spin Luttinger parameter Ks at first order. Expressions for
generic kF and rC can be found in the Appendix. The renormalization equations at first loop of
renormalization are

dg⊥
dl

=
1

2π
g⊥g∥ (4.6a)

dg∥

dl
=

1

2π
g2⊥, (4.6b)

which predict a BKT phase transition when g∥ = −|g⊥|, i.e., when V = 0 for U > 0 [28].
Solving Eqs.(4.6) shows that the spin sector is gapped when V > 0, and gapless when V = 0 [28].

As the extended interaction breaks the SU(2) symmetry, the renormalization flow may introduce
a gap in the spin sector without commensurability effect. As m = −g⊥/(4π2) > 0, this gap fixes
ϕs =

√
π/8 (modulo

√
π/2) such that the order parameter Otriplet0 is the “triplet 0” [80]:

Otriplet0 = sin(
√
2πϕs). (4.7)
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This order parameter describes the spin sector contribution in the “2kF ” spin density wave along
the z-direction (SDWz) whose order parameter OzSDW

1 can be defined as follows [81]:

OzSDW = Sz(x)− 1√
2π
∂xϕs(x) = cos(

√
2πϕc + 2kFx) sin(

√
2πϕs). (4.8)

where Sz(x) the continuous limit of the spin operator

1

2

∑
ℓ,ℓ′=±

b†x,ℓσ
z
ℓℓ′bx,ℓ′ ∼ Sz(x), (4.9)

with σzℓℓ′ the Pauli matrix along the z-direction. The associated correlator is

⟨OzSDW(x)OzSDW(y)⟩ ∼ cos(2kF |x− y|)|x− y|−Kc , (4.10)

which is also the correlator with the longest range, such that the SDWz is the dominant instability
in the system. The cartoon picture of the low energy states of the phase at low filling is a set of
right or left moving particles of momentum close to 2kF distributed equally between the two legs.
When two particles from different legs scatter, they exchange momentum.

When V = 0, the phase is fully gapless as in the Hubbard model. Both the CDWs with
momentum 2kF and SDWs instabilities are in competition. We define the order parameter associated
with CDW with

OCDW = ρ(x)−
√

2

π
∂xϕc(x), (4.11)

where ρ(x) is the continuous limit of the density operator∑
ℓ=±

b†x,ℓbx,ℓ ∼ ρ(x). (4.12)

The correlation functions associated with both CDW and SDWz are

⟨OCDW2kF
(x)OCDW2kF

(y)⟩ ∼ cos(2kF |x− y|)|x− y|−(Kc+K∗
s ),

⟨OzSDW(x)OzSDW(y)⟩ ∼ cos(2kF |x− y|)|x− y|−(Kc+K∗
s ),

(4.13)

with K∗
s = 1, the renormalized Luttinger parameter as the SU(2) symmetry emerges asymptotically.

As a comparison, the CDW correlation function in the SDW phase decays exponentially as

⟨OCDW(x)OCDW(y)⟩ ∼ cos(2kF |x− y|)|x− y|−Kce−|x−y|/ξ, (4.14)

where ξ ∼ 1
M and M is the dynamically generated mass gap [28] defined as

M = Λexp

(
−
(
g2⊥ − g2∥

)− 1
2

)
, (4.15)

with Λ being the ultra-violet cutoff.
When 0 < V < U/5, the partial gap of the SDW is more fragile than when V > U/5. Indeed,

the scaling dimension of the mass operator in the sine-Gordon model in Eq.(4.4) is larger than two
when Ks > 1, i.e., when U = 5V . In this zeroth loop approach, the mass operator is therefore
irrelevant when 0 < V < U/5 such that the spin gap opens only because of first-loop corrections.

1The contribution also appears in the bond-spin density wave along the z-direction (BSDWz) order parameter.
As the charge sector is gapless, SDWz and BSDWz leading instabilities are indistinguishable.
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This feature of the BKT phase transition hints at the difficulty to precisely pinpoint the phase
transition line within the regime 0 < V < U/5 seen in our later numerical approach.

Long-range intra-leg interaction potential V (r) at weak coupling

Using the Abelian bosonization approach discussed in Sec.(4.2.1), the weak coupling effective field
theory is derived for a generic case of the intra-leg soft-shoulder potential range rC . Away from
half-filling, the bosonized Hamiltonian has exactly the same form as Eq.(4.4). The charge sector is
gapless. The bare parameters describing the spin sector at weak coupling are

usKs = ucKc = vF , (4.16a)

Ks =
1√

1 +
g∥

2πvF

, (4.16b)

g∥ = −2
(
U − V

(
2rc + 1− sin([2rc + 1]kF )

sin(kF )

))
, (4.16c)

Kc =
1√

1− g
2πvF

, (4.16d)

g = −2
(
U + V

(
2rC + 1− sin([2rC + 1]kF )

sin(kF )

))
. (4.16e)

while g⊥ = −2U remains unaffected. For kF = 2π/5, the changes in parameters Eqs.(4.16) narrows
the location of the BKT phase transitions for V < U/5 but leaves the first loop prediction (V = 0)
unchanged.

4.2.2 Strong intra-chain interactions and the clustering limit: cluster bosoniza-
tion

In the strong coupling regime V ≫ t, U , we show that the phase is a CLL: to minimize the shoulder
potential V , the hard-core bosons on each leg group up in clusters separated by rC empty sites.
Both the number of particle per cluster and the variety of clusters depend on the filling and rC . For
ν = 2/5 and rC = 2, two clusters A and B emerges with ratio 1:2 and are represented in Fig.(4.2a).
In the CLL, it is the collective modes of these clusters A and B that propagate freely, similarly to
the holons of Sec.(4.2.1). We show that the inter-leg interaction U may lead to the equivalent of a
spin gap for these clusters, forcing the clusters from both legs to propagate in a correlated manner.
When this cluster spin gap is present, the central charge is c = 1, and c = 2 otherwise. Numerical
simulations conclude c = 1 in Sec.(4.4).

To derive the results, we use cluster bosonization. As already demonstrated in Eq.(2.123), one
can use a generalized phenomenological bosonization to take into account the fact that the clusters
are composite objects. For the present case, since we are dealing with two chains, one simply needs
to attach extra chain index l = ± to Eq.(2.123) and all corresponding commutators. Since in our
case σ =M/N = 3/4 and ν = N/L = 2/5, we have

ρℓ(x) =

(
2

5
− 1√

πσ
∇ϕ′ℓ(x)

) +∞∑
q=−∞

Aq,ℓe
−i2q(3πx/10−

√
πϕ′ℓ(x)), (4.17)

with [
θ′ℓ(y),

1

π
∇ϕ′ℓ′(x)

]
= iδℓ,ℓ′δ(x− y), (4.18)
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while the expression for the cluster bosonic field ψℓ(x) in the density-angle formulation is

ψℓ(x) = e−
i
√
π
σ
θ′ℓ(x)

√
2

5
− 1√

πσ
∇ϕ′ℓ(x)

+∞∑
q=−∞

αq,ℓe
−i2q(3πx/10−

√
πϕ′ℓ(x)), (4.19)

where αq,ℓ are the non-universal Fourier coefficients.
Using the cluster density (see Eq.(4.17)) and the cluster bosonic field (see Eq.(4.19)), we write

the effective continuous Hamiltonian describing the low-energy behavior of the clusters. For U = 0,
this Hamiltonian is [20, 21]

H =
∑
ℓ=±

vℓ
2

∫
dx
(
Kℓ(∇θ′ℓ)2 +K−1

ℓ (∇ϕ′ℓ)2
)
, (4.20)

where the cluster velocities and Luttinger parameters include the (unknown) Jacobian of the coarse
graining. By symmetry both vℓ = v and Kℓ = K for the two chains. The Hamiltonian in Eq.(4.20)
describes two CLL (2CLL), with central charge c = 1 each (c = 2 in total) [20, 21]. The inter-leg
interaction in the cluster bosonic field variables is

U

∫
dxρ+(x)ρ−(x) ∼ g0

∫
dx∇ϕ′+∇ϕ′− + g⊥

∫
dx cos(

√
4π(ϕ′+ − ϕ′−))

+ g2

∫
dx sin(

√
4π(ϕ′+ − ϕ′−)) + ...

(4.21)

with g0 =
UA0,+A0,−

πσ2 , g⊥ = 8U Re[A1,+A−1,−]/25 and g2 = −8U Im[A1,+A−1,−]/25. In Eq.(4.21),
we have only written the slowly oscillating terms at least as relevant as cos(

√
4πϕ′). By symmetry,

at zeroth order in perturbation of U , the coefficient Aq,ℓ are independent of the leg index. In this
case, we expect g0 > 0, g⊥ > 0 and g2 = 0. We define the cluster spin and charge bosonic field ϕs
and ϕc as

ϕ′c =
ϕ′+ + ϕ′−√

2
, ϕ′s =

ϕ′+ − ϕ′−√
2

, (4.22a)

θ′c =
θ′+ + θ′−√

2
, θ′s =

θ′+ − θ′−√
2

. (4.22b)

Using Eqs.(4.20–4.22), we derive the Hamiltonian in Eq.(4.1) with inter-leg interaction as follows:

H ∼vc
2

∫ (
Kc(∇θ′c)2 +K−1

c (∇ϕ′c)2
)

+
vs
2

∫ (
Ks(∇θ′s)2 +K−1

s (∇ϕ′s)2
)
+ g⊥

∫
dx cos(

√
8πϕ′s),

(4.23)
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where

Kc =
K√

1 + g0K
v

, (4.24a)

Ks =
K√

1− g0K
v

, (4.24b)

vc = v

√
1 +

g0K

v
, (4.24c)

vs = v

√
1− g0K

v
. (4.24d)

According to this phenomenological picture, we expect the cluster charge sector to be gapless,
while the spin sector may be gapped or gapless. The partial gap depends on the value of Ks,
and leads to a CLL with c = 1 or c = 2. As the inter-leg interaction (U) does not involve the
cluster charge bosonic field, Eq.(4.23) displays spin-charge separation with is no gap opening when
U = 0 [20, 21]. When Ks > 1, the cluster spin mass is irrelevant. In both of these cases, both
the charge and the spin sectors are gapless such that the system describes a 2CLL with c = 2 at
zero loop of renormalization. When Ks < 1, the cluster spin gap is relevant. Like for the SDW of
Sec.(4.2.1) we expect the mass to be positive. Unlike the SDW, the coarse grained nature of the
cluster degree of freedom prevents an easy interpretation of the microscopic correlation functions
obtained numerically. Given the repulsive nature of U , we nonetheless can expect an anti-alignment
of the clusters along the rung. Then the phase is a spin-locked 1CLL with c = 1. The numerical
simulations of Sec.(4.4) differentiates the 2CLL from the 1CLL, and show that the phase is indeed
the spin-locked CLL with c = 1 as soon as U > 0.

4.3 Coupling SUSY conformal field theories: a phenomenological
approach

In the intermediate coupling regime that captures the transition between weak and strong coupling,
none of the above approaches is reliable. In particular, close to the transition point at U = 0,
V/t ≃ 5.7, each chain is separately described by a c = 3/2 supersymmetric conformal field theory,
composed of a compactified boson and a real fermion field with the same speed of sound. Coupling
two chains thus presents a very rare opportunity to investigate the coupling of supersymmetric
theories – something that, to the best of our knowledge, is not achievable in other cold gas settings.

In order to provide a qualitative understanding of the system dynamics in the vicinity of the
SUSY point, we first recap what is known about the single chain, and then develop an effective,
phenomenological field theory for the ladder. The latter theory results in two possible scenarios
for the phase diagram. We resolve such dichotomy by means of tensor network simulations in the
next section. It is important to note that we are interested here in the intermediate-interaction
parameter regime, so that our approach is complementary to hard-constrained models [82].

4.3.1 Brief recap: SUSY critical point at U = 0

For a single chain, the vicinity of the SUSY phase transition point at V/t ≃ 5.7 can be phenomeno-
logically described by the field theory of a massless compact bosonic field with c = 1 and a real
fermion (with c = 1/2 when massless). Specifically, the effective Hamiltonian around the SUSY
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conformal point reads

H1SCF =
vB
2

∫
dx
(
(∂xφ)

2 + (∂xϑ)
2
)
+ i

∫
dx (vMη∂xζ +mMηζ) , (4.25)

where φ and ϑ are the two conjugate compact bosonic fields of associated velocity vB. The fields
are not the microscopic bosonic field nor the cluster fields: in fact, their relation to the microscopic
operators has not been determined. Over the transition regime, they do not acquire a mass. η and
ζ are a pair of Majorana operators of velocity vM and mass mM . At the SUSY conformal point
mM = 0: at that point, vF = vB, and the Luttinger parameter of the bosonic field is fixed by the
SUSY [82].

Based on a level spectroscopy analysis, one can interpret the phase transition towards the CLL
as an inversion of the sign of mM [21]. At the phenomenological level, one can interpret the real
fermion as an Ising field, that is ‘ordered’ in the CLL phase, and ‘disordered’ in the TLL phase.
It is thus a field that indicates the presence of composite particles as fundamental objects. It is
worth mentioning that the appearance of a critical point with central charge larger than one, while
certainly unusual for a single-species model, is not fully unexpected: indeed, it is known that by
considering quantum dynamics beyond nearest-neighbor, even free theories can display phases with
more than one-gapless channel - one paradigmatic example being tight-binding models where NN
and NNN tunnelings are of the same order.

4.3.2 Coupling two SUSY critical points

Starting from the above picture, we develop a description to the ladder scenario. In the ladder,
there are two compact bosonic degrees of freedom: their charge combination acts as an underlying
field that remains gapless over the transition regime, while the spin combination shall be gapped to
account for the presence of the SDW. The real fermion theory is also doubled.

Based on these two observations, the effective Hamiltonian in the vicinity of the SUSY conformal
phase transition point U = 0, V/t ≃ 5.7 reads:

H2SCF =
vB,c

2

∫
dx
(
(∂xφc)

2 + (∂xϑc)
2
)

+
vB,s
2

∫
dx
(
(∂xφs)

2 + (∂xϑs)
2
)
+ g

∫
dx cos(

√
8πKsφs)

+i

∫
dx (vM,SηS∂xζS +mM,SηSζS) + i

∫
dx (vM,AηA∂xζA +mM,AηAζA) ,

(4.26)

where the indices c, S, s, and A stand for charge, symmetric, spin and anti-symmetric respectively.
The charge (resp. spin) boson and symmetric (resp. anti-symmetric) Majorana fermions are sym-
metric (resp. anti-symmetric) combinations of the fields of the two legs. By consistency with our
results in Sec.(4.2.1), g > 0 in the SDW phase and the sine-Gordon interaction is relevant. There is
no umklapp term here as neither the weak or strong coupling regimes support an insulting phase.

In principle, other terms could be included in the low-energy theory. Those could either couple
the bosonic fields to the fermions, or the two fermions. The latter are likely not relevant to our
description: since the system is symmetric under chain inversion, a coupling between anti-symmetric
and symmetric clustering real fermionic fields is unlikely. It is instead hard to justify, in general, the
absence of terms coupling fermions to bosons. In fact, with the possible exception at the vicinity of
the U = 0 critical point, there is no microscopic reason that suggests not to include them: however,
the lack of an exact lattice-to-field operator mapping prevents us from having a clear idea on their
possible functional form. We will thus proceed under the assumption that those terms are irrelevant,
and verify this a posteriori in the next section.
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Under these assumptions, we can treat the bosonic and fermionic sectors of the theory in a
modular manner:

• charge field φc: this field is always gapless, and describes collective density fluctuations (either
starting from a single particle description, or from a cluster one);

• spin field φs: this field is strongly pinned in the SDW phase, owing to the value of the spin-
Luttinger parameter Ks ≪ 1. In such regime of the sine-Gordon model, it is still possible for
the system to undergo a Gaussian transition at g = 0: this transition is described by a c = 1
CFT, and separates two phases with opposite pinning of the spin field;

• symmetric fermionic field: we expect this field to undergo an Ising transition, separating a
regime where microscopic degrees of freedom are clusters, from the one where those are single
particle fields;

• anti-symmetric fermionic field: this field might lead to interesting dynamics in case of unbal-
anced chains (for instance, including clusterization only in one of them). However, since such
imbalance is not present in the strong coupling limit if the U(1)×U(1) symmetry is preserved,
we do not expect this sector of the theory to be of relevance here.

The aforementioned considerations open two possibilities for the quantum criticality. We illus-
trate these two scenarios moving from weak to strong coupling by, e.g., increasing V and U > 0, in
the following.

P.1 In the first one, the spin field undergoes a Gaussian transition first into a CDW phase, and
then clustering occurs via an Ising transition. The sequence of central charges here is c = 1
(SDW), c = 2 (Gaussian critical line), c = 1 (CDW), c = 3/2 (Ising critical line), c = 1
(spin-locked CLL).

P.2 The second scenario would instead see first cluster forming, and subsequently, a Gaussian
transition in the spin sector. The sequence of central charges here is c = 1 (SDW), c = 3/2
(Ising critical line), c = 1 (cluster liquid that we cannot fully characterize), c = 2 (Gaussian
transition), c = 1 (spin-locked CLL).

Here, we rule out the scenario where both transitions happen along the same line, as this will require
fine tuning (to the best of our understanding). We note that, while hard to diagnose, it may be
possible under both scenarios to recover SUSY along the critical c = 3/2 line.

Since we are lacking even a phenomenological functional form for the effective parameters in
Eq.(4.26) as a function of (U, V ), it is not possible to determine which of the two scenarios of
SUSY-breaking is actually taking place. We will thus scrutinize our prediction against numerical
simulations in the next section.

4.4 Numerical results

To validate the analytical approaches and extend the prediction to larger U , we now use exact
diagonalization (ED) for small system-sizes and tensor-network (TN) numerical simulations to tackle
larger systems sizes. ED (see Sec.(4.4.1)) hints at the phase diagram Fig.(4.1b). The picture is
completed Sec.(4.4.2) by the infinite Density Matrix Renormalization Group method (iDMRG), a
variational methods to obtain a matrix-product state (MPS) approximation of the ground state
directly in the thermodynamic limit. Using iDMRG, we compute the central charges and useful
correlation functions of all phases and transitions.
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Figure 4.3: The fidelity-susceptibility MF (see Eq.(4.28)) in the (U/t, V/t)-plane while
varying the parameters (a) U/t and (b) V/t. Results are obtained via exact diagonalization
of a system of size L = 10 with density ν = 2/5. In (a), large values of MF (U/t) near
the U/t = 0 line for V/t ≳ 5.7 could signal a phase transition between two decoupled CLL
(2CLL), that appears for U/t = 0, to the spin-locked 1CLL phase for U/t > 0 (see the text
for details). On the other hand, in (b) a transition between the SDW phase and the CLL
phase can be seen. Moreover, for small V/t, a weak signature of 2TLL-SDW transition,

pertaining to the BKT transition predicted in Sec.(4.2.1), is visible.

4.4.1 Exact diagonalization

The first step in the numerical analysis of the considered model relies on the exact diagonalization
(ED) of the quantum Hamiltonian for small systems-sizes. This method will give access to the
physics of the whole phase diagram with accuracy limited only by the finite size of the system [74].

Since the model has an internal U(1)×U(1) symmetry, we fix the symmetry sector in which we
want to analyze the ground state, i.e., the constant filling νℓ, ℓ = ±, for each chain. This restricts
us to diagonalize the Hamiltonian for system-sizes such that the total particle number in each chain
Nℓ = νℓL is an integer. Furthermore, since we want to understand the effect of interactions in the
CLL phase, we also need to consider fillings and system sizes which are commensurate with this
phenomenon. The smallest system size that fulfills these constraints is L = 10 for ν± = 2/5 and
rC = 2. Indeed, 10 sites are needed for U = t = 0 and V > 0 to represent the classical ground
states on one chain that are combined together in a CLL ground state by second order perturbation
theory in t (see Fig.(4.2a)).

An useful tool to verify the overall structure of the phase diagram is provided by the fidelity,
defined as

F (h, δh) = |⟨gs(h)|gs(h+ δh)⟩| (4.27)

with h being either U/t or V/t, as a probe of the phase diagram at different values of U/t and V/t.
It is known that the fidelity displays a minimum in a finite-size system when crossing what would be
a quantum phase transition in the thermodynamic limit [83]: this is due to the fact that transition
lines typically correspond to parameter regimes where the (finite-size) ground state wave function
changes very rapidly with respect to changes in the microscopic parameters. At the quantitative
level, this is typically better detected by considering the fidelity-susceptibility [84], defined as:

MF (h) = lim
δh→0

−2 lnF (h, δh)
(δh)2

. (4.28)

It shows a maximum near the transition (and diverges in the thermodynamic limit at the transition),
and is more commonly considered in the literature since it displays universal features at quantum
critical points [85].
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The scans of the fidelity-susceptibilityMF in the (U/t, V/t)-plane while varying either U/t or V/t
are presented in Fig.(4.3). The fidelity-susceptibility plots suggest the presence of three transitions,
which we summarize in the following observations:

1. The scan of MF (U/t) in Fig.(4.3a) suggests that for V/t ≳ 5.7 there is a transition between
the decoupled 2CLL phase at U/t = 0 to an another phase for U/t > 0;

2. The trends of MF (V/t) in Fig.(4.3b) clearly shows a transition between the SDW and the
CLL phase also for U/t > 0, as predicted by the theory. At large U/t > 3, an intermediate
phase seems to appear;

3. Furthermore, there is a weak signal near small V/t in Fig.(4.3b).

All of the observations above are consistent with the weak coupling theory presented in Sec.(4.2).
In fact, not only the strongest signal confirms the presence of a phase transition between a liquid
regime (the SDW phase) and a clustering regime, but there is also a weak signal for the transition
from the 2TLL phase to the SDW phase predicted at small V/t, and finite U/t. The weakness of
the signal could be related to the BKT behavior of this transition [86].

At strong coupling in V/t, the simulations suggest that there might be one transition from 2CLL
phase (with c = 2) to 1CLL phase (with c = 1) for U/t ̸= 0 if the cluster spin-gap is relevant when
Ks < 1 (see Eqs.(4.23,4.24)). In the regime of intermediate V and finite U , the transition between
SDW and CLL seems to split and give rise to an intermediate phase, as predicted by both the
scenarios in Sec.(4.3).

However, since we are only restricted to one small system-size of L = 10 for the ED calculations,
the above observations should be interpreted with caution. Moreover, the ED results are unable to
draw any conclusions about the two possibilities coming out of the phenomenological model near
the SUSY point given in Sec.(4.3), as the horizontal signal in Fig.(4.3b) is very broad and can not
distinguish between one or two transitions.

4.4.2 Tensor network analysis

In this part, we report the results of a numerical analysis using tensor networks (TN) for the system
at hand. First we map out the topology of the entire phase diagram of the system in terms of the
entanglement entropy, in order to determine the existence of different phases and phase transitions.
Specifically, we show the existence of a charge-density wave (CDW) phase sandwiched between the
SDW and the CLL phases. Then we characterize different phase transitions and phases by means
of central charges and correlation functions.

The numerical analysis is based on the widely successful density matrix renormalization group
(DMRG) [62, 63, 64, 65] method using the matrix-product state (MPS) ansatz [75, 76]. This ansatz
relies on the truncation of the Schmidt spectrum, keeping only the χ (which will be referred to as the
bond dimension) largest values, therefore approximating the target state with a quantum state that
has area-law entanglement [75], and which admits an efficient representation for one-dimensional
gapped systems even at large (as well as infinite) sizes.

For our purpose, we probe the system directly at the thermodynamic limit using the infinite
DMRG (iDMRG) [87, 88] method in translationally invariant infinite MPS (iMPS) representation
[89] (see Ref. [90] for an introduction). One advantage of considering iDMRG over the standard
finite-size DMRG for our purpose is that it allows us to circumvent the strong boundary effects that
clustering potentials induce at finite-sizes (see e.g., Refs. [20, 91]), as they do not occur in iDMRG
simulations.

Since our system Hamiltonian enjoys global U(1)×U(1) symmetry corresponding to the con-
servation of both the densities ν+ and ν−, we employ U(1)×U(1) symmetric iMPS ansatz for our
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simulations [92, 93]. Moreover, as mentioned in the previous subsection 4.4.1, to capture the onset
of the CLL phase with densities ν± = 2/5 and rC = 2, the iMPS representation needs a unit cell
of L = 10m sites with m ∈ N. In our analysis, we have verified that the results remain unaltered
for m ≥ 1, so that we can faithfully restrict ourselves to the lowest possible unit cell of size L = 10
sites in the iMPS representation.

For the characterization of different phases and phase transitions of the system, we consider two
quantities, namely the system correlation length ξ and the von Neumann entanglement entropy S.
The correlation length ξO corresponding to any local operator Oj is defined by the length scale asso-
ciated with the correlation function ⟨OjOj+R⟩− ⟨Oj⟩⟨Oj+R⟩ ∼ exp (−R/ξO). Then the correlation
length ξ of the quantum state is given by the maximum of them as ξ = max(ξO1 , ξO2 , ξO3 , ...). On
the other hand, a given pure quantum state |ψ⟩ belonging to a Hilbert space HAB = HA ⊗HB can
be written as |ψ⟩ = ∑

k λk |eAk ⟩ ⊗ |eBk ⟩, where λk’s are the Schmidt coefficients and |e(A)Bk ⟩’s form
orthonormal basis in HA(B). The von Neumann entanglement entropy across the bipartition A : B
is then defined as

S = −
∑
k

λ2k lnλ
2
k. (4.29)

It is to be noted that both the Schmidt coefficients and the entanglement entropy across any bond
can be calculated very efficiently in the MPS or iMPS representation [75].

The theoretical prediction suggests us that all the possible phases in the system are described by
conformal field theories, where both the correlation length ξ and the entanglement entropy S diverge
in the thermodynamic limit. Of course, such divergences cannot be captured by the iMPS ansatz
with finite bond dimension χ. Instead, the finite value of χ will impose a length scale given by a
finite value of the correlation length ξχ 2 that scales as ξχ ∝ χκ with κ being a scaling exponent [94,
95, 96]. The χ-dependent entanglement entropy Sχ is then follow the following well-known scaling
formula [97, 98, 99]:

Sχ =
c

6
ln ξχ + b′, (4.30)

where c is the central charge for the underlying conformal field theory and b′ is a non-universal
constant.

By varying the iMPS bond dimension in the range [64, 1280], we use Eq.(4.30) to characterize
different phases and phase transitions in terms of the central charge c. We refine the characterization
by computing the correlation functions of the form

CO(R) = ⟨OjOj+R⟩ − ⟨Oj⟩⟨Oj+R⟩, (4.31)

where Oj is a local operator. When R > ξχ all correlations will trivially decay exponentially,
restricting the extension of the correlation function to R ≈ ξχ at maximum.

4.4.3 The phase diagram: a glimpse from the von Neumann entropy

We present the pattern of the entanglement entropy S and its derivatives with respect to the system
parameters U/t and V/t in the (U/t, V/t)-plane in Fig.(4.4) for the iMPS bond dimension of χ = 256.
Interestingly, all the scans clearly pick up the signature of the phase transition between the SDW
and the CLL phases with increasing V/t for all values of the coupling strength U/t. Moreover,
similar to the feature of Fig.(4.3a) the derivative of S with respect to U/t (see Fig.(4.4b)) also

2For an iMPS with finite bond dimension χ, the correlation length ξχ can be defined as

ξχ = −1/ ln |ϵ2|

where ϵ2 is the second largest eigenvalue of the iMPS transfer matrix [90].
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Figure 4.4: (a) The entanglement entropy S and its derivatives with respect to the system
parameters (b) U/t and (c) V/t in the (U/t, V/t)-plane. The quantities are computed by the
iDMRG algorithm with bond dimension χ = 256. The blue dashed lines represent the cut

along which the analyses of Fig.(4.5) are performed.

shows the sign of the phase transition between the decoupled 2CLL phase at U/t = 0 for V/t ≳ 5.7
to a coupled CLL phase at U/t > 0.

However, on a closer inspection of the scans (specifically, Figs.(4.4a,c)) another signal of a second
phase transition at U/t > 0 and appearance of another phase sandwiched between the SDW and
CLL phases become apparent. This transition and the phase at U/t > 0 originates from the c = 3
SUSY point at U/t = 0 and V/t ≃ 5.7. These observations of having another phase transition
line and existence of a sandwiched phase corroborate the phenomenological analysis presented in
Sec.(4.3).

From the analysis of Fig.(4.4), it is also clear that the signature of the BKT transition between
the 2TLL and the SDW phases at low V/t values cannot be quantitatively captured from such
numerical analysis, similarly to what has been observed from the ED results. What we can estimate
is a lower bound for the c = 1 phase based on the study of the central charge, as the latter typically
overestimates the extent of critical phases (in our case, the c = 2 one).

4.4.4 Coupling SUSY conformal field theories: a numerical perspective

Based solely on the entanglement entropy analysis, it is already possible to discern whether one of
the two proposed scenarios of coupled-SUSY theories presented in Sec.(4.3) is describing the vicinity
of the c = 3 critical point.

In Figs.(4.5a,b), we present the entanglement entropy Sχ and the correlation length ξχ respec-
tively as functions of V/t for fixed U/t = 1 with different bond dimensions in the range χ ∈ [128, 640].
The variations of both Sχ and ξχ display sharp non-analytic kinks in their profile signalling the
presence of two phase transitions – coherent with both scenarios of Sec.(4.3). The location of the
transitions change with respect to the bond dimension χ (or more precisely with the correlation
length ξχ) following the standard power-law scaling:

(Vc/t)χ = (Vc/t)χ→∞ + aξ−Ξ
χ , (4.32)

where Vc denotes the transition point and Ξ is a scaling exponent with a being a constant. While Ξ
in Eq.(4.32) appears to be analogous to the inverse of the thermodynamic critical exponent ν, the
two quantities are a priori unrelated. The first is associated with an entanglement-based length scale
introduced by the numerical method, whereas the second is associated with a length scale imposed
by the inverse of the smallest gap in the system (which is zero at every point of the phase diagram
at this filling). In Figs.(4.5a,b), the locations of the transitions for different bond dimensions are
present by the dashed lines. Importantly, the size of the intermediate phase is sufficiently large so
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Figure 4.5: The variations of (a) the entanglement entropy Sχ and (b) the correlation
length ξχ with respect to V/t for fixed U/t = 1 and for different bond dimensions χ. The
blue dashed lines in (a) and (b) represent the SDW-CDW transition, while the red dashed
lines are for the CDW-CLL transition. (c)-(d) The scaling of the entanglement entropy
according to Eq.(4.30) across the χ-dependent transition points for (c) the SDW-CDW and
(d) the CDW-CLL phase transitions. The central charges that we obtain from the scaling

for these transitions are respectively c = 2.02(3) and c = 1.54(3).

that a finite-size characterization will be possible via correlation functions: we will come back to
this point below.

To precisely obtain the central charges of these transitions, instead of using Eq.(4.30) for fixed
values of U/t and V/t, we perform the same scaling of the entanglement entropy across the χ-
dependent transition points (marked by the blue and red dashed lines in Figs.(4.5a,b)) as prescribed
in Ref. [90]. Figs.(4.5c,d) show such scaling across these two phase transitions. Interestingly, the
central charges that we obtain from these scaling are compatible at the percent level with c = 2
for the SDW-CDW transition and c = 3/2 for the CDW-CLL transition (see Figs.(4.5c,d)). This
numerical finding confirms the scenario P.1 presented in Sec.(4.3).

4.4.5 Characterization of the phases: entanglement properties

We now characterize the SDW, CDW, CLL, and 2TLL phases that appear in the system for U/t > 0
by the scaling of the entanglement entropy against the bond dimension, extracting the corresponding
central charges. Specifically, here we show that all these phases – except the one at weak intra-chain
and strong inter-chain coupling – have c = 1.

Our theoretical analysis using the Abelian bosonization in Sec.(4.2.1) tells that the spin sector
in the SDW phase is gapped, while the charge sector is not, thereby suggesting that the phase is
of c = 1. The phase is adjacent to a BKT transition that requires too large bond dimensions to
be sharply demarcated. Thus, any points in its vicinity cannot be sharply identified by deducing
their central charge, unless very large bond dimension is taken that may not be always possible
in practical simulations. In Figs.(4.6a,b), we show the variations of the entanglement entropy Sχ
with the correlation length ξχ in two points in the SDW phase respectively with bond dimensions
in the wide range of [64, 1280]. By fitting the scaling formula of Eq.(4.30) to the data in different
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Figure 4.6: The behavior of the entanglement entropy
Sχ with respect to the correlation length ξχ in different
phases for the iMPS bond dimension χ ∈ [64, 1280] (χ ∈
[96, 1280] for CDW phase). (a) and (b) correspond to two
points in the SDW phase, (c) and (d) are for the CDW and
the CLL phases respectively, while (e) and (f) correspond
to the 2TLL phase. In (a)-(c), (e), and (f) the thin green
dotted lines correspond to the fits in the range χ ∈ [64, 384]
(χ ∈ [96, 384] for the CDW phase in (c)), while the blue

dashed lines correspond to the fits for χ ∈ [512, 1280].

ranges of χ, we observe that the slopes of the
curves reduce with higher values of χ and slowly
approach to the expected value of 1/6.

The similar trend in the behavior of the
entanglement entropy is observed in the sand-
wiched CDW phase, where the slope of the
curve reduces from ∼ 1.5/6 to ∼ 1.3/6 with in-
creasing bond dimension (see Fig.(4.6c)). This
is due to the fact that there are two very nearby
transitions with central charge c > 1, and we
need very large bond dimensions to resolve the
CDW phase properly. However, since, in lat-
tice models, quantum phases with only integer
values of central charges are stable, the data of
Fig.(4.6c) confirms that the CDW phase is of
c = 1.

On the other hand, deep in the CLL phase
with U/t > 0 (see Fig.(4.6d)), we can faithfully
obtain the central charge of c = 1. For the entire
range of χ ∈ [64, 1280], the slopes of the curves
stay stick to 1/6 in the CLL phase. This proves
that the cluster spin-gap in this CLL phase in
non-zero (Ks < 1 in Eqs.(4.23,4.24)), and the
cluster excitations from both the chains are cou-
pled (i.e., a spin-locked CLL).

Figs.(4.6e,f) show the same scaling of en-
tanglement entropy in two points deep in the
2TLL phase. The central charge of c = 2, as
predicted by the Abelian bosonization method,
can be faithfully extracted by the scaling for the
entire range of bond dimension considered here.

4.4.6 Correlation functions in the SDW and CDW phases

We now move on to analyze correlation functions (see Eq.(4.31)) in the SDW and CDW phases.
Specifically, we first consider the spin correlation function

CSz(R) = ⟨SzjSzj+R⟩ − ⟨Szj ⟩⟨Szj+R⟩, (4.33)

with Szj = (nj,+ − nj,−)/2, and the charge correlation function

Cn(R) = ⟨njnj+R⟩ − ⟨nj⟩⟨nj+R⟩, (4.34)

with nj = (nj,+ +nj,−), in the SDW and in the CDW phases. However, as mentioned before, these
correlation functions can be faithfully interpreted only when R ≲ ξχ, and in these two phases we
have ξχ ∼ 100 for the largest bond dimension (χ = 1280) at our disposal.

Figs.(4.7a,b) depict the correlation functions CSz(R) and Cn(R) in the SDW and CDW phases
for R ≤ 100.

We remark that for this small range of R differentiating the power-law decay with the exponential
decay is possible only under the assumption of a correlation length shorter that ξχ. Still, the trends
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Figure 4.7: The behaviors of (a) the spin correlation function CSz (R) = ⟨Szj Szj+R⟩ −
⟨Szj ⟩⟨Szj+R⟩ and (b) the charge correlation function Cn(R) = ⟨njnj+R⟩ − ⟨nj⟩⟨nj+R⟩ as
functions of the distance R in the SDW and CDW phases. Here both axes are in the
logarithmic scale. (c)-(d) The fits (according to Eq.(4.35)) of the spin and charge correlations

respectively in the SDW and CDW phases.

of correlations in Fig.(4.7) are quite distinctive from each other. Specifically, we observe slow power-
law decay of the spin correlation and fast (exponential) decay of the charge correlation in the SDW
phase, numerically confirming the spin-density wave nature of the phase. Exactly opposite is seen
in the CDW phase, that has oscillating slow (power-law) decay of the charge correlation. This
provides convincing proof that this sandwiched phase is indeed a CDW.

To correctly get the proper frequencies of the oscillations in the algebraically decaying correla-
tions, we numerically fit them using the following formula:

C(R) ∼ cos (kR)R−β. (4.35)

In Figs.(4.7c,d) we show such fits for the spin and the charge correlations respectively in the SDW
and CDW phases. In both the cases, the numerical fits show that the frequency of oscillations are
k = 2kF as expected from Eqs.(4.10,4.13,4.14).

4.4.7 Correlation functions in the spin-locked CLL phase

By analyzing the spin and charge correlation functions in the spin-locked CLL phase, we observe
that, unlike the SDW and CDW phases, both the correlations follow power-law behavior (see
Figs.(4.8a,b)). Both the numerical fits using Eq.(4.35) and their Fourier transformation Fig.(4.8c)
suggests that the frequencies of the oscillations are k = 3kF /2 = 3π/5 for the spin correlation
function and k = 2kF = 4π/5 for the charge correlation. k = 3kF /2 is the cluster Fourier momen-
tum as it appears in Eq.(4.17) and translates the specific cluster instability of the Luttinger liquid.
Surprisingly, this feature is absent in the charge correlation function, and is instead replaced by a
peak at 2kF . Since we lack a controlled operator mapping between lattice and underlying fields, it
is not clear what is the origin of such property. Still, we point out that single chain correlations
do show a strong peak at the clustering point. Indeed, the correlation function for the single-chain
density nℓ, ℓ = ±, is

Cnℓ(R) = ⟨nj,ℓnj+R,ℓ⟩ − ⟨nj,ℓ⟩⟨nj+R,ℓ⟩. (4.36)

Fig.(4.8d) shows the Fourier transform of the correlation function Cn+ . This Fourier transform
shows both – a peak at the frequencies k = 3π/5 corresponding to the cluster instability and
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Figure 4.8: (a) The spin correlation CSz (R) and (b) the charge correlation Cn(R) as
functions of the distance R in the CLL phase. The dashed lines show the numerical fits
according to Eq.(4.35). The subplot (c) depicts the Fourier transform of the correlations
CSz (R) and Cn(R), while (d) shows the same for the correlation function of the single-chain

density n+.

k = 4π/5 corresponding to the possible rivalling density wave instability. This observation suggests
that one possible explanation for the lack of cluster peaks in the CDW correlator is that inter-leg
correlations are out of phase with respect to intra-leg ones.

4.4.8 The complete picture from the numerical analysis

The above numerical investigations using both ED and TN methods provide us the full picture
about the system phase diagram and different phases. Here we summarize the details of the phase
diagram with increasing V/t in the following (compare the schematic phase-diagram in Fig.(4.1b)):

1. At small values of V/t ∼ 0, the ground state of the system is in standard 2TLL phase (with
c = 2).

2. With increasing V/t, a BKT transition appears and the system goes into the c = 1 SDW
phase where quasi-long-range order in the spin sector exists. In the phase, the spin sector
becomes gapped while the charge sector remains gapless. The precise determination of this
BKT transition, predicted by Abelian bosonization in the weak coupling regime, is beyond
the scope of the numerical tools used here.

3. There exists a c = 2 Gaussian transition that separates the SDW phase from the CDW phase.
Across this transition the spin-gap closes, so that both the charge and the spin sectors are
gapless resulting in c = 2.

4. In the CDW phase, the spin sector again becomes massive with disordered paramagnetic
nature, while the charge sector remains gapless with a charge density wave order giving us
c = 1.

5. After the CDW phase, a c = 3/2 phase transition appears, where one part c = 1 is again from
the gapless charge sector, and the another part c = 1/2 comes from the Ising type transition
same as in the single-chain SUSY point.
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6. At high values of V/t and U/t > 0, a c = 1 CLL phase exists. However, unlike the 2CLL
phase (with c = 2) at U/t = 0, the clusters in both the chains are coupled, and the cluster
spin-gap is non-vanishing that results into c = 1.
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Chapter 5

Phase diagram of Rydberg-dressed
atoms on two-leg triangular ladders

In the previous chapter we considered square ladder lattices for dressed Rydberg atoms at filling
ν = 2/5, with the two legs interacting, and without inter-leg hopping. Such geometry effectively
couples two SUSY theories at a fine-tuned point separating a Tomonaga Luttinger liquid (TLL)
and a CLL. All phases and transitions involved in the phase diagram surprisingly appear as soon
as the two chains interact. Both the TLL and CLL are ‘spin-locked’ and the critical point extends
into a Gaussian phase transition line, a possibly SUSY conformal transition, and a partially gapped
phase in between.

In this chapter we extend this exploration to triangular lattice geometries. Such a setting is
the minimal geometry where geometric frustration, interaction clustering, and kinetic dynamics can
compete. Our main result is the phase diagram of the system that is schematically depicted in
Fig.(4.1: it is considerably richer than - and fundamentally different from - the square lattice case.
The ability to manipulate the coupling of the two SUSY conformal field theories by e.g., increasing
the range of the inter-leg interaction would be useful to investigate SUSY phenomenology [78, 27].
By using a triangular geometry, we show that as soon as the range is extended, only a single,
potentially SUSY, transition exists between the ‘spin-locked’ TLL and CLL. In contrast, we show
the existence of three phases exclusive to strong coupling, establishing the setup as a promising
platform to study commensurability in extended Hubbard models.

5.1 The Triangular ladder model

We study a triangular ladder of spinless hard-core bosons at ν = 2/5 filling (on average two filled
sites for every five sites in each chain, see Fig.(5.1a)). Such a filling supports clustering in the
classical limit. The Hamiltonian of the system reads:

H =− t
∑
i,ℓ

(
b†i,ℓbi+1,ℓ + H.c.

)
+ U

∑
i

ni,+ni,− + U1

∑
i

ni,+ni+1,− + V
∑
i,ℓ

rC∑
j=1

ni,ℓni+j,ℓ. (5.1)

where b†i,ℓ is the creation operator for hard-core bosons on site i of chain ℓ = ± and ni,ℓ = b†i,ℓbi,ℓ.
t is the intra-chain hopping, U and U1 are the anisotropic nearest-neighbor inter-chain interaction
amplitude, V is the intra-chain interaction amplitude of range rC ∈ N. As there is no inter-chain
tunneling, the U(1) charge of each leg is conserved separately such that the Hamiltonian Eq.(5.1) is
U(1)×U(1) symmetric. Densities are tuned by the loading scheme. For simplicity, we take rC = 2
and U1 = U unless otherwise stated.

We now briefly summarize the phase diagram at weak-coupling, that is obtained using both weak-
coupling bosonization, cluster bosonization. These approaches follows closely previous works [20,
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Figure 5.1: (A) The system of Rydberg-dressed hardcore bosons on a two-leg triangular
lattice with intra-leg soft-shoulder interaction (V ) of range 2, anisotropic inter-leg interac-
tions (U,U1), and intra-chain nearest-neighbor hopping (t). (B) The reach landscape of the
phases of the triangular ladder system for a filling of 2/5 with U1 = U . For U/t > 0, the
phase diagram consists of c = 2 Tomonaga-Luttinger liquid (2TLL), c = 1 spin density wave
(SDW), c = 1 charge density wave (CDW), c = 1 cluster Luttinger liquid (CLL), polarized
holonic (PH) phases, and fully-gapped cluster crystal (CC) (see text) as marked in the figure.
Different lines correspond to different phase transitions as depicted in the legend. At U = 0
(red line) the two legs are independent and display c = 1+1 TLL and c = 1+1 CLL phases

separated by c = 3 supersymmetric point (red crossed-dot).

21, 25]. We thus refer to the Appendices A and B for the analytical details of the approach, and
only present its results below.

The red line (U = 0) in Fig.(5.1b) corresponds to two decoupled chains [20, 21]. The phase
diagram of a single chain displays a TLL for 0 < V/t ≲ 5.7, and a CLL for V/t ≳ 5.7. Both the
TLL and the CLL have a central charge c = 1. They are separated by a SUSY conformal phase
transition point of central charge c = 3/2 at V/t ≃ 5.7 identified numerically [21].

By adding the interaction (U) between two of these chains, we obtain the rest of the phase
diagram as shown in Fig.(5.1b). We map the leg index to a SU(2) spin-1/2 degree of freedom to use
the Hubbard model formalism and vocabulary [8, 9, 10]. When U > 0, the phase diagram displays
a Spin Density Wave (SDW) TLL with c = 1 and a fully gapless TLL with c = 2 (2TLL) at weak
coupling when U/t ≤ 5V/2t≪ 1 and 5V/2t ≤ U/t≪ 1 respectively. These two are separated by a
Berezinskii-Kosterlitz-Thouless (BKT) transition.

For strong shoulder potential (V/t ≳ 5.7), we show that the phase is a spin-locked CLL with
c = 1 for U ̸= 0. We predict the separation of the SDW and the CLL by a single phase transition
line of central charge c = 3/2 extending from the c = 3 SUSY critical point. The value of this central
charge hints that this phase transition line might itself be supersymmetric. This behavior contrasts
with the square ladder geometry [25] where the SDW and CLL are separated by two transitions
and one Luttinger liquid phase instead. As we will now show, the separation by a single transition
occurs as soon as U,U1 > 0. Furthermore, the phase diagram Fig.(5.1b) near the SUSY point is
qualitatively unchanged for any U1/U > 0 justifying focusing on U1 = U for simplicity.

5.2 Numerical simulations

We confirm these predictions and explore the large U/t regime using both exact diagonalization
(ED) [74] for a system of 10 sites with periodic boundary condition and infinite density matrix
renormalization group (iDMRG) techniques [62, 63, 64, 65, 88, 75, 76, 90].
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Figure 5.2: (a) The entanglement entropy S and (b) the sum of the absolute values of
derivatives with respect to the system parameters U/t and V/t in the (U/t, V/t)-plane. The
quantities are computed by the iDMRG algorithm with bond dimension χ = 256. The BKT

and 2TLL ↔ CDW transitions are too narrow to stand out when χ = 256.

5.2.1 Phase diagram of the regime U = U1

We first characterize the system using iDMRG to effectively access the system directly at the
thermodynamic limit. The set χ-th value of the bond dimension of the matrix-product state ansatz
for the iDMRG simulation introduces a maximal length-scale (sometimes referred to as correlation
length 1) ξχ beyond which any correlation decays exponentially [94, 95, 96]. By computing the
bipartite von Neumann entanglement entropy Sχ, we obtain the phase diagram in Fig.(5.2).

Besides contours compatible with the weak U/t predictions (when visible), the simulation pre-
dicts three additional phases at larger U/t. Anticipating their identification, we find a Charge
Density Wave (CDW) TLL phase at intermediate U/t. When U/t ≫ 1 and V/t ≳ 0.34, we find
a fully gapped cluster crystal (CC). When U/t ≳ 3.1 and V/t ≲ 0.34, we find a polarized holonic
(PH) phase.

To identify and characterize the (gapless) phases and phase transitions, we compute the central
charges c of each by evaluating how Sχ scales with ξχ using [97, 98, 99]:

Sχ =
c

6
ln ξχ + b′, (5.2)

where b′ is a non-universal constant. We thereby extract c = 1 for the CLL, SDW, and CDW phases,
while c = 2 for the 2TLL phase. We refer to Ann.(C) for both the associated scalings of entanglement
entropy and correlation functions characterizing these phases by their leading instabilities.

Moreover, following the method used in Refs. [25, 90], we identify the c = 3/2 SDW ↔ CLL,
Gaussian c = 2 SDW ↔ CDW, and the c = 1 CDW ↔ CC phase transitions (see Fig.(5.3a)). We
expect the BKT phase transition between the SDW and the 2TLL phases by analogy with the square
case. The sudden discontinuities in Sχ seen in Fig.(5.3b) indicate that the direct CDW ↔ CLL
transition is of the first order type.

As the iDMRG simulations do not converge properly in the PH phase due to frustrations origi-
nating from strong repulsive interaction in the triangular geometry, we cannot characterize the PH
phase or the PH ↔ CC and PH ↔ CDW phase transitions from the iDMRG results. Therefore,
to characterize both the PH and the CC phases, we use a semi-classical strong-coupling approach,
completed by exact diagonalization when possible.

1We stress to the reader that this length-scale is an artifact introduced by the matrix-product state ansatz in
iDMRG simulations and is not linked to any energy scale of the system. It characterizes the size after which the
algorithm truncates the correlations.
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Figure 5.5: (a) The entanglement entropy S and (b) sum of the absolute values of its
derivative with respect to the system parameters U/t and V/t in the (U/t, V/t)-plane for
U1 = U/10. The c = 3/2 phase transition is clearly visible while only an imprint of the
Gaussian transition, existing for U1 = 0, is present. The quantities are computed by the

iDMRG algorithm with bond dimension χ = 256.
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Figure 5.3: (a) The scaling of the entanglement entropy
Sχ with the correlation length ξχ according to Eq.(5.2)
for different phase transitions.We have tracked the transi-
tions by fixing U/t = 1 (for SDW ↔ CLL), U/t = 3.5 (for
SDW ↔ CDW), U/t = 4.5 (for CDW ↔ CC), and varying
V/t (see Ref. [25]). (b) The variations of the entanglement
entropy Sχ across the CDW ↔ CLL transition for different
bond dimensions χ. The sudden jumps in Sχ suggest the

the transition to be first order.

We note that the 2TLL ↔ CDW transition
is too narrow to be well studied numerically.
It is also too deep in the intermediate interac-
tion regime to be approached by perturbative
techniques, hence the dotted lines in Fig.(5.1b)
represent extrapolations of the analytical and
numerical results.

5.2.2 Anisotropic regime U > U1 close
to the supersymmetric critical point

We now study the phase diagram in the vicin-
ity of the supersymmetric (SUSY) c = 3 critical
point at V/t ∼ 5.7 and U = U1 = 0 as U1 is
tuned from 0 (square geometry) to U > 0. We
observe that as soon as U1 > 0 (U1 = U/10
in our simulation), the Charge Density Wave
(CDW) phase existing in the square geome-

try [25] vanishes (see Fig.(5.5)). Along with the phase, the c = 2 Gaussian phase transition existing
between the Spin Density Wave (SDW) and the CDW vanishes as well. We interpret this result as
the non-zero triangular term being relevant for these parameters, preventing the phase transition
and deforming the SDW phase into the SDW(α) (see Ann.(A)).

While no Gaussian transition appears in our simulation, a more detailed study in its vicinity
shows that a remnant of it still exists (see Fig.(5.4)). Such observation is compatible with a spin gap
reaching a local finite minimum corresponding to both a correlation length ξχ and entanglement
entropy Sχ reaching a local maximum. The absence of a sharp peak (present for the transition in
the square case, see Ref. [25]) confirms the absence of the transition.

The c = 3/2 phase transition between the spin-locked Cluster Luttinger Liquid (CLL) and the
SDW phases remains. The phenomenological understanding of this phase transition as the sign
inversion of the mass of an effective Majorana field existing at the SUSY point for the square
geometry [25] holds as well for the triangular geometry.



5.3. Strong intra-chain coupling 69

5.3 Strong intra-chain coupling
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Figure 5.4: The variations of the entanglement entropy
S with respect to V/t for various U/t and U1 = U/10. The
quantities are computed by the iDMRG algorithm with
bond dimension χ = 512. The SDW to CLL phase transi-
tion is sharp, whereas the remnant of the Gaussian phase

transition is not (compared to e.g., Fig. 5 in Ref. [25]).

To provide analytical predictions for the large
U regime, we use a perturbative strong coupling
approach where t/U is the perturbation. Semi-
classically in the limit U →∞, both the geom-
etry and the strong intra-chain interaction seg-
ment the ladder into polarized domains. Each
domain sees one leg of the ladder hosting atoms
while the opposite leg is empty. States display-
ing such domains as in Figs.(5.6a,b) generate
the effective Hilbert space at strong-coupling.
The filled leg of the ladder within a domain
may host (quasi-)holes, that we call polarized
holons: these holons freely propagate within the
domain, and may hop from one domain to the
next at no energy cost. The density of such
holons fh and the density of domain walls fw is
fixed by the filling ν, such that

fw + 2fh = 2− 4ν, (5.3a)
0 ≤ fw ≤ Min(2ν, 2− 4ν). (5.3b)

When V/t is negligible, configurations that maximize the density of holons and minimize the number
of domains are favored energetically as the holons can delocalize both within and beyond a domain.
It is the polarized holonic (PH) liquid. Instead, for larger V , small but numerous domains (i.e.,
clusters in that case) are energetically favored. Deprived of the propagating holons, the system is
fully gapped. We denote this regime as the cluster crystal. When V ⩾ 2U , the strong U coupling
approach breaks down.

To derive these results, we first obtain the perturbative Hamiltonian at second order in pertur-
bation in t2/U with V = 0. Restricted to the effective Hilbert space of the strong coupling, the
perturbative Hamiltonian is

H|res = t

L∑
i=1

∑
ℓ

(b†i,ℓbi+1,ℓ + h.c.)− 2t2

U

∑
i

(ni,+ni+2,− + ni,−ni+1,+) . (5.4)

In this Hilbert space, the first term of Eq.(5.4) corresponds to the hopping of one particle two
sites further along the zigzag if there are immediately at least three consecutive empty sites in
the direction of the hopping (see Fig.(5.6(a))). These three consecutive holes constitute the holon.
When a holon is immediately followed by other holons (its cohort), each of these extra holons adds
two holes along the zigzag. In this formulation, the first term of Eq.(5.4) simply describes the
hopping of free holons. The second term of Eq.(5.4) is a chemical potential for succession of exactly
two empty sites. The polarization of the ladder changes across such a structure: it is a domain
wall. A domain wall can also accompany a cohort of consecutive holons, each of them adding two
holes along the zigzag. By convention, we consider that the domain wall is always at the left of the
cohort.

To rewrite the effective model in terms of holons and domain walls, we require a creation and
annihilation operator for both the holons (h†i and hi) and the domain walls (w†

i and wi). It is
possible to derive the explicit expression for both the densities of holons (nhi) and domain walls
(nwi) (see Ann.(D)). The existence of these densities implies the existence of the associated creation
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Figure 5.6: (a) The cartoon picture of the PH phase and example of a semi-classical
state of the effective Hilbert space when U → ∞. The ladder is divided into polarized
segments (here, only two with periodic boundary conditions). These segments are separated
by domain walls (in red). Holes in the segments are holons (in yellow). Holons can belong
to the cohort of a domain wall, like for the left domain wall on the picture. Arrow: example
of hopping. (b) The cartoon picture of the CC phase. (c) One semi-classical configuration

of the CLL phase.

and annihilation operators. Using these operators, we define the basis of the effective Hilbert space
such that

h†i |0i⟩ = |1i⟩, hi|1i⟩ = |0i⟩, (5.5a)

h†i |1i⟩ = 0, hi|0i⟩ = 0, (5.5b)

w†
i |Xi⟩ = |wiXi⟩, wi|wiXi⟩ = |Xi⟩, (5.5c)

with X = 0 or 1, and {hi, h†i} = {wi, w†
i } = 1. For simplicity, we assume that the holonic and

domain walls operators commute, essentially treating them as decoupled degrees of freedom. Such
approximation is justified a posteriori, by comparing our findings to numerics.

Using these operators, we obtain a phenomenological expression for the perturbative Hamilto-
nian from which we deduce an estimate of the energy levels as a function of the average density of
domain walls and holon. The Hamiltonian is

H|res∼ t
L∑
i=1

[
w†
ih

†
i+1wi+1hi + h†iw

†
i+1hi+1wi +h

†
ihi+1 (1− nw,i+1) + h†i+1hi (1− nw,i+2)

]
−2t2

U

∑
i

w†
iwihih

†
i .

(5.6)

In Eq.(5.6), the first four terms describe the hopping of holons depending on the proximity of a
wall. When no wall is nearby, the hopping holon is unimpeded. When a holon hops across a wall,
the holon and wall exchange places. The last term in Eq.(5.6) counts the number of walls without
cohort. As a consequence, a wall effectively moves only through scattering with a holon. All walls
hop one site when a holon propagates along the entire ladder. Due to this difference in scale of the
two momenta, we work under the assumption that the two variables are independent to estimate
the spectrum of the Hamiltonian. We take ⟨nhi⟩ = fhL and ⟨nwi⟩ = fwL. We find

⟨H|res⟩/2tL =
t

U
fw(fh − 1)− 1

π
(1− fw) sin(πfh)−

2

π2
sin(πfh) sin(πfw/2). (5.7)

Eq.(5.7) highlights competition between holons and domain walls. When U/t > 2π/(5 sin(π/5)) ∼
2.14, the phase is the polarized holonic liquid with c = 1. Such a small value of U/t is beyond
the validity of the strong-coupling approach which explains the difference with the value of ∼ 3.1
observed in Fig.(5.2). Third order corrections in U/t and higher allow the transformation of two
domain walls of small domains into one holon and vice-versa.
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Figure 5.7: (a) The structure factor S(q, k) (see Eq.(5.9)) in the CC phase (U/t = 5, V/t =
1.5) as a function of the momenta q and k. S(q, k) attains a sharp peak at q = 2π/5, k = 2π/5
as highlighted by the blue circle. (b)-(c) The order parameter OCC (see text) along the the
CC ↔ PH and the CC ↔ CDW phase transitions respectively. The figures (a) and (c) have
been obtained from iDMRG simulations with bond dimension χ = 256, while (b) is obtained

from ED calculations for a system with 10 sites.

Similarly, we obtain the contribution of the shoulder potential to the estimated energy levels
using the holons and domain walls reformulation. We find (see Ann.(D))

⟨HShoulder⟩/V L = 2− 4fh − 4fw + 2f2h −
1

π2
sin2(πfh)

− 1

2π2
sin(πfh) sin(2πfh) + 4fhfw +

1

2
f2w.

(5.8)

The full estimate of the energy levels is the sum of Eqs.(5.7,5.8). Because of Eq.(5.3a), the maximal
domain wall density is twice the maximal holon density, such that Eq.(5.8) unilaterally favours the
domain walls over the holons. A transition thus occurs when the contribution of Eq.(5.8) dominates
over the contribution from Eq.(5.7). When U → ∞, this transition is predicted at V/t ∼ 0.33
and observed at V/t ∼ 0.34 on Fig.(5.2). Higher order corrections effectively introduce a repulsion
between domain walls. When the density of domain walls is maximized, a pattern spontaneously
breaking the translation symmetry emerges, and the system goes into the CC phase.

By comparing the energy of semi-classical configuration of the CC pattern as in Fig.(5.6b)
ECC = 2V and of a CLL state minimizing U as in Fig.(5.6c) (not included in the restricted Hilbert
space) ECLL = V + 2U when t = 0, we predict the end of the CC phase at V = 2U . Due to the
existence of the CDW phase (CDW are not included in the restricted Hilbert space), the transition
occurs at smaller V < 2U for finite U .

We extract the order parameter OCC associated with the CC phase using the structure factor:

S(q, k) =
1

L2

∑
j,j′

∑
ℓ,ℓ′

⟨nj,ℓnj′,ℓ′⟩e−i(q+k(ℓ−ℓ
′))(j−j′). (5.9)

In the CC phase at ν = 2/5, S(q, k) displays a sharp peak at momenta q = 2π/5, k = 2π/5 (see
Fig.(5.7a)). Subtracting the disconnected contribution from S(q, k), we define the order parameter
OCC = S(2π/5, 2π/5) − 4/25 of the CC phase. Figs.(5.7b,c) show the variation of the order
parameter along the CC ↔ PH and the CC ↔ CDW phase transitions respectively. The sharp
changes in OCC across the CC↔ PH transition, even for small system-size as L = 10, strongly hint
that this transition might be first order in nature.
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Appendix

A Weak coupling approach

Using the Abelian bosonization [28, 39] method we study the phase diagram of the triangular ladder
model in the weak coupling regime. Specifically, after reformulating the description of the system in
terms of fermions using a Jordan-Wigner transformation, we take the continuous limit of the discrete
model, and linearize it around the Fermi points. To the obtained chiral Dirac fermions, we then
apply the standard Abelian bosonization relations to finally derive the sine-Gordon model of two
compact bosons. Using a conformal renormalization scheme at first loop, we deduce the asymptotes
of the renormalization group equations depending on the initial conditions. We therefore obtain
the outline of the phase diagram at weak coupling. By computing correlation functions associated
to each asymptote, we identify each phase of this diagram. Using this approach, we predict the
gapless 2TLL and the SDWz

α phases separated by a BKT phase transition.
We perform a Jordan-Wigner transformation to use fermionic degrees of freedom and notions

associated with Hubbard-like models:

bi,l =
(
δl,+e

iπ
∑i−1
j=1 nj,+ci,+ + δl,−e

iπ
∑N
k=1 nk,+eiπ

∑i−1
j=1 nj,−ci,−

)
, (A.1)

where bi,ℓ is the hard-core bosonic annihilation operator on site i and leg ℓ = ±. The fermionic
annihilation operators ci,ℓ obey the standard anti-commutation relations. The particle number
operators are ni,ℓ = c†i,ℓci,ℓ = b†i,ℓbi,ℓ. After the transformation, the triangular ladder Hamiltonian
Eq.(5.1) is unchanged:

H = H0 +HU +HU1 +HV , (A.2)

with
H0 = −t

∑
l=±

∑
i

(
c†i,lci+1,l + h.c.

)
, (A.3)

HU = U
∑
i

ni,+ni,−, (A.4)

HU1 = U1

∑
i

ni,+ni+1,−, (A.5)

HV = V
∑
l=±

rc∑
r=1

ni,lni+r,l, (A.6)

where we take rC = 2 unless otherwise specified.
We then linearize the model Eq.(A.2) around the Fermi points (at momentum ±kF ) in the weak

coupling regime after taking the continuum limit by introducing the right- and left-moving Dirac
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fermion fields

ci,ℓ ∼ ψR,ℓ(x = i) + ψL,ℓ(x = i), (A.7a)

ψr,ℓ =
1√
2πa0

Ur,ℓe
irkF xei

√
π
2
(rϕc−θc+ℓ(rϕs−θs)). (A.7b)

ψr,ℓ is the associated right (r = R as an index, r = +1 when in the exponential) and left (r = L,
r = −1 respectively) moving fermionic field in the continuous limit close to the Fermi points, a0 = 1
is the lattice spacing, Ur,ℓ are the Klein factors such that {Ur,ℓ, Ur′,ℓ′} = 2δr,r′δℓ,ℓ′ , and kF = πν/a0
is the Fermi momentum with ν = 2/5 being the filling factor for each chain. The bosonic fields ϕc,
ϕs, θc, and θs are the charge and spin fields and their respective dual fields. After bosonization,
each term in Eq.(A.3-A.6) splits into the spin and charge sector as

H0 ∼
vF
2

∫
dx
(
(∂xθc)

2 + (∂xϕc)
2
)
+
vF
2

∫
dx
(
(∂xθs)

2 + (∂xϕs)
2
)
, (A.8a)

HU ∼
U

2π

∫
dx
(
(∂xϕc)

2 − (∂xϕs)
2
)
+

U

2π2

∫
dx cos(

√
8πϕs), (A.8b)

HU1 ∼
U1

2π

∫
dx
(
(∂xϕc)

2 − (∂xϕs)
2
)

+
U1(1 + cos(2πν))

2π2

∫
dx cos(

√
8πϕs) +

U1 sin(2πν)

2π2

∫
dx sin(

√
8πϕs),

(A.8c)

HV ∼
V (2− cos(2πν)− cos(4πν))

π

∫
dx
(
(∂xϕc)

2 + (∂xϕs)
2
)
, (A.8d)

with vF = 2t sin(πν). The full Hamiltonian displays the spin-charge separation:

H = Hc +Hs, (A.9a)

Hc =
vc
2

∫
dx

(
Kc(∂xθc)

2 +
1

Kc
(∂xϕc)

2

)
, (A.9b)

Hs =
vs
2

∫
dx

(
Ks(∂xθs)

2 +
1

Ks
(∂xϕs)

2

)
− g0

4π2

∫
dx cos(

√
8πϕs − α), (A.9c)

where Hc is the bosonized Hamiltonian of the charge sector, and Hs is the sine-Gordon Hamiltonian
of the spin sector. We find

Ks =
1√

1 +
g∥

2πvF

, (A.10a)

vs = vF

√
1 +

g∥

2πvF
, (A.10b)

vsKs = vF , (A.10c)

Kc =
1√

1 + 2g
πvF

, (A.10d)

vc = vF

√
1 +

2g

πvF
, (A.10e)

vcKc = vF , (A.10f)
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and

g =
U + U ′

2
+ V (2− cos(2πν)− cos(4πν)), (A.11a)

g∥ = −2U − 2U1 + 4V (2− cos(2πν)− cos(4πν)), (A.11b)

g0 = −2
√

(U + U1)(U + U1 + 2U1 cos(2πν)) + U2
1 , (A.11c)

α = arctan

(
U1 sin(2πν)

U + U1(1 + cos(2πν))

)
modulo 2π. (A.11d)

Based on the zeroth loop approach, the cosine perturbation in Eq.(A.9c) is irrelevant as soon
as Ks > 1 (i.e. g∥ < 0). In this regime the spin gap nonetheless opens because of the first-loop
corrections to the renormalization group equations [28]

dg∥

dl
=

1

2π
g20,

dg0
dl

=
1

2π
g0g∥,

dα

dl
= 0, (A.12)

which predict a BKT phase transition from gapless 2LL to SDWz(α) with a spin-gap, when g∥ >
−|g0|. In other words, the zero-th loop predicts the 2TLL↔ SDW transition at V = 5U/2, whereas

the first loop renormalization predicts the transition at V = 4−2
√

4−
√
5

10 U . Such a result means
that the characterization of each phase should be sharp above and below both predicted transition
line, but more arduous in between as the partial gap is weaker. Such a phenomena explains why
the detection of the BKT phase transition is more difficult in numerical simulations. We draw the
V = 5U/2 line on the phase diagram as it is below this line that a simulation likely mistakenly
confuses the SDW for the 2TLL.

In the SDWz(α) phase the spin field is fixed at ϕs(α) = α√
8π

+
√

π
8 modulo

(√
π
8

)
by the spin

gap. The corresponding order parameter is

Oα = sin(
√
2πϕs − α/2) = Otriplet0 cos(α/2)−Osinglet sin(α/2), (A.13a)

with α ∈ [0; 2π/5] as U1/U ∈ [0;∞) and where Otriplet0 is the “triplet 0” and Osinglet is the singlet
order parameter [80]. When α = 0 (U1 = 0), this order parameter corresponds to the contribution
of the spin sector to the 2kF spin-density-wave operator

OzSDW = Sz(x)− 1√
2π
∂xϕs(x) = cos(

√
2πϕc + 2kFx) sin(

√
2πϕs), (A.14)

where Sz(x) the continuous limit of the spin operator

1

2

∑
ℓ,ℓ′=±

c†x,ℓσ
z
ℓℓ′cx,ℓ′ ∼ Sz(x), (A.15)

with σzℓℓ′ the Pauli matrix along the z-direction. The associated correlation function in SDWz(α)
phase is

⟨OzSDW(x)OzSDW(y)⟩ ∼ sin2
(√

2πϕs(α)
)
cos(2kF |x− y|)|x− y|−Kc , (A.16)

which is also the correlator with the longest range, such that the SDWz(α) is the dominant instability
in the system.
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In 2TLL phase, both 2kF momentum CDWs and SDWs instabilities are in competition. The
order parameter associated with CDW is defined as

OCDW = ρ(x)−
√

2

π
∂xϕc(x), (A.17)

where ρ(x) is the continuous limit of the density operator∑
ℓ=±

c†x,ℓcx,ℓ ∼ ρ(x). (A.18)

The correlation functions associated with both CDW and SDWz are

⟨OCDW(x)OCDW(y)⟩ ∼ cos(2kF |x− y|)|x− y|−(Kc+K∗
s ), (A.19a)

⟨OzSDW(x)OzSDW(y)⟩ ∼ cos(2kF |x− y|)|x− y|−(Kc+K∗
s ), (A.19b)

with K∗
s = 1, the renormalized Luttinger parameter as the SU(2) symmetry emerges asymptotically.

B Cluster bosonization approach

The low-energy effective theory of a single chain (U = U1 = 0) at strong coupling V ≫ t is effectively
described by cluster bosonic fields, i.e. density fluctuations of perfect cluster configuration of
particles. To derive this result, we use the Cluster bosonization approach. In the continuum limit,
the bosonic field operators are expressed as [21, 25]

ψl (x) = e−
i
√
π
σ
θ′l(x)

√
ν − 1√

πσ
∇ϕ′l(x)

+∞∑
q=−∞

αq,le
−i2q(πxνσ−

√
πϕ′l(x)) (B.1)

and the particle density operator as

ρℓ(x) =

(
ν − 1√

πσ
∇ϕ′ℓ(x)

) +∞∑
q=−∞

Aq,ℓe
−i2q(πxσν−

√
πϕ′ℓ(x)). (B.2)

ϕ′ℓ(x) is the fluctuation above a perfect cluster configuration on chain ℓ. θ′ℓ(x) is defined as the
conjugate variable of ∇ϕ′ℓ(x) such that[

θ′ℓ(y),
1

π
∇ϕ′ℓ′(x)

]
= iδℓ,ℓ′δ(x− y). (B.3)

Aq,ℓ = A∗
−q,ℓ and αq,ℓ are the non-universal constants that strongly depend on the microscopic details

of the system. σ =M/N with M and N being the number of clusters and particles respectively.
In the absence of the inter-chain interactions U and U1, we have two decoupled chains with the

soft-shoulder interaction V acting within each chain. Using the cluster bosonization, the Hamilto-
nian of each chain is mapped to the Hamiltonian of free massless cluster bosons [20, 21]

HV,t ∼
∑
ℓ=±

v

2

∫
dx

(
K(∇θ′ℓ)2 +

1

K
(∇φ′

ℓ)
2

)
, (B.4)

where K is the cluster-Luttinger parameter. Since the top and bottom chains are identical, we have
K+ = K− = K and v+ = v− = v. By dropping the constants and only keeping the most relevant
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terms, the mapping for the U interaction is [25]

HU ∼ U
∫
dxρ+(x)ρ−(x) ≈ g(0)U

∫
dx∇φ′

+(x)∇φ′
−(x) + g

(1)
U

∫
dx cos(

√
4π[φ′

+(x)− φ′
−(x)]),

(B.5)

with g(0)U = U |A0|2
πσ2 and g(1)U = 2ν2U |A1|2. Similar calculations for U1 interaction gives

HU1 ∼ U1

∫
dxρ+(x)ρ−(x+ a0) ≈ g(0)U1

∫
dx∇φ′

+(x)∇φ′
−(x)

+ g
(1)
U1

∫
dx cos(

√
4π[φ′

+(x)− φ′
−(x)])− g(2)U1

∫
dx sin(

√
4π[φ′

+(x)− φ′
−(x)]),

(B.6)

with

g
(0)
U1

=
U1|A0|2
πσ2

, g
(1)
U1

= 2ν2U1|A1|2 cos(2πnσa0), g
(2)
U1

= 2ν2U1|A1|2 sin(2πnσa0) (B.7)

Using the spin and charge cluster bosonic fields

φ′
ℓ =

φ′
c + ℓφ′

s√
2

, θ′ℓ =
θ′c + ℓθ′s√

2
, (B.8)

with ℓ = ±, the total hamiltonian for the triangular ladder H = HV,t +HU +HU1 is

H =
vc
2

∫
dx

(
Kc(∇θ′c)2 +

1

Kc
(∇φ′

c)
2

)
+
vs
2

∫
dx

(
Ks(∇θ′s)2 +

1

Ks
(∇φ′

s)
2

)
+ g

∫
dx cos(

√
8πφ′

s − α),
(B.9)

with

g =

√(
g
(1)
U + g

(1)
U1

)2
+
(
g
(2)
U1

)2
, α = arctan

(
−g(2)U1

g
(1)
U + g

(1)
U1

)
, (B.10)

Kc =
K√

1 +

(
g
(1)
U +g

(1)
U1

)
K

v

, vc = v

√√√√
1 +

(
g
(1)
U + g

(1)
U1

)
K

v
. (B.11)

Ks =
K√

1−
(
g
(1)
U +g

(1)
U1

)
K

v

, vs = v

√√√√
1−

(
g
(1)
U + g

(1)
U1

)
K

v
. (B.12)

As the effective cluster Hamiltonian Eq.(B.9) is formally similar to the bosonized Hamiltonian
Eq.(A.9), we conclude that two phases are possible (g > 0). If the spin mass is irrelevant, then one
possible phase is a CLL with c = 2. If instead the mass is relevant, then the second possible phase
is a ’spin-locked’ CLL with c = 1. The microscopic details of the coarse-graining realized with the
Cluster bosonization are hidden within the Aℓ,q and αℓ,q coefficients, preventing their estimations.
In consequence, the relevancy of the mass is only accessible by the numerical simulations. The
simulations we perform show that c = 1 and therefore that the mass is relevant.
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Figure 5.8: The behavior of the entanglement entropy Sχ with respect to the cor-
relation length ξχ for the bond dimensions χ ∈ [64, 1280] in different phases, namely
(a) 2TLL, (b) SDW, (c) CDW, and (d) CLL. The thin green lines correspond to the
fits (see Eq.(5.2))in the range χ ∈ [64, 384], while the thick blue lines correspond to

the fits for χ ∈ [512, 1280].

C Numerical results on the phases at weak and intermediate inter-
chain coupling strengths

By the means of iDMRG simulations, we now numerically analyze different phases that appear at
weak and intermediate inter-chain coupling (U/t) strengths, i.e., the 2TLL, the SDW, the CDW,
and the CLL phases. To this end, we first extract the central charge c for these phases by fitting the
bond dimension χ-dependent entanglement entropy Sχ as a function of the χ-dependent correlation
length ξχ using the relation[97, 98, 99] Eq.(5.2). In Fig.(5.8), we plot the scaling of Sχ with respect
to ξχ in these phases as we increase the bond dimension from χ = 64 to 1280. Clearly, all these
phases, except the 2TLL, have central charge c = 1 indicating gapped spin-sectors while the charge-
sectors remain gapless as in the case for square geometry [25]. In the 2TLL phase, c = 2 signifies
that the both sectors are gapless.

We characterize each phases with c = 1 phases by analyzing correlation functions of the form

CO(R) = ⟨OjOj+R⟩ − ⟨Oj⟩⟨Oj+R⟩, (C.1)

where Oj is a local operator. When the distance R is greater than the correlation length ξχ
all correlations trivially decay exponentially, restricting the validity of the computed correlation
function to R ≈ ξχ at maximum.

Instead of considering the spin correlation function CSz (where Szj = (nj,+ − nj,−)/2) and the
charge correlation function Cn (where nj = (nj,+ + nj,−)), we find that the bond-spin correlation
CBS and the bond-charge correlation CBC are more suitable to characterize the SDW and the
CDW phases. Within each of the pairs (CSz , CBS ) and (Cn, CBC ), the correlation are largely
indistinguishable in theory when the charge sector is not gapped [80]. The bond operators are
defined as

BS
j =

(
(b†j,+bj+1,+ + H.c.)− (b†j,−bj+1,− + H.c.)

)
/2, (C.2a)

BC
j =

(
b†j,+bj+1,+ + b†j,−bj+1,− + H.c.

)
. (C.2b)

Figs.(5.9a,b) show these bond correlation functions in the SDW and the CDW phases for R ≤
200 < ξχ=2048. Clearly, in the SDW phase, the bond-spin correlation function CBS follows power-
law and the bond-charge correlation CBC decays exponentially with the distance R. The opposite
is observed in the CDW phase. The frequencies of the oscillations in the algebraically decaying
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Figure 5.9: The behaviors of (a) the bond-spin correlation function CBS (R) =
⟨BS

j B
S
j+R⟩ − ⟨BS

j ⟩⟨BS
j+R⟩ and (b) the bond-charge correlation function CBC (R) =

⟨BC
j B

C
j+R⟩−⟨BC

j ⟩⟨BC
j+R⟩ as functions of the distance R in the SDW and CDW phases.

Here both axes are in the logarithmic scale. (c)-(d) The power-law fits (according to
Eq.(C.3)) of the bond-spin and bond-charge correlations respectively in the SDW and

CDW phases.

correlations can be obtained by fitting the the data to the following formula:

C(R) ∼ cos (kR)R−β. (C.3)

Figs.(5.9c,d) show such fits for the bond-spin and the bond-charge correlations respectively in the
SDW and CDW phases. In both the cases, the numerical fits show that the frequency of oscillations
are k = 2kF = 2π/5 as expected from the analysis of Ann.(A).

In the case of the CLL phase, since the leading instabilities are clustered, we look at the spin
correlation CSz and charge correlation Cn functions. Fig.(5.10) shows the evolution of these corre-
lation functions with respect to the distance R together with their Fourier transform. As expected
in the CLL phase, both the correlation functions decay following a power-law. By analyzing the
Fourier transforms, we extract the two primary frequencies of the oscillations as k = 2kF = 4π/5
and k = 3kF /2 = 3π/5. k = 3kF /2 is the cluster Fourier momentum appearing in Eq.(B.2) that
translates the specific cluster instability of the Luttinger liquid. Like in the square ladder [25],
we interpret the other major frequencies such as k = 2kF as due to the pollution of the signal
by subdominant SDW or CDW instabilities. Interestingly and unlike the square geometry, these
frequencies are present in both spin and charge correlation functions, translating the deformation
due to the added range of U .

D Strong U coupling theory in the triangular ladder.

We present here the details of the semi-classical approach to the holonic polarized and the cluster
crystal phases.
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Figure 5.10: The behaviors of (a) the spin correlation function CSz (R) = ⟨Sz
j S

z
j+R⟩−

⟨Sz
j ⟩⟨Sz

j+R⟩ and (c) the charge correlation function Cn(R) = ⟨njnj+R⟩ − ⟨nj⟩⟨nj+R⟩
as functions of the distance R in the CLL phase (U/t = 1, V/t = 5). The subplots (b)
and (d) depict the Fourier transform of the spin correlation and charge correlation

functions respectively.

D.1 Densities of holons and domain walls

It is possible to get formulae for both the domain walls and holon densities. Because holons can
form cohorts, these densities are non-local operators preventing the formulae from being easily used.
To obtain them, we define the projectors:

Pi− = ni−(1− ni+), (D.1a)
Pi+ = ni+(1− ni+1+), (D.1b)
Mi− = (1− ni−)(1− ni+), (D.1c)
Mi+ = (1− ni+)(1− ni+1−), (D.1d)
Di− = (1− ni−)ni+, (D.1e)
Di+ = (1− ni+)ni+1−. (D.1f)

Using Eqs.(D.1), we define the quasi-local projector Pi and the total projector P onto the effective
Hilbert space of strong U coupling as

Pi = (Mi−1+ +Di−1+ + Pi−1+)(Mi+ +Di+ + Pi+)− Pi−1+Pi+, (D.2a)
P = ⊗iPi. (D.2b)

Using Eqs.(D.1), we obtain the density of domain walls by summing over the projectors on one
domain wall state for all cohorts. We note w/i (resp. w\

i ) a domain wall with its first empty site on
rung i and separating a domain with the leg + populated on the left (resp. right) and the leg −
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populated on the right (resp. left). Their respective density operator are

n
/
wi = Pi−1+Di+ + Pi−1+Mi+Di+1+ + . . .

= Pi−1+

(
Di+ +

L−4∑
k=0

Mi+Mi+1+ . . .Mi+k+Di+k+1+

)
,

(D.3a)

n
\
wi = Pi−Di+1− + Pi−Mi+1−Di+2− + . . .

= Pi−

(
Di+1− +

L−5∑
k=0

Mi+1−Mi+2− . . .Mi+k+1−Di+k+2−

)
,

(D.3b)

for periodic boundary conditions. We also define the total density of domain walls

nw,i = n
/
wi + n

\
wi−1. (D.4)

We obtain the holon densities in a similar manner. We define the two quantities

nhi+ = Pi−1+(1− ni+)Di+1− + Pi−1+(1− ni+)Mi+1−Di+2− + Pi−2+Mi−1+(1− ni+)Di+1+ + . . .

(D.5a)

+
1

2
[Pi−1+Mi+Di+1+ + Pi−1−Mi−Di+1− + . . . ] ,

=
∞∑
k=0

k∑
l=0

Pi−1−l+

l∏
m=1

Mi−m+(1− ni+)
k−l∏
r=1

Mi+r−Di+(k−l)+1− (D.5b)

+
1

2

[ ∞∑
k=0

k∑
l=0

Pi−1−l+

k∏
m=0

Mi−l+m+Di+(k−l)+1+ +
∞∑
k=0

k∑
l=0

Pi−1−l−

k∏
m=0

Mi−l+m−Di+(k−l)+1−

]
,

nhi− =

∞∑
k=0

k∑
l=0

Pi−1−l−

l∏
m=1

Mi−m+(1− ni−)
k−l∏
r=1

Mi+r−1+Di+(k−l)+ (D.5c)

+
1

2

[ ∞∑
k=0

k∑
l=0

Pi−1−l−

k∏
m=0

Mi−l+m−Di+(k−l)+1− +

∞∑
k=0

k∑
l=0

Pi−2−l+

k∏
m=0

Mi−l+m−1+Di+(k−l)+

]
.

that would correspond to the densities of holons in a domain polarized on leg + and − respec-
tively. When the holon belongs to the cohort of a domain wall, there is an ambiguity in these
definition. This ambiguity explains the factor 1/2 (chosen conventionally). This ambiguity is lifted
when defining holons independently of the leg (as it should) e.g. for nh,i = nhi+ + nhi− when the
holon belongs to the cohort of a domain wall \ or no cohort of a domain wall and nh,i = nhi−1++nhi−
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otherwise. The holon density is then

nhi =
∞∑
k=0

k∑
l=0

Pi−1−l+

l∏
m=1

Mi−m+(1− ni+)
k−l∏
r=1

Mi+r−Di+(k−l)+1−

+
∞∑
k=0

k∑
l=0

Pi−1−l−

l∏
m=1

Mi−m+(1− ni−)
k−l∏
r=1

Mi+r−1+Di+(k−l)+

+
∞∑
k=0

k∑
l=0

Pi−1−l+

k∏
m=0

Mi−l+m+Di+(k−l)+1+

+
∞∑
k=0

k∑
l=0

Pi−2−l−

k∏
m=0

Mi−l+m−1−Di+(k−l)−.

(D.6)

From the densities Eqs.(D.3,D.6), we deduce the existence of the (non-local) creation and annihila-
tion operator for both holons (h†i and hi) and domain walls (w†

i and wi).

D.2 Estimation of the energy level

We rewrite the perturbative Hamiltonian Eq.(5.4) using h†i , hi, w
†
i , and wi to estimate the energy

levels as a function of the average densities fh and fw. The perturbative Hamiltonian is

H = t
L∑
i=1

[
h†ihi+1

(
1− nw\,i

)
+ h†iw

\†
i+1hi+1w

\
i + h†ihi+1

(
1− nw/,i+1

)
+ h†iw

/†
i+2hi+2w

/
i+1

+h†i+1hi

(
1− nw\,i+1

)
+ w

\†
i h

†
i+1w

\
i+1hi + h†i+1hi

(
1− nw/,i+2

)
+ w

/†
i+1h

†
i+2w

/
i+2hi

]
−2t2

U

∑
i

[
nw\,i(1− nh,i+1) + nw/,i(1− nh,i+1)

]
,

(D.7)

leading to the phenomenological Eq.(5.6) when simplifying the details concerning the range that
have no influence on the estimation. For simplicity, we consider holons independent from domain
walls to obtain an effective Hamiltonian for each by averaging over the holons or the domain walls
separately. We have

Hh ≃ |α|
L∑
i=1

(
eiθh†ihi+1 +H.c.

)
+ β

∑
i

(nh,i − 1), (D.8a)

Hw ≃ |γ|
L∑
i=1

(
eiϕw†

iwi+1 +H.c.
)
+ δ

∑
i

nw,i + 2tLRe(γ), (D.8b)

with

α = t
(
⟨1− nw,i+1⟩+ ⟨w†

i+1wi⟩
)
= |α|eiθ, (D.9a)

β =
2t2

U
⟨nw,i⟩, (D.9b)

γ = t⟨h†i+1hi⟩,
= |γ|eiϕ,

(D.9c)

δ = −t
(
⟨h†i−1hi−2⟩+ ⟨h†i−1hi⟩

)
− 2t2

U
⟨1− nh,i⟩. (D.9d)
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By diagonalizing the Hamiltonian Eqs.(D.8) and building the eigenstates as a product state of
holonic and domain wall mode, we get the hopping averages (e.g. ⟨w†

i+1wi⟩) such that

α = t (1− fs) +
2t

L
ei(ϕ−π−

π
L
) sin(

π
2 fw)

sin( πL)
, (D.10a)

β =
2t2fw
U

, (D.10b)

γ =
t

L
ei(θ−π−

π
L
) sin(πfh)

sin( πL)
, (D.10c)

δ = −2t

L
cos(θ − π − π

L
)
sin(πfh)

sin( πL)
− 2t2

U
(1− fh) , (D.10d)

ϕ = θ − π − π/L [2π], (D.10e)

tan(θ) =
sin(θ − 2π

L )

cos(θ − 2π
L ) + L sin(π/L)

sin(πfw)
(1− fw)

. (D.10f)

Eqs.(D.10e,D.10f) always (only) admit θ = ϕ + π = 0 [2π] as a solution when L → ∞. We then
obtain Eq.(5.7) by averaging Eq.(5.6) over both holons and domain walls successively and using
Eqs.(D.10) in the limit L→∞.

D.3 Phenomenological shoulder potential

We provide the expression of the shoulder potential and its contribution to the estimate of the
energy level for rc = 3. The method is identical to Sec.(D.2), but must be carried term by term. It
is diagonal in the basis of domain walls and holons so there are no higher order corrections in V .
Starting with

HShoulder =
∑
i,ℓ

rc∑
r=1

Vrni,ℓni+r,ℓ, (D.11)

the shoulder potential is rewritten as

HShoulder − L(V1 + V2 + V3) = −(V1 + 2V2 + 3V3)
∑
i

n
\
w,i − (2V1 + 3V2 + 4V3)

∑
i

n
/
w,i

− 2(V1 + V2 + V3)
∑
i

nh,i + V1
∑
i

nh,inh,i+1 + V2
∑
i

nh,inh,i+2 + V3
∑
i

nh,inh,i+3

+ (V1 + V2 + V3)
∑
i

n
/
w,inh,i+1 + (V1 + V2 + V3)

∑
i

n
\
w,inh,i+1 + (V2 + V3)

∑
i

n
/
w,inh,i+2

+ (V2 + V3)
∑
i

n
\
w,inh,i+2 + (V2 + V3)

∑
i

nh,in
/
w,i+2 + (V2 + V3)

∑
i

nh,in
\
w,i+1

+ V3
∑
i

n
/
w,inh,i+3 + V3

∑
i

n
\
w,inh,i+3 + V3

∑
i

nh,in
/
w,i+3 + V3

∑
i

nh,in
\
w,i+2

+ (V2 + 2V3)
∑
i

(n
/
w,in

\
w,i+1 + n

\
w,in

/
w,i+2) + V3

∑
i

(n
/
w,in

\
w,i+2 + n

\
w,in

/
w,i+3)

(D.12)
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∼ −1

2

∑
i,l

(1 + 2l)Vlnw,i − 2
∑
i,l

Vlnh,i +
∑
i,l

Vlnh,inh,i+l + 2
∑
i,l

∞∑
m=l

Vmnw,inh,i±l

+ (V2 + 2V3)
∑
i

(n
/
w,in

\
w,i+1 + n

\
w,in

/
w,i+2) + V3

∑
i

(n
/
w,in

\
w,i+2 + n

\
w,in

/
w,i+3),

(D.13)

where Eq.(D.13) is the phenomenological approximation of Eq.(D.12). The contribution of the
shoulder potential to the energy levels follows:

⟨HShoulder⟩ = L
∑
l

Vl −
L

2

∑
l

(1 + 2l)Vlfw − 2L
∑
l

Vlfh + L
∑
l

Vl

(
f2h −

1

lπ2
sin(πfh) sin(lπfh)

)
+L

∑
l

(2l − 1)Vlfmfw + L(V2 + 3V3)f
2
w/2.

(D.14)

When V1 = V2 = V and V3 = 0, we find Eq.(5.8). Within the scope of the approximation, we see
that longer-range interactions than next-to nearest neighbors or a more realistic potential for Vℓ
fitting e.g. V/(1 + (ℓ/rc)

6) would not qualitatively change Eq.(D.14) and hence Eq.(5.8).
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Chapter 6

Conclusion

In this part of the thesis we studied quantum phase transitions in many-body systems. Specifically,
we analyzed various many-body setups whose asymptotically exact solutions can be obtains by using
conformal field theoretical approach and bosonization techniques. As a recap, we have analyzed
previously known results regarding 1-dimensional Quantum Ising model (QIM). By introducing the
duality transformation, we showed that QIM undergoes a quantum phase transition from ordered
to disordered phase, while the transition is driven by an external transverse magnetic field. By
implementing the Jordan-Wigner transformation, QIM was mapped onto the so-called Kitaev chain
model and it was demonstrated that the model hosts topologically non-trivial phase. By analyzing
the topological phase, it was shown that zero-energy edge-modes correspond to Majorana fermions.
Using this fact as a motivation to rewrite the whole model in terms of Majorana fermions, we
demonstrate that the underlying field theory of QIM close to the criticality is a quantum field
theory of massive Majorana fermions. At the critical point, Majorana field becomes massless and
thus low-energy sector of QIM at the critical point is described a by 2-dimensional conformal field
theory (CFT) of Majorana fermions. By using well established techniques of CFT, we demonstrate
how the critical exponents and various correlation functions of QIM can be extracted, this solving
the model exactly.

We have also re-derived and demonstrated the predictive power of the so-called Bosonization
technique, being a closely related idea to the aformentioned Jordan-Wigner transformation. By
presenting the detailed derivation and the application of Abelian variant of Bosonization in the
context of XXZ Heisenberg model. We demonstrate how the exact solution of XX Heisenberg
model and asymptotically exact solution for XXZ Heisenberg model for vanishing z-axis anisotropy
differ from each other. By referring to the Bethe ansazt exact solution of XXZ Heisenberg model,
we observed that the bosonization solution predicts correct physical properties of the model.

Motivated by recent advances in the experimental setups of synthetic quantum systems, analyze
the phase diagram of hard-core bosons on a square and triangular lattices. Most important feature of
the model is that the range of density-density interaction between bosons extends over 2 lattice sites.
The extended range of interaction leads to novel phases of the system and can be experimentally
realized by populating ultra-cold and Rydberg-dressed atoms on optical lattices. The Rydberg-
dressing technique allows one to generate the interaction between two atoms characterized by the
so-called soft-shoulder potential. The advantage of this approach is that the range and strength of
soft-shoulder potential is easily tunable.

We provided and characterized the phase diagram of a system of spinless hard-core bosons in
a square ladder geometry at filling ν = 2/5, interacting via soft-shoulder potentials, and in the
absence of inter-chain tunneling. The hard core bosons are allowed to tunnel within each chain
with tunneling amplitude t, while the soft-shoulder repelling potential is assumed to extend only on
two lattice site within each chain and has a fixed value of V . Additionally, if bosons are occupying
nearest neighboring sites but reside on different legs of the lattice, then they are allowed to repel
each other with strength U .
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To obtain the phase diagram, we used analytical arguments close to the regime of weak coupling
between the legs (U ≪ t, V ). Our analytical predictions were corroborated and extended to larger
coupling using numerical simulations. Specifically, for V ≪ t and U = 0, each chain is described
by a gapless Tomonaga-Luttinger liquid (TLL) with central charge c = 1. As soon as U > 0, the
degree of freedom relative to the leg of the ladder, called spin, becomes gapped. The resulting
gapless phase displays a leading spin-density wave (SDW) instability of momentum 2kF well seen
in the simulations. When V ≲ U/5, and particularly when V = 0, the system transits across a
Berezinskii-Kosterlitz-Thouless (BKT) phase transition predicted by the Abelian bosonization and
hinted by the exact diagonalization. Past the transition, the description of the system is equivalent
to the standard Hubbard model described by two Luttinger liquids with c = 2 in total.

For V ≫ t and U = 0, each chain displays an exotic cluster Luttinger liquid (CLL) with c = 1
described by cluster bosonization and seen by iDMRG. As soon as U > 0, the cluster equivalent of
the spin degree of freedom is gapped, leading to a ‘spin-locked’ cluster with c = 1. The corresponding
cluster density wave has a momentum (3/4)× 2kF , the clearest consequence of the clusterization of
the microscopic degree of freedom into cells of 3 clusters of 4 particles in total for this filling and
the range of V . Such emergent clustering is also reflected in both single chain and spin correlation
functions.

In the vicinity of the single-chain transition point, we develop an effective field theory describing
the ladder system that is obtained via coupling two supersymmetric conformal field theories – a
scenario that is, to the best of our knowledge, not accessible in any other cold atom setup. The SUSY
phase transition point at U = 0 and V/t ≃ 5.7 extends into a gapless phase with c = 1 and leading
charge-density wave instability (CDW) of momentum 2kF when U > 0 and V/t ∼ 5.7. The CDW is
separated from the SDW by a Gaussian phase transition with c = 2 and from the spin-locked CLL
by a critical line with c = 3/2. Both the phase and the transitions are sharply seen by iDMRG. The
critical line c = 3/2 may also be supersymmetric conformal phase transitions, but it is not possible
to conclude this based on the present analysis. In fact, such proof may require a true quantum
simulator, as the more direct way of probing this is studying the long-time dynamics of large chains.
Indeed, it is possible to obtain the low-energy band structure of time-independent, translation-
symmetric Hamiltonian by computing the time and space Fourier transform of correlation functions
of various observables after a quench [100, 101]. The system therefore provides a unique platform
to study interactions between two SUSY conformal field theories.

For the triangular geometry of the ladder, we have seen that the extension of the range of the
inter-leg interaction immediately redesigns the vicinity of the supersymmetric point with respect to
the square ladder case. In particular, a single phase transition line, likely to be a supersymmetric
one, separates the weak and strong intra-chain interacting regimes at weak inter-chain interaction.
The extra range only deforms the neighboring SDW and spin-locked CLL instead. Such results
illustrate the difficulty in controlling the coupling between two supersymmetric field theories like in
the square case as power-law tails always exist in realistic systems. Instead, the CLL phenomenology
is robust to the inter-leg interaction range extension.

The strong coupling limit is also richer in the triangular geometry: a CDW appears at inter-
mediate U/t, and the PH and gapped translation symmetry breaking CC emerge at large U/t,
compared to the square case. The gapless PH is qualitatively unchanged by varying the range of
the interaction or the filling. Instead, the CC disappears as soon as the filling (2/5 here) is changed
or the interaction range is further extended akin to gapped phases in half-filled Hubbard models.
We thus expect a plethora of other CC patterns for other ranges of V and matching commensurate
filling, separated at incommensurate filling by both standard and cluster Luttinger liquid phases.
The phenomenology of the extended Hubbard model at any filling and at strong coupling is thus
more complex than the sole clusterization of the degrees of freedom but involves instead the co-
existence of phases with both clustered and Luttinger bosonic excitations separated by uncommon
(e.g., supersymmetric) phase transitions.
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Beyond observability in experiments, there are several research directions that one can pursue
starting from the understanding of the present model. The onset of CLLs require a range of soft-
shoulder interaction of at least 2. They are generally not modified by longer range, so that we
do not expect a qualitative change of the phase diagram for longer ranges. Other commensurate
fillings (above 1/3 but below 1/2 for range 2) may display CLL physics leading to similar phase
diagrams. Different fillings for both chains are instead likely to lead to richer arrangements between
the CLL on the two legs and decouple the SUSY points on one leg and the other, enriching the
phase diagram once more. Other CLL arrangements may also appear when changing the sign
of U , or extending the interaction U over more rungs. Besides exploring these various regimes
theoretically and experimentally, it would also be interesting to stack more chains above the ladder
and approach the 2D regime. It is indeed not known if the clusterization vanishes or if it becomes the
local order of a fully gapped phase and how. Finally, it would be interesting to investigate regimes
where the ladder displays a genuine SU(2) "spin"-symmetry, in analogy to electronic systems. Such
interactions are not available when dressing atoms via s-states, but could be at least approximately
realized utilizing a combination of dressing to p-states [102] and lattice spacing tuning.
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Part II

Many-body systems with non-Markovian
dynamics: memory effects and

entanglement transitions
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Introduction

Quantum systems in the real world are subject to their own coherent evolution as well as interactions
with the environment. The interplay between these two gives rise to complex and rich physics that
has great relevance in the context of quantum technologies, and has consequently been extensively
studied in recent years. It is the case of many solid state, cold atoms or trapped ions systems, where
environmental effects can strongly alter the state of the system [103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118], such as in dissipative phase transitions tuned by the
dissipation strength, or induce new relaxation regimes [119, 120, 121, 122, 123, 124, 125, 126, 127].
This interplay is important also in the context of quantum information where, for example, systems
can decouple from the incoherent action of the environment and form dissipative free subspace with
important error-preventing properties [128, 129, 130, 131, 132, 133, 134, 135, 136].

Dissipative phase transitions occur at the level of the average state – i.e. manifest themselves
in the properties of the density matrix of the system – but new phases may emerge also at the
level of single quantum trajectories, as highlighted by a series of recent works [137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169]. Focusing mainly on systems amenable to be realized in
cold atoms or quantum computing platforms, these works have shown that the competition between
quantum measurements and coherent dynamics also gives rise to transitions of the entanglement
that manifest themselves in specific observables - such as von Neumann entropies, negativities, or
two-time correlation functions. These transitions are often referred to as “measurement induced”
phase transitions (MIPT).

The MIPT [170, 171, 137, 138, 139, 140, 141, 142, 143, 144, 145, 149, 148, 146, 151, 152, 153, 154,
156, 157, 158, 163, 164, 166, 167, 165, 162, 169, 172, 173] have been the subject of intense research
in recent years. They appear at the level of the scaling behavior of the entanglement with the size of
the system, and are caused by the action of random measurements that collapse the entanglement of
the system, and counteract the correlation spreading action of the unitary dynamics. Even at a finite
rate of measurement, this interplay leads to a transition between phases with extensive (or critical)
scaling of the entanglement, and phases with low entanglement. Indeed, entanglement transitions
have been observed in many different settings and models, including random circuits [139, 140, 138,
174, 175, 176], stabilizer and Clifford circuits [146, 151, 177, 178, 179, 155, 180, 181], Ising-like
models with either short-range or long-range interactions [164, 182, 150, 183], and systems of free
fermions [165, 162, 169, 184, 185, 186, 187]. In all these works, the studied systems are coupled to
Markovian environments, which cause memory-less measurements – i.e. the probability of a random
measurement occurring is completely independent of the history of the system. Opposite to this,
the setup where the system is coupled to memoryful, i.e. non-Markovian measuring apparatus
is largely unexplored. This is due to a complex interplay between entanglement destruction due
to measurements and memory effect of the environment – lost coherences of the system can be
recovered at later times.

The study of non-Markovian systems is broad and challenging [188]. Even at the level of the
density matrix, it is not always possible to describe the dynamics through a Lindblad equation. This
subject has been extensively studied in the literature, including its many connections to complexity
and entanglement [189, 190, 191], and how to quantify the degree of non-Markovianity etc. [192,
193, 189, 194, 195]. One can choose to work with a paradigmatic model, in which the dynamics of
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the system is described by a master equation of the type

ρ̇(t) = Ltρ(t). (6.0.1)

The time dependent Liouvillian Lt depends on the details of the unitary evolution and on a time
dependent dissipation rate, which may be either positive or negative depending on the direction of
the information flow. Information flows from the system to the environment and the decay rate
is positive for Markovian regions, while it goes from the bath to the system (with an associated
negative rate) when the evolution is non-Markovian.

Another difficulty of studying the many-body non-Markovian systems is the need to consider
the quantum trajectories of its dynamics, and so far no clear and general protocol to unravel such
non-Markovian dynamics exists. Unlike in Markovian systems, where the unraveling is performed
in a straightforward way using methods such as Monte Carlo wave function (MCWF) [196, 197,
198], or Quantum State Diffusion (QSD) [199], unraveling recipes have proven to be much harder
to implement for non-Markovian systems.

While in recent years a protocol implementing the unraveling through quantum jumps has been
proposed for single-body systems [200, 201], still no general approach to many-particle systems
exists. Indeed, extending the method of non-Markovian quantum jumps to many-body systems
is not trivial, since the interplay between unitary evolution and measurements (or equivalently
- interaction with the environment) makes this task very complicated at a conceptual level, and
exponentially complex at a computational level. Just to cite an example, the quantum trajectories
of a non-Markovian system are inter-dependent of each other, due to the memory of the bath,
and a statistical sampling of the trajectory ensemble similar to the Markovian case is not possible
anymore.

In the following chapters, after reviewing the foundations of open quantum systems and quantum
information, we will try to bridge the gap between single- and many-body quantum jump approach
for non-Markovian dynamics. To do this, we introduce a diagrammatic approach and demonstrate
how non-Markovianity renormalizes the probability of following a certain quantum trajectory [202].
By applying the diagrammatic method to random unitary circuit model with non-Markovian mea-
surements, we show that the measurement induced phase transition is stable against non-Markovian
dynamics. Moreover, by directly simulating the quantum trajectories of partially monitored free
fermionic ladder, we again confirm that MIPT can be resilient against the memory effects [203].
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Chapter 7

Decoherence in open quantum systems

It is a nearly century old and as of today a well tested idea, that quantum mechanical systems can
exhibit features such as superposition principle. Namely, if the system is allowed to be in either
of |φ1⟩ and |φ2⟩ states, then the it is also allowed to be in any linear superposition of these two
α1|φ1⟩+α2|φ2⟩. This, in turn, can result in various exotic states of matter, most notably entangled
states [204].

Evidently, macroscopically large systems rarely appear in such states and typically exhibit prop-
erties that can be described using classical physics. Moreover, if one tries hard enough to prepare
a mesoscopically large system in, let’s say, an entangled state, the quantum effects of such a state
will fade away almost instantaneously. Considering the importance of such states for fundamen-
tal research directions, quantum information theory and technology, it is natural to ask how the
"quantumness" of the system is washed away as soon as one tries to consider realistic macroscopic
systems.

A key insight is that such states of matter are robust by construction when the system itself
is isolated from the environment. If one considers more realistic scenario and allows the system to
interact with the environment, then the resulting exchange of information will strongly entangle the
constituents of the system with vast number of environmental degrees of freedom. This effect, known
as quantum decoherence [205, 206, 207, 208], will rapidly and strongly suppress the characteristic
quantum behavior of the system to the measuring apparatus, thus effectively rendering the system
classical for the observer.

7.1 Decoherence via interaction

Suppose that a system of interest is described by ρ̂sys density matrix, that operates in the Hsys
Hilbert space. For simplicity, suppose that the environment consists of a single quantum de-
gree of freedom. Here we assume that initially the environment is in a pure state ρ̂env(t0) =
|ψenv(t0)⟩⟨ψenv(t0)| , belonging to Henv Hilbert space. The system is brought in contact with the
environmental degree of freedom for some time. Since in our setup the environment and the sys-
tem constitute a closed quantum system, the interaction can be fully described by some scattering
operator Ŝ.

Before the interaction, the system and the environment are in a product state [205, 208]

ρ̂(t0) = ρ̂sys(t0)⊗ ρ̂env(t0), (7.1.1)

which after the interaction transforms to

ρ̂(t1) = Ŝ [ρ̂sys(t0)⊗ ρ̂env(t0)] Ŝ
†. (7.1.2)

Let the set of orthogonal states of the system be denoted as |m⟩ ∈ Hsys. If we assume that the
scattering off the environmental degrees of freedom does not cause any |m⟩ → |m′⟩ transitions
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between the states within the system, then this means that the scattering matrix commutes with
the environmental states and thus can be expanded as

Ŝ =
∑
n

|n⟩⟨n| ⊗ Ŝn (7.1.3)

where Ŝn are the parts of the scattering operator that act only on the environment. This automat-
ically leads to

ρ̂(t1) =
∑
m,n

|m⟩⟨m| ⊗ Ŝm [ρ̂sys(t0)⊗ ρ̂env(t0)] |n⟩⟨n| ⊗ Ŝ†
n

=
∑
m,n

⟨m|ρ̂sys(t0)|n⟩ × |m⟩⟨n| ⊗
(
Ŝmρ̂env(t0)Ŝ

†
n

)
=
∑
m,n

⟨m|ρ̂sys(t0)|n⟩ ×
[
|m⟩⟨n| ⊗ |ψ(m)

env (t1)⟩⟨ψ(n)
env(t1)|

]
.

(7.1.4)

Integrating out the environmental degrees of freedom, i.e. reducing the density matrix over the
system states only, we get the state of the system after the interaction

ρ̂(t1)sys = Trenv (ρ̂(t1)) =
∑
m,n

⟨m|ρ̂sys(t0)|n⟩⟨ψ(n)
env(t1)|ψ(m)

env (t1)⟩ × |m⟩⟨n|. (7.1.5)

Since Ŝ scattering matrix is unitary, we get the diagonal elements of ρ̂(t1)sys system density matrix
are unaffected

[ρ̂(t1)sys]m,m = ⟨m|ρ̂sys(t0)|m⟩. (7.1.6)

However, the off-diagonal elements are modified as

[ρ̂(t1)sys]m,n = ⟨m|ρ̂sys(t0)|n⟩ × ⟨ψ(n)
env(t1)|ψ(m)

env (t1)⟩, (7.1.7)

where the absolute value of the second multiplier is always smaller than one, thus reducing the
coherence of the state after the interaction. The reduction of the coherence is due to the information
exchange between the system and the environment during the interaction, which gets discarded while
taking the partial trace. The more information gets transferred from the system to environment, the
smaller ⟨ψ(n)

env(t1)|ψ(m)
env (t1)⟩ becomes. Typically the decoherence occurs on a very short timescales.

Let us pass to a more generic case and assume that the environment is in an arbitrary mixed
state. In the environmental eigen-basis, the mixed state is expressed as

ρ̂env(t0) =
∑
n

pn|ψ(n)
env(t0)⟩⟨ψ(n)

env(t0)|. (7.1.8)

Moreover, for a generic Ŝ scattering matrix (not necessarily separable as Ŝ = Ŝsys ⊗ Ŝenv) we have

ρ̂(t1) = Ŝ [ρ̂sys(t0)⊗ ρ̂env(t0)] Ŝ
† =

∑
n

pnŜ
[
ρ̂sys(t0)⊗ |ψ(n)

env(t0)⟩⟨ψ(n)
env(t0)|

]
Ŝ†. (7.1.9)

Tracing over the environmental degrees of freedom gives

ρ̂sys(t1) =
∑
m,n

pn⟨ψ(m)
env (t0)|Ŝ

[
ρ̂sys(t0)⊗ |ψ(n)

env(t0)⟩⟨ψ(n)
env(t0)|

]
Ŝ†|ψ(m)

env (t0)⟩

≡
∑
m,n

pn⟨ψ(m)
env (t0)|Ŝ|ψ(n)

env(t0)⟩ × ρ̂sys(t0)× ⟨ψ(n)
env(t0)|Ŝ†|ψ(m)

env (t0)⟩.
(7.1.10)
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It should be emphasized, that ⟨ψ(m)
env (t0)|Ŝ|ψ(n)

env(t0)⟩ and ⟨ψ(n)
env(t0)|Ŝ†|ψ(m)

env (t0)⟩ are operators - they
represent the matrix elements of the total scattering operator only on the environmental subspace,
while still act as operators in the system hilbert space. The expression can be re-written as

ρ̂sys(t1) =
∑
k

K̂kρ̂sys(t0)K̂
†
k (7.1.11)

where
K̂k =

√
pnk⟨ψ(mk)

env (t0)|Ŝ|ψ(nk)
env (t0)⟩ (7.1.12)

are the so-called Kraus operators. Due to the unitarity of Ŝ, we have∑
k

K̂†
kK̂k =

∑
k

pnk⟨ψ(nk)
env (t0)|Ŝ†|ψ(mk)

env (t0)⟩⟨ψ(mk)
env (t0)|Ŝ|ψ(nk)

env (t0)⟩

=
∑
k

pnk⟨ψ(nk)
env (t0)|Ŝ†Ŝ|ψ(nk)

env (t0)⟩

=
∑
k

pnk = I,

(7.1.13)

where the second line is due to the completeness of the environmental basis and the third line is
due to the unitarity of Ŝ operator. In Sec.(7.3). we will elaborate on the significance of the Kraus
operators and Eq.(7.1.13) normalization condition.

7.2 Decoherence as measurement

As we saw in the previous section, the interaction between the system and the environment is
equivalent to the information exchange between these two. Subsequent loss of this information in
the environment leads to the reduction of the coherences in the system – suppressing the ability of
the system to exhibit entangled states. Another mechanism of such suppression is the measurement.
By perturbing the system with a probe and extracting information, the inevitable collapse of the
state of the system will result in a similar reduction of the coherences. After briefly reviewing
some aspects of the measurement theory, we will make a connection between the decoherence due
interactions with the system and decoherence due to the measurement [205, 206, 207, 208].

7.2.1 Projective measurements

A projector operator Π̂α, associated to an idealistic measuring process with an outcome α is

Π̂α = |α⟩⟨α|. (7.2.1)

Crucial property of the projector operator is the resolution of identity∑
α

Π̂α = I.1 (7.2.2)

The probability of measuring an outcome α in a quantum state ρ is given by a standard Born rule

pα = Tr
(
Π̂αρ̂

)
= ⟨α|ρ̂|α⟩. (7.2.3)

1If α is a continuous outcome, then for the normalization have integral over projector-valued measure
∫
dΠ̂(α) = I.

The projector-valued measures will be useful in Sec.9.1
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Since the measurement is projective, the density matrix ρ̂′ has to be normalized after every appli-
cation of the measurement operator

ρ̂→ ρ̂′ =
Π̂αρ̂Π̂α

Tr
(
Π̂αρ̂

) . (7.2.4)

7.2.2 Generalized measurement

Suppose that an outcome α corresponds to some positive measurement element operator F̂α, where
the operators sum up to unity ∑

α

F̂α = I (7.2.5)

As already mentioned, the probability of observing an outcome α is

pα = Tr
(
F̂αρ̂

)
. (7.2.6)

Using this kind of measurement, the effect on the state ρ̂ can be written as

ρ̂→ ρ̂′ =

∑
k M̂

k
α ρ̂(M̂

k
α)

†

Tr(Fαρ̂)
, (7.2.7)

The normalization condition of the so-called measurement operators M̂k
α is∑

k

M̂k
α(M̂

k
α)

† = F̂α. (7.2.8)

It should be noted that the transformation Eq.(7.2.7) contains a positive map in the numerator.
However, since

∑
k M̂

k
α(M̂

k
α)

† < I, the map is norm-decreasing. As we will see in Sec.(7.3), Eq.(7.2.7)
is closely related to the so-called dynamical maps.

7.2.3 Efficient measurement

A special case of the generalized measurement is the so called efficient measurement. The measure-
ment is said to be efficient, if the measurement element F̂α contains only one measurement operator
M̂α. In this case, the non-linear transformation of the density matrix becomes

ρ̂→ ρ̂′ =
M̂αρ̂M̂

†
α

Tr(Fαρ̂)
, (7.2.9)

which implies that the a pure state ρ̂ will be mapped onto another pure state ρ̂′. Moreover, since
the normalization condition demands that M̂αM̂

†
α = F̂α, one can split the measurement operator as

M̂α = ÛαF̂
1/2
α , Û †

αÛα = I. (7.2.10)

Using this decomposition, we can express the efficient measurement as

ρ̂→ ρ̂′ = Ûα
F̂

1/2
α ρ̂F̂

1/2
α

Tr(Fαρ̂)
Û †
α. (7.2.11)
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In this representation, we see that the transformation of the state splits into the so-called raw
measurement F̂ 1/2

α ρ̂F̂
1/2
α /Tr(Fα), sandwiched by unitary Ûα measurement back-action operator [205,

207].

7.2.4 Indirect Measurement

Instead of directly measuring and thus strongly perturbing the state of the system, one can perform
the measurement mediated by a probe. During this approach, we let a probe and the system
interact with eachother and then perform a projective measurement on the probe, while minimally
perturbing the state of the system. Mathematically, the procedure goes along the following steps:
suppose the system is in some ρ̂sys state, while the probe is initially prepared in ρ̂probe state. After
the interaction, a total ρ̂ = ρ̂sys ⊗ ρ̂probe state transforms using the aformentioned S scattering
matrix [205, 208]

ρ̂′ = Ŝ [ρ̂sys ⊗ ρ̂probe] Ŝ
†. (7.2.12)

After the interaction, the state of the probe is

ρ̂′probe = Trsys

(
Ŝ [ρ̂sys ⊗ ρ̂probe] Ŝ

†
)
. (7.2.13)

Probability of performing a measurement on ρ̂′probe and finding α outcome is

pα,probe = Trprobe
(
Παρ̂

′
probe

)
= Trprobe

(
ΠαTrsys

(
Ŝ [ρ̂sys ⊗ ρ̂probe] Ŝ

†
))

. (7.2.14)

Since Πα acts only on the probe Hilbert space, we can extend the operator as Πα = Isys ⊗Πα,probe
and thus

pα,probe = Trprobe

(
[Isys ⊗Πα,probe]Trsys

(
Ŝ [ρ̂sys ⊗ ρ̂probe] Ŝ

†
))

. (7.2.15)

Since the second trace affects only the system degrees of freedom we can swap the positions of Trsys
and [Isys ⊗Πα,probe]:

pα,probe = Tr
(
Ŝ† [Isys ⊗Πα,probe] Ŝ [ρ̂sys ⊗ ρ̂probe]

)
=

= Tr
(
Ŝ† [Isys ⊗Πα,probe] Ŝ [Isys ⊗ ρ̂probe] · ρ̂sys

)
= Trsys

(
Trprobe

(
Ŝ† [Isys ⊗Πα,probe] Ŝ [Isys ⊗ ρ̂probe]

)
· ρ̂sys

)
= Trsys

(
F̂αρ̂sys

)
(7.2.16)

with
F̂α ≡ Trprobe

(
Ŝ† [Isys ⊗Πα,probe] Ŝ [Isys ⊗ ρ̂probe]

)
. (7.2.17)

It is evident that
∑

α F̂α = Isys normalization is satisfied, due to unitarity of Ŝ.
Since after the interaction we have ρ̂′ = Ŝ [ρ̂sys ⊗ ρ̂probe] Ŝ

†, the after performing the projective
measurement on the probe, we have
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ρ̂′′α =

(
Isys ⊗ Π̂α,probe

)
ρ̂′
(
Isys ⊗ Π̂α,probe

)
Tr
[(

Isys ⊗ Π̂α,probe

)
ρ̂′
] =

(
Isys ⊗ Π̂α,probe

)
Ŝ [ρ̂sys ⊗ ρ̂probe] Ŝ

†
(
Isys ⊗ Π̂α,probe

)
Tr
[
Ŝ†
(
Isys ⊗ Π̂α,probe

)
Ŝ [ρ̂sys ⊗ ρ̂probe]

]
=

(
Isys ⊗ Π̂α,probe

)
Ŝ [ρ̂sys ⊗ ρ̂probe] Ŝ

†
(
Isys ⊗ Π̂α,probe

)
Trsys

(
F̂αρ̂sys

) .

(7.2.18)

In this expression of ρ̂′′α, tracing out the probe gives the final state of the system:

ρ̂′′sys,α =
Trprobe

[(
Isys ⊗ Π̂α,probe

)
Ŝ [ρ̂sys ⊗ ρ̂probe] Ŝ

†
(
Isys ⊗ Π̂α,probe

)]
Trsys

(
F̂αρ̂sys

) . (7.2.19)

Suppose that the probe is in a mixed state ρ̂probe =
∑

k pk,probe|ψ(k)
probe⟩⟨ψ

(k)
probe|, then

ρ̂′′sys,α =
∑
k

Trprobe

([√
pk,probe

(
Isys ⊗ Π̂α,probe

)
Ŝ
] [
ρ̂sys ⊗ |ψ(k)

probe⟩⟨ψ
(k)
probe|

] [√
pk,probeŜ

†
(
Isys ⊗ Π̂α,probe

)])
Trsys

(
F̂αρ̂sys

)
=
∑
k

M̂α,k,sysρ̂sysM̂
†
α,k,sys

Trsys

(
F̂αρ̂sys

) .

(7.2.20)

If we take Π̂α,probe = |αprobe⟩⟨αprobe|, then

∑
k

M̂α,k,sysρ̂sysM̂
†
α,k,sys

Trsys

(
F̂αρ̂sys

) =
∑
k

[√
pk,probe⟨αprobe|Ŝ|ψ(k)

probe⟩
]
ρ̂sys

[√
pk,probe⟨ψ(k)

probe|Ŝ†|αprobe⟩
]

Trsys

(
F̂αρ̂sys

)
(7.2.21)

and this way we have
M̂α,k,sys ≡

√
pk,probe⟨αprobe|Ŝ|ψ(k)

probe⟩ (7.2.22)

It is important to stress, that if the probe is initially in the pure state, then only one measurement
operator M̂α,k′,sys survives, while rest vanish due to pk ̸=k′,probe = 0. This way, if the probe is
prepared in the pure state, then the indirect measurement becomes efficient.

Moreover, if one performs an indirect measurement, but skips the readout process, then we rely
on a probabilistic description:

ρ̂′′sys =
∑
α,k

M̂α,k,sysρ̂sysM̂
†
α,k,sys (7.2.23)

which very closely resembles Eqs.(7.1.11,7.1.12). This is what allows us to interpret decoherence as
information transfer from the system to the environment.
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7.3 Markovian Dynamics of Open Quantum System

In last two sections we have introduced and briefly studied a setup, where a quantum system
interacts with the environment, or equivalently with the measuring apparatus. Using considerations
from scattering theory, we deduced that the interaction inevitably leads to decoherence in the
system. In what follows, we will study the same problem, but from more generic point of view.
Instead of using the scattering theory, we will employ much larger class of mappings for the density
matrix, referred to as quantum dynamical semi-groups. Using this approach, we will derive the
Lindblad master equation – equation of motion for the state of the system which interacts with
the environment. Implementing the Markovian and non-Markovian quantum trajectory methods,
we will demonstrate how to unravel many-body Markovian and single-body non-Markovian master
equations, respectively.

Suppose that an isolated system is in some mixed state ρ̂ and the dynamics is governed by some
Hamiltonian Ĥ, then the temporal evolution of ρ̂ is governed by the von Neumann equation [205]:

∂tρ̂ =
1

i

[
Ĥ, ρ̂

]
, ℏ ≡ 1. (7.3.1)

The system under consideration is referred to as closed, since the temporal evolution is unitary and
thus reversible

ρ̂(t) = Û(t)ρ̂(0)Û †(t), Û(t) = eiĤt. (7.3.2)

If we trace out some part of the system, then the dynamics of a subsystem becomes open and
thus non-reversible. One might pose the question from a different point of view and ask what
is the equation of motion for a system that is coupled to the environment. Integrating out the
environmental degrees of freedom leads to

ρ̂sys(t) = Trenv

[
Û(t)ρ̂(0)Û †(t)

]
→ ∂tρ̂sys(t) =

1

i
Trenv

([
Ĥ, ρ̂

])
(7.3.3)

The equation above is exact, but offers barely any practical use, therefore we need some further
assumptions to extract some useful information about the dynamics of the system.

Eq.(7.3.3), respecting causality principle, is non-local in time and in general ρ̂sys(t) depends on
the state of the system at all previous times t′ < t. For a generic case, the evolution of the state
is governed by a generalized master equation. The equation can be specified using linear operators
that takes in ρ̂sys(t

′) state of the system for all t′ < t and maps them to an infinitesimal change of
the state at time t:

ρ̂sys(t+ dt) = ρ̂sys(t) + dtP
[
{ρ̂sys(t

′) : t′ < t}
]
. (7.3.4)

A temporal non-locality of Eq.(7.3.4) can be interpreted as a memory effect – both system and
environment have memory of their past state and of the system-environment interaction. A way to
circumvent this issue is to coarse-grain the time to scales much larger than the characteristic time
of the environment, so that the memory effects become negligible. After a proper coarse-graining,
the master equations becomes local in time and thus the change in ρ̂sys at some time t now solely
depends on the state at that same instant. The time-local equation itself can be represented by a
Liouville super-operator as

∂tρ̂ = Lρ̂. (7.3.5)

Master equations of this type are called Markovian, due to absence of memory of state. Both
Markovian and non-Markovian master equations will be reviewed in details in what follows.

The evolution of a quantum state has to respect certain properties, for the state of the system
to remain physical. One has to double-check if these properties are also respected after the coarse-
graining of the time-scales. Below we will review these properties and, consequently, the imposed



100 Chapter 7. Decoherence in open quantum systems

constraints on the Liouville super-operator.

7.3.1 Quantum Dynamical Semi-Groups

To properly formulate the Markovianity assumption, one can use the quantum dynamical semigroup
approach. We start of with few ideas from the open quantum system theory [198, 205, 207].

A dynamical map is a one parameter (in our case time t) map, that maps the system at time
ρ̂(0) to a state at later time ρ̂(t)

W(t) : ρ̂(0)→ ρ̂(t), (7.3.6)

where, of course, the parameters t is non-negative, corresponding to the forward propagation of
the state. For t = 0, the map corresponds to an identity W(0) ≡ I. For the dynamical map to
be physical, the initial state ρ̂(0) has to be mapped on to a valid state ρ̂(t). This requirement
narrows down the properties of W(t). Firstly, the dynamical map has to be trace preserving, which
guarantees that the state remains normalized after the evolution. Secondly, the transformation
of the mixed states of the systems demand that the map to be convex linear. Thirdly, the map
Wt (ρ0) must be completely positive. Complete positivity ensures that the dynamical map, when
applied to small part of a larger system, does not lead to the subsystem being in an un-physical
(non-positive) state. This is crucial when considering entangled systems where the map might act
only on a subsystem.

The framework of dynamical semi-groups has many mathematical advantages in analyzing a
complex dynamics of the system coupled to environment.

Any dynamical map can be written in Kraus representation, in terms of an operator-sum form

Wt (ρ0) =
N∑
α=1

Kα(t)ρ0K
†
α(t), (7.3.7)

where Kα(t) are the Kraus operators already introduced in Eqs.(7.1.11,7.1.12), with the resolution
of identity,

N∑
α=1

K†
α(t)Kα(t) = I. (7.3.8)

The choice of the Kraus operator is not unique, but the number of Kraus operators N in the theory
is limited by N ≤ d2, where d is the size of the Hilbert space of the system under consideration.

We go a step further and assume that the map Wt forms a dynamical semigroup:

Wt1 (Wt2 (ρ)) =Wt1+t2 (ρ) (7.3.9)

which is assumed to be valid for any non-negative t1,2. This assumptions seems to be valid after the
coarse-graining the time, as during times longer than typical timescales of the environment, all the
memory of the environment is erased. The reason why we are dealing with a semigroup and not a
group is due to the absence of the inverse element.

For a dynamical semigroup, there exists a superoperator L that acts as a generator and satisfies

Wt = eLt. (7.3.10)

This way, Wt(ρ) becomes a formal solution of the Markovian master equation
The dynamics of a closed/isolated quantum systems can be formulated in various ways, two

of them being known as Schrödinger and Heisenberg picture. By far, we have been working using
Schrödinger picture, where the state of the system evolves unitarily in time, while the operators do
not depend on time at all. Now we reformulate our discussion following Heisenberg picture, where
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the state of the system does not evolve in time, but the operators do change. Suppose we have an
operator Ô, then the map

W̃t : Ô0 → Ôt (7.3.11)

is called a dual map (dual with respect to Wt). The maps Wt and W̃t are related to eachother by

Tr
[
ÔWt (ρ̂)

]
= Tr

[
ρ̂W̃t

(
Ô
)]
, (7.3.12)

meaning that the expectation value of ⟨Ô⟩ should be independent of the picture on chooses to work
in. As for Wt, for a dynamical semigroup W̃t = eL̃t, the equation of motion for operator Ô takes
the form

∂tÔ = L̃Ô, (7.3.13)

where L̃ now is a dual Liouville operator. L and dual L̃ operators are related to eachother by

Tr
[
ÔL (ρ̂)

]
= Tr

[
ρ̂L̃
(
Ô
)]
. (7.3.14)

7.3.2 The Lindblad Form Of The Master Equation

Using the notions presented in the previous subsection, we are in shape to derive the general form
of L generator constrained by the dynamical semigroup assumption [205]. Here we additionally
assume that the system of interest has a finite d <∞ Hilbert space H and define the scalar product
of operators acting in H as (Ô, Ô′) = Tr

(
Ô†Ô′

)
, we get a d2 dimensional Hilbert space H′.

In H′ Hilbert space, one can find an orthonormal vector (operator) basis Eβ with β = 1, 2, ..., d2.
Using this basis, any operator Kα can be expanded as

Kα =
d2∑
β=1

(Eβ,Kα)Eβ. (7.3.15)

We are free to choose the basis {Eβ} in a way, that one of the elements is proportional to identity
operator. Suppose that the label for such an operator is β = d2, thus

Ed2 =
1√
d
I, (7.3.16)

meaning that the trace of Ed2 operator is normalized to
√
d, while all the other operators are

traceless.
Using this operator, we can re-write Kraus representation of dynamical map as (dropping t time

label temporarily)

Wt (ρ0) =

N∑
α=1

 d2∑
β=1

(Eβ,Kα)Eβ

 ρ0

 d2∑
β′=1

E†
β′(Eβ′ ,Kα)

∗

 =
d2∑

β,β′=1

cββ′Eβρ0E
†
β′ (7.3.17)

with

cββ′ =
N∑
α=1

(Eβ,Kα)(Eβ′ ,Kα)
∗. (7.3.18)
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Here cββ′ = cββ′(t) are elements of a positive matrix. We can derive the semigroup generator L,
defined as

Lρ = ∂tρ = lim
∆t→0

ρ(t+∆t)− ρ(t)
∆t

= lim
∆t→0

1

∆t
(W∆tρ− ρ) (7.3.19)

Using this expansion derived above, we have

W∆tρ− ρ =
d2∑

β,β′=1

cββ′EβρE
†
β′ − ρ =

= cd2,d2EβρE
†
β′ − ρ+

d2∑
β=1

(
cd2,βEd2ρE

†
β + cβ,d2EβρE

†
d2

)
+

d2−1∑
β,β′=1

cββ′EβρE
†
β′ =

=
cd2,d2 − d

d
ρ+ ρ

 d2∑
β=1

cd2,β√
d
E†
β

+

 d2∑
β=1

cβ,d2√
d
Eβ

 ρ+
d2−1∑
β,β′=1

cββ′EβρE
†
β′ ≡

≡ ∆t

c0ρ+ ρB† +Bρ+

d2−1∑
β,β′=1

αββ′EβρE
†
β′

 .

(7.3.20)

Plugging this expression in Eq.(7.3.19), we get

Lρ = c0ρ+ ρB† +Bρ+
d2−1∑
β,β′=1

αββ′EβρE
†
β′ . (7.3.21)

By splitting B operator into Hermitian and anti-Hermitian parts as

B = G− c0
2
− iH, (7.3.22)

we get

Lρ =
1

i
[H, ρ] + {G, ρ}+

d2−1∑
β,β′=1

αββ′EβρE
†
β′ . (7.3.23)

Since the dynamical map is trace preserving Tr (Lρ) = 0, this gives

Tr

2G+
d2−1∑
β,β′=1

αββ′E†
β′Eβ

 ρ

 = 0 (7.3.24)

which must be valid for all ρ and thus we see that operator G and matrix α are related to eachother
as

G = −1

2

d2−1∑
β,β′=1

αββ′E†
β′Eβ. (7.3.25)

This relation yields

Lρ =
1

i
[H, ρ] +

d2−1∑
β,β′=1

αββ′

(
EβρE

†
β′ −

1

2
{E†

β′Eβ, ρ}
)
. (7.3.26)
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To transform Eq.(7.3.26) to a standard Lindblad form, we need to diagonalize positive matrix α.
Suppose that one finds such unitary matrix U , that yields

UαU † = diag(γ1, γ2, .., γd2−1), (7.3.27)

then by transforming the basis operators as

Ej =
d2−1∑
k=1

LkUkj (7.3.28)

we get

Lρ =
1

i
[H, ρ] +

N∑
β=1

γβ

(
LβρL

†
β −

1

2
{L†

βLβ, ρ}
)
, N ≤ d2 − 1. (7.3.29)

This way we see, that the temporal evolution of the density matrix is governed by a hermitian
operator H and set of jump operators {Lβ}. It should be noted that H appearing in the unitary
part of the Lindblad equation can be different from the Hamiltonian of the isolated system. The
coefficients γβ associated to each jump operator are positive γβ and are frequently referred to as
the decay rates, while indices β are known as the decay channels. The fact that the decay rates are
positive is tightly connected to the fact that the dynamics of the system is assumed to be Markovian.
As we will see later, for negative decay rates the dynamics becomes effectively non-Markovian.

7.4 Quantum Trajectories

Extracting valuable information from the master equation is not an easy task. One way to tackle
this complication is based on the so-called quantum trajectory method. Based on this approach,
one imagines the evolution of the system as a sequence of processes when quantum jumps do
or do not occur. These processes are frequently referred to as click and no-click events and the
sequence of them is referred to as a quantum trajectory. Every distinct quantum trajectory has
a corresponding probability of occurring. By rewriting the evolution of the state of the system in
terms of these probabilities, one can unravel the master equation and reformulate it in a stochastic
form. Apart from the numerical advantage of simulating stochastic equation of motion, quantum
trajectory approach also gives a deep insight regarding the physical processes. Below we will review
the quantum trajectory approach in the context of Markovian dynamics [198, 205, 207].

We can split the Liouville superoperator L into two parts L0 and L∗, then the formal solutions
of the master equations can be written as

Wt = etL = et(L0+L∗) =
∞∑
n=0

tn

n!
(L0 + L∗)n

=

∞∑
n=0

∞∑
{kn=0}

tn+
∑
j kj

(n+
∑

j kj)!
Lkn0 L∗L

kn−1

0 L∗ × ...× L∗Lk10 L∗Lk00
(7.4.1)

To obtain the second line, we used the binomial formula for non-commuting operators [209]. One
can use the following integral identity

tn+
∑
j kj

(n+
∑

j kj)!
=

∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1

(t− tn)kn
kn!

× (tn − tn−1)
kn−1

kn−1!
× ...× tk01

k0!
(7.4.2)
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and further simplify Eq.(7.4.1) as

Wt =
∞∑
n=0

∞∑
{kn=0}

∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1

(t− tn)knLkn0 L∗
kn!

× (tn − tn−1)
kn−1Lkn−1

0 L∗
kn−1!

× ...× tk01 Lk00
k0!

= etL0 +

∞∑
n=1

∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1e

(t−tn)L0L∗e(tn−tn−1)L0L∗...× L∗et1L0 .

(7.4.3)

This way, we obtain a Dyson-like expansion of an evolution of the system [70]. One can think of L0
as an unperturbed evolution of the state, while L∗ corresponds to the perturbations. This way, the
evolution of the state from time 0 up to time t can be imagined as unperturbed steps of evolution
interspersed with perturbations L∗.

Going back to the Lindblad form of the master equation Eq.(7.3.29), one introduce a set of new
super-operators, defined as

Lβρ = γβLβρL
†
β (7.4.4)

and supplement it with a non-Hermitian operator H̃:

H̃ = H− i

2

N∑
β=1

γβL
†
βLβ. (7.4.5)

Using these two new operators, Eq.(7.3.29) can be expressed as

Lρ =
1

i

(
H̃ρ− ρH̃†)

+

N∑
β=1

γβLβρL
†
β ≡ L0ρ+

N∑
β=1

Lβρ. (7.4.6)

Here we have introduced new two types of operators, L0 and {Lβ}. Regardless the fact that none
of these super-operators generate a dynamical semi-group, they still are useful constructions to in-
terpret non-unitary evolution of quantum systems. The operators {Lβ} describe an instantaneous
quantum jumps in the system, that occur randomly in time with corresponding probability γβ . Sup-
pose that at time tj the system undergoes a quantum jump along βj channel, then some realization
of the evolution of the system for time t, containing n quantum jumps can be labeled as

T tn = {t1, β1|t2, β2|...|tn, βn}. (7.4.7)

We will refer to T tn as record of evolution. This way, a generic non-unitary evolution Wt can be
expressed as free evolution etL0 renormalized by all possible superoperators corresponding to T tn
record

Wt = etL0 +
∞∑
n=1

∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1
∑
T tn

MT tn
,

MT tn
≡ e(t−tn)L0Lβne(tn−tn−1)L0Lβn−1 ...× Lβ0et1L0 .

(7.4.8)

In this expression, etL0 term contains only a single T t0 record, where no quantum jumps have
occurred.
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Since H̃ has a negative complex part Im
(
H̃
)

= −1
2

∑N
β=1 γβL

†
βLβ , e

tL0 renders to be trace
decreasing:

Tr
[
etL0ρ

]
= Tr

[
e−t

∑
β γβL

†
βLβρ

]
→ d

dt
Tr
[
etL0ρ

]
= −

N∑
β=1

Tr
[
γβL

†
βLβe

tL0ρ
]
=

= −
N∑
β=1

Tr
[
Lβ
(
etL0ρ

)]
< 0.

(7.4.9)

Since L0 super-operator is related to an evolution with no-jump record, it is natural to inter-
pret Tr

[
etL0ρ

]
as the probability P(T t0) of realisation of such a record. Due to this, the non-

Hermitian operator H̃ is frequently referred to as as a no-click Hamiltonian. Moreover, the fact that
d
dtTr

[
etL0ρ

]
< 0 means that the probability of quantum jump occurring is increased after every

subsequent time step. Similarly, Tr
[
MT tn

ρ
]

gives the probability P(T tn) observing T tn record of
quantum jumps after evolving the system for time t.

Using the record operators MT tn
and the corresponding probabilities of realizing them P(T tn),

we can define normalized the so-called quantum trajectory operators

C(ρ|T tn) ≡
MT tn

ρ

P(T tn)
. (7.4.10)

Using this quantum trajectory formalism, one can formally write down the exact solution of the
Lindblad equations

ρ(t) = P(T t0)C(ρ|T t0) +
∞∑
n=1

∫ t

0
dtn

∫ tn

0
dtn−1...

∫ t2

0
dt1

∑
{T tn}

P(T tn)C(ρ|T tn). (7.4.11)

This stochastic unraveling of the master equations once shows how the evolution of the system
consists of multiple quantum trajectories, each occurring with corresponding probability.

Moreover, since we have

etL0ρ = e−itH̃ρeitH̃
†
, Lβρ = γβLβρL

†
β (7.4.12)

one can re-write Eq.(7.4.10) as

C(ρ|T tn) =
MT tn

ρM †
T tn

Tr
(
M †
T tn
MT tn

ρ
) (7.4.13)

with
MT tn

= e−i(t−tn)H̃Lβn × e−i(tn−tn−1)H̃Lβn−1 × ...× e−it1H̃Lβ1 . (7.4.14)

A close resemblance between Eq.(7.4.13) and Eq.(7.2.9) again demonstrates that the dynamics of
an open quantum system generated by L Liouville superoperator can be viewed as an effective
continuous monitoring of the system by the environment.

7.5 Non-Markovian Dynamics of Open Quantum System

As we have derived in Sec.(7.3), by introducing appropriate set of jump operators {Lβ}, supple-
mented with γβ > 0 decay rates, one may fully describe the temporal evolution of a system that
is coupled to the bath with a master equation Eq.(7.3.29). The validity of this approach is based
on the assumption that the temporal evolution of the state is governed by the dynamical map and
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thus the Eq.(7.3.7) Kraus decomposition of the map holds. One can go a step further and show
that even by neglecting the Markov approximation, the density matrix of the system interacting
with the environment obeys a time-local master equation if the dynamical map is invertible and
differentiable [210]. To demonstrate this, we take the time derivative of the Kraus representation
of the dynamical map Eq.(7.3.7), which yield

dρt
dt

=
∑
α

(
dKα(t)

dt
ρ0K

†
α(t) +Kα(t)ρ0

dK†
α(t)

dt

)
. (7.5.1)

If the map is invertible, then the initial density matrix ρ0 can always be expressed as

ρ0 =
∑
m

Fm(t)ρtQm(t). (7.5.2)

Plugging this expression back into Eq.(7.5.1) gives

dρt
dt

=
∑
α,m

(
dKα(t)

dt
Fm(t)ρtQm(t)K

†
α(t) +Kα(t)Fm(t)ρtQm(t)

dK†
α(t)

dt

)
=

=
∑
α,m

(
A1,α,m(t)ρtB

†
1,α,m(t) +A2,α,m(t)ρtB

†
2,α,m(t)

)
,

(7.5.3)

where k ≡ {σ, α,m}

A1,α,m(t) =
dKα(t)

dt
Fm(t), A2,α,m(t) = Kα(t)Fm(t),

B†
1,α,m(t) = Qm(t)K

†
α(t), B†

2,α,m(t) = Qm(t)
dK†

α(t)

dt
.

(7.5.4)

By introducing a shorthand notation k for the collective set of indices {1, α,m} and {2, α,m}, we
get

dρt
dt

=
∑
k

Ak(t)ρtB
†
k(t). (7.5.5)

Just like in Eq.(7.3.15,7.3.16), we can introduce a complete basis of operators and expand Ak and
Bk as

Ak(t) =
∑
i

aik(t)Gi, Bk(t) =
∑
i

bik(t)Gi, (7.5.6)

which leads to a similar construction as we got with a Markov approximation Eq.(7.3.20). Repeating
identical the calculations as in Sec.(7.3), finally yields

L(t)ρ =
1

i
[H(t), ρ] +

N∑
β=1

γβ(t)

(
Lβ(t)ρL

†
β(t)−

1

2
{L†

β(t)Lβ(t), ρ}
)
, (7.5.7)

which is a non-Markovian generalization of Eq.(7.3.29). Here, complete positivity of the map is
guaranteed only if γβ(t) ≥ 0 for all β and any t. This means, that the overall dynamics is Markovian
if all of the decay rates are non-negative for all times [188, 211] and it becomes Non-Markovian if
at least one of the decay rate becomes negative during some time interval ∆t. The reason why the
dynamics becomes non-Markovian for negative decay rates will be examined in Sec.(7.7).

In order to study the dynamics of the system where the decay rates can become negative, one
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has to unravel the corresponding master equation as it was done in Eq.(7.4.11)– i.e. follow the
evolution of the state along a single trajectory corresponding to a particular realization of the
random quantum jumps. A standard technique is the Monte Carlo wave function (MCWF) method
[196, 197]. This method can be summarized in the following way [212]:

1. Extract the probability of performing a jump along a channel s:

ps,+ = γs(t)δt⟨ψ(t)|L†
sLs|ψ(t)⟩. (7.5.8)

2. Generate a random number 0 ≥ p ≥ 1 and compare it with ps,+. The outcome decides whether
the jump happens or no;

3. If p < ps,+, then a quantum jump occurs and the state of the system gets updated as

|ψ⟩ → |ψ′⟩ = Ls|ψ⟩
||Ls|ψ⟩||

; (7.5.9)

4. If p > ps,+, then a quantum jump does not occur and the system evolves according to a
corresponding no-click Hamiltonian Eq.(7.4.5).

5. Inject the resulting state back to step 1 and repeat to obtain a quantum trajectory.

6. Take the average these wave functions at any time to extract the density matrix of the system.

We see that adapting this recipe to non-Markovian systems presents some problems. An evident
issue is that for the times when γs(t) < 0 the jump probability would become negative, which has
no physical meaning.

NJ

Not RJ

RJ

Figure 7.1: (a) Scheme of an entangled spin pair under-
going a normal jump (NJ) through the jump operator σ−

2 .
(b) Trying to implement the reverse jump (RJ) through σ+

2

re-excites the second spin, but does not take the spins into
the initial entangled state, and the system stays separable.
(c) Instead, in order to restore the original entanglement
one has to apply σ+

1 + σ+
2 even though the NJ knew noth-

ing about the presence of spin 1.

Another issue is that the back-flow of in-
formation from the environment to the system
restores not only the population of the excited
states, but also coherences, i.e. the off-diagonal
elements in the density matrix, as can be seen
by solving the master equation [200, 201]. This
cannot be implemented through an “opposite”
jump operator that connects two states in the
opposite direction of the corresponding normal
jump operator. Fig.(7.1) shows the simple ex-
ample of a spin pair that loses its entanglement
upon the application of a normal jump operator;
applying the inverse operator does not result in
retrieving the lost entanglement. This is true
even for single body systems: take for example
a two level system with a = σ−; one may be
tempted to use σ+ to reverse the effect of the
quantum jump, but it can be seen that the ap-
plication of σ+ leads to an increase of the pop-
ulation in the excited state, which still results
in a decay of coherences. Restoring quantum
coherence is an operation that requires memory
of the past evolution of the system, a property
that a simple implementation in terms of Kraus operators does not have.
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7.6 Non-Markovian quantum jumps of single body systems

NJ

RJ

NJ

RJ

No evolution

Unitary evolution

Figure 7.2: (a) Simple example of the dependence of
the reverse jump (RJ) operator on the time at which is
performed. A system starts in an entangled Bell pair state
and normal jumps (NJ) into the separable state through
σ−
2 . (a) If the RJ occurs immediately, the original state

is restored through σ+
1 + σ+

2 . (b) If the system evolves
from time t to t′ through the unitary operator U = σx1σ

x
2 ,

the separable state is now flipped and the RJ operator that
restores the original state is now σ−

1 +σ−
2 = U(σ+

1 +σ+
2 )U†.

In this section we will review in detail what is
known about one- (or few-) body systems. This
is instructive to highlight the conceptual differ-
ences with respect to Markovian dynamics, as
well as to identify the major technical challenges
that we will address in the many-body case be-
low.

A technique to unravel non-Markovian dy-
namics has been proposed in Ref. [200, 201], in
the form of the non-Markovian quantum jumps
(NMQJ) method. This prescription allows to
describe each interaction with the environment
(either Markovian or non-Markovian) in terms
of a quantum jump process, and gives back the
correct starting master Eq.(7.5.7) when aver-
aged over the stochastic ensemble of quantum
trajectories. For simplicity, we can assume that
the jump operators are independent of time.

The main feature of the NMQJ method is
the introduction of two different types of quan-
tum jumps in the stochastic evolution of the
state: a "normal jump" (NJ) occurring during
the Markovian regions of the dynamics (γ(t) ≥
0), and a "reverse" quantum jump (RJ) acting
during the non-Markovian regions (γ(t) < 0).
A reverse jump essentially brings the quantum
state back to what it was prior to the last
Markovian normal jump, effectively cancelling

out its effects on the system. More formally, this is described by stating explicitly the probability
of performing a jump (either normal or reverse) in the Markovian and non-Markovian regions, and
the corresponding initial and final quantum state before and after the jump, similar to Eq.(7.5.9).

Similarly to the MCWF method, the evolution of the state |ψ(t)⟩ along a trajectory is determin-
istic, until a random quantum jump occurs. We discretize the evolution of the system, so that the
probability that more than one jump occurs within each time interval δt is negligible, and assume
the jumps to occur instantaneously. The average over the stochastic ensemble gives back the den-
sity matrix: ρ(t) =

∑
{|ψ⟩}

N|ψ⟩⟨ψ|(t)

N |ψ(t)⟩ ⟨ψ(t)|, where N|ψ⟩⟨ψ|(t) is the population of the trajectory

|ψ(t)⟩ and N is the total population of the states in the ensemble – i.e. the ratio N|ψ⟩⟨ψ|(t)

N is the
stochastic probability of realizing the trajectory |ψ(t)⟩.

Let us now consider a time t for which a particular channel s has a positive rate γs(t) > 0. The
system may perform a normal jump from a state |ψ⟩ to a state |ψ′⟩ with probability ps,+, according
to Eqs.(7.5.8,7.5.9).
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During a non-Markovian region a RJ may occur cancelling out the effect of the last normal
jump:

|ψ′(t)⟩ ← |ψ(t)⟩ = Ls|ψ′(t)⟩
||Ls|ψ′(t)⟩|| ; (7.6.1)

ps,−|ψ⟩→|ψ′⟩ =
N ′(t)

N(t)
|γs(t)|δt⟨ψ′(t)|L†

sLs|ψ′(t)⟩. (7.6.2)

The ← means that the system performs the reverse jump starting from the initial state |ψ(t)⟩,
which is the result of applying the NJ operator Ls to the final state |ψ′(t)⟩ after the RJ. This
corresponds to effectively erasing the last NJ, and the initial states eligible to reverse jump are
the ones that have previously performed (at least) one normal jump. This is also reflected in the
expectation value of L†

sLs, which expresses the probability that a certain state is eligible to jump,
and that for a reverse jump is calculated on the target state but using the normal jump operators.

The process in Eq.(7.6.1) cannot be described using a Kraus operator, but is formally obtained
by applying the (state dependent) jump operator |ψ′(t)⟩ ⟨ψ(t)|. This is a fundamental difference
with the MCWF method and a consequence of the memory of the non-Markovian dynamics: the
operator corresponding to a RJ depends on the current quantum state and on the target state, see
Fig.(7.2).

Another consequence is the presence of the ratio N ′(t)/N(t) in the jump probability: it corre-
sponds to the ratio between the probability of being in the target state and the probability of being
in the initial state. This ratio ensures that the evolution averaged over trajectories is described by
the master equation Eq.(7.5.7).

In Refs. [200, 201] the number of inequivalent trajectories – in the sense that they correspond
to different quantum states (we explain it more in detail later on) – is finite and very small, due
to the single body nature of the considered systems. This makes a numerical simulation of the
system dynamics viable, since one only has to follow those few trajectories and update the ensemble
statistics based on the type of quantum jump performed by the system.

The situation is very different for a many-body system: if the jump operators take the system
into states that are not eigenstates of the unitary evolution given by H, then the time at which a
jump is performed becomes important, resulting in different trajectories. The number of trajectories
is then very large, being exponential in the time of the evolution. For example, this occurs when
the many-body Hamiltonian contains terms that counteract the action of the jump operators, since
at any time the system may or may not decay, and after a decay it may be excited again by the
unitary evolution. A very simple example is a two spin-1/2 system with jump operators σ−1/2 and
unitary evolution operator σx1σx2 : the steady state for the jump operator has both spins down in the
z direction; this is not an eigenstate of the Hamiltonian, which can move back the spins to be both
up in the z direction, thus effectively counteracting the action of the jump operators, see Fig.(7.2).

As noted in Ref. [213, 201], the dynamics corresponding to this unraveling [200, 201] do not have
an immediate physical representation in terms of a measurement protocol. For example, probing
the bath to check if a jump occurred may destroy the information lost by the system and stored in
the bath, and prevent the possibility of successively restoring such information. Nevertheless, this
method provides key qualitative insights on non-Markovian dynamics, and rigorously illustrates
how information back-flow from the environment to the system can be captured utilizing pure
state dynamics only. Moreover we can still treat the trajectories as well defined mathematical
objects, each with a quantum state that solely determines the physical properties, and a stochastic
probability of realizing that trajectory. In Sec.(10.2), we will finally show how, under certain
conditions, the inequivalent trajectories we discuss do describe the evolution of a realistic system
(albeit corresponding to a master equation that differs from the one we start from).
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From these considerations, it is evident that the application of the NMQJ method as described in
Ref. [200, 201] to many-body systems is not viable. One needs a new formulation that incorporates
the conceptual understanding gathered from single body problems with the non-trivial many-body
dynamics, in a mathematically coherent manner. This is question will be addressed in Chap.(10).

7.7 Trace-distance as a measure of non-Markovianity

In previous sections we argued that non-Markovian behavior in quantum systems can be thought as
the restoration of the lost coherences in the past dynamics, being equivalent to the memory effect
[200]. In this chapter we will review how to quantify non-Markovianity in a quantum system. To
keep the measure of non-Markovianity as generic as possible, one may constraint the map of the
density matrix to be physical and work in the language of dynamical semi-group. This way, it is
possible to avoid any further assumptions regarding the master equation and the corresponding
structure of evolution [201].

Suppose that we have two quantum systems A and B that are isolated from eachother. These
systems can be initiated to be in some states ρA(0) and ρB(0). These states can be chosen to
be arbitrary and in general different from eachother ρA(0) ̸= ρB(0). Within this setup, a crucial
difference between Markovian and non-Markovian processes is that after some time t, in the former
case the distinguishability between ρA(t) and ρB(t) is reduced, while for the latter it can be en-
hanced. To understand this, one can interpret Markovianity as a non-reversible loss of information
from the system to the environment. This, in turn, leads to states ρA(0) and ρB(0) to flow towards
a mutually non-distinguishable steady state. Opposite to this, during non-Markovian dynamics,
the information flows back from the environment to the system which leads to ρA(t) and ρB(t)
states being distinguishable. The fact that during non-Markovian dynamics the system retains the
memory of the past, renders the non-Markovian evolution to violate the divisibility Eq.(7.3.9).

To quantify the distinguishability between two states, we construct the so-called trace-distance
between two states, a metric in the space of states:

dρ(ρA, ρB) =
1

2
Tr (|ρA − ρB|) , |ρ| ≡

√
ρ†ρ. (7.7.1)

An important feature of such construction is that all completely positive and trace-preserving (CPT)
maps Wt = eLt, such as Eq.(7.3.29) with positive decay rates, are contractions for this metric

dρ(ρA, ρB) ≥ dρ(WtρA,WtρB) (7.7.2)

meaning that any CPT dynamical map can only reduce or at most leave the distinguishability
between ρA and ρB intact.

We can generalize this statement for a broader class of maps. Suppose that we are dealing with
a quantum map described by a time-dependent but time-local master equation Eq.(7.5.7). For time
being, we assume that all decay rates γs(t) are always positive. Even though this class of quantum
processes does not correspond to dynamical semi-group, γs(t) > 0 constraint leads the dynamics to
be time-dependent Markovian. Using the time-ordering operator T , we can define a two parameter
W(t2, t1) CPT map as

W(t2, t1) = T
(
e
∫ t2
t1
dτL(τ)

)
. (7.7.3)

W(t2, t1) dynamical map has the property of divisibility, in the sense that, for instance,W(t2+t1, 0)
dynamical map can be decomposed as

W(t2 + t1, 0) =W(t2 + t1, t1)W(t1, 0). (7.7.4)
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Since in Eq.(7.7.4), all three maps are CPT, we can say that

dρ(ρA(t), ρB(t)) ≥ dρ (ρA(t+ dt), ρB(t+ dt)) . (7.7.5)

It is then natural to distinguish Markovian from non-Markovian dynamics based on whether dρ
always decreases or may also increase, and to quantify the degree of non-Markovianity of a map
Wt with how much the distance between two density matrices increases over time. Following Ref.
[192], we define the time derivative σW at time t of the trace distance for a given map, and for two
initial density matrices ρA(0) and ρB(0), as

σW(t, ρA,B(0)) =
d

dt
dρ(WtρA(0),WtρB(0)) (7.7.6)

For a Markovian map σL is always negative, while it may become positive for finite time intervals
for a non-Markovian map.

The non-Markovianity measure N (W) is then defined as the maximum over all possible initial
conditions of the integral of σW over the times where it is positive

N (W) = max
ρA,B(0)

∫
σW>0

dtσW(t, ρA,B(0)). (7.7.7)

A simple example to demonstrate non-Markovian dynamics is a two-level system interacting
with cavity modes [192, 207]. The master equation that describes the dynamics of the density
matrix of the system is

ρ̇ = L(t)ρ = γ(t)

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
, H(t) = 0 (7.7.8)

where we only have a single decay channel with L = σ− time-independent jump operator, with a
time-dependent decay rate γ(t). Suppose at time t = 0 we initiate two copies of the system in states
ρA = |0⟩⟨0| and ρB = |0⟩⟨0|. The trace-distance between these two states is

dρ(0) =
1

2
Tr
(√
|0⟩⟨0|+ |1⟩⟨1|

)
= 1 (7.7.9)

After dt time of evolution, the states ρA(t) and ρB(t) become

ρA,B(t+ dt) = ρA,B(t) + γt+dtdt

(
σ−ρA,B(t)σ

+ − 1

2

[
σ+σ−ρA,B(t) + ρA,B(t)σ

+σ−
])

(7.7.10)

Starting at t = 0 gives

ρA(dt) = |0⟩⟨0|
ρB(dt) = |0⟩⟨0| − (1− γdtdt) (|0⟩⟨0| − |1⟩⟨1|)

≈ |0⟩⟨0| − e−γdtdt (|0⟩⟨0| − |1⟩⟨1|)
(7.7.11)

The further evolution of ρA state is trivial and it always remain in the ground state. The evolution
of ρB for the next time-step dt is

ρB(2dt) = ρB(dt) + γ2dtdt

(
σ−ρB(dt)σ

+ − 1

2

[
σ+σ−ρB(dt) + ρB(dt)σ

+σ−
])

= |0⟩⟨0| − e−(γdt+γ2dt)dt (|0⟩⟨0| − |1⟩⟨1|)
(7.7.12)
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It is easy to check that this trend remains to be valid for any ndt time-step:

ρB(ndt) = |0⟩⟨0| − e−
∑n
j=1 γjdtdt (|0⟩⟨0| − |1⟩⟨1|) (7.7.13)

By taking dt→ 0 and n→∞, so that ndt = t, we get

ρA(t) = |0⟩⟨0|,
ρB(t) = |0⟩⟨0| − e−G(t) (|0⟩⟨0| − |1⟩⟨1|) ;

G(t) =

∫ t

0
dτγ(τ).

(7.7.14)

Using this result, we can calculate the exact time dependence of the trace distance

dρ(t) = e−G(t) (7.7.15)

and thus the measure of non-Markovianity Eq.(7.7.6) for the two-level system becomes

σW(t, ρA,B(0)) = −γ(t)e−G(t) (7.7.16)

which starts to increase only if γ(t) becomes negative.
As we already saw in Sec.(7.6), during times when the decay rates become negative, the lost

coherence of the system are effectively recovered due to the information back-flow. This effect, in
certain cases, can violate the complete positivity of the dynamical map Wt. However, a necessary
and sufficient condition for Wt map to be regarded as completely positive is G(t) ≥ 0 for all times.
In some realistic physical setups this condition can be satisfied, for example we can assume the
decay rate γ(t) originates from a bath whose spectral density is described by a Lorentzian centered
around ω and with bandwidth Γ. Within the time-convolutionless approximation [214, 201], the
decay rate becomes

γ(t) = γ0

[
Γ

ω
+ e−Γt

(
sin(ωt)− Γ

ω
cos(ωt)

)]
. (7.7.17)

For such a decay rate, γ(t) can become negative for certain times, while G(t) > 0 condition is always
satisfied.

It should be noted that one is not bound to work exclusively with L1 trace distance∼ Tr (|ρA − ρB|).
Any generalization from L1 to Ld d−trace distance can be used to characterize non-Markovianity.
For instance, in Sec.(11.3) we will demonstrate that L2 square trace distance defined as

d2(ρ1, ρ2) =
√

Tr|ρ1 − ρ2|2 (7.7.18)

has advantage over dρ, when considering non-Markovian dynamics in fermionic Gaussian states
[215].

Apart from the trace distance, there are other measures of non-Markovianity [216, 217, 218].
One of them, see Ref.[189], is taking the advantage of the dynamics of quantum correlations during
trace-preserving completely-positive (CP) map.

Suppose that we prepare the system in a way, that it is maximally entangled with an ancilla.
We assume that the system undergoes some undetermined dynamics, while the ancilla remains
isolated from the environmental effects. It is known that entanglement can not increase by local
trace-preserving CP maps [219]. Since such maps admit the composition rule Eqs.(7.3.9,7.7.4), then
decay of the entanglement of the system with ancilla should monotonically decrease. This condition
can break down if the dynamics of the system is non-Markovian, since environmental correlations can
enhance and suppress the entanglement. This way, a simple way to determine whether the unknown
dynamics of the system is Markovian or non-Markovian is to check if the monotonicity condition is
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satisfied during some interval of time t ∈ [tmin, tmax]. This way, if M(ρsys.+anc.(t)) ≡ M(t) is some
measure of entanglement between the system and the ancilla at some time t, then one can define
an alternative measure of non-Markovianity as

IM =

∫ tmax

tmin

dt

∣∣∣∣dMdt
∣∣∣∣− (M(tmin)−M(tmax)) . (7.7.19)

If the dynamics within the system is Markovian and thus dM
dt < 0 at all times, then IM = 0 by

construction. On the other hand, IM becomes non-zero only if the dynamics is non-Markovian.
Even though some non-Markovian evolution still may remain undetected, using IM can still

be advantageous when one has to study infinite-dimensional systems. For other measures of non-
Markovianity, one might need to know precise form of the dynamics of the system, while IM does
not require such knowledge.
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Chapter 8

Measures of Quantum Entanglement

As mentioned in Sec.(7), the principle of superposition allows systems to be in exotic states, such as
entangled states. In past decades, the understanding of entanglement has strongly developed and
helped to establish a whole separate line of research known as the quantum information theory [204,
212, 220]. As of today, experimental progress lead us to the possibility to create, manipulate and
measure various properties of entangled states of many-body systems. Moreover, the possibility to
precisely control such correlations at will has boosted the research in quantum technologies, having
the goal of developing quantum computers to perform computational tasks orders of magnitude
more efficiently than their classical analogues.

Having the fundamental and technological importance of the quantum entanglement in mind,
one should also be able to mathematically quantify it. Below we will list so-called postulates for
axiomatic entanglement measures [212, 221, 219]. Any measure of entanglement M(ρ) can be
regarded as a good measure, if it satisfies the following conditions

1. A bipartite measure M(ρ) maps the density matrix onto positive real numbers: M(ρ) ∈ R+.

2. If a state ρ is separable, i.e. not entangled, then M(ρ) = 0.

3. The system is in a pure state ρ = |ψ⟩⟨ψ|, the M is equivalent to the entanglement entropy
E (|ψ⟩⟨ψ|) = (S ◦ TrB) (|ψ⟩⟨ψ|)

Additionally to this, E is said to be an entanglement monotone if

E(ρ) ≥
∑
α

pαE

 MαρM
†
α

Tr
[
MαρM

†
α

]
 , pα = Tr

[
MαρM

†
α

]
where Mα is the Kraus operators of the so called Local Operations and Classical Communication.

Using these definitions, below we will present few of well known entanglement measures and
discuss their properties in the context of CFT.

8.1 Entanglement Entropy and Mutual Information

One of many witnesses of quantum entanglement is the so called Entanglement entropy. Entan-
glement entropy is a valid witness of bipartite entanglement only when the whole system is in
the pure state. For time being, one can completely forget about the environment and discuss the
entanglement entropy in the context of an isolated system.

Suppose that an isolated system is in some pure quantum state ρ = |ψ⟩⟨ψ|. If one further
partitions the system into A and B subsystems, then the information about a bipartite entanglement
is fully included in the spectrum of the reduced density matrix

ρA = TrB (ρ) . (8.1.1)
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By studying the scaling properties of the the Rényi entropies

S
(n)
A =

1

1− n ln (TrA (ρnA)) (8.1.2)

one can recover the properties entanglement spectrum. The index n is the so-called Rényi index
and for n→ 1 one obtains the von Neumann entropy

SA = lim
n→1

S
(n)
A = −TrA (ρA ln ρA) . (8.1.3)
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Figure 8.1: A) The scaling of von Neumann entropy for QIM Eq.(1.19) at criticality
with periodic boundary conditions and L = 128 lattice sites. The scaling is with respect
to the bipartition size lA. By fitting the data to Eq.(8.1.5), the extracted central charge is
c ≈ 0.527, in agreement with an exact result c = 1

2
. B) The scaling of von Neumann entropy

for XX model (i.e. Eq.(2.7) with ∆ = 0) with periodic boundary conditions. Here we instead
fix the ratio lA = L/2 and analyze the scaling of entanglement entropy at half-partitioning,
i.e. SL/2. Again, by fitting the data to Eq.(8.1.5), the extracted central charge is c ≈ 1.008,

in a perfect agreement with an exact result c = 1.

For special cases, the Rényi entropies can accommodate universal features: suppose we are
dealing with a 1+1 dimensional CFT theory at zero temperature. Using the replica trick, one can
show that the nth bipartite Rényi entropy will scale as

S
(n)
A =

c

6

n+ 1

n
log

(
lA
a

)
+ const., (8.1.4)

where lA is the linear size of the bipartition A, a is some microscopic length scale of the model,
while c is the central charge of the underlying CFT [99]. Eq.(8.1.4) can be further generalized for
the systems with periodic boundary conditions. For n = 1 case, the entanglement entropy for the
systems periodic boundary conditions scales as

SA =
c

3
log

(
L

πa
sin

(
πlA
L

))
+ const., (8.1.5)

where L is the linear size of whole system. Eq.(8.1.4,8.1.5) are frequently used as a method to
check whether the state of the system has some underlying CFT characteristics and to extract
corresponding central charge of the theory.

Another quantifier of quantum correlations, closely related to the entanglement entropy, is the so-
called mutual information. Similarly to the entanglement entropy, the bipartite mutual information
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IA,B is a measure of correlations between two sub-systems A and B. It is defined as

IA,B = SA + SB − SA∪B. (8.1.6)

In some cases mutual information turns out to be more useful measure of correlations relative to
the entanglement entropy, since it is less prone to finite size effects.

Mutual information hosts few important features that is useful to characterize the system in
and out of criticality. Suppose that a system of size L with periodic boundary conditions is tri-
partitioned into A, B and C (to be integrated out). The linear sizes of A and B are chosen to be
lA = lB = L/8 and with rAB = L/2 distance between the centers of them. If the system out of the
critical point, then the long-range correlations are absent and thus the mutual information scales
as

IA,B(L) ∼ e−L/ξ, (8.1.7)

where ξ is the correlation length of the system. As one approaches the critical point, the diverging
correlation length enhances the correlations between disconnected segments A and B and thus IA,B
is enhanced.

Just like the entanglement entropy, at conformally invariant critical point the mutual information
shows universal scaling properties [140]. In conformal field theory, it is known that any 4-point
correlation function of primary or quasi-primary fields [27] depend on a single number η, referred
to as the cross-ratio. From the point of view of the mutual information, these operators are known
to be the boundary condition changing operators [99, 222] and the 4 points under question are the
left and right boundary coordinates of A (labeled as x1 and x2) and B (labeled as x3 and x4). The
cross ratio for these coordinates are

η =
x12x34
x13x24

, with xij =
L

π
sin
(π
L
|xi − xj |

)
. (8.1.8)

As already mentioned, at the critical point, the bipartite mutual information only depends on η
and for small enough η ≪ 1 we have

Iη ∼ η∆, (8.1.9)

were ∆ is some scaling exponent. To understand the origin of ∆, we analyze lA = lB = 1 case with
1≪ rAB ≪ L. In this case η ∼ r−2

AB and therefore

Iη ∼ r−2∆
AB . (8.1.10)

Since the lA(B) = 1, it means that the boundaries of A (B) are very close to each other. This
allows us to use the operator product expansion introduced in Sec.(1.5) and transform the 4-point
correlation function into the sum of 2-point correlation functions between operators that are present
in the OPE. The dominant term, with the lowest scaling dimension ∆, is the one which appears as
the leading contribution in Eq.(8.1.10).

8.2 Logarithmic Negativity

As we have already mentioned, entanglement entropy is not a valid witness of entanglement for
mixed states. To properly characterize the entanglement content of the systems in mixed states,
one switches to the so-called entanglement negativity [223, 224, 225, 226]. To separate classical and
quantum correlations from eachother, a possible way is to implement the partial transpose of the
density matrix ρTA , where partial transposition is defined as

⟨nm|ρTA |n′m′⟩ = ⟨nm′|ρA|n′m⟩. (8.2.1)
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Here {n} and {m} are the the basis states of A and B parts of the whole system. Using the partial
transpose of the density matrix, one defines the so-called logarithmic negativity as

E = log

(√
ρTA(ρTA)†

)
. (8.2.2)

As for the the Rényi entropies, the possible scaling properties of the logarithmic negativity is strongly
narrowed down by the symmetries when one considers conformal field theories. As an example, for
two disjoint intervals A and B embedded in a infinite system with open boundary conditions (see
Fig.(8.2)), the scaling of the logarithmic negativity depends

A B

Figure 8.2

E =
c

2
ln(lA) + const. (8.2.3)

with c being the central charge of the theory. If one instead considers two joint intervals A and B
that share a boundary, then the negativity scales as

E =
c

4
ln

(
lAlB
lA + lB

)
+ const. (8.2.4)

As a rule of thumb, to extract the scaling equations for the system of finite size L, one had to
substitute lA(B) by the corresponding chord length lA(B) → L

π sin
(
πlA(B)

L

)
. One should keep in

mind that the above definition of logarithmic negativity is only valid for bosonic systems, i.e. for
the particles obeying a commutation relations. For fermions, one should track the sign change when
the bra and ket states are swapped during the partial transpose. In Sec.(11.2.2) we will generalize
the definition appropriately for fermionic case, using the so-called partial time-reversal transpose.

8.3 Monogamy of Entanglement

In previous sections we have reviewed two entanglement measures and discussed some of they useful
scaling properties in the context of conformal field theories. The important point is that both en-
tanglement entropy and logarithmic negativity are measures of bipartite entanglement. It is natural
to pose the question regarding how the entanglement can be shared over multiple constituents of
the system. Below we address this question and review the so-called entanglement monogamy.

One of many fundamental differences between classical correlations and quantum entanglement,
is that the latter can not be arbitrarily shared among various parts of the system. This constraint
is known as the entanglement monogamy [204, 227, 228, 229, 230, 231, 232]. The most simple setup
to demonstrate the monogamy of entanglement is a tripartite system A∪B ∪C, each consisting of
a qubit with states labeled {|0⟩, |1⟩}A,B,C . We start by defining another measure of entanglement,
the so-called concurrence. Suppose that the pair of qubits A and B is described by a density matrix
ρAB. One may define a spin-flipped density matrix ρ̃AB as

ρ̃AB =
(
σyA × σ

y
B

)
ρ∗AB

(
σyA × σ

y
B

)
, (8.3.1)

where ρ∗AB is the complex conjugate of ρAB. Since both ρAB and ρ̃AB have only positive eigenvalues,
so does ρAB ρ̃AB. Suppose these eigenvalues are µ1,2,3,4, with µ1 ≥ µ2 ≥ µ3 ≥ µ4. Using these



8.3. Monogamy of Entanglement 119

eigenvalues, the concurrence CAB of the state ρAB is defined as

CAB = max (
√
µ1 −

√
µ2 −

√
µ3 −

√
µ4, 0) . (8.3.2)

Suppose A ∪B system is in a pure state and disentangled, say

|ψ⟩AB = |0⟩A ⊗ |1⟩B → ρAB =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , (8.3.3)

then the spin flipped state is

ρ̃AB =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 (8.3.4)

and thus the concurrence of such state is zero, since all of the elements of ρAB ρ̃AB is zero. Now
suppose that the system is in a pure but maximally entangled state

|ψ⟩AB =
1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) → ρ̃AB =

1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (8.3.5)

This way, the eigenvalues of ρAB ρ̃AB are {1, 0, 0, 0} and thus CAB = 1. One can formulate these
cases in a more general way: if the system is in some pure state, then the concurrence of the state
is CAB = 2

√
det (ρA), where ρA is the reduced density matrix over system A.

Going back to the original setup of tripartite system A ∪ B ∪ C, one may ask what are the
relations between CAB and CAC when the whole system is in a pure state. Such a state, where
two qubits are entangled with a third one is described by a density matrix ρ that has at most two
non-zero eigenvalues. Due to this, ρAB ρ̃AB also shares the same property, with ρAB = TrC (ρABC).
These constraints allows as to write CAB concurrence as

C2
AB = (

√
µ1 −

√
µ2)

2 = µ1 + µ2 − 2
√
µ1µ2

= Tr (ρAB ρ̃AB)− 2
√
µ1µ2 ≤ Tr (ρAB ρ̃AB) .

(8.3.6)

Once can identically deriving C2
AC and C2

BC , we get

C2
AB + C2

AC ≤ Tr (ρAC ρ̃AC) + Tr (ρBC ρ̃BC) . (8.3.7)

If the system is in some pure state |ψ⟩ABC =
∑
aψA,ψB ,ψC |ψA, ψB, ψC⟩, we get that

Tr (ρAB ρ̃AB) = 2det(ρA)− Tr
(
ρ2B
)
+ Tr

(
ρ2C
)

(8.3.8)

Since ρA/B/C are the reduced 2 × 2 density matrices over qubit A,B and C with Tr
(
ρA/B/C

)
= 1

one, we have Tr
(
ρ2B/C

)
= −2det

(
ρB/C

)
− 1 and thus

Tr (ρAB ρ̃AB) = 2 (det(ρA) + det (ρB)− det (ρC)) ,
Tr (ρAC ρ̃AC) = 2 (det(ρA) + det (ρC)− det (ρB)) ,
Tr (ρBC ρ̃BC) = 2 (det(ρB) + det (ρC)− det (ρA)) .

(8.3.9)
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Using these identities, we get

C2
AB + C2

AC ≤ 4det(ρA). (8.3.10)

Let us think of combination of BC as a single composite object, then we can discuss the concur-
rence between qubit A and (BC) composite object. This is a valid interpretation, since only 2-
dimensional subspace of full 4-dimensional {|ψB, ψC⟩}-space of state is needed to express |ψ⟩ABC =∑
aψA,ψB ,ψC |ψA, ψB, ψC⟩ state of the system. Due to this, one can view A ∪ (BC) as a pair of

2-dimensional qubits in a pure state. Since for such a state CA,(BC) = 2
√

det(ρA), we get

C2
AB + C2

AC ≤ C2
A(BC). (8.3.11)

For a 3 qubit case, Eq.(8.3.11) inequality sets the limit regarding how the entanglement can be
shared among constituents of a tripartite system. Suppose that qubit A is entangled with the pair
of qubits BC, measured by concurrence CA(BC). As a result of the inequality Eq.(8.3.11), CA(BC)

limits the entanglement that can be shared individually between A and B and A and C, while the
part of entanglement belonging to B can not be shared with C.

The monogamy of entanglement can have non-trivial consequences in many-body systems. As
it will be demonstrated in Chap.(11), entanglement monogamy can lead to counterintuitive effects,
such as enhancement of entanglement in the system that is projectively measured.
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Chapter 9

Measurement induced phase transitions

As we have seen in previous chapters, the dynamics of an open quantum system can be notoriously
complex. Nevertheless, there have been advances in studying the dynamics and properties of the
system under persistent interaction with the environment. For example, by using the Lindblad
master equation, one may study the dissipative phase transitions in many-body systems with one,
or many particle loss processes. Apart from numerical simulations, it is possible to extract various
analytical solutions [207, 233, 234, 235]. On the other hand, it can be extremely insightful to study
the properties of the system along individual quantum trajectories, or even the trajectory averaged
observables. Typically, trajectory averaged observables linear in the density matrix carry insignif-
icant physical information. Instead, one can study observables that are non-linear in the density
matrix. A good candidates for such observables are various measures of quantum entanglement,
introduced in Sec.(8.1).

Since one can interpret the decoherence by interaction with environment as decoherence by
measurement, the dynamics of the system that is coupled to the bath can be thought as a sequence
of unitary evolution and corresponding type of measurements. In terms of quantum entanglement,
the evolution of the system consists of two competing operators. In a typical setups, the unitary
evolution tends to increase the entanglement content of the system. On the other hand, the mea-
surement part of the evolution collapses the state of the system and thus reduces the entanglement.
By controlling the coupling between the system and the environment, one can effectively drive the
system from weakly to strongly entangled states.

By implementing the quantum trajectory approach and tracking the trajectory averaged mea-
sures of entanglement of the system, one can capture the so called measurement induced phase
transitions MIPT for various coupling constants. Conceptually, this class of phase transitions is dif-
ferent from the ones described by Landau’s theory of phase transitions (i.e. the transitions discussed
in Part I of the thesis). In the previous cases, the passage through a critical point was accompanied
by a breakdown or recovery of some symmetry of the system. In our case, the symmetry breaking
part of the transition is absent, while the ensemble averaged measures of entanglement behaves
differently on either side of the transition points. A common feature between these two classes
of phase transitions is the scaling of the measures of entanglement at the critical point. In both
cases, the underlying conformal field theory constraints, for example, the entanglement entropy to
necessarily scale logarithmically with the subsystem size and follow Eq.(8.1.5).

9.1 Random Unitary Circuit

An interesting setup that can host a measurement induced phase transition is the so-called Random
Unitary Circuit (RUC) model [145]. The temporal dynamics of RUC models is a sequence of unitary
evolution and projective measurements. However, the unitary, or hamiltonian part of the evolution
is featureless and consists of random Haar gates.

Let us consider a 1D array of qudits. As we have already mentioned, the temporal evolution
is split into a sequence of unitary evolution and measurements. The unitary part of the evolution
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Figure 9.1: Pictorial representation of a random unitary circuit. Figures (a) and (b) cor-
responds to the evolution in time without and with projective measurements. The system
is initiated in a random product state |ψ0⟩. After some time of evolution, the unitary part
of the evolution entangled the qubits and the initial pure state evolves to final |ψ1⟩ entan-
gled state. The right-hand-side of figure (b) pictorially presents the branching of quantum
trajectories, based on the measurement outcome. The red line corresponds to one of the

possible trajectories that the system can follow. Figure extracted from [236].

is taken to be a brick-wall configuration of Haar-random unitary gates, acting on nearest neighbor
two qudits, see Fig.(9.1). The selection of unitary gates from the set of Haar-random gates is
chosen to be completely decorrelated in spatial and temporal directions. The subsequent step is to
insert random projective measurements after every layer of unitary evolution. The measurement
happens with a probability p and the occurrence of such projectors is completely random in space
and in time. In such a way, the absence of correlations between random unitaries and the projective
measruements renders the overall dynamics of the system to be Markovian.

It is useful to formulate the problem using the quantum channel and quantum trajectory ap-
proach, presented in Sec.(7.4). Suppose we label the states within an on-site Hilbert state as
Hd = {|1⟩, |2⟩, ..., |d⟩}. The on-site projective measurement with respect to Hd can be described by
the quantum channel with the set of Kraus operators

M = {Kj} = {|j⟩⟨j|}, ωj = 1, j = 1, ..., d, (9.1.1)

where ωj is the corresponding weight of Kj Kraus operator. In the RUC scenario, there is a
probability p that one of {Kj} will act on a local Hilbert space and probability 1 − p that the
measurement will not occur, i.e. I identity will act on the state. This way, one may extend the set
of Kraus operators to include the measurement and no-measurement channels together:

M →Mp = {I,Kj}, ωI = 1− p, ωKj = p ∀j. (9.1.2)

Another related set of generalized measurement Kraus operators is

M ′
p = {I} ∪ {

√
dKU |U ∈ U(d)}, KU = U †K1U. (9.1.3)

The infinite subset consisting by
√
dKU operators is parametrized by a single unitary matrix U(d)

and the corresponding weights are given by the Haar measure w(
√
dKU ) = pdU , where dU is the

Haar measure on U(d), normalized as
∫
U∈U(d) dU = I. All three sets of Kraus operators M,Mp and

M ′
p are normalized to I.
Before choosing any specific set of measurements, i.e. Kraus operators, we rephrase our problem

in terms of quantum trajectories. As explained in Sec.(7.4), a quantum trajectory consists of a
specific realization of the sequence of measurement operators and unitary gates. Each trajectory
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can be labeled by a corresponding circuit realization operator C, as defined in Eq.(7.4.10). Suppose
we initialize the system in a pure state |ψ⟩⟨ψ|, then the statistical average of some observable O
can thus be defined as

O = ⟨O⟩ = ECTr
(
C|ψ⟩⟨ψ|C†

)
· ⟨ψ|C

†OC|ψ⟩
⟨ψ|C†C|ψ⟩ = ECTr

(
⟨ψ|C†OC|ψ⟩

)
(9.1.4)

where the first factor is the probability P(C) of realization of a trajectory described by an operator
C, while the second factor is the expectation value of observable O at the end of the trajectory. EC
denotes the average over all trajectories, that is average over all Haar-random gates and measure-
ment operators. As before, the observable of our interest are the nth Rényi entropies for a bipartite
system with a reduces density matrix ρA. Instead of directly using Eq.(8.1.2), one can reformulate
it in a more convenient manner

S
(n)
A (ρ) =

1

1− n ln
[
Tr
(
ρ⊗nPn,A

)]
, (9.1.5)

where Pn,A is a permutation operator in the replica space n and satisfies the following constraint

Pn,A =
∏
j

τgj , gj =

{
(123...n) if j ∈ A

e if j /∈ A (9.1.6)

while τgj is the representation of gj on the replicated Hilbert space

τgx =
∑
[i]

|igx(1)...igx(n)⟩⟨i1...in|. (9.1.7)

This way, the average bipartite nth Rényi entropy will be

S
(n)
A (ρ) = ECTr

(
C|ψ⟩⟨ψ|C†

)
× S(n)

A

(
C|ψ⟩√
⟨ψ|C†C|ψ⟩

)
=

=
1

1− nECTr
(
C|ψ⟩⟨ψ|C†

)
× ln

(
Tr
(
⟨ψ|C†C|ψ⟩⊗nPn,A

)
Tr (⟨ψ|C†C|ψ⟩⊗n)

)
=

= lim
m→0

1

m(1− n)ECTr
(
(C|ψ⟩⟨ψ|C†)⊗nm+1(P⊗m

n,A − 1)
)
.

(9.1.8)

By introducing a notation Q = nm+ 1, then

S
(n)
A (ρ) =

1

1− n lim
m→0

ZA −Z0

m
(9.1.9)

with

ZA = ECTr
(
(C|ψ⟩⟨ψ|C†)⊗nm+1P⊗m

n,A

)
, Z0 = ECTr

(
(C|ψ⟩⟨ψ|C†)⊗nm+1

)
. (9.1.10)

Since ZA,0 → 1 in the m→ 0 replica limit, we re-write the whole expression as

S
(n)
A (ρ) =

1

n− 1
lim
m→0

FA − F0

m
=

1

1− n lim
m→0

ln (ZA/Z0)

m
, (9.1.11)

where FA is the free-energy cost of the domain wall corresponding to various the boundary conditions
in the entanglement region stemming from Pn,A permutation operator.
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gx

gi

(a) (b)

Figure 9.2: (a) The geometry of a statistical mechanics model of interacting permutation
group SQ elements. The dotted lines Ed correspond to the Weingarten functions (stemming
from the averaged Haar unitary gates), while the solid lines Es originate from the general-
ized measurements. (b) d = 0 limit, corresponding to Q! color Potts on a square lattice.
Red circles in both figures correspond to the pinned boundary degrees of freedom. Figure

extracted from [145].

Using the well studied methods of taking the ensemble averages over Haar measures [237, 238],
one can exactly calculate the circuit averages EC . Since the measurement and unitary evolution parts
are decoupled, one can split the ensemble average of trajectories into the averages over independent
measurements and unitary evolutions. Below we will simply state the know results for arbitrary
value of Q = nm + 1 case. For the two-site unitary gate Ui,i+1 acting on sites i and i + 1, the
average of the tensor product U⊗Q

i,i+1 and (U †)⊗Qi,i+1 is [237, 239]

EUi,i+1U
⊗Q
i,i+1 ⊗ (U †)⊗Qi,i+1 =

∑
(g1,g2)∈SQ

Wgd2(g
−1
1 g2)τ

†
g1,i
τ †g1,i+1τg2,iτg2,i+1

1 (9.1.12)

where Wgd2(g
−1
1 g2) are the so-called Weingarten function of the permutation g−1

1 g2 [237]. Similarly,
each generalized measurement will yield a factor EK∈MW (g1, g2), however it depends on which set
of Kraus operators K are used. ForM =Mp andM =M ′

p, we get

EK∈MpW (g1, g2) = (1− p)d|g−1
1 g2| + pd

EK∈M ′
p
W (g1, g2) = (1− p)d|g−1

1 g2| + pdQ ≡Wp(g
−1
1 g2)

(9.1.13)

and thus these two results match if one takes Q → 1 limit first, if one considers d → ∞ limit at
the end of the calculations. Using these constructions, one maps the problem of the calculation of
S
(n)
A (ρ) onto a problem of a statistical mechanics of interacting permutation group elements gi ∈ SQ

on an anisotropic honeycomb lattice (see Fig.(9.2a))

ZA =
∑

{gi}∈SQ

∏
⟨ij⟩∈Es

Wp(g
−1
i gj)

∏
⟨ij⟩∈Ed

Wgd2(g
−1
i gj) (9.1.14)

In d =∞ case, the model reduces to a Q! color Potts model on a square lattice (see Fig.(9.2b)),
where the weight ω = e−Eik of a local ⟨ik⟩ bond is governed by the energy function Eik

Eik = − ln
(
p+ (1− p)δg−1

i gk

)
, (9.1.15)

1In the literature, authors usually pass to the superoperator formalism [240]: τg → |τg⟩⟩ and thus
τ†g1,iτ

†
g1,i+1τg2,iτg2,i+1 → |τg2⟩⟩i|τg2⟩⟩i+1⟨⟨τg1 |i⟨⟨τg1 |i+1.
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where δg−1
i gk

= 1 only if g−1
i gk is an identity operation. This way, the partition function Za can

undergo a phase transition from ordered (p < pc) to a disordered (p > pc) regime and will host
a critical point (p = pc) with an underlying conformal field theory description. The critical point
resides at pc = 1

2 . Moreover, for d→∞ limit, Eik acquires 1/d corrections as

Eik = − ln

(
p+ (1− p)

(
δg−1
i gk

+
1

d
δ′
g−1
i gk

))
, (9.1.16)

where δ′
g−1
i gk

= 1 only if g−1
i gk is a transposition. The inclusion of 1/d corrections breaks the SQ!

symmetry group of the model down to SQ × SQ.
This way, we have mapped the calculation of the entanglement content of RUC model onto

a model statistical physics model. From Eq.(9.1.16), we can simply analyse two extreme cases.
For p = 0 case we have Eik = − ln

(
δg−1
i gk

+ 1
dδ

′
g−1
i gk

)
, which favours the alignment of the group

elements gi and gk. This renders the state to be ferromagnetically ordered. In this regimes, the
free-energy cost FA − F0 of pinning the spins in lA region at the boundary scales as ∼ lA. This
in turn translates to the volume-law phase S(n)

A ∼ lA, for sufficiently long evolution time t → ∞.
This picture remains valid even for p ≪ 1 small measurement probability. On the other extreme,
when p = 1 then we have Eik = 0. This corresponds to the infinite temperature regime, where the
thermal fluctuations completely destroy any possible order in the system. In this case, FA − F0

scales as the size of the boundary of lA, thus FA − F0 ∼ const.. In terms of entanglement entropy,
this means that for p→ 1 we have an area-law phase S(n)

A ∼ const..
The critical point pc that separates the area- and volume-law phases of the entanglement corre-

sponds to order to disorder transition in the corresponding statistical-mechanics model. By assuming
that the transition is of second order, then it should be described by a 2D conformal field theory
(CFT) with c = 0 central charge in Q→ 1 limit. Such CFTs with central charge c = 0 are known to
be non-unitary, a feature shared between statistical mechanics model and the original RUC model.
Despite such theories being hard to investigate, it has been shown that d =∞ limit corresponds to
the percolation model [145]. In this case, for the Q → 1 replica limit, one can show that that the
transition occurs for pc = 1/2 and as one approaches the critical point, correlation length diverges
as ξ ∼ |p− pc|−4/3.

The problem becomes increasingly complex as one reduces the size of the local Hilbert space.
The problem stems from the non-trivial expression for Weingarten function Wgd2 . Thus, if one wants
to study the entanglement content of projectively measured RUC model for small local hilbert space
dimension, it becomes more convenient to rely on numerical approach. In the following subsection,
we present the Monte-Carlo simulations of the statistical mechanics model, corresponding to the
RUC model with d = 10 dimensional local hilbert space.

9.1.1 Monte Carlo simulation

To corroborate some of the theoretical predictions presented in [145], we perform Monte Carlo
simulations. In Eq.(10.3.8) the number of replicas can be expressed as Q = nm + 1, with m → 0
an integer; we notice that in practice we cannot actually use the limit m = 0 because otherwise the
numerics would be trivial. Similarly, we cannot use n = 1 because we would not be calculating an
entanglement entropy (or in other words the boundary conditions would be trivial). Therefore the
lowest number of replicas we can consider is Q = 3 (n = 2 and m = 1), corresponding to a Potts
model with six states.

We perform Monte Carlo simulations on a lattice of size Lx = 40 and Ly = 50 sites (correspond-
ing to a time evolution of Ly time periods), with periodic boundary conditions in the x direction,
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Figure 9.3: Colormap of the energy Ei of each spin, calculated including the next neigh-
bors contribution and the boundary contribution for the spins at the top of the chain. The
size of the Monte Carlo system is Lx = 40 and Ly = 50. Each panel shows lA = 0 or
lA = 20 for (a) p = 0.1, (b) p = 0.15, (c) p = 0.25, (d) p = 0.3. Lower energy corresponds to
aligned spins, i.e. ferromagnetic regions, while larger energy corresponds to paramagnetic
spins. The labels Ly in the vertical direction correspond to the time direction in the phys-
ical system. a-b) The system is completely ferromagnetic and the energy cost of having a
boundary is clearly visible at the top of the right plot, but small paramagnetic droplets are
forming. c) The system is switching to a paramagnetic phase and the higher energy cost of
the boundary is barely visible. d) The system is entirely paramagnetic and the energy cost
of the boundary vanishes. Note that the bottom boundary has lower energy because it has

less next neighbors than the spins in the bulk.

and boundary conditions at the top in the vertical direction dictated by the value of the partition
size lA.

In this model the identity permutation is (0)(1)(2), while the transposition dictated by the
boundary conditions is (01)(2) because (n = 2 and m = 1). We can naturally map the permutations
onto spin states: {(0)(1)(2), (0)(12), (01)(2), (021), (012), (02)(1)} → s = {0, 1, 2, 3, 4, 5}. Therefore
the boundary conditions of a partition of size lA are given by lA sites occupied by the spin s = 2
and Lx − lA sites with the spin s = 0. We choose the partition to be centered in the middle of the
boundary.

We employ the Wolff cluster algorithm [241, 242] for the update of the lattice configuration. The
probability of adding a site to the cluster built by the Wolff algorithm is the usual one, and based on
the interaction energy with the neighbors. Whenever a site on the top vertical boundary is added
to the cluster, we add its interaction energy with the fixed boundary to the boundary energy Eb.
When the cluster is built, we update it with probability min(1, e−Eb), in order to take into account
the fact that configurations that have a high interaction energy with the cluster are less probable.

We first thermalize the lattice by updating it with Ntherm = 25000 Wolff steps. To avoid
autocorrelations, we then sample the configuration of the lattice every Nsample = 50 steps and
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(a) (b)

Figure 9.4: Behavior of the slope of the normalized energy FA/⟨FA⟩lA with respect to
lA as function of p. The inset shows the slope of FA as function of p. The Monte Carlo

calculations were performed for Γ/ω = 0.2, Lx = 40, Ly = 50 and lA = 0, 2, 4, ..., 20.

calculate the observables of interest.

Markovian Monte Carlo – We start by considering the Markovian case. For different values of
the probability p we consider different sizes of the boundary ranging from lA = 0 to lA = Lx/2, and
for each calculate the free energy F (lA). We may also consider the local energy of each lattice sites
due to the interaction with its next neighbors (and with the boundary). Since aligned spins have
zero interaction energy while spins oriented in different directions contribute an energy Ei ∼ − ln p,
we are immediately able to identify the ferromagnetic and the paramagnetic regions by plotting a
color map of the local energy.

We notice that at p = pc ≈ 0.25, the phase of the system changes from ferromagnetic to param-
agnetic, as indicated by the increase in energy over the entire lattice, see Fig.(9.3). Simultaneously,
the energy cost of having boundary conditions with lA ̸= 0 is large – Fig.(9.3a-b) – at low p, de-
creases significantly for p→ pc (see Fig.(9.3c)) and becomes negligible above the critical probability,
as in a paramagnetic phase the boundary can be accommodated with very little increase in energy,
see Fig.(9.3d).

The transition is also observed by performing a linear fit of the total energy FA = F (p, lA) as
function of lA and plotting the behavior of the slope dFA/dlA as function of p. When dFA/dlA ̸= 0
the energy of the Potts model, and thus the entanglement entropy of the circuit, scales with the size
of the partition subsystem, i.e. it obeys a volume law; when dFA/dlA = 0, the circuit entanglement
is in an area law.

We observe a sharp transition of the slope from non zero values for p < pc to very small values
for p > pc, see Fig.(9.4a). This is also the case if we perform the linear fit analysis on the energy
normalized to its average value over lA at fixed p – i.e. FA/⟨FA⟩lA – see Fig.(9.4b). This procedure
may be necessary to avoid large fluctuations, since at high p the total energy becomes large and
analyzing the normalized energy may be more sensible. From both fitting methods we find pc ≈ 0.25.

We also observe a local peak of dFA/dlA and 1
⟨FA⟩lA

dFA
dlA

at p = pc, see the insets in Fig.(9.4). This
may be explained as a consequence of the large fluctuations occurring in proximity of the transition:
the subsystem at the boundary may act as a nucleation surface that facilitates the appearance of
large scale paramagnetic domain that extends deep into the system instead of being confined near
the boundary.
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9.2 Free fermion model

An interesting setup, where one can numerically investigate the measurement induced phase tran-
sition in the free fermionic model has been studied in [169]. In this setup, a 1D chain is populated
by spinless fermions, with unitary part of the dynamics constrained to be a simple tight binding
Hamiltonian

H = −1

2

N−1∑
n=1

(
c†n+1cn + h.c.

)
. (9.2.1)

During the unitary evolution, the state of the system evolves as

|ψ0⟩ → |ψt⟩ = e−itH|ψ0⟩ (9.2.2)

The non-unitary part of the evolution is stemming from the coupling of the system to the environ-
ment. The interaction between these two lasts for time δt and is characterized with the interaction
rate 1/τ . One can introduce a dimensionless number p = δt/τ , which characterizes the rate by
which the environment affects the system. One can mimic the interaction by introducing a set of
normalized projective measurement operators {P (k)}j acting on jth site of the system. In practice,
one generates a random number pj for every site and compares it to the aforementioned p to decide
whether one performs the measurement or not

1. if pj > p, then the measurement at site j is performed

2. if pj < p, then the measurement at site j is not performed

If the the first option is satisfied, then the system moves to the next step. For our purposes, we
assume that the measuring operators are P (0)

j = nj and P
(1)
j = 1 − nj , where nj is the fermion

occupation number at site j. After the measurement of P (0,1)
j observables, the state of the system

is projected according to the Born rule with probability p(0,1)j = ⟨ψt|P (0,1)
j |ψt⟩. To choose whether

one should act with P (0)
j or P (1)

j operators, corresponding p(0)j and p(1)j numbers are compared to a
randomly extracted number pj ∈ (0, 1]:

|ψt⟩ →
P

(0,1)
j |ψt⟩√
p
(0,1)
j

p
(0,1)
j > pj . (9.2.3)

The unitary evolution is governed by a quadratic model H, thus the Gaussianity of the state is pre-
served [169]. Moreover, the projective operators under consideration also preserve the Gaussianity
of the state and thus one can use Wick’s theorem to describe how two-point correlation function
Dnm(t) = ⟨ψt|c†ncm|ψt⟩ should be updated after every projective measurement P (0,1)

i . The protocol
that governs the update of Dnm(t) correlation matrix after the measurements is the following:

1. If we measure nj , then

Dnm → Dnm + δnjδmj −
DnjDjm
Djj

; (9.2.4)

2. If we measure 1− nj , then

Dnm → Dnm − δnjδmj +
(δnj −Dnj) (δmj −Djm)

1−Djj
. (9.2.5)
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Figure 9.5: The main figure shows the dependence of the slope of logarithmic scaling of
SA for various values of measurement rate τ and system sizeL. The inset shows a finite-size
scaling of the critical value τ c, showing that τ c increases for larger values of the system size

L. Figure extracted from [169].

On the other side, the unitary evolution of the state for time tu corresponds to D(t + tu) =
U †(tu)D(t)U(tu), with

Unm(tu) =
1

L

L/2−1∑
p=−L/2

e−i2π(n−m)p/L−ituϵp , (9.2.6)

where ϵp = − cos(2πp/L) is the spectrum of the tight binding model. Since the measurement and
the hermitian part of the evolution operators do not contain any temporal correlations between the
present and the past state of the system, the evolution is purely Markovian.

Using the structure of Unm(tu) and protocol of updating the correlation matrix after each mea-
surement, one can easily simulate the ensemble of quantum trajectories for different values of mea-
surement rate and calculate various trajectory averaged expectation values of observables. The
Gaussianity of the state of the system allows us to easily access the entanglement content of the
system directly via Dnm. The bipartite entanglement entropy at time t for a subsystem A can be
expressed as

SA(t) = −
∑
λA(t)

[λA(t) log λA(t) + (1− λA(t)) log (1− λA(t))] , (9.2.7)

where λA(t) are the eigenvalues of the reduced correlation matrix D̃nm = TrBDnm(t). To extract
the trajectory averaged entanglement entropy at time t is, one simulates the evolution of the system
along many α ∈ [1, ..., Ntraj ], calculates S(α)A (t) for each trajectory and then takes the ensemble
average

SA(t) =
1

Ntraj

Ntraj∑
α=1

S(α)A (t). (9.2.8)

Initiating every trajectory in some pure-state, say Néel-like configuration of fermions, one can
make few intuitive statement about two limiting cases of τ . If τ → ∞, being equivalent to p → 0,
then the system evolves unitarily. Due to this, at later times the bipartite entanglement entropy
saturates to some steady state value shows an extensive growth with respect to the size of the
bipartition, SA(t) ∼ l. In the transient regime, the entanglement entropy will grow linearly in time.
The opposite limit τ → 0, equivalent to persistent measurement of every site at every time-step,
drive the system towards Zeno-like regime, where entanglement buildup is maximally suppressed
and the system remains in the pure state.

In such setups, one could anticipate that there could exist be an intermediate regime of the
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measurement rate, where the scaling of ensemble averaged bipartite entanglement entropy scales
logarithmically with respect to the subsystem size. Motivated by Eq.(8.1.4) scaling of entanglement
entropy for critical theories described by CFT, one refers to such measurement rates as a critical
value of τ c. To precisely pinpoint τ c, one can extract SA at late times and numerically fit it along
the logarithmic fitting function r ln(lA) + k. As it is demonstrated in [169], Fig.(9.5), the scaling
of trajectory averaged bipartite entanglement entropy at late times acquires non-zero contribution
in logarithmic scaling as soon as one crosses the critical value of τ c. The precise value of τ c can in
general depend on the system size L. As the finite size analysis in the inset of Fig.(9.5) suggests,
the critical value of the measurement rate diverges as one increases the system size. This hints to
the fact that in the thermodynamic limit L→∞, only the area law phase survives for any non-zero
value of τ .

This result is in agreement with [186], where authors analytically show that in a 1-dimensional
free fermion model with U(1) symmetry and projective measurements, logarithmic growth of entan-
glement always saturates to an area law-phase even for rare measurements. It must be noted, that
other scenarios of monitored free fermions has also been explored, where the logarithmic scaling of
entanglement is not related to finite size effects. Namely, authors in [162] have studied free fermionic
U(1) chain, albeit with continuous monitoring. In this setup, it was shown that the entanglement
scales logarithmically for weak measurement rate γ ≪ 1. For γ ≫ 1, the system collapses in the
area-law phase, while logarithmic finite size corrections have been extracted for the critical value
γ = γc – indicating to a BKT mechanism of the transition.
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Chapter 10

Many-body Non-Markovian Quantum
Jumps: Diagrammatic method and
Random Unitary Circuit

In this section study the quantum dynamics of a many-body system subject to coherent evolution
and coupled to a non-Markovian bath. We propose a technique to unravel the non-Markovian
dynamics in terms of quantum jumps, a connection that was so far only understood for single-body
systems. We develop a systematic method to calculate the probability of a quantum trajectory,
and formulate it in a diagrammatic structure. We find that non-Markovianity renormalizes the
probability of realizing a quantum trajectory, and that memory effects can be interpreted as a
perturbation on top of the Markovian dynamics. We show that the diagrammatic structure is akin to
that of a Dyson equation, and that the probability of the trajectories can be calculated analytically.
We then apply our results to study the measurement-induced entanglement transition in random
unitary circuits. We find that non-Markovianity does not significantly shift the transition, but
stabilizes the volume law phase of the entanglement by shielding it from transient strong dissipation.

10.1 Many-body non-Markovian quantum jumps

We consider a many-body system subjected to coherent time evolution. For simplicity, we focus
on a Hamiltonian dynamics, with Hamilton operator H: most of our reasoning also applies to
stroboscopic time evolution as realized, for example, in random unitary circuits (on which we will
elaborate further in the next sections).

Let us now suppose for simplicity that only one jump operator a acts on the system; the
generalization to many decay channels is straightforward.

When the system does not jump, it undergoes a deterministic evolution which is governed by
the Hamiltonian H plus a non-Hermitian contribution arising from the back-action of the jump
operator, which we can write as Heff = H − i∆(t)a†a/2. Over a time δt the quantum state of the
system then evolves as [200, 201]

|ψ(t+ δt)⟩ = (1− iHeffδt) |ψ(t)⟩
||(1− iHeffδt) |ψ(t)⟩ ||

(10.1.1)

For book-keeping simplicity, we incorporate all these operations into an operator U(t, t′) that
represents the deterministic evolution between t and t′, so that |ψ(t′)⟩ = U(t, t′) |ψ(t′)⟩.

As mentioned, the many-body system can jump at any time and as many times as possible, and
the times at which the jump operator is applied matter since the jump operator and the unitary
evolution may compete with each other.

The detailed way in which a NJ or a RJ act is shown in Fig.(7.2) and Fig.(10.1). Let us suppose
that at time t a jump operator a is applied to the quantum state |ψ⟩ of the system. The system
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jumps into |ψ′⟩ = a|ψ⟩/||a|ψ⟩||, but the bath retains memory of the state |ψ⟩ before the jump. From
t to t′ the system then evolves with U , |ψ′⟩ → U|ψ′⟩. At time t′ a RJ occurs: the system does not
jump back into |ψ⟩, but into |ψ′′⟩ = U|ψ⟩. In other words, the RJ brings the system back to the
state it would have (unitarily) evolved into if it had never normal jumped at time t. The memory
effect is here: the bath remembers the state of the system before the NJ and once the RJ occurs
this information flows back into the system in the form of bringing it back to |ψ′′⟩. The operatorial
definition of the RJ is |ψ′′⟩⟨ψ′| = U|ψ⟩⟨ψ′|; we stress that it implicitly includes the unitary evolution
U , which was absent in the single-body case.

1

2

4

5

3a3b

NJ

RJ

Bath

Figure 10.1: Example of normal jump (NJ) and re-
verse jump (RJ) processes in a system coupled to a non-
Markovian bath. 1) A system of two spins starts in an
entangled Bell pair state (| ↑↓⟩ + | ↓↑⟩)/

√
2. 2) The spins

undergo a NJ process (red cross) that destroys the coher-
ence and collapses the spins onto a separable state; the
information lost in the process is “stored” into the bath
(wavy red line). 3a) The system evolves with unitary U
(green square), for example a spin flip σ−

1 σ
+
2 + σ+

1 σ
−
2 ; 3b)

the bath “remembers” the state before 2 and evolves it with
U (transparent green square) – in this particular case the
entangled state is not changed by the spin flip. 4) The
system undergoes a reverse jump (blue crossed circle): the
information stored in the bath flows back (blue wavy line)
into the system that 5) ends up back into the entangled

state, regaining its coherence.

The fact that we can reverse the last jump
independently of the time it passed since its
occurrence is a consequence of the infinite-
time memory that we assumed for the non-
Markovian bath interacting with the system.
On the other end of the “memory spectrum”,
a Markovian bath has a zero time memory, so
that a jump can never be erased. In the middle
of the spectrum, there are baths that have a fi-
nite but non-zero time memory, so it becomes
more and more unlikely to reverse a jump that
occurred a long time in the past.

We note an important point: evolving the
system from t to t′ with just U or with the se-
quence RJ ◦U ◦NJ produces the same quantum
state |ψ′′⟩ by definition, but along two different
trajectories. These two trajectories are equiva-
lent at time t′, in the sense that they correspond
to the same quantum state and exhibit the same
physical properties.

We can therefore group different trajectories
into a class of trajectories (labeled by the in-
dex α) that all exhibit the same quantum state
|ψα(t)⟩ at time t. We observe that |ψα(t)⟩ is
completely specified by the initial state |ψ⟩ and
by the sequence of times at which normal jumps
are performed without being reversed later. In
other words, if we label a trajectory class with
α = (t1, t2, ..., tn) (see Fig.(10.2)), the quantum
state associated to it is given by the unitary evo-
lution, punctuated by the jump operators at the
times specified by α:

|ψα(t)⟩ ≡
U(tn, t)a U(tn−1, tn)a...a U(0, t1)|ψ⟩

||Ua Ua...a U|ψ⟩|| .

(10.1.2)
We remark that using this categorization

into trajectory classes, the application of the NMQJ recipe is quite straightforward.
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Figure 10.2: Different trajectory classes labeled based on the number and time of jumps.
The green squares represent the periods of unitary evolution, while the red crosses represent

normal quantum jumps.

Performing a normal jump at time t simply takes the state of the system from the class α =
(t1, t2, ..., tn) to α′ = (t1, t2, ..., tn, t) = (α, t). The NJ process and its probability p+α→α′ are

|ψα(t)⟩ → |ψ(α,t)(t)⟩ =
a|ψα(t)⟩
||a|ψα(t)⟩||

; (10.1.3)

p+α→α′ = ∆(t)δt⟨ψα(t)|a†a|ψα(t)⟩. (10.1.4)

Conversely, performing a reverse jump from the class α = (t1, t2, ..., tn) = (α′, tn) erases the last
NJ performed by the system and takes it into the class α′ = (t1, t2, ..., tn−1):

|ψα(t)⟩ → |ψα′(t)⟩; (10.1.5)

U(tn, t)
a|ψα′(tn)⟩
||a|ψα′(tn)⟩||

→ U(tn−1, t)|ψα′(tn−1)⟩. (10.1.6)

The operator describing the RJ in Eq.(10.1.5) is |ψα′(t)⟩⟨ψα(t)|, which again includes implicitly the
unitary evolution operator. The RJ in Eq.(10.1.6) effectively erases the jump that occurred at time
tn, but any trajectory that jumped at a time tn−1 < t′ < t can reverse jump from (t1, t2, ..., tn−1, t

′)
back to α′. Therefore we have to account for these possibilities in the definition of the probability
to perform the reverse jump, which is given by

p−α→α′(t) =
Nα′∑

tn−1<t′<t
N(α′,t′)

|∆(t)|δt⟨a†a⟩α′(t), (10.1.7)

where ⟨a†a⟩α(t) ≡ ⟨ψα(t)|a†a|ψα(t)⟩ and Nα is the probability for the system to be in trajectory α.
The RJ probability is independent of the starting state, in the sense that it is independent of the

time t′ at which the last jump was performed: every trajectory that originates by normal jumping
from the same α′ has the same probability of performing a reverse jump back into α′. This property
may seem counter intuitive, but actually makes sense since the system does not care when the last
jump occurred. For baths with a finite time memory, this is not true anymore, since the probability
to reverse jump from (α′, t′) back to α′ decreases as the time difference t− t′ increases. This could



134Chapter 10. Many-body Non-Markovian Quantum Jumps: Diagrammatic method and Random
Unitary Circuit

be quantified by introducing a memory kernel K(t′, t) in the fraction of Eq.(10.1.7):

p−(α′,tn)→α′(t) ∼
Nα′K(tn, t)∑

tn−1<t′<t
N(α′,t′)K(t′, t)

.

We stress that the sum in the denominator is essential for the quantum jump prescription to
be consistent with the master equation for the density matrix. It can be proven that averaging
the dynamics described by Eqs.(7.5.8, 10.1.3–10.1.7) correctly recovers the master equation. The
calculation is tedious but straightforward if the density matrix is written as

ρ(t) =

∞∑
n=0

∑
{α=(t1,...,tn)}

Nα(t)

N
|ψα(t)⟩⟨ψα(t)|, (10.1.8)

where the sum over n and over all the times at which the jumps can be performed exhausts all the
trajectory classes generated by the evolution.

As expected, the extension of the NMQJ method to a many-body system makes the problem
very hard to solve numerically. Not only the number of trajectory classes is exponential ∼ 2Nt (with
Nt the number of time steps in the evolution) for each decay channel, but it is not even possible to
do a statistical sampling of the ensemble as in MCWF, due to the crosstalk between trajectories.
Since both the individual trajectories and classes of trajectories are not independent of each other
as they are in the Markovian case, all of them are needed to compute the probability of reverse
jumps.

However, we observe that a class of trajectories is completely identified by α, i.e. the times
at which the normal jumps occur. This is also true in the Markovian case, where the probability
of the system ending up in the state associated to α = (t1, t2, ..., tn) can be calculated at once by
multiplying the probability of jumping at times t1, t2, ..., tn with the probability of not jumping at
the other times.

In the non-Markovian case, the Markovian probability is modified – borrowing a field theory
term, we could say it gets “dressed” or renormalized – by all the trajectories equivalent to α, in
which m other normal jumps were performed but later cancelled out by an equal number of reverse
jumps, see Figs.(10.2,10.3). If we can find a way to express this additional contribution we can
drastically simplify the treatment of the non-Markovian dynamics. This is the topic of the next
section.

10.2 Diagrammatics of trajectories

Our goal in this section is to calculate the “dressed” contributions that affect the probability of
realizing each state |ψα⟩ due to the presence of equivalent trajectories that feature a series of reverse
jumps. In particular, we need to evaluate how the latter ones sum up to modify the probability of
a given trajectory class.

For the sake of concreteness, we assume that the system is evolved between t = 0 and t = tf and
consider the class α = (t1, ..., tn). In the Markovian regime, there is only one trajectory contributing
to this class, while in the non-Markovian regime, many trajectories contribute to the population of
this class. For example any trajectory performing normal jumps at times t1, ..., tn plus any number
of additional pairs of NJ plus the relative RJ are valid trajectories contributing to the population of
α. We note that the normal and reverse jumps must occur at times tm and t′m comprised between
the times of two successive normal jumps in α, i.e. such that tj < tm, t

′
m < tj+1, with j = 0, ..., n

and t0 = 0 and tn+1 = tf . These pairs of normal + reverse jumps constitute sort of “loops” (to
borrow another term from field theory) that renormalize and increase the probability of realizing
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+ + + + ... 

= + + = ++ + ... 

RJ

NJ

Figure 10.3: (a) The trajectories shown in the panel are different since they have different
normal + reverse jumps sequences, but all lead to the same final quantum state. Their
probabilities must then be summed. (b) Diagrammatic method to calculate the dressed

propagator.

the trajectory class α = (t1, ..., tn), see Fig.(10.3). It is the contribution of these loops that we want
to calculate.

It is useful to write ∆(t) = ∆+(t) + ∆−(t) = ∆+(t) − |∆−(t)|, where ∆±(t) is the posi-
tive/negative part of the decay rate. We also define Pα(t, t′) as the conditional probability that
the system is in the state labeled by α at time t and is again found in the same state α at a later
time t′. Such probability essentially corresponds to the probability that no additional normal jumps
are performed between t and t′, or that all the normal jumps performed are cancelled by an equal
number of reverse jumps.

In the limit where the dynamics is Markovian, the "bare" probability P(0)
α (t, t′) is given by

P(0)
α (t, t′) = exp

(
−
∫ t′

t
dτ∆+(τ)⟨a†a⟩α(τ)

)
. (10.2.1)

Equation 10.2.1 arises from the fact that the unitary evolution does not change the probability of
the system being in a certain class, and that the product of the probabilities of performing no jumps
between t and t′ is an exponential in the continuum limit.

10.2.1 No jump trajectory

We start from the simpler case in which the class we consider is the no jump trajectory, i.e. α = ∅,
see Fig.(10.3a). The conditional probability of staying in such trajectory is corrected (with respect
to the Markovian case) only by loops of the type normal jump + reverse jump, because no reverse
jump can occur first since the system has not jumped at all to begin with.
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We indicate with Σ+
α (t, t

′) the probability of performing a normal jump from the class α at time
t and then going back to α with a reverse jump at time t′. Then we can write P∅ as a perturbative
series in Σ+:

P∅ = P(0)
∅ + P(0)

∅ ◦ Σ+ ◦ P(0)
∅ + P(0)

∅ ◦ Σ+ ◦ P(0)
∅ ◦ Σ+ ◦ P(0)

∅ + ...;

↓
P∅ = P(0)

∅ + (P(0)
∅ + P(0)

∅ ◦ Σ+ ◦ P(0)
∅ + ...) ◦ Σ+ ◦ P(0)

∅ ;

↓
P∅ = P(0)

∅ + P∅ ◦ Σ+ ◦ P(0)
∅ , (10.2.2)

where ◦ represents the convolution over all times between t and t′, i.e.

(A ◦B)(t, t′) =

∫ t′

t
(dt1/δt)A(t, t1)B(t1, t

′),

in the continuum limit we divide the integration over steps of length δt. The resummation formula
contained in Eq.(10.2.2) is depicted graphically in Fig.(10.3b).

Writing explicitly the convolutions we find

P∅(t, t′) = P(0)
∅ (t, t′) +

∫ t′

t

dt2
δt

∫ t2

t

dt1
δt
P∅(t, t1)Σ+

∅(t1, t2)P(0)
∅ (t2, t

′).

The integration limits express the causality of the jumps: the normal and reverse jumps must occur
between t and t′ at times such that t < t1 < t2 < t′.

It is worth noticing that, within this picture, the no-click limit takes the role of a mother
trajectory: indeed, a large number of trajectories is represented by the dressed no-click case. This
may suggest that the latter is particularly informative about the system dynamics, as already noted
in some Markovian cases [150, 243].

10.2.2 Generic trajectory

Eq.(10.2.3) can be extended to a generic conditional probability Pα. In principle, there exist also
reverse loops, where a reverse jump occurs first and is then followed by a normal jump. However,
the action of such loops on Pα is ill-defined, in the sense that it is not an actual loop since it does
not bring the system back to the same trajectory class.

To be more specific, let us assume that α = (t1, .., tm); a reverse jump at t > tm brings the
system into the state labeled by (t1, .., tm−1) and a successive normal jump closing the reverse loop
takes the system into the state labeled by (t1, .., tm−1, t

′) ̸= α. Therefore “reverse loops” should not
be taken into account when renormalizing P(0)

α since they always bring the system into a different
trajectory class 1.

It is then straightforward to generalize Eq.(10.2.3)

Pα(t, t′) = P(0)
α (t, t′) +

∫
dt2
δt

dt1
δt
Pα(t, t1)Σ+

α (t1, t2)P(0)
α (t2, t

′).

Borrowing some more terminology from field theory, we can regard the conditional probability
Pα as a sort of propagator of the class α. We observe that the “dressed” propagator is related to
the “bare” propagator P(0)

α by a relation very similar to the Dyson equation for the Green function
of interacting systems, where the loop probability Σ+ plays the role of the self-energy.

1We exclude the limiting case t′ = tn where the reverse and normal jumps occur at the same time.
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We write the loop probability Σ+(t1, t2) as the probability to perform a normal jump at time t1,
times the conditional probability to stay in the new trajectory class (α, t1), times the probability
to reverse jump at time t2.

Σ+
α (t1, t2) = p+α→(α,t1)

(t1)P(α,t1)(t1, t2)p−(α,t1)→α(t2). (10.2.3)

We stress that in Eq.(10.2.3) the conditional probability to stay in (α, t1) is “dressed” because we
have to allow for the possibility of “nested” sequences of jumps, e.g. of the type NJ+NJ+RJ+RJ,
in which the system jumps further away from (α, t1) and then comes back to it with reverse jumps
before t2.

Using Eqs.(7.5.8,7.6.2) we write

p+α→(α,t1)
(t1) = ∆+(t1)δt⟨a†a⟩α(t1); (10.2.4)

p−(α,t1)→α(t2) =
Nα(t2)|∆−(t2)|δt∫ t2
t

dτ
δtN(α,τ)(t2)

⟨a†a⟩α(t2). (10.2.5)

In the ratio of populations of the target and sources states, we switched to the continuum limit
and replaced the summation by an integration. An important point is that the integration in the
denominator runs from t to t2. The upper limit obviously follows from causality, since we can only
reverse at time t2 trajectories that underwent a normal jump from α before t2. The lower limit is
a consequence of the conditional probability Pα(t, t′): we condition the system to be in the state α
at time t and we have to only take into account trajectories that normal jumped from α after that
time.

The ratio of populations is essentially a ratio of probabilities, and both numerator and denomi-
nators can factorize into the probability to be in the state α at time t times the probability to stay
in α (or to jump into (α, τ) for the denominator):

Nα(t2)∫ t2
t

dτ
δtN(α,τ)(t2)

=
Pα(t, t2)∫ t2

t
dτ
δtPα(t, τ)p+α→(α,τ)(τ)P(α,τ)(τ, t2)

The denominator arises from the fact that the conditional probability of being in a trajectory
eligible to reverse jump is the sum over all times τ between t and t2 of the probability Pα(t, τ) to
propagate the state α from t to τ times the probability p+α→(α,τ)(τ) of jumping at time τ times the
probability P(α,τ)(τ, t2) to propagate in (α, τ) from τ to t2.

Substituting into Eq.(10.2.5) and Eq.(10.2.3), the integral in the denominator simplifies when
integrating over t1 ∫

dt1
δt
Pα(t, t1)Σ+

α (t1, t2) =

∫
dt1
δt
Pα(t, t1)p+α→(α,t1)

(t1)·

P(α,t1)(t1, t2)Pα(t, t2)|∆−(t2)|δt⟨a†a⟩α(t2)∫ t2
t dτ/δtPα(t, τ)p+α→(α,τ)(τ)P(α,)(τ, t2)

= Pα(t, t2)|∆−(t2)|δt⟨a†a⟩α(t2). (10.2.6)

This result is remarkable, as after integrating over the starting time of the loop, the specific
trajectory class into which the system jumps does not matter. This is a consequence of the fact
that all trajectories eligible to perform a reverse jump have the same probability to do so. Combining
Eq.(10.2.4,10.2.3) we obtain

Pα(t, t′) = P(0)
α (t, t′) +

∫ t′

t
dt2Pα(t, t2)|∆−(t2)|δt⟨ψα(t2)|a†a|ψα(t2)⟩P(0)

α (t2, t
′); (10.2.7)
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Pα(t, t′) = exp

(
−
∫ t′

t
dτ(∆+(τ)− |∆−(τ)|)⟨ψα(τ)|a†a|ψα(τ)⟩

)

= exp

(
−
∫ t′

t
dτ∆(τ)⟨a†a⟩α(τ)

)
.

(10.2.8)

Eq.(10.2.8) is particularly telling. It implies that the regions of non-Markovianity in the decay
rate renormalize the probability of staying in a certain trajectory class α. It is also similar to the
probability of staying in the excited state of a non-Markovian two level system (as obtained form
solving the master equation [201]); however, it shows that this simple expression for the probability
of staying in the same state is also valid for a generic many-body system, provided that the state
|ψα⟩ associated to the label α changes in time according to the unitary and jump evolutions.

10.2.3 Probability of a generic outcome

We now want to calculate what is the probability of performing a certain number of normal jumps
between an initial time t = 0 and a final time t.

Let us start from the case of one jump, in which we go from the class α = ∅ to the class α = (t1)

within a small time interval of width δt and centered around time t1. The probability P(t1)
∅ of ending

up in this state is then given by:

P(t1)
∅ (0, t) = P∅(0, t1)∆+(t1)δt⟨a†a⟩∅(t1)P(t1)(t1, t).

In other words the probability of the evolution realizing the outcome (t1) is given by the proba-
bility to not jump between 0 and t1, times the probability to perform a normal jump in a δt interval
around t1 times the probability to not jump between t1 and t and stay in the (t1) outcome.

We note that we can write ∆+(t1) as ∆(t1) since normal jumps only occur in the Markovian
regions of the evolution. In this sense we observe P(t1)

∅ (0, t) = (−∂t1P∅(t, t1))δtP(t1)(t1, t), or in
other words the probability to jump out of the ∅ outcome at time t1 is minus the time derivative
of the probability to stay into that outcome.

Generalizing the above, we write the probability to jump from outcome α at time t to outcome
(α, t1, t2, ..., tn) at time t′ by performing n jumps at times t < t1 < t2 < ... < tn < t′ as:

P(α,t1,...,tn)
(α) (t, t′) = P(α)(t, t1)∆+(t1)δt⟨a†a⟩(α)(t1)×
×P(α,t1)(t1, t2)× ...×∆+(tn)δt⟨a†a⟩(α,t1,...,tn−1)(tn)×

× P(α,t1,...,tn)(tn, t′);
(10.2.9)

P(α,t1,...,tn)
(α) (t, t′) =

n∏
j=0

P(α,t1,...,tj)(tj , tj+1)×
n∏
j=1

∆+(tj)δt⟨a†a⟩(α,t1,...,tj−1)(tj). (10.2.10)

with the identifications t0 = t and tn+1 = t′.
In the case of many decay channels – each with an associated jump operator as and decay rate

∆s(t) – we can write a vector of labels α⃗ = (α1, α2, ..., αnchannels), where each αs = (ts,1, ts,2, ...ts,ns)
describes the times at which the system undergoes a jump through channel s. Since the channels
are independent, the total propagator probability of no jump is the product of the propagator
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probability for each channel:

Pα⃗(t, t′) = exp

(
−
∫ t′

t
dτ
∑
s

∆s(τ)⟨a†sas⟩α⃗(τ)
)
. (10.2.11)

A similar generalization of Eq.(10.2.10) can be written down.

10.2.4 Advantages and limitations of the diagrammatic renormalization method

In this section we have shown that it is possible to obtain an analytic expression for the probability
of a non-Markovian system realizing a certain sequence α of normal quantum jumps and ending up
in the corresponding state |ψα⟩. This is a remarkable result, as it generalizes known results for the
dynamics of Markovian systems to non-Markovian many-body systems.

However, there are some limitations to the applicability of this formula. One limit is that the
results we presented are technically exact in the limit in which the system is able to jump an
infinite number of times. In fact, in writing the expression for the Σ+ loops and their corrections,
we assumed that the state in which the system jumps is again eligible to jump itself, which is not
the case if the system is only able to jump a finite number of times.

The comparison with the extreme example, in which the system may only jump once, shows that
our equations correctly predict the probability to perform zero jumps, see Eq.(B5) in Ref. [201], but
differ from the probability of performing one jump, see Eq.(B6) in [201]. However, this is not a fatal
issue, as our analytic results are more and more a good approximation as the maximum number of
jumps increases, and are essentially indistinguishable from the exact results when considering large
enough systems and long enough time evolutions.

Another practical issue is that applying Eqs.(10.2.9-10.2.11) to real system still generally requires
the knowledge of the quantum state of the system |ψα(t)⟩, which implies solving the dynamics of a
many-body system, which is exponentially complex in the system size. Note that in a usual non-
Markovian setting, the simulation of all possible trajectories is required, meaning the complexity
is still exponential in the system size and in the evolution time. However, there are some special
cases in which the physics of a system can be studied without needing to know the quantum state
of the system at all times; one of them is the case of the mapping of random unitary circuits into a
statistical model [145], which we analyze in detail in the next section.

10.3 Non-Markovian measurement induced transition

In this section we apply the results obtained in Sec.(10.2) to investigate the dynamics of the en-
tanglement and the transition induced by measurements in non-Markovian systems. We specialize
to the case of random unitary (Haar) circuits for a number of reasons. They have been extensively
studied in the literature, so there is an abundance of study cases to use for comparison; moreover,
random circuits can be mapped to a classical Potts model on which either analytical or Monte Carlo
calculations can be performed. And most importantly, the measurement protocol usually imple-
mented on such circuits is such that the exponent in Eq.(10.2.11) simplifies and does not contain
the quantum state of the system, greatly simplifying further analytical calculations.

10.3.1 Random Unitary Circuits

We consider a random unitary circuit similar to the model studied in Ref. [145]. The system is
composed of L q-dits, i.e. spins with a d-dimensional Hilbert space. Every time step the q-dits
evolve according to random unitary gates coupling the odd or even pairs alternatively, and then
undergo random local measurements, see Fig.(10.4). The unitary evolution does not affect the
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Figure 10.4: Diagram of a non-Markovian random unitary circuit. Layers of two-qudits
unitary gates (green rectangles) alternate with layers of local random measurements (red
crosses). Whenever the decay rate becomes negative (blue shaded region), no normal jump
measurements are allowed; this corresponds to a "frozen" layer where the Potts spins behave

ferromagnetically.

probability of being in a certain sequence α of quantum jumps in any way other than changing the
state of the system.

Similarly to Eq.(10.1.2), we describe the state of the system at time ti by a sequence of random
unitaries U and local normal quantum jumps a applied to the initial state:

|ψ(t)⟩ = C(t) |ψ⟩
||C(t) |ψ⟩ || ; (10.3.1)

C(t) = U(tn, t)a U(tn−1, tn)a...a U(0, t1) (10.3.2)

where C(t) is the circuit operator, α = (t1, ..., tn) and with the obvious generalization to multiple
channels of decay.

The probability PC of realizing a particular C depends on the probability PU
C associated to the

random unitaries and the probability PM
C of performing the sequence of normal jumps specified by

C. Note that PU
C and PM

C are independent, so we may only focus on the probability associated to
the quantum jumps, which is essentially a discretized version of Eq.(10.2.9).

We now specify the protocol for the measurement: we choose Kraus operators that have equal
weight and that constitute a resolution of the identity. For example, for each site we may have
d quantum channels, each corresponding to a projector on every state of the local Hilbert space
as = |s⟩ ⟨s| (for s = 1, ..., d); alternatively, we may have a continuous set of jump operators obtained
by transforming with random unitaries the projector on one of the states as = |s⟩ ⟨s|. We only
require that each jump operator in this set has an equal weight, i.e. ∆s = ∆. This is a crucial
assumption, since it simplifies the sum over the decay channels in Eq.(10.2.11):∑

s

∆s(τ)⟨ψ(τ)|s⟩⟨s|s⟩⟨s|ψ(τ)⟩ = ∆(τ)⟨ψ(τ)|
∑
s

|s⟩⟨s|ψ(τ)⟩ = ∆(τ) (10.3.3)

since
∑

s |s⟩⟨s| = I. With this simplification, the probability of no jump becomes independent of
the quantum state of the system, and it is possible to calculate it without having to study the
many-body dynamics of the system.
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10.3.2 Probability of a circuit realization

We discretize the evolution: for any measurement time ti we define pi = ∆(ti)δt. During the
Markovian regions ∆(ti) > 0 this is a real probability of performing a jump. During the non-
Markovian regions pi is negative and is not a physical probability, but still makes sense with the
interpretation that when pi < 0 there is no normal jump and there is an increase of the weight
associated to the no jump trajectory.

Indeed, the probability of performing no jumps on a certain site from time ti to time ti′ is
obtained by discretizing the propagator probability Eq.(10.2.11):

Pα(ti, ti′) = exp

(
−
∫ ti′

ti

dτ∆(τ)

)
→

i′∏
j=i

(1− pj). (10.3.4)

i.e. the probability to not perform any normal jump is given by the probability to not undergo
jumps at any of the intermediate times. Regions of non-Markovianity increase this probability,
which is intuitively and formally correct, since non-Markovianity makes information flow back into
the no jump outcome.

We now consider the probability of performing a normal jump and split it into two parts: one
associated to the probability of performing a jump and one associated to the weight of the trajectory
where the jump is as = |s⟩ ⟨s|:

∆+(ti)δt⟨a†sas⟩(ti) = pi||as |ψ(ti)⟩ ||2 = pi
||asC(t−i ) |ψ⟩ ||2
||C(t−i ) |ψ⟩ ||2

= pi
||C(t+i ) |ψ⟩ ||2
||C(t−i ) |ψ⟩ ||2

,

where C(t±i ) is the circuit operator immediately after/before the normal jump. We have used that
|ψ(ti)⟩ = C(t−i ) |ψ⟩ /||C(t−i ) |ψ⟩ || and asC(t−i ) = C(t+i ). We have split the probability associated to
the decay rate, i.e. pi = ∆(ti)δt, from the probabilities associated to the weight of the trajectory,
i.e C(t) |ψ⟩. We are now able to write the discretized form of Eq.(10.2.10).

We assume that the system evolves from time t0 = 0 to time tm = t, and that the circuit
operator C describes n normal jumps at times ti1 , ..., tin , no jumps at times tj ̸= ti1 , ..., tin and a
certain realization of random unitaries in between described by the probability PU

C . We can then
write the probability of realizing C associated to the quantum jumps as

PC = PU
C

∏
i ̸=i1,...,in

(1− pi)
n∏
a=1

pia
||C(t+ia) |ψ⟩ ||2
||C(t−ia) |ψ⟩ ||2

. (10.3.5)

The circuit operators between two successive jump times only differ by a sequence of unitary
operators: C(t−ia+1

) =
(∏ia+1

j=ia+1 Uj
)
C(t+ia). Since the unitaries do not change the norm of the state

we have ||C(t−ia+1
) |ψ⟩ || = ||C(t+ia) |ψ⟩ ||. Therefore, the product of the ratio of the norms simplifies

n∏
a=1

||C(t+ia) |ψ⟩ ||
||C(t−ia) |ψ⟩ ||

=
n∏
a=1

||C(t−ia+1
) |ψ⟩ ||

||C(t−ia) |ψ⟩ ||
=
||C(t−in+1

) |ψ⟩ ||2

||C(t−i1) |ψ⟩ ||2
,

which reduces to ||C(t) |ψ⟩ ||2 because ||C(t−in+1
) |ψ⟩ ||2 = ||C(t) |ψ⟩ ||2 and ||C(t−i1) |ψ⟩ ||2 = 1.
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Therefore we write

PC = ||C |ψ⟩ ||2PU
C

n∏
a=1

pia
∏

i ̸=i1,...,in

(1− pi); (10.3.6)

PC = ||C |ψ⟩ ||2PU
C P

M
C ;

PM
C =

L∏
l=1

 nl∏
al=1

plial

∏
i ̸=i1,...,inl

(1− pli)

 . (10.3.7)

Equation 10.3.7 is the generalization to the multiple sites case, with pli the probability for a
quantum jump to occur at site l at time ti.

The total probability is PC = ||C |ψ⟩ ||2PU
C PM

C . The first factor is the norm of the state after
applying the circuit operator, and accounts for the probability of the state to be eligible to perform
a jump. The second factor is the probability of a specific realization of random unitaries.

The third factor in the product is associated to the weight for the random measurements.
This crucial factorization allows us to separate the contributions that depend on the quantum
state (and that thus require exponentially complex numerical calculations) from the contributions
that depend on the decay rates of the quantum channels. In other words, the average over the
random measurements factorizes – as in the Markovian case – as the product of the averages over
measurements for each time of the evolution and for each site.

We reiterate that one important difference is that for the non-Markovian regions the probability
to perform a jump is zero (since no normal jumps can be performed). This is a consequence of
the fact that the state of the system is not affected by reverse jumps, in the sense that the final
quantum state is only determined by the sequence of normal jumps; the system only cares about
reverse jumps to the extent that they renormalize the probability of the system being in a certain
quantum state. Indeed, a second difference of the non-Markovian regions is that the probability to
not perform any jump is larger than one – meaning a renormalization of the no jump weight. While
the meaning of this probability being greater than one is apparently not very physical, this recipe
is formally correct and can be employed to map the system to a classical Potts model amenable to
Monte Carlo simulations.

10.3.3 Mapping to a Potts model

We use the formal mapping machinery of Ref. [145]. The n-th Renyi entanglement entropy of a
partition A of the system is expressed in terms of the free energy F of a replicated system where Q
replicas live on each site:

SAn =
n

n− 1
lim
Q→1

FA − F0

Q− 1
(10.3.8)

where the free energy is calculated averaging over PU
C P

M
C ;

F = − lnZ = − ln
∑
C
PU
C P

M
C . (10.3.9)

FA is calculated for boundary conditions (in the physical and replica space) dictated by the partition
A and the order n of the Renyi entropy, while F0 corresponds to a replica system with no partition of
the system. Without going too much into the details of the mapping (which are discussed extensively
in the literature [142, 145]), the 1+1 quantum model is mapped onto a 2+0 dimensional classical
model, where each site is associated to a permutation of the replicas. Thus the classical model is
essentially a Q!-states Potts model, where neighboring Potts spins are coupled via the unitary gates
or via the measurements.
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We can split the sum over unitaries and over measurements in Eq.(10.3.9). The sum over the
unitaries immediately factorizes into the sum over unitaries for each site [142, 145], yielding terms
proportional to the Weingarten functions. The sum over the random measurements also factorizes
as (Eq.(13) of [145]) ∑

C
PM
C =

∏
⟨j,l⟩

∑
gj ,gl∈SQ

Wp(g
−1
j (ti)gl(ti+1)). (10.3.10)

where SQ is the set of permutations of Q elements. The weight Wp is the average over the possible
outcomes of a random jump occurring on site j (associated to a Potts spin gj) at time ti and coupling
to the next neighbor site l at time ti+1 (with associated Potts spin gl).

The expression of Wp depends on the local Hilbert space dimension d, on the probability of
jumping pi and on whether the set of normal jump operators is a discrete – i.e. Mp = {I, a1, ..., ad}
with as = |s⟩⟨s| and weights {1 − p, p, ..., p} – or a continuous set of randomly generated projec-
tors Mp = {I} ∪ {

√
daU |U ∈ U(d)}, with aU = U †a1U and U a random unitary matrix. For

computational convenience we focus on the second option and find

Wp(g) = (1− pi)d|g| + pid
Q pi ≥ 0; (10.3.11)

Wp(g) = (1− pi)d|g| pi < 0 (10.3.12)

where |g| ≤ Q is the number of cycles in the permutation g.
The average over unitaries and measurements can be written in terms of the product over

triangular plaquettes of the integrated weight Jp(gi, gj ; gk).∑
C
PM
C PU

C =
∑

{gi∈SQ}

∏
⟨ijk⟩∈▽

Jp(gi, gj ; gk); (10.3.13)

Jp(gi, gj ; gk) =
∑
gl∈SQ

Wp(g
−1
i gl)Wp(g

−1
j gl)Wgd2(g

−1
l gk),

where Wgd2 is the Weingarten function that expresses the weight associated to the random unitary
evolution. In other terms, we integrate out the contribution of the unitary evolution in order to
obtain a reduced average over the random measurements only.

We remark that the factorizations Eqs.(10.3.10,10.3.13) only work if we want to calculate the
average of operators local in time and space; however this is the case for the entanglement entropy.

In the large d limit we have [145]

Jp(gi, gj ; gk) = e−Ei(g
−1
i gk)e−Ej(g

−1
j gk); (10.3.14)

Ei(g) = − ln

(
(1− pi)

(
δg +

δ′g
d

)
+ θpipi

)
, (10.3.15)

where θpi is equal to 1 for Markovian regions pi > 0 and equal to 0 for non-Markovian regions
pi < 0, and δg (δ′g) is one if g is the identity (a transposition) and zero otherwise.

Eq.(10.3.15) is the basis for our subsequent analysis. Given any decay rate ∆(t) we can com-
pute the inhomogeneous couplings between different sites on the Potts model. This allows us to
perform numerical Monte Carlo simulations as well as do a qualitative analysis of the effect of
non-Markovianity on the entanglement transition.

In particular we know from the Markovian case that low p are associated to a ferromagnetic
configurations of the Potts spins and to a volume law scaling of the entanglement, i.e. a linear
dependence of FA−F0 with the size lA of A. In fact, from Eq.(10.3.15) we observe that if spins are
aligned (i.e. g−1

i gk is the identity) the energy Ei vanishes while it is approximately Ei = − ln p when
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"Frozen" non-
Markovian 
region

Figure 10.5: Sketch of the time-dependent rate ∆(t) with the non-Markovian region
shaded in blue. This region corresponds to a ferromagnetic region in the Potts model,
(shaded in blue on the right). The Markovian regions (shaded in red in the left plot) allow

for paramagnetic regions in the Potts model, with neighboring spins not aligned.

they are different; thus, at low p, spins tend to align while at larger p paramagnetic configurations
with the spins aligned in random directions are possible.

In the non-Markovian regions, the energy is − ln(1 − pi) < 0 for aligned spins and infinite
otherwise (technically the energy is finite due to O(1/da) corrections, but still very large); therefore
regions of non-Markovianity are essentially strips of "frozen" spins all aligned to each other (see
Fig.(10.5)), which means that they favor a volume law entanglement. This is equivalent to saying
that memory effects do in fact slow down the effect of noise, and strengthen the role of coherent
dynamics.

Non-Markovian Monte Carlo – We now turn to the study of a prototypical non-Markovian
system.

As already mentioned in Sec.(7.7), we will use the decay rate ∆(t) that originates from a bath
whose spectral density is described by a Lorentzian centered around ω and with bandwidth Γ:

∆(t) = ∆0

[
Γ

ω
+ e−Γt

(
sin(ωt)− Γ

ω
cos(ωt)

)]
. (10.3.16)

This is a good approximation of a system of qudits, where each qudit level couples through its
occupation number to a cavity mode with detuning ω and bandwidth Γ.

The rate decays to ∆0Γ/ω over a timescale ∼ 1/Γ and has minima at ωt = 3π/2 + 2πn. The
first (and lower) minimum is negative for Γ/ω < 0.274, meaning that Γ sets the non-Markovianity
of the dynamics.

The normalization constant ∆0 depends on the interaction strength. We choose each discrete
time step in the Ly direction to correspond to ωt = 1/2. We then set ∆0 so that the probability
associated to the asymptotic value of ∆(t) is p

pi = p

[
1 + e−Γti

(
sin(ωti)

Γ/ω
− cos(ωti)

)]
. (10.3.17)
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I-a

II
I-b

III

I

II

III

Figure 10.7: Colormap of the energy Ei of each spin. Each panel shows lA = 0 or
lA = 20 for (a) p = 0.1, (b) p = 0.3, (c) p = 0.4, (d) p = 1. Lower energy corre-
sponds to aligned spins, i.e. ferromagnetic regions, while larger energy corresponds
to paramagnetic spins. The labels Ly in the vertical direction correspond to the time
direction in the physical system. a) The system is completely ferromagnetic and the
energy cost of having a boundary is clearly visible at the top of the right plot. b) The
system is still ferromagnetic at later times (with the energy cost of the boundary still
clearly visible) but small paramagnetic domains start to form at earlier times (when
the peak value is pi ∼ 0.3 ≳ pchom). c) The system is paramagnetic at early times since
p ∼ 0.4 > pchom contributing to the total energy, but the successive non-Markovian
region is highly ferromagnetic and confines paramagnetism to early times. d) At late
times pi ∼ pchom, causing paramagnetic domains to appear after the non-Markovian

region; the energy cost of the boundary is now small.

We remark that the value of pi in Eq.(10.3.17) cannot be immediately mapped to the measure-
ment probability p of the Markovian case. They can only be compared in a sensible way at large
times, where pi converges to a constant (and Markovian) measurement probability. We thus refrain
from calling pi explicitly a probability. However, the earlier times behavior of the non-Markovian
pi still affects the behavior of the system – as we shall see in detail – in a way that an analogy with
the Markovian case cannot really be made.

We also note that depending on p and Γ/ω, pi can exceed one for certain times. This may seem
weird, but is mathematically correct and corresponds to a coupling that favors a paramagnetic
phase, since it gives a zero energy for aligned spins and an energy ∼ − ln pi < 0 for paramagnetic
spins. This intuitively makes sense, since for very large pi – i.e. very large decay rates – the system
tends to be paramagnetic rather than ferromagnetic.

We perform Monte Carlo simulations for Γ/ω = 0.2, which means the rate is negative for
3.77 < ωt < 5.80. Thus for a system with Ly = 50 spins and ωti this means that the spins with
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8 ≤ iy ≤ 11 have pi < 0, i.e. experience a non-Markovian coupling. The non-Markovian region is
indicated with the label II in Fig.(10.7).

Figure 10.6: Behavior of the slope of the normalized
energy FA/⟨FA⟩lA with respect to lA as function of p. The
inset shows the slope of FA as function of p. The Monte
Carlo calculations were performed for Γ/ω = 0.2, Lx = 40,

Ly = 50 and lA = 0, 2, 4, ..., 20.

Our results are reported in Figs.(10.6,10.7).
We can immediately observe several similarities
and some differences with the Markovian case,
shown on Figs.(9.3,9.4).

The normalized slope 1
⟨FA⟩lA

dFA
dlA

drops from
very large values to smaller values (but non
zero) around p = pc1 ≈ 0.08; this corresponds to
an increase of the fluctuations and of the slope
dFA
dlA

. For p > pc2 ≈ 0.25 both slopes decrease
to zero, signalling an entanglement phase tran-
sition from volume to area law.

The strange phase between pc1 and pc2
corresponds to an emergence of paramagnetic
domains at earlier times, before the non-
Markovian region, indicated by the label I in
Fig.(10.7). Indeed, pc1 corresponds to a peak
value in the I-a region approximately equal to
pi ∼ 0.4, which is sufficient to turn param-
agnetic the bottom region at early times, see

Fig.(10.7b). Consequently the energy of the system increases, which explains the drop in 1
⟨FA⟩lA

dFA
dlA

,
and the system is more susceptible to different boundary conditions, thus explaining the increase
in dFA

dlA
. However, the value of pi at later times (region III in Fig.(10.7)) is still too small to turn

paramagnetic the top region, so that the system still exhibits a volume law behavior, as it is evident
by the boundary energy cost in Fig.(10.7c).

For larger values p ∼ pc2 also the late times regions of the system start to turn paramagnetic,
explaining the decrease of both slopes, see Fig.(10.6) and Fig.(10.7c). For p larger than pc2, the
entire system turns paramagnetic, except for the non-Markovian region which is constrained to be
ferromagnetic, see Fig.(10.7d).

We also notice that for p ≳ 0.15 the region I at earlier times exhibits two energy subregions
I-a and I-b, see Fig.(10.7c). These subregions are both paramagnetic, but I-a has a lower energy
because pi exhibits its peak in I-a; this large probability lowers the energy of the paramagnetic
phase. In I-b, pi decreases and eventually vanishes before becoming negative in region II; thus the
energy of the paramagnetic phase increases as pi decreases, explaining the different energy behavior
inside of region I.

The phase between pc1 and pc2 is still volume law despite exhibiting large energy fluctuations.
The width of this region is likely size dependent, since evolving the system for longer times would
suppress the influence of the paramagnetic region (I) and of the non-Markovian region (II) at early
times on the late times (III) region.

Indeed, the transition from volume law to area law is mostly determined by the late times
values of pi and only occurs at pc2 ≈ 0.25, similarly to the Markovian transition. This confirms the
intuition that the late times non-Markovian dynamics, when the rate is always positive ∆(t) > 0,
is equivalent to a Markovian dynamics.

An interesting result is that the volume law phase still survives even when the peak value of
pi becomes significantly larger than the Markovian critical probability. This occurs because while
the peak pi is large enough to turn paramagnetic the early times region (I), the successive non-
Markovian region (II) is always ferromagnetic and shields the rest of the evolution from the effects
of this large peak value.
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We conclude that, while non-Markovianity does not affect the volume law phase at late times,
when most of the dynamics has become Markovian, it stabilizes the volume law phase at early times
and protects it from regions of strong measurements, provided they occur before the non-Markovian
region.

We remark that while the numerical results obtained with our Monte Carlo simulations display
fluctuations, especially near the transition, they still provide a qualitative (and somewhat quan-
titative) picture of the Markovian and non-Markovian transition. Precision can be improved by
increasing the system size and the number of sampling steps, but this has a somehow high com-
putational cost, particularly since we have to utilize boundary conditions that make Monte Carlo
simulations slower compared to a system with periodic boundary conditions.
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Chapter 11

Measurement induced transitions in
non-Markovian free fermion ladders

In Sec.(10.3) we have analyzed the entanglement transition in system with a non-Markovian dissi-
pative processes. We investigated the entanglement in random unitary circuits by unravelling the
many-body dynamics and calculating analytically the effect of non-Markovianity on the probability
of dissipative measurements. This study is a step forward in the field of transition induced by
external baths, since most environments display memory effects and thus can be better described
by a non-Markovian dynamics.

In this chapter we study the non-Markovian entanglement transition using a fundamentally
different approach which can be better extended to many-body interacting systems. We reproduce
a non-Markovian dynamics by considering two coupled fermionic chains: the first one is the system
under cosideration, while the second one acts as a bath with a non-trivial dynamics. The bath chain
is also subject to a Markovian dissipative dynamics; thanks to the bath internal dynamics, which
introduces memory effects, the system chain is effectively subject to a non-Markovian dissipation.
By including explicitly the bath in our analysis, we pay a price in doubling the degrees of freedom,
but are able to numerically simulate the quantum trajectories of the dynamics of the system and
bath chain, which is purely Markovian. This approach is akin to the techniques exploiting an
auxiliary extension of the Hilbert space of the system [244, 245, 246, 247], which are also used in
quantum thermodynamics under the name of super-bath approach [248, 249, 250].

More specifically, we consider a model of free fermions with next neighbors hopping within
each chain and inter-chain hopping, see Fig.(11.1a). We assume the dissipative dynamics on the
bath chain to be given by local projective measurements of the particle number. Both unitary and
dissipative dynamics preserve the Gaussianity of the state of the system, thus allowing to express
all the relevant observables in terms of two-point correlation functions and to perform efficient
numerical simulations up to system sizes of hundreds of sites [251, 252, 165, 169, 253, 224, 162].

We study the evolution of both chains until a steady state is reached, and then integrate out
the bath chain, resulting in an effective non-Markovian dynamics for the remaining chain, see
Fig.(11.1b). We then consider suitable partitions of the system chain and compute the average over
the quantum trajectories of entanglement witnessing operators, such as entropy, mutual information
[139, 162, 254] and negativity [178, 255]. Relative to what is shown in Sec.(9.2) based on [169],
in the current situation the U(1) symmetry is absent in the inner chain and thus the scaling of
entanglement is not bound to be an area-law [186].

For example, we find that even in the extreme regime in which the bath chain is always subject
to measurements, the non-area-law phase still survives in the system chain. This is due to the
coupling and internal hopping structure of the two chains: for example the coupling between the
two chains can be weak enough that the system chain does not feel the measurements on the baths;
or the hopping in the bath is good enough at scrambling information after measurements, so that
entanglement loss in the system is very small.
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We study the size scaling of entanglement entropy in the non-area-law phase, and find that it
exhibits a logarithmic scaling compatible with a conformal field theory phase. At larger values of
the bath chain hopping we observe linear corrections, which are likely due to a finite size effect and
not an indicator of a volume law phase. In fact, an analysis of the mutual information indicates the
presence of long-range correlations for all values of the bath chain hopping, which is not compatible
with a volume law phase.

We also study the regime where the measurement probability is smaller than one. This case is
fundamentally different, as the system chain is always in a mixed state. Thus the entropy and the
mutual information are no longer good observables to study entanglement, as they also track classical
correlations. We thus employ the fermionic negativity [223, 224, 225] to perform an analysis of the
phase transition as function of the measurement probability. We find that the area law disappears
for sufficiently weak measurements, and that the non-area-law phase exhibits a scaling behavior
qualitatively similar to that of the entanglement entropy, with a mixture of linear and logarithmic
contributions. Since in this case the negativity is the only observable at our disposal, we cannot
attribute in a definitive way its scaling behavior to one scaling or the other (even if, in certain
regimes, a volume scaling appears considerably more likely).

We then study how much the dynamics of the system is non-Markovian using already tested
non-Markovianity measures [193, 192, 256, 257, 189, 258, 259, 260, 261, 262, 195, 191]. This analysis
is quite complex to perform as we need to use exact diagonalization techniques and simulate the
dynamics many times, and thus the maximum system sizes that we can consider are limited. We
find that the dynamics is non-Markovian in all the regions of the phase diagram as a function of
the system and bath parameters, and that the degree of non-Markovianity changes and displays a
pattern similar to that of the entanglement phase. In particular, we observe that a stronger degree
of non-Markovianity is associated to a larger entanglement within the system.

11.1 The model

Our goal is to study a model whose partitioning into a bath component and a system component
can give us insights into the non-Markovian dynamics of the system component. We focus on a
model of two coupled chains of free and spinless fermions, with an approach that may be reminiscent
of those based on doubling the Hilbert space for non-Markovian systems [244, 245, 246, 247]. We
consider periodic boundary conditions so that the geometry is that of a circular ladder. The legs of
the ladder are the intrachain hoppings, while the rungs represent the interchain coupling, as shown
in Fig.(11.1a). The outer chain is the bath, while the inner chain is the system under study.

The ladder is at half filling 1 and evolves with a stroboscopic dynamics of time period τu. Each
cycle is constituted by a unitary evolution that lasts for the entire period τu and is governed by
the Hamiltonian Ĥ, and by projective measurements of the particle occupation on the outer chain,
that occur at the end of the cycle. This simulates a non-Markovian dissipation when the degrees of
freedom of the outer chain are traced out, pictorially represented on Fig.(11.1b).

The model Hamiltonian governing the unitary part of the evolution during time τu is

Ĥ =
∑
i,σ

tσ ĉ
†
i,σ ĉi+1,σ + t12

L∑
i=1

ĉ†i,1ĉi,2 + h.c., (11.1.1)

where ĉ†j,σ, ĉj,σ are the fermionic creation and destruction operators on site j of chain σ = 1, 2. We
impose periodic boundary conditions as ĉL+n,σ = ĉn,σ.

1Note that the total number of fermions in the ladder is conserved, but the number of fermions in each chain can
change during the evolution.
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p

t2

σ=2

(a)

A1

A

(b)

Figure 11.1: (a) A pictorial representation of a fermionic ladder with the periodic
boundary conditions. The tunneling amplitude within the outer (σ = 2) and the inner
chain (σ = 1) is t2 and t1, respectively. t12 is the inter-chain tunneling amplitude. The
red arrows indicate the temporally and spatially random projective measurements of
the particle occupation at the corresponding sites. p is the probability of performing
such measurement. (b) After integrating out the degrees of freedom of the outer
chain, the inner chain is partitioned into segments {Aj}. The residual correlations
between outer and inner chain is pictorially represented by dashed blue lines. The size
and location of {Aj} segments can be arbitrary. Here we show a tri-partition of the
inner chain into segments A1, A2 and the rest of the chain, labeled as B throughout

the paper.

The Hamiltonian can be diagonalized in Fourier space, where it is written as

Ĥ =
∑
k

ψ̂†
kHkψ̂k; Hk =

(
2t1 cos k t12
t12 2t2 cos k,

)
(11.1.2)

with ψ̂k ≡
(
ĉk,1
ĉk,2

)
and ĉk,σ =

∑
j e

−ijkĉj,σ/
√
L.

The unitary evolution operator over one cycle factorizes as Û =
⊗

k Ûk, where Ûk = e−iτuHk is
the evolution operator on the subspace with momentum k:

Ûk = e−it cos kτu

[
cos

(√
t212 + δ2 cos2 kτu

)
− i t12σ

x + δ cos kσz√
t212 + δ2 cos2 k

sin

(√
t212 + δ2 cos2 kτu

)]
,

(11.1.3)

where t = t1 + t2 and δ = t1 − t2. The identity and the Pauli matrices σx,z operate in the chain
index space. We work in the units of ℏ = 1 and fix t1 = 1.

From Eq.11.1.3 we recognize the periodic structure of Ûk in t12. In particular, we see that
only the term proportional to σx couples the two chains. Therefore when t12 = 0 the two chains
are decoupled, as expected. This also occurs when sin

(√
t212 + δ2 cos2 kτu

)
= 0, which in general

cannot be satisfied at once for all values of k. However, when δ = 0 (i.e. when the intrachain
hoppings are equal), the decoupling condition reduces to t12τu = nπ showing the periodicity in t12
of the dynamics on the special line t2 = t1. For small values of δ around this special line, the two
chains are “quasi-decoupled” for t12τu ≈ nπ, n ∈ Z in the sense that the off-diagonal matrix elements
in Ûk are very small for every k.

Since the Hamiltonian is quadratic, the Gaussianity of the state is intact during the unitary



152 Chapter 11. Measurement induced transitions in non-Markovian free fermion ladders

evolution and Wick’s theorem is applicable. After a time τu, the unitary evolution of the state
|Ψ(t)⟩ → |Ψ(t + τu)⟩ = Û |Ψ(t)⟩ is interrupted and the system interacts with a local measuring
apparatus. The random local measurements occur within a very short time, so that they may be
considered instantaneous. The local particle occupation number on the outer chain, i.e. n̂i,2 =

ĉ†i,2ĉi,2, is randomly measured with probability p for each site of the outer chain.
In general, the projective measurements can spoil the Gaussianity of the state, however the

type of the measurements that we consider does not [169]. This allows us to extract all relevant
information regarding the state of the system from the two-point correlation matrix Dij,σσ′(t) =

⟨Ψ(t)|ĉ†i,σ ĉj,σ′ |Ψ(t)⟩. During the measurement process, the correlation matrix changes according to
the following protocol:

1. Extract a random number pl ∈ (0, 1] for each site l in the top chain. If pl ≤ p then the
measurement is performed, otherwise the site is left intact.

2. If the measurement has to be performed, extract a second random number ql ∈ (0, 1].

3. If ql ≤ Dll,22 = ⟨c†l,2cl,2⟩, then the operator n̂l,2 is applied to the state |Ψ⟩ → n̂l,2|Ψ⟩ which
results into the following change of the correlation matrix

Dij,σσ′ → Dij,σσ′ + δilδjlδσ2δσ′2 −
Dil,σ2Dlj,2σ′

Dll,22
(11.1.4)

4. If ql ≥ Dll,22, then the operator 1− n̂l,2 is applied to the state which results into

Dij,σσ′ → Dij,σσ′ − δilδjlδσ2δσ′2 +
(δil,σ2 −Dil,σ2)(δlj,2σ′ −Dlj,2σ′)

(1−Dll,22)
(11.1.5)

After the measurement process is complete, the cycle of unitary evolution and measurements is
repeated for a number of times tst.

11.2 Measurement induced transition

To investigate the properties of the entanglement transition, we unravel the dynamics of the system
by using the quantum trajectory approach [196, 197, 198]. Along each quantum trajectory α the
system evolves with a circuit operator Ĉα given by the sequence of unitaries and measurement
operations. Different trajectories α and α′ differ from each other by the location and time of the
measurements. We start from an initial state of the system |Ψ(0)⟩ with a random distribution
of particles and let the system evolve along some trajectory α. After reaching the steady state
|Ψα(tst)⟩ = Ĉα|Ψ(0)⟩, we calculate the expectation value of some operator O on the αth trajectory
as ⟨O(α)⟩tst = ⟨Ψ(0)|Ĉ†

αÔĈα|Ψ(0)⟩. For each trajectory, the corresponding observable is averaged
over next m timesteps as

⟨⟨O(α)⟩⟩tst =
1

m

m∑
s=1

⟨O(α)⟩tst+sτu . (11.2.1)

This process is repeated for Ntraj trajectories, yielding the steady state trajectory averaged
value of operator O

O =
1

Ntraj

Ntraj∑
α=1

⟨⟨O(α)⟩⟩tst . (11.2.2)

Throughout this paper, we drop the notation for additional averaging over tavg times and fix m = 5
for all observables.
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11.2.1 Regime of persistent measurements

We first consider the limiting case of persistent measurements, i.e. p = 1, which corresponds to
always measuring every site of the outer chain. In such regime, the state of the inner chain is always
pure, because at every round of measurements the state is separable as the product of the state on
the outer chain and the state on the inner chain. Thus, upon tracing out the outer chain we obtain
a pure state for the inner chain, and we can use the entanglement entropy as a true measure of
entanglement within the inner chain, since it only carries quantum correlation and does not include
any classical contribution. This is not true anymore in the p < 1 case, where the state is not
separable, and after integrating out the outer chain degrees of freedom we obtain a mixed state for
the inner chain.

Thus in this section, we employ the entanglement entropy and the mutual information as en-
tanglement measures.

When calculating the bipartite entanglement entropy, we choose A = A1 and A2 = ∅ (see
Fig.(11.1b) ), and divide the system into A and its corresponding complement segment Ā = B. The
von Neumann entanglement entropy of subsystem A is defined as

SA = −Tr (ρA log ρA) , (11.2.3)

where ρA = TrBρA∪B, TrB being the trace over the degrees of freedom of the complement subsystem
B.

The Gaussianity of the state of the system allows us to extract the entanglement properties
along some trajectory α at the steady state directly from D(α)

ij,σσ′ = D(α)
ij,σσ′(tst):

S(α)A (tst) = −
∑
λ
(α)
A

[
λ
(α)
A log λ

(α)
A +

(
1− λ(α)A

)
log
(
1− λ(α)A

)]
(11.2.4)

where λ(α)A are the eigenvalues of the reduced correlation matrix TrBD(α)
ij,σσ′(tst). In Appendix (A)

we study in detail the convergence of S(α)A to the steady state as function of tst for various system
sizes.

The trajectory averaged steady state entanglement entropy is:

SA =
1

Ntraj

Ntraj∑
α=1

1

m

m∑
s=1

S(α)A (tst + sτu). (11.2.5)

In Appendix (B) we study the convergence of SA as function of the number of trajectories for
various system sizes. We find that convergence is typically achieved for tst = 100τu and Ntraj = 150,
so that we employ these values throughout the rest of the paper, unless stated otherwise. For
simplicity, we set τu = 1 for the rest of the paper.

The mutual information between two subsystems A1 and A2 quantifies the correlations between
them. It is defined as IA1,A2 = SA1 +SA2 −SA, where A = A1 ∪A2. The quantity of interest is the
trajectory averaged steady state mutual information:

IA1,A2 = SA1 + SA2 − SA, (11.2.6)

following the definition Eq.(11.2.5). Various known scaling forms of the entanglement entropy and
of the mutual information are summarized in Tbl.(11.1).
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SL/2(L) ∼ IL/4(L) ∼ IL/8(L) ∼
Area-law const> 0 0 0
CFT log(L) const> 0 const> 0

Volume-law L L1/3 0

Table 11.1: Known scaling behavior of the bipartite entanglement entropy SL/2,
and of the mutual information IL/8 and IL/4 as function of L for the area-law phase,

for the critical (CFT) phase and for the volume-law phase [140, 162, 254].
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Figure 11.2: (a) Scaling of SlA with respect to the partition size lA, for t2 = 1 and
L = 128. Here the error bar obtained from the 95% confidence interval is smaller
than the line width. (b) Colour plot of δS = 1− SL/4/SL/2 as a function of t12 and
t2 with L = 16. The red and blue arrows correspond to the values of t2 and t12 shown

in panel (a), with the corresponding color labeling.

Entanglement Entropy

In this subsection we report the numerical results for the entanglement entropy.
Some of the features of SA can already be understood from the properties of Eq.(11.1.3). As al-

ready explained in Sec.(11.1), at the resonance t1 = t2, a shift of the transverse tunneling amplitude
t12 → t12 + nπ/τu (n ∈ Z) leaves the unitary evolution operator invariant (up to a sign)

Ûk

(
δ = 0, t12 +

nπ

τu

)
= (−1)nÛk (δ = 0, t12) . (11.2.7)

We expect the entanglement entropy of the system chain to have the same periodic behavior. The
σx term in Ûk, Eq.(11.1.3), is responsible for mixing and entangling the degrees of freedom of the
two chains; it vanishes for t12 = nπ and is maximum for t12 = (n + 1/2)π. When the two chains
are decoupled, the entanglement in the inner chain grows thanks to the scrambling action of t1 and
is insensitive to the measurements in the outer chain. Hence, we expect the non-area-law phase
to still persist in the vicinity of t12 = nπ and t1 = t2. On the contrary, for t12 = π/2 + nπ the
coupling between the chains is maximum, increasing the sensitivity of the entanglement within the
inner chain to measurements in the outer chain. In this regime, the area-law emerges.

These considerations are confirmed by the numerical simulations. We calculate the entangle-
ment entropy S lA as function of the partition size lA, see Fig.(11.2a). In all figures, the error bar
corresponds to a 95% confidence interval obtained from the distribution of SlA over trajectories (see
Appendix B); if not visible, it is smaller compared to line width or symbols.

For t12 = π/2 we expect an area-law phase: the entanglement saturates quickly with lA and
shows a nearly flat behavior. On the other hand for t12 = π we do not expect an area-law and in
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Figure 11.3: The trajectory averaged entanglement entropy for lA = L/2, for vari-
ous system sizes and tunneling amplitude t2, with t12 = π/2 fixed, with logarithmic

(a) and linear (b) scales

fact S lA exhibits a dome shape reminiscent of volume law phases.
In Fig.(11.2b) we plot a colormap of δS = 1−SL/4/SL/2 as function of t12 and t2. This quantity

vanishes when the entanglement obeys an area-law (because S lA behaves constantly in lA), while
it is non zero for non-area-law phases, and is thus a good indicator to distinguish between the
two phases. The periodical structure of area and non-area-law phases, due to the periodicity of
Eq.(11.2.7), emerges in a very clear way in the colormap.

We now characterize more in detail the non-area law phase. In Tbl.(11.1) we report the scaling
behaviors of the bipartite entanglement entropy SL/2, and of the mutual information as function of
the system size L, for different types of phases. These scaling behaviors can be used to probe the
features of the non-area law phase and distinguish between volume-law scaling and critical (CFT)
behavior (which has a logarithmic scaling).

We vary t2 along the fixed line t12 = π/2, and study the scaling with L of SL/2, which we
report in Fig.(11.3). Based on Fig.(11.3), we see that the entropy exhibits different behaviors with
changing t2. In particular, SL/2 displays a clear logarithmic scaling for t2 ∼ 1.5÷3, while its scaling
seems more linear (i.e. volume law) in L for large t2, see Fig.(11.3), respectively.

In order to quantify the different behaviors, we fit our results with the ansatz

SL/2 = γL+
c

3
log(L) + β (11.2.8)

within a range Lmin ≤ L ≤ Lmax, for different ranges [Lmin, Lmax]. We calculate γ and c and
compare γLmax with c/3 lnLmax. We observe a crossover between the logarithmic contribution
(dominant at small t2) and the linear contribution, which dominates at larger t2 but is very small
below a threshold value of t2. The detailed results and plots are reported in Appendix C. However,
as we increase for Lmax, both the threshold for γ and the crossover value of t2 increase, suggesting
that the logarithmic scaling is the dominant contribution in the thermodynamic limit and that the
presence of linear corrections is a finite size effect.

In order to assess whether this is an artifact of boundary effects from which the entanglement
entropy suffers, we also consider the mutual information, where finite size effects are less prominent.

Mutual Information

In this subsection, we study the mutual information to further investigate the non-area regime.
We look at the behavior of IL/4, i.e. the mutual information between diametrically opposing

subsystems A1 and A2 with lA1 = lA2 = L/4, and plot its behavior in Fig.(11.4a). Comparing
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Figure 11.4: The trajectory averaged mutual information for various system sizes
and t2, for lA = lB = l, with l = L/4 for (a) and l = L/8 for (b), with fixed t12 = π/2.
For the sake of comparison with expected volume law scaling, the inset on panel (a)

shows the scaling of IL/4 on L1/3 scale.

Tbl.(11.1) and Fig.(11.4a), the behavior of IL/4 is clearly consistent with an area law for t2 = 1.5

and with a CFT phase for t2 ≲ 3.0. At larger t2, IL/4 does not saturate to a constant, but keeps
increasing. This is compatible with a CFT phase for which the saturation size of IL/4 is larger than
the sizes we can access, but does not completely exclude a volume law phase for which IL/4 ∼ L1/3.

Another useful witness of a phase transition is the behavior of IL/8, i.e. the mutual information
between diametrically opposing subsystems A1 and A2 with lA1 = lA2 = L/8. IL/8 vanishes in the
area and volume law phases, and is enhanced at the critical point, due to long-range correlations
developing between the subsystems [140, 143]. As shown in Fig.(11.4b), IL/8 is very close to zero
for t2 = 1.5, indicating an area law. For t2 ≲ 3.0, IL/8 saturates to a constant values, thus agreeing
with the presence of a CFT phase. Similarly to IL/4, the value of IL/8 keeps increasing as t2 gets
larger. This is not compatible with a volume law phase, suggesting that also at large t2 the system
is in a CFT phase, but due to stronger finite size effects the entanglement entropy displays a linear
scaling contribution and the mutual information saturates to values of L larger than the system
sizes we can access.

In order to better discriminate the presence of an underlying CFT description of the phase, we
study the dependence of the mutual information on the cross ratio η. Suppose that the system of
fixed size L is bipartitioned into two subsystems of length lA and lB, with the boundaries of the lA
segment located at sites x1 and x2 and the boundaries of segment lB located at x3 and x4. The
cross ratio for such a bipartition is defined as η = x12x34

x13x24
, with xij = L/π sin (π|xi − xj |/L). In a

CFT regime, the mutual information collapses onto a single line and for small cross ratios shows a
power-law growth, i.e. I(η) ∼ η∆.

The inset in Fig.(11.5a) shows the behavior of the trajectory averaged steady state mutual
information with respect to η for L = 64. The data points for η ≪ 1 collapse onto a single line for
t2 = 1.5 and for t2 = 3.0, but in the first case they show a larger spread.

In order to reduce the fluctuations due to the spread of the data points and perform a fit for
∆, we restrict our analysis to the special case of diametrically opposite segments |A| = |B| ∼ √ηL,
for which IA,B ∼ η∆. The fitted data for L = 128 in Fig.(11.5a) would suggest that the t2 = 3 and
t2 = 5 regimes correspond to a CFT. We observe that for these regimes, the scaling exponent ∆
is very close to 1. For t2 = 1.5 the data points have larger deviation from the η∆ curve at larger
η, meaning that the fit for ∆ is not very reliable. In order to obtain a more precise results in the
latter case, computationally costly simulations with a larger number of trajectories are needed. By
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Figure 11.5: (a) Trajectory averaged mutual information with L = 128, with fixed
t12 = π/2 and t2 = 1.5, 3 and 5, for lA = lB and rAB = L/2. The red dashed lines
correspond to ∼ η∆ fit along the data-points. The fitting curve is I(η) = a(ebη

c−1)d,
which for η ≪ 1 reduces to I(η) ≈ abdηcd and thus ∆ = cd. The inset shows the
mutual information for L = 64, for every tripartitions, with t12 = π/2 and t2 = 1.5
and 3. The collapse of the data points onto a single curve is evident for smaller values
of η and t2 = 1.5, while there is a significant spread at larger η or for t2 = 3. (b) The

scaling behavior of ∆ exponent, for t12 = π/2 and t2 = 3 and 5.

calculating ∆ for various t2 and system sizes Fig.(11.5b), we see that ∆ → 1 for the regimes far
away from the area-law phases (t2 = 3 and 5).

Thus our analysis points to the presence of a CFT phase for all values of t2 ≥ 1.5. The linear
scaling of the entanglement entropy at large t2 seems to be a finite size effect, since the presence of
a volume law phase is in contradiction with the large long-range correlations indicated by the large
values of IL/8. This behavior is reminiscent of what found in [162], where the entanglement entropy
displays linear finite size corrections below a saturation size L that depends on the measurement
rate.

However, without access to larger system sizes we cannot definitively exclude a volume law phase.
We point out that for a single free fermion chain, the underlying unitary dynamics is expected to
contribute logarithmically [152] – indeed the ground state of the unmonitored chain is a CFT phase
– so that one would expect to observe an area-to-log transition. This is no longer guaranteed for a
ladder, where the entanglement entropy within one leg may scale linearly with size.

We also remark that the presence of bigger long-range correlations at larger t2 makes intuitively
sense. In fact, when t2 is large, information spreading in the outer chain is fast, meaning that a
local measurement can still affect the neighboring sites, and the range of this effect increases with
t2. In other words, the time correlations between measurements due to the internal dynamics of the
bath chain translate into space correlations at the level of the system chain. In a sense, this can be
interpreted as non-Markovian effects inducing long-range correlations within the system chain.

11.2.2 Regime of sporadic measurements

For measurement probabilities that are smaller than one, the Von Neumann entropy and the mu-
tual information are not valid measures of quantum entanglement, since they also include classical
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correlations, given that the reduced state of the inner chain is now mixed.
To properly quantify the entanglement properties of the inner chain, we use the logarithmic

fermionic negativity [223, 224, 225], not to be confused with the logarithmic negativity, which is
used for systems of commuting particles. Negativity is an entanglement monotone for mixed states,
whose bosonic version has already found use in the context of measurement induced transitions [178,
255].

Suppose the inner chain, described by the corresponding reduced density matrix ρsys, is further
bipartitioned into A and B (as in Fig.(11.1a) with A = A1 and A2 = ∅). The logarithmic fermionic
negativity EA of subsystem A is defined as

EA = logTr|ρT̃Asys|, (11.2.9)

with
ρT̃Asys = ρTAsys(−1)FA , (11.2.10)

where ρT̃Asys and ρTAsys are the twisted and untwisted partial transpose of the reduced density matrix,
respectively. Both operations are performed only on the A sub-system, leaving B intact. FA is the
number of fermions in the sub-system A.

Thanks to the Gaussianity of the state, the fermionic logarithmic negativity can be extracted
from the correlation matrix D [263, 264]. Since in our model ⟨c†j,σc

†
j′,σ′⟩ = 0 for all times, the

computation of the negativity is simpler than in Ref. [223] and the passage to the Majorana
fermions can be avoided. Given a reduced correlation matrix Dsys of an entire inner chain, we
define (Γsys)ij,σσ′ = 2(Dsys)ij,σσ′ − δijδσσ′ . For a bipartition of the inner chain to A and B, the
(Γsys)ij,σσ′ matrix is expressed as

Γsys =

(
ΓAA ΓAB
ΓBA ΓBB

)
, (11.2.11)

where each block corresponds to the correlations between the segments indicated in the subscript.
From the block structure of Γsys, we introduce the transformed matrices

Γ± =

(
ΓAA ±iΓAB
±iΓBA −ΓBB

)
(11.2.12)

and
Γ∗ =

1

2

[
1− (1 + Γ+Γ−)

−1(Γ+ + Γ−)
]
. (11.2.13)

Using these matrices, the calculation of the Fermionic negativity is straightforward

EA1 =
∑
j

[
ln
(√
µj +

√
1− µj

)
+

1

2
ln
(
1− 2λj + 2λ2j

)]
, (11.2.14)

where µj and λj are the eigenvalues of Γ∗ and Dsys, respectively.
We calculate the logarithmic fermionic negativity for the steady state and average it over different

trajectories, yielding EA.
We have analyzed the scaling properties of the fermionic negativity, for fixed system size L = 64

and different values of p and t2, shown in Fig.(11.6). Figure (11.6a) corresponds to the fine-tuned
resonance regime t2 = 1 and t12 = π/2. The peak of the negativity at lA = L/2 is reduced as the
measurement probability p increases and the curve is progressively flattened out. This behaviour is
expected, since for t1 = t2 and t12 = π/2 the two chains exhibit maximum coupling and thus, the
entanglement content within the inner chain is reduced when the outer chain is frequently measured.
The flattening of E lA for larger p indicates the onset of the area-law regime.
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Figure 11.6: Figures show the scaling of E lA with respect to lA with L = 64, for
various values of p.

Figure (11.6b) corresponds to the case of parameters far away from the resonant regime. Con-
trary to the previous case, now the peak of the negativity becomes larger as p increases. This
surprisingly counterintuitive behavior can be explained in terms of entanglement monogamy [230,
231, 232]. The relatively large value of t2 quickly spreads the entanglement throughout the outer
chain, before the next measurement occurs, while the coupling between the degrees of freedom of the
inner and outer chains, is maximal. For low measurement probability, more entanglement is spread
within the outer chain and between the outer chain and the inner chain, leaving less entanglement
available to be distributed within two partitions of the inner chain, which thus shows a lower value
of the fermionic negativity. This occurs because the total amount of entanglement that can be
shared within a tripartite system (in our case the outer chain and two partitions of the inner chain)
is limited, so that the more information two subsystems share with the third subsystems, the less
information they will share after tracing it out. Conversely for large p, the entanglement between
the two chains is smaller due to frequent measurements. This means less information is discarded
when performing the partial trace over the outer chain, and more entanglement content is shared
within the inner chain.

Similarly to what was done for the entanglement entropy in Fig.(11.2), we extract the phase
diagram of the system for p < 1. We characterize the phases using δE = 1− EL/4/EL/2 as function
of t12 and t2, and find that again a periodic structure of the phase diagram emerges Fig.(11.7). For
smaller p, the faint remnants of the area-law lobes are still present. As p is increased, these lobes
become more prominent and visible.

We then study the scaling of EL/2 for various values of p and t2, which shows different scaling
properties. For p = 0.75 we clearly see an area law behavior at small t2 and a logarithmic behavior
at larger t2; the area law at t2 = 1.5 disappears for p = 0.25, in agreement with Fig.(11.7). We
also observe that for large t2 ∼ 5÷ 10, the negativity exhibits a linear behavior at small sizes and
a seemingly logarithmic behavior at large sizes L ≳ 128. To confirm this claim, we fit the data
along EL/2 = c/2 ln(L) + γL + β [223] curve and extract the corresponding coefficients. Figures
(11.8b,d,f) show the behavior of γLmax and c/2 ln(Lmax) for different fitting ranges (with Lmax the
maximum size of each range). The plot show that the logarithmic contribution clearly dominates
for small t2, while it is comparable with the linear term for large t2; however, increasing the sizes
in the fitting range, the logarithmic contribution increases faster than the linear one at all values
of t2. This suggests that the linear contribution is a finite size effect, which is stronger at small L
and large t2 but becomes negligible as larger and larger system sizes are considered. This behavior



160 Chapter 11. Measurement induced transitions in non-Markovian free fermion ladders

0 π
2

3π
2

5π
2

t12

5

4

3

2

1

0

t2

0 π
2

3π
2

5π
2

t12

0 π
2

3π
2

5π
2

t12

0.0

0.1

0.2

0.3

δE

(a) (b) (c)

Figure 11.7: Color-maps of the negativity difference δE = 1−EL/4/EL/2 for L = 16,
with p = 0.25 in panel (a), p = 0.5 in panel (b) and p = 0.75 in panel (c).

is qualitatively similar to what we found for the p = 1 case, confirming the rich variety of phases
present in this model.

The trend of the logarithmic and linear contributions with the range of the fit and an analogy
with the behavior of the entanglement entropy, suggest that the linear contribution at large t2 is
due to finite size effects. However we cannot make a definitive claim and exclude completely a
volume law phase, since we only have the negativity at our disposal to quantify the entanglement,
and cannot cross-check it with a second observable such as the mutual information for the p = 1
case.

11.3 Quantifying the non-Markovianity of the dynamics

In this Section we assess how non-Markovian the dynamics of the inner chain is, and we show that
the model we study is indeed a good platform to simulate non-Markovian systems.

In order to quantify the degree of non-Markovianity, we use the measure N (W) defined in Ref.
[192], where W is a dynamical map acting in the space of density matrices such that W : ρ(0) →
ρ(t) = W(t)ρ(0). Here W may represent for example the map generated by a master equation
ρ̇ = Lρ, such that W(t) = eLt.

We measure the degree of non-Markovianity by tracking the temporal change of the trace dis-
tance, introduced in Sec.(7.7). The calculation of N (W) is demanding, since it involves calculating
the distance between density matrices, and the Gaussian state formalism employed in the previous
sections cannot be applied. Moreover, calculating the maximum over the pairs of initial density
matrices, means sampling a space whose dimension scales exponentially with the size of the system.

We use exact diagonalization (ED) techniques to numerically simulate the dynamics of the
model defined in Sec.(11.1). We calculate the evolution of the total density matrix of the two chains
according to the Lindblad master equation that results from averaging over trajectories Eqs.(11.1.3-
11.1.5). Since we already calculate the average dynamics, we do not need to perform the evolution
over different trajectories and then average. We choose L = 4 and for each time step we trace out
the outer chain in order to obtain the density matrix of the inner chain as function of time. We
sample over a number of pairs of random initial density matrices Npairs ∼ 100. This sampling is the
largest source of fluctuations in our simulations: especially for small values of non-Markovianity,
the number of initial pairs that we need to sample to get a non zero value is rather large – as it
scales exponentially with the size of the system.

Our results are reported in Figs.(11.9,11.10). In Fig.(11.9) we plot the color maps of N (W) and
Nnorm(W) as function of t2 and t12 for p = 1. Here we have defined the normalized non-Markovianity
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Figure 11.8: Panels (a,c,e) correspond to the trajectory averaged fermionic negativ-
ity for lA = L/2, for various system sizes, tunneling amplitude t2 and measurement
probability p. The value of the inter-chain tunneling amplitude is fixed to t12 = π/2.
The insets correspond to t2 = 10 regime. Panels (b,d,f) are the plots of γLmax and
c/2 ln(Lmax) versus t2 tunneling amplitudes. The points is extracted from fitting the

data along EL/2 = c/2 ln(L) + γL+ β curve.

measure Nnorm(W) by dividing the integral over the regions of non-Markovianity with the integral
over time of |σ| and then maximizing over the pairs of initial density matrices, i.e.

Nnorm(W) = max
ρ1,2(0)

∫
σW>0 dtσW(t, ρ1,2(0))∫
dt|σW(t, ρ1,2(0))|

(11.3.1)

The integral of |σ| is typically of order one, so that N (W) and Nnorm(W) have usually the same
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Figure 11.9: (a) Colormap of the non-Markovianity measure N (W) for the process
defined by the mapW(t), as function of t2 and t12 for probability measurement p = 1
and for system size L = 4. (b) Colormap of the normalized non-Markovianity measure

Nnorm(W) calculated for the same parameters of (a).
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Figure 11.10: Colormap of the non-Markovianity measure N (W), as function of t2
and t12, calculated for system size L = 4 and for measurement probabilities p = 0.25

(a), p = 0.5 (b), p = 0.75 (c). The color scale is the same as Fig.(11.9a).

order of magnitude. However, the normalized measure is still useful to identify non-Markovianity
in regimes where the decay of the density matrix towards its equilibrium value is slow, such as in
the small t12 regime, see Fig.(11.9b).

We find that the dynamics of the inner chain is always non-Markovian. The degree of non-
Markovianity is not uniform in the t12–t2 plane, and N (W) exhibits a behavior similar to that of
the entanglement entropy and of the negativity. Except for the region of very small t12, where
we expect N (W) to be small due to the weak interchain coupling, the regions of strong non-
Markovianity coincide qualitatively with the regions of non-area-law entanglement, see Fig.(11.2).
This makes intuitive sense; for example, at p = 1 one would always expect an area law, but for
large t2 this does not occur because the internal dynamics of the bath (outer chain) scrambles the
effects of the measurements, meaning that there are strong non-Markovian effects 2. This is indeed
reflected in the behavior of N (W). The phase diagrams of Fig.(11.2) and Fig.(11.9) do not coincide
exactly, since the periodicity of N (W) in t12 seems to be larger than π as found for entanglement.
This is likely due to finite size effects, given the very small system size we use to calculate N (W).

We also calculate N (W) for p = 0.25, 0.5, 0.75, see Fig.(11.10). We do not find any qualitative
difference with the p = 1 case. We observe that the degree of non-Markovianity is generally smaller
for p = 0.5 and p = 0.75, while it increases again for p = 0.25. This non-monotonous behavior of

2We point out that this is not true for arbitrary large t2; for t2 → ∞ one expects the dynamics of the bath to be
so fast that it results in a Markovian behavior.
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Figure 11.11: The time evolution of quadratic trace distance d2(ρ1, ρ2), for various
values of t2 and measurement probability p, with fixed t12 = π/2 and L = 8. The
curves correspond to the pair initial conditions ρ1 and ρ2 that maximize the non-

Markovianity measure N .

N (W) as function of p is akin to what we found in Fig.(11.6b) because of entanglement monogamy.
However, given the large fluctuations and the small system sizes of these simulations, we do not
have enough accuracy to speculate further on the meaning of this result.

Note that we need to use ED techniques to calculate d since we cannot take advantage of the
Gaussianity of the state. In fact the average density matrix ρ(t) of the two chains is obtained as
the average over trajectories of the pure (Gaussian) state density matrices

ρ(t) =
1

Ntraj

∑
α

|ψ(t)⟩ ⟨ψ(t)|(α) ,

and Gaussianity is not an additive property so that ρ(t) cannot be expressed as a Gaussian state.
The same problem is encountered if the relative entropy dlog(ρ1, ρ2) ≡ Tr(ρ1(log ρ1− log ρ2)) is used
as trace distance, since log ρ1 cannot be written as a Gaussian state. On the other hand, one can
take advantage of the Gaussianity of the state if the L2 quadratic trace distance [215] is used:

d2(ρ1, ρ2) =
√

Tr|ρ1 − ρ2|2. (11.3.2)

In fact Tr(ρ21) = Tr
∑

α,α′ |ψ1⟩ ⟨ψ1|(α) |ψ1⟩ ⟨ψ1|(α
′) /N2

traj , i.e. it is a double average of the product
of two Gaussian states, which is still a Gaussian state whose trace can be calculated in terms of the
two-points correlation matrix [251]. The same is true for ρ22 and ρ1ρ2, so that Tr|ρ1 − ρ2|2 can be
calculated from the behavior of the correlation matrix averaged twice over trajectories.

In order to evaluate the degree of non-Markovianity we will need to maximize it over different
pairs of initial conditions ρ1 and ρ2, i.e.

N = max1,2
∫
∂td2>0

dt∂td2(t). (11.3.3)

Though the calculation of d2(ρ1, ρ2) from the two-point correlation function of the system Dsys =
Trσ=2D is straightforward, it comes with a large computational cost. In fact, while all the operations
to be performed have a polynomial cost in the system size, there is a large overhead originating
from the double average over trajectories, which is completely absent for ED numerics. Moreover,
the calculation of the product of two Gaussian states in each of the terms of the double average,
requires inverting the correlation matrices, an operation that becomes expensive when the system
size increases. This actually makes calculations of d2(ρ1, ρ2) rather expensive for large system sizes.



164 Chapter 11. Measurement induced transitions in non-Markovian free fermion ladders

Method ED Hybrid (Gaussian+ED) Gaussian
Complexity a26LtstNpairs ((2L)3 + 26L)tstNtrajNpairs (2L)3tstNtrajNpairs

Table 11.2: Scaling of the computational complexity to calculate N (W) for different
methods. a is the number of matrix multiplication performed in one time step during
the ED simulations (typically a ∼ 3), tst is the number of time steps, Npairs is the
number of different initial conditions and Ntraj is the number of trajectories. 26L is
the typical computational cost of the multiplication of the density matrix of a system

of size 2L.

For this reason, we have restricted ourselves with L = 8 system size, with Npairs ∼ 300 number of
pairs of initial conditions and Ntraj = 50 trajectories per initial condition. The total running time
for a single trajectory is fixed to Tmax = 100 time-steps.

We present the results in Fig.(11.11), where the non-Markovianity of the dynamics (increasing
trace distance) can be clearly seen. Similarly to ED simulations, for t2 = 5 we observe that the degree
of non-Markovianity is enhanced for smaller values of p. For a fine-tuned regime t2 = t1 = 1, the
degree of non-Markovianity increases with increasing p. It should be noted, that the trace distance
does not saturate to zero, likely due to small Hilbert space size of the model with L = 8. Moreover,
we see that for p = 0.5 and p = 0.75, Fig.(11.11) shows that the degree of non-Markovianity is
larger for t2 = 1 and smaller for t2 = 5, however the opposite trend is visible on Figs.(11.10b,c).
These differences allows us to only conclude that the dynamics is always non-Markovian and do
not allow us to make any further statements regarding the degree of non-Markovianity for various
regimes of tunneling amplitudes t2,12 and measurement probability p.

A third (hybrid) method that could be used consists in simulating the time evolution of the
correlation matrix using Gaussian states, calculating the corresponding density matrix for each tra-
jectory and time step, and averaging them over trajectories to obtain the average density matrix
given a certain initial condition. However, this method results more costly than using only Gaus-
sian states and performing all necessary calculations on the correlation matrices, since it involves
calculating the exponential of a matrix of size 22L × 22L which scales like a matrix multiplication
and thus ∼ (22L)3. A brief comparison of the computational complexity of each method is reported
in Tbl.(11.2).
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Figure 11.12: The time-scaling of entanglement entropy of A, with lA = L/2. The
solid and dashed lines correspond to random and Neel-like pure state initial conditions.

Appendix

A Evolution towards the steady state for a single trajectory

In this section, we estimate the time it take for the system to reach the steady state along a single
trajectory. After a transient regime of duration ∼ tst, an observable that evolves along a single
trajectory converges to a steady state value around which it fluctuates. The magnitude of these
fluctuations depend on the system size and model parameters, but we can typically truncate the
evolution of the trajectory at t = tst.

The time evolution of a single trajectory entanglement entropy for lA = L/2 bipartition is shown
on Fig.(11.12). The dashed and solid lines correspond to an initial pure state with Néel-like (i.e.
antiferromagnetic fermionic populations) and random configuration of fermions, respectively. As
seen on the figure, the dynamics of both initial conditions yield the same transient and stationary
states. For this reason, all of the simulations are performed with random initial conditions, different
for every trajectory. The figures show that larger systems take more time to reach the steady state,
but for both t2 = 1.5 and t2 = 5, the saturation time for SL/2 does not exceed 100 time-steps.

Fig.(11.13) shows the dynamics of a single trajectory mutual information, between regions A
and B (with lA = lB = L/8) located opposite to each other, as in Fig.(11.1). Since the mutual
information is a very non-linear function of the density matrix, it is more prone to fluctuations. In
the vicinity of the area-law phase, the situation is qualitatively the same as for the entanglement
entropy - the mutual information quickly reaches small but non-zero values and rapidly oscillates
around it.

The time evolution of a single trajectory mutual information, between regions A and B, with
lA = lB = L/4, is shown in Fig.(11.14). The picture is qualitatively the same as in Fig.(11.13).
A difference we observe is that the values of mutual information for both t2 = 5 and t2 = 1.5 are
reduced and stronger fluctuations are present. Also, for larger systems, the time it takes for the
system to saturate to a steady state seems to exceed 100 time-steps.
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Figure 11.13: The time-scaling of mutual information between A and B, for lA =
lB = L/8 and rAB = L/2 distance between them.
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Figure 11.14: The time-scaling of mutual information between A and B, for lA =
lB = L/4 and rAB = L/2 distance between them.
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Figure 11.15: The time-scaling of bipartite negativity of A, with lA = L/2.

Considering these results, we conclude that for p = 1, a safe estimate for the amount of time
it takes to achieve convergence is tst = 100 for small systems (L ≤ 64) and tst = 1000 for larger
systems (L > 64).

In Fig.(11.15) we present the dynamics of the fermionic negativity for a single trajectory, for
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Figure 11.16: The figures (a) and (b) show the convergence of SL/2 with respect
to number of trajectories Ntraj .

lA = L/2 bipartition. The results correspond to a single fixed system size of L = 128 and
p = 0.25, 0.5, 0.75 measurement probabilities. As explained in Sec.(11.2.2), the peculiar growth
of fermionic negativity with respect to p for t2 = 5 is already evident on a single trajectory level,
Fig.(11.15b).

Based on these results, it is safe to fix tst = 100 as the time when the system reaches the steady
state.

B The convergence of the ensemble averages with respect to the
number of trajectories

In this section we study the convergence of the steady state value of an observables with respect
to the number of trajectories Ntraj , with tst = 100 for L ≤ 64 and tst = 1000 for L > 64. Each
trajectory has a different random initial condition.

Fig.(11.16) shows how SL/2 converges with respect toNtraj . The solid lines represent the average
value of the observable, while the shaded regions correspond to a 95% confidence interval calculated
from the distribution of SL/2 over the quantum trajectories. The parameters are chosen to be
t2 = 1.5 and 5, with fixed t12 = π/2. As it is seen, for a proper convergence, a bigger Ntraj is
needed for larger system sizes and for values of t2 close to the area-law regime t2 = 1.

The convergence of the mutual informations IL/4 and IL/8 with respect to Ntraj is illustrated on
Figs.(11.17,11.18). For t2 = 5, both quantities rapidly saturate to the corresponding average values.
However for t2 = 1.5, as Figs.(11.17a,11.18a) shows, the mutual informations are more sensitive due
to the proximity of an area-law regime and it takes more trajectories for a proper convergence.

Considering these results, we assume that for p = 1 and for the regimes far away from the
area law-regimes (i.e. for t2 > 1.5), Ntraj = 400 is sufficient for the convergence of the trajectory
averaged quantities for L ≤ 64 and we use Ntraj = 1000 for L > 64. For the regions with t2 ≤ 1.5,
we take Ntraj = 1000 for all system sizes.

Fig.(11.19) shows how EL/2 converges with respect to Ntraj , for various values of measurement
probability p and fixed system size L = 128. As it is seen, for p = 0.25, 0.5 and 0.75, Ntraj ≈ 100
is already sufficient number of trajectories. Thus in order to ensure a proper convergence of our
simulations, we set Ntraj = 1000 for L > 64 and Ntraj = 400 for L ≤ 64, regardless of values of t2
and p.
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Figure 11.17: The figures shows the convergence of IL/8 with respect to number of
trajectories Ntraj .
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Figure 11.18: The figures shows the convergence of IL/4 with respect to number of
trajectories Ntraj .

C Finite size effects on the scaling of the entanglement entropy

In this Appendix we show the details of the scaling fit for the entanglement entropy SL/2. We fit
with the function SL/2 = γL+ c/3 log(L) + β within a range Lmin ≤ L ≤ Lmax, for three different
intervals L ∈ [8, 64], L ∈ [32, 80] and L ∈ [72, 128]. We plot the behavior of c/3 log(Lmax) and
γLmax as function of t2 for the three different intervals in Fig.(11.20).

We observe that γLmax is very small below a threshold value tlin2 and displays a sharp increase
after such value. Simultaneously c/3 log(Lmax) displays a peak around tlin2 .

We find that the value of tlin2 increases as Lmax is increased, meaning that the region where the
linear contribution becomes comparable with the logarithmic contribution is pushed to larger and
larger values of t2. Moreover, the maximum value of γLmax, observed at larger values of t2, does
not change significantly when the fitting interval changes. On the other hand, the peak value of
c/3 log(Lmax), as well as its value at large t2 increases significantly when Lmax is increased. This
suggests that in the thermodynamic limit the logarithmic contribution will always dominate, and
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Figure 11.19: The figures (a) and (b) show the convergence of bipartite logarithmic
negativity EL/2 with respect to number of trajectories Ntraj , for various p and fixed

L = 128.
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Figure 11.20: Plot of c/3 log(Lmax) and γLmax as function of t2 for the three fitting
intervals L ∈ [8, 64] (a), L ∈ [32, 80] (b) and L ∈ [72, 128] (c).
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Figure 11.21

that the linear contribution is a finite size effect. The crossover size L∗ above which the logarithmic
contribution is dominant seems to be dependent on t2, with larger crossover sizes needed to observe
the logarithmic scaling as t2 is increased.

D Residual Analysis of the data fit for Negativity

In this section, we analyse the residuals of the data fit for EL/2 vs L, for fixed t12 = π/2, with

various t2 and p. We compare the total residual ∆EL/2 =
∑

L∈Lfit

(
E(data)
L/2 − E(fit)

L/2

)
for linear and

logarithmic fitting curves, for L in fitting range Lfit = [Lmin, Lmax].
Fig.(11.21) shows the residuals for linear (dash-dot lines, with E(fit)

L/2 = γL+ β fitting curve) and

logarithmic (dotted lines, with E(fit)
L/2 = clog(L) + β fitting curve). As the figures show, for smaller

values of t2, the logarithmic fit yields smaller residuals and thus is a better fit, compared to linear.
On the other hand, for larger t2, linear fit seems to be more accurate compared to the logarithmic.

It should be noted that the shift of the crossing point between dash-dot and dotted lines by
variation of Lfit is attributed to the finite-size effects.
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Chapter 12

Conclusion

In this part of thesis we have explored the concept of Coherence and Decoherence in quantum
dynamics. Specifically, we demonstrate that the decoherence in the system induced by the interac-
tion with the environment can be interpreted as a measurement effect. By deriving the time-local
Lindblad master equation and using the trace-distance measure of non-Markovianity, we show that
time-dependent Lindblad master equations is Markovian if the corresponding decay rates are always
positive. Contrary to this case, if the decay rates become negative, then the dynamics becomes non-
Markovian. It was shown that during non-Markovian regions, the system regains the coherences
that it has lost to the environment in the past. This creates the memory effect of the time evolution
and renders the dynamics non-Markovian. Due to this, already at a single-body level the unrav-
eling of non-Markovian master equation with quantum trajectory approach becomes challenging,
although still possible.

To resolve this issue, we have introduced a theoretical framework to unravel the non-Markovian
dynamics of quantum many-body systems in terms of quantum trajectories interspersed by quantum
jumps. Our technique relies on two methodological innovations: a formulation of many-body quan-
tum jumps applicable to certain classes of non-Markovian dynamics, and a diagrammatic expansion
to map the resulting evolution into amenable equations of motion.

Unlike in the Markov case, non-Markovian many-body trajectories are not independent from
each other, a direct consequence of the fact that the bath retains finite memory due to non-trivial
spectral functions. This feature makes averaging the system dynamics from trajectories practically
intractable at the computational level. However, as we have demonstrated, non-Markovian dynamics
in the random unitary circuit is still tractable within the framework of proposed diagrammatic
expansion.

The Markovian variant of one dimensional random unitary circuit model has been studied pre-
viously and was proven that the spatio-temporally random projective measurements can induce a
phase transition in the scaling of the entanglement entropy. Specifically, for vanishing measurement
rate the unitary evolution will drive the system towards the state with large entanglement content.
On the other limit, for large measurement rates, the state of the system is persistently collapsed due
to measurement and thus the unitary evolution fails to build up the entanglement in the system.
This competition of unitary evolution and projective measurement hosts a critical point, where the
growth and the decay of entanglement is in balance, while the scaling of entanglement entropy in-
dicates that the critical point has underlying conformal field theoretical description. It was proven
that the random unitary circuit model maps to a two-dimensional classical Potts model, where the
couplings between spins are homogeneous and local along the time direction.

The key feature of our framework is that it allows to investigate measurement induced phase
transitions in the presence of information back-flow in random unitary circuits - a situation relevant
to any system where measurements are realized via coupling to a non-trivial bath. This can be done
analytically because, under mild assumptions (i.e. sufficiently large sizes and evolution times), it is
possible to write down closed-form equations governing the conditional probability of each trajectory
using diagrammatic methods. Remarkably, these equations share the same functional form of the
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Dyson equation, and can be manipulated so that the probability of a generic outcome trajectory
is given in terms of the time evolution of the expectation value of local observables. Within our
framework, this result shows how the highly non-linear effect of non-Markovianity on many-body
systems can be cast as a "dressing" over Markovian trajectories, very much like interactions do for
single particle wave-functions in electronic systems.

This Dyson equation-like description enables the study of entanglement and measurement in-
duced transitions in the presence of information inflow from the bath back to the system. For
the case of one-dimensional Haar circuits, we formulate a classical statistical mechanics model of
the system dynamics. The key difference with the memory-less case is that couplings are now
time-dependent, and that there are large regions of space-time where magnetic fluctuations are
suppressed: these are actually the non-Markovian regions, and their coupling profiles reflects the
fact that reverse jumps are included in the statistical mechanics model implicitly via the dressed
probability distributions.

The properties of entanglement was studied via numerical simulations of the corresponding Potts
model describing the N = 3 replica space. We point out that our approach is also applicable to
the case of evolution with Clifford gates, where statistical mechanics mappings have been recently
proposed [265]. Numerical evidence points to the fact that non-Markovianity does not significantly
shift the transition, but stabilizes the volume law phase of the entanglement by shielding it from
transient strong dissipation.

Motivated by the robustness of non-Markovian MIPT in RUC and well-known free-fermionic
models with measurements, we studied a free fermionic ladder model by directly simulating the
quantum trajectories. The inner chain of the ladder acts as the system under study, while the outer
chain acts as an environment with an internal dynamics. Measurements are performed on the outer
chain, thus inducing an effective non-Markovian dynamics on the inner chain once the outer chain
is traced out.

We have investigated the entanglement transition in this system by analyzing several witnesses
of entanglement within the inner chain. More specifically, we studied the bipartite entanglement
entropy and the mutual information between diametrically opposite partitions when the outer chain
is always measured – i.e. when p = 1 and the the outer chain is in a pure state – and the fermionic
negativity for p < 1.

By analyzing the phase diagram as function of the hopping between the chains (t12) and within
the bath chain (t2) at p = 1, and were able to distinguish between area-law phase and non-area-law
phase by looking at the scale with partition size of the entanglement entropy at fixed L. We found
that the non-area law survives even for strong measurements when the scrambling rate of the outer
chain (which is proportional to t2) is large enough. We also found a periodic structure in t12 of the
phase diagram, with repeating lobes of area-law phases, which arises due to the geometric structure
of the ladder.

For a value of t12 that maximizes the interchain coupling, we investigated the nature of the non-
area law phase to understand whether it is a volume-law phase or a conformally invariant phase.
The analysis of the mutual information clearly confirm the presence of the CFT phase at smaller
values of t2, close to the lobes of area-law phases, although larger system sizes would be needed for
a definitive assessment.

We also considered the case of p < 1 and studied the entanglement transition using the fermionic
negativity. We found a qualitatively similar behavior to the p = 1 case. A striking result is that for
large t2, the entanglement in the inner chain can be increased by performing more measurements
on the outer chain, a phenomenon which we postulate is due to the monogamy of entanglement.
Although the behavior of negativity is very similar to that of the entanglement entropy, we cannot
in principle make the claim that the linear contributions are due to finite size effects, as we lack the
p < 1 counterpart of the mutual information to precisely pinpoint the phase of the system.
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A remarkably similar phenomenology has been observed in [266], where a single free fermion
chain is monitored through measurements of long-range string operators [267]. Changing the range
of the measurement operators, the phase changes from area-law (local measurements) to logarithmic
(short-range) to what it seems a regime of mixed logarithmic and volume scaling (long-range). This
striking resemblance could be interpreted in terms of the same qualitative features exhibited by
long-range measurements and by non-Markovian local measurements – i.e. measurements with a
long-time memory that translates into a long spatial range at the level of the system chain. This
connection is very interesting and deserves to be accurately investigated on its own, although such
a study goes well beyond the scope of this work.

By implementing the trace-distance measure of non-Markovianity, we also explicitly showed
that the effective dynamics of the inner chain is non-Markovian. Moreover, the dynamics is always
non-Markovian, and the strength of non-Markovianity has a qualitative behavior that resembles
that of the entanglement transition. In particular, regions of strong non-Markovianity correspond
to regions where the entanglement in the system is larger, suggesting a connection between memory
effects and an enhancement of entanglement [202, 268]. We remark that we considered a minimal
model of non-interacting bath. Indeed it would be interesting to investigate the role of interactions
in the bath, and how they can modify non-Markovianity effects.

Our results demonstrate a previously unproved inherent robustness of measurement-induced
transition to information backflow in RUC and free fermionic setups. Combined with the, by now
established, fact that such transitions can occur for various kinds of coherent dynamics and Kraus
operators, this suggests that measurement induced transitions might indeed take place in a variety
of settings, including systems where the effects of information back-flow are often non-negligible.

It is worth pointing out a few possible questions that these results raise. In terms of relevance
to experiments, it would be important to combine our approach with an inherently open system
description of the system (i.e. noise in addition to measurement), that, for the Markovian case,
has been recently addressed in Ref. [269]. Moreover, our methods may find application in studying
measurement induced transitions in solid state systems, where memory effects are important; for
example, the 1/f noise is non-Markovian and is the most common type of noise in quantum devices
based on solid state platforms [270].

We also remark that the non-Markovian trajectories that we consider can still be realized through
a (possibly very complicated) experimental setup, for example through a combination of quantum
simulation of the system and a classical memory that stores information about the occurrence of
the normal jumps [271, 272]. This classical memory is essential to supply the memory effects of
the non-Markovian evolution and allows to provide memory feedback in a controlled way, but it
also requires exponentially large resources. Another way of realizing non-Markovian trajectories
in a physical system, is by coupling the system of interest to an auxiliary bath with a non trivial
dynamics and subjected to Markovian measurements, which results in an effective non-Markovian
dynamics of the system. The evolution of system+bath is described by conventional quantum
trajectories, and in the case where the measurements act globally on the bath, the system evolves
along a pure state trajectory for which the formalism of our paper is directly applicable. Indeed, we
have illustrated the above idea within the context of coupled free-fermion chains in Sec.(11) [203],
where we also confirmed numerically a key qualitative prediction of the diagrammatic approach –
that is the ’stability’ of the measurement-induced transition.

Within the context of measurement induced transitions, another question is about the connection
between error correction schemes and measurement protocols. Given the fact that memory effects
can in principle be precisely quantified in experiments by performing spectroscopy of the bath, it
would be interesting to see whether that information can be utilized to improve error correction,
or at least, if the presence of a measurement induced transition can at least provide some intrinsic
robustness of decoding methods with respect to measurement errors (that can also be seen as a
non-Markovian effect in some cases) [268].
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Another open question is the formulation of practical numerical procedures to address MIPT in
the presence of memory. Here, it might be possible to adapt some methods that have found success
in few body systems, at least for a qualitative understanding. Beyond such applications, it would
be interesting to see whether our diagrammatic method can provide insights on other many-body
phenomena in non-Markovian systems, as well as on recently developed computational techniques
to tackle them [273].
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