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a b s t r a c t

Experimental progress in atomic, molecular, and optical platforms in the last decade
has stimulated strong and broad interest in the quantum coherent dynamics of many
long-range interacting particles. The prominent collective character of these systems en-
ables novel non-equilibrium phenomena with no counterpart in conventional quantum
systems with local interactions. Much of the theory work in this area either focussed
on the impact of variable-range interaction tails on the physics of local interactions or
relied on mean-field-like descriptions based on the opposite limit of all-to-all infinite-
range interactions. In this Report, we present a systematic and organic review of recent
advances in the field. Working with prototypical interacting quantum spin lattices
without disorder, our presentation hinges upon a versatile theoretical formalism that
interpolates between the few-body mean-field physics and the many-body physics of
quasi-local interactions. Such a formalism allows us to connect these two regimes,
providing both a formal quantitative tool and basic physical intuition. We leverage
this unifying framework to review several findings of the last decade, including the
peculiar non-ballistic spreading of quantum correlations, counter-intuitive slowdown
of entanglement dynamics, suppression of thermalization and equilibration, anomalous
scaling of defects upon traversing criticality, dynamical phase transitions, and genuinely
non-equilibrium phases stabilized by periodic driving. The style of this Report is on the
pedagogical side, which makes it accessible to readers without previous experience in
the subject matter.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

An increasing interest in quantum many-body physics with long-range interactions is being driven by growing
xperimental capabilities in controlling and manipulating atomic, molecular, and optical systems (AMO). Currently, various
latforms such as Rydberg atoms, dipolar quantum gases, polar molecules, quantum gases in optical cavities, and trapped
ons, have native two-body long-range interactions which can be modeled as algebraically decaying J/(∆r)α with the
istance ∆r [1–6]. The exponent α can in some cases be experimentally tuned — e.g. through off-resonant coupling of
nternal levels of trapped ions to motional degrees of freedom [1,7], or trapping neutral atoms in photonic modes of a
avity [8,9]. Additionally, the effective interaction range can be efficiently tuned in systems of Rydberg atoms in one- and
wo-dimensional arrays [10,11] or by Rydberg dressing [12,13].

The versatility of the aforementioned AMO platforms spurred intense theoretical and experimental explorations. These
tudies established that long-range interactions provide clear routes to circumventing the constraints imposed by either
onventional thermalization [14] or conventional bounds on information spreading [15]. Accordingly, the prominent
ollective character of systems with long-range interactions can lead to a kaleidoscope of novel phenomena which cannot
e observed in systems with local interactions. Major examples include: the observation of ‘‘super-luminal’’ correlation
nd entanglement spreading [3,16,17] (to be contrasted with the conventional light-cone behavior in presence of local
nteractions [18]); dynamical phase transitions in low dimensions [19–25]; exotic defect scaling [26,27]; self-organized
riticality [28]; time-translation symmetry breaking [29–31]; quantum many-body chaos [32–34]. As such, control of long-
ange interacting assemblies stands out as a promising ingredient for future quantum-technological applications, including
uantum metrology and quantum computation.
While this great diversity of platforms and research directions largely contributes to generate widespread excitement

bout long-range interactions, it has at the same time certain drawbacks. The backgrounds and interests of the numerous
esearch groups active in this area span a very wide spectrum. On one hand, experimental interpretations are often based
n a few-body, mean-field-like way of thinking [8,9,35,36]. Albeit remarkably simple and powerful, this perspective may
ail to fully capture the complexity of non-equilibrium phenomena with long-range interactions. On the other hand,
heoretical investigations have often prioritized mathematically rigorous efforts aimed at characterizing the departure
rom known properties of locally-interacting systems [37–45]. Albeit sometimes in synergy with experiments [7], this per-
pective may obscure the construction of an intuitive physical picture applicable to the broad range of out-of-equilibrium
henomena mentioned above. Despite recent attempts to recompose the corresponding mosaic in equilibrium [46], this
omplementarity of perspectives on similar phenomena still struggle to come together and cement a unified research
ield and community. As a consequence, the current understanding of the out-of-equilibrium dynamics of long-range
nteracting quantum many-body systems still seems to lack a systematic organization comparable to that of quantum
ocally interacting [14] or classical long-range interacting [47] systems.

The purpose of this Report is to provide a systematic and intuitive theoretical approach to non-equilibrium phenomena
rising from non-random long-range interactions in quantum many-body systems. Our effort aims at bridging the various
omplementary views in this wide research area and creating a unifying framework. We will review a selection of
ignificant findings in the field, emphasizing how they can be encompassed within a common basic theoretical language
nd formalism. The approach reviewed in this Report is suited to bridge the simple mean-field description — which applies
o infinite-range interactions, i.e. α = 0 — to the description of systems with quasi-local interactions, i.e. α ≫ d (where d
s the dimension of the system), which allow a well-defined notion of locality in spite of non-local interaction tails. The
trong long-range regime in between, i.e. 0 < α < d, will be the focus of this Report; we will frequently emphasize the
eitmotiv that the physics in this regime interpolates between conventional few-body and conventional many-body physics. The
each of this unifying framework will be illustrated using prototypical models of interacting quantum spin lattices. This
hoice does not only serve the purpose of directly relating our results to paradigmatic locally-interacting systems [48,49],
ut it is also allows us to make direct connections with the major AMO experimental platforms recalled above.
This Report is organized as follows:

• Our journey will start in Section 2 with a review of equilibrium properties of ferromagnetic quantum spin systems
exemplified by a variable-range quantum XY model Section 2.1, including a discussion of the equilibrium phase
diagram upon varying parameters and interaction range (via α) Section 2.2 and a critical examination of the mean-
field limit Section 2.3. Hence, in Section 2.4 we will review the low-energy description in terms of bosonic excitations
(spin waves) across the phase diagram, with emphasis on spectral properties arising from a long interaction range.
Finally in Section 2.5 we will discuss spectral properties beyond linear spin-wave theory.

• The low-energy description reviewed in Section 2 can be used to investigate near-equilibrium dynamics. This
setup allows to study the peculiar properties of spatial propagation of quantum correlation in presence of long-
range interactions [50,51] as well as their unusual equilibration dynamics [52], reviewed in Sections 3.1 and 3.2
respectively. Both these phenomena can be studied in quantum quenches lying within the supercritical phase and,
therefore, only represent a small departure from equilibrium. More surprisingly, we are going to show that the
3
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low-energy description is also capable of addressing dynamical scaling phenomena arising after quenches across the
critical point. This is the case of the universal defect formation following a quasi-static sweep across the quantum
critical point [53,54], see Section 3.3 and the rise of dynamical quantum phase transitions [55], which we will treat
in Section 3.4 (the latter, however, will require to modify the simple low-energy description employed before).

• Section 4 is devoted to the study of dynamics far away from equilibrium, induced by quantum quenches. We will first
consider in Section 4.1 the fully-connected model with all-to-all uniform interactions, and examine the simplest
instances of dynamical phenomena in this limit, which can be understood in terms of few-body semiclassical
dynamics. For finite-range interactions, however, the motion of semiclassical collective degrees of freedom is coupled
to many quantum-fluctuation modes with various wavelengths. In Section 4.2 we review a systematic approach to
the resulting complex many-body problem, originally developed in Refs. [56,57]. As a first implication stemming from
this approach we will review lower bounds on thermalization time scales associated with long-range interactions,
establishing the genuinely non-equilibrium nature of dynamical phenomena in these systems. Hence, we will
examine the impact of many-body quantum fluctuations on dynamical criticality and quantum information spreading
far away from equilibrium upon tuning the interaction range. Throughout, we will highlight the role of long-range
interactions in generating novel phenomena.

• In Section 5 we will employ the methodology of Section 4 to describe coherent dynamics subject to periodic driving.
Here we will review how long-range interactions allow to stabilize genuinely non-equilibrium phases, without an
equilibrium counterpart, in low-dimensional quantum systems of the kind routinely realized in AMO experiments.
This will include phases that may be viewed as quantum many-body realizations of the celebrated Kapitza pendulum
(Section 5.1) as well as discrete-time crystals, which spontaneously break time-translation symmetry (Section 5.2).

• Finally, in the conclusive Section, we spell out the topics which are not covered in this Report: from effects of
inhomogeneities, to frustrated, random, or noisy interactions, to dissipative and monitored dynamics.

Throughout the presentation, our goal is to provide both physical intuition and systematic theoretical understanding
of experimentally relevant phenomena. We kept the style of the Report on the pedagogical side, as we hope this work
will also be useful to readers who are interested in taking their first dive into the realm of quantum dynamics in presence
of long-range interactions.

2. Equilibrium properties of long-range interacting quantum spin systems

In this Section we summarize and discuss basic equilibrium properties of quantum spin lattices with variable interaction
range, which will prove to be useful in the rest of this Report. For definiteness we will focus on a class of ferromagnetic
XY quantum spin models, introduced in Section 2.1, and review its equilibrium phase diagram in Section 2.2. We will
then work out its low-energy description in terms of bosonic excitations (‘‘spin waves’’) both in the fully-connected limit
(Section 2.3) and with finite-range interactions (Section 2.4), with emphasis on the peculiar features of the quasiparticle
spectrum such as discreteness [52,58], divergent group velocity [50,59–61], and dressing effects. Finally, in Section 2.5 we
will discuss finer low-energy properties beyond spin-wave theory, including domain-wall (de)confinement [62,63].

In this Section we will keep the model parameters fully general. In the rest of the Report we will frequently restrict
the model for simplicity, but all the results can always be straightforwardly extended, drawing on the general setup
introduced here and in Section 4.2.1 below.

2.1. Variable-range quantum XY model

Throughout this work we will consider a prototypical model implemented in AMO platforms, a quantum XY spin
model with tunable interaction range. We take a d-dimensional square lattice of N = Ld quantum spins-s, i.e. with
ŝx)2 + (ŝy)2 + (ŝz)2 = s(s + 1)1̂, described by a Hamiltonian of the form

Ĥα = −

∑
r,r′

Jr,r′ (α)
(
1 + γ

2
σ̂ x
r σ̂

x
r′ +

1 − γ

2
σ̂ y
r σ̂

y
r′

)
− h

∑
r

σ̂ z
r (1)

n this equation σ̂µr = ŝµr /s are operators corresponding to the normalized spin components in the µ = x, y, z direction,
cting on site r = (r1, . . . , rd) denote the sites of the square lattice r1, . . . , rd = 1, . . . , L. This represents a generalization
f the standard spin-1/2 case, where σ̂ αr reduce to the standard Pauli matrices. Such a normalization allows us to keep
rack of the role of quantum fluctuations, which are suppressed in the classical limit s → ∞. The quantity γ parametrizes
he XY anisotropy. In this Report we will consider anisotropic spin systems, i.e. γ ̸= 0; for definiteness we assume γ > 0
negative values equivalent upon rotating the spins around the z-axis by π/2), and we will frequently set γ = 1 (quantum
sing model). We will occasionally comment on the isotropic limit γ → 0 when relevant. The quantity h represents the
ransverse magnetic field strength, which we assume h ≥ 0 (negative values are equivalent upon rotating the spins around
he x-axis by π ). Throughout this report we will always use units such that Planck’s constant is h ≡ 1.
¯
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The ferromagnetic couplings Jr,r′ (α) ≡ J∆r (α) depend on the distance ∆r = ||r − r′|| between the two involved sites,
nd we will be interested in tuning their spatial range through the parameter α. Specifically, we consider interactions
lgebraically decaying with the distance,1

Jr,r′ (α) =
J

||r − r′||α
for r ̸= r ′. (2)

To impose periodic boundary conditions, various equivalent choices of distance function are possible; we take ||r− r′|| ≡√∑d
µ=1[min(|rµ − r ′

µ|, L − |rµ − r ′
µ|)]2. The overall constant J > 0 is chosen in such a way to fairly compare the models

with different α, i.e. to make the mean-field interaction strength J0 independent of α:

J =
J0

2Nα,L
, Nα,L ≡

1
2

∑
r

1
||r − r′||α

. (3)

his prescription — known as Kac normalization [64] — is necessary to make the thermodynamic limit well defined for
≤ d, where the divergence Nα,L ∼ Ld−α with the system size ensures that energy scales extensively. For α > d the Kac

rescaling factor saturates to a finite value in the thermodynamic limitNα,L → Nα . Note that for ferromagnetic interactions,
the specific choice of the lattice does not alter the qualitative properties discussed in this review, as we will further
comment below.

Summary: We consider a d-dimensional quantum XY spin model with non-random ferromagnetic interactions that
decay algebraically with exponent α. The interaction strength is rescaled to make the ground-state energy density
independent of α.

2.2. Equilibrium phase diagram in a nutshell

For γ ̸= 0 and for ferromagnetic interactions Jr,r′ ≥ 0 the system has an equilibrium zero-temperature phase transition
for small enough |h|, associated with the spontaneous breaking of its Z2 spin-inversion symmetry of the x-component.
The longitudinal magnetization ⟨σ̂ x

r ⟩ undergoes an abrupt change from ⟨σ̂ x
r ⟩ = 0 in the unique paramagnetic ground state

for |h| > hcr to ⟨σ̂ x
r ⟩± = ±m(h) ̸= 0 in the two degenerate ferromagnetic ground states for |h| < hcr. When interactions

re local, the universality class of this quantum phase transition is the same as that of the (d + 1)-dimensional classical
sing model [48].

The possible emergence of an ordered phase at finite temperature T > 0, i.e. of long-range ordered excited states at
inite energy density, depends on the dimensionality d and on the decay exponent α of the interactions. For strictly
inite range, finite-temperature order is stable only for d ≥ 2; in this case, the universal properties of the thermal
phase transition are the same as that of the corresponding d-dimensional classical Ising model [48,65]. Increasing the
interaction range, however, enhances the effective lattice connectivity, somewhat similarly to the effect of increasing the
lattice dimensionality [66–68]. While frustration prevents antiferromagnetic interactions from creating collective ordering,
ferromagnetic interactions do cooperate to suppress the effect of spatial fluctuations, generally resulting in a qualitative
enhancement of the system’s ability to order as the interaction range increases [69].

The analogy between integer-dimension long-range systems and local systems in lower fractional dimensions has
been quantitatively tested in multiple studies in recent years, both in classical [68,72–74] and quantum [70,75] long-range
systems. Leading-order perturbation theory results support the exact correspondence between the universal behavior of
long-range interacting systems with dimension d and decay exponent α and locally-interacting system with dimension
deff = 2(d+z)/(α−d), where z is the dynamical critical scaling exponent [75–77]. Advanced renormalization group studies
highlighted deviations from this correspondence, which only occur beyond the leading order and hence remain small [70].
Therefore, it is possible to employ the effective-dimension relation above to get the qualitative shape of the phase diagram:
For α < 5

3d the universal scaling behavior is captured by mean-field theory, while for 5
3d < α < α∗ the system displays

orrelated critical behavior influenced by the presence of long-range interactions. Finally, for α > α∗ the interaction tails
ecome irrelevant and the critical exponents coincide with the ones of the model with local interactions [70].
The location of α∗ was subject to multiple controversies, but the result α∗ = d+2−ηsr [68,72], with ηsr the anomalous

imension of the model with local interactions, appears now to be established [70] in agreement with extensive numerical
imulations in classical models [73]. Due to the dependence of α∗ on the universal equilibrium properties of the local
odel, this boundary does depend on the particular model. For the model considered in this Report, the phase diagram
f the equilibrium critical problem is displayed in Fig. 1: in Fig. 1(a) we report the universality properties for different
imension [70], while in Fig. 1(b) we show the phase diagram for finite temperature of the one-dimensional model [71].
ecreasing the decay exponent below the dimension of the system, i.e. α < d, does not produce any major implications
n the equilibrium critical scaling, but it does modify the thermodynamic properties. In the regime α < d the boundary

1 Note that for spins-1/2 the terms r = r′ produce an inconsequential additive constant E =
∑

r Jr,r/2, as Pauli matrices square to 1. Diagonal
erms may be important for higher-spin Hamiltonians. As a rule we will set Jr,r = 0. We will occasionally comment on interesting phenomena
ssociated with spin self-interactions further below.
5
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Fig. 1. Phase diagram of long-range interacting quantum Ising model. Panel (a) draws the phase diagram of the Hamiltonian in Eq. (1) with γ ̸= 0.
here, mean-field theory properly describes the universal scaling behavior in the cyan shaded region. The white background with the red LR label
epresents the region in the phase diagram where the universal behavior is correlated and influenced by the presence of relevant long-range
ouplings. The boundary of the LR region is simply α = d + 2 in mean-field theory (vertical shaded line), but gets displaced to α∗ = d + 2 − ηsr
y two-loop corrections (red line). Finally, the white area on the right of the red line signals the region of irrelevant long-range couplings where
he universal behavior is controlled by the local part of the interactions. Figure reproduced from Ref. [70]. (b) Finite temperature phase-diagram
f the one-dimensional Ising model, in the transverse field h, interaction exponent α, and temperature T space, in the units of J (without Kac
ormalization). For α < 1, the system is in the mean-field regime (striped region), for α < 5/3 the mean-field universality is exact, while for α > 3
he model is in the same universality class of the short-range Ising model (dark gray). Figure adapted from Ref. [71].

ontribution to thermodynamic quantities cannot be neglected (a property referred to as non-additive), leading to the
iolation of several established equilibrium properties including the equivalence of thermodynamic ensembles [78].
Given this scenario, long-range interacting systems can be classified in the following way [46]: for α < d they are

n the so-called strong long-range regime, for d < α < α∗ they are in the weak long-range regime, while for α > α∗

ne retrieves short-range properties.2 In this Report we will mainly focus on quantum spin systems around the strong
ong-range regime, i.e. 0 ≤ α ≲ d, and we aim at providing a cohesive picture for their distinctive dynamics.

In the light of the above discussion, the role of the spatial dimension is diminished in systems with variable-range
nteractions, as the relevant parameter in equilibrium is the effective dimension deff. Yet, the one-dimensional case is
particularly interesting: In presence of local interactions, d = 1 systems cannot exhibit ordering at finite temperature,
because isolated topological defects of a ferromagnetically ordered pattern (domain-wall-like excitations) cost a finite
energy [69]; a longer range of ferromagnetic interactions induces binding between domain walls, and hence a tendency
o stabilize ferromagnetic order. The effect of long-range interactions is thus most dramatic for d = 1: The algebraically
ecaying interactions in Eq. (1) allow to stabilize ferromagnetic order in the thermodynamic limit upon decreasing α
elow 2. This happens as the interaction potential between two domain walls becomes confining at large distances, such
hat free isolated domain walls cost an infinite energy.

Summary: In equilibrium, the universal critical properties with J/(∆r)α-interactions are close to those of the locally
interacting version of the system (α = ∞) in a higher effective dimension deff = 2(d+ z)/(α−d). For d = 1 and γ ̸= 0,
finite-temperature ordering becomes possible for α ≤ 2.

2.3. Low-energy spectrum with infinite-range interactions (α = 0)

Let us start by discussing the exactly solvable infinite-range limit α → 0. This will be the starting point to analyze
the behavior for α > 0.

2.3.1. Mean-field theory as an exact classical limit
Increasing the range of interactions, by decreasing the exponent α → 0, weakens spatial fluctuations, leading the

system toward its mean-field limit — similarly to the effect of increasing the system dimensionality d → ∞. This can be
seen explicitly by rewriting the Hamiltonian (1) in terms of the collective spin components

Ŝµ =

N∑
i=1

ŝµi , µ = x, y, z , (4)

2 We warn the readers that the nomenclature we adopt here is far from being universally established in the vast literature on long-range
interactions.
6
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hich gives the expression

Ĥα=0 = −
J0

N s2

(
1 + γ

2
(Ŝx)2 +

1 − γ

2
(Ŝy)2

)
−

h
s
Ŝz , (5)

where we used J = J0/(N − 1) ≈ J0/N . This expression highlights that the α = 0 Hamiltonian is a function of a single
degree of freedom: the collective spin. All other non-collective spin modes are frozen and do not participate in dynamics.
The collective spin magnitude Ŝ2 = (Ŝx)2 + (Ŝy)2 + (Ŝz)2 = S(S + 1) with S = Ns,Ns−1,Ns−2, . . . , 0 or 1/2 is conserved,

[
Ŝ2, Ĥα=0

]
= 0 . (6)

he Hilbert space sector HŜ2=S(S+1) associated with the quantum number S contains gN,S copies of a spin-S representation
of SU(2), where gN,S = dimHŜz=S −dimHŜz=S+1. This combinatorial number depends implicitly on s; in the simplest case
s = 1/2 we have

gN,S =

(
N

N/2 − S

)
−

(
N

N/2 − S − 1

)
=

2S + 1
N + 1

(
N + 1

N/2 − S

)
. (7)

n each such (2S + 1)-dimensional space, the Hamiltonian acts as Eq. (5) and it effectively describes a single spin of size
.
For all states with large S growing with N , the thermodynamic limit N → ∞ is equivalent to a semiclassical limit for

he collective spin: The rescaled spin satisfies commutation relations of the form[
Ŝµ

S
,
Ŝν

S

]
=

i
S
ϵµνρ

Ŝρ

S
; (8)

and the Hamiltonian can be rewritten in terms of the rescaled spin as

Ĥα=0 = (S/s)
{
−J0ρ

[
1 + γ

2

(
Ŝx

S

)2

+
1 − γ

2

(
Ŝy

S

)2
]

− h
Ŝz

S

}
, (9)

where ρ ≡ S/(Ns) is a constant depending on the collective spin sector, with 0 ≤ ρ ≤ 1. Thus, the system manifestly has
an effective Planck constant h̄eff ≡ 1/S. Keeping in mind that a meaningful thermodynamic limit requires to take J0ρ as
a constant independent of N , we conclude that the limit N → ∞ realizes a classical limit with a continuous spin

⟨
ˆ⃗S⟩
S
⇝ S⃗ (10)

f (conserved) length 1 governed by the classical Hamiltonian Ĥα=0/(S/s) ⇝ Hcl,

Hcl(S⃗) = −ρJ0

(
1 + γ

2
(Sx)2 +

1 − γ

2
(Sy)2

)
− hSz , (11)

anonical variables can be taken as, e.g., Sz
= cos θ and arctan2(Sx, Sy) = φ.

The absolute ground state minimizes energy across all sectors; for ferromagnetic interactions the ground state is
realized for maximal collective spin polarization, S = Ns, i.e. for ρ = 1. A rigorous implication of the classical limit [79] is
that, as N → ∞, the ground state expectation values ⟨

⃗̂S⟩GS/S of the collective spin components converge to the minimum
point S⃗∗ of the classical Hamiltonian Hcl on the unit sphere. For later purpose it is convenient to define a rotated reference
frame (X,Y, Z) adapted to the ground state polarization, i.e., such that Z ≡ S⃗∗. Using spherical coordinates we can
parametrize

X ≡

(cos θ cosφ
cos θ sinφ

− sin θ

)
, Y ≡

(
− sinφ
cosφ
0

)
, Z ≡

(sin θ cosφ
sin θ sinφ

cos θ

)
. (12)

Crucially, the quantum uncertainty
√⟨(

ŜX
)2⟩⟨(ŜY )2⟩ associated with spin fluctuations in the transverse directions X and Y

pans a phase-space area of order heff = 2π/S, which is vanishingly small as N → ∞.3
The discussion above is valid for generic infinite-range Hamiltonians. For our model in Eq. (5), minimization of Hcl on

he unit sphere gives the ground-state polarization S⃗∗
= (± sin θ∗, 0, cos θ∗), with

θ∗
=

⎧⎨⎩
0 for h > hcr ≡ ρJ0(1 + γ )

arccos
(

h
ρJ0(1 + γ )

)
for 0 ≤ h ≤ hcr ≡ ρJ0(1 + γ )

(13)

3 This point will be further discussed at length in Section 4.1.3.
7
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he ferromagnetic phase transition at h = hcr is associated with the bifurcation of the minimum. The ferromagnetic energy
E ≡ Hcl(S⃗∗) = −ρJ0(1 + γ )/2 − h2/[ρJ0(1 + γ )] is extremal for ρ = 1, in agreement with the claim anticipated above
and with intuition. See plots in Figs. 2(a) and 2(b).

Summary: The fully-connected Hamiltonian with α = 0 is a function of collective spin variables only. The
thermodynamic limit realizes a semiclassical limit for the collective spin with an effective Planck constant scaling
as h̄eff ∝ 1/N .

2.3.2. Collective quantum fluctuations and excitations
It is important to stress that, in spite of the exact classical limit, the ground-state wavefunction is not a product state of
spins pointing in the direction S⃗∗: Collective interactions generate global (multipartite) quantum entanglement among

ll spins. Such quantum correlations stem from quantum fluctuations of the collective spin around the average direction
⃗∗. Such effects can be understood via semiclassical analysis to leading order in h̄eff.

Let us first compute the low-energy spectrum of the infinite-range Hamiltonian (5) thought as a single-spin Hamil-
onian, with S growing with N . The collective spin moves in an energy landscape whose depth grows with N . The
round state wavefunction is localized around its global minimum (or minima). Expansion of Hcl around the minimum
ives access to the ground-state fluctuations and low-lying harmonic excitations. This can be conveniently done via a
olstein–Primakoff transformation [80]: Recalling Ŝ±

= Ŝx ± iŜy,⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ŝ−

= b̂†
√
2S − b̂†b̂ ,

Ŝ+
=

√
2S − b̂†b̂ b̂ ,

Ŝz = S − b̂†b̂ .

(14)

These equations represent an exact embedding of a quantum spin into a bosonic mode.
This procedure is simplest in the paramagnetic phase. For large h ≫ hcr the ground state approaches the uncorrelated

state fully polarized along z, and the elementary excitations approach the tower of spin lowering excitations. For finite
h > hcr the collective spin fluctuates along the transverse directions — more prominently along the ‘‘soft’’ direction x and
more weakly along the ‘‘stiff’’ direction y.4 Such fluctuations can be described by mapping Ŝx and Ŝy to canonical bosonic
operators via Eq. (14),⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ŝx ≈
√
S q̂ ,

Ŝy ≈
√
S p̂ ,

Ŝz = S − n̂0 = S −
q̂2 + p̂2 − 1

2
.

(15)

sing [q̂, p̂] = i one can check that for large S the spin commutation relations are satisfied by the right-hand sides
f Eqs. (15) to leading order. In a classical phase-space description, the approximation given by the above truncated
olstein–Primakoff transformation corresponds to replacing the surface of the sphere by its tangent plane at the North
ole.
Using Eq. (15), the Hamiltonian (5) can be approximated by neglecting terms of order 1/S, and hence easily

iagonalized. We find:

Ĥα=0 ≈ −Nρh +
h
s
q̂2 + p̂2 − 1

2
−
ρJ0
s

(
1 + γ

2
q̂2 +

1 − γ

2
p̂2
)

(16a)

= −Nρh +
1
s

(
ω> − ω

(0)
>

2

)
+

1
s
ω> n̂ , (16b)

here

ω> =

√
[h − ρJ0(1 − γ )][h − ρJ0(1 + γ )], ω(0)

> = h . (17)

The first term in the last line of Eq. (16b) represents the classical energy, and the second one is the variation of the
zero-point energy due to quantum fluctuations around the classical configuration. In the last term, n̂ is the harmonic
excitation quanta of energy ω> (not to be confused with the ‘‘bare’’ spin-lowering excitation quanta n̂0).

For h > hcr, the number ⟨n̂0⟩ = ⟨q̂2 + p̂2 − 1⟩/2 of bare collective spin excitations in the ground state is finite, and it
iverges as h ↘ hcr, signaling a critical phenomenon (see Fig. 2(d)). Indeed the energy gap ω>/s closes at h = hcr, with a
ean-field critical exponent 1/2 (see Fig. 2(c)). For h < hcr the frequency ω> becomes imaginary, which signals instability

of the paramagnetic state.

4 Recall that we assumed γ > 0 for definiteness.
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Fig. 2. Equilibrium properties of the fully-connected quantum Ising model across the phase diagram. All quantities are computed for the
Hamiltonian (5) with γ = 1, and display singularities at the phase transition h = 2J0 with mean-field critical exponents. (The behavior of the
orresponding quantities for a general anisotropic XY model γ ̸= 0 is analogous.) Panel (a): The order parameter is determined by Eq. (13). Panel
b): The ground-state energy density is the minimum of the classical energy (11) on the unit sphere. Panel (c): The dark-blue curve corresponds to
< in Eq. (22) and ω> in Eq. (17), respectively below and above the phase transition; the light-blue curve corresponds to ωsw , cf. Eq. (24). Panel
d): The number of collective spin excitations is computed by diagonalizing Eqs. (20) and (16a), respectively below and above the phase transition.
anel (e): The bipartite (half-system) entanglement entropy in fully-connected spin models is a function of ⟨n̂0⟩ only, see Section 4.1.5 below; in
he quantum ferromagnetic phase, the finite-size ground state approaches a symmetric superposition of two symmetry-breaking ground states for
arge N , which yields an extra bit of entropy; the divergence at criticality is logarithmic in system size, see Refs. [82,83].

In order to determine the ground state and the elementary excitations in the broken-symmetry phase, let us start
rom some general considerations. For h < hcr the classical landscape presents two symmetric minima, as discussed above.
elow the energy Edyn ≡ Hcl(θ = 0) of the classical phase-space separatrix, two symmetric families of classical trajectories
ill the two energy wells. In the thermodynamic limit, this corresponds to two towers of pairwise degenerate energy
evels, associated with wavefunctions localized in the two wells. At finite size N , however, the energy eigenstates below
he critical energy are nondegenerate and alternately even and odd with respect to the Z2 symmetry of the Hamiltonian.
or large N , they approach even and odd superpositions of the localized wavefunctions. The energy splitting between each
air of quasidegenerate eigenstates is proportional to the quantum tunneling amplitude across the energy barrier, which
s exponentially small in the height of the barrier [81], and hence exponentially small in N . Accordingly, tunneling between
he two broken-symmetry sectors is practically suppressed even for moderate system sizes, and it is extremely fragile to
iny symmetry-breaking perturbations. For these reasons it makes sense to consider the two towers of symmetry-breaking
tates independently of each other.
To compute the spectrum explicitly, it is convenient to introduce a procedure which will lend itself to powerful

eneralizations in the rest of this Report. We rewrite the components of the collective spin in a rotated frame (X,Y, Z),
f. Eq. (12), by angle θ in the xz-plane, i.e.,

Ŝx = cos θ ŜX + sin θ ŜZ , Ŝy = ŜY , Ŝz = − sin θ ŜX + cos θ ŜZ . (18)

erforming a Holstein–Primakoff transformation with rotated quantization axis Z and neglecting terms of order 1/S,⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŜX ≈

√
S q̂,

ŜY ≈
√
S p̂,

ŜZ = S − n̂0 = S −
q̂2 + p̂2 − 1

2
,

(19)

e get

Ĥα=0 ≈ − N
(
hρ cos θ + J0

1 + γ

2
ρ2 sin2 θ

)
−

√
ρN
s

sin θ
(
h − ρJ0(1 + γ ) cos θ

)
q̂

+
1
[(
ρJ0(1 + γ ) sin2 θ + h cos θ

) q̂2 + p̂2 − 1
− ρJ0(1 + γ ) cos2 θ

q̂2
− ρJ0(1 − γ )

p̂2
]
.

(20)
s 2 2 2
9
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n order for the bosonic variables to describe quantum fluctuations it is necessary to align the frame with the classical
onfiguration, in such a way that linear terms in the second line vanish. This condition leads to θ∗ as in Eq. (13). The
resulting quadratic Hamiltonian can then be readily diagonalized:

Ĥα=0 ≈ −
N
2

(
h2

J0(1 + γ )
+ ρ2J0(1 + γ )

)
+

1
s

(
ω< − ω

(0)
<

2

)
+

1
s
ω< n̂, (21)

here

ω< =

√[
ρ2J20 (1 + γ )2 − h2

] 2γ
1 + γ

, ω(0)
< = ρJ0(1 + γ ) . (22)

Analogously to Eq. (16), the first term on the right-hand side of Eq. (21) represents the classical energy, the second one
expresses the shift in the zero-point energy due to quantum fluctuations around the classical minimum configuration,
while the last one [arising from diagonalization of Eq. (20)] is the energy of the harmonic excitations, with n = 0, 1, 2, . . . .

In Fig. 2 we plotted the exact ground state energy density E [panel (b)], the energy gap of collective spin excitations
ω>,< (dark-blue curve) [panel (c)], and the number of ‘‘bare’’ collective spin excitations ⟨n̂0⟩ [panel (d)], of the infinite-
range quantum Ising model (γ = 1) in the thermodynamic limit N → ∞, as a function of the ratio h/J0. The results (16)
and (21) are asymptotically exact for n/N → 0, and fully nonperturbative in the Hamiltonian parameters h, J0, γ .
Systematic improvements in powers of n/N can be worked out with a more refined analysis [84]. This is particularly
relevant to understand the finite-size scaling ω ∼ N−1/3 of the energy gap at criticality h = hcr: see Appendix A for an
lementary semiclassical derivation.
(For completeness, Fig. 2(e) also reports the ground-state bipartite entanglement entropy across the phase diagram.

his quantity can be computed numerically for large N [82] and compared with analytical calculations in the large-N limit
ased on semiclassical fluctuations [83]. This analytical procedure can be deduced as particular case of the more general
iscussion on entanglement dynamics in Section 4.1.5 below; for this reason, we do not discuss this here.)

Summary: The collective spin low-energy spectrum is described by bosonic excitations, obtained by a
Holstein-Primakoff expansion around the classical ground state.

2.3.3. ‘‘Spin-wave’’ excitations
The analysis above concerns collective spin quantum fluctuations and excitations within a fixed sector with collective

pin length S — and we are ultimately interested in the ground state sector with maximal S = Ns. Different families of spin
xcitations lower the collective spin length to S = Ns − nsw, with nsw = 0, 1, 2, . . . . (For reasons that will become clear

below, we will refer to the quantum number nsw as the total occupation of spin-wave modes with non-vanishing momenta.)
Their spectrum can also be straightforwardly obtained from semiclassical arguments: Recalling the definition ρ = S/(Ns)
above, we have

ρ = 1 −
nsw

Ns
. (23)

ubstituting into Eqs. (16) and (21) and consistently neglecting terms of higher order in 1/N , we obtain the complete
pectrum of low-lying excitations above the ground state to leading order in n/N and nsw/N:

Hα=0 ≈ −Nh +
ω> − ω

(0)
>

2s
+

1
s

(
ω> n̂ + h n̂sw

)
,

Hα=0 ≈ −
N
2

(
h2

(1 + γ )J0
+ J0(1 + γ )

)
+
ω< − ω

(0)
<

2s
+

1
s

(
ω< n̂ + (1 + γ )J0 n̂sw

)
,

(24)

alid for h > (1+ γ )J0 and h < (1+ γ )J0, respectively. (Here ω’s are taken at ρ = 1.) In Fig. 2(c) we additionally reported
he ‘‘spin-wave’’ excitation gap ωsw = h or J0(1 + γ ) in the two phases. Note that the Hilbert space sector dimension
grows exponentially with nsw [cf. the exact expression in Eq. (7)]; however, because of permutational invariance, these
energy levels are exactly degenerate.

As discussed so far, the properties of infinite-range spin Hamiltonians can be efficiently computed either analytically
(via a large-N asymptotic expansion) or numerically (via exact diagonalization of the single-spin problem for S ≤ N/2 ≈

105). In closing this Subsection it is worth to briefly mention that the Hamiltonian (5) is equivalent to the Lipkin–
Meshkov–Glick model of nuclear physics [85–87], which is actually Bethe-ansatz solvable [88]; however, this solution
is not practically useful for large N , and semiclassical or numerical techniques give much easier access to the relevant
information.

Summary: ‘‘Spin-wave’’ excitations — lowering the collective spin length — remain gapped and dispersionless
throughout the phase diagram for α = 0.
10
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.4. Finite-range interactions (α > 0)

The tendency of long-range interactions to form collective spin alignment and to preserve it even in excited states
ecomes increasingly prominent as α is decreased. To quantify this aspect, it is convenient to view a long-range interacting
ystem with finite exponent α as a ‘‘perturbation’’ of the infinite-range interacting system with all-to-all interactions
α = 0).

.4.1. Perturbation to mean-field
This viewpoint can be made explicit by rewriting the Hamiltonian in momentum space. To this aim, we Fourier

ransform the spin operators ŝµr for µ = x, y, z:

S̃µk =

∑
r

eik·rŝµr , (25)

ith

k ≡ kℓ = 2πℓ/L, ℓ = (ℓ1, . . . , ℓd), ℓa = 0,±1,±2, . . . ,±⌊L/2⌋ (26)

(for L even ℓa = ±L/2 coincide). We also define S̃±

k = S̃xk ± iS̃yk. Note that

˜⃗Sk=0 ≡
ˆ⃗S =

∑
r

ˆ⃗sr (27)

s the system’s collective spin. It is straightforward to separate the variable-range quantum XY Hamiltonian (1) into the
-independent collective part — given by the k = 0 terms — and the ‘‘perturbation’’ controlled by α:

Ĥα = Ĥα=0 + V̂α (28)

with5

V̂α = −
J0

4s2N

∑
k̸=0

fk(α)
[(

S̃+

k S̃−

−k + S̃−

k S̃+

−k
)
+ γ

(
S̃+

k S̃+

−k + S̃−

k S̃−

−k
)]
. (29)

n Eq. (29) we defined the function

fk(α) =

∑
r̸=0

cos(k · r)
||r||α

/∑
r̸=0

1
||r||α

(30)

hich depends implicitly on the dimensionality d of the lattice. By construction, fk=0(α) = 1.
When α → 0 the couplings fk̸=0(α) turn off [Eq. (33)], and Ĥα reduces to a Hamiltonian describing a single collective

egree of freedom. The effect of spatially modulated interactions α ̸= 0 is then to couple the collective spin to all
inite-wavelength modes describing spatially non-trivial spin fluctuations, resulting in complex interacting many-body
ynamics. The form of this coupling is dictated by the function fk(α). While the specific choice of the lattice may influence
he detailed form of fk(α), the physics of long-range interacting systems is only affected by the asymptotic behavior at
mall k: In Appendix C we derive

fkℓ ̸=0(α) ≡ fℓ̸=0(α) ∼
|ℓ|→∞

A(α)
|ℓ|d−α

+
B(α)

|ℓ|(d+1)/2 for 0 < α < d ; (31)

fk̸=0(α) ∼
k→0

1 − Ā(α)|k|
α−d

− B̄(α)|k|
2 for α > d . (32)

The sharp changes in behavior are summarized in Fig. 3, where we plot fk(α) for a range of values of α and d = 1. Its
shape shrinks from fk(α → ∞) = cos k to

fk(α → 0) = δk,0 , (33)

ecoming increasingly singular at k = 0 as α is decreased:

fkℓ (α) ≡ fℓ(α) ∼ c(α)|ℓ|−(1−α) for α < 1; (34a)

fk(α) ∼ 1 − c(α)|k|α−1 for 1 < α < 3; (34b)

fk(α) ∼ 1 − c(α)k2 for α > 3. (34c)

For long-range interactions 0 < α < 1, the values of fk(α) progressively squeeze onto the vertical axis as L → ∞; upon
ooming near k = 0 one finds a sequence of discrete finite values, see the right panel of Fig. 3 [52,58]. This phenomenon

5 Note that in this expression the various k-modes are not dynamically decoupled, since
[
S̃µ, S̃ν

]
= iϵµνλ S̃λ .
k q k+q

11
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Fig. 3. Plots of the function fα,k (30) for d = 1. (Left panel): fk(α) is shown for several values of α, for N = L = 500. The function squeezes towards
= 0 for 0 ≤ α ≤ 1. For 1 < α < 2, fk(α) becomes a finite function with a cusp behavior for small k, while for α ≫ 2 it is a cosine-like function.
Central panel): fk(α) is shown for α = 0.7 and increasing values of N . Qualitatively similar behavior occurs for 0 ≤ α ≤ 1. Squeezing towards a
elta function as N → ∞ occurs with a speed N−(1−α) for α < 1 and 1/ lnN for α = 1. (Right panel): a ‘‘zoom’’ of the plot in the bottom left panel
s shown, for larger values of N . The rescaled function in the vicinity of k = 0 converges to a finite limiting curve as N → ∞. This discrete structure
pproaches a continuum as α ↗ 1.

an be physically interpreted as follows: interactions decay so slowly with the spatial distance that the system behaves as
permutationally invariant system over finite length scales, hence observables are unable to resolve finite wavelengths.
nly modes with extensive wavelengths kℓ ∝ 1/L may impact the physical properties. As α is increased to values larger
han d, all modes k ̸= 0 get eventually activated.

Despite its simplicity, the result in Eq. (31) has significant physical implications: As we will show below, the low-
nergy spectrum of a quantum system with long-range interactions remains discrete in the thermodynamic limit. In this
recise sense we may say that long-range interacting systems with 0 < α < d interpolate between few-body and many-body
hysics.
At the same time, Eq. (32) showcases another fundamental properties of long-range interacting systems: the singularity

t small momenta gives rise to a divergent velocity of propagation of quantum information across the system for α < d+1,
iolating the famous Lieb–Robinson light-cone bound of short-range interacting systems [15]. This property is actually
ompletely general, as it does not rely on any low-energy description. We will further discuss its consequences in
ection 3.1.1.

Summary: Finite-range interactions can be seen as a perturbation to the fully-connected Hamiltonian. Physically, this
perturbation couples the collective spin to spin fluctuation modes at non-vanishing momentum. Long-range interactions
preferentially generate coupling to long-wavelength modes only.

2.4.2. Quantum paramagnetic phase
We are now ready to compute the low-energy spectrum and properties of the variable-range quantum XY model (1).

or large h and arbitrary α the paramagnetic ground state is the spin-coherent eigenstate of Sz ,

|GSh=∞⟩ = |⇑ ⟩ ≡

⨂
r

|↑r⟩. (35)

For finite h/J0 the ground state is a (α-dependent) distortion of this state dressed by spin-lowering excitations. A
convenient approach to describe spin fluctuations in |GSh<∞⟩ is by mapping them to bosonic modes using the Holstein–
Primakoff transformation [80].

Unlike our discussion in Section 2.3.2, we now have to keep track of spatially-resolved fluctuating spin modes, which
we can conveniently do by working at the level of individual microscopic spins. Recalling the standard definitions
ŝ±r = ŝxr ± iŝyr , we can bosonize individual spin fluctuations around the positive z axis by setting

ŝ−r ↦→ b̂†
r

√
2s − b̂†

r b̂r, ŝ+r ↦→

√
2s − b̂†

r b̂r b̂r, ŝzr ↦→ s − b̂†
r b̂r, (36)

where b̂r, b̂
†
r are canonical bosonic annihilation and creation operators. Performing the substitutions (36) in Eq. (1) we

obtain an exact representation of the variable-range XY quantum spin model as a non-linear bosonic Hamiltonian, where
the state |⇑ ⟩ in Eq. (35) corresponds to the Fock space vacuum |∅⟩.

The mapping (36) should be understood as an embedding of the two-dimensional Hilbert space of a spin-1/2 in the
infinite-dimensional Hilbert space of a bosonic mode. The states |↑ ⟩ and |↓ ⟩ are mapped onto |0⟩ ≡ |∅⟩ and |1⟩ ≡ b†

|∅⟩.
12
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he operators on the right-hand sides of Eqs. (36) act non-trivially on the full bosonic space; however, they are block-
iagonal, as their matrix elements between the physical spin subspace and its orthogonal complement are vanishing;
heir action on the physical spin subspace coincides with the operators on the left-hand sides.

It is convenient to write the bosonic Hamiltonian directly in momentum space. To this aim, we define the Fourier-
ransformed bosonic modes6

b̃†
k =

1
√
N

∑
r

eik·rb̂†
r . (37)

e now formally expand the Holstein–Primakoff mapping (36) in 1/s and Fourier-transform term by term:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̃−

k ≈ (2Ns)1/2 b̃†
k −

1
2(2Ns)1/2

∑
q1,q2

b̃†
q1 b̃

†
q2 b̃q1+q2−k,

S̃+

k ≈ (2Ns)1/2 b̃−k −
1

2(2Ns)1/2
∑
q1,q2

b̃†
q1+q2+kb̃q1 b̃q2 ,

S̃zk = Ns δk,0 −

∑
q

b̃†
q+kb̃q.

(38)

It is worth to stress here the connection with the previously introduced expansion. First of all, we immediately recognize
that the bosonic mode with k = 0 coincides with the previously introduced collective bosonic mode in Eq. (19).
Furthermore, by expanding Ŝ2 using Eqs. (38), one can check that n̂k=0 = b̃†

k=0b̃k=0 cancels to leading order [80]:

n̂sw ≡ Ns − S =

∑
k̸=0

b̃†
kb̃k. (39)

This equation asserts that the total occupation of non-zero momentum spin-wave modes represents the collective spin
depletion, explaining the notations in Eq. (23).

Making the substitutions (38) into Eq. (28) we obtain an expression of the form

Ĥα =
1
s

[
(Ns)1E0 + (Ns)0Ĥ2 + (Ns)−1Ĥ4 + · · ·

]
, (40)

where:

E0 = H(z) = −h (41)

s the classical (mean-field) energy density of the paramagnetic state;

Ĥ2 =

∑
k

h b̃†
kb̃k −

∑
k

J0 fk(α)

(
b̃kb̃

†
k + b̃†

−kb̃−k

2
+ γ

b̃kb̃−k + b̃†
−kb̃

†
k

2

)
(42)

escribes semiclassical (Gaussian) spin fluctuations;

Ĥ4 =
J0
2

∑
k,q1,q2

fk(α) ×[ (
b̃†

−k+q1+q2
b̃q1 b̃q2 b̃

†
k + b̃†

q1 b̃
†
q2 b̃k+q1+q2 b̃−k + b̃kb̃†

q1 b̃
†
q2 b̃−k+q1+q2 + b̃†

−kb̃
†
k+q1+q2

b̃q1 b̃q2
)

+ γ

(
b̃†

−k+q1+q2
b̃q1 b̃q2 b̃−k + b̃kb̃

†
k+q1+q2

b̃q1 b̃q2 + b̃†
−kb̃

†
q1 b̃

†
q2 b̃−k+q1+q2 + b̃†

q1 b̃
†
q2 b̃k+q1+q2 b̃

†
k

) ]
(43)

represents the 2-body non-linear interactions between spin fluctuations. One can similarly derive (Ns)−2Ĥ6 etc.
While the full exact bosonic representation is cumbersome, its usefulness rests on the approximability of highly

polarized spin states with bosonic states. To this aim we introduce the number of bosons

n̂tot ≡ n̂0 + n̂sw = Ns − Ŝz (44)

and we approximate well-polarized states with ntot ≪ Ns with dilute Fock states with ntot boson. In such corner of the
Hilbert space, the bosonic modes turn out to provide an accurate description of spin states and operators. Intuitively, by
inspecting Eqs. (38), one recognizes that the action of the non-linear terms (second on the right-hand side) on a dilute
Fock state is suppressed by a density factor ntot/N compared to the action of the leading terms. Thus, up to an error of
order O[(ntot/N)2], we may identify S̃−

k ∝ b̃†
k, S̃

+

k ∝ b̃−k. We now show that the ground state of long-range interacting
spin models lives exactly in this corner of the spin space.

6 Note that we take a unitary Fourier transformation on the bosonic modes, while the convention for spins in Eq. (25) was such that S̃x,y,zk=0 = Ŝx,y,z
collective spin projections).
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An approximate solution of the bosonic Hamiltonian (40) can be found by neglecting the terms with Ĥ4 and higher
rder — an approximation usually termed linear spin-wave (LSW) theory. The quality of the result heavily depends on the
arameters and in particular on α. Our purpose is to show that the LSW description of low-energy properties becomes
xact for α < d, and quantify its accuracy for α > d.
The quadratic spin-wave Hamiltonian can be diagonalized via a standard Bogoliubov transformation, b̃k = cosh θkβk +

inh θkβ
†
−k, with

tanh(2θk) ≡
γ J0fk(α)

h − J0fk(α)
. (45)

he result is

Ns E0 + Ĥ2 = Ns E2 +

∑
k

ωk,>(α) β̂
†
kβ̂k , (46)

here we identify the excitation spectrum

ωk,>(α) =

√[
h − J0fk(α)

]2
− γ 2

[
J0fk(α)

]2
=

√[
h − J0fk(α)(1 − γ )

][
h − J0fk(α)(1 + γ )

]
, (47)

nd the ground-state energy

Ns E2 = Ns E0 +
1
2

∑
k

[
ωk,>(α) − ω(0)

>

]
(48)

here ω(0)
> = h [cf. Eq. (17)].

Within LSW theory, the ground-state wavefunction is given by

|GS2⟩ =

∏
k

exp
[
θk

2

(
b̃kb̃−k − b̃†

−kb̃
†
k
)]

|∅⟩ ∝

∏
k

exp
(

−
ϵk

4γ J0fk(α)
b̃†

−kb̃
†
k

)
|∅⟩ (49)

where

ϵk ≡ 2h − 2J0fk(α) − ωk,>(α) ≥ 0 . (50)

The meaningfulness of the LSW solution is determined by ωk,> being real. This requires h ≥ hcr, where

hcr ≡ J0(1 + γ ). (51)

The minimum of ωk,> is attained as k → 0. To expand around this limit we write fk(α) ≡ 1 − σk(α). Calculation gives

ωk,>(α) ∼
k→0

2h
√
a + bσk(α), (52)

ith dimensionless coefficients a and b.7 For h > hcr one has a > 0 and thus ωk,> ∼
k→0

2h
√
a+h(b/

√
a)σk. For short-range

interactions α ≥ d + 2 the gapped dispersion relation is parabolic, σk ∼ |k|
2; for longer range d < α < d + 2 it behaves

s σk ∼ |k|
α−d; for α < d the spectrum becomes discrete, σkℓ

≡ σℓ.8 At the critical point h = hcr, one has a = 0 and
ence ωk,> ∼

k→0
2h

√
bσk, signaling closure of the spectral gap at k = 0. However, for α < d, the spectrum of spin-wave

excitations with k ̸= 0 is discrete.
To assess the accuracy of LSW theory we evaluate the depletion of spin polarization, i.e.

⟨n̂tot⟩ = Ns − ⟨Ŝz⟩ =

∑
k

⟨GS|b̃†
kb̃k|GS⟩. (53)

Approximating the ground-state |GS⟩ by the LSW theory ground-state |GS2⟩ in Eq. (49) we obtain the explicit expression

⟨n̂tot⟩ =
1
2

∑
k

ϵk

ωk,>
. (54)

his quantity depends on h, α and γ ; in particular, it is suppressed as h → ∞ or α → 0 or γ → 0.
In Fig. 4 we plot the depletion per spin ⟨n̂tot⟩/N given by Eq. (54) at fixed γ = 1 (quantum Ising model) and for d = 1.

As is evident, the effect of spin fluctuations is enhanced as the interactions become short-ranged, i.e. α → ∞, or as the
critical point hcr = 2J0 is approached. All the qualitative aspects of this plot can be understood analytically. Specifically,
for h > hcr, we have

⟨n̂tot⟩

Ns
=

1
16

(
hcr

h

)2 1
Ns

∑
k

f 2k (α) + O
((

hcr

h

)3 1
Ns

∑
k

f 3k (α)
)
. (55)

7 Explicitly, a = 1 − 2J0/h + (1 − γ 2)(J0/h)2 and b = 2(J0/h)[1 − (1 − γ 2)(J0/h)].
8 It is interesting to note that the LSW description of the ground state is meaningful even for large α, where LSW theory completely fails to

apture the possible topological nature of excitations.
14
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Fig. 4. Ground-state spin depletion density ⟨n̂tot⟩/N in the quantum paramagnetic phase, cf. Eq. (54), for γ = 1 and d = 1 (variable-range quantum
Ising chain).

The behavior of the right-hand side as N → ∞ depends qualitatively on α: For α > d the limit is a finite number,

1
N

∑
k

f 2k (α) ∼

∫ π

−π

· · ·

∫ π

−π

dk1 . . . dkd
(2π )d

f 2k (α) (56)

cf. left panel of Fig. 3). As α ↘ d the function fk(α) squeezes on the vertical axis (cf. Fig. 3), suppressing the value of the
ntegral. This means that the spin depletion becomes subextensive for α < d: using fℓ(α) ∼ |ℓ|−(1−α) [cf. Eq. (34)], one
finds

⟨n̂tot⟩ ∼

∑
|ℓ|<L/2

|fℓ(α)|2 ∼

⎧⎪⎨⎪⎩
O(1) for 0 < α < d/2,
log L for α = d/2,

L2α−d for d/2 < α < d.
(57)

n the other hand, for h = hcr, we have

⟨n̂tot⟩

Ns
=

1
4Ns

∑
k

(
1 + σk(α)
√
σk(α)

− 1
)
. (58)

ere the behavior of the right-hand side as L → ∞ depends even more strongly on α, in particular for one-dimensional
ystems d = 1: For α > 3 the sum is divergent, 1

N

∑
k

1√
σk(α)

∼
∫ π

−π
dk
2π

1
|k| = ∞. This divergence witnesses the inadequacy

f LSW theory to describe critical behavior of one-dimensional systems with short-range interactions. Contrarily, for
< α < 3 one has σk(α) ∼ |k|α−1, and the integral is convergent. As α ↘ 1 the depletion per spin is suppressed, making
SW theory increasingly accurate. Finally, for α < 1, one finds the same subextensive scaling as in Eq. (57). Note, however,
hat the collective spin mode k = 0 yields an additional divergent (but still subextensive) contribution ⟨n̂0⟩ ∼ N1/3 to
n̂tot⟩ at the critical point, which can be shown by semiclassical analysis (see Appendix A); such a contribution is thus
ominant for 0 < α < 2

3d and subleading for α > 2
3d.

The bottom line of this Section is that the Holstein–Primakoff description of spin fluctuations is exact in the
hermodynamic limit for 0 < α < d, and otherwise an increasingly accurate approximation as α is decreased towards
. Importantly, this result is true regardless of the value of s, down to s = 1/2. Accuracy for low s may be surprising
t first sight, considering Eq. (36). Its origin can be traced back to the observation that the truncated Holstein–Primakoff
apping gives exact matrix elements within the subspace with at most one boson on each site, for arbitrary s. Thus, what

eally controls the quality of the approximation is the ground-state spin-wave density: For 0 < α < d the probability of
inding two or more bosons in a given site in |GS2⟩ is vanishingly small in the thermodynamic limit, and it is finite but
arametrically small for α ≳ d.

Summary: The paramagnetic ground state can be determined via linear spin-wave theory, which becomes exact as
the strong long-range regime is approached.

2.4.3. Quantum ferromagnetic phase
To derive the low-energy spectrum in the quantum ferromagnetic phase for α > 0, we promote the frame rotation

in Eq. (18) from the level of the collective spin to the level of individual spins:

ŝx = cos θ ŝX + sin θ ŝZ , ŝy = ŝY , ŝz = − sin θ ŝX + cos θ ŝZ . (59)
r r r r r r r r

15
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ence we perform a Holstein–Primakoff expansion of individual spins with quantization axis Z and Fourier-transform,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S̃Xk ≈ (Ns)1/2
b̃†
k + b̃−k
√
2

,

S̃Yk ≈ (Ns)1/2
b̃†
k − b̃−k
√
2i

,

S̃Zk = Ns δk,0 −

∑
q

b̃†
q+kb̃q ,

(60)

nd substitute into the Hamiltonian (28). As in Eq. (40) we obtain a formal series in inverse powers of Ns, including the
lassical energy (Ns)1H(Z), the quadratic bosonic Hamiltonian

Ĥ2 =
(
h cos θ + J0(1 + γ ) sin2 θ

)∑
k

b̃†
kb̃k

− J0
∑
k

fk(α)
[ (

1 + γ

2
cos2 θ +

1 − γ

2

)
b̃kb̃

†
k + b̃†

−kb̃−k

2

+

(
1 + γ

2
cos2 θ −

1 − γ

2

)
b̃kb̃−k + b̃†

−kb̃
†
k

2

]
, (61)

s well as quartic and higher-order interactions involving an even number of bosons. However, unlike in Eq. (40), we also
et an additional term (Ns)1/2Ĥ1 linear in q̂k=0 = (b̂k=0 + b̂†

k=0)/
√
2 — cf. the first line of Eq. (20) — as well as other odd

erms (Ns)−1/2Ĥ3 and so on.
The rotation angle θ∗ must be determined by imposing that the expectation value of q̂k=0 vanishes. To lowest order

this gives the mean-field solution in Eq. (13). Paralleling the derivation in the previous Section we can then solve the LSW
Hamiltonian Ĥ2(θ = θ∗), which yields the spectrum

ωk,<(α) =

√[
J20 (1 + γ )2 − h2fk(α)

] [
1 − fk(α)

1 − γ

1 + γ

]
(62)

s well as the zero-point energy shift 1
2

∑
k(ωk,<(α) − ω

(0)
< ), where ω(0)

< = J0(1 + γ ) [cf. Eq. (22)].
The analysis of spectral properties and of the spin depletion in the quantum paramagnetic phase can be repeated for

the quantum ferromagnetic phase, with qualitatively similar conclusions. The mean-field description of local observables
is exact for 0 < α < d in the thermodynamic limit. For α > d finite corrections to the mean-field results arise. Such
corrections can be evaluated within the bosonic formalism [57,89]. In particular, the downward shift of the quantum
critical point hcr,α = hcr,α=0 − δhcr,α due to quantum fluctuations amounts to [57,89]

δhcr,α

hcr,α=0
=

γ

s
2 + 3γ
4(1 + γ )2

∫ π

−π

· · ·

∫ π

−π

dk1 . . . dkd
(2π )d

f 2k (α) . (63)

he right-hand side is in fact vanishing for 0 < α < d and grows finite for α > d. Note that effects of quantum fluctuations
re suppressed as s → ∞.
For completeness, let us mention that for α < d, the ground state shares the same basic properties of the fully-

onnected limit [90]. Long-range interactions however can induce unexpected entanglement properties. For instance,
or d < α < d + 1, the ground state entanglement entropy the long-range Dyson Hierarchical model obeys an area
aw at criticality [91], due to its special Tree Tensor Network structure [92]. On the other hand, numerical studies for
ntiferromagnetic long-range systems have shown violations of area-law scaling also in the gapped phase [93–96].

Summary: The ferromagnetic ground state can be determined via linear spin-wave theory in a rotated frame. This
approach is exact in the strong long-range regime and it determines corrections to the location of quantum critical
point.

2.5. Structure of the spectrum beyond linear spin-wave theory

In this final Subsection we comment on the structure of the many-body low-energy spectrum beyond LSW theory. To
rasp such effects we will make use of degenerate perturbation theory — i.e., of the Schrieffer–Wolff transformation —
round points in the two phases where Ĥα becomes diagonal.
Quite generally, spin waves provide a rather complete description of low energy properties in the quantum paramag-

netic phase, even beyond LSW theory. This is best understood in the regime of large external field h, where the ground
tate is |GS⟩ = |⇑⟩ and excited states can be described as a set of individual spin lowering excitations. The degeneracy of
locks with multiple spin excitations is split by the interactions. The effective block Hamiltonian for large h is obtained
16
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y projecting out interaction terms that do not conserve Sz , i.e. the part of Ĥα proportional to γ .9 The Holstein–Primakoff
ransformation maps this effective XX quantum spin model to a model of lattice bosons with variable-range hopping
1/(∆r)α . Non-linearity of the mapping is associated with the suppression of matrix elements for hopping processes

rom/to multiply occupied sites.10 Such unconventional multi-boson interactions [cf. the second line of Eq. (43)] produce a
scattering phase shift for quantized spin-wave excitations, which can be determined by solving the few-body problem.11

qualitatively similar scenario is expected for finite but large enough h/J0, upon rotating the bare Holstein–Primakoff
osons bk, b

†
k to the dressed spin-wave basis βk, β

†
k in Ĥα .

On the other hand, the phenomenology is drastically different in the quantum ferromagnetic phase, due to the strong
binding tendency of local spin excitations. This is most easily understood starting from the ‘‘classical’’ Ising model,
i.e. Eq. (1) with γ = 1, h = 0:

Ĥα = −

∑
r,r′

J||r−r′||(α) σ̂ x
r σ̂

x
r′ . (64)

This Hamiltonian is diagonal in the x-basis. It has two degenerate ground states |GS+⟩ = |⇐⟩ and |GS−⟩ = |⇒⟩ with
energy EGS = −J0N , and excited states can be described as a set of spin-changing excitations with respect to either
ground state. Here the unperturbed energy levels depend on the details of the spin configuration: The lowest elementary
excitations are individual isolated spin excitations,

E
(
sxr = s − 1, sxR̸=r = s

)
= EGS +

J0
s

; (65)

he subspace with two spin excitations has a configuration-dependent energy,

E
(
sxr = s − 1, sxr′ = s − 1, sxR̸=r,r′ = s

)
= EGS + 2

J0
s

−
Jr,r′ (α)

s2
. (66)

E
(
sxr = s − 2, sxR̸=r = s

)
= EGS + 2

J0
s

(for s > 1/2 only) . (67)

his implies an attractive potential between spin excitations,12

Vr,r′ (α) = −
Jr,r′ (α)

s2
= −

J0
2s2Nα,L

1
||r − r′||α

. (68)

imilarly one can compute the unperturbed energy of more complex spin configurations with three or more spin
xcitations.
Such excited states acquire a non-trivial dispersion relation upon turning on h ̸= 0 or γ ̸= 1. Using lowest-order

degenerate perturbation theory, it is straightforward to check that processes generated by 1 − γ ̸= 0 induce a variable-
range hopping of individual spin excitations, whereas processes generated by h ̸= 0 do not induce any resonant transitions
to lowest order. We thus retrieve a dispersion relation ∼

J0
s [1−fk(α)(1−γ )/2] for individual spin excitations, in agreement

ith Eq. (62) from LSW theory. The number Nb of stable spin-wave bound states depends on the relative magnitude of
‘classical potential well depths’’, controlled by α, and ‘‘quantum hopping amplitudes’’, controlled by 1 − γ and h. This
umber grows unbounded upon reducing the quantum fluctuations. Estimating Nb as well as the lifetime of unstable
ound states depending on the interaction range and in one or higher dimensions is in general a challenging problem
hich, to the best of our knowledge, has not been discussed extensively; see however Refs. [62,98].
All the observations above carry over to short-range interacting systems α = ∞, provided the system dimensionality

s large enough (d ≥ 2).
In one dimension LSW is still a meaningful description of the paramagnetic spectrum (asymptotically exact for large

xternal field). In the quantum ferromagnetic phase, however, LSW theory completely misses the relevant degrees of
reedom, i.e. topological domain-wall-like excitations. In the simplest case s = 1/2 these fractionalized spin excitations can
e described as fermions, as the exact solution of the XY quantum spin chain [99] makes manifest. The qualitative effect
f longer-range interactions is then to create an effective attractive potential v∆r (α) between domain walls at a distance
r (not to be confused with the attractive potential V∆r (α) between individual spin excitations introduced above). Taking

or simplicity the classical Ising limit γ = 1, h = 0 as a reference, one can straightforwardly compute the excess energy
f a spin configuration with two domain walls separated by ∆r sites: Assuming α > 1,13

v∆r (α) =
2J0
ζ (α)

( ∆r∑
r=1

r
1
rα

+∆r
∞∑

r=∆r+1

1
rα

)
. (69)

9 E.g., it can be checked that γ drops out from the LSW spectrum ωk,>(α) in Eq. (47) to lowest order in 1/h.
10 In particular, transition amplitudes to states with more than 2s bosons at any site are strictly vanishing.
11 We note that for local systems in one dimension, the exact phase-shifts fully determine the many-body eigenstates via Bethe-Ansatz [97].
12 Note that spin excitations on the same site (relevant for s > 1/2 only) do not feel any attraction or repulsion, unless the Hamiltonian features
elf-interaction terms.
13 For 0 < α < 1 we have v∆r (α) = 2J0∆r in the thermodynamic limit, in agreement with naive LSW theory. In this case, however, the spatial
onfiguration of the ∆r flipped spins becomes immaterial. Thus, it is not meaningful to speak about ‘‘domain-wall confinement’’.
17
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his potential grows from v∆r=1(α) = 2J0 to v∆r=∞(α) = 2J0ζ (α − 1)/ζ (α) for α > 2, or to ∞ for α ≤ 2. The asymptotic
ehavior of v∆r (α) at large distance ∆r is

v∆r (α) ∼
∆r→∞

2J0
ζ (α)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆r2−α

(2 − α)(α − 1)
for 1 < α < 2,

log∆r for α = 2,

ζ (α − 1) −
∆r−(α−2)

(α − 2)(α − 1)
for α > 2.

(70)

or α > 2 finitely many bound states coexist with unbound deconfined domain walls. As anticipated above, the cost of
aving a deconfined domain wall blows up as α ↘ 2, which witnesses the stabilization of long-range order by long-range
nteractions in 1d. Upon decreasing α the lowest excitation in the spectrum — the tightest bound state between two
omain walls — is increasingly well described by LSW theory.
We finally note that while long-range interacting quantum spin chains do not naturally map to local lattice gauge

heories [100], except in special cases [101], the spatial confinement, the spatial confinement of domain walls bears
ualitative resemblance with quark confinement in high energy physics [102]. This bridge led to insights on the anomalous
on-equilibrium dynamics of these systems [62,63,103]. Furthermore, although domain-wall deconfinement prevents
inite-temperature ordering for α > 2, it has been shown that the existence of low-lying bound states is associated
ith a drastic suppression of the dynamical melting rate of the order parameter after shallow quantum quenches [104].

Summary: The low-energy spectrum in the quantum ferromagnetic phase hosts a rich structure of spin-wave bound
states for d ≥ 2, or for d = 1 provided α is low enough. In d = 1 deconfined domain-wall-like excitations appear for
α > 2 along with confined spin-wave-like bound states.

3. Low-energy dynamics

The previous Section shows how the main impact of long-range interactions on low-energy equilibrium properties of
he Hamiltonian in Eq. (1) can be traced back to the quasi-particle spectrum, in turn determined by the function fk(α),
ee Fig. 3. Interestingly, the same is true for several types of non-equilibrium phenomena at low energies. In the present
ection, we focus on dynamics following weak perturbations of the ground state, which is captured by the quadratic
uasi-particle Hamiltonian (such as Eq. (42)). This allows us to capture the dynamics of quantum correlations at low
nergies [42,50,51,105], see Section 3.1, the appearance of long-live metastable state [43,52], i.e. the quasi-stationary states
QSSs), see Section 3.2, the universal defect formation upon slowly traversing criticality [53,54,106–108], see Section 3.3,
nd the appearance of dynamical quantum phase transitions in the Loschmidt echo (DQPTs) [109,110], see Section 3.4.
ince Sections 3.1 and 3.2 focus on super-critical quenches, the dynamics occurs in the near equilibrium regime, where
he spin-wave expansion around the equilibrium state remains applicable. On the other hand, universal defect scaling
nd DQPTs are observed for quenches across the critical point, making the applicability of the low-energy theory a priori
uestionable. Nevertheless, we are going to show how the salient features of those critical quenches actually arise from
low density of excitations above the ground state.

.1. Spreading of correlations

In systems governed by local Hamiltonians, out-of-equilibrium quantum correlations are known to spread within a
‘light cone’’: The propagation of information in non-relativistic quantum lattice systems with bounded local Hilbert space
beys a speed limit given by the Lieb–Robinson theorem [111]. This states that the support of an operator Âr initially
ocalized in a finite region around site r and evolving in the Heisenberg representation with a local Hamiltonian Ĥ , spreads
n space with a finite (model-dependent) velocity vLR. Formally, for any locally interacting lattice system there exist
ositive constants ξ, µ and vLR such that the commutator between two locally supported operators Âr and B̂r′ separated
y a distance ∆r = |r′ − r| obeys

∥[Âr(t), B̂r′ (0)]∥ ≤ ξ∥Âr∥ ∥B̂r′∥ e−µ max(0,∆r−vLRt) , (71)

here ∥ · ∥ is the operator norm. Namely, the weight of the time-evolved operator outside the ‘‘light-cone’’ region
≥ ∆r /vLR is exponentially suppressed with ∆r − vLRt → ∞. In other words, it takes at least a time proportional to the
istance t ∝ ∆r to send information at a distance ∆r . Such light-cone propagation of information is by now theoretically
ell understood in short-range interacting systems, and it goes hand-in-hand with a linear dynamical increase of bipartite
ntanglement out of equilibrium [112–115]. Experimental observation of linear light-cone propagation [18,116] has been
ccompanied by abundant numerical confirmations [117–120].
In presence of long-range interactions, the standard behavior of locally interacting systems changes substantially: the

ounds on the group velocity may not hold anymore, and the spreading of correlations and information scrambling,
efined as the loosing of local information into many-body quantum entanglement [121], may be drastically boosted.
he study of the impact of algebraically decaying interactions on correlation spreading has been addressed as a function
18
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Fig. 5. Spatial spreading of correlations in systems with power-law interactions. (a) Connected correlation function in a long-range trapped ion
platform following a global quench with α ≈ 0.64. Image adapted from Ref. [3]. (b) Violation of the Lieb–Robinson bound in Eq. (71) for long-range
interacting systems with power-law interactions for α > d.
Source: Image adapted from Ref. [122].

of the different values of the power-law exponent α. Part of the current understanding is based on assessing the behavior
of the spatial spreading of connected correlations, e.g.

Gαβ (r, t) = ⟨σ̂ αi+r (t)σ̂
β

i (0)⟩ − ⟨σ̂ αi+r (t)⟩⟨σ̂
β

i (0)⟩, (72)

in paradigmatic quantum spin chains or tight-binding models; the expectation value is taken over some initial state |ψ0⟩

and α, β = x, y, z.
Generalized bounds have been derived for long-range systems [123,124], see Ref. [125] for a recent comprehensive

review. The related experiments and numerical investigations have, however, led to conflicting pictures [3,17,50,59,60,126,
127]. For instance, experiments on ion chains [3] and numerical simulations within truncated Wigner approximation [128]
for the one-dimensional long-range XY model point towards bounded, super-ballistic, propagation for all values of
α. In contrast, experiments on the long-range transverse Ising model reported ballistic propagation of correlation
maxima with, however, observable leaks that increase when α decreases [17]. Moreover, time-dependent density matrix
renormalization group (t-DMRG) and variational Monte-Carlo (t-VMC) numerical simulations indicate the existence of
three distinct regimes, namely instantaneous, sub-ballistic, and ballistic, for increasing values of the exponent α, see
Ref. [50,59,60,126,127,129].

In the following, we will see how these difficulties can be overcome in the restricted setting of near-equilibrium
dynamics, by studying correlation spreading within linear spin-wave theory.

Summary: The Lieb-Robinson bound forbids super-ballistic spreading of quantum correlations in locally interacting
systems. Long-range interactions allow to circumvent this constraint.

3.1.1. Weak long-range regime (α > d)
Let us first consider the case of the Ising Hamiltonian, i.e. Eq. (1) with γ = 1, but restrict our study to the spin-wave

epresentation in Eq. (46). In this Section, we aim at characterizing the universal scaling of correlations following Ref. [51].
et us simplify the spin-wave dispersion relation in Eq. (47) by considering its low-momentum asymptotic expression,

ωk ↦→ ωlow
k = ∆+ ckζ , (73)

here the gap ∆ =
√
h (h + 2J0f0(α)) is finite, c =

√
h

h+2J0f0(α)
J0
∂ f0(α)
∂k , and

ζ =

{
α − d if d < α ≤ d + 2,
2 if α > d + 2.

(74)

As long as α > d the quasi-particle energy remains finite, while the group velocity diverges for d < α < d + 1. For
any α > d + 2 one has ζ = 2 and the conventional picture of nearest neighbor interactions is recovered. The system is
prepared in its ground state and the coupling is suddenly quenched from J i0 → J f0 ≡ J0 at the initial time t = 0. When
considering longitudinal spin correlations, i.e. Eq. (72) with α = β = x one can employ the formula

Gxx (r, t) = g(r) −

∫
ddk

dF (k)
ei(k·r+2ωkt) + ei(k·r−2ωkt)

, (75)

B (2π) 2
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Fig. 6. Spreading of connected spin–spin correlation function. Panel (a) displays Gxx(r, t) for the quantum Ising chain with α = 1.7 for a sudden
uench for the quench in the paramagnetic phase from h/J i0 = 50 to h/J0 = 1. The green line is the correlation front which scales sub-ballistically
white dashed line represents ballistic propagation). The dashed black line are the analytic scaling rζ obtained in Eq. (80). Panel (b) reports Gzz (r, t)
or the quantum XY model with α = 3 in d = 2 for a quench starting from the fully polarized state along x and evolved with the Hamiltonian in
Eq. (1) with γ = h = 0 (i.e. a quench from γ = 1 to γ = 0). The dashed black lines show the scaling of the maxima which is linear in the axis rζXY .
Source: Panel (a) is adapted from Ref. [51] and panel (b) from Ref. [105].

where the integral spans the first Brillouin zone B. In the following we are going to ignore the time-independent function
g(r) and focus on the time evolution of the correlations, which can be readily obtained

F(k) =
2h
(
J i0 − J f0

)
fk (α)[

h + 2J f0fk (α)
]√

h
[
h + 2J i0fk (α)

] . (76)

The amplitude of the quench is directly proportional to the difference between the initial J i0 and final J f0 couplings.
Both these values are chosen to maintain the system within the paramagnetic phase h > hcr. The time-dependent
correlation function Gxx(r, t) of the long-range Ising model obtained by Eq. (75) is displayed in Fig. 6(a) for α = 1.7.
The front of the correlation is highlighted by a green line. Its scaling is not linear but algebraic as expected for long-range
interactions [123,124]. Nevertheless, the front propagation does not saturate the conventional super-ballistic bounds [130],
rather it displays a sub-ballistic scaling, i.e. t ∼ rβfront with βfront > 1, which is represented as a solid green line. Inside
the correlation front the scaling changes and for the Ising model the correlation maxima (light yellow areas) propagate
ballistically with t ∼ r .

It is interesting to use the stationary phase approximation in order to evaluate Eq. (75) in the large size and long-time
limit. Indeed, for t, r → ∞ the integral in Eq. (75) is dominated by the configurations with

∇kωk = r/t (77)

where the group velocity diverges as kζ−1 in the k → 0 limit. Thus, quasi-particles with momentum ksp = (2|c|ζ t/r)1/(1−ζ )

fulfill Eq. (77) at any given point (t, r) in space–time. The leading contribution to the correlation front propagation comes
from the low-energy divergence of quasi-particle group velocity. In order to evaluate the leading contribution to the
correlation function we assume that the amplitude function obeys limk→0 F(k) ∼ kη , leading to

Gxx(r, t) ∝
tγ

rχ
cos

[
Aζ

(
t
rζ

) 1
1−ζ

− 2∆t +
π

4

]
, (78)

ith γ =
η+d/2
1−ζ , χ =

η+d(2−ζ )/2
1−ζ , and Az = 2|c|(1 − ζ )(2|c|ζ )

ζ
1−ζ . It follows from Eq. (78) that the correlation front obeys

the relation tγ ≈ rχ and

t ∝ rβfront , βfront = χ/γ . (79)

nterestingly, the propagation of the wave-front does not depend only on the universal scaling exponent ζ but also on the
specific correlation function under consideration, since the exponent η, which describes the low energy scaling of F (k) in
Eq. (78), enters in the determination of the ratio χ/γ . As the local limit is approached, the quasi-particle velocity ceases
to diverge ζ → 1 and linear spreading of the wave-front is recovered so that Eq. (78) reproduces the Lieb–Robinson
expectation [15]. The relation χ = γ + d/2 yields βfront > 1 and imposes sub-ballistic wave-front propagation.

The quench protocol under consideration stays within the paramagnetic phase, which is characterized by a gapped
dispersion relation, see Eq. (73). This, in turns, leads to limk→0 F(k) ∼ O(1) and the scaling exponent of the correlation
function vanishes, i.e. η = 0. Thus, only the exponent ζ determines the front propagation scaling β = 2 + d − α. The
front
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heoretical prediction for α = 1.7 and d = 1 produces βfront = 1.3, which is in perfect agreement with the one observed
n the numerical computation displayed in Fig. 6(a). The formula βfront = 2+d−α also matches the exact result obtained
n Ref. [60] for d = 1 and α = 3/2, also confirmed by t-VMC calculations.

Within the causal region delimited by the wave-front, the local maxima are determined by the maxima of the cosine
unction in Eq. (78). Thus, the correlation maxima occur at the time tmax, whose value does not depend on the shape of
(k), but only on the value of the ζ exponent, yielding

tmax ∝ rζ , (80)

t least for a gapless dispersion relation. According to this analysis, the maxima of the correlations, located at the time
max spread super-ballistically for weak long-range interactions. This has to be contrasted with the sub-ballistic scaling
btained in Eq. (79) for the front propagation.
The result in Eq. (80) is consistent with the experimental observation on trapped ions [3] as well as with the

runcated Wigner approximation analysis [128,131]. However, for the long-range Ising model the dynamical protocol
nder consideration remains within the paramagnetic phase, leading to a finite gap ∆ ̸= 0. Therefore, the argument
f the cosine function in Eq. (78) is insensitive to the non-analytic scaling of the dispersion relation in the low-energy
imit, becoming constant in the large t and r limit with t/r ∼ const . Thus, Eq. (80) has to be substituted with tmax ∝ r
or a gapped dispersion relations. It follows that the local maxima are always ballistic, βmax = 1 for quenches within
apped phases, see Fig. 6(a). The ballistic motion of local maxima has also been observed with a trapped ion quantum
imulator [17].
Based on the above discussion, it can be deduced that the correlations spreading reflect the low-energy properties of

he long-range model. It is evident that the scaling of correlations is universal in long-range systems, in the sense that it
eflects the low-energy properties of the model. Then, a very different picture is obtained by studying a quantum quench
ithin a gapless phase. In order to investigate this dependence we prepare the system in the state fully polarized along
he direction x and evolve it with the Hamiltonian in Eq. (1) with γ = h = 0, i.e. the long-range XY Hamiltonian, which
as U(1) symmetry. Following Ref. [105] we consider the case d = 2. The dispersion relation can be obtained by Eq. (62)
y setting γ = h = 0

ωk = J0
√
1 − fk(α). (81)

s expected, changing the symmetry of the final Hamiltonian modifies the low-energy dispersion relation, which now
cales as ωlow

k ∝ kζXY with

ζXY =

{
(α − d)/2 if d < α ≤ d + 2
1 if α > d + 2

(82)

eading to a diverging quasi-particle group velocity in the k → 0 limit for d < α < d + 2. A straightforward computation
for the long-range XY model [51,105] produces η = ζ leading to βfront = 1+d(2+d−α)/(2α). On the other hand, Eq. (80)
remains unchanged and it yields βmax = ζXY, as it is visible in Fig. 6(b) and verified by DMRG calculations in Ref. [105].

Summary: In the weak long-range regime, the correlations front spreads non-linearly, with exponents that depend
on the details of the underlying low-energy dispersion.

3.1.2. Strong long-range regime (0 < α < d)
We now consider the Hamiltonian (1) in the strong long-range regime 0 < α < d. Following Ref. [50], in this Subsection

he interactions are not Kac-normalized, i.e. we set J ≡ J0 in Eq. (3). This leads us to discuss the effect of a divergent
uasi-particle energy for k → 0 onto the correlation spreading. [Note that this is different from the rest of the Report
here we focus on the discrete spectrum in Eq. (34) at low k!] Within this framework, we approximate the low-energy
ispersion relation with the expression

ωk ≈
e0
kγ
, (83)

here e0 =
√
2hJ0 and γ =

d−α
2 . Including the modified dispersion relation into the Eq. (75) one gets

Gxx(r, t) ∼

∫
ω

dΩ
∫ π

π/L
dk kd−1+γ eıkr cos(θ)

[
1 − cos

(
2e0tk−γ

)]
, (84)

here the factor kγ comes from the low energy limit of the amplitude function in Eq. (76), i.e. F(k) ∼ kγ . Due to the
divergent nature of the quasi-particle spectrum, one can introduce a low-energy cutoff ∼ 1/L in the momentum integral
in Eq. (84). After expanding the exponential term Eq. (84) in powers of the distance r , the integration is performed term
by term [50]. Then, after discarding finite term in the system size one finds

Gxx(r, t) ∼ lim
L→∞

sin (Lγ τ)
τ

∫
dΩeı

R
L cos(θ)

L2γ+D , (85)

where is the dimensionless time variable τ = 2e t .
0
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Due to the algebraic divergence of the quasi-particles spectrum the time scale for signal spreading in the system
vanishes in the thermodynamic limit. Accordingly, the vanishing of the signal spreading time displays the same scaling
exponent γ as the divergence of the quasi-particle energy, which for the Ising model reads γ =

d−α
2 . This analytic

derivation has been also corroborated by numerical analysis of the spin-wave dynamics in Ref. [50]. It is worth noting
that the same scaling has been derived within a generalized Lieb–Robinson bound in long-range fermionic systems [42].

Summary: In the strong long range regime without Kac normalization, the divergent quasi-particle energy leads to
instantaneous correlation spreading in the thermodynamic limit.

3.1.3. Other directions
The present Subsection has been devoted to the study of correlation spreading within linear spin-wave theory [50,

1,60,105]. This approximation proved capable to capture the salient features of several numerical simulations [59,126,
28,129,132]. In particular, in the case of the quantum Ising chain [Eq. (1) with d = 1], numerical matrix-product state
alculations have shown that the emergence of a short-range-like light-cone behavior for α > 2 [129] as confirmed by
he study in Section 3.1.1. On the other hand, for 1 < α < 2, the model displays clear light cone but with an infinite
ropagation speed of almost all excitations. This is linked to the divergence of the maximum group velocity, which leads
o a scenario of multispeed prethermalization [105], see again Section 3.1.1. For α < 1, all studies report a clear nonlocal
egime, with instantaneous transmission of correlations between distant sites, in agreement with the study reported in
ection 3.1.2.
Despite the successes of linear spin-wave theory, it would be interesting to reconsider these results using the time-

ependent framework that we will present in Section 4.2.1. One may compute G(r, t) by expressing spin operators in
time-dependent frame and expanding them using Holstein–Primakoff bosons. This very analysis has been performed

n a related model in Ref. [57] in connection with dynamical phase transitions; see also the analogous calculation for
crambling dynamics in Eq. (149).
Finally, a very successful research direction based on rigorous mathematical investigations was pursued to generalize

he Lieb–Robinson bound for power-law decaying interactions [125]. In a seminal work of 2006, Hastings and Koma [123]
howed that it takes a time t ≳ log r to propagate information at distance r for all α > d. However this bound is far from
tight, since it does not recover the linear light-cone in Eq. (71) for large α. Several efforts in the past years have led to
a greatly improved picture [37,39,42,124,133–141]. Firstly, it was proved the existence of the linear light-cone t ≳ r for
α > 2d + 1 [41,142]. Secondly, it was shown that this result becomes t ≳ rmin(α−2d,1) for α > 2d [122,141]. On the
other hand, in the strong long-range regime 0 < α < d, correlations between distant degrees of freedom can propagate
instantaneously, since the bounds on the light-cone time-scale can vanish with the system size [40,42,139]. So far, the
best estimate for interacting systems is t ≳ Nα/d−1 logN , that can be made tighter t ≳ Nα/d−1/2 for free models with
α < d/2 [40]. Notably, the violations of Lieb–Robinson bound have been experimentally probed on trapped ions quantum
simulators for 0.6 ≲ α ≲ 1.2 in Refs. [3,17].

Summary: In addition to low-energy approximations, the spreading of correlations has been tackled with various
approaches ranging from numerical simulations to mathematically rigorous bounds. The current established scenario
is rather complete and satisfactory.

3.2. Metastability

In the following, we are going to show that metastability in quantum strong long-range systems may be traced back
o their discrete quasi-particle spectrum, which hinders the applicability of the kinematical chaos hypothesis [143].

.2.1. State of the art
Long-range interactions are traditionally connected with the appearance with long-lived metastable states in the

ut-of-equilibrium dynamics. These states, referred to as quasi-stationary states (QSSs), display long lifetimes, which
iverge increasing the system size. QSSs are widespread within the classical long-range physics world [144,145], but
ultiple theoretical observation occurred also in the quantum realm [43,146]. Long-lived pre-thermalization is also
xpected to occur in cold atom clouds confined into optical resonators [147], where semi-classical analysis of the Fokker–
lanck equation directly connects to the Hamiltonian mean-field model [148,149], the workhorse of classical long-range
hysics [150]. Recent studies have directly linked the absence of equilibration in strong long-range quantum systems
o the discreteness of the quasi-particle spectrum, see Eq. (34a). This results in a violation of Boltzmann’s H-theorem
nd leads to the emergence of finite Poincaré recurrence times in the thermodynamic limit [52]. This section discusses
he appearance of diverging equilibration times for quantum long-range systems in the thermodynamic limit. This is
onsistent with the properties discussed in Section 2.4, which are common to both large long-range systems and finite
ocal ones. Examples include the inability to completely disregard boundary effects over bulk phenomena [151,152], the
xistence of concave entropy regions [153], and the presence of a macroscopic energy gap between the ground state and
22
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he first excited state [154,155]. It is worth noting that our description mostly pertains isolated quantum systems, while
ultiple theoretical and experimental observations in cavity systems evidenced a substantial role of dissipation [156,157].
The crucial aspect is that the excitation spectrum of non-interacting systems does not become continuous in the

hermodynamic limit. The eigenvalues of a long-range coupling matrix have been shown to remain discrete even in
he infinite components limit, forming a pure point spectrum [158] similar to that observed in strongly disordered
ystems [159–162]. A discussion on the spectral discreteness of long-range couplings in the thermodynamic limit has
een presented in Ref. [52] for a few quadratic models and used to explain the observation of diverging equilibration
imes in a long-range Ising model, quenched across its quantum critical point [43]. We refer the readers to Section 2.4
nd Appendix C.

.2.2. Quasi-stationary states and spectral properties
The first evidence of QSSs in quantum systems was described in the prototypical example of the long-range quantum

sing chain [see Eq. (1)]. QSS were shown to appear for quenches starting well inside the paramagnetic phase in the
→ ∞ limit and ending deep in the ferromagnetic phase at h = 0. Here, the system is prepared in the transversally
olarized ground state and evolved according to the classical ferromagnetic Hamiltonian in Eq. (1) in the absence of the
ransverse field h = 0. As a result, the expectation of the global operator mz = ⟨

∑
i σ

z
i ⟩/N evolves from the initial value

imt→0 mz = 1 to the equilibrium expectation limt→∞ mz = 0, if the system actually equilibrates. These observations have
een extended to any choice of the initial and final magnetic fields hi, hf using the Jordan–Wigner representation of the
sing model.

The appearance of the QSS has been frequently linked to the scaling of equilibration times of critical observables, such
s the magnetization [47,145,163]. However, persistent time fluctuations have also been found in generic thermodynamic
bservables of classical systems, such as the evolution of internal energy in systems of particles with attractive power-law
air interactions [95]. Similar phenomena can be observed in our system, by considering just the leading order low-
nergy theory. In order to simplify the study we restrict our analysis to the paramagnetic quantum Ising chain, whose
uasi-particle dispersion is

ωk =

√
h(h − 2J0fk(α)) , (86)

f. Eq. (47). It is worth noting that the present spin-wave approximation corresponds to the time-dependent Hartree–Fock
pproximation of the Ising and O(N) rotor models. Accordingly, several phenomena occurring in the out-of-equilibrium
ow-energy dynamics of the Ising Hamiltonian can be also observed in the large-N limit of O(N) models [164,165], in-
luding prethermalization [166,167], defect formation [168], dynamical phase transitions [110]. In particular, the dynamics
nduced by a sudden quench leads to universal relaxation properties [110,165,169].

In this regime, equilibration does not occur in the non-additive regime due to the discrete quasi-particle spectrum
k(α). In order to demonstrate this fact let us consider a sudden magnetic field quench hi

→ hf in the Hamiltonian (46).
he quench occurs within the normal phase h > hcr so that no magnetization occurs. Nevertheless, a finite spin-wave
ensity will arise due to the sudden quench and will contribute to the evolution of any internal observable of the system.
n order to make a direct parallel with the classical case described in Ref. [170] we consider the evolution of the spin-wave
inetic energy

K (t) =

∑
k

⟨p̂2k⟩/2N = −
ωk

4

⟨(
β

†
k − βk

)2⟩
, (87)

here βk and β†
k diagonalize the quadratic Hamiltonian in Eq. (42). The calculation is rather straightforward, since the

ystem is assumed to lie in the ground-state before the sudden quench. After the quench, each spin-wave occupies a
queezed state, so that the system lies in the quantum state ΠkŜk(ζ )|0⟩, where |0⟩ is the vacuum and the squeezing
operator Ŝk(ζ )|0⟩ reads [171]

Ŝk(ζ ) = exp

(
ζ ∗(β̂k)2 − ζ (β̂†

k )
2
)

2
. (88)

he squeezing parameter r is defined by rewriting ζ in polar coordinates ζ = reiφ . Then, it is rather straightforward to
ewrite the squeezing parameter in terms of the effective oscillator length ξ (t)

tanh rk =

√
(

1
2ξk(t)2

− ωk

)2
+

ξ̇k(t)2

ξk(t)2(
1

2ξk(t)2
+ ωk

)2
+

ξ̇k(t)2

ξk(t)2

. (89)

To obtain the spin-wave dynamics is then sufficient to solve the Ermakov equation, which describes the evolution of
the effective length [172]

ξ̈k(t) + ω2
k (t)ξk(t)

2
=

1
. (90)
4ξk(t)3
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Fig. 7. Equilibration of long-range spherical model. Panel (a) displays the dynamical evolution of the kinetic energy following the sudden quench
hi → hf . After a steady decay during the initial dynamics t ≲ 102 , dynamical oscillations set to a finite value that remain steady in the long-time
egime. The amplitude of dynamical fluctuations for the kinetic energy after a time T is quantified by the quantity QK (T ) see Eq. (91) displayed in
panel (b).

The solution of the sudden quench dynamics is readily obtained by introducing ωk(t) = θ (−t)ωk,i+θ (t)ωk,f in Eq. (90).
The resulting dynamical evolution for the spin-wave kinetic energy is displayed in Fig. 7 for α ∈ [0.15, 0.35, 0.65, 0.95].
In analogy with the classical case the observable K (t) displays persistent dynamical oscillations, which do not wash out
in the thermodynamic limit. The smaller the α the wider the amplitude of those fluctuations.

A simple explanation of this phenomenon is found in the fully connected limit (α → 0), where the function fk(α)
separates between two distinct energy levels in the thermodynamic limit: a non-degenerate ground-state with energy −J
and a N − 1 degenerate excited states with zero energy.

In presence of any given set of boundary conditions, the degeneracy is split and the system behaves at finite size
as a set of harmonic oscillators with discrete energies. As the size increases, the spectrum accumulates at high energy
where the eigenvalues fk(α) of the coupling matrix become all identical, making the system equivalent to a single
quenched harmonic oscillator. To characterize equilibration, we introduce the characteristic function of any observable
A, i.e. χA(t) = A(t) − Ā. This quantity captures the dynamical fluctuations around the average value of the observable.
Equilibration of the observable A(t) in closed quantum systems occurs when the long-time Cesaro’s average of the squared
fluctuation vanishes [173–175]:

lim
T→∞

QA(T ) ≡ lim
T→∞

⟨|χA(t)|2⟩T = lim
T→∞

1
T

∫ T

0
|χA(t)|2dt = 0 , (91)

hile metastability shall be associated with a finite value limT→∞ QA(T ) ̸= 0. The equilibration of the kinetic energy
in Eq. (87) — or other physical observables — follows a similar argument as the fidelity of a quantum system in the

ontext of the spectrum of long-range systems [52]. In weak-long range interacting systems with translational invariance,
he spectrum becomes absolutely continuous in the thermodynamic limit. This implies that limt→∞ χK (t) → 0 outside
f the Cesaro’s average due to the Riemann–Lebesgue lemma. For quantum systems with initial states having no overlap
ith pure point portions of the spectrum, equilibration as defined in Eq. (91) is ensured by Wiener’s theorem [158].
onsidering the thermodynamic limit of a strong long-range interacting system, where the system size N increases, the
igenmodes fk(α) of the Hamiltonian tend to accumulate at high energy, near ωk|hf ∼ 2hf . In fact, in the case of flat
nteractions (α = 0), the spectrum consists of a single infinite degenerate eigenstate, resulting in dynamics that precisely
orrespond to a single harmonic oscillator.

Summary: In the strong long-range regime, the discrete low-energy spectrum yields quasi-stationary states. These
manifest in persistent oscillations of time-dependent observables, such as the kinetic energy, with an amplitude that
increases as the interaction becomes longer ranged α → 0.

3.2.3. Equilibration in presence of disorder
We would like to comment on the relation between these results and the metastability that arises in disordered

ystems. From the perspective of spectral discreteness, the metastability observed for quantum systems in the strong
ong-range regime is fundamentally different. Indeed, disordered couplings tend to lift spectral degeneracy and lead to
24
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Fig. 8. Equilibration of the disordered α = 0 Ising model within spin-wave approximation. Panel (a): Dynamical fluctuations decay as a function of
he disorder strength for the kinetic energy K , see Eq. (87). As the disorder strength is decreased the decay rate also decreases until it vanishes in the
ero disorder limit (upper blue curve), where dynamical fluctuations persist at all times and equilibration never occurs. Panel (b): the equilibration
ime of the kinetic energy observable obtained by fitting the curves in panel (a) via the exponential form in Eq. (93). The divergence in the clean
ase (2w → 0) is evident.
ource: Figures reproduced from Ref. [52].

ontinuous spectra. A simple example is obtained by perturbing flat interactions (α = 0) with Gaussian distributed weak
ouplings uij, namely Jdisr,r ′ = Jr,r ′ + uij with

P(uij) ∝ exp
(
−N u2

ij/2w
2) (92)

hose width 2w represents the disorder strength. The disordered couplings lift the infinite (∼ N − 1) degeneracy of the
excited state at zero energy and the spectrum becomes continuous apart from the single non-degenerate ground-state
at energy J0, where J0 > w is the strength of the flat homogeneous interactions [176–178]. The density of states of the
continuous spectrum follows the celebrated Wigner semicircle law [179]. In analogy with the non disordered case, we
initialize the dynamics at equilibrium for h = 2.2hcr at t ≤ 0; then, at t > 0 the magnetic field suddenly switches at
hf = 1.1hcr. The continuum nature of the spectrum leads the spin-wave kinetic energy K (t) to exponentially equilibrate,
see Fig. 8(a). Indeed, the amplitude of dynamical fluctuations in disordered systems decays exponentially, allowing for
the introduction of the equilibration time τeq:

QK (T ) ∼ e−T/τeq , (93)

Numerical analysis shows that the equilibration time τeq monotonically decreases with increasing disorder strength J ,
as expected (see Fig. 8(b)). The exponential decay of dynamical fluctuations and the definition of the equilibration time
provide insights into the equilibration dynamics of disordered systems. Interestingly, the results obtained in Fig. 8 for
quantum systems show remarkable similarities to those obtained for classical spherical models with disordered couplings,
as shown in Chapter 4 of Ref. [180]. There, the Langevin dynamics of the disordered classical spherical model it is shown
not to exhibit metastability, as long as the initial state is not magnetized.

The analysis presented here focuses on characterizing the long-time equilibration dynamics of many-body quantum
systems, where the thermodynamic limit is generally taken before the long-time limit. However, similar conclusions can
be obtained by considering the long-time limit of dynamical fluctuations in finite systems, which yields [173–175]:

lim
T→∞

QK (T ) ∝
1

Nmodes
(94)

ere, Nmodes roughly represents the number of modes participating in the dynamics. In the case of finite systems, where
he entire spectrum is discrete and only a finite number of modes exist, Nmodes captures this finite nature. As the
hermodynamic limit is approached and the spectrum becomes continuous, eigenvalues become dense in arbitrarily small
nergy ranges. In the continuous limit, Nmodes → ∞ for dynamics involving initial states in the continuous spectrum.

However, for long-range systems with α < d, where d is the dimension of the system, a continuous theory cannot be
efined. This is because the only dense region in the spectrum occurs around the energy maximum, where infinitely many
egenerate eigenvalues emerge. This violates the assumption of non-degenerate energy gaps underlying Eq. (94) [181].
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Summary: Metastability for strong long-range systems is fundamentally different from the disordered one in that
only a finite number of effective degrees of freedom participate in the dynamics.

3.3. Kibble–Zurek mechanism

Within the realm of quantum systems, the Landau–Zener problem provides the earliest, and possibly simplest, example
f defect formation during a quasi-static drive [81,182,183]. The problem describes a two-level system slowly driven across
n avoided level crossing. Although initialized in the ground state at the initial time ti < 0, the system gradually populates
he excited state, whose energy separation slowly decreases during the dynamics. The energy gap starts from a minimum
t t = 0 and increases back until the time reaches the endpoint of the dynamics tf > 0. The dynamical evolution is
ontrolled by the rate parameter δ, i.e. H(t) ≡ H(δ · t), so that the quasi-static limit is reached as δ → 0. A straightforward
riterion to establish whether a quasi-static transformation remains adiabatic is to ensure that the rate of change of the
nstantaneous minimal gap ∆ = |E0 − E1| remains smaller than the square gap itself

∆̇(t) ≪ ∆2(t). (95)

he above criterion only involves equilibrium quantities since Eℓ(t) represents the spectrum of the instantaneous
amiltonian at the time t .
While Eq. (95) has been obtained by heuristic arguments a more rigorous derivation of an adiabatic criterion and a

iscussion of how it compares with Eq. (95) can be found in Ref. [184]. Eq. (95) has been introduced for the Landau–
ener problem, but the argument in Ref. [184] applies to generic quantum systems. In general, as long as Eq. (95) is
atisfied, the excited state population of a quasi-statically driven quantum system decreases with the drive rate and the
ypothesis for the quantum adiabatic theorem are satisfied [185]. However, as the drive approaches a quantum critical
oint the correlation length of a quantum system diverges and the instantaneous gap vanishes ∆ → 0. As a result, the
ynamical scaling of the observables close to the quantum phase transition is reminiscent of the thermodynamic scaling
t equilibrium. Yet, in order for such scaling to be displayed, the drive has to be slow enough that the dynamical evolution
ctually occurs in the vicinity of the equilibrium critical point.
Let us focus on the concrete case of the Hamiltonian in Eq. (1) whose internal control parameter is defined as
= h(t) − hcr, such that the ferromagnetic quantum critical point occurs at λc = 0. For a moment, let us imagine

that the system is finite, so that the spectrum remains gapped also at criticality. Then, the hypothesis of the quantum
adiabatic theorem [185] remains fulfilled and any slow enough drive of internal parameters λ(t) ∼ δt only generates
diabatic corrections ∼ δ2 to the observables expectations with respect to the equilibrium value, as it can be deduced
y simple thermodynamic arguments [186]. However, in the thermodynamic limit, crossing the equilibrium critical point
reaks down the conventional adiabatic picture and the residual energy (heat) generated by the drive displays non-analytic
ehavior Eres ≈ δθ with θ < 2 [187]. Our task within the present section is the determination of the universal scaling
ndex θ for quantum long-range systems.

.3.1. State of the art
The Kibble–Zurek mechanism allows to relate the value of the non-analytic exponent θ with the equilibrium critical

exponents of the model. This ingenious theory relies on the adiabatic-impulse approximation, which assumes that the
dynamical evolution of a system starting in its ground-state at t = −∞ adiabatically follows the drive until the freezing
time −t̂ . Beyond the freezing time, the equilibration rate of the system becomes too small with respect to the drive
velocity, violating the adiabatic condition in Eq. (95). Then, the freezing time satisfies the condition

∆̇(t̂)/∆(t̂)2 = 1. (96)

Due to the critical scaling of the instantaneous gap ∆ ∝ λzν , Eq. (96) leads to the freezing time inheriting the equilibrium
ritical scaling t̂ ∝ δ1/(1+zν). The state dynamics is assumed to remain frozen for the entire interval t ∈ [−t̂, t̂] until the
unfreezing time t̂ , where adiabaticity is restored (for simplicity we have assumed a symmetric gap).

Once the system has unfrozen the state evolution will resume on the opposite side of the transition, where the
Hamiltonian ground-state is supposed to break the Hamiltonian symmetry. Then, the dynamics will induce a transition
between the symmetric and a symmetry-broken state. However, this transition will occur at finite correlation length ξ̂ ,
since the process can only start at the time t ≥ t̂ well within the symmetric phase of the model. The dynamics has
thus modified the character of the continuous phase transition, making it rather similar to a first-order one, and the
system will likely form topological defects, whose size would be roughly proportional to the (finite) correlation volume
ξ̂ d, as long as the correlation length is well defined, i.e. for α > d. Therefore, the total defect density scales according to
Nexc ∝ ξ̂−d

∝ δdν/(1+zν) [188].
Several verifications of the Kibble–Zurek scaling exist in local systems, both via numerical simulations, exact theoretical

studies and experiments [189]. In particular, first studies of defect formation in quantum systems have been pursued on
the Hamiltonian in Eq. (1) in the α → ∞ limit, i.e. the nearest neighbor Ising model, where finite size scaling arguments
led to the prediction

fss 1
2z (97)
Nexc ≈ δ
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nd the superscript fss stands for finite size scaling. Eq. (97) produces Nexc ≈
√
δ in agreement with the Kibble–Zurek

rediction Nexc ∝ δdν/(1+zν) since z = ν = 1 in this case [190]. Soon after this seminal investigation, an exact solution to the
universal slow dynamics of the Ising model has been provided by mapping it to a infinite sum of Landau–Zener problems,
each representing the dynamics of a single fermionic quasi-particle [191]. This exact solution provides a different scaling
theory for the defect density of the Ising model, which is given by∫

Nexc(k)dk ≈ δ
1

2z∆ (98)

here we have defined z∆ from the scaling of the dynamical gap. The result in Eq. (98) has been also employed to prove
alidity of the Kibble–Zurek argument in Kitaev chains with long-range pairing terms [192] where z∆ = z, as well as in

the perfect local case α = ∞ [191].
Apart for the aforementioned results, which explicitly refer to quadratic Fermi systems, the application of adiabatic

perturbation theory to slow quenches close to quantum critical points predicts the scaling of the defect density to be in
agreement with the classical Kibble–Zurek prediction∫

NKZ
exc(k) dk ≈ δ

dν
1+zν , (99)

hich also leads to the scaling exponent θ = zν/(1 + zν) for the residual energy [193]. Such prediction comes from the
ssumption that the scaling form of the critical propagator reproduces the equilibrium critical exponents. Since for Fermi
ystems in d = 1 one has zν = 1, the perturbative argument yields dν/(zν + 1) = 1/2z in agreement with the finite
size scaling argument in Eq. (97). Interestingly, long-range anisotropic interactions with different ranges depending on
the type of coupling are known to violate the perturbative assumption [194] even in the finite range case [188,195,196].

In summary, the applicability of the Kibble–Zurek result in quantum systems is supported by two main arguments.
The finite size scaling argument reported in Eq. (97) and the perturbative argument, which reproduces the traditional
Kibble–Zurek scaling in Eq. (99). Both arguments coincide for local quantum many-body systems where the fermionic
quasi-particle description applies. This is the case of the Ising Hamiltonian in Eq. (1) with α ≫ d+ 3 as confirmed by the
exact solution obtained at α = ∞.

First indications that the scaling of the defect density in the α = 0 Ising model did not follow the Kibble–Zurek
prediction appeared in Ref. [197]. However, later investigations showed that the residual energy of the α = 0 Ising model
obeys the Kibble–Zurek mechanism, at least for slow ramps terminating at the critical point, i.e. t ∈ [−1/δ, 0] [107]. This
apparent inconsistencies triggered more intensive numerical studies, which unveiled a complicated landscape where the
adiabatic crossing of the equilibrium quantum critical point does not display any scaling with the ramp rate δ, but rather
featured a novel form of dynamical universality as a function of the scaled variable Λ = N δ [106].

Summary: In locally-interacting systems the Kibble-Zurek mechanism is supported by finite-size scaling and
perturbative arguments, which however break down in presence of long-range interactions.

3.3.2. Quasi-static dynamics for α = 0
The mosaic can be easily recomposed by the study of the slow drive dynamics within the linear spin-wave theory in

Eq. (46). This strategy coincides with the one employed in Section 3.2, but with two important differences: first, since
we are considering a quasi-static drive, the dynamical evolution remain close to the instantaneous equilibrium state and
the only relevant source of deviations from adiabaticity originates from the lowest energy mode. Therefore, we can safely
limit ourselves to the case α = 0, where just a single spin-wave exist. Secondly, and more importantly, we are going
to consider a time dependent magnetic field of the form h(t) = hcr + δ t for t ∈ [−hcr/δ, hcr/δ], so that the dynamics
nitiates in the ferromagnetic state before crossing the critical point. A full treatment of the ferromagnetic state dynamics
hall also include the motion of the classical magnetization, whose coupling with the quantum modes is suppressed by a
actor 1/N in the thermodynamic limit. In the following, we are going to discard the contribution of the classical mode
o the dynamics, since a classical variable in a bounded (singular) potential generates a correction which scales at most
s ∼ δ2 [198], and is, therefore, negligible with respect to the contribution of the quantum mode [81].
Within the aforementioned assumptions, the quasi-static dynamics of the α = 0 Ising model reduces to the evolution

f a single spin-wave. As for the sudden quench case, see Section 3.2, the dynamics initialized in the ground state remains
n a squeezed state at all times [199–201]. Then, the dynamics generates any two particle states as follows from Eq. (88).
e focus on a cyclic transformation where the system is initially in the ground state of the equilibrium Hamiltonian, thus,

t is convenient to rewrite the single spin-wave state as

ψ0(x, t) =

(
1

2πξ 2(t)

) 1
4

e−W (t) x
2
2 e−i ϕ(t)2 . (100)

with the effective time dependent frequency W (t) = −i ξ̇ (t)
ξ (t) +

1
2ξ2(t)

, and the influential phase ϕ(t) =
∫ t dt ′

2ξ2(t ′)
. Thus, even

n the linear ramp case the entire dynamics is described by the differential Eq. (90).
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In order to determine the excitation density and the ground state fidelity with respect to the instantaneous equilibrium
solution of the problem, we define the adiabatic basis ψad

n (x, t), which is obtained taking the equilibrium spin-wave
eigenstates and replacing the constant frequency with the time-dependent one [172]. Accordingly, one can expand the
exact time-dependent state in terms of the adiabatic basis ψ(x, t) =

∑
cn(t)ψad

n (x, t), leading to the following results for
the excitation density

Nexc(t) = ⟨n̂⟩ =

∑
n∈2N

n|cn|2 =
ξ (t)2

2ω(t)

[(
1

2ξ (t)2
− ω(t)

)2

+

(
ξ̇ (t)
ξ (t)

)2
]
, (101)

nd the adiabatic ground-state fidelity

f (t) = |c0|2 =
1
ξ (t)

√ 2ω(t)(
1

2ξ (t)2
+ ω(t)

)2
+

(
ξ̇ (t)
ξ (t)

)2 . (102)

Interestingly, one can relate the former expressions to the squeezing parameter in Eq. (89) by the simple relation
tanh(r) =

√
Nexc(t)f (t)2.

An analytic solution can be found for a linear ramp across the quantum critical point with the resonant spin-wave
aving the dynamical frequency

ω(t)2 = 4h(t)(h(t) − 2J0) ≈ 8δ|t| (103)

here the last expression on the r.h.s. has been obtained substituting h(t) = hcr − δt and expanding for small δt . The
linear scaling of ω(t)2 is the consequence of the gap scaling zν = 1/2 of the equilibrium problem, see Eq. (47). Eq. (104)
represents the perfect crossing of the quantum critical point, since the instantaneous spin-wave frequency perfectly
vanishes at t = 0. In order to effectively incorporate finite size effects, we shall introduce a small deviation from perfect
degeneracy and rewrite Eq. (104) as

ω(t)2 = 8δ|t| +∆2
N , (104)

where ∆N is the minimal gap of the finite size system. Obviously, limN→∞∆N → 0 and the system attains perfect
criticality in the thermodynamic limit. Moreover, due to universality, the minimal gap exhibits power-law scaling of the
form ∆2

N ≈ N−1/ν∗ with ν∗ = 3/2 as predicted by finite size scaling theory [202] and confirmed by exact studies on the
fully-connected quantum Ising model and related flat interacting models [84,203–205].

The model in Eq. (104) describes a cyclic transformation of the single Hamiltonian mode and, in the limit δ → 0, it
can be used to describe a quasi-static cycle in quantum systems with infinitely degenerate spectrum. According to the
behavior of the fidelity and excitation density in the quasi-static limit δ → 0 the system presents three stages

1. Perturbative regime (N < ∞).
2. Kibble–Zurek regime (N → ∞ and t ∈ [−hcr/δ, 0]).
3. Non-adiabatic regime (N → ∞ and t ∈ [−hcr/δ, hcr/δ]).

Regime (1) occurs for a finite minimal gap ∆N > 0: there adiabatic perturbation is applicable and the dynamics remains
adiabatic, i.e. Nexc ∝ δ2 [206]. Regime (2) is realized for a thermodynamic system (∆N → 0) whose dynamics terminates
exactly at the quantum critical point t = ∆∞ = 0, where non-analytic corrections of the form δθ appear in the residual
energy. As we are gonna see in the following this regime is properly described by the Kibble–Zurek argument. An actual
crossing of the quantum critical point only occurs in regime (3) and the system enters the non-adiabatic regime, where
the residual energy and the fidelity acquire dynamical correction which do not depend on the drive rate.

The latter result can be easily shown rephrasing Eq. (90) in a rate independent form via the transformations

t = δ−
1
3 t̃, ξ = δ−

1
6 ξ̃ (105)

hich reduce Eq. (90) to the δ = 1 case. The expressions in Eqs. (101) and (102) are invariant under the transformations in
Eq. (105) in such a way that the fidelity and excitation density at real times can be obtained by ξ̃∆(t̃) = limδ→1 ξ∆̃(t). The
subscript ∆ has been introduced to explicit the dependence on ∆ of the solution of Eq. (90) In the new variables, the only
ependence of the dynamics on the rate δ remains in ∆̃N = ∆N/δ

1/3. While the transformations (105) have been reported
or the case of a linear quench, they can be easily generalized to any non-linear drive λ(t) = (δ|t|)τ , obtaining results
nalogous to the one described in the present section [54]. Thus, the invariance of Eq. (90) with respect to the rescaling
n Eq. (105) is enough to demonstrate that the dynamical evolution of the system only depends on the combined variable

= δN = ∆̃−3
N as first evidenced by the numerical study in Ref. [106].

Summary: For a quasi-static drive terminating at the critical point Kibble–Zurek scaling is observed, while for
dynamical protocols crossing the critical point the amount of defects is independent of the quench rate.
28
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.3.3. Adiabaticity breaking
However, in order to provide estimates for the defect density and fidelity in the quasi-static limit one has to solve

q. (90) exactly. In the following we are going to drop all the ∼ superscripts over the rescaled variables, in order to ease
he notation. The crucial condition of adiabatic dynamics is for the system to start in the ground-state at the beginning
f the dynamics, i.e. limt→−∞ψ(t) = ψad

0 (t), leading to the boundary conditions

lim
t→−∞

ξ (t)2 =
1

2ω(t)
; lim

t→−∞
ξ̇ (t)2 = 0. (106)

First, it is instructive to consider the case of the quasi-static dynamics terminating at the critical point, i.e. t ∈ [−hcr/δ, 0].
As anticipated, the solution only depends on the combinationΛ = Nδ and, then, the corrections observed in the dynamics
dramatically depend on what limit is taken first, see Appendix D. If one considers the quasi-static limit (δ → 0) at finite
size, the rescaled gap ∆N diverges and adiabatic corrections arise in all dynamical quantities

lim
δ→0

Nexc(t0) = o
(
δ2
)
; lim

δ→0
f (t0) = 1 − o

(
δ2
)
. (107)

More interestingly, if the thermodynamic limit is taken first, the rescaled instantaneous gap vanishes limN→∞∆N = 0.
owever, this is not the case for the effective gap 1/ξ (t)2 nor for its derivative, which attain the finite values

lim
t→0−

ξ 2(0) =
Γ (p)Γ (p + 1)

2πp2p
, (108)

lim
t→0−

2ξ̇ (0)ξ (0) =
1

√
3
, (109)

here p = 1/3. The finiteness of the results in Eqs. (109) and (D.23) corresponds to a vanishing fidelity in Eq. (102).
onsequently, the defect density diverges, see Eq. (101), but the excess energy remains finite

lim
N→∞,δ→0

Eres(0) ≃ lim
t→0

ω(t)Nexc(t) ∝ δ
1
3 . (110)

Eq. (110) defines regime (2) and is consistent with the outcome of the Kibble–Zurek mechanism [188,206] as well as with
the numerical result in Ref. [107].

Regime (3) is obtained considering directly the thermodynamic limit case ∆N = 0 and taking the dynamics in
t = hcr/δ ≈ ∞ limit, which yields the δ-independent results

lim
t→∞

Nexc(t) =
1
3

(111)

lim
t→∞

f (t) =

√
3
2
, (112)

hich characterize the non-adiabatic dynamics as they remain finite in the δ → 0 limit. The analytical results in Eqs. (111)
nd (112) are universal in the traditional of Kibble–Zurek mechanism result. So, they faithfully reproduce the slow drive
imit δ → 0 of any dynamical protocol which crosses the critical point. The universality phenomenon is analyzed in
etails in Ref. [53]. It can be numerically verified that the analytic solution in Appendix D.3 accurately describes any drive
′(t∗) such that |ω′(t̂) − ω(t̂)|2 ≪ 1, where ω(t) is given in Eq. (104) [54]. It is worth noting that the non-adiabatic regime
escribed by Eq. (111) and (112) is profoundly different from the one described in Ref. [207] for low-dimensional systems.
here, the spin-wave description is applied to the case α → ∞. Then, differently from our case one has to integrate over
he continuous spin-wave spectrum and non-adiabaticity may arise also for a quench to the critical point due to the flat
ensity of states of 2d systems.
In summary, dynamical corrections to a quasi-static drive solely depend on the universal variable Λ = Nδ. Indeed, the

nstantaneous minimal gap of a finite system scales as∆N ∝ Λ−1/3, it follows that the thermodynamic limit (N → ∞) and
he adiabatic one (δ → 0) do not commute. Accordingly, the observable expectations are universal when displayed as a
unction of the universal variableΛ, see Fig. 10(b). This is in perfect agreement with the numerical findings of Ref. [53,106].

Summary: Non-adiabatic corrections depend only on the product of the system size and the ramp velocity δ. This
leads to a novel form of universality, where no Kibble-Zurek scaling is observed in the thermodynamic limit.

3.3.4. Full counting statistics of defects
Recently, interest has raised around the universality of the higher cumulants of the defect statistics following a quasi-

tatic ramp. In general, the process of defect formation in finite local systems has been argued to follow a Binomial
istribution [208], making the process of defect formation across a conventional quantum phase transition akin to the
lassical process of a coin toss [209]. Approaching the thermodynamic limit the probability to generate n defects becomes
ormal and reads

Plocal(n) ≈
1

√ exp
(

(n − ⟨n⟩)2
)
, (113)
2π (1 − p)⟨n⟩ 2(1 − p)⟨n⟩
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Fig. 9. Defect formation in the α = 0 Ising model during a slow quench: Panel (a): Residual energy as a function of the drive rate δ for different
values of the final gap for a slow dynamics terminating exactly at the critical point. Panel (b): Residual energy after a full ramp across the quantum
critical point for two different system sizes and three different values of the universal scaling variable Λ = Nδ = 15, 3.75, 0.94 from top to bottom.

Fig. 10. Kibble–Zurek mechanism in the fully-connected model. Panel (a) shows the residual energy as a function of the ramp speed in the case of a
half ramp t ∈ [−hcr/δ, 0] for Λ = {109, 3 · 107, 106, 3 · 104, 103, 3 · 10, 1} from top to bottom. The crossover between the Kibble–Zurek scaling (black
ashed line) at large Λ and the analytic scaling (gray dashed line) at small Λ is evident. Panel (b) displays the residual energy after a quasi-static

drive obtained by spin-wave theory. The result is obtained within regime (3) and perfectly reproduces the slow-drive universality numerically found
in Ref. [106]. Each color represents a different value of Λ = Nδ with N = 29 and N = 211 (dashed and solid lines in panel b), i.e. the same values
displayed for the exact numerical study in Fig. 9(b). The curves at different sizes perfectly collapse when drawn as a function of the scaling variables.
Moreover, the agreement between the spin-wave theory and the numerical study for the different values of Λ is rather remarkable.

where the average number of defects follows Kibble–Zurek scaling ⟨n⟩ ∝ δ
dν

1+zν and p is the probability for the formation
f a single defect. The above theory can be exactly verified in the nearest neighbor transverse field Ising model, whose
ull counting statistics can be calculated exactly. While for a finite quench rate δ all moments of the distributions remain
inite in the slow drive limit one recovers Eq. (113) with (1 − p) = 3/π2 and ⟨n⟩ =

N
2π

√
δ
2J0

. These findings have been
lso demonstrated on different quantum computing platforms [210,211].
The phenomenology of local systems is certainly rich, but does not present any peculiar features due to quantum

luctuations. Indeed, the same theoretical framework can be applied to describe the statistics of the defects generated
cross a classical and a quantum phase transition [208]. As we have already argued in previous section, long-range
nteraction radically alter this picture as they suppress the defect contribution arising from semi-classical critical dynamics
nd promote the single quantum model as the leading source of non-adiabatic corrections. Interestingly, using the same
ethodology employed to derive Eq. (111), one can obtain the full counting defect statistics. Indeed, the probability to
30
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enerate n defects in our problem is just given by the |cn|2 coefficient in Eq. (101) [212]. As shown in the appendix, see
q. (D.7), the probability to generate n defects reads

PLR(n) ≈

(
n + k − 1

n

)
sech(r)2k tanh(r)n, (114)

hich is a negative binomial distribution of k successes and n failures. The parameter tanh(r) defines the squeezing
arameter, see Eq. (89) of the single spin-wave of the system. In the present case, n is the number of defects generated
nd k = 1/2.
In light of Eq. (114) the parallel between the local and long-range full counting statistics becomes rather striking. The

egative binomial distribution described the probability to obtain n failures before a given (non-deterministic) number k of
successes occurs. So, the probability for a defect (actually a pair since n ∈ 2Z) to arise in the quantum long-range system
coincides with the probability to observe n failures before the kth success. However, k = 1/2 in the present problem,
see the explicit derivation of Eq. (114), and the equivalence to the classical Binomial process is lost. Negative binomials
of fractional k are often dubbed Polya distributions and they do not have any equivalent in classical processes but they
naturally emerge in the defect formation of quantum long-range systems due to the quantum nature of the problem. This
has to be contrasted with the case of local critical theories where defect formation is a purely classical process [209]. The
implications of these findings to the quantum thermodynamics of the systems are discussed in Ref. [212,213].

Summary: Long-range interactions suppress the creation of defect, leading to a negative binomial defects distribution,
without a classical counterpart.

3.4. Dynamical quantum phase transitions — Loschmidt echo

Up to this point, our discussion focused on the most traditional examples of dynamical critical phenomena, but,
ecently, experimental advancements in quantum simulations with cold atoms [25,214–219] and trapped ions [7] raised
he interest on novel form of dynamical criticality [14]. This is the case of dynamical phase transitions. On one side, the
ame referred to the study of the out-of-equilibrium behavior of order parameters [220–225], which we refer to dynamical
hase transition (DPT) in the order parameter and that will be discussed in details in Section 4.1.2. On the other, a novel
orm of dynamical criticality was discussed, where nonanalytic cusps in the Loschmidt echo rate function appear after a
uantum quench [55,226,227]. We refer to the latter here as dynamical quantum phase transitions (DQPT) in the Loschmidt
cho.
During a quench, the system initially prepared in an initial state |Ψ0⟩ is evolved through a time independent final

amiltonian H , i.e. |Ψ (t)⟩ = exp(−iHt)|Ψ0⟩. The Loschmidt amplitude describes the amplitude of the system returning in
ts initial state at time t and reads

G(t) = ⟨Ψ0|Ψ (t)⟩ = ⟨Ψ0| exp(−iHt)|Ψ0⟩ (115)

hose expression closely resembles the classical finite-temperature partition function Z(β) = Tr exp(−βH). The
oschmidt echo is simply obtained by squaring the amplitude in Eq. (116) yielding

L(t) = |G(t)|2. (116)

he Loschmidt amplitude and Loschmidt echo play central roles in the theory of DQPTs and appear in various contexts
n quantum many-body theory [228–233]. They exhibit a functional dependence on the system size N , and in the
imit of large N , they can be described by rate functions that capture their scaling behavior [226,234]. DQPTs are
efined as nonanalytic behaviors of the Loschmidt amplitude or Loschmidt echo as a function of time. They can be
onsidered as phase transitions in time, analogous to equilibrium phase transitions associated with nonanalytic structures
f the free energy [226,235]. A DQPT is characterized by a sudden qualitative change in the dynamics of the system,
ypically accompanied by a kink or nonanalyticity in the rate function of the Loschmidt amplitude or Loschmidt echo.
his nonanalytic behavior can vary depending on the system and dimensionality, including power-law singularities,
ogarithmic singularities, and other forms [226,236,237].

Theoretical evidences of DQPTs in the Loschmidt echo return rate was found in numerous quantum systems [226,
27,236,238–244] and connected with the behavior of different local observables [245], including different definitions of
he order parameter [246,247]. Given the many successful experimental realizations of this kind of DQPTs, especially in
rapped ion systems with long-range interactions [24,248], it is not surprising that long-range interacting models were
lso a privileged tool for the theoretical characterization of DQPTs [192,236,246,247,249–254].

Summary: Dynamical quantum phase transitions (DQPTs) in the Loschmidt echo are defined by non-analytic behavior
of this quantity as a function of time.
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.4.1. Spherical spin-wave theory
In the following, we are going to show how the emergence of DQPTs in the long-range Ising model can be captured

y the study of the harmonic Hamiltonian in Eq. (46). However, most DQPTs occur when a parameter of the Hamiltonian
s quenched across an underlying equilibrium phase transition and the equilibrium spin-wave theory is not capable to
apture both side of the transition within the same formalism. It is worth noting that there are cases where DQPTs can
rise independently of conventional phase transitions [239,240,249,255,256].
In order to capture a sudden quench across the dynamical critical point we are going to consider the spherical model

amiltonian

H =
1
2

∑
k

p̂kp̂−k +
1
2

∑
k

ω2
k x̂kx̂−k (117)

here the x̂k and p̂k are canonically conjugate hermitian operators, such that [x̂k, p̂k′ ] = iδk,k′ and the dispersion relation
reads

ωk =

√
h(µ+ 2J0fk(α)). (118)

he Hamiltonian in Eq. (117) corresponds to the spin-wave Hamiltonian in Eq. (46) once one introduces the annihila-
ion/creation operators

β̂k =

√
ωk

2

(
x̂k +

i
ωk

p̂k

)
(119)

β̂
†
k , =

√
ωk

2

(
x̂k −

i
ωk

p̂k

)
. (120)

n fact, the spectrum in Eq. (118) roughly corresponds with the spin-wave spectrum in Eq. (47) with γ = 1. However,
hile Eq. (47) only depends on the magnetic field and the coupling, the spherical model’s dispersion relation, i.e. Eq. (118),
ontains an additional parameter µ. In the spherical model, the parameter µ has to be calculated self-consistently by
mposing a constraint on the spin-wave potential energy, namely

∑
k

⟨(
β

†
k + βk

)2⟩
2hωk

=
N
4
. (121)

The spherical constraint in Eq. (121) may induce a quantum critical point in the quadratic model at a field value hsph
cr

epending on the features of the function fk(α). Below the critical field strength hsph
cr the constraint condition in Eq. (121)

auses the spin-wave to form a condensate state at k = 0. In its classical version, the spherical model has been introduced
o mimic the finite temperature free-energy of O(n)-symmetric spin systems in the n → ∞ limit [257].

Summary: The spherical model corresponds to the low-energy spin-wave Hamiltonian Eq. (46) equipped with an
additional parameter µ, determined by the self-consistent relation in Eq. (121). The model allows to extend the
spin-wave description across the critical point.

3.4.2. Step approximation
The DQPT occurs in the spherical model following a sudden quench. Thus, we have to consider the average in Eq. (121)

ver a time dependent state |Ψ (t)⟩ =
∏

k|ψk,0(t)⟩, where |ψk,0(t)⟩ is the single-spin wave state given by Eq. (D.2) with
= 0. The explicit calculation leads to the dynamical constraint equation

h
N

∑
k

ξ 2k (t)
2

= 1/4, (122)

here ξ 2k (t) is the solution of the Ermakov Eq. (90). Similarly to Section 3.1, we are going to consider a sudden quench
f the ferromagnetic coupling J i0 → J f0, but now the final coupling value J f0 shall drive the system across the quantum
hase boundary. In this case, a solution of the differential Eq. (90) together with the dynamical constraint in Eq. (122) is
ather complicated and, up to our knowledge, has not been attempted yet. On the other hand, a convenient simplifying
ssumption consists in assuming that, as the ferromagnetic coupling J0 is quenched, the parameter µ also undergoes a

discontinues jump between two constant values µ0 at t < 0 and µf for t ≥ 0. This procedure goes under the name of
step approximation and has been introduced in Refs. [165,169]. In order for this approximation to be sensible, one should
choose the final value µf in order to reproduce its expected long-time (equilibrated) value. As long as α > d the system
can be safely assumed to equilibrate at long time as shown in Ref. [110,169],

Within the framework of the step-approximation, the frequency suddenly change from their initial value ωk,i to a final
value ωk,f , leading to the following sudden quench solution for the effective length of each spin-wave

ξk(t) =

√
1 + ϵk sin2(ωk,f t) (123)
2ωk,i

32



N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92

w
i

T

c
a
R
D

f

w
p
a

t
o
o
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(
ωk,i
ωk,f

)2
− 1. In the thermodynamic limit N → ∞ the sum in Eq. (122) can be turned

nto an integral. Then, taking into account the explicit solution in Eq. (123) one obtains∫
dk
2π

h
2ωk,i

[ϵk
2
(1 − cos 2ωk,f t)

]
= 0. (124)

This equation cannot be fulfilled at all times due to the oscillatory cos 2ωk,f t term. Yet, in the limit t → ∞ the dephasing
between the different modes washes away the time dependence in Eq. (124), making the solution in Eq. (123) exact also
for the constraint problem as long as the final value of µ is chosen in order to satisfy the following expression∫

dk
2π

ϵk

ωk,i
= 0. (125)

his implicit equation determines the long-time asymptotic value of µf through the µ dependence of ωk,f . The consistency
of the equilibration assumption and, overall, of the step approximation can be verified by the inspection of the numerical
solution of the exact problem, see Ref. [110].

Eq. (125) can be used to determine the dynamical critical coupling Jc,dyn0 at which the dynamical excitation become
gapless and the constraint parameter µf in Eq. (125) approaches its critical value µc . Using these definitions, Eq. (125)
can be rewritten as

1
2

=
√
h
∫

dk
2π

√
2µ0 + 2J i0fk(α)

2µc + 2Jc,dyn0 fk(α)
, (126)

where µc is the equilibrium critical value. The existence of a finite value Jc,dyn0 satisfying Eq. (126) depends both on the
parameters h, µ0 and on the value of σ . The dynamical phase diagram of the model is reported in Ref. [110]. In the present
section, for the sake of simplicity, we are going to assume that J i0 lies above its equilibrium critical value J i0 > Jc0 , i.e. in
the condensate phase, and consider the case α < d + 2.

Given the quadratic nature of the spherical model, the overlap function can be calculated analytically

G(t) =

∏
k

{
(8ωk,i)1/4e−iϕk(t)

(
2ωk,iξk(t) +

1
ξk(t)

− i2ξ̇k(t)
)−1/2}

, (127)

where the dynamical phase ϕ(t) is defined below Eq. (90). The Loschmidt echo rate function is obtained by taking the
logarithm of the squared overlap, yielding

r(t) = − lim
N→∞

1
N

log|G(t)|2 = − log 2 +

∫
dk
2π

log|Xk(t)|, (128)

where

Xk(t) =
1√
8ωk,i

(
2ωk,iξk(t) +

1
ξk(t)

− i2ξ̇k(t)
)

(129)

As long as ωk,i is gapped, the expression in Eq. (129) remains smooth and no cusp appears at finite time for the rate
function defined in Eq. (128). The non-analytic cusps characterizing DQPTs will only appear for a sudden quench from
the broken phase where Ωk,i is gapless. This result demonstrates how one can observe and characterize DQPTs by just
analyzing the quasi-particle spectrum. Therefore, as already mentioned, we are going to consider a sudden quench of
the coupling J i0 → J f0, with the initial coupling within the ferromagnetic phase and the final one above the dynamical
ritical threshold J f,dyn0 . Since the dynamics is initiated in the broken phase, a complete treatment of the problem shall
lso include the evolution of the classical mode representing the condensate fraction of spin-waves as it was done in
ef. [242]. However, in the present description we have discarded this contribution as it is not necessary to observe the
QPTs.
The signature of DQPT in the Loschmidt echo dynamics is reported in Fig. 11, the Loschmidt echo is shown for a quench

rom J i0 = 2Jc0 to J f0 = Jc0/2 for different values of σ . The rate function clearly shows non-analyticities at the critical times:

t∗m =
mπ
ωk,f

m ∈ N (130)

hich appear due to logarithmic divergences in the integrand in Eq. (128). Since the critical time scale is set by the
ost-quench gap, we do not expect to see nonanalytic cusps in the Loschmidt echo for a quench into the gapless phase,
s previously mentioned.
Upon differentiating Eq. (128) with respect to time n times, we encounter terms that are proportional to 1/ωn

k,i when
= t∗m. These terms diverge as k−n(α−d)/2. However, since the integration over k still has to be performed, the nth derivative
f the rate function only diverges if n(α − d)/2 > 1, or equivalently, n(α − d) > 2. Thus, the smaller α the larger the
rder of the derivative for which the cusps are expected. This analysis holds true throughout the entire region where
33
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Fig. 11. DPT in the spherical model. The Loschmidt echo rate function of the spin-wave theory (in presence of the spherical constraint) after a
udden quench of the ferromagnetic coupling J i0 = 2Jc0 to J f0 = Jc0/2. The cusps in the rate function are clearly evident and the second derivative is
ivergent since the dynamics considered is for α = 2.5 and d = 1, see the discussion in the text.
ource: Figure adapted from Ref. [110].

< α < d + 2. On the other hand, it does not apply when α ≥ d + 2 since there is no gapless phase to initiate the
alculation. The discussion presented above offers further evidence that the emergence of nonanalytic cusps is not solely
feature of the step approximation. Instead, it is a consequence of the initial conditions, specifically starting in the gapless
hase, as well as the specific form of the function ξk=0(t) and its time derivatives, which remain unchanged in the exact
alculation. Furthermore, the structure of these cusps remains unaltered even in the long-time limit when µ(t) reaches
equilibrium and the step approximation becomes exact.

Summary: Loschmidt echo DQPTs in the spherical model appear for quenches from the broken phase, as results from
the exact solution.

3.4.3. Strong long-range regime
The aforementioned analysis cannot be extended to the regime α < d as the system does not equilibrate and the

ssumptions at the root of the step approximation outlined in Section 3.4.2 fail. Moreover, due to the gapped nature of the
pectrum the importance of the order-parameter motion of the system at α < d is more prominent and cannot be easily
iscarded. Several numerical simulations and analytical arguments have been used to show the existence of the DQPT in
he Loschmidt echo also for the actual Ising Hamiltonian for different values of α [238,251,252,258]. In particular, extensive
umerical studies have been devoted to investigate the connection between the DQPTs occurring in the Loschmidt echo
nd the DPTs defined via the dynamical scaling of the order parameter [246,250], see also Section 4.1.2. Also, the relation
etween the two different notions and the quasi-particle properties of the model have been largely investigated, but
ostly close to the local limit [247,253,254]. In the next section, we are going to introduce the dynamical Holstein–
rimakoff transformation, which represents the proper formalism to describe the motion of spin-wave coupled to the
lassical order parameter and their feedback effect. However, we are only going to use it to describe DPTs in the order
arameter leaving aside further comments on singularities of the Loschmidt echo.

Summary: In the strong long-range regime, the leading effect in the Loschmidt echo DQPT comes from the dynamics
of the order parameter, and it can be related to other forms of dynamical criticality.

4. Dynamics in highly excited states

In this Section we will discuss the treatment of out-of-equilibrium dynamics involving arbitrarily high energy initial
tates, as in standard quantum quench protocols.
We will begin in Section 4.1 by reviewing mean-field dynamical phenomena for α = 0. In Section 2.3 we showed that

he fully connected limit of quantum spin systems reduces to the physics of a single collective degree of freedom. In this
ubsection, we will discuss how this statement applies to non-equilibrium dynamics as well.
Secondly, in Section 4.2, we will discuss how finite-range interactions with α > 0 affect mean-field dynamical phe-

omena. Long-range interacting system can be formally viewed as a perturbation of the mean-field limit, as reviewed in
ection 2.4. The perturbation term couples the collective degree of freedom to many spin-fluctuation modes with various
avelengths, resulting in a genuine many-body problem, which can be addressed via the non-equilibrium spin-wave

ormalism developed in Refs. [56,57]. The coupling strength to mode k strongly depends on the interaction range governed
y the exponent α, as encoded by the function f (α). As a result of this tunable decoupling, long-range interactions give rise
k
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o non-equilibrium many-body phenomena distinct from the generically expected thermalization: Collective spin ordering
s remarkably resilient out of equilibrium, generating long pre-thermal stages of dynamics characterized by long-lived
scillating collective spin polarization. This behavior was observed in numerical simulations performed with a range of
echniques [127,129,246] and theoretically understood via the aforementioned approach [56,57]. This analysis shows that
he duration of the prethermal stage increases as α is decreased, and diverges with the system size when α < d [58,259].

4.1. Quench dynamics of fully-connected spin systems (α = 0)

This Section is devoted to the non-equilibrium dynamics of fully connected spin systems. We study the time-evolution
starting from ground states |ψ0⟩ of a pre-quench Hamiltonian Ĥ(h0) evolving with a different post-quench Hamiltonian
ˆ (hf ). For the sake of definiteness, we will mostly consider the Ising model, Eq. (1) with γ = 1, and quenches in the
ransverse field from h0 to hf . As described in Section 2.3.2, ground states of long-range Hamiltonians as (1) are generically
lose to spin-coherent states. Their dynamical behavior is determined by a classical mean-field description emerging in the
hermodynamic limit when initialized in fully polarized states, as described in Section 4.1.1. The resulting dynamics of
ollective observables can give rise to new forms of dynamical criticality, such as dynamical phase transitions, discussed
n Section 4.1.2. The semiclassical framework also allows us to describe the growth of quantum fluctuations, which
oincides with the flow of linearized shifts around classical trajectories and is thus related to the standard quantifiers
f classical chaos, reviewed in Section 4.1.3. When the quantum fluctuations become comparable to the typical length
f the phase space, this description breaks down, defining an Ehrenfest time that diverges with N for this class of
ystems. Remarkably, such semiclassical framework grasps crucial aspects of quantum dynamics, such as the dynamics
f scrambling or entanglement as reviewed in Sections 4.1.4 and 4.1.5 respectively.

.1.1. Mean-field classical limit
The dynamics of a system with unbroken full permutational symmetry take place in the totally-symmetric subspace

TSS) of the many-body Hilbert space simultaneously invariant under all permutations. Such dynamics is amenable to
n exact representation in terms of few collective degrees of freedom, characterized by an effective Planck constant

¯ eff ∼ 1/N suppressed with system size [223,260]. We refer to Appendix B for a general discussion.
For systems of interacting quantum spins the limiting semiclassical description may be formulated more directly

nd intuitively in terms of states with maximal collective spin S = Ns — the so-called Dicke manifold. As discussed in
ection 2.3.1, the collective spin approaches a classical limit for large N .14 For the infinite-range XY Hamiltonian in Eq. (5)
he classical limit Ĥα=0/N → Hcl is given by Eq. (11) in Section 2.3.1, where we discussed equilibrium properties. In this
Section, we will use the same approach to discuss out-of-equilibrium properties. For definiteness, throughout this Section,
we will set γ = 1 (quantum Ising model).

The non-equilibrium evolution ⟨
ˆ⃗S(t)⟩/N generated by a sudden change (‘‘quench’’) of a Hamiltonian parameter is

described by a classical trajectory S⃗(t) on the unit sphere governed by Hcl, i.e.,
˙⃗S =

{
S⃗,Hcl

}
, (131)

with the canonical Poisson brackets {Sµ, Sν} = ϵµνρSρ , where ϵµνρ is the totally antisymmetric Levi-Civita tensor.
Evolution can be recast in terms of the spherical angles θ (t), φ(t). In the case of the Hamiltonian (5), the non-linear
recession of the collective spin is described by the classical equations of motion15{

θ̇ = 2J0 sin θ cosφ sinφ ,
φ̇ = −h + 2J0 cos θ cos2 φ .

(132)

s the Hamiltonian governs a single degree of freedom, the classical limit is trivially integrable and characterized by
egular periodic trajectories in phase space. Such behavior corresponds to persistent spin oscillations after a quench,
hose period depends on the initial state. For |h| < 2J0, the phase-space also features a separatrix with a diverging
lassical period, terminating at the saddle point θ = 0 and characterized by an exponential instability rate

λ =

√
h(2J0 − h) (133)

i.e. the eigenvalue of the stability matrix at the saddle point).
While such fully-connected spin models generically exhibit periodic orbits, semiclassical chaotic behavior can occur

n a number of relevant situations. A standard example comes from introducing time-dependent driving, thus breaking
nergy conservation: The quantum kicked top [261,262], corresponding to a step-wise driving protocol applied to the
odel above, gives a paradigmatic regular-to-chaotic crossover as a function of the driving parameters. Another source
f chaoticity comes from coupling the spins to other degrees of freedom, such as a cavity mode, which gives rise to the

14 For s = 1/2, the TSS coincides with the Dicke manifold. For larger s there are more permutationally invariant states with lower S, that is outside
the Dicke manifold (dimTSS ∼ N2s for large N). However, for Hamiltonians without spin self-interactions, one may always consider dynamics within
the Dicke manifold.
15 For convenience, we rescale time by a factor s.
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extbook Dicke model [263,264]. Finally, chaotic behavior can arise from self-interactions of higher spins s > 1/2, which
are generally described by n = 2s > 1 collective degrees of freedom, e.g. Ref. [265], or more general collective models,
e.g. Ref. [266]: In the absence of additional symmetries, self-interactions will break classical integrability. These extended
possibilities can be addressed with the method summarized in Appendix B. In the rest of this Section, we will refer to
them when discussing the impact of chaos on the quantum dynamics of fully-connected systems.

Summary: In the thermodynamic limit the quench dynamics of fully connected spin systems are described by classical
trajectories of a single collective degree of freedom.

4.1.2. Dynamical phase transitions — Order parameter
The non-equilibrium evolution described above may or may not result in collective spin ordering at long times,

.e. finite order parameter. An abrupt change of dynamical ordering properties as a function of driving control parameters
s referred to as a dynamical phase transition (DPT) [222,223,225,249,252,260,267–273]. In particular, when a system
s quenched from a symmetric state across the equilibrium critical point, dynamical scaling properties associated with
ging or coarsening may appear [166,169,274,275]. Conversely, when a system undergoes a sudden quench from a
roken-symmetry state, the resulting out-of-equilibrium dynamics may display two different phases. One can define a
on-equilibrium order parameter by time-averaging the corresponding equilibrium order parameter. This quantity may be
anishing or not depending on whether the symmetry is dynamically restored after the quench. The associated dynamical
ritical point is believed to have a universal character. A special interest was placed on systems that fail to rapidly approach
hermal equilibrium after the quench, as their dynamical universality may have no equilibrium counterpart [260,268].

Fully-connected spin systems provide the simplest instance of genuinely dynamical phase transitions. To illustrate this
e consider the infinite-range quantum Ising model [Eq. (5) with γ = 1]. The character of non-equilibrium dynamics is
ncoded in the classical trajectories of the collective spin, which may have paramagnetic or ferromagnetic character. Here
ne studies quenches in the transverse field h0 → hf for which DPTs have been extensively studied [223,249,252,276].
he two non-equilibrium phases are distinguished by the time average of the equilibrium order parameter,

Sx = lim
T→∞

1
T

∫ T

0
dt

⟨Ŝx(t)⟩
Ns

(134)

hich serves a non-equilibrium order parameter: It is finite Sx ̸= 0 for shallow quenches in the dynamical ferromagnetic
phase and it vanishes abruptly Sx = 0 at the dynamical critical point hdcr = (h0 + J0)/2, associated with the critical
rajectory corresponding to the phase-space separatrix; for deeper quenches hf > hdcr the system lies in the dynamical
aramagnetic phase. See Fig. 12(a-b) for an illustration. This kind of DPT has been realized experimentally with cold atoms
n optical cavities [25] or in a superconducting quantum simulator [277].

The spectral counterparts of these DPTs are given by excited-state quantum phase transitions (ESQPT) [278–284]. This
orresponds to singularities of the density of states at some finite energy density which distinguishes eigenstates with
erromagnetic nature from those with paramagnetic nature: See Ref. [285] for a recent review.

The notion of DPT discussed here is in general distinct from that of DQPT discussed in Section 3.4, and therefore
hey may even not occur concomitantly in the same model. However, a connection has been pointed out whenever
oth phenomena are present [246] (see also Refs. [57,242,243]). Below, in Section 4.2.3, we will discuss how this
ut-of-equilibrium phenomenon is affected by decreasing the interaction range.
Let us mention that, due to the intrinsic semiclassical nature of dynamics in this class of models, observables can be

fficiently simulated using phase-space numerical techniques [286–288], such as the Truncated Wigner Approximation
TWA) [287,289,290] or its discrete [131,291] or clustered [292] versions. These methods have been intensively used also
o explore dynamics with finite α interactions, which we discuss in the next section [128,131,293–301].

Summary: The asymptotic state after quantum quenches from the ordered phase may or may not display ordering.
These dynamical phase transitions are associated with a separatrix in the classical phase-space.

4.1.3. Semiclassical dynamics of quantum fluctuations
The classical description of dynamics outlined above is exact in the thermodynamic limit N → ∞. In finite systems,

owever, it has a limited time scale TEhr(N) of validity, known as Ehrenfest time scale: At long times t ≳ TEhr(N), quantum
luctuations will dominate the behavior of time-dependent local observables and entanglement quantifiers. TEhr can be
stimated as the time at which the size of quantum fluctuations becomes comparable with a characteristic phase-space
cale. This time scale depends on the initial state and on the nature of the underlying classical dynamics. In this Subsection,
e discuss the semiclassical dynamics of quantum fluctuations.
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Fig. 12. Equilibrium configurations and possible instances of non-equilibrium dynamics in the fully-connected quantum Ising model. (a–c) Pictorial
representation on the Bloch sphere of the collective spin for the post-quench Hamiltonian. (a–b) For hf < |J|, the energy possesses two minima
characterized by non-vanishing, opposite magnetizations along x. (c) For hf > |J|, the system is paramagnetic with a single equilibrium configuration
n the direction of the field. Initial fully polarized states at t = 0 are pictured as a point on the Bloch sphere, surrounded by a small gray circle
epresenting their transverse quantum fluctuations. Labels (a1-3)* represent possible instances of such initial conditions. (a1–a3) Semiclassical phase
ortrait of the ferromagnetic post-quench Hamiltonian, where the initial states move along a nontrivial nonequilibrium trajectory, corresponding to
he initial conditions (a1-3)* respectively. (a4–a5) Associated dynamics of the classical magnetization. Labels (a) refer to initial ferromagnetic initial
tates h0 < |J|. Their time-evolution is characterized by ferromagnetic periodic (green) trajectories [see (a1) and (a4)] or paramagnetic (blue) ones
see (a3) and (a6)] with Sx(t) ̸= 0 and Sx(t) = 0, respectively. These are separated by the unstable (red) trajectory occurring at hdcr [see (a2) and
a5)]. Labels (b–c) refer to an initial paramagnetic state h0 = ∞ evolved with two different Hamiltonians: (b) quench performed to a ferromagnetic
amiltonian hf < |J|, the initial state lies on the unstable trajectory, (c) quench performed to a different hf > |J| paramagnetic configuration.
ource: Images adapted from Ref. [57,58].

To compute the evolution of quantum spin fluctuations it is convenient to generalize the Holstein–Primakoff approach
ntroduced in Section 2.4, above, to the non-equilibrium context [56,57]. When the system is driven out of equilibrium,
he direction of the collective spin configuration [parametrized by θ (t) and φ(t)] moves along the corresponding classical
rajectory on the unit sphere. We thus let the adapted frame of reference (X,Y, Z) in Eq. (12) vary in time, in such a
ay that the Z-axis follows the evolution of ⟨Ŝ(t)⟩ ∝ Z(t). This way, the collective spin components along X and Y are
ssociated with quantum fluctuations and will be mapped to canonical bosonic variables.
The time-dependent spin rotation described above is implemented by the time-dependent unitary operator

V̂ (θ (t), φ(t)) = e−iφ(t) Ŝz e−iθ (t) Ŝy . (135)

here the time-dependence of the angles is for the moment unspecified. The Heisenberg equations for spin components
ˆµ with µ = X, Y , Z in the mobile frame will then read

d
dt

Ŝµ =
d
dt

V ŜµV †
=

1
i
[Ŝµ, H̃] , where H̃(t) ≡ V̂ Ĥ V̂ †

+ iV̂ ˙̂V † . (136)

The effective time-dependent Hamiltonian H̃(t) includes inertial forces arising from the time dependence of V̂ . A direct
calculation shows

iV̂ ˙̂V †
= − ω⃗(t) ·

ˆ⃗S with ω⃗(t) =
(
− sin θ φ̇, θ̇ , cos θ φ̇

)
. (137)

The time-dependent Hamiltonian H̃(t) is then transformed to a bosonic Hamiltonian via the Holstein–Primakoff
transformation, cf. Eq. (19). This yields an expression of the form16

16 Here we rescaled time by a factor s for convenience.
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H̃(t) ≈ + (Ns)1 E (θ (t), φ(t))

+ (Ns)1/2
(
h̃(1)
Q (t)q̂ + h̃(1)

P (t)p̂
)

+ (Ns)0
(
h̃(2)
QQ (t)

q̂2

2
+ h̃(2)

PP (t)
p̂2

2
+ h̃(2)

QP (t)
q̂p̂ + p̂q̂

2

)
+ O

(
(Ns)−1/2

)
.

(138)

ompared to the ‘‘static’’ rotated-frame Hamiltonian (obtained by just rotating the spins and mapping to bosons) [see
.g. Eq. (20)], the additional inertial Hamiltonian modifies the linear terms as h̃(1)

Q (t) ≡ h(1)
Q (θ (t), φ(t)) + sin θ (t) φ̇(t) and

˜ (1)
P (t) ≡ h(1)

P (θ (t), φ(t)) − θ̇ (t), while quadratic ones are modified as h̃(2)
QQ ,PP (t) ≡ h(2)

QQ ,PP

(
θ (t), φ(t)

)
− cos θ (t) φ̇(t) and

˜ (2)
QP (t) ≡ h(2)

QP

(
θ (t), φ(t)

)
.

The evolution of θ (t) and φ(t) is fixed by the vanishing of the linear terms h̃(1)(t), ensuring ⟨ŜX (t)⟩ = ⟨ŜY (t)⟩ = 0. This
ields the classical mean-field equations of motion governed by Hcl, i.e. Eq. (132) for our model.
On the other hand, the number of collective excitations n̂0 = (q̂2 + p̂2 − 1)/2 [see e.g. Eq. (19)] non-trivially evolves

n time. Its dynamics are governed by the time-dependent quadratic Hamiltonian parametrized by h̃(2)(t) above. In order
o evaluate them, one computes the Heisenberg equations of motion{

˙̂q = +̃h(2)
QP (t) q̂ + h̃(2)

PP (t) p̂
˙̂p = −̃h(2)

QQ (t) q̂ − h̃(2)
QP (t) p̂

, (139)

with solution
(
q̂(t)
p̂(t)

)
= U(t)

(
q̂(0)
p̂(0)

)
, where the 2 × 2 propagator U(t) can be formally written as the time-ordered

exponential of the matrix defined by the right-hand side of Eq. (139). One can collect the dynamical fluctuations (or
‘‘correlations’’) GQQ (t) ≡ ⟨q̂2(t)⟩, GPP (t) ≡ ⟨p̂2(t)⟩ and GQP (t) ≡

⟨q̂(t)p̂(t)+p̂(t)q̂(t)⟩
2 in the 2 × 2 correlation matrix

G(t) =

(
GQQ (t) GQP (t)
GQP (t) GPP (t)

)
= U(t)G(t = 0)UT (t) . (140)

The number of dynamically generated excitations can be expressed as

⟨n̂0(t)⟩ =
GQQ (t) + GPP (t) − 1

2
=

1
2
Tr
[
G(t) −

1

2

]
. (141)

ote that detG(t) ≡ 1/4, which is an exact property of pure Gaussian states preserved by Hamiltonian evolution. For our
ully-connected Ising model, the equations of motion for the correlation matrix read⎧⎨⎩

ĠQQ
= 2J0 cos θ sinφ cosφ GQQ

+ 2J0
(
cos2 φ − sin2 φ

)
GQP

ĠPP
= −2J0 cos θ sinφ cosφ GPP

− 2J0 cos2 φ sin2 θ GPQ

ĠPQ
= −J0 cos2 φ sin2 θ GQQ

+ J0
(
cos2 φ − sin2 φ

)
GPP

. (142)

Crucially, because we obtained these equations by expanding the Hamiltonian in powers of h̄eff and because classical
and quantum evolution generated by quadratic Hamiltonians coincide, the semiclassical dynamics of quantum fluctuations
— characterized by the time-dependent correlation matrix G(t) — obeys the same equation of motion as the linearized flow
of displacements from the classical trajectories. This statement actually applies to arbitrary semiclassical systems with n
degrees of freedom, where the correlation matrix G(t) of the quantum fluctuations becomes a 2n × 2n matrix. We refer
to Ref. [302] or Appendix B for a complete discussion. The correlation matrix G(t) is equivalent to the monodromy matrix
whose eigenvalues define the finite-time classical Lyapunov spectrum {λk(t)} [303].

When the classical dynamics is integrable, nearby initial conditions generically separate linearly in time, as it becomes
manifest via action–angle variables [58]. Thus, the temporal growth of the quantum correlations is polynomial, ⟨n̂0(t)⟩ ∼

t2 . Isolated unstable trajectories like the separatrix discussed in Section 4.1.2 are characterized by exponential sensitivity,
and hence ⟨n0(t)⟩ ∼ e2λt , where λ is the largest eigenvalue of the saddle point that controls the instability. The asymptotic
growth also depends on the initial conditions for systems with a mixed regular-chaotic phase space, e.g. resulting
from integrability breaking within a Kolmogorov–Arnold–Moser scenario [303]. On the other hand, in systems with
fully developed chaos in phase space, the Lyapunov spectrum is uniform and nonvanishing. This implies an asymptotic
exponential growth of quantum fluctuations, ⟨n̂0(t)⟩ ∼ e2λt . The classification is concluded by the case of stable
equilibrium configurations, the linearized dynamics of which are equivalent to that of coupled harmonic oscillators.
Accordingly, all the quantities of interest perform bounded (periodic or quasiperiodic) oscillations. This classification is
summarized in the first row of Table 1.

The formalism outlined in this Section is quantitatively accurate as long as the number of collective excitations does
not grow too large ⟨n̂0⟩ ≪ N compared to the system size. As shown in Section 2.3 this assumption is generically valid
for ground states, even at the quantum critical points [84,304]. Out of equilibrium, this condition defines the Ehrenfest
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Table 1
Summary of the dynamical behavior of entanglement and chaos quantifiers
of N-particle collective systems in the semiclassical regime. The growth of
the entanglement quantifiers and the square commutator depends on the
nature of the limiting classical trajectory in the 2n-dimensional phase space
(stable configuration, regular or chaotic), up to the Ehrenfest time. Here,
λ ≡ λ1 is the maximum finite time Lyapunov exponent, and ΛK =

∑2K
k=1 λk

is the sum of the 2K largest Lyapunov exponents, where K is the number of
degrees of freedom associated with the considered subsystem. For K = n/2,
one has the classical Kolmogorov–Sinai entropy rate ΛKS =

∑
k : λk>0 λk .

Classical trajectory Stable Regular Chaotic
(Unstable)

Collective fluctuations oscillations t2 e2λt

Ehrenfest time scale O(
√
N) O(

√
N) O(lnN)

entanglement entropy oscillations ln t ΛK t
square commutator oscillations t2 e2λt

time scale, given by

⟨n̂0(TEhr)⟩ ∼ N . (143)

n this time scale the quadratic truncation of the bosonic representation loses accuracy. The non-linear corrections
enerally lead to saturation of the growth of quantum fluctuations and to revivals on much longer times. Putting
verything together, we have{

regular trajectories ⟨n̂0(t)⟩ ∼ t2 TEhr ∼ h̄−1/2
eff ∼

√
N

unstable (chaotic) trajectories ⟨n̂0(t)⟩ ∼ e2λt TEhr ∼ ln h̄−1/2
eff ∼ lnN

. (144)

The dynamical growth of collective quantum fluctuations goes hand in hand with the scrambling of quantum
nformation and the dynamics of quantum entanglement. As we will discuss in the next two sections, the approach
escribed here allows us to derive an exact relation between ⟨n̂0(t)⟩, scrambling, and entanglement.

Summary: Collective quantum fluctuations evolve as the linearized flow of displacements around the classical
trajectory before the Ehrenfest time scale. The latter is defined as the time for which the amount of quantum fluctuations
becomes comparable with the system size. Consequently, this time scale depends on the classical phase-space.

4.1.4. Scrambling dynamics
Scrambling has been recently proposed as a pathway to characterize chaos in many-body dynamics. Generically

dentified as the delocalization of quantum information, scrambling is commonly quantified by the dynamics of the
quare-commutator

c(t) = ⟨

⏐⏐⏐[Â(t), B̂]⏐⏐⏐2⟩ (145)

f two observables Â(t) and B̂ at different times, where the expectation value is defined as the average over a quantum
tate ρ̂, i.e., ⟨·⟩ = Tr(·ρ̂). Alternatively, scrambling can be studied via the closely related out-of-time order correlators
OTOC) ⟨Â(t)B̂Â(t)B̂⟩. The square commutator was originally introduced by Larkin and Ovchinnikov [305] to semi-
lassically describe the exponential sensitivity to initial conditions.17 Thus, whenever the underlying classical limit is
haotic, c(t) is expected to grow exponentially in time as

c(t) ≃ h̄2
eff e

λ̃t , (147)

ith a rate λ̃ which may be related to the classical Lyapunov exponent (but it is in principle distinct). This holds at
ntermediate times before the Ehrenfest scale t < TEhr ∼ ln h̄−1

eff , in this context also referred to as scrambling time. Interest
n the square-commutator was revived after Kitaev’s proposal to use it to characterize many-body dynamics [306]. In this
ontext, it was shown that for a system at thermal equilibrium the rate λ̃ is upper bounded by quantum effects as λ̃ ≤

2πT
h̄ ,

here T is the temperature [307], as a consequence of the quantum fluctuation–dissipation theorem [308,309]. This

17 The heuristics goes as follows: for Â = x̂ and B̂ = p̂ in the limit h̄ → 0, upon canonical quantization one has

c(t) ≃ h̄2
{x(t), p(0)}2PB ≃ h̄2

⏐⏐⏐⏐ ∂x(t)∂x(0)

⏐⏐⏐⏐2 . (146)

ence, c(t) encodes the square of the derivatives of the classical trajectory with respect to the initial conditions.
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onstraint — now known as ‘‘the bound to chaos’’ — is saturated by models of black holes, including the Sachdev–Ye–Kitaev
odel (SYK) [306,310], a system of fully interacting disordered Majorana fermions where h̄eff ∼ lnN .
In the present case of fully-connected systems with a classical limit (Section 4.1.1), scrambling before the Ehrenfest

ime thus directly probes the sensitivity of the classical trajectories to infinitesimal perturbations. One can study the
quare commutator in Eq. (145) by taking the expectation value in pure quasiclassical initial states and by looking at the
quare commutator between two collective spin projections, namely

cαβ (t) = −

(
1
Ns

)2

⟨ψ0|

[
Ŝα(t), Ŝβ (0)

]2
|ψ0⟩ , (148)

here α, β = x, y, z and |ψ0⟩ is a fully polarized spin-coherent initial state. Using the expansion of the quantum fluctua-
ions elaborated in Section 4.1.3, we can compute the semiclassical evolution of the out-of-time-order square commutator.
y plugging the expansion of the rotated spin operators (19) into the definition (148), one then substitutes the formal
olution for the spin fluctuations at time t , i.e., Q̂ (t) = Uqq(t) Q̂ (0) + Uqp(t) P̂(0) and P̂(t) = Upq(t) Q̂ (0) + Upp(t) P̂(0). The
initial fluctuations for coherent states are ⟨Q̂ (0)2⟩ = ⟨P̂2(0)⟩ = 1/2 and ⟨Q̂ (0)P̂(0)⟩ = ⟨P̂(0)Q̂ (0)⟩ = 0. The resulting
out-of-time square commutator in Eq. (148) thus reads

cαβ (t) =

[
Xα(t)

(
Uqq(t) Yβ (0) − Uqp(t) Xβ (0)

)
+ Yα(t)

(
Upq(t) Yβ (0) − Upp(t) Xβ (0)

)]2
+ O(h̄eff) .

(149)

This expresses a quantitative relation between the square-commutator and the formal evolution U(t) [cf, below Eq. (139)]
of the quantum fluctuations, which encodes the of the evolution of linearized displacements and the finite time Lyapunov
exponent spectrum {λk(t)}, as described in Section 4.1.3. Hence, when the classical limit is integrable, the square-
commutator will grow as c(t) ≃ t2, within the Ehrenfest time scale TEhr. On the other hand in the presence of exponential
sensitivity associated with a phase-space separatrix (cf. Section 4.1.1 above) or with chaos, the square-commutator
c(t) ≃ e2λ1t grows exponentially before TEhr with λ1 = λ1(t) the maximal finite-time Lyapunov exponent of the underlying
semiclassical trajectory. The different scenarios are summarized in Table 1.

Results for the fully-connected quantum Ising model are shown in Fig. 13, where we consider czz(t) and compare
analytical result (black full line) with numerical exact diagonalization results for finite system sizes. Parameters are
specified in the caption. The plot highlights the relation between entanglement entropy (discussed below) and scrambling
before the Ehrenfest time. As the considered model has an integrable classical limit, the square-commutator only grows
exponentially czz(t) ∼ e2λt for quenches at the dynamical critical point hdcr, associated with a classical separatrix with
instability rate λ given in Eq. (133).

The exponential sensitivity of the square-commutator in the presence of the underlying separatrix has been explored in
a number of fully connected mean-field models [297,311–313] and recently probed experimentally [314]. When the initial
state in Eq. (145) is a random permutationally invariant state, the growth rate of the square-commutator corresponds
to the average of the finite-time Lyapunov over the whole phase-space. In the presence of an instability, this leads
to a modified exponential growth c(t) ∼ eλt (rather than e2λt ) [315]. As we discussed above, fully-connected spin
systems may exhibit classically chaotic evolution when driven periodically (e.g. quantum kicked top), coupled to other
degrees of freedom (e.g. Dicke models), or for larger individual spins s > 1/2. Analysis as above predicts exponential
growth of the square-commutator for underlying classical chaos, as reported in the literature for the quantum kicked
top [297,302,312,316–318,318–322], the Dicke model [323–326] and other spin models [319,327]. Recently, it has been
pointed out that scrambling may become super-exponential in fully connected models when the average in Eq. (145) is
done over at infinite temperature state [328].

Summary: In fully-connected models, the square-commutator growth is quantitatively determined by the semiclassical
phase space before the Ehrenfest time. Hence it encodes finite times Lyapunov exponents.

A similar statement also applies to other quantifiers of quantum information spreading, in particular to entanglement
entropy, which we turn to analyze in the next Subsection.

4.1.5. Entanglement dynamics
It is by now well established that a large body of information about many-body dynamics, their thermalization

properties, and the complexity of their numerical simulations, can be inferred from the evolution of bipartite entanglement
entropies. For a composite system with Hilbert space H = HA ⊗ HB in a pure state ρ̂ = |ψ⟩⟨ψ |, the bipartite
ntanglement between subsystems A and B is encoded in the reduced density matrix ρ̂A = TrB ρ̂.18 The system is entangled
ith respect to the bipartition (A, B) if ρ̂A (equivalently, ρ̂B) is not pure. The amount of bipartite entanglement can be
uantified by the Renyi entropies

SnA = −
1

1 − n
ln Tr ρ̂n

A , (150)

18 The nonvanishing eigenvalues of ρ̂ = Tr ρ̂ are equal to those of ρ̂ .
B A A
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Fig. 13. Entanglement and scrambling dynamics after a quench of the transverse field in the fully-connected Ising model, from h0 = 0 to hf > 0.
he analytical prediction (black lines) is compared with exact numerical results (colors) at finite N = 50, 200, 800. We study the growth of the
ntanglement entropy (151)(top panel) and the square commutator (148) (bottom panel) quenching above, below, and at the dynamical phase
ransition (DPT) at hf = hdcr , as pictorially shown in Fig. 12(a). (a1–b1) Quench above the DPT: hf = 2J0 > hdcr . (a2–b2) Quench below the DPT:
f = 0.2J0 < hdcr . (a3–b3) Quench at the DPT: hf = J0/2 = hdcr . Time is measured in units of J0 .

Source: Plots adapted from Ref. [329].

parametrized by n > 1. The von Neumann entropy is obtained as their limit for n → 1, i.e.,

SA = −Tr
(
ρ̂A ln ρ̂A

)
. (151)

As far as local Hamiltonians are concerned, the baseline features of entanglement entropy growth of pure states
out-of-equilibrium are well understood. In thermalizing local systems, the entanglement entropy SA(t) grows linearly in
time before saturating to a value proportional to its volume [113,114,330]. This can be viewed as a broad consequence
of the light-cone spreading of quantum correlations (see discussion in Section 3.1). The underlying mechanism is well
understood in integrable systems, where it has been explained via a semiclassical picture based on quasi-particle
pairs propagation [331]. Analytical insights in chaotic many-body systems came from the study of random unitary
circuits [115]. On the other hand, the presence of localized integrals of motion (exact or approximate) causes a slowdown
of entanglement growth, with a distinguished logarithmic increase for systems exhibiting many-body localization [332].
Neither of these scenarios is adequate for long-range interacting systems, where numerical results exhibited slow
logarithmic entanglement growth even in the absence of quenched disorder [127,129,297].

A successful picture to capture entanglement growth in fully-connected systems was only achieved more recently [58,
302]. The semiclassical growth of quantum fluctuations (described in the section above) allows one to analytically relate
the dynamics of the entanglement entropy SA(t) to the quantifiers of chaos, leading to a general unifying picture. This
formalism yields a clean prediction of logarithmic growth in the absence of semiclassical chaos. This constitutes the origin
of the slowdown of entanglement growth, which was first observed in numerical simulations of dynamics in long-range
interacting quantum spin chains [127,129,297]: We will complete this discussion in Section 4.2.5 below. We will illustrate
how SA(t) asymptotically coincides with the logarithm of the phase space volume spanned by the quantum fluctuations of the
subsystem degrees of freedom, as originally identified in a seminal work by Zurek and Paz [333]; see Refs. [58,302,334–336]
for more recent literature.

In the case of fully-connected N-particle systems considered here, one considers a bipartition between any two
sets of spins, where the only relevant parameter is the number NA = fAN of particles in subsystem A (with NB =

N − NA = fBN).19 The collective spin ˆ⃗S can be correspondingly decomposed as ˆ⃗S =
ˆ⃗SA +

ˆ⃗SB (see Fig. 14). Within the
semiclassical description, the bipartite system can be represented by bosonic operators (q̂A, p̂A) and (q̂B, p̂B), associated
with the quantum fluctuations of the two spins ˆ⃗SA and ˆ⃗SB, respectively, via Holstein–Primakoff mapping. These quantum
fluctuations are characterized by the correlation matrix G(t) defined in Eq. (140). It is convenient to define the subsystem’s
reduced correlation matrix GA(t) as the 2 × 2 matrix of quantum fluctuations built out of the variables of subsystem A alone,
i.e.,

GA =

(
⟨q̂2A⟩

⟨q̂A p̂A+p̂A q̂A⟩

2
⟨q̂A p̂A+p̂A q̂A⟩

2 ⟨p̂2A⟩

)
≡

(
GqAqA GqApA

GqApA GpApA

)
. (152)

n the semiclassical regime of small h̄eff, the reduced density matrix ρ̂A(t) is asymptotically Gaussian to leading order, and
hus fully determined by GA(t). The entanglement properties can thus be computed via standard techniques [334], see

19 Due to permutational symmetry, spatial bipartitions have no meaning.
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Fig. 14. Entanglement dynamics in infinite range spin-chains. (a) The system is partitioned into two blocks of NA and NB spins1/2, initially fully
polarized. (b) Collective spins of the two blocks. (c) Collective spin in the factorized initial state, represented on the Bloch sphere. The shaded
area represents the quantum uncertainty of transverse components. (d) Nonlinear interactions determine spin squeezing, which makes the two
blocks increasingly correlated (entangled). The rate of squeezing is governed by the separation of nearby semiclassical trajectories, and by Eq. (2) it
determines the rate of growth of entanglement entropy. Right panels: (e) For generic (noncritical) quenches, nearby trajectories separate linearly in
time, leading to a polynomially fast squeezing. (f) For a critical quench, the collective spin lies on the stable manifold of an unstable fixed point in
phase space. In this case, nearby trajectories separate exponentially fast in time at a rate λ set by the eigenvalue of the linearized flow.

also Refs. [335,336]. The Von Neumann and the second Renyi entropies of a single boson (q̂A, p̂A) in such a Gaussian state
can be expressed in terms of the determinant of GA as [337]

SA = 2
√
detGAarccoth

(
2
√
detGA

)
+

1
2
log
(
detGA −

1
4

)
, (153a)

S(2)A (t) =
1
2
ln det

(
2GA(t)

)
. (153b)

n the other hand, the matrix GA can be directly related to the correlation matrix G of collective excitations (q̂, p̂).20 The
xplicit computation shows that the determinant can be expressed as

detGA =
1
4

+ fAfB ⟨n̂0⟩ (155)

here n̂0 = (q̂2 + p̂2 − 1)/2 represents the number of bosonic excitations of the collective spin [cf. Eq. (141)]. While the
lobal evolution preserves the total volume, i.e., det

(
2G(t)

)
≡ 1, the information loss generated by projecting the collective

uantum fluctuations onto a subsystem yields an increase of entropy. By Eq. (153b), this increase may be visualized as an
nhancement of the projected volume spanned by the reduced quantum fluctuations within the subsystem phase space,
ue to the progressive stretching of the phase-space volume spanned by the quantum fluctuations, see Fig. 14. The growth
f entanglement entropy out of equilibrium is thus completely determined by the dynamical generation of the collective
xcitations ⟨n̂0(t)⟩ =

1
2Tr

[
G(t) −

1
2

]
. As discussed in Section 4.1.3, G(t) describes the flow of linearized displacements

around the classical trajectories. This connection highlights that the entanglement growth in the semiclassical regime is
determined by the chaoticity properties of the underlying classical phase space. In fact, the qualitative time-dependence
of ⟨n̂0(t)⟩ depends on the nature of the classical trajectories. See Table 1 for a summary.

The classical dynamics of fully-connected spin-1/2 systems are generically integrable (as discussed in Section 4.1.1).
Hence the temporal growth of the quantum correlations is at most polynomial, ⟨nexc(t)⟩ ∼ t2 [see Fig. 5(e)], leading to

SA(t) ∼
t≫1

S(2)A (t) ∼ ln t . (156)

In the (non-generic) case of quenches to dynamical critical points (see discussion in Section 4.1.2), the collective spin
oves along an isolated unstable trajectory called separatrix [see Fig. 5(f)]. Out-of-equilibrium generation of collective
xcitations is thus exponentially fast in such critical quenches, ⟨n̂exc(t)⟩ ∼ e2λt , leading to a linear growth of entanglement
ntropy with a predicted slope

SA(t) ∼
t≫1

S(2)A (t) ∼ λt . (157)

20 One can perform a linear canonical transformation to the collective (q̂, p̂) and relative (δq̂, δp̂) fluctuation modes:{
q̂ = +

√
fA q̂A +

√
fB q̂B

δq̂ = −
√
fB q̂A +

√
fA q̂B

{
p̂ = +

√
fA p̂A +

√
fB p̂B

δp̂ = −
√
fB p̂A +

√
fA p̂B

. (154)

Since the Hamiltonian is a function of the collective spin only, the latter bosonic mode is frozen in the vacuum.
42



N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92

T
T
a

f
t
e

F
g
t

t
o

b
m
d

E
e
o
o
w

O

w
m
e

his phenomenology fully describes the entanglement entropy dynamics of the fully-connected quantum Ising model.
his is shown in Fig. 13, where SA(t) is studied for quenches in the transverse field from h0 = 0 to different hf below
bove and at the dynamical critical point hdcr, discussed in Section 4.1.2.
This analysis can be extended to general fully-connected systems whose classical limit has n > 1 degrees of

reedom [302] and may exhibit chaos. In this case, quantum fluctuations grow as ⟨n̂exc(t)⟩ ∼ e2λt , and the growth of
he entanglement entropy SA(t) is generically linear in time with a rate set by the sum of the largest 2nA Lyapunov
xponents [302,335,338]:

SA(t) ∼
t≫1

S(2)A (t) ∼ ΛAt =

( 2nA∑
k=1

λk

)
t . (158)

or nA = n/2, this rate coincides with the classical Kolmogorov–Sinai entropy rate ΛKS =
∑

λk : λk>0 λk [303]. A linear
rowth of entanglement entropy thus occurs in chaotic fully-connected spin systems, such as the quantum kicked
op [297,339–351], the Dicke model [302,324,344,352–360], and larger-s fully-connected systems.

The classification above is concluded by the case of near-equilibrium dynamics around stable equilibrium configura-
ions. In this case, the linearized dynamics are equivalent to that of coupled harmonic oscillators, leading to persistent
scillations in entanglement dynamics. See Table 1 for a summary.
It is worth noting that the stretching of collective quantum fluctuations in phase space, which lies at the origin of

ipartite entanglement growth, is very explicitly connected with important witnesses of multipartite quantum entangle-
ent, such as spin squeezing [361] and the Quantum Fisher Information [362]. A popular quantifier of spin-squeezing is
efined by the minimal transverse variance of collective quantum spin fluctuations [363,364]:

ξ 2 ≡ min
|u|=1,u⊥Z

⟨(
u · Ŝ

)2⟩
N/4

. (159)

The squeezing parameter ξ 2 is equal to one 1 for coherent (separable) states, while it is smaller for squeezed states ξ 2 < 1.
It has long been known [365,366] that collective spin squeezing is a witness of many-body quantum entanglement, which
can be generated by fully connected interactions [363,364]. Indeed, over the timescale t ≪ TEhr, ξ (t), squeezing is explicitly
related to ⟨n0(t)⟩ in Eq. (155) as

ξ 2(t) = 1 + 2⟨n̂0(t)⟩ − 2
√

⟨n̂0(t)⟩(⟨n̂0(t)⟩ + 1). (160)

quations ((153a), (155)) and (160) express the quantitative link — pictorially illustrated in Fig. 14 — between the
ntanglement entropy SA and the spin squeezing parameter ξ , in collective spin models in the semiclassical regime in and
ut of equilibrium. Following this relation, we will refer to the mechanism of dynamical entanglement entropy growth
utlined here as spin-squeezing picture [58]. For definiteness in this Report, we focus on bipartite entanglement entropies;
e refer the readers to Ref. [302] for further details on the dynamics of multipartite entanglement.
In conclusion, we recall that the analysis presented above is valid before the Ehrenfest time scale defined in Eq. (143).

ver longer times entanglement entropies saturate, S∞

A ∝ logNA.

Summary: In fully connected systems, entanglement dynamics is captured by a semiclassical picture (before Ehrenfest
time), which relates it to the squeezing of quantum fluctuations in phase space. This relation generically predicts a
logarithmic entanglement growth, in the absence of semiclassical chaos.

4.2. Quench dynamics of long-range interacting spin systems (α > 0)

As soon as the interaction range is finite, the full permutational symmetry of the problem is broken and, in principle,
the system could thermalize. The purpose of this Section is to describe the persistent collective character of dynamics
in systems with 0 < α < d. By formulating a non-equilibrium spin-wave theory (Section 4.2.1), we will be able to
develop a physical picture in terms of a semiclassical collective degree of freedom coupled with excitations with finite
wavelengths [56,57],. Analysis of the resulting non-linear coupled equations allows one to demonstrate the freezing
of finite-wavelength modes for long times, resulting in lower bounds to thermalization time scales (Section 4.2.2).
This scenario affects DPTs (Section 4.2.3), scrambling dynamics (Section 4.2.4), and the characteristic slow growth of
entanglement entropy (Section 4.2.5).

4.2.1. Dynamics of quantum fluctuations with finite interaction range
To study the impact of finite range interactions on the mean-field dynamics, we resort to a non-equilibrium spin-

ave theory developed in Refs. [56,57]. The goal is to refine the time-dependent formalism of Section 4.1.3 to the full
omentum-space representation of the finite-range spin Hamiltonian, Eqs. (28) and (29). Similarly to the discussion of
quilibrium properties in Section 2.4, one can single out a collective α-independent part of the Hamiltonian involving

k = 0 spin operators only, and an α-dependent perturbation which activates spin fluctuation modes at k ̸= 0.
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One can expand the individual spins as bosonic fluctuations around a yet unspecified time-dependent quantization
axis Z — which we will later self-consistently require to coincide with the instantaneous direction of the collective
spin ⟨

⃗̂S(t)⟩ ∝ Z(t). To achieve this, one performs the time-dependent rotation generated by V̂ (t) in Eq. (135). The
pin components in this time-dependent frame are governed by the inertial Hamiltonian ˜̂H(t) = V̂ Ĥ V̂ †

+ iV̂ ˙̂V † , as
n Section 4.1.3. One then applies Holstein–Primakoff transformations to the individual rotating spins, as in Eq. (60). The
esulting transformed Hamiltonian can be organized in the usual form

H̃(t) =
1
s

[
(Ns)1Ẽ0(t) + (Ns)1/2H̃1(t) + (Ns)0H̃2(t) + (Ns)−1/2H̃3(t) + (Ns)−1H̃4(t) + · · ·

]
. (161)

As we already observed in the discussion of equilibrium properties, comparison to the expansion for α = 0 shows that
q̂ ≡ q̃k=0 , p̂ ≡ p̃k=0 , n̂0 ≡ n̂k=0, and that the total occupation number of spin-wave excitations n̂sw is given by the sum
f bosonic occupation numbers of all the other spin-wave modes at finite wavelength, cf. Eq. (39)

n̂sw =

∑
k̸=0

n̂k , with n̂k ≡
q̃kq̃−k + p̃kp̃−k − 1

2
. (162)

he individual occupation numbers quantities n̂k̸=0 are exactly conserved by the collective part of the Hamiltonian H̃α=0(t),
hich only depends on k ̸= 0 bosons through the collective spin length [i.e. through n̂sw].
The equations of motion of the classical angles θ (t), φ(t) is once again found by imposing the condition that ⟨ŜX (t)⟩ =

⟨ŜY (t)⟩ = 0 [56,57], namely that the collective bosonic mode describes fluctuations around the instantaneous average
spin polarization. This amount to setting the coefficients of q̃k=0 and p̃k=0 equal to zero. Taking into account the leading
term H̃1(t) only, one retrieves the usual classical mean-field equations of motion (132).

However, in the presence of finite-range interactions, the collective spin trajectory gets modified by quantum
fluctuations. This effect is the non-equilibrium counterpart of the corrections to the equilibrium spin polarization arising
from a finite spin-wave density in the quantum ferromagnetic phase, cf. Section 2.4.3. The corrections arise from the
terms in H̃3(t) involving a bosonic operator with k = 0 (such that the remaining two operators have momenta ±k). In
physical terms, these interactions describe the scattering of a collective spin excitation into a pair of spin waves with
opposite finite momenta and vice versa. Taking into account this ‘‘feedback’’ from quantum fluctuations, one obtains a
pair of modified equations for the angles θ (t), φ(t) [56,57]:

d
dt
θ = + 2J0(1 − ϵ) sin θ cosφ sinφ

− 2J0

(
1
Ns

∑
k

fk(α)
⟨
p̃kp̃−k

⟩)
sin θ cosφ sinφ (163a)

+ 2J0

(
1
Ns

∑
k

fk(α)

⟨
q̃kp̃−k + p̃kq̃−k

⟩
2

)
cos θ sin θ cos2 φ,

d
dt
φ = − h + 2J0(1 − ϵ) cos θ cos2 φ

− 2J0

(
1
Ns

∑
k̸=0

fk(α)
⟨
q̃kq̃−k

⟩)
cos θ cos2 φ (163b)

+ 2J0

(
1
Ns

∑
k̸=0

fk(α)

⟨
q̃kp̃−k + p̃kq̃−k

⟩
2

)
sinφ cosφ,

where we introduced the time-dependent spin-wave density

ϵ(t) ≡
⟨n̂tot(t)⟩

Ns
=

1
Ns

∑
k

⟨q̃kq̃−k⟩ + ⟨p̃kp̃−k⟩ − 1
2

. (164)

As usual, we observe that the impact of quantum fluctuations on the classical trajectory is suppressed in the classical
limit s → ∞, and grows with α at fixed s. Similarly to what we found in equilibrium (Section 2.4), the properties of fk(α)
mply that all the quantum backreaction terms in the right-hand sides of the above equations of motion are vanishingly
mall in the thermodynamic limit for 0 < α < d and finite for α > d but vanishing as α ↘ d. In the latter case, we can
ake the usual replacement (1/N)

∑
k ↦→

∫
ddk/(2π )d in the thermodynamic limit. However, in finite systems, those

orrections could be expected to play a role for arbitrary α at sufficiently long times.
In turn, the evolution of quantum fluctuations is regulated by the spin-wave Hamiltonian H̃2(t) to the same order of

pproximation as above. It is instructive to report its explicit expression for the considered variable-range quantum Ising
odel:

Ĥ2(t) = −2J0
∑

fk(α) ×
k
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(
cos2 θ cos2 φ

q̃kq̃−k

2
+ sin2 φ

p̃kp̃−k

2
− cos θ sinφ cosφ

p̃kq̃−k + q̃kp̃−k

2

)
+ 2J0 cos2 φ

∑
k

n̂k . (165)

his Hamiltonian is equivalent to a set of externally driven quantum harmonic oscillators, labeled by the momentum k,
here the driving is given by the motion of θ (t) and φ(t) and controlled by the couplings fk(α).
To close the system of equations of motion it is convenient to define the momentum-resolved correlation functions

Gqq
k (t) ≡ ⟨ q̃k(t)q̃−k(t) ⟩, Gpp

k (t) ≡ ⟨ p̃k(t)p̃−k(t) ⟩, (166a)

Gqp
k (t) ≡

1
2
⟨ q̃k(t)p̃−k(t) + p̃k(t)q̃−k(t)⟩ . (166b)

Starting from the Heisenberg equations d
dt q̃k = i[H̃2(t), q̃k] and d

dt p̃k = i[H̃2(t), p̃k] we compute⎧⎨⎩
Ġqq
k = 4J0fk(α) cos θ cosφ sinφ Gqq

k + 4J0
(
cos2 φ − fk(α) sin2 φ

)
Gqp
k ,

Ġpp
k = −4J0

(
cos2 φ − fk(α) cos2 θ cos2 φ

)
Gqp
k − 4J0fk(α) cos θ cosφ sinφ Gpp

k ,

Ġqp
k = −2J0

(
cos2 φ − fk(α) cos2 θ cos2 φ

)
Gqq
k + 2J0

(
cos2 φ − fk(α) sin2 φ

)
Gpp
k .

(167)

Like Eqs. (142), these equations are also not independent due to the relation 4(Gpq
k )2 = 4 Gpp

k Gqq
k − 1, which is an

exact property of Gaussian pure states, and which is then satisfied at all times and for all k’s to the considered level of
approximation.

The general physical picture is now clear:

• To lowest order the collective spin follows the classical mean-field trajectory;
• This collective spin motion acts as an external drive for the spin-wave excitations, whereby the couplings fk(α)

control the driving amplitude;
• The dynamically populated non-equilibrium spin-wave ‘‘bath’’ may in turn back-react to modify the collective spin

dynamics.

To quadratic order of approximation in the spin waves, the quantum many-body dynamics of the system is described by
the closed set of coupled non-linear evolution Eqs. (163) and (167), together with suitable initial conditions (which may
be a ground or thermal state of a pre-quench Hamiltonian — see the discussion on equilibrium states in Section 2.4). This
effective decoupling between the dominant zero mode and the finite k-suppressed spin waves has recently been exploited
in Refs. [367,368]. There, the quadratic zero mode is replaced by a (fully quantum) rotor, while the k spin waves are kept
at the quadratic level. This approach allows to reproduce the dynamics of quantum fluctuations beyond Ehrenfest time.

The formalism derived above is expected to provide an accurate description of the time-evolving many-body wave
function whenever the dynamically generated spin-wave density ϵ(t) (see Eq. (164)) remains small, i.e. ϵ(t) ≪ 1. This
diluteness condition allows us to theoretically describe the many-body dynamics as a self-consistent driven weakly-
interacting bosonic gas. The neglected higher-order terms account for the non-linear scattering among spin waves, which
is expected to contribute to the dynamics only over time scales parametrically long in 1/ϵ. Physically, the diluteness
condition above corresponds to the requirement that the time-evolving collective spin magnitude S remains close to its
maximal value Ns, as showcased by Eq. (39). The quality of this approximation is significantly impacted by the interaction
range via fk(α).

Below we will use the formalism outlined above to review how the finite-range of interactions impacts the mean-field
DPT, scrambling, and entanglement dynamics.

Summary: Finite-wavelength fluctuations can be modeled as a set of driven bosonic modes, where the drive is given
by the collective spin motion. The quantum fluctuations, in turn, affect the collective spin dynamics. The full dynamics
is thus described by a set of coupled non-linear evolution equations.

4.2.2. Prethermal freezing of spin-wave excitations
The dynamical generation of spin-wave excitations with non-vanishing momenta for α > 0 is responsible for

odifications to the mean-field dynamics. As is manifest in Eqs. (163), the impact of the quantum backreaction is
ontrolled by the finite-range perturbation via fk̸=0(α). In turn, the same quantities fk̸=0(α) bound the rate itself of
ynamical generation of spin waves: From Eq. (165) it is clear that

[
n̂k̸=0, H̃(t)

]
∝ fk̸=0(α), consistently with the sum

f the first two equations in (167).
To formulate a more precise bound we can proceed as follows: First, we can eliminate the free spin-wave precession,

.e. the last term in Eq. (165), by switching to the ‘‘interaction picture’’: q̃k ↦→ cosΦ(t)q̃k+sinΦ(t)p̃k, p̃k ↦→ − sinΦ(t)q̃k+

osΦ(t)p̃k, where Φ(t) =
∫ t
0 ds 2J0 cos2 φ(s).21 Such a ‘‘gauge’’ transformation does not change the dynamical population

21 While the axis Z is fixed by a self-consistency requirement, the orientation of the transverse axes X, Y is a ‘‘gauge freedom’’ within the formalism.
The transformation above amounts to performing a time-dependent rotation of the transverse spin components by angle Φ(t). With this choice of
co-moving frame, the spin-wave Hamiltonian fully vanishes for α = 0: spin fluctuations look frozen.
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f spin waves. All terms of the right-hand side of the modified Eq. (167) are now proportional to fk̸=0(α). We can then apply
ronwall’s lemma [369] to this linear system of differential equations to bound the growth of the Gk(t)’s: In particular,

⟨n̂k(t)⟩ =
1
2

(
Gqq
k + Gpp

k (t) − 1
)

≤
1
2

[
exp

(
c|fk(α)|J0t

)
− 1

]
, (168)

where c is a constant related to the norm of the monodromy matrix on the right-hand side of Eq. (167). Thus, spin-wave
excitations at momentum k can only be dynamically generated over time scales J0t ≫ 1/fk(α).

Of course, the bound in Eq. (168) is only useful for α ≲ d. As discussed in Section 2.4 and in Appendix C, the couplings
fk̸=0(α) are suppressed in the thermodynamic limit N → ∞ when 0 < α < d and are finite for α > d; see Fig. 3 for an
illustration. This straightforwardly provides us with a bound on the rate of growth of the population of bosonic excitations
for 0 < α < d (see Appendix C):

|fk(α)| ≤
const
(|k|L)β

, with β ≡ min
(
d − α, (d + 1)/2

)
. (169)

herefore, there exists a long time scale

Tsw ∼ Nβ/d , (170)

uring which the dynamical excitation of spin waves with finite wavelengths is suppressed.22 We can further easily bound
he total density of spin-wave excitations at finite times:

ϵ(t) ≤
1
Ns

∑
k

1
2

[
exp

(
c|fk(α)|J0t

)
− 1

]
∼

J0t
N

∑
k

|fk(α)| (171)

or 0 < α < d we have [recall k ≡ kℓ = 2πℓ/L, with ℓ = (ℓ1, . . . , ℓd) integers]

ϵ(t) ≤
J0t
Ld

∑
|ℓ|<L/2

1
|ℓ|β

∼
J0t
Lβ

(172)

his bound proves that the spin-wave formalism described here is asymptotically exact in this regime and that the mean-
ield description of the collective spin polarization dynamics becomes exact in the thermodynamic limit. (We stress that
his conclusion requires that N → ∞ must be taken before t → ∞.)

It must be noted that the bound (168) above is far from being tight, as it considers exponential instability for all
he bosonic modes (and with the worst possible rates). In reality, our system can be approximately viewed as a set of
uantum harmonic oscillators subject to periodic parametric drive at a frequency given by the classical collective spin
recession. Such driven oscillators may or may not meet a resonance; for a given quench, resonances can be detected by
erforming a stability analysis of the stroboscopic (Floquet) evolution operator for each spin-wave mode [58]:(

q̃k(t0 + Tcl)
p̃k(t0 + Tcl)

)
= Uk(Tcl) ·

(
q̃k(t0)
p̃k(t0)

)
(173)

over the period Tcl of the motion of the angles θ (t), φ(t). The eigenvalues e±λkTcl of the 2 × 2 matrix Uk(Tcl) directly give
information on the Floquet quasi-frequency λk (see, e.g., Refs. [81,370]) of the driven oscillator, which may be purely real
(resonance at mode k) or purely imaginary λk = iωk (non-resonance). In the latter case, the mode population performs
bounded quasiperiodic oscillations, whereas in the former case, it blows up exponentially. The real parts of the Floquet
quasi-frequencies play the role of finite-time Lyapunov exponents for our system. To quantify the global stability of the
system’s dynamics for a given quantum quench, one can compute the sum of all positive Lyapunov exponents, which
gives the Kolmogorov–Sinai entropy rate ΛKS. It is convenient to inspect this quantity on varying the fully polarized
initial configurations, parametrized by spherical angles:

ΛKS(θ0, φ0) =

∑
k:λk>0

Re[λk(θ0, φ0)] . (174)

This quantity detects whether resonances are present for the considered quench, and quantifies the actual (initial)
instability. While the stability analysis described here can be done for arbitrary α, it is only really meaningful for α ≲ d,
as for larger α the density of spin-waves becomes finite in a finite time, and non-linear effects in the full many-body
dynamics cannot be neglected. For 0 < α < d the spin waves effectively reduce to a discrete set of periodically driven
quantum oscillators associated with long-wavelength modes with k ∝ 1/L, cf. the discussion in Section 2.4.

The stability the analysis described above was performed for a long-range quantum Ising chain with 0 < α < 1
in Ref. [58]. For a large set of initial conditions, spin waves are found to be stable (i.e. non-resonant), and consequently,
their population remains bounded in time. While there is no simple rule to predict the existence of resonances, numerical
exploration suggests that quenches near dynamical criticality typically give rise to resonant excitation of long-wavelength
spin waves. In other words, the classical separatrix of the mean-field dynamics for α = 0 typically broadens to a finite layer

22 Note that this further a posteriori justifies the Holstein–Primakoff approach, as the density of spin waves remains small over a long time window.
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Fig. 15. Time-dependent k-resolved spin-wave population for α = 0.7 (right panel) after a quench from h0 = 0 to hf = 2J . The blue color gradient
or the spin-wave populations in Fourier modes follows the quasimomentum |k| from the darkest (k = ±2π/L) down to smaller-wavelength modes
ith larger |k| (only the first 20 modes out of N = 500 are shown). (Right) Density plot of the Kolmogorov–Sinai entropy rate ΛKS(θ0, φ0) for different

nitial conditions (θ0, φ0) on the Bloch sphere for α = 0.7, h = 0.5J . The picture is converged with respect to refining the k-space discretization
(here N = 100).
Source: Plots adapted from Ref. [58].

of instability (chaoticity) for α > 0. In the left panel of Fig. 15 we report the k-resolved spin-wave dynamical population
or α = 0.7, obtained by numerically solving Eq. (167). The occurrence of resonances is systematically illustrated in the
ight panel of Fig. 15, which displays the value of ΛKS(θ0, φ0) as a function of the initial configuration. These results show
hat, at least in this case, only quenches near dynamical criticality give rise to resonant excitation of spin waves.

For quenches that do exhibit resonances at certain non-vanishing momenta, the bound (168) captures the qualitative
ime-dependence of the population of the corresponding modes (the actual rate λk is, however, generally lower). Thus,
the rapidly growing population of excitations is expected to generate non-linear effects in the full many-body dynamics
over comparatively short time scales of order

TEhr ∼ logN . (175)

As anticipated above such resonances involve selected modes with small momenta k ∝ 1/L, as finite-momentum modes
are driven very weakly. While all the other modes remain weakly excited (at least) for much longer times Tsw, the
long-wavelength resonant modes form, together with the collective spin, a full-fledged non-linear dynamical system
for intermediate time scales TEhr ≪ t ≪ Tsw, which will generally feature semiclassical chaotic behavior. As the target
temporal window lies beyond the Ehrenfest time scale, the self-consistent approximation expounded here is not expected
to provide a quantitatively accurate description of dynamics in this regime, and one must resort to numerical simulations
to probe this conjectured chaotic behavior.

A closely related prethermal regime was discussed by Mori in Ref. [296] from the point of view of the quasi-
conservation of permutation (swap) operators. Even though permutational symmetry is dynamically broken for α > 0,
Ref. [296] proves the following bound for long-range interacting quantum Ising chains:⏐⏐⏐⟨P̂ij(t)⟩ − ⟨P̂ij(0)⟩

⏐⏐⏐ ≤ |i − j| cα
J0t

N1−α (176)

where P̂ij is the swap operator between spins at sites i, j of the chain and cα is a N-independent constant. [This result can
be easily generalized to arbitrary long-range interacting quantum systems.] As a result, starting from a permutationally-
invariant state with ⟨P̂ij(0)⟩ = 1 (e.g. fully polarized along a given direction), one deduces that the symmetry under
permuting spins at a finite distance is approximately conserved, i.e. ⟨P̂ij(t)⟩ ∼ 1, up to time scales ∼ N1−α . This time
scale coincides with Tsw defined above upon setting d = 1. The underlying physical reason is that permutation at finite
distances probe finite-wavelength fluctuations, which are consistently frozen over the same time scale. On the other hand,
long-wavelength fluctuations are associated with permutations of spins over distances proportional to the length L of the
spin chain, for which no long-time quasi-conservation can be guaranteed. Indeed, a severe breakdown of permutational
symmetry may occur over a comparatively short time TEhr ∼ logN over such large length scales [cf. the discussion on
resonances above]. For the quench considered in Ref. [296], it can be shown that spin-wave resonances exist [58]. This
observation points to the onset of a chaotic semiclassical regime over a time scale TEhr ∼ lnN , in agreement with the
detection of semiclassical chaotic behavior within the numerical simulations of prethermal dynamics in Ref. [296].

Finally, it is important to remark that for finite systems, the full self-consistent system of Eqs. (163) and (167)
allows us to investigate non-linear effects arising from dynamical changes in the driving frequency triggered by the
quantum backreaction. Long-time numerical computations suggest that the stability diagram based on the resonance
picture outlined above is stable to the inclusion of the quantum backreaction. It is an open problem to characterize
conditions for long-time stability in long-range interacting spin systems — both within and beyond the spin-wave
approximation discussed here. An exciting possibility would be to show Kolmogorov–Arnold–Moser-type stability for this
class of systems, which would provide a kind of interpolation between scenarios in few-body and many-body physics.
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Fig. 16. Dynamical phase transition with finite α in the Ising Hamiltonian (1) with γ = 1. (a–c) Asymptotic value of the order parameter in Eq. (134)
for different values of the post-quench field hf /J for quenches from h0 = − with (a) α = 0.1 (b) α = 1.5 and (c) α = 3. Panels adapted from
ef. [246]. (d–f) Experimental data of the spin-magnetization ⟨Ŝx(t)⟩ dynamics on a trapped ion quantum simulator. Data with L = 16 and α ≃ 0.8
nd transverse field hf /J = Bz/J0 = 0.6, 0., 1.6 in (d,e,d) respectively. Panels adapted from Ref. [24].

Summary: In the strong long-range regime, there exists a long timescale during which the finite wavelength excitations
are suppressed. A stability analysis shows that they are stable for generic quenches, while instabilities for finite α can
appear in the proximity of quenches to dynamical critical points.

4.2.3. Impact of finite-range interactions on dynamical phase transitions
In the last Subsection, we established that for quenches sufficiently far away from dynamical critical points the

ynamical generation of spin-wave excitations is non-resonant. This observation leads to a long time window 0 < t <
Tsw ∼ Nβ/d (at least) where the spin-wave population remains low, and the collective spin evolution remains close to the
unperturbed (mean-field) persistent oscillations. In this scenario, the fate of the α = 0 dynamical phase transitions (DPT,
discussed above in Section 4.1.2) for finite α stands out as a naturally prominent question.

This issue has been largely studied as a function of the interaction range parameter α using various numerical
pproaches [238,243,246,298,299,371]. For the standard long-range quantum Ising chain, a DPT is found in the ther-
odynamic limit for 0 ≤ α < 2, while it is absent for α > 2, in qualitative agreement with the equilibrium phase

diagram. This was shown using matrix-product state dynamical simulations in Ref. [246] [see Fig. 16(a-c)], where the
relation between these DPTs and the singularities in the time-dependence of the Loschmidt echo (DQPTs) has been
elucidated, see also Ref. [238,243]. This transition has been studied via the semiclassical truncated Wigner approximation
in Ref. [298], where it was found that the critical exponents for α ≲ 0.5 are the same as the mean-field DPT. These
DPTs have been experimentally observed with trapped-ion quantum simulators, which realize dynamics described by the
long-range quantum Ising chain [24,277,372,373].

Finite-range perturbations can also have a strong impact of the qualitative aspect of the mean-field dynamical
phase diagram by inducing new exotic dynamical phases. Refs. [56,57] studied the impact of short-range interactions
on top of the fully-connected Ising model, showing the emergence of a chaotic dynamical phase within which the
asymptotic magnetic ordering is characterized by strong sensitivity to the parameters and initial conditions. It is found
that nonequilibrium fluctuations can significantly affect the critical dynamics, resulting in a pseudo-aleatory collective
evolution, reminiscent of a particle moving in a multiple-well potential, with a large initial energy, and subject to friction.
The nonequilibrium phase diagram universally acquires the basic characteristics of a ‘‘coin toss’’ experiment. This result
is confirmed by matrix-product-state numerical simulations away from the perturbative regime [56,57], and a similar
scenario was observed in the Dicke model [374].

Summary: Consistent with the prethermal scenario discussed above, dynamical phases on the two sides of a DPT
persist for 0 < α ≤ 2, as demonstrated by numerical results. Semiclassical chaos appears in correspondence of the
dynamical critical point.

4.2.4. Scrambling dynamics with variable-range interactions
Let us briefly discuss how a finite value of α > 0 impacts the scrambling of quantum information and in particular the

OTOC (145) dynamics, introduced in Section 4.1.4. We recall that the square-commutator has been initially put forward
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ue to its exponential growth, i.e.

C(t) = ⟨|[Â(t), B̂(0)]|
2
⟩ ≃ h̄2

eff e
λt ,

alid before the Ehrenfest or scrambling time t ≪ TEhr ∼ ln h̄−1
eff ∼ lnN for systems with a semiclassical chaotic

limit. This kind of behavior characterizes as well large-N all-to-all disordered interacting models [375–380], despite
the absence of an obvious semiclassical limit, including the SYK which saturates the bound to chaos [307]. However,
such exponential growth — also known as fast scrambling [381] — is challenged by finite-range interactions. The square-
commutator C(t) was proved to grow at most polynomially in locally interacting systems [382] and in long-range
interacting systems with α > d [383]. This led to several proposals suggesting fully-connected interactions as an ingredient
for fast scrambling [384–387].

Finite-range interactions lead to a well-defined spatial structure, which allows investigating the space-dependent
square commutator

C(r, t) = ⟨

⏐⏐⏐[Âx(t), B̂x0 (t)]
⏐⏐⏐2⟩ , (177)

where r = |x − x0| is the distance between the location of the two considered operators. For locally interacting systems
the square commutator C(r, t) becomes appreciable at times t ∼ x/vB [388,389], where vB, referred to as the butterfly
velocity [390], is generally smaller than the Lieb–Robison one vB ≤ vLR [cf. (71)]. By contrast, long-range interactions
are found to induce a non-linear light-cone effect, whereby information can spread super-ballistically. This occurrence
has been studied numerically in quantum spin chains with variable range interactions [297,391–393] and established via
effective hydrodynamics descriptions in disordered models [394–396]. All these studies indicate the absence of ballistic
spreading of C(r, t) for α ≤ d. For quantum spin systems with sufficiently small α, one may use the non-equilibrium spin-
wave theory reviewed in Section 4.2.1 above to study the dynamics of the space-resolved square commutator C(r, t). In
agreement with the onset of semiclassical chaos for near-critical quantum quenches, discussed above in Section 4.2.2, one
may expect a concomitant exponential growth of the square commutator in that regime.

Summary: Strong long-range interactions lead to violations of the ballistic growth of the square-commutator and, in
addition, have been proposed as an ingredient for fast (exponential) scrambling.

4.2.5. Entanglement entropy dynamics: Spin-squeezing vs quasiparticle picture
Long-range interacting systems exhibit a conceptually different dynamics of the entanglement entropy (153a) with

espect to locally interacting systems [113–115,330,331]. On one side, their non-local interactions allow quantum
orrelations between distant degrees of freedom to build up very quickly. As discussed above, this leads to violations
f the Lieb–Robinson bound (71) and nonlinear light-cone spreading of quantum correlations, see Sections 3.1 and 4.2.4.
n the other hand, the bipartite entanglement entropy growth after a quench with the Hamiltonian (1) was found to
xhibit a counterintuitive dramatic slowdown as the range of interactions is increased: It becomes logarithmically slow
or algebraically-decaying couplings with α smaller than the spatial dimensionality d [58,127,129,297], see also Fig. 17.
Such numerical results can be rationalized using the semiclassical techniques introduced above, which leads to a complete
picture of entanglement growth for long-range interacting systems [58]. Reviewing this framework is the goal of the
present Subsection. For completeness, we mention in passing that multipartite entanglement associated with algebraically
decaying interactions has been studied in depth, e.g. in the form of dynamical spin-squeezing [397–402] or via its relation
to dynamical susceptibilities in equilibrium [403].

In the fully-connected limit α = 0, the growth of entanglement is determined by the squeezing of the collective fluc-
tuations stemming from the underlying classical trajectory, see Fig. 5. The general framework illustrated in Section 4.1.5
predicts logarithmic growth in the absence of semiclassical chaos (Table 1), which is generic in fully-connected spin
systems.23

For finite α the behavior of SA(t) can be understood at intermediate times by accounting for spin-wave excitations
with non-vanishing momentum k [cf. Eq. (166)] on top of the entanglement dynamics arising from collective spin
excitations (or spin squeezing), discussed in Section 4.1.5 above. As described in Section 4.2.1, the time-evolving state
of the spin-wave excitations is encoded in the correlations in Eq. (166), i.e. (Gqq

k (t),Gqp
k (t),Gpp

k (t)) defined by Gαβk (t) =

1
2

⟨
α̃k(t)β̃−k(t) + β̃k(t)α̃−k(t)

⟩
for α, β = q, p. Within the linear spin-wave analysis, the state of a subsystem composed of

M = fAN < N spins contained in a region A of the lattice is a Gaussian bosonic state determined by the instantaneous
correlations{

Gαβr,r′ (t) =
⟨
αr(t)βr′ (t) + βr(t)αr′ (t)

⟩ }
r,r′∈A
α,β=q,p

(178)

23 without self-interactions if s > 1/2.
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Fig. 17. Logarithmic growth of the entanglement entropy after a quench with the Ising Hamiltonian (1) with γ = 1, d = 1. (a) Exponential of SA(t)
s a function of dimensionless time, for different transverse fields h = 0.7J, 1J, 1.3J . For each h, the results for L = 30, 40, 50 and α = 0.8, 0.9, 1
re plotted. (b) SA(t) in logarithmic scale for different initial states |ψ0⟩ = |↑↑ . . . ↑⟩ and the ones generated by applying single site Pauli operators.
imulation with L = 50, α = 0.5 and h = J .
ource: Image adapted from Refs. [127,129] for (a), (b) respectively.

ithin A, which can be expressed in terms of G̃αβk (t) via inverse Fourier transform. This set of correlations uniquely
dentifies the reduced density matrix ρ̂A(t). The von Neumann entropy of this Gaussian bosonic state can be computed
ia standard techniques [336], namely

SA =

M∑
i=1

S(νi) , with S(νi) =
νi + 1

2
ln
νi + 1

2
−
νi − 1

2
ln
νi − 1

2
, (179)

here νi are the symplectic eigenvalues of the correlation matrix.
For long-range interactions with 0 < α < d, the growth of SA(t) turns out to be determined by the stability of

he discrete set of long-wavelength excitations, expressed by the Floquet quasi-frequencies λk with |k| ∝ 1/L: see
he dedicated discussion in Section 4.2.2 and Fig. 15. In particular, one can apply the general semiclassical description
ntanglement discussed in Section 4.1.5 and summarized in Table 1. If all the modes are stable (i.e., non-resonant),
hen SA(t) ∼ ln t exhibits a slow growth dominated by the collective spin fluctuations with k = 0 only. This is
ndeed the case for typical quenches away from dynamical criticality, as discussed in Section 4.2.2. This observation
nderlies and rationalizes the previous numerical findings of logarithmic growth of the von Neumann entanglement
ntropy [127,129,297], reported at the beginning of this Subsection. On the other hand, if some mode is unstable
i.e., resonant), then SA(t) ∼ ΛKS t exhibits a fast growth dominated by the instabilities, with ΛKS in Eq. (174). This is
what may happen for quenches in the proximity of dynamical critical points, discussed in Section 4.1.2.

The physical picture for the long-range entanglement dynamics is now clear before the Ehrenfest time:

• The leading contribution comes from the semi-classical squeezing of the collective spin, which grows logarithmically
in the absence of classical chaos;

• In the strong long-range regime, the suppressed long-wavelength spin waves provide a subleading contribution to
the entanglement growth.

The above analysis shows that slow logarithmic growth of the entanglement entropy should be generally expected in
quench dynamics of spin systems with strong long-range interactions starting from a state with large spin polarization.24

One can solve the spin-wave equation of motion in Eqs (167) and compute the resulting time-dependent entanglement
entropy via Eq. (179). The results for a typical quench in the long-range quantum Ising chain in a transverse field [cf.
Eq. (1) with γ = 1, d = 1] are shown in Fig. 18, where the exact numerical SA(t) for finite system size is compared with
fully-connected ‘‘spin-squeezing’’ contribution and with the result obtained with the inclusion of spin waves. This analysis
applies to a wide variety of spin models and quenches, as shown in Appendix E.1 where we study the long-range Ising
Hamiltonian with transverse and longitudinal field for a quench near the critical point.

We remark that the underlying mechanism crucially relies on the discreteness of the set of excitation modes (the long-
wavelength spin waves) which result in a bounded, subleading contribution to entanglement growth. This property is
characteristic of strong long-range interactions (α < d) and generically does not occur for other types of perturbations. If,
for instance, a finite-range perturbation is added on top of a fully-connected model, one can still have stable excitations.
However, the presence of the continuous spectrum of excitations results in light-cone spreading of quantum correlations
and linear growth of entanglement according to a standard quasiparticle picture [112], see e.g. [57] and Appendix E.2 for

24 Subject to the usual caveat of the absence of individual spin self-interactions for s > 1/2.
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Fig. 18. Entanglement dynamics after a quench from the ferromagnetic ground state h0 = 0 with a long-range Ising Hamiltonian (1) with γ = 1
nd hf = 2. Comparison between finite-size MPS-TDVP numerical data (light-to-dark blue curves for increasing N), the spin-squeezing contribution
gray) and full spin-wave entanglement (black), for α = 0.1 (left panel) and 0.7 (right panel), for the quench h0 = 0 → hf = 2J , with N = 500.
ource: Figure adapted from Ref. [58].

n example. In the weak long-range regime d < α < d+2, the growth of entanglement has been related to the nonlinear
ispersion relation of quasiparticles [105].
We finally reiterate that the picture of entanglement dynamics for long-range interacting spin systems reviewed here,

ased on the semiclassical dynamics of quantum spin fluctuations, covers setups not encompassed by other theoretical
ictures such as quasi-particles [112], spacetime membranes [115] or local integrals of motion [404].

Summary: For 0 ≤ α < d, a semi-classical picture predicts that the entanglement growth is dominated by the
collective spin squeezing (logarithmic for generic quenches).

5. Dynamical phases induced by periodic driving

In this Section we will expand our analysis to non-autonomous, coherently driven systems. We will show how the
reviously introduced ideas allow to characterize nonequilibrium phases of spin systems with novel kinds of collective
rder dynamically stabilized by a periodic drive, which would not be possible in equilibrium [405]. Here, long-range
nteractions play the twofold role of protecting long-range order in highly excited states and hindering heating. We explain
ow this basic mechanism also protects spatiotemporal order such as time-crystalline behavior [29,406,407].

.1. Kapitza phases

As realized by Kapitza long ago, a rigid pendulum can be stabilized upside down by periodically driving its suspension
oint with tuned amplitude and frequency. While this dynamical stabilization is feasible in a variety of instances in
ystems with few degrees of freedom, it is natural to search for generalizations to multi-particle systems. In particular, a
undamental question is whether, by periodically driving a single parameter in a many-body system, one can stabilize an
therwise unstable phase of matter against all possible fluctuations of its microscopic degrees of freedom.
Following Ref. [89], we report here on such a stabilization in experimentally realizable quantum many-body systems:

periodic modulation of a transverse magnetic field can make ferromagnetic spin systems with long-range interactions
tably trapped around unstable paramagnetic configurations as well as in other unconventional dynamical phases with
o equilibrium counterparts.
Specifically, we will study the variable-range quantum Ising chain

Ĥα(t) = −

∑
i,j

Ji,j(α) σ̂ x
i σ̂

x
j − h(t)

∑
i

σ̂ z
i (180)

i.e., the Hamiltonian (1) with d = 1, γ = 1, s = 1/2 (all such unnecessary restrictions are just chosen for the sake of
definiteness and connection with trapped-ion experiments). Periodic driving is implemented as a cyclic modulation of the
magnetic field h(t). Starting from the fully-connected limit α → 0 — akin to the classical Kapitza pendulum — we employ
the non-equilibrium spin-wave theory reviewed above in Section 4.2.1 to establish conditions under which dynamical
stabilization extends to the quantum many-body domain.

We conclude by discussing the long (or infinite) lifetime of such quantum many-body Kapitza phases. Elucidating
the nature of quantum many-body dynamics in the strong long-range regime — where no meaningful Lieb–Robinson
bounds can be formulated — these results complement the body of work on Floquet prethermalization in short- and
weak long-range interacting spin systems, for which we refer the readers to the original works, see e.g. Refs. [408–410].
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.1.1. Fully-connected limit α = 0: Non-equilibrium phases by driving
We first consider the nonequilibrium dynamics of fully-connected spin systems subject to an external periodic drive:
e start from the infinite-range quantum Ising Hamiltonian

Ĥα=0(t) = −
J0
N

N∑
i,j=1

σ̂ x
i σ̂

x
j − h(t)

N∑
i=1

σ̂ z
i . (181)

subject to a monochromatic drive in the transverse field,

h(t) = h0 + δh cos(Ωt), (182)

with amplitude δh and frequency Ω .
As discussed Section 4.1.1, in the thermodynamic limit N → ∞ the nonequilibrium dynamics are governed by the

classical limit Hcl(t) of the rescaled Hamiltonian Ĥ/S,

Hcl(t) = −J0
(
Sx)2

− h(t)Sz . (183)

The quench dynamics in presence of a static field h(t) ≡ h0 has been discussed in Section 4.1.2. For 0 ≤ h0 < 2J0 the system
supports the ferromagnetic state indicated by the arrow in Fig. 19(a), S⃗(t) follows one of the trajectories represented
on the Bloch sphere in panel (a), selected by the initial condition S⃗(0). Two families of them are characterized by a
ferromagnetic-like, symmetry-breaking periodic evolution with opposite signs of the nonvanishing time-averaged order
parameter Sx. A trajectory (red) passing through the unstable paramagnetic point (red star) separates these two families
rom the paramagnetic-like orbits with Sx = 0. See Section 4.1.2 for more details.

Turning on the modulation in Eq. (189), representative samples of discrete stroboscopic trajectories {S⃗(tn)}, where
tn = 2πn/Ω , n = 0, 1, 2, . . . , of the collective spin are reported in Fig. 19(b), (c), and (d). For small modulation δh [see
panel (b)], the two ferromagnetic ground states leave room to two periodic trajectories of the collective spin within the
corresponding ferromagnetic sectors, synchronized with the drive — hence, appearing as a single point under stroboscopic
observations. Conversely, initial states in a neighborhood of the unstable paramagnetic point [red star in panel (a)] display
chaotic motion as soon as δh ̸= 0 [411,412]. As δh increases, this chaotic region invades an increasingly large portion of
the sphere [411]. This behavior can be understood on the basis of classical Kolmogorov–Arnold–Moser theory [413,414].
Related phenomena have been experimentally observed with Bose–Einstein condensates [415].

Upon further increasing the modulation [see panel (c)], a region in the parameter space emerges where dynamical
tabilization of the unstable paramagnetic point occurs, thereby opening up a stability region around it. This phenomenon
s analogous to the stabilization of the inverted pendulum discovered by Kapitza [81,416]. In addition to this Kapitza-
ike stabilization, as δh increases with h0 ≈ J0 [see panel (d)], another unconventional regime appears, characterized by
dynamical ferromagnetic ordering in the yz-plane orthogonal to the direction x of the actual ferromagnetic interactions.

The origin of the numerical phenomenology described above may be analytically understood by studying the regime
of fast-driving limit Ω → ∞ as a function of the rescaled amplitude

ζ = δh/Ω . (184)

In this limit one can easily compute the effective static Hamiltonian governing the stroboscopic evolution, usually termed
Floquet Hamiltonian: see Appendix F. When the system is driven rapidly enough at finite driving amplitude, the effective
evolution is just governed by the time-averaged Hamiltonian: In physical terms, the system has no time to react to
variations of external parameters much faster than its characteristic dynamical time scales. However, if the modulation
amplitude δh is simultaneously increased with the frequency, keeping a finite ratio ζ ≡ δh/Ω , the effective dynamics may
become qualitatively different from those governed by the static Hamiltonian. Such qualitative changes involve a partial
resummation of the high-frequency expansion (F.3) of the Floquet Hamiltonian [405], which is in general an intractable
problem.

Analytic solutions in closed form may be obtained in some cases by performing a convenient time-periodic canonical
transformation [405]. In our case, this strategy is implemented by moving to a time-dependent frame in order to effectively
eliminate the oscillating magnetic field:⎛⎝σ̂ x

i
σ̂

y
i
σ̂ z
i

⎞⎠ =

⎛⎝ cos
(
2ζ sin(Ωt)

)
σ̂ ′x
i + sin

(
2ζ sin(Ωt)

)
σ̂

′y
i

− sin
(
2ζ sin(Ωt)

)
σ̂ ′x
i + cos

(
2ζ sin(Ωt)

)
σ̂

′y
i

σ̂ ′z
i

⎞⎠ . (185)

The transformation is chosen in such a way that the inertial term in the transformed generator H̃(t) exactly cancels the
riving term. Thus H̃(t) is given by the static part of the Hamiltonian alone [i.e. h(t) ↦→ h0] with σ̂ x

i σ̂
x
j replaced by

cos2
(
2ζ sin(Ωt)

)
σ̂ ′x
i σ̂

′x
j + sin2(2ζ sin(Ωt)

)
σ̂

′y
i σ̂

′y
j( ) ( )(

′x ′y ′y ′x) (186)

+ cos 2ζ sin(Ωt) sin 2ζ sin(Ωt) σ̂i σ̂j + σ̂i σ̂j .
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Fig. 19. Collective spin dynamics in the infinite-range Ising ferromagnet. (a) Classical phase-space trajectories of the static Hamiltonian with
/J0 = 1.2. (b), (c), (d): Stroboscopic trajectories {S⃗(tn)}, with tn = 2πn/Ω , n = 0, 1, 2, . . . of the collective spin subject to a driving of frequency
/J0 = 5 and amplitudes δh/J0 = 0.01 (b), 3.3 (c), and 5 (d), with h0/J0 = 1.2. Panel (b) shows the presence of a possible ferromagnetic dynamical
rdering, corresponding to the evolution occurring within a single ferromagnetic sector Sx > 0, with a special synchronized trajectory (appearing as
single point under stroboscopic observations), together with the onset of chaotic behavior around the unstable paramagnetic point [411]. Panel (c)
hows the appearance of a dynamically stabilized phase, akin to the well-known stabilization of the inverted driven Kapitza pendulum [81,416]. Panel
d) shows that for larger driving frequencies, an unconventional dynamical ferromagnetic ordering appears, where the direction of the magnetization
s orthogonal to the direction x of the actual ferromagnetic interactions. ‘‘Islands’’ with stable stroboscopic trajectories are indicated by the arrows.
ource: Figure taken from Ref. [89].

Fig. 20. Plot of the anisotropy γ in the effective fast-driving Floquet Hamiltonian Heff , as a function of the rescaled driving amplitude ζ , given by
Eq. (188).

Crucially, the modulation δh enters H̃(t) via the finite combination ζ only, which allows us to perform a standard high-
frequency expansion for large Ω . The effective static Hamiltonian Ĥeff to lowest order is given by time-averaging: Upon
taking the classical limit, this reads

Heff = −J0

(
1 + γ (ζ )

2
(Sx)2 +

1 − γ (ζ )
2

(Sy)2
)

− h0 Sz, (187)

.e., a fully-connected XY -model with a ‘‘Floquet-engineered’’ anisotropy parameter

γ = γ (ζ ) = J0(4ζ ), (188)

here J0 is the standard Bessel function of the first kind.
Eq. (187) shows that the net effect of the driving is to redistribute the ferromagnetic coupling strength along the

irections x and y. The behavior of the effective anisotropy γ as a function of the rescaled driving strength ζ is shown
n Fig. 20. As ζ increases from zero, the effective ferromagnetic interaction along x weakens, which makes it possible
to dynamically stabilize the paramagnetic configuration. The exact boundary h0 = hcr(ζ ) ≡ J0 (1 + |J0(4ζ )|) of the
apitza phase K is reported in Fig. 21. Note that this region is continuously connected with the paramagnetic one P
n the phase diagram, see Fig. 21 — similarly to the region of dynamical stabilization of the classical Kapitza pendulum,
hich is continuously connected with the parameter region with a reversed direction of gravity, in which stability is
rivial [81].

As ζ increases further, intervals with a negative anisotropy γ appear, favoring ferromagnetic ordering along the direc-
ion y. The mechanism is thus elucidated for the occurrence of the unconventional dynamical phases with ferromagnetic
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Fig. 21. Left: Fast-driving nonequilibrium phase diagram of the periodically driven infinite-range Ising model defined by Eqs. (181) and (189),
aken from Ref. [89]. Upon varying the average magnetic field h0 and the rescaled modulation amplitude ζ = δh/Ω , a dynamical paramagnetic
hase P , a dynamically stabilized Kapitza paramagnetic phase K , a conventional dynamical ferromagnetic phase F∥ and an unconventional dynamical
erromagnetic phase F⊥ with orthogonal magnetization emerge. The line ζ = 0 is the equilibrium phase diagram of the model. Within the shaded
egion on the left, a second Kapitza phase coexists with F∥,⊥ . (Note that the dashed line separating K and P does not correspond to an actual
hase transition.) Right: Schematic phase-space portraits of the effective high-frequency Hamiltonians governing the evolution of the collective spin,
ighlighting the various phases.

Fig. 22. Schematic phase-space portraits of the effective Hamiltonian Heff in Eq. (187) on the sphere, with parameters belonging to the shaded region
f the nonequilibrium phase diagram in Fig. 21, corresponding to the coexistence of a dynamically stabilized Kapitza phase and the ferromagnetic
hase F∥ [(a), shaded blue in Fig. 21], or F⊥ [(b), shaded orange in Fig. 21]. We emphasize that the paramagnetic configuration is here associated
ith a maximum of Heff .
ource: Figure taken from Ref. [89].

rdering in the yz-plane, orthogonal to the direction x of the actual ferromagnetic interaction, which builds up whenever
< 0, h0 < J0 (1 − γ ), i.e., within the regions denoted by F⊥ in Fig. 21.
The numerical simulations in Fig. 19 show that these nonequilibrium phases persist at finite driving frequencies,

omparable to the characteristic energy scale J0 of the system. When the driving frequency Ω is large but finite, the
ffective Floquet Hamiltonian (187) receives perturbative corrections in an expansion in inverse powers ofΩ , which cause
mall quantitative modifications of the boundaries in Fig. 21. (For explicit expressions we refer to the original work [89].)
A second Kapitza phase coexists with F∥,⊥ for h0 < J0 (1−|J0(4ζ )|), i.e., within the shaded region in Fig. 21. In this case

he effective Hamiltonian (187) has a maximum at the paramagnetic point in addition to the two ferromagnetic minima
n the xz- or yz-plane, depending on γ being positive or negative, respectively. The corresponding phase-space portraits
re shown in Fig. 22. In particular, in correspondence of the values ζ1, ζ2, . . . such that γ = 0 (related to the zeros of the
essel function J0), the effective Hamiltonian has continuous O(2) symmetry. In this case, stable trajectories exist around
he direction of both the ferromagnetic minima and the paramagnetic configuration, which would be unstable in absence
f the drive.

Summary: Periodic driving the fully-connected model can lead to dynamical stabilization and Kapitza phases. These
can be analytically understood in the fast driving limit in terms of an emergent XY model with Floquet-engineered
anisotropy parameter.

5.1.2. Quantum many-body Kapitza phases for α > 0
The dynamically stabilized collective Kapitza phases discussed in Section 5.1.1 represent a semiclassical realization of

the classical Kapitza pendulum with collectively interacting spins. However, it is a priori unclear whether such a Kapitza
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ynamical stabilization may occur in general quantum many-body systems with finite-range interactions, which give rise
o fluctuations at all length scales: While dynamical stabilization of a collective degree of freedom is possible, the presence
f many fluctuating degrees of freedom may be expected to give room to heating and destabilize orderly structures. The
xistence of dynamically stabilized many-body Kapitza phases was pointed out for a general class of quantum spin systems
ith long-range interactions in Ref. [89]; we will here review this phenomenon.
We turn to discuss the full interacting Hamiltonian (180) with α > 0. As in Section 5.1.1, we shall consider a periodic

odulation of the magnetic field,

h(t) = h0 + δh cos(Ωt). (189)

he goal of this Subsection is to demonstrate that (most of) the dynamically stabilized phases persist at least over a
arametrically large time scale for 0 < α ≤ 2, where the many-body dynamics cannot be reduced to those of a single

collective degree of freedom.25
When α > 0, both the collective spin S⃗ and the spin excitations with non-vanishing momenta non-trivially

participate in non-equilibrium dynamics. The non-equilibrium spin-wave theory introduced in Refs. [56,57] and reviewed
in Section 4.2.1 provides a controlled methodological approach as well as an intuitive physical picture of non-equilibrium
dynamics in terms of the coupled evolution of the collective spin and dynamically generated spin waves. This formalism
can be straightforwardly extended to systems subject to arbitrary driving protocols, by replacing h with h(t) in Eqs. (163).
o make the Section more self-contained we report here the expression of the variable-range Hamiltonian Ĥ(t) (180)
xpanded to quadratic order in the spin-wave operators:

Ĥ(t) = −Nh(t)
(
1 −

n̂0 + n̂sw

N

)
cos θ (t)

−NJ0

[(
1 −

n̂0 + n̂sw

N

)
sin θ (t) cosφ(t)

]2
− 4J0

∑
k

fk(α)
(

cos2 θ (t) cos2 φ(t)
q̃kq̃−k

2
+ sin2 φ(t)

p̃kp̃−k

2

− cos θ (t) cosφ(t) sinφ(t)
q̃kp̃−k + p̃kq̃−k

2

)
, (190)

here we use the same notations as in the rest of the Report.
A many-body Kapitza phase consists of a simultaneous dynamical stabilization of the whole spectrum of quantum

xcitations around an unstable configuration. Intuition on this phenomenon can be obtained at the level of linear stability
y expanding Ĥ(t) to quadratic order in the quantum fluctuations, as in Eq. (190), around the paramagnetic configuration
ith θ = 0:

Ĥ(t) = Ecl(t) + 2
∑
k

[(
h(t) − 2J0fk(α)

) q̃kq̃−k

2
+ h(t)

p̃kp̃−k

2

]
, (191)

where Ecl(t) = −2Nh(t). In the absence of modulation in the ferromagnetic phase [i.e., h(t) = h0 < 2J0], an extended
interval [−k∗, k∗

] around k = 0 in the spin-wave band is associated with unstable modes, as their corresponding frequency
ωk =

√
h0 (h0 − 2J0fk(α)) becomes imaginary for small enough k. However, upon introducing the modulation h(t) as in

Eq. (189) with δh ̸= 0, the effective dispersion relation ωk,eff is modified. For a suitable choice of the driving parameters,
the frequencies ωk may become real for all values of k. The occurrence of this nontrivial stabilization of an otherwise
unstable phase of matter against all possible fluctuations of its degrees of freedom is illustrated in Fig. 23 and it represents
a generalization of the Kapitza pendulum to a genuine many-body system.

In order to understand how all the degrees of freedom can get dynamically and simultaneously stabilized by driving
a single modulated global field h(t), we consider the fast-driving limit Ω → ∞ as a function of the rescaled driving
amplitude ζ , which can be studied analytically also for α ̸= 0. In this regime the stroboscopic evolution of the system at
times tn = 2πn/Ω with n = 0, 1, 2, . . . is governed by an effective static Hamiltonian Ĥeff obtained via a high-frequency
expansion (see Appendix F). The computation of Ĥeff, discussed in Section 5.1.1 for the infinite-range limit, is actually
independent of the particular of the interaction range. Consequently, it can be implemented following exactly the same
steps, leading to an effective long-range XY spin chain:

Ĥeff = −

N∑
i̸=j

J
||i − j||α

[
1 + γ (ζ )

2
σ̂ x
i σ̂

x
j +

1 − γ (ζ )
2

σ̂
y
i σ̂

y
j

]
− h0

N∑
i

σ̂ z
i , (192)

here the anisotropy parameter γ (ζ ) = J0(4ζ ) is the same as in Eq. (187) and is plotted in Fig. 20. Eq. (192) allows
s to discuss the modification of the nonequilibrium phase diagram in Fig. 21 for α > 0 and large Ω/J0 → ∞. The

25 These phases are actually more stable in higher-dimensional [2,11] and/or higher-spin [417] systems (without spin self-interactions), where
fluctuations are less effective.
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Fig. 23. Stabilization of many-body Kapitza phases. In the presence of suitable periodic driving, the otherwise unstable spectrum of quantum
excitations around the paramagnetic configuration gets simultaneously dynamically stabilized for all values of k. Here α = 1.5, N = 400, and
h0/J0 = 1.35. In absence of driving δh = 0 the system is in the ferromagnetic phase. The red points represent the (squared) frequency spectrum
ω2

k = h0 (h0 − 2J0fk(α)) of the spin-wave excitations, labeled by their wavevector k. An extended interval of long-wavelength modes are unstable
(i.e., ω2

k < 0 for k near 0). As the driving is turned on with a strength δh in a suitable range of values, not only the collective spin mode with
k = 0 discussed in Section 5.1.1, but also the whole set of modes with k ̸= 0 become stable (i.e., ω2

k > 0 for all k). The blue points show the exact
effective dispersion relation ω2

k = (h0 − J0fk(α))2 in the presence of a high-frequency driving Ω → ∞ with ζ = δh/Ω = 0.6014 (corresponding to
γ = 0 in the effective Hamiltonian, see the text). When J0 ≪ Ω < ∞, this effective dispersion relation receives perturbative corrections in inverse
powers of Ω , and no qualitative changes occur during the prethermal stage (see Section 5.1.3 and references therein).
Source: Figure taken from Ref. [89].

driven dynamics at stroboscopic times is equivalent to the quench dynamics governed by the effective static Hamiltonian
Ĥeff. As we reviewed in Section 4.2.2 above concerning dynamical phase transitions, dynamical ordered phases arising
from quench dynamics exist as long as the (post-quench) Hamiltonian supports long-range order at finite energy density
above the ground state. In the present case, such dynamical ordering can be interpreted as dynamically stabilized non-
equilibrium ordering and is dictated by the phase structure of Ĥeff: Initializing the system in a state with a well-defined
average polarization close enough to that characterizing an equilibrium state of Ĥeff, its dynamical (stroboscopic) order
parameter will be stable in the course of time-evolution. As we reviewed in Section 2, for one-dimensional systems
ordering at finite energy density requires α ≤ 2 [69,75,418]. The character of the dynamical magnetic ordering of the
system depends upon the driving amplitude ζ : When the effective anisotropy parameter γ (ζ ) is small or large enough
and negative, there appear dynamically stabilized unconventional ferromagnetic phases with paramagnetic character or
with magnetization in the yz-plane orthogonal to the direction of actual ferromagnetic interactions, respectively. The
latter phase in particular has no equilibrium counterpart in the Ising model.

Upon increasing α up to the value 2, quantum fluctuations modify the phase boundaries in the nonequilibrium phase
diagram in Fig. 21 as shown by the white arrows in Fig. 24. The shift of the phase boundary can be quantitatively computed
using (equilibrium) spin-wave theory, which is exact for α ≲ 1 and approximate for 1 < α ≤ 2, see Eq. (63).

Quantum fluctuations have a further, dramatic effect of the nonequilibrium phase diagram. In fact, the second Kapitza
phase which coexists with the ferromagnetic phases at mean-field level, indicated by the shaded region in Fig. 21, turns
out to be unstable to many-body fluctuations at finite wavelength. Although the driving can stabilize the collective spin,
there appears an extended interval of unstable spin modes in the Brillouin zone with finite wavelength k ̸= 0, which are
expected to prevent dynamical stabilization. In fact, within a linear stability analysis, the effective spectrum of excitations
is given by

ω2
k =

[
h0 − (1 − γ (ζ )) J0fk(α)

][
h0 − (1 + γ (ζ )) J0fk(α)

]
, (193)

as obtained by expanding Eq. (192) in spin-wave operators around the paramagnetic configuration θ = 0. The effective
dispersion relation features a finite interval in the Brillouin zone characterized by with imaginary frequencies within the
range of parameter values h0 < J0

[
1 − |γ (ζ )|

]
under consideration, see Fig. 25. The amplitude of this interval shrinks

to zero when the anisotropy γ = J0(4ζ ) approaches 0, i.e., when the driving strength ζ equals one of the zeros ζn
with n = 1, 2, . . . of the Bessel function. Away from this discrete set of values, the Kapitza phase coexisting with the
ferromagnetic phases turns out to be destabilized by these finite-wavelength fluctuations, at least at the level of linear
stability, in spite of the stabilization of the collective k = 0 mode.

We remark that when ζ is tuned to an isotropic point ζn, the many-body Kapitza phase discussed above becomes
stable in the high-frequency limitΩ → ∞. The reason behind such stability may be easily traced back to the stroboscopic
conservation of the collective spin projection Sz along the field direction, due to the emergent O(2) rotational symmetry.
Indeed, if the system is initialized in a fully polarized state with a small displacement θ0 away from the z-axis, the
collective spin has to remain trapped in a neighborhood of the fully polarized configuration θ = 0, because Sz(tn) ≈

1 − θ2/2 cannot decrease.
0
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Fig. 24. Fast-driving nonequilibrium phase diagram of the periodically driven long-range Ising chain defined by Eq. (180) and (189), for α > 0.
ompared to Fig. 21, the shaded region of coexistence of phase K with F∥,⊥ has disappeared, and the left boundary of region K moves leftwards
pon increasing α, as indicated by the white arrows. This displacement is vanishingly small in the thermodynamic limit for 0 < α ≤ 1, and finite
or α > 1. The amount indicated by the arrows corresponds to α = 1.5 (it is magnified by a factor 2 for ease of visualization).
ource: Figure taken from Ref. [89].

Fig. 25. Effective spectrum of the quantum spin-wave excitations around the unstable paramagnetic configuration for α = 1.5, h0/J0 = 0.35, in
he presence of a high-frequency drive with δh/Ω = 0 (red), 0.4023 (blue) and 0.6014 (green), corresponding to effective anisotropy parameters

= 1, 0.45, and 0, respectively, in the effective Hamiltonian Ĥeff in Eq. (192). The blue and green points correspond to parameters within the
haded region in Fig. 21, in which coexistence of Kapitza and ferromagnetic phases occurs in the infinite-range model. Although the collective k = 0
ode is dynamically stabilized, for α > 0 an extended interval in the Brillouin zone appears with modes characterized by imaginary frequencies
2
k < 0, as shown, e.g., by the blue points. As shown by the green points, this instability disappears only at isolated points ζ1, ζ2, . . . for which
= 0 [corresponding to the zeros of the Bessel function, see after Eq. (187)], i.e., characterized by an emergent O(2) rotational symmetry.

ource: Figure taken from Ref. [89].

Let us finally briefly comment on what happens for α > 2. For α = ∞ the long-range quantum Ising chain (180)
educes to the standard quantum Ising chain with nearest-neighbor interactions (which has been studied in Refs. [419–
21]). In this case, the effective high-frequency Hamiltonian (192) describes the XY quantum spin chain, which is exactly
olvable in terms of free fermions [99]. From the exact solution, we see that the quantum critical point hcr = J0 is
ndependent of γ , and thus of the driving strength ζ . Accordingly, it is natural to conjecture that the left boundary of
he Kapitza phase moves leftwards as α exceeds 1, as shown in Fig. 24, and eventually approaches the straight vertical
ine h (ζ ) = J when α → ∞. However, ferromagnetic ordering in not stable at finite energy density for α > 2. In the
cr 0

57



N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92

c
n
a
(
g
w
w
a
r
a
v
S

n
I
i

r

a

Fig. 26. Persistence of the dynamically stabilized phases at finite driving frequency. Left in each panel: Stroboscopic time-evolution S⃗(tn) of the
ollective spin of the long-range Ising chains in Eq. (180) with α ̸= 0, subject to the modulated magnetic field in Eq. (189). S⃗(tn) is obtained by
onequilibrium spin-wave theory and, for simplicity of visualization, is projected onto the unit sphere. In all simulations, the static field is h0/J0 = 1.2,
s in Fig. 19, the driving frequency is Ω/J0 = 8, and we used N = 100. The system is initialized in fully polarized states in the xz [panels (a),
b), (c)] and yz [panel (d)] planes. Right in each panel: relative departure ϵ(t) of the total spin from its maximal length N/2, due to the dynamical
eneration of quantum spin-wave excitations, corresponding to the largest trajectory in each panel. In particular: (a) Dynamical ferromagnetic phase,
ith α = 1 and δh/J0 = 0.05. (b) Fast heating in the chaotic dynamical regime, with α = 0.8, δh/J0 = 0.2. (c) Dynamically stabilized Kapitza phase,
ith α = 1, δh/J0 = 5.33. (d) Dynamically stabilized ferromagnetic phase with magnetization in the yz-plane orthogonal to the direction x of the
ctual ferromagnetic interactions, with α = 1, δh/J0 = 8. Panels (a), (c), and (d) demonstrate that the dynamical phases F∥ , K , F⊥ (see Fig. 21),
espectively, continue to exist at finite driving frequency. The amount of excitations generated remains small and the total energy remains bounded
cross many cycles, qualifying these phases as prethermal. In panel (b), instead, heating is witnessed by the growth of ϵ(t) (notice the different
ertical scale in the plot). The heating rate in this case increases upon increasing α.
ource: Figure taken from Ref. [89].

onequilibrium dynamics starting from a polarized state, domain-wall excitations melt the original magnetic ordering.
n this case the equilibrium (ground-state) phase diagram [420,421] of the effective Hamiltonian does not allow an
nterpretation in terms of dynamically stabilized many-body Kapitza phases.

Summary: Kapitza phases can survive many-body long-range interactions with 0 ≤ α < 2.

5.1.3. Prethermalization and heating
We address the footprint of the fast-driving nonequilibrium phase diagram on the finite-frequency dynamics upon

educing Ω down to a scale comparable with the single-particle energy scale J̃0 of the system. In this case, one should
expect the system to eventually absorb an ever-increasing amount of energy from the drive [422]. In order to address
this point, we initialize the system in various fully polarized states parametrized by angles (θ0, φ0) on the Bloch sphere,
nd study the driven evolution for various values of α > 0 and driving parameters h0, δh,Ω by numerically integrating

the non-equilibrium spin-wave theory evolution equations. In this formalism, heating can be monitored by studying the
energy variation rate ⟨Ḣ⟩, or simply through the depletion ϵ(t) of the collective spin polarization from its maximal value,
cf. Eq. (164): In fact, heating to infinite temperature must be accompanied by deterioration of magnetic ordering, since
entropy is maximized by states with low total spin, i.e. large ϵ.

Results are reported in Fig. 26. Whenever the system is initialized in a stable or dynamically stabilized regime P/K
or F∥,⊥, and the frequency Ω is off-resonant with the spin-wave band, i.e., Ω ≫ 4J0, as shown in Fig. 26(a),(c),(d) the
evolution presents a long time interval during which the absorption of energy from the drive, as well as the amount of
spin-wave excitations, is bounded. In this regime, heating is suppressed, consistent with a Floquet pre-thermal scenario.
On the other hand, whenever the system is initialized in a chaotic dynamical regime as in Fig. 26(b), irrespective of the
value of Ω and of α > 0, the density ϵ(t) of dynamically generated spin-wave excitations, as well as the energy ⟨Ĥ(t)⟩,
increase at a finite rate. These observables witness heating, which is expected to be the generic response of a many-body
system to external periodic drive in the absence of dissipative mechanisms [423]. In the dynamical regimes F∥,⊥ of panels
(a) and (d), the synchronized trajectories of the collective spin S⃗(t) act as an ‘‘internal’’ periodic driving at frequency Ω on
the quantum oscillators (q̃k, p̃k)’s through the last interaction terms in the spin-wave Hamiltonian (190). As long as Ω is
off-resonant (see above), the spin waves behave as a periodically driven system of non-interacting bosons, which relaxes

to a periodic quasi-stationary state described by a stroboscopic generalized Gibbs ensemble [419,424]. As we discussed
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t length in the context of quench dynamics, for 0 < α < d the quantum backreaction on the collective spin dynamics is
uppressed with system size. The prethermal stage is thus characterized by long-lived oscillations, the duration of which
iverges in the thermodynamic limit. For α ≳ d, on the other hand, the description of prethermal dynamics is more
omplicated due to nonlinear interactions between the collective spin and the bosonic ‘‘bath’’; however, relaxation to a
uasi-stationary state is typically very slow or absent. The neglected nonlinear spin-wave interactions are finally expected
o ultimately lead to the decay of this prethermal quasi-stationary state [109,255,425–428]. The fastest heating processes
re associated with the absorption of a quantum of energy ∼ Ω from the drive through a high-order resonant transition
nvolving Ω/J0 elementary local transitions. According to by now standard theoretical arguments [408–410,429], the
ssociated heating time scale is expected to scale exponentially as τ ∼ exp( const ×Ω/J0).
In conclusion, we note that several numerical studies of quench dynamics in long-range interacting chains with 2 <

≪ ∞ suggested that magnetic ordering survives for surprisingly long times in the prethermal regime [62,238,249,430].
his occurrence has been recently analytically understood in terms of a suppressed rate of formation of unbound domain
alls [104]. Furthermore, the expected functional form of the lifetime of such dynamical long-range ordering as a function
f the driving protocol and of α has been determined, predicting the possibility of having extremely long-lived order even
t finite driving frequency [104]. When conditions for this phenomenon are met, signatures of dynamically stabilized
rdered phases are expected to emerge even for α > 2.

Summary: Due to the suppression of spin-wave populations in ordered phases, strong long-range interactions prevent
heating and rather lead to prethermal regimes. In periodically driven systems, the occurrence of heating for α > 0
depends on the nature of phase-space trajectories in the classical limit α = 0: For regular dynamics, the system
exhibits a Floquet-prethermal regime with suppressed heating, whereas, for chaotic trajectories, the system displays
heating with fast absorption of energy.

5.2. Discrete time crystals

The concept of spontaneous breaking of (continuous) time-translational invariance in quantum many body systems
as been brought to widespread attention in Ref. [431]. Soon after, these non-equilibrium phases were proven impossible
t equilibrium [432,433]. Yet, discrete time translational invariance, realized in periodically driven systems, can be

spontaneously broken [434–436]. Thus, the term ‘‘discrete time crystals’’ (DTC) refers to systems where the discrete
time-translation symmetry, encoded in the periodically driven Hamiltonian Ĥ(t) = Ĥ(t + T ), is spontaneously broken.
xpectation values of relevant observables exhibit oscillations with a period that is an integer multiple of T . Several
xperimental observation of DTC have been discussed in the last decade [29–31,218]. For a general overview of these
esearch efforts, we refer the readers to recent reviews [437–439].

Following Ref. [406] we say that a DTC phase exists if, for a class of states |Ψ ⟩ with short-ranged connected
orrelations [435], there always exists an observable Ô such that the time-evolved expectation value in the thermodynamic
imit N → ∞, satisfies the following conditions:

1. Time-translation symmetry breaking: ⟨Ô(t+T )⟩ ̸= ⟨Ô(t)⟩, even though Ĥ(t) = Ĥ(t+T ), so that long-range correlated
Floquet eigenstates of the propagator ÛF = Û(t + T , t) exist [435].

2. Rigidity: the periodic oscillations of ⟨Ô(t)⟩, with a period τ , shall persist in a whole finite and connected region of
the Hamiltonian parameter space.

3. Persistence: the periodic oscillations of ⟨Ô(t)⟩ become stable at long time in the thermodynamic limit N → ∞.

hese conditions cannot be fulfilled by a local many-body quantum system due to the presence of external driving, which
ould lead to relaxation towards an infinite-temperature state, thereby preventing long-lived oscillations. To protect
rdering against relaxation, a mechanism is required to control the impact of dynamically generated excitations.
Pre-thermal stability can be achieved through long-range interactions, which are known to generate metastable states

ith lifetimes that grow as the system approaches the thermodynamic limit, see Sections 3.2 and 4.2.1. Then, it is natural
hat the investigation of DTCs in clean systems has been primarily focused on long-range interacting models where the
obustness of collective oscillations in presence of periodic drive is guaranteed. Accordingly, stable DTC phases can only
e found for α < d [301,406,440,441], while for α > d, the lifetime of oscillations is expected to be finite in the N → ∞

imit [104,410,442]. The α = 0 Ising model is a privileged playground for time-translational symmetry breaking, since it
eatures a kaleidoscope of different DTCs. Indeed, the presence of p-order DTC phases (with a period of pT , where p is
n integer) which were first witnessed in specifically designed Zp-connected states [406,440] has recently been detected
s well in the standard Z2 symmetric Ising model [301,443], where p can be fractional and signatures of this behavior
ersist for finite α and in the classical limit [444–446].

.2.1. Mean-field DTC
In the mean-field limit α = 0 it is possible to obtain an analytic solution for the periodic dynamics and establish the

implest instance of DTC [406]. We consider a step-wise drive of the magnetic field in Eq. (181) of the form

h(t) = ψ

∞∑
δ(t − nT ) , (194)
n=1
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f amplitude ψ , and we focus on the evolution of the order parameter ma(t) =
1
N

∑
j⟨σ̂

a
j ⟩ (where a = x, y, z), i.e. the

components of the magnetization of the system.
First, we observe that the Floquet operator (see Appendix F) can be expressed as the product of two distinct operators:

ÛF = e−2iψ Ŝz eiJ0T Ŝ
2
x /N , (195)

where we used the global spin operators notation defined in Eq. (4). The term exp(−2iψ Ŝz) in Eq. (195), which acts
as a rotation around the z-axis, represents the effect of the kick term on the observable m⃗. The other term describes
the evolution of m⃗ induced by the second term on the right-hand side of Eq. (195) over one period T . The Heisenberg
equations of motion corresponding to this evolution for the operators Ŝa are:

d
dt

Ŝx = 0 , (196)

d
dt

Ŝy =
J0
N

(
ŜxŜz + Ŝz Ŝx

)
, (197)

d
dt

Ŝz = −
J0
N

(
ŜxŜy + ŜyŜx

)
. (198)

s usual, due to the mean field nature of the problem we can neglect the spin–spin correlations in the thermodynamic
imit [447]. Taking averages on both sides of Eq. (196) and using the decoupling relations ⟨ŜaŜb⟩ ≃ ⟨Ŝa⟩⟨Ŝb⟩ one obtains
he closed set of equations for the magnetization:

ṁx = 0 , ṁy = J0mxmz , ṁz = −J0mxmy. (199)

s a consequence, after a time interval T , m⃗ undergoes a clockwise rotation around the x-axis by an angle of J0Tmx(t). The
2 symmetry of the model is encoded in the dynamical symmetry ψ → ψ + π/2 and m⃗n → Rz(πn) · m⃗n in Eq. (199).
ntegrating out the equation of motions in Eq. (195), the evolution of the observable m⃗ is given by

m⃗n+1 = f (m⃗n) ≡ Rz(2ψ) · Rx(−J0Tmx,n) · m⃗n, (200)

Due to the periodic nature of the drive, the map in Eq. (200) displays an Hamiltonian structure and its action preserves
he area of the region on the sphere |m⃗|

2
= 1 span by the dynamics. Accordingly, one can employ polar coordinates along

he z-axis, m⃗ = (sin θ cosφ, cos θ cosφ, cos θ ) in order to express an area element as dS = d cos θdφ. Then, the coordinates
and I = cos θ serve as natural canonical conjugate variables for our system. Following the discussion in Ref. [447] the

ction I can be regarded as the z-component of the angular momentum and φ as the rotation angle around the same axis.
Them, in the small period limit T → 0 the map can be rewritten as

In+1 = In , (201)

φn+1 = φn + 2ψ , (202)

ith initial conditions I0 = 0 and φ0 = π/2. This corresponds to the Poincaré map obtained by taking stroboscopic
ection of the integrable dynamics. In other terms the motion of the order parameter m⃗n at vanishing drive periods
s quasi-periodic with a period π/ψ . Slightly increasing the strength of the kicking period T the map in Eq. (201) is
erturbed and the fate of the system follows the Kolmogorov–Arnold–Moser theorem [448–450]. The theorem states that
mall perturbations in the form of Eq. (194) only slightly deform the torus I = const at least as long as the drive frequency
s not resonant. Thus, the motion remains quasi-periodic for drive strength ψ far enough from a rational multiple of π .
owever, as soon as a resonance is approached and ψ ≈ ψr ≡ rπ with r = q/p and p and q are coprime integers, pairs
f elliptic and unstable fixed points emerge in the dynamics due to the Poincare–Birkhoff theorem [451].
Then, distinct regions in the phase space (I, φ) can be distinguished depending on the action of the p-iterated map

p(m⃗), which also correspond to different m⃗n evolutions. Quasi-periodic behavior persists for initial conditions (I0, φ0) far
nough from the fixed points, where a rotation dynamics occurs with φ periodically spanning the interval [0, 2π ]. On
he other hand, as the initial conditions (I0, φ0) approach the fixed points, a libration dynamics arises and φ continuously
scillates around a finite value. As a result, successive map iterations do not substantial alter the magnetization value

⃗ n+p ≈ m⃗n and a DTC phase appears. Finally, the boundary between the DTC and the quasi-periodic regimes are occupied
y chaotic regions, which grow and eventually take over the regular ones at large T .

Summary: The classical limit of the fully-connected model displays periodic motion in the T → 0 limit. Close
to resonances, quasi-periodicity is broken but the Poincare–Birkhoff theorem leads to time-crystalline behavior,
characterized by time-translational symmetry breaking of the magnetization, stable to small perturbations in the kicking
strength.
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Fig. 27. Eigenstate structure. The eigenstate structure radically changes between the three different phases of the system: while no recognizable
attern is present in the chaotic phase, panel (b), in the quasi-periodic phase the eigenstate is localized in a connected region of the (I, φ) space
panel (b), curves (a) and (c)), while in the p = 4 DTC phase it appears localized around four, Z4 symmetric, points (panel (a): curve (b)).
ource: Image adapted from Ref. [453].

.2.2. Finite-size and finite-range effects
The discussion above has been based on the semiclassical analysis which becomes exact in the thermodynamic limit.

et, it is interesting to perform some numerical simulations at finite N to validate the large-N picture. At each finite
ize the modulus of the total spin Ŝ of the system is conserved restricting the dynamics to the subspace of constant
ˆ2 = S(S + 1), with S = N/2. Then, it is relatively straightforward to perform exact diagonalization up to large sizes
N = 800) [205,406]. To visualize the eigenstates in this subspace, we introduce the spin coherent states [452]

|Ω(θ, φ)⟩ = e−in⃗·⃗̂S
|⇑⟩, (203)

here |⇑⟩ is the eigenstate corresponding to the maximum projection of the spin along the z direction and n⃗ =

sin θ cosφ, sin θ sinφ, cos θ ). The overlap between different coherent states remains finite at finite N and reads

⟨Ω(θ, φ)|Ω(θ +∆θ, φ +∆φ)⟩ =

(
sin

∆θ

2
e−i∆φ

)2S

, (204)

hich vanishes in the N → ∞ limit due to the exponent S. However, for any finite N the states in Eq. (203) form
n overcomplete basis for the Hilbert space. Then, one can characterize the dynamics by estimating the projection
⟨Ω(θ, φ)|ηm⟩|

2 for various different Floquet eigenstates |ηm⟩.
The overlap |⟨Ω(θ, φ)|ηm⟩|

2 for different values of m are shown in Fig. 27. The Floquet eigenstates in the p = 4 DTC
phase appear clearly localized around four Z4 symmetric points, see Fig. 27(a), while this is no longer the case in the
quasi-periodic phase, see Fig. 27(b). This behavior can be explained semi-classically: close to a resonance, the Floquet
evolution can be interpreted as a hopping between p adjacent wells in the classical phase space [443], so that the Floquet
eigenstates have the form of tight-binding Bloch wavefunctions. A similar behavior for the p = 2 case (around ψ = π/2)
has been observed in Ref. [406]. Let us notice that, given the initial condition chosen in the present study, in the N → ∞

limit, the only eigenstate which contributes to the dynamics, will be the one with a non-zero overlap with the point
θ = 0, φ = 0, which in turn can correspond to each of the three phases.

The current picture is not substantially altered by the inclusion of quantum fluctuations due to a finite value of α or
by additional local couplings. Indeed, the structure of the low-T DTC regions with p = 2 is generally resilient to quantum
luctuations. On the other hand, sufficiently high values of α enhance the chaotic phase, leading to the disruption of the
DTC phases with p > 2 for large enough values of the drive period T , see Ref. [453] and Fig. 28(b).

Summary: The exact eigenstates for finite system size reflect the time crystalline behavior of the mean-field result.
Their phase-space representation shows localization around symmetric points in the time-crystal phase, while they are
delocalized in the chaotic one.

5.2.3. Order parameter
The dynamical phase diagram of different high-order DTC phases exhibits intricate self-similar and fractal structures,

here the regular phases are intertwined with the chaotic and quasi-periodic regions. The characterization of the entire
ynamical phase diagram has long remained a difficult challenge. But the introduction of a novel order parameter enabled
comprehensive characterization of DTC phases, irrespective of their order [453].
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Fig. 28. Phase diagram. Panel (a): Color plot of the order parameter ζ as a function of the amplitude ψ and the period T of the drive, saturated at
he value ζ =

√
2/3, with nmax = 300 and δψ = 1.6 · 10−3 . Panel (b): same as (a) but for α = 0.5.

Source: Image adapted from Ref. [453].

The key to introduce a useful order parameter is to consider different values of the amplitude, ψ , ψ + δψ , which
amounts to consider two nearby initial conditions in the phase space. Then, we introduce the definition

ζ 2 =
1

nmax

nmax∑
n=0

(
mx,n(ψ + δψ) − mx,n(ψ)

)2
. (205)

Both in the DTC phase and in the quasi-periodic one the evolution is not chaotic, so that the two nearby trajectories
mx,n(ψ + δψ) and mx,n(ψ) diverge polynomially in time. Expanding the latter equation for small deviations δψ yields

ζ 2 =
1

nmax

nmax∑
n=0

(
mx,n(ψ + δψ) − mx,n(ψ)

)2
∼

ℓ

nmax

nmax∑
n=0

δψ2n2
∼ ℓ(δψnmax)2 , (206)

here ℓ depends on the average distance between two randomly chosen points of the two nearby trajectories
The value of nmax has to be large enough so that the rightmost term in Eq. (206) remains O(1), i.e. nmax → ∞ as

ψ → 0. However, the value of ℓ jumps discontinuously between the libration regime (corresponding to a DTC phase)
nd the rotation one (corresponding to a quasi-periodic phase). Indeed, close to the fixed point of the iterated map the
icro-motion becomes negligible and ζ → 0, signaling the emergence of the pure time-crystalline regime. The value ζ

n the two phases is not universal and depends on the value of (nmaxδψ) ∼ O(1). The jump in the value of ℓ results in
discontinuity in ζ , which may be observed in the numerical distribution of ζ . Indeed, the order parameter in the DTC

s sharply peaked around ζ = 0, but becomes negligible for ζ ≳ 0.2. The quasi-periodic phase is signaled by a peak at
∼ 0.36, which appears disconnected from the DTC peak at ζ = 0. The exponential divergence of trajectories in the

haotic phase leads to the memory loss of initial conditions on a time-scale nmax ∼ − log(δψ), making the values mx,n(ψ)
nd mx,n(ψ + δψ) to become two equally distributed random variables with zero mean. Then, due to the central limit
heorem, ζ 2 is distributed as a Gaussian in the chaotic phase

⟨ζ 2⟩ = 2⟨m2
x⟩ (207)

nd variance O(n−1
max). For an isotropic system one can easily derive the peak value for the distribution, since |m⃗|

2
= 1 one

as

⟨m2
x⟩ =

1
3
⟨|m⃗|

2
⟩ =

1
3
, (208)

o that ⟨ζ 2⟩ = 2/3.
Thus, the order parameter ζ can be used to detect higher-order DTC phases in clean long-range systems, by exploiting

he connection between DTC and Poincaré–Birkhoff theorem [451,454], which rigorously holds in the mean-field α = 0
imit. Indeed, the phase diagram obtained by the numerical characterization of the order parameter, see Fig. 28 reproduces
nd expand the known properties of the DTC phases in the α = 0 limit. [406,444]
The symmetry of the phase diagram around the ψ = π/4 axis arises from the dynamical Z2 symmetry, which is

a notable feature that would have remained undetectable with a p-dependent order parameter. At low values of T , the
quasi-periodic phase dominates (pink area ζ ≈ 0.4), while small islands of the DTC phases emerge around specific values
of ψ , corresponding to rational multiples of π (black areas ζ ≈ 0). Initially, the size of these islands increases with
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ncreasing T , and as they approach each other, chaos begins to emerge along their boundaries (yellow area, ζ ≈
√
2/3.

Ultimately, all islands associated with DTC of order p > 2 are engulfed by the chaotic phase, with the largest (central) one
corresponding to p = 4 surviving the longest. Interestingly, at certain values of the driving period, we observe a revival of
the higher-order DTC phases, particularly pronounced for p = 4 (small, arrow shaped, black area at high T for ψ ≈ π/4
in Fig. 28(a)).

The boundary between the chaotic and DTC phases is not smooth; instead, it exhibits self-similar patterns that repeat at
increasingly smaller scales. The emergence of this fractal scaling in the boundaries of time-crystalline phases draws a direct
analogy with similar phenomena observed in traditional critical systems, particularly percolation, self-avoiding random
walks, and the Potts model [455,456], where a rigorous connection between conformal invariance and stochastic evolution
has been established [457,458]. As previously noted in Ref. [441], the formation of DTC islands can be comprehended
within the framework of area-preserving maps [459], specifically linked to the existence of Arnold tongues [303,460].

We conclude this Subsection with the remark that, similarly to the Kapitza phases discussed in Section 5.1, one can
straightforwardly extend the analysis to the variable-range model with α > 0 using the non-equilibrium spin-wave theory
of Refs. [56,57,89] reviewed above in Section 4.2.1, see e.g. Fig. 28(b). For details, we refer the reader to Refs. [444,453].

Summary: Higher-order time-crystals can be detected via an order parameter which accounts for the distance between
nearby trajectories. The resulting phase-space displays a fractal pattern.

6. Conclusions and perspectives

Let us first summarize the salient features that we discussed in this Report; hence, we will mention aspects which
ave not been covered here; finally, we will point out pending problems that it would be interesting to explore.
What we discussed. In this Report, we provided a comprehensive pedagogical overview of non-equilibrium phenom-

na arising in the dynamics of non-random long-range interacting systems. For the sake of definiteness and connection
ith the theoretical and experimental literature, we took the XY quantum spin model with power-law decaying

nteractions with exponent α. Our primary focus was on the strong long-range interactions regime 0 < α ≲ d, intermediate
etween the mean-field limit α = 0 and the quasilocal regime α ≫ d. It is in this regime that the most surprising and
nusual features of out-of-equilibrium dynamics appear. Our discussion was divided into three primary setups: Dynamics
t low energies; Quantum quenches far away from equilibrium; Periodic driving.
Section 2 — Equilibrium: we started by providing a concise but rather exhaustive summary of equilibrium properties

xhibited by variable-range ferromagnetic spin Hamiltonians. This encompassed a discussion on the equilibrium phase
iagram, the mean-field solution, the expansion in quantum fluctuations, and unusual spectral properties such as
iscreteness and divergent propagation velocity.
Section 3 — Low-energy dynamics: we delved into near-equilibrium dynamics in a variety of setups. Here, the discrete

spectrum of the strong long-range regime induces unusual equilibration dynamics, universal defect formation, and the
emergence of non-analytic behavior in the fidelity.

Section 4 — Quantum quench dynamics: we introduced a formalism to treat the coupled dynamics of semiclassical
collective observables and the dynamics of quantum fluctuations. This allowed us to describe dynamical criticality,
quantum information scrambling, and to formulate a squeezing-induced picture for the growth of entanglement.

Section 5 — Periodic driving: Finally, we described how strong long-range interactions prevent periodic driving
from heating the system or inducing thermalization. Instead, they allow dynamical stabilization of novel phases and
time-crystalline behavior.

What we did not discuss. The present memoir covers only a small portion of the varied and lively field of quantum
dynamics with long-range interactions. Let us mention (in a non-exhaustive manner) some complementary studies which
have not been discussed here.

A large bulk of literature addresses mathematically and via quantum-information approaches the impact of long-
range interactions onto the spreading of correlations [38,41,42,122–124,126,129,130,141,461–468]. Interestingly, several
of these results pointed out how long-range interactions may not enhance correlation spreading, but remain ‘‘shielded’’
in dynamical evolution [60,138,142,391,469–471], as partly discussed in Section 3.1.

While our Report concerns spin systems, a lot of work aims at understanding the dynamics in the presence of fermionic
long-range Hamiltonians. These studies have been initiated at equilibrium [44,94,472–477] but soon moved into the out-
of-equilibrium regime [194,247,478–483]. Studies on bosonic systems with long-range interactions have a much longer
tradition which dates back to the characterization of the thermodynamic and finite-size scaling exponents both in the
weak [67,70,75,484] and strong [203,304,485] long-range regions. In this perspective, the critical properties of long-range
interacting spin-systems have often been obtained through a bosonic theory analogue, especially in the case of spin
systems with continuous symmetries [167,486–488]. We have been making use of this analogy, see Section 3.4, where
we employed the spherical model to describe dynamical phase transitions [110,242], but the correspondence extends
also to the study of correlation spreading [50], prethermalization [147–149] and defect formation [169,489,490].

Our choice to focus on ferromagnetic long-range couplings was mainly motivated by the necessity to evidence
those phenomena which are unique to algebraically decaying interactions. On the other hand, antiferromagnetic long-

range interactions enable phenomena such as structure formation [491] or frustration [492], which are also found in
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ystems with finite range interactions. Yet, antiferromagnetic couplings and structural phase formation are common
o many experimental platforms, such as trapped ions [98,493–498], dipolar gases [499–504] and cold atoms into cav-
ties [505–507]. In these experimental platforms, structure formation phenomena get reshaped by the interplay between
ong-range interactions, local effects and dissipation, leading to dynamical self-organization [22,494,495,501,508–512],
ott-insulating phases [505,506,513,514], supersolids [16,515–520], dynamical phase transitions [20,23,510,521,522], lo-
alization and glass physics [507,513,523–525], prethermal ordering in presence of driving [526]. Some properties on
ntiferromagnetic long-range interactions may be obtained by their ferromagnetic counterparts, but at a different
[527–529].
A significant part of the research on quantum long-range interactions focuses on disordered systems. These studies

range from the effect of long-range interactions on many-body localization [196,525,530–541] (explored experimen-
tally [542–544]), or features of glassiness in bosonic quantum systems [545], e.g. in the quantum Sherrington–Kirkpatrick
(SK) model — and chaotic and holographic properties of fully-connected disordered fermionic systems, à la Sachdev–Ye–
Kitaev (SYK) [546]. Another class of disordered systems are random quantum circuits, which make it possible to study the
dynamics through exact or hydrodynamic solutions [547]. This is true also in the case of long-range interactions [548,549],
where several rigorous results have been obtained on Brownian all-to-all circuits [394,462,550–556].

Many studies have investigated long-range models in open quantum systems, where interaction with the surrounding
environment induces dissipative effects. For all-to-all interactions, the man-field approach is correct for systems with
collective jump operators [557–569]. In these settings, quantum correlations have been studied with methods similar as
the ones discussed in Section 4.1.5 in Refs. [563,570–572] or via Keldysh techniques [573–575]. The impact of finite range
interactions has been recently addressed in Refs. [576–578], while in Refs. [579–581] it was tackled via a generalization
of the non-equilibrium spin-wave approach discussed in Section 4.2.1.

Other studies in the field include hydrodynamics and transport with long-range interactions [582–587], or hybrid
models stemming for instance from the interplay between short-range and long-range interactions. The interplay between
long-range interactions and non-homogeneity has also been studied in quasi-periodic systems [588–591], where the
topological properties of the system are altered by the long-range couplings [592] as it has also been shown in topological
superconductors [593–596].

To conclude, very recently, a lot of attention in quantum dynamics has been given to measurement induced phase-
transitions, a new dynamical phenomenon which results from the interplay between unitary (entangling) evolution and
(disentangling) measurements [547]. In this context, Refs. [548,597–605] have discussed how long-range interactions
affect the non-equilibrium phase diagram, which has been probed experimentally in a trapped ion simulator [606].

What shall be done. Quantum dynamics with long-range interactions is an exciting field of research with challenging
open problems that go beyond the ones addressed here. We are pleased to conclude with a brief overview of the open
questions.

First of all, the methods considered in this Report may be extended to address a series of pending problems about long-
range interacting spin systems. As mentioned in Section 2.3.1, the spatial spreading of correlations could be characterized
using the non-equilibrium spin-wave theory [56,57] illustrated in Section 4.2.1. Related approaches could be used to
explore quantum information scrambling, where it would be interesting to elucidate how the established exponential
growth of the square-commutator (145) at dynamical critical points for α = 0 is influenced by spatial fluctuations for α >
0. A fundamental question concerns thermalization in this class of systems. Even though permutational symmetry is broken
for α ̸= 0, anomalous dynamics compatible with a prethermal scenario appear, for long — yet finite — time scales [58,259]
(see Section 4.2). It is a challenging open problem to understand whether and how some form of non-thermal behavior
persists at infinite time. This difficult subject has been addressed in a few numerical explorations of either spectral
properties [607–610] or finite-time quench dynamics [62,104,246,250,371]. However, due to the challenging finite-size
effects, the general question — especially near the strong long-range regime — is far from settled. See the recent progress
in Ref. [611].

Finally, several broader open questions go far beyond what is discussed here. This is the case of long-range antifer-
romagnetic interaction, which characterizes several experimental platforms [493–497,499–507] as mentioned above. It is
well known that in equilibrium, the competition between anti-ferromagnetism and long-range interactions can result in
frustration and phenomena such as spin liquids. It would therefore be important to develop methods to tackle dynamics
out of equilibrium.

Concurrently, many remarkable physical phenomena stem from the simultaneous presence of long-range interactions
and quenched disorder, from glassiness in the SK to fast scrambling in the SYK model. Although these models may be
analytically solvable with a mean-field ansatz, their classical limit and the impact of quantum fluctuations remains a
challenging problem in general. It would be highly desirable to have a comprehensive framework to understand the
quantum dynamics with α > 0 in this class of models. In this regard, we note that the non-equilibrium spin-wave theory
of Refs. [56,57] has been extended to disordered spin models as well, see Ref. [612].

To conclude, we remark that in nature long-range interactions always represent an instantaneous approximation
for retarded interactions mediated by a field (e.g. the electromagnetic field). Retardation may give rise to outstanding
physical phenomena in certain conditions: For example, finite-frequency long-wavelength modes may non-trivially
hybridize with the mediating-field excitations, as happens e.g. for optical phonons and light in ionic crystals (phonon-
polaritons) [613,614]. Exploration of the full range of dynamical phenomena induced by retarded long-range interactions
in AMO platforms stands out as an intriguing direction.
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ppendix A. Semiclassical spectrum

For a system with a single degree of freedom, the spectrum obtained via the semiclassical quantization rule consists
f classical trajectories with energy En such as to enclose an area Scl(En) in phase space equal to an integer multiple of
lanck’s constant h, i.e.,

Scl(En) = nh, n integer, (A.1)

here Scl(E) corresponds to the classical action. This quantization rule, together with the well-known relation between
he action Scl and the classical period of a trajectory (see, e.g., Ref. [615])

dScl(E)
dE

= Tcl(E) ≡
2π
Ωcl(E)

(A.2)

ields the semiclassical level spacing

En+1 − En ∼
dEn
dn

= h̄Ωcl(En). (A.3)

This equation may be seen as a generalization of the relation valid for the spectrum of a harmonic oscillator to nonlinear
dynamics, in which the oscillations are not isochronous and thus the quantum energy spectrum is not equispaced. The
semiclassical density of states ρ(E) is given by the inverse level spacing.

We can use the above semiclassical relation to elucidate the spectral properties of the fully-connected quantum Ising
model, cf. Section 2.3. For h > hcr, taking the low-energy limit (n finite and N → ∞) of Eq. (A.3), one recovers the
harmonic tower of excitations of Eq. (16), with Ωcl(En) ∼N→∞ ω>/s. At the quantum critical point h = hcr, the energy
gap of the elementary excitations above the ground state vanishes in the thermodynamic limit. The classical counterpart
of this phenomenon is the vanishing of the classical frequency of small oscillations, which occurs because the minimum
of Hcl at criticality is quartic rather than quadratic. The critical scaling of the energy gap as N → ∞ may be extracted via
semiclassical considerations: Retaining the quartic terms of order 1/N neglected in Eq. (16), and applying the semiclassical
quantization rule in Eq. (A.1), one finds the low-energy asymptotics of quantized energy levels as

En − E0 ∼
n finite
N→∞

c
n4/3

N1/3 , (A.4)

hich shows that the critical gap above the ground state for h = hcr scales as N−1/3 for large N . Along these lines, one
lso finds ⟨n̂0⟩ ∼ N1/3. For a more systematic analysis see e.g. Ref. [83].

ppendix B. Semiclassical description of fully-connected systems

In this Appendix we review the semi-classical descriptions of quantum dynamics, which applies beyond the example
f fully-connected spin systems discussed in Sections 4.1.1 and 4.1.3.
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.1. Semiclassical approach

We focus on quantum systems characterized by a small parameter h̄eff, which controls the impact of the quantum fluc-
uations. A system in this class is described by n degrees of freedom, identified by 2n operators ξ̂= (q̂1, . . . , q̂n, p̂1, . . . , p̂n).
hese satisfy the standard canonical commutation relations [q̂i, p̂j] = ih̄eff δij, o more compactly [ξ̂, ξ̂] = ih̄effJ, where J is

the symplectic unit.26 The system is such that allows a re-scaling of the Hamiltonian

Ĥ = h̄−1
eff Hcl(ξ̂) , (B.1)

that leads to the following the Heisenberg equation of motion27

˙̂
ξ = J ∂Hcl(ξ̂) . (B.2)

One could equivalently define a classical system described by 2n classical phase-space variables ξcl=(q1, . . . , qn, p1, . . . , pn),
obeying the canonical Poisson brackets {qi, pj} = δij and whose dynamics is given by the Hamilton–Jacobi equation of
motion ξ̇cl = {ξcl,Hcl} = J ∂Hcl(ξcl).

The full quantum evolution for the expectation value of the operator ξ̂(t) evaluated on the generic quantum state |ψ0⟩

reads
d
dt

⟨ξ̂(t)⟩ = J ⟨∂Hcl(ξ̂(t)) ⟩ . (B.3)

his is exactly what stated by the Ehrenfest theorem [616], which describes the exact quantum evolutions of operators at
ime t , without approximations. Even if this relation is reminiscent of the Hamilton’s equations for the classical variable
cl, in principle one has ⟨∂Hcl(ξ̂)⟩ ̸= ∂Hcl(⟨ξ̂⟩). However, whenever quantum fluctuations are small one can look at the
eplacements28

⟨∂Hcl(ξ̂)⟩ → ∂Hcl(⟨ξ̂⟩) . (B.4)

his substitution is equivalent closing the cumulants at second order, namely to take ⟨ξ̂ ξ̂ ′
⟩ = ⟨ξ̂⟩⟨ξ̂ ′

⟩. We consider the
ase in which the initial state |ψ0⟩ corresponds to a narrow Gaussian wave-packet, centered around a point with a small
ariance ∆2 of quantum fluctuations of order ∆2

∼ O(h̄eff). A large number of relevant initial states lie in this class. For
nstance, consider coherent states or pure nonentangled ones, such as uncorrelated product states, routinely prepared in
old-atom experiments via standard techniques. Weakly entangled initial states may be treated on equal footing.
Therefore, by virtue of Eq. (B.4), the average ⟨ξ̂(t)⟩ moves along the classical trajectory to the leading order in h̄eff,

d
dt

⟨ξ̂(t)⟩ = J ∂Hcl

(
⟨ξ̂(t)⟩

)
+ O(h̄eff) , (B.5)

hat is

⟨ξ̂(t)⟩ = ξcl(t) + O(h̄eff) . (B.6)

According to the standard semiclassical theory [287,288,617], quantum fluctuations around the classical trajectory ξcl(t)
will remain approximately Gaussian for a diverging time scale as h̄eff → 0 during the evolution, the so-called Ehrenfest
time scale TEhr = TEhr(h̄eff). At TEhr quantum interference effects become dominant and the semiclassical description
breaks down. The Ehrenfest time can be defined as the time scale for which the gaussian approximation breaks down
and quantum fluctuations become of the order of one, i.e. ∆2(TEhr) = O(1). This depends on how quantum fluctuations
volve in time that, in turn, is determined by the regularity properties of the classical trajectories, as summarized in
able 1.
This semiclassical description is not restricted to phase-space or coherent variables, but it describes the dynamics

f several interesting models. In particular, Sciolla and Biroli [223] formulated a general theory for systems with full
ermutational invariance in states belonging to the totally-symmetric sector.

.2. Classical limit of permutationally invariant systems

We recall how the permutational symmetries allow for exactly mapping collective quantum models to systems of few
egrees of freedom characterized by a vanishingly small effective Planck constant in the thermodynamic limit [223].
We consider a Hamiltonian Ĥ characterizing a uniform all-to-all interaction of N elementary constituents, such as spins

r particles. The symmetry under permutations of the degrees of freedom makes the mean-field treatment of the quantum
ynamics exact for large N . To show how the semiclassical description emerges, we consider an ensemble of N identical

26 The symplectic matrix J is given by the 2n × 2n antisymmetric matrix J =

(
0n 1n

−1n 0n

)
, which satisfies J2 = −12n .

27 Subtleties related to the ordering of the operators are not relevant in the following discussion.
28 Notice that this is always exact the case of quadratic Hamiltonians.
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-level quantum systems. A basis of the many-body Hilbert space can be constructed as the tensor product of identical
ingle-unit bases {|α⟩} with α = 1, . . . , q. Binary permutation operators are unitary transformations that exchange a pair
f units in the system. Their action is defined by

P̂ij|α1, . . . , αi, . . . αj, . . . , αN⟩ = |α1, . . . , αj, . . . αi, . . . , αN⟩ , (B.7)

for all pairs i > j. A system has full permutational invariance if its Hamiltonian Ĥ commutes with all permutation
operators. The totally-symmetric subspace (TSS) of the many-body Hilbert space is simultaneously invariant under all
permutations.29 A basis of the TSS can be obtained by symmetrizing the many-body configurations |α1, . . . , αN⟩ with
respect to all permutations. It can be labeled by the numbers N1, . . . ,Nq of units occupying each level with

∑q
α=1 Nα = N .

The dimension of the TSS,

dim TSS =

(
N + q − 1

q − 1

)
∼

N→∞

Nq−1

(q − 1)!
, (B.8)

s only polynomially large in N , which allows for the exact numerical analysis of large systems. Due to the symmetry of
ˆ , the time-evolution of totally symmetric initial states never leaves the TSS. Typically, such initial states may be simple
roducts of identical single-body states, or ground states, like the ones prepared in experiments.
It was shown by Sciolla and Biroli in Ref. [223] that the dynamics of symmetric observables within the TSS is classical

n the thermodynamic limit. To show this, observe that possible off-diagonal transitions governed by Ĥ are uniquely
dentified by a set of integers m1, . . . ,mq

|N1, . . . ,Nq⟩ → |N1 + m1, . . . ,Nq + mq⟩. (B.9)

or convenience, we turn the occupation numbers Nα into fractions xα ≡ Nα/N , with 0 ≤ xα ≤ 1 and
∑q

α=1 xα = 1, and
enote basis states by |x⟩, where x = (x1, . . . , xq). Hence, we write the matrix elements of Ĥ as30

Hx,x′ ≡ ⟨x|Ĥ|x′
⟩ = V (x) δx,x′ −

∑
m̸=0

Tm(x)δx,x′+m/N , (B.10)

ith m = (m1, . . . ,mq) ∈ Zq. Terms in the Hamiltonian Ĥ involving up to k bodies yield ‘‘local’’ transitions in the TSS
asis, characterized by |m| ≡

∑
α|mα| ≤ 2k. By the extensivity of the Hamiltonian Ĥ , both V (x) and Tm(x) are extensive,

V (x) ∼ N v(x), Tm(x) ∼ N tm(x). (B.11)

rucially, the densities v and t are smooth functions of x, as they generally result from combinatoric factors of the
ccupation numbers which are insensitive to small changes Nα ↦→ Nα ± 1, 2, . . . to leading order in the thermodynamic
imit [223]. This result is based on the smoothness of the matrix elements of Ĥ between two TSS states concerning small
hanges in the occupation numbers Nα → Nα ± 1,±2, . . . . These properties allow to rewrite the Schrödinger equation
n the TSS as

1
N
∂

∂t
ψ(x, t) =

⎡⎣v(x) −

∑
0≤|m|≤2k

tm(x) cosh
(
m
N
∂

∂x

)⎤⎦ ψ(x, t) . (B.12)

q. (B.12) shows that the dynamics of wave-functions in the TTS is governed by the effective Hamiltonian

Hcl(q̂, p̂) ≡ v(q̂) −

∑
m

tm(x̂) cosh
(
m · p̂

)
, (B.13)

xpressed in terms of the conjugated canonical operators ξ̂ = (q̂, p̂)
Nα
N

↦→ q̂α, −i
∂

∂Nα
↦→ p̂α , (B.14)

with an effective Planck constant

h̄eff ≡
1
N

(h̄ = 1 in our units) , (B.15)

that approaches zero in the thermodynamic limit. Thus, the quantum system of the original system of all-to-all interacting
q-level units is mapped to n = q − 1 collective degrees of freedom.31 As outlined in the previous section, its quantum
ynamics is equivalent, in the thermodynamic limit, to the one governed by the Hamilton equations generated by Hcl.

29 Unless permutational symmetry is spontaneously broken or fragmentation phenomena take place [83].
30 For simplicity, we assume time-reversal invariance, which results in real matrix elements Tm(x) ∈ R.
31 Notice that the exact constraint

∑
x = 1 can be solved explicitly, eliminating one degree of freedom.
α α
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.3. Beyond global permutational symmetry

The semiclassical approach reviewed in the previous Appendix B.2 and Section 4.1.1 applies to a much wider class of
tates and models than discussed therein.
One natural extension consists of a composite system of M collective subsystems, possibly composed of different kinds

f degrees of freedom. This is possible if interactions couple the various subsystems uniformly in their elementary units,
.e., via collective operators only. Thus, the global system has a semiclassical description. When each subsystem is large,
he global system will be described by

∑M
m=1(qm −1) semiclassical collective degrees of freedom, where qm is the number

f levels for the mth degree of freedom. For example, the Dicke model, where N spins interact collectively with a cavity
ode [263], can be viewed as an example of two classical degrees of freedom, one for the collective spin and one for the
avity mode. The same holds for the two-species kicked top [340].
A second, closely related generalization, is represented by non-symmetric states which partially break the full permuta-

ional symmetry. Such states may be obtained by bringing together a number M ≪ N of initially separated subsystems.
n this case, the full permutational symmetry breaks down into the product of smaller permutational symmetries acting
eparately on each subsystem. While the full system evolves outside of its totally symmetric subspace (TSS), the restricted
ymmetry allows a description of the dynamics within the product of the TSSs of the M individual subsystems. The
emiclassical theory can thereby be applied in the thermodynamic limit, and one ends up with a few-body semiclassical
ystem described by M × (q − 1) collective degrees of freedom. In this case, the Hamiltonian depends on these variables
nly via the q − 1 global collective combinations, leaving all the (M − 1) × (q − 1) remaining coordinates frozen in
heir initial values. A simple example is given by a permutationally invariant system of N spins-1/2 initially in a random
product state |· · · ↗↗↗↙↗↙↙↗ . . .⟩ of spins pointing up or down along a given axis. Such a state is far away from
the Dicke manifold of maximal total spin length N/2. Grouping together the spins pointing in the same direction into two
subsystems A and B, with NA and NB spins respectively, the global system may be viewed as two interacting collective
pins ˆ⃗SA,

ˆ⃗SB, of length NA/2 and NB/2 respectively, initially pointing in opposite directions. In agreement with the above
bservation, the motion of the two spins is not independent: the Hamiltonian generates a nonlinear collective precession,
nd the angle between ˆ⃗SA and ˆ⃗SB is a constant of motion.

ppendix C. Asymptotic estimates for fk(α)

Here we review the properties of the Fourier transform of J/||r||α on a periodic d-dimensional lattice of V = Ld sites,
hich we denote fk(α):

fk(α) =

∑
r̸=0

e−ik·r

||r||α

/∑
r̸=0

1
||r||α

. (C.1)

he properties derived below only rely on the asymptotic decay of interactions Jr,r′ ∼ 1/||r − r′||α — neither on the details
f Jr,r′ at short distances nor on the specific lattice.

.1. Strong long-range regime (0 < α < d)

For 0 < α < d the leading behavior is captured by approximating sums with integrals in Eq. (C.1). As we are interested
n the scaling with L only, we do not keep track of prefactors. Following the standard procedure for Fourier transforming
radial function, we switch to spherical coordinates and integrate over all the angles:

fk̸=0(α) ∼
1

Ld−α

∫ L

1
dρ ρd−1−α Jd/2−1(|k|ρ)

(|k|ρ)d/2−1 , (C.2)

where Jν(x) is the standard Bessel function of order ν.
For finite |k| the right-hand side always vanishes in the limit L → ∞. A finite value of fk̸=0 is only obtained when

|k| ∝ 1/L. Recalling the definition k ≡ kn ≡ 2πn/L, we make the substitution ρ = Ls and take L → ∞:

fkn ̸=0(α) ≡ fn̸=0(α) ∼
∫ 1

0
ds sd−1−α Jd/2−1(2π |n|s)

(2π |n|s)d/2−1 . (C.3)

hus, for 0 < α < d, fkn ̸=0 is actually a function of the discrete index n. For large |n| we obtain the asymptotic estimate

fn̸=0(α) ∼
A(α)

|n|
d−α +

B(α)
|n|

(d+1)/2 . (C.4)

he first [second] term governs the asymptotic decay of the discrete coefficients fn̸=0(α) for (d−1)/2 < α < d [respectively
< α < (d − 1)/2].
68



N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92

C

I
E

g

T
α

A

D

e
x

w

t

I

w

.2. Weak long-range regime (α > d)

For α > d the function fk(α) attains a finite limit for all k as L → ∞. For small k, this function has a singular behavior.
n this ‘‘large-scale’’ limit it is again legitimate to replace the sum by the corresponding integral. Proceeding similarly to
qs. (C.2), we find

fk̸=0(α) ∼
∫

∞

1
dρ ρd−1−α Jd/2−1(|k|ρ)

(|k|ρ)d/2−1

/∫
∞

1
dρ ρd−1−αCd (C.5)

where Cd = 2−(d/2−1)/Γ (d/2). Here the short-distance part gives a regular contribution O(|k|
2) and the long-distance part

ives a singular contribution O(|k|
α−d):

fk̸=0(α) ∼ 1 − Ā(α)|k|
α−d

− B̄(α)|k|
2. (C.6)

he first [second] term governs the asymptotic low-momentum behavior of fk̸=0(α) for d < α < d + 2 [respectively
> d + 2].

ppendix D. Exact solution of quasi-static drive for a single mode

.1. Fidelity and defect density

The dynamics of a single spin-wave corresponds to the one of a single Harmonic oscillator and can be solved
xactly [199–201] for any time dependent frequency. Any dynamical state ψ(x, t) in the representation of the coordinate
can be expressed as

ψ(x, t) =

∑
αnψn(x, t), (D.1)

here αn are time independent constants and the dynamical eigenstates are given by

ψn(x, t) =
1

√
2nn!

(
1

2πξ 2(t)

) 1
4

e−W (t) x
2
2 Hn

(
x

√
2ξ (t)

)
e−i

(
n+ 1

2

)
λ(t)
, (D.2)

he expression for the effective frequency W (t) and the (in-influential) phase Φ(t) are given in the main text. If the initial
state is a pure state of the basis (D.2), specifically the ground state in our case, then one has αn = 0, ∀n > 0 and we
recover the single squeezed state generated by the operator in Eq. (88). This state describe the dynamics at all times, and
thus in the exact dynamical basis (D.2) no excited states will be generated. However, at each finite time t > −hcr/δ the
squeezed state ψ0(x, t) will have a finite overlap with all states in the adiabatic basis ψad

n (x, t), which is defined as

ψad
n (x, t) =

1
√
2nn!

(
Ω(t)
π

) 1
4

e−Ω(t) x
2
2 Hn

(
x
√
Ω(t)

)
. (D.3)

t is convenient to write the expression of the defect density as [172]

nexc(t) =

∑
n∈2N

n|cn(t)|2, (D.4)

here the coefficients

cn(t) =

∫
+∞

−∞

dxψ∗

n (x, t)ψ0(x, t) (D.5)

are the transition amplitudes between the dynamical state and the instantaneous equilibrium basis. It is rather straight-
forward to get an exact expression for these coefficients

cn(t) =

∫
+∞

−∞

dxψad∗
n (x, t)ψ0(x, t) =

1
√
2nn!π

(
Ω(t)
2ξ 2(t)

) 1
4
∫

+∞

−∞

dxe−(Ω(t)+Ω̃(t)) x
2
2 Hn

(√
Ω(t)x

)
. (D.6)

Performing a change of variable the integral can be cast into the form∫
+∞

−∞

dxe−(Ω(t)+Ω̃(t))x2Hn

(√
˜ω(t)x

)
= (Ω(t))−

1
2

∫
+∞

−∞

e−

(
Ω̃(t)
Ω(t) +1

)
s2
2 Hn (s) ds.

Next we employ the generating function for Hermite polynomials in the integral,∫
+∞

−∞

e−

(
Ω̃(t)
Ω(t) +1

)
s2
2 Hn (s) ds = lim

t→0

dn

dtn

∫
+∞

−∞

e−

(
Ω̃(t)
Ω(t) +1

)
s2
2 e2st−t2ds =

√ 2π(
Ω̃(t)

+ 1
) lim

t→0

dn

dtn
e
−t2 (

Ω̃(t)−Ω(t))
(Ω(t)+Ω̃(t))
Ω(t)
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I

=

⎧⎪⎪⎨⎪⎪⎩
√ 2π(

Ω̃(t)
Ω(t) + 1

) n!
n
2 !

(
Ω̃(t) −Ω(t)

Ω̃(t) +Ω(t)

)n/2

for n ∈ 2Z,

0 for n ∈ 2Z + 1.

(D.7)

Thus the probability of having n excitations in the evolved state at the time t is given by

|cn0(t)|2 =
(n − 1)!!

n!!

√
2Ω(t)

ξ (t)
⏐⏐Ω̃(t) +Ω(t)

⏐⏐
⏐⏐⏐⏐⏐ Ω̃(t) −Ω(t)

Ω̃(t) +Ω(t)

⏐⏐⏐⏐⏐
n

, (D.8)

which leads to Eqs. (101) and (102) in the main text.

D.2. Slow quench to the critical point

Here we consider the half ramp with t ∈ [−hcr/δ, 0]. After the rescaling, this problem coincides to solving the
Ermakov-Milne equation

ξ̈ (t) +Ω(t)2ξ (t) =
1

4ξ 3(t)
, (D.9)

with the rescaled frequency

Ω(t)2 = t + (Nδ)−2/3 (D.10)

with the simplified extended time interval t ∈ [−∞, 0]. The solution of Eq. (D.9) can be constructed from that of the
associated classical harmonic oscillator

ẍ(t) +Ω(t)2x(t) = 0. (D.11)

This equation admits the two independent solutions

x1(t) = Ai
(
−Ω2(t)

)
, x2(t) = Bi

(
−Ω2(t)

)
(D.12)

in terms of the Airy functions Ai and Bi. The two functions x1(t) and x2(t) have the constant and finite Wronskian

Wr(x1, x2) =
1
π
. (D.13)

It is convenient to rewrite the solutions of Eq. (D.9) as a pair of complex conjugate solutions w and w∗ with

w = ax1(t) + bx2(t), (D.14)

where a ∈ C and b ∈ R are constants. Since Eq. (D.11) is homogeneous one can rescale the two solution by a constant
factor and subsequently, without loss of generality, impose b = 1. The function

ξ (t) =
√
ww∗ (D.15)

is a solution of the Ermakov-Milne Eq. (90) if

Wr(w,w∗) = 2iIm(a)Wr(x1, x2) = i, (D.16)

which uniquely fixes the imaginary part of a. To completely define the solution, it is required to find the appropriate value
of Re(b) which satisfies the boundary conditions

lim
t→−∞

1
2ξ (t)2

= Ω(t), lim
t→−∞

ξ̇ (t) = 0. (D.17)

These conditions are consistent with the system being in the adiabatic ground state at large |t|. In the t → ∞ limit, Ω2

diverges and one must use the asymptotic expansion for the Airy functions

lim
t→−∞

x1(t) ∼
cos

( 2
3Ω

3
−

π
4

)
√
πΩ1/4

, lim
t→−∞

x2(t) ∼
sin
( 2
3Ω

3
−

π
4

)
√
πΩ1/4

. (D.18)

n order to satisfy (D.17), the oscillatory terms in the expression for ξ must cancel for large s, implying

Re(a) = 0, Im(a) = b. (D.19)

Moreover one has to impose the condition

Wr(w,w∗) = 2iIm(a)bWr(x , x ) = i, (D.20)
1 2
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w

w

hich fully determines the coefficients in Eq. (D.14),

Im(a) = b =

√
π

2
. (D.21)

The resulting expression for the scale factor is

ξ (t)2 =
π

2
Ai
(
−Ω(t)2

)2
+
π

2
Bi
(
−Ω(t)2

)2
, (D.22)

and the number of defects is given by Eq. (101). The number of defects at the final point of the ramp (which is the
critical point) is obtained by evaluating Eq. (101) at t = 0. At this instant the rescaled frequency is given by its finite-size
correction Ω(0) = Λ−1/3

= (Nδ)−1/3, and the scale factor reads

ξ (0)2 =
π

2
Ai
(
−Λ−2/3)2

+
π

2
Bi
(
−Λ−2/3)2 . (D.23)

Let us consider the thermodynamic limit Λ → ∞ first. In this case the argument of the Airy functions goes to zero and
the terms in the square brackets of Eq. (101) read

1
4ξ (0)4

=
38/3Γ (2/3)4

16π2 ,

(
ξ̇ (0)
ξ (0)

)
=

32/3Γ (2/3)2

Γ (1/3)2
, (D.24)

leading to

nexc(0) =
π Λ1/3

32/3Γ (1/3)2
, (D.25)

where we restricted to the leading term in the Λ → ∞ limit. Therefore the result for the number of excitations diverges
in the thermodynamic limit with a power N1/3. However the residual heat is finite since it is obtained by multiplying the
divergent defect density with the vanishing oscillator frequency Eres(0) = ∆(0)nexc(0), leading to

Eres =
π δ1/3

32/3Γ (1/3)2
, (D.26)

which agrees with the KZ scaling of Ref. [107]. For a finite-size system N < ∞, the slow ramp limit δ → 0 coincides with
the Λ → 0 limit of Eq. (101) evaluated at t = 0. The leading term in this case is generated by the velocity correction to
the effective frequency

lim
Λ→0

ξ̇ (0)
ξ (0)

= −
5
24
Λ2/3, (D.27)

hich, substituted into Eq. (101) evaluated at t = 0, gives

nexc(0) =
25

2304
Λ2

∝ δ2, (D.28)

which leads to the expected adiabatic correction for the residual energy Eres ∝ δ2 in a finite-size system [186].

D.3. Full ramp

Along previous sections we have depicted the analytic solution of a semi-infinite ramp with frequency ω(t)2 = |t|
starting at t = −∞ and terminating at t = 0. Now, we are gonna extend such treatment to the entire interval
t ∈ (−∞,+∞). It is worth noting that in the case of a full ramp t ∈ (−∞,+∞), we do not consider the case of a
finite ∆N , since its calculation do not present any relevant difference from the half-ramp case. Taking the thermodynamic
limit first N → ∞, we consider a general solution in the form of Eq. (D.14) satisfying the boundary conditions

lim
t→0+

ξ 2(t) =
Γ (p)Γ (p + 1)

2πp2p
, (D.29)

lim
t→0+

2ξ̇ (t)ξ (t) = cot(pπ ) (D.30)

in order to ensure continuity with the solution with the t < 0 case discussed in Appendix D.2. Interestingly, this result is
accomplished by the coefficients choice

a = a+ =

√
3π
2

(D.31)

Re(b) = b1 = 0 (D.32)

Im(b) = b2 = b+ =

√
π

(D.33)

6
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hich automatically satisfies the Wronskian condition in Eq. (D.20).
The defect density in the large time limit t ≈ +∞ can be obtained by the asymptotic behavior of the scale ξ (t), which

reads

lim
t→∞

ξ (t)2 ≈
t1/2(1 + cos(π/3)2 + 2 cos(π/3) sin(2ζ ))

2 sin(π/3)2
(D.34)

lim
t→∞

ξ (t)ξ̇ (t) ≈
cos(π/3) cos(2ζ )

sin(π/3)2
. (D.35)

where ζ =
2
3 t

3/2. Once these expressions are plugged into Eqs. (101) and (102), one obtains the two results in Eqs. (111)
and (112), which prove that the fidelity of a quantum harmonic oscillator driven across its quantum critical point remains
finite even in the δ → 0 limit.

Appendix E. Entanglement dynamics in other long-range interacting models

E.1. Quantum Ising chain in a tilted field

We further discuss the quenches in long-range quantum Ising chains in a tilted magnetic field, described by the
following Hamiltonian

Ĥ = −
J0

Nα,N

N∑
i<j

σ̂ x
i σ̂

x
j

|i − j|α
− hz

N∑
i

σ̂ z
i − hx

N∑
i

σ̂ x
i , (E.1)

here now hz and hx are respectively the transverse and longitudinal field and Nα,N is the Kac normalization (3). This
odel has been considered by T. Mori in Ref. [296] . There, it is argued that the non-equilibrium dynamics of a long-

ange quantum Ising chain (with 0 < α < 1 and with transverse field hz = 0.32J and longitudinal field hx = 0.26J)
hows signatures of many-body chaos. The dynamics are studied by starting from the paramagnetic state with spins fully
olarized along the z axis, i.e., from hz,0 = ∞. (Note that x ↔ z have been exchanged in our conventions.)
We apply here the non-equilibrium spin-wave theory and the theory of entanglement dynamics developed in the

resent chapter. Upon adding a longitudinal field, the classical equation of motion of the collective spin [cf. Eq. (132) of
ection 4.1.1] now reads{

θ̇ = 2J0 sin θ cosφ sinφ + 2hx sinφ
φ̇ = −2hz + 2J0 cos θ cos2 φ + 2hx

cos θ
sin θ cosφ .

(E.2)

nd the evolution equations for the spin-wave correlations, (J̃k ≡ J0̃fα,k) are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ġqq
k = 4J̃k cos θ cosφ sinφ G̃qq

k + 4
(
J0 cos2 φ + hx

cosφ
sin θ

− J̃k sin2 φ

)
G̃qp
k ,

Ġpp
k = − 4

(
J0 cos2 φ + hx

cosφ
sin θ

− J̃k cos2 θ cos2 φ
)
G̃qp
k − 4J̃k cos θ cosφ sinφ G̃pp

k

Ġpq
k = − 2

(
J0 cos2 φ − J̃k cos2 θ cos2 φ

)
G̃qq
k + 2

(
J0 cos2 φ + hx

cosφ
sin θ

− J̃k sin2 φ

)
G̃pp
k

. (E.3)

We first study the mean-field case α = 0, verifying that the growth of entanglement entropy is logarithmic for the
considered quench, see Fig. E.29, as follows from our predictions. However, due to the closeness to a nearby dynamical
critical point, the short-time dynamics of entanglement is fast, and the universal logarithmic behavior emerges only over
longer times. In agreement with our theory, larger system sizes are required to observe the asymptotic behavior, as
confirmed by the ED numerical results. Because of these strong finite-size effects, we did not attempt for α > 0 numerical
investigations with MPS-TDVP, limited to N ≲ 100, but directly studied the limiting behavior in the thermodynamic limit
via a full spin-wave calculation of entanglement dynamics. The results are shown in Fig. E.30, left panel, for increasing
values of α, and they confirm that the growth of entanglement entropy is linear for α > 0, as suggested by the results of
Ref. [296] in view of the interpretation provided by the theory presented here.

To fully corroborate this picture, we presented a similar analysis to that outlined above for the Ising chain in a
transverse field. In Fig. E.31, we report the time evolution of the k-resolved spin-wave population for the same quench. The
dynamical production of long-wavelength spin-wave excitations is unstable, i.e., exponentially growing. This occurrence
hints at the fact that the quench considered in Ref. [296] falls into a layer of instability of the many-body semiclassical
dynamics, characterized by a positive Kolmogorov–Sinai entropy rate (174) and hence a linear growth of entanglement
entropy in time. This is confirmed by the spherical plot in Fig. E.30, right panel, of the Kolmogorov–Sinai entropy rate ΛKS
as a function of the initial configuration on the Bloch sphere (174). The considered quench falls inside the instability layer
which opens up around the classical separatrix upon increasing α > 0. However, we emphasize that a large set of initial
configurations show a stable generation of spin waves, and hence slow logarithmic growth of entanglement entropy, even
for this Hamiltonian (the black region in the spherical plot).
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Fig. E.29. Comparison between entanglement entropy growth computed numerically (ED) and analytically (semiclassical formula) for α = 0, for the
uenches in Ref. [296] [Eq. (E.1) with hz = 0.32J0 , hx = 0.26J0 , initial state polarized along z]. The growth is logarithmic, but finite-size effects are
trong due to closeness to a mean-field dynamical critical point.

Fig. E.30. Left panel: Comparison between entanglement entropy growth obtained via the full spin-wave computation with N = 500, for increasing
= 0, 0.3 and 0.5, for the quenches in Ref. [296] [Eq. (E.1) with hz = 0.32J0 , hx = 0.26J0 , initial state polarized along z]. While the growth is

ogarithmic in the integrable case α = 0, the breaking of integrability induced by a finite range triggers a linear growth of S(t), due to unstable
xcitation of long-wavelength spin waves: see the text and Fig. E.31. Right panel: Spherical plot of the Kolmogorov–Sinai entropy rate hKS (θ0, φ0)
ersus the initial spin-polarized configuration, for α = 0.7.

Fig. E.31. Time-dependent k-resolved spin-wave population for the quenches in Ref. [296] [Eq. (E.1) with hz = 0.32J0 , hx = 0.26J0 , initial state
olarized along z]. Collective quantum fluctuations with k = 0 grow polynomially, whereas the long-wavelength modes k = ±2π/L (left, α = 0.3)
nd k = ±2π/L, 4π/L, 6π/L (right, α = 0.5), diverge exponentially fast in time. Here we have set N = 500.
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Fig. E.32. Entanglement entropy growth obtained via the full spin-wave analysis, for quenches h0 = 0 → hf = 0.7J in the Hamiltonian (E.4). We
ompare the effects of the two kinds of perturbations to the fully-connected quantum Ising model with α = 0, λ = 0: (i) α = 0.7, λ = 0, i.e., a
low spatial decay of interactions (left); (ii) α = 0, λ = 0.2J , i.e., additional weak nearest-neighbor interactions (right). In both plots, the black lines
epresent the behavior of the fully-connected quantum Ising model with α = 0, λ = 0, for comparison. It is apparent that the former α-perturbation
top) provides only bounded corrections to the logarithmic growth of the permutationally-invariant limit, whereas the latter λ-perturbation clearly
xhibits the onset of a linear-in-time growth (with a small slope) which can be appreciated at long times. The insets report the same data on a
ogarithmic time scale, highlighting the different behavior. In this computation N = 500.

.2. Short-range perturbations to collective spin models

The above analysis shows that slow logarithmic growth of the entanglement entropy can be expected in the quench
ynamics of spin-1/2 systems with long-range interactions. The underlying mechanism involves the existence of a discrete
et of excitation modes (the long-wavelength spin waves) which yield a bounded, subleading contribution to entanglement
hen non-resonantly driven by the collective spin dynamics. However, this is an intrinsic property of slowly-decaying

nteractions, which generically fails for other types of perturbations. To explicitly show this, we consider additional finite-
ange interactions as perturbations to an integrable system with collective interactions. To be specific, we consider a
amiltonian of the form

Ĥlr+sr = Ĥα − λ
∑

i

σ̂ x
i σ̂

x
i+1 , (E.4)

here Ĥα is the long-range quantum Ising chain in Eq. (1) (d = 1). In Refs. [56,57], it has been shown that the
onequilibrium spin-wave approach adequately describes the dynamics of this Hamiltonian when λ ≪ J . We show that
he two kinds of perturbations, corresponding to raising α or λ from 0, respectively, lead to a radically different scenario
f entanglement growth, in accordance with the theory developed above.
For the spin-wave analysis of the Hamiltonian Hlr+sr in Eq. (E.4), it is actually sufficient to substitute Jk̸=0 = J0̃fα,k +

cos k in Eqs. (167). In the case α = 0, λ ̸= 0, the spin-wave Hamiltonian features two fundamental differences:
irstly, it is equivalent to a system of quantum oscillators with short-range interactions, hence described by a continuous
ispersion relation with a finite bandwidth (apart from the singular k = 0 mode); secondly, all excitations with k ̸= 0
ow live on a widely separated energy scale λ ≪ J with respect to the classical drive. Therefore, away from fine-tuned
esonances, the system typically behaves as a standard model of free bosonic excitations, where the fast, non-resonant
rive amounts to modifying their effective dispersion relation. Such a system is expected to exhibit light-cone spreading of
uantum correlations and linear growth of entanglement entropy, according to the standard Calabrese–Cardy quasiparticle
icture [618], in stark contrast to the perturbation with α > 0, λ = 0 discussed above.
To be fair, it should be noted that the λ-perturbed model features a coexistence of two mechanisms, namely the spin

queezing associated with the singular k = 0 mode and the traveling quasiparticles associated with the all the remaining
̸= 0 modes. Although the second mechanism is clearly dominant [linear over logarithmic S(t)], for tiny perturbations
≪ J , a long time is required to appreciate this distinction. In practice, for small sizes, short times, weak quenches, and/or
eak perturbations, one will always observe a crossover from initial logarithmic growth to an asymptotic linear growth.
We verified the predictions above explicitly: see the comparison between the two perturbations in Fig. E.32. We

onclude that, as expected based on the present analysis, the nature of the integrability-breaking perturbation is crucial,
nd the slow growth of entanglement analyzed is a characteristic property of long-range interactions.

ppendix F. Floquet Hamiltonian and high-frequency expansion

Whenever the time-dependent Hamiltonian of a system has a period T , i.e., Ĥ(t + T ) = Ĥ(t), the resulting
ime-evolution operator Û(t2, t1) satisfies

Û(t + nT , t ) =
[
Û(t + T , t )

]n (F.1)
0 0 0 0
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or any integer n. Accordingly, it is convenient to define an effective static Hamiltonian Ĥeff [370,405],

ÛF ≡ Û(t0 + T , t0) = T e−i
∫ t0+T
t0

dτ Ĥ(τ )
≡ e−iT Ĥeff , (F.2)

usually referred to as the Floquet Hamiltonian. Its spectrum is defined up to integer multiples of the frequency 2π/T and
it is independent of the choice of the reference time t0. The state of the system at stroboscopic times tn = t0 + nT is
therefore entirely and unambiguously determined by the Floquet Hamiltonian Ĥeff. A series expansion of Ĥeff in powers
of the period T , known as the Magnus expansion, can be written as

Ĥeff =

∞∑
n=0

Ĥ (n)
eff , (F.3)

with Ĥ (n)
eff proportional to T n. Explicitly, the first terms read

Ĥ (0)
eff =

∫ t0+T

t0

dτ1
T

Ĥ(τ1), (F.4)

Ĥ (1)
eff =

T
2

∫ t0+T

t0

dτ1
T

∫ t0+τ1

t0

dτ2
T

[
Ĥ(τ1), Ĥ(τ2)

]
, (F.5)

ith the higher order terms involving a increasing number of nested commutators of Ĥ at different times. This expansion
s convergent when T is smaller than the inverse maximal extension of the spectrum of Ĥ(t) [370].

eferences

[1] R. Blatt, C.F. Roos, Quantum simulations with trapped ions, Nat. Phys. 8 (4) (2012) 277–284, http://dx.doi.org/10.1038/nphys2252.
[2] J.W. Britton, B.C. Sawyer, A.C. Keith, C.C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Engineered two-dimensional Ising interactions

in a trapped-ion quantum simulator with hundreds of spins, Nature 484 (7395) (2012) 489–492, http://dx.doi.org/10.1038/nature10981.
[3] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, C. Monroe, Non-local propagation of correlations

in quantum systems with long-range interactions, Nature 511 (7508) (2014) 198–201, http://dx.doi.org/10.1038/nature13450.
[4] K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature 464

(7293) (2010) 1301–1306, http://dx.doi.org/10.1038/nature09009.
[5] D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, A. Browaeys, Synthetic three-dimensional atomic structures assembled atom by atom, Nature

561 (7721) (2018) 79–82, http://dx.doi.org/10.1038/s41586-018-0450-2.
[6] B. Yan, S.A. Moses, B. Gadway, J.P. Covey, K.R.A. Hazzard, A.M. Rey, D.S. Jin, J. Ye, Observation of dipolar spin-exchange interactions with

lattice-confined polar molecules, Nature 501 (7468) (2013) 521–525, http://dx.doi.org/10.1038/nature12483.
[7] C. Monroe, W.C. Campbell, L.-M. Duan, Z.-X. Gong, A.V. Gorshkov, P.W. Hess, R. Islam, K. Kim, N.M. Linke, G. Pagano, P. Richerme, C.

Senko, N.Y. Yao, Programmable quantum simulations of spin systems with trapped ions, Rev. Modern Phys. 93 (2021) 025001, http:
//dx.doi.org/10.1103/RevModPhys.93.025001, URL https://link.aps.org/doi/10.1103/RevModPhys.93.025001.

[8] H. Ritsch, P. Domokos, F. Brennecke, T. Esslinger, Cold atoms in cavity-generated dynamical optical potentials, Rev. Modern Phys. 85 (2) (2013)
553–601.

[9] F. Mivehvar, F. Piazza, T. Donner, H. Ritsch, Cavity QED with quantum gases: new paradigms in many-body physics, Adv. Phys. 70 (1) (2021)
1–153, http://dx.doi.org/10.1080/00018732.2021.1969727.

[10] M. Endres, H. Bernien, A. Keesling, H. Levine, E.R. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner, M.D. Lukin, Atom-by-atom
assembly of defect-free one-dimensional cold atom arrays, Science 354 (6315) (2016) 1024–1027, http://dx.doi.org/10.1126/science.aah3752,
arXiv:https://science.sciencemag.org/content/354/6315/1024.full.pdf, URL https://science.sciencemag.org/content/354/6315/1024.

[11] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, A. Browaeys, Tunable two-dimensional arrays of single rydberg atoms for
realizing quantum Ising models, Nature 534 (7609) (2016) 667–670, http://dx.doi.org/10.1038/nature18274.

[12] J. Zeiher, J. y. Choi, A. Rubio-Abadal, T. Pohl, R. van Bijnen, I. Bloch, C. Gross, Coherent many-body spin dynamics in a long-range interacting Ising
chain, Phys. Rev. X 7 (2017) 041063, http://dx.doi.org/10.1103/PhysRevX.7.041063, URL https://link.aps.org/doi/10.1103/PhysRevX.7.041063.

[13] S. Hollerith, K. Srakaew, D. Wei, A. Rubio-Abadal, D. Adler, P. Weckesser, A. Kruckenhauser, V. Walther, R. van Bijnen, J. Rui, C. Gross,
I. Bloch, J. Zeiher, Realizing distance-selective interactions in a rydberg-dressed atom array, Phys. Rev. Lett. 128 (2022) 113602, http:
//dx.doi.org/10.1103/PhysRevLett.128.113602, URL https://link.aps.org/doi/10.1103/PhysRevLett.128.113602.

[14] A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev.
Modern Phys. 83 (2011) 863–883, http://dx.doi.org/10.1103/RevModPhys.83.863, URL https://link.aps.org/doi/10.1103/RevModPhys.83.863.

[15] E.H. Lieb, D.W. Robinson, The finite group velocity of quantum spin systems, Comm. Math. Phys. 28 (3) (1972) 251–257, http://dx.doi.org/10.
1007/BF01645779, https://cmp/1103858407.

[16] R. Mottl, F. Brennecke, K. Baumann, R. Landig, T. Donner, T. Esslinger, Roton-type mode softening in a quantum gas with cavity-mediated
long-range interactions, Science 336 (6088) (2012) 1570–1573, http://dx.doi.org/10.1126/science.1220314, URL http://www.ncbi.nlm.nih.gov/
pubmed/22604724 http://www.sciencemag.org/content/336/6088/1570.full https://www.sciencemag.org/lookup/doi/10.1126/science.1220314.

[17] P. Jurcevic, B.P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C.F. Roos, Quasiparticle engineering and entanglement propagation in a quantum
many-body system, Nature 511 (7508) (2014) 202–205, http://dx.doi.org/10.1080/nature13461.

[18] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr, Light-cone-like spreading of
correlations in a quantum many-body system, Nature 481 (7382) (2012) 484–487, http://dx.doi.org/10.1038/nature10748.

[19] K. Baumann, R. Mottl, F. Brennecke, T. Esslinger, Exploring symmetry breaking at the Dicke quantum phase transition, Phys. Rev. Lett. 107
(14) (2011) 140402, http://dx.doi.org/10.1103/PhysRevLett.107.140402, URL http://link.aps.org/doi/10.1103/PhysRevLett.107.140402.

[20] F. Brennecke, R. Mottl, K. Baumann, R. Landig, T. Donner, T. Esslinger, Real-time observation of fluctuations at the driven-dissipative Dicke
phase transition, Proc. Natl. Acad. Sci. 110 (29) (2013) 11763–11767, http://dx.doi.org/10.1073/pnas.1306993110.

[21] J. Klinder, H. Keßler, M.R. Bakhtiari, M. Thorwart, A. Hemmerich, Observation of a superradiant mott insulator in the Dicke-Hubbard model,
Phys. Rev. Lett. 115 (23) (2015) 230403, http://dx.doi.org/10.1103/PhysRevLett.115.230403.
75

http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nature10981
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1038/nature09009
http://dx.doi.org/10.1038/s41586-018-0450-2
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1103/RevModPhys.93.025001
http://dx.doi.org/10.1103/RevModPhys.93.025001
http://dx.doi.org/10.1103/RevModPhys.93.025001
https://link.aps.org/doi/10.1103/RevModPhys.93.025001
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb8
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb8
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb8
http://dx.doi.org/10.1080/00018732.2021.1969727
http://dx.doi.org/10.1126/science.aah3752
http://arxiv.org/abs/https://science.sciencemag.org/content/354/6315/1024.full.pdf
https://science.sciencemag.org/content/354/6315/1024
http://dx.doi.org/10.1038/nature18274
http://dx.doi.org/10.1103/PhysRevX.7.041063
https://link.aps.org/doi/10.1103/PhysRevX.7.041063
http://dx.doi.org/10.1103/PhysRevLett.128.113602
http://dx.doi.org/10.1103/PhysRevLett.128.113602
http://dx.doi.org/10.1103/PhysRevLett.128.113602
https://link.aps.org/doi/10.1103/PhysRevLett.128.113602
http://dx.doi.org/10.1103/RevModPhys.83.863
https://link.aps.org/doi/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
https://cmp/1103858407
http://dx.doi.org/10.1126/science.1220314
http://www.ncbi.nlm.nih.gov/pubmed/22604724
http://www.ncbi.nlm.nih.gov/pubmed/22604724
http://www.ncbi.nlm.nih.gov/pubmed/22604724
http://www.sciencemag.org/content/336/6088/1570.full
https://www.sciencemag.org/lookup/doi/10.1126/science.1220314
http://dx.doi.org/10.1080/nature13461
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1103/PhysRevLett.107.140402
http://link.aps.org/doi/10.1103/PhysRevLett.107.140402
http://dx.doi.org/10.1073/pnas.1306993110
http://dx.doi.org/10.1103/PhysRevLett.115.230403


N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92
[22] R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, T. Esslinger, Quantum phases from competing short- and long-range interactions
in an optical lattice, Nature 532 (7600) (2016) 476–479, http://dx.doi.org/10.1038/nature17409.

[23] J. Léonard, A. Morales, P. Zupancic, T. Donner, T. Esslinger, Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum
gas, Science 358 (6369) (2017) 1415–1418, http://dx.doi.org/10.1126/science.aan2608, arXiv:1704.05803.

[24] J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.-X. Gong, C. Monroe, Observation of a many-body
dynamical phase transition with a 53-qubit quantum simulator, Nature 551 (7682) (2017) 601–604, http://dx.doi.org/10.1038/nature24654.

[25] J.A. Muniz, D. Barberena, R.J. Lewis-Swan, D.J. Young, J.R. Cline, A.M. Rey, J.K. Thompson, Exploring dynamical phase transitions with cold
atoms in an optical cavity, Nature 580 (7805) (2020) 602–607, URL https://www.nature.com/articles/s41586-020-2224-x.

[26] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner,
V. Vuletić, M.D. Lukin, Quantum Kibble–Zurek mechanism and critical dynamics on a programmable rydberg simulator, Nature 568 (7751)
(2019) 207–211, http://dx.doi.org/10.1038/s41586-019-1070-1.

[27] J. Klinder, H. Keßler, M. Wolke, L. Mathey, A. Hemmerich, Dynamical phase transition in the open Dicke model, Proc. Natl. Acad. Sci. 112 (11)
(2015) 3290–3295, http://dx.doi.org/10.1073/pnas.1417132112.

[28] S. Helmrich, A. Arias, G. Lochead, T.M. Wintermantel, M. Buchhold, S. Diehl, S. Whitlock, Signatures of self-organized criticality in an ultracold
atomic gas, Nature 577 (7791) (2020) 481–486, http://dx.doi.org/10.1038/s41586-019-1908-6, URL arXiv:1806.09931.

[29] J. Zhang, P. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A.C. Potter, A. Vishwanath, et al., Observation of a
discrete time crystal, Nature 543 (7644) (2017) 217, http://dx.doi.org/10.1038/nature21413.

[30] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk, N.Y. Yao, E. Demler,
M.D. Lukin, Observation of discrete time-crystalline order in a disordered dipolar many-body system, Nature 543 (7644) (2017) 221–225,
http://dx.doi.org/10.1038/nature21426.

[31] J. Rovny, R.L. Blum, S.E. Barrett, Observation of discrete-time-crystal signatures in an ordered dipolar many-body system, Phys. Rev. Lett. 120
(2018) 180603, http://dx.doi.org/10.1103/PhysRevLett.120.180603, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.180603.

[32] M. Gärttner, J.G. Bohnet, A. Safavi-Naini, M.L. Wall, J.J. Bollinger, A.M. Rey, Measuring out-of-time-order correlations and multiple quantum
spectra in a trapped-ion quantum magnet, Nat. Phys. 13 (8) (2017) 781–786, http://dx.doi.org/10.1038/nphys4119, arXiv:1608.08938.

[33] K.X. Wei, C. Ramanathan, P. Cappellaro, Exploring localization in nuclear spin chains, Phys. Rev. Lett. 120 (2018) 070501, http://dx.doi.org/10.
1103/PhysRevLett.120.070501, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.070501.

[34] M.K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R. Blatt, C.F. Roos, Quantum information scrambling in a trapped-ion quantum
simulator with tunable range interactions, Phys. Rev. Lett. 124 (24) (2020) 240505, http://dx.doi.org/10.1103/PhysRevLett.124.240505, URL
https://link.aps.org/doi/10.1103/PhysRevLett.124.240505.

[35] I.D. Leroux, M.H. Schleier-Smith, V. Vuletić, Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett. 104 (2010) 073602,
http://dx.doi.org/10.1103/PhysRevLett.104.073602, URL https://link.aps.org/doi/10.1103/PhysRevLett.104.073602.

[36] T. Bilitewski, L. De Marco, J.-R. Li, K. Matsuda, W.G. Tobias, G. Valtolina, J. Ye, A.M. Rey, Dynamical generation of spin squeezing in ultracold
dipolar molecules, Phys. Rev. Lett. 126 (2021) 113401, http://dx.doi.org/10.1103/PhysRevLett.126.113401.

[37] D.V. Else, F. Machado, C. Nayak, N.Y. Yao, Improved Lieb-Robinson bound for many-body hamiltonians with power-law interactions, Phys. Rev.
A 101 (2020) 022333, http://dx.doi.org/10.1103/PhysRevA.101.022333, URL https://link.aps.org/doi/10.1103/PhysRevA.101.022333.

[38] M.C. Tran, A. Ehrenberg, A.Y. Guo, P. Titum, D.A. Abanin, A.V. Gorshkov, Locality and heating in periodically driven, power-law-interacting
systems, Phys. Rev. A 100 (2019) 052103, http://dx.doi.org/10.1103/PhysRevA.100.052103, URL https://link.aps.org/doi/10.1103/PhysRevA.100.
052103.

[39] M.C. Tran, A.Y. Guo, Y. Su, J.R. Garrison, Z. Eldredge, M. Foss-Feig, A.M. Childs, A.V. Gorshkov, Locality and digital quantum simulation of power-
law interactions, Phys. Rev. X 9 (2019) 031006, http://dx.doi.org/10.1103/PhysRevX.9.031006, URL https://link.aps.org/doi/10.1103/PhysRevX.
9.031006.

[40] A.Y. Guo, M.C. Tran, A.M. Childs, A.V. Gorshkov, Z.-X. Gong, Signaling and scrambling with strongly long-range interactions, Phys. Rev. A 102
(2020) 010401, http://dx.doi.org/10.1103/PhysRevA.102.010401, URL https://link.aps.org/doi/10.1103/PhysRevA.102.010401.

[41] C.-F. Chen, A. Lucas, Finite speed of quantum scrambling with long range interactions, Phys. Rev. Lett. 123 (2019) 250605, http://dx.doi.org/
10.1103/PhysRevLett.123.250605, URL https://link.aps.org/doi/10.1103/PhysRevLett.123.250605.

[42] D.-M. Storch, M. van den Worm, M. Kastner, Interplay of soundcone and supersonic propagation in lattice models with power law interactions,
New J. Phys. 17 (2015) 063021, http://dx.doi.org/10.1088/1367-2630/17/6/063021.

[43] M. Kastner, Diverging equilibration times in long-range quantum spin models, Phys. Rev. Lett. 106 (13) (2011) 130601, http://dx.doi.org/10.
1103/PhysRevLett.106.130601.

[44] S. Hernández-Santana, C. Gogolin, J.I. Cirac, A. Acín, Correlation decay in fermionic lattice systems with power-law interactions at nonzero
temperature, Phys. Rev. Lett. 119 (2017) 110601, http://dx.doi.org/10.1103/PhysRevLett.119.110601, URL https://link.aps.org/doi/10.1103/
PhysRevLett.119.110601.

[45] T. Kuwahara, K. Saito, Area law of noncritical ground states in 1d long-range interacting systems, Nature Commun. 11 (1) (2020) 4478,
http://dx.doi.org/10.1038/s41467-020-18055.

[46] Nicolò Defenu, Tobias Donner, Tommaso Macrì, Guido Pagano, Stefano Ruffo, Andrea Trombettoni, Long-range interacting quantum systems,
Rev. Mod. Phys. 95 (2023) 035002, http://dx.doi.org/10.1103/RevModPhys.95.035002, https://link.aps.org/doi/10.1103/RevModPhys.95.035002.

[47] A. Campa, T. Dauxois, S. Ruffo, Statistical mechanics and dynamics of solvable models with long-range interactions, Phys. Rep. 480 (3–6)
(2009) 57–159, http://dx.doi.org/10.1016/j.physrep.2009.07.001.

[48] S. Sachdev, Quantum Phase Transitions, Cambridge Univ. Press, Cambridge, 1999, http://dx.doi.org/10.1017/CBO9780511973765.
[49] U.C. Täuber, Critical Dynamics, Cambridge University Press, 2014.
[50] L. Cevolani, G. Carleo, L. Sanchez-Palencia, Spreading of correlations in exactly solvable quantum models with long-range interactions in

arbitrary dimensions, New J. Phys. 18 (9) (2016) 093002, http://dx.doi.org/10.1088/1367-2630/18/9/093002.
[51] L. Cevolani, J. Despres, G. Carleo, L. Tagliacozzo, L. Sanchez-Palencia, Universal scaling laws for correlation spreading in quantum systems with

short- and long-range interactions, Phys. Rev. B 98 (2018) 024302, http://dx.doi.org/10.1103/PhysRevB.98.024302.
[52] N. Defenu, Metastability and discrete spectrum of long-range systems, in: Proceedings of the National Academy of Sciences, vol. 118, (30)

http://dx.doi.org/10.1073/pnas.2101785118.
[53] N. Defenu, T. Enss, M. Kastner, G. Morigi, Dynamical critical scaling of long-range interacting quantum magnets, Phys. Rev. Lett. 121 (2018)

240403, http://dx.doi.org/10.1103/PhysRevLett.121.240403, URL https://link.aps.org/doi/10.1103/PhysRevLett.121.240403.
[54] N. Defenu, Quantum adiabatic cycles and their breakdown, Comm. Phys. 4 (1) http://dx.doi.org/10.1080/s42005-021-00649-6.
[55] M. Heyl, Dynamical quantum phase transitions: a review, Rep. Progr. Phys. 81 (5) (2018) 054001, http://dx.doi.org/10.1080/1361-6633/aaaf9a.
[56] A. Lerose, J. Marino, B. Žunkovič, A. Gambassi, A. Silva, Chaotic dynamical ferromagnetic phase induced by nonequilibrium quantum fluctuations,

Phys. Rev. Lett. 120 (2018) 130603, http://dx.doi.org/10.1103/PhysRevLett.120.130603, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.
130603.

[57] A. Lerose, B. Žunkovič, J. Marino, A. Gambassi, A. Silva, Impact of nonequilibrium fluctuations on prethermal dynamical phase transitions in
long-range interacting spin chains, Phys. Rev. B 99 (4) http://dx.doi.org/10.1103/physrevb.99.045128.
76

http://dx.doi.org/10.1038/nature17409
http://dx.doi.org/10.1126/science.aan2608
http://arxiv.org/abs/1704.05803
http://dx.doi.org/10.1038/nature24654
https://www.nature.com/articles/s41586-020-2224-x
http://dx.doi.org/10.1038/s41586-019-1070-1
http://dx.doi.org/10.1073/pnas.1417132112
http://dx.doi.org/10.1038/s41586-019-1908-6
http://arxiv.org/abs/1806.09931
http://dx.doi.org/10.1038/nature21413
http://dx.doi.org/10.1038/nature21426
http://dx.doi.org/10.1103/PhysRevLett.120.180603
https://link.aps.org/doi/10.1103/PhysRevLett.120.180603
http://dx.doi.org/10.1038/nphys4119
http://arxiv.org/abs/1608.08938
http://dx.doi.org/10.1103/PhysRevLett.120.070501
http://dx.doi.org/10.1103/PhysRevLett.120.070501
http://dx.doi.org/10.1103/PhysRevLett.120.070501
https://link.aps.org/doi/10.1103/PhysRevLett.120.070501
http://dx.doi.org/10.1103/PhysRevLett.124.240505
https://link.aps.org/doi/10.1103/PhysRevLett.124.240505
http://dx.doi.org/10.1103/PhysRevLett.104.073602
https://link.aps.org/doi/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.126.113401
http://dx.doi.org/10.1103/PhysRevA.101.022333
https://link.aps.org/doi/10.1103/PhysRevA.101.022333
http://dx.doi.org/10.1103/PhysRevA.100.052103
https://link.aps.org/doi/10.1103/PhysRevA.100.052103
https://link.aps.org/doi/10.1103/PhysRevA.100.052103
https://link.aps.org/doi/10.1103/PhysRevA.100.052103
http://dx.doi.org/10.1103/PhysRevX.9.031006
https://link.aps.org/doi/10.1103/PhysRevX.9.031006
https://link.aps.org/doi/10.1103/PhysRevX.9.031006
https://link.aps.org/doi/10.1103/PhysRevX.9.031006
http://dx.doi.org/10.1103/PhysRevA.102.010401
https://link.aps.org/doi/10.1103/PhysRevA.102.010401
http://dx.doi.org/10.1103/PhysRevLett.123.250605
http://dx.doi.org/10.1103/PhysRevLett.123.250605
http://dx.doi.org/10.1103/PhysRevLett.123.250605
https://link.aps.org/doi/10.1103/PhysRevLett.123.250605
http://dx.doi.org/10.1088/1367-2630/17/6/063021
http://dx.doi.org/10.1103/PhysRevLett.106.130601
http://dx.doi.org/10.1103/PhysRevLett.106.130601
http://dx.doi.org/10.1103/PhysRevLett.106.130601
http://dx.doi.org/10.1103/PhysRevLett.119.110601
https://link.aps.org/doi/10.1103/PhysRevLett.119.110601
https://link.aps.org/doi/10.1103/PhysRevLett.119.110601
https://link.aps.org/doi/10.1103/PhysRevLett.119.110601
http://dx.doi.org/10.1038/s41467-020-18055
http://dx.doi.org/10.1103/RevModPhys.95.035002
https://link.aps.org/doi/10.1103/RevModPhys.95.035002
http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1017/CBO9780511973765
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb49
http://dx.doi.org/10.1088/1367-2630/18/9/093002
http://dx.doi.org/10.1103/PhysRevB.98.024302
http://dx.doi.org/10.1073/pnas.2101785118
http://dx.doi.org/10.1103/PhysRevLett.121.240403
https://link.aps.org/doi/10.1103/PhysRevLett.121.240403
http://dx.doi.org/10.1080/s42005-021-00649-6
http://dx.doi.org/10.1080/1361-6633/aaaf9a
http://dx.doi.org/10.1103/PhysRevLett.120.130603
https://link.aps.org/doi/10.1103/PhysRevLett.120.130603
https://link.aps.org/doi/10.1103/PhysRevLett.120.130603
https://link.aps.org/doi/10.1103/PhysRevLett.120.130603
http://dx.doi.org/10.1103/physrevb.99.045128


N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92
[58] A. Lerose, S. Pappalardi, Origin of the slow growth of entanglement entropy in long-range interacting spin systems, Phys. Rev. Res. 2 (2020)
012041, http://dx.doi.org/10.1103/PhysRevResearch.2.012041, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.012041.

[59] P. Hauke, L. Tagliacozzo, Spread of correlations in long-range interacting quantum systems, Phys. Rev. Lett. 111 (20) (2013) 207202,
http://dx.doi.org/10.1103/PhysRevLett.111.207202.

[60] L. Cevolani, G. Carleo, L. Sanchez-Palencia, Protected quasilocality in quantum systems with long-range interactions, Phys. Rev. A 92 (2015)
041603, http://dx.doi.org/10.1103/PhysRevA.92.041603, URL https://link.aps.org/doi/10.1103/PhysRevA.92.041603.

[61] L. Lepori, D. Vodola, G. Pupillo, G. Gori, A. Trombettoni, Effective theory and breakdown of conformal symmetry in a long-range quantum
chain, Ann. Physics 374 (2016) 35–66, http://dx.doi.org/10.1016/j.aop.2016.07.026.

[62] F. Liu, R. Lundgren, P. Titum, G. Pagano, J. Zhang, C. Monroe, A.V. Gorshkov, Confined quasiparticle dynamics in long-range interacting quantum
spin chains, Phys. Rev. Lett. 122 (2019) 150601, http://dx.doi.org/10.1103/PhysRevA.99.043404, URL https://link.aps.org/doi/10.1103/PhysRevA.
99.043404.

[63] A. Lerose, B. Žunkovič, A. Silva, A. Gambassi, Quasilocalized excitations induced by long-range interactions in translationally invariant quantum
spin chains, Phys. Rev. B 99 (2019) 121112, http://dx.doi.org/10.1103/PhysRevB.99.121112, URL https://link.aps.org/doi/10.1103/PhysRevB.99.
121112.

[64] M. Kac, G.E. Uhlenbeck, P.C. Hemmer, On the van der waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model,
J. Math. Phys. 4 (2) (1963) 216–228, http://dx.doi.org/10.1063/1.1703946.

[65] E.G. Lazo, M. Heyl, M. Dalmonte, A. Angelone, Finite-temperature critical behavior of long-range quantum Ising models, SciPost Phys. 11 (2021)
076, http://dx.doi.org/10.21468/SciPostPhys.11.4.076, URL https://scipost.org/10.21468/SciPostPhys.11.4.076.

[66] G.S. Joyce, Spherical model with long-range ferromagnetic interactions, Phys. Rev. 146 (1966) 349–358, http://dx.doi.org/10.1103/PhysRev.146.
349, URL https://link.aps.org/doi/10.1103/PhysRev.146.349.

[67] J. Sak, Recursion relations and fixed points for ferromagnets with long-range interactions, Phys. Rev. B 8 (1) (1973) 281–285, http:
//dx.doi.org/10.1103/PhysRevB.8.281.

[68] N. Defenu, A. Trombettoni, A. Codello, Fixed-point structure and effective fractional dimensionality for O( N) models with long-range
interactions, Phys. Rev. E 92 (5) (2015) 289, http://dx.doi.org/10.1103/PhysRevE.92.052113.

[69] F.J. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm. Math. Phys. 12 (2) (1969) 91–107, http://dx.doi.
org/10.1007/BF01645907.

[70] N. Defenu, A. Trombettoni, S. Ruffo, Criticality and phase diagram of quantum long-range O( N) models, Phys. Rev. B 96 (10) (2017) 1,
http://dx.doi.org/10.1103/PhysRevB.96.104432.

[71] M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M.D. Lukin, E. Demler, Probing real-space and time-resolved correlation functions with many-body
Ramsey interferometry, Phys. Rev. Lett. 111 (2013) 147205, http://dx.doi.org/10.1103/PhysRevLett.111.147205.

[72] M.C. Angelini, G. Parisi, F. Ricci-Tersenghi, Relations between short-range and long-range Ising models, Phys. Rev. E 89 (2014) 062120,
http://dx.doi.org/10.1103/PhysRevE.89.062120, URL https://link.aps.org/doi/10.1103/PhysRevE.89.062120.

[73] T. Horita, H. Suwa, S. Todo, Upper and lower critical decay exponents of Ising ferromagnets with long-range interaction, Phys. Rev. E 95 (1)
(2017) 012143, http://dx.doi.org/10.1103/PhysRevE.95.012143.

[74] C. Behan, L. Rastelli, S. Rychkov, B. Zan, Long-range critical exponents near the short-range crossover, Phys. Rev. Lett. 118 (24) (2017) 1819.
[75] A. Dutta, J.K. Bhattacharjee, Phase transitions in the quantum Ising and rotor models with a long-range interaction, Phys. Rev. B 64 (2001)

184106, http://dx.doi.org/10.1103/PhysRevB.64.184106, URL https://link.aps.org/doi/10.1103/PhysRevB.64.184106.
[76] C. Monthus, Dyson hierarchical quantum ferromagnetic Ising chain with pure or random transverse fields, J. Stat. Mech. Theory Exp. 2015 (5)

(2015) 05026, http://dx.doi.org/10.1088/1742-5468/2015/05/P05026, arXiv:1503.03727.
[77] C. Monthus, Real-space renormalization for the finite temperature statics and dynamics of the dyson long-ranged ferromagnetic and spin-glass

models, J. Stat. Mech. Theory Exp. 2016 (4) (2016) 043302, http://dx.doi.org/10.1088/1742-5468/2016/04/043302.
[78] J. Barré, D. Mukamel, S. Ruffo, Inequivalence of ensembles in a system with long-range interactions, Phys. Rev. Lett. 87 (2001) 030601,

http://dx.doi.org/10.1103/PhysRevLett.87.030601.
[79] M. Aizenman, H. Duminil-Copin, S. Warzel, Dimerization and néel order in different quantum spin chains through a shared loop representation,

Ann. Henri Poincaré 21 (8) (2020) 2737–2774, http://dx.doi.org/10.1080/s00023-020-00924-2.
[80] G. Wannier, Statistical Physics, Dover Books on Physics, Dover Publications, 1987, URL https://books.google.ch/books?id=MDYihVaJgDIC.
[81] L.D. Landau, E.M. Lifshit’s, Quantum Mechanics : Non-Relativistic Theory, Butterworth-Heinemann, 1991.
[82] J.I. Latorre, R. Orús, E. Rico, J. Vidal, Entanglement entropy in the Lipkin-Meshkov-Glick model, Phys. Rev. A 71 (2005) 064101, http:

//dx.doi.org/10.1103/PhysRevA.71.064101, URL https://link.aps.org/doi/10.1103/PhysRevA.71.064101.
[83] J. Vidal, R. Mosseri, J. Dukelsky, Entanglement in a first-order quantum phase transition, Phys. Rev. A 69 (2004) 054101, http://dx.doi.org/10.

1103/PhysRevA.69.054101, URL https://link.aps.org/doi/10.1103/PhysRevA.69.054101.
[84] S. Dusuel, J. Vidal, Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model, Phys. Rev. B 71

(22) (2005) 48, http://dx.doi.org/10.1103/PhysRevB.71.224420.
[85] H.J. Lipkin, N. Meshkov, A.J. Glick, Validity of many-body approximation methods for a solvable model, Nucl. Phys. 62 (2) (1965) 188–198,

http://dx.doi.org/10.1016/0029-5582(65)90862-X.
[86] N. Meshkov, A.J. Glick, H.J. Lipkin, Validity of many-body approximation methods for a solvable model. (II). Linearization procedures, Nucl.

Phys. 62 (2) (1965) 199–210, http://dx.doi.org/10.1016/0029-5582(65)90863-1.
[87] A.J. Glick, H.J. Lipkin, N. Meshkov, Validity of many-body approximation methods for a solvable model. (III). Diagram summations, Nucl. Phys.

62 (2) (1965) 211–224, http://dx.doi.org/10.1016/0029-5582(65)90864-3.
[88] G. Ortiz, R. Somma, J. Dukelsky, S. Rombouts, Exactly-solvable models derived from a generalized gaudin algebra, Nuclear Phys. B 707 (3)

(2005) 421–457, http://dx.doi.org/10.1080/j.nuclphysb.2004.11.008.
[89] A. Lerose, J. Marino, A. Gambassi, A. Silva, Prethermal quantum many-body kapitza phases of periodically driven spin systems, Phys. Rev. B

100 (2019) 104306, http://dx.doi.org/10.1103/PhysRevB.100.104306, URL https://link.aps.org/doi/10.1103/PhysRevB.100.104306.
[90] I. Frérot, P. Naldesi, T. Roscilde, Entanglement and fluctuations in the xxz model with power-law interactions, Phys. Rev. B 95 (2017) 245111,

http://dx.doi.org/10.1103/PhysRevB.95.245111, URL https://link.aps.org/doi/10.1103/PhysRevB.95.245111.
[91] S. Pappalardi, P. Calabrese, G. Parisi, Entanglement entropy of the long-range dyson hierarchical model, J. Stat. Mech. Theory Exp. 2019 (7)

(2019) 073102, http://dx.doi.org/10.1088/1742-5468/ab2903/pdf.
[92] C. Monthus, Properties of the simplest inhomogeneous and homogeneous tree-tensor-states for long-ranged quantum spin chains with or

without disorder, Phys. A 576 (2021) 126040, http://dx.doi.org/10.1016/j.physa.2021.126040.
[93] T. Koffel, M. Lewenstein, L. Tagliacozzo, Entanglement entropy for the long-range Ising chain in a transverse field, Phys. Rev. Lett. 109 (26)

(2012) 267203, http://dx.doi.org/10.1103/PhysRevLett.109.267203.
[94] D. Vodola, L. Lepori, E. Ercolessi, A.V. Gorshkov, G. Pupillo, Kitaev chains with long-range pairing, Phys. Rev. Lett. 113 (15) (2014) 156402,

http://dx.doi.org/10.1103/PhysRevLett.113.156402.
[95] A. Gabrielli, M. Joyce, B. Marcos, Quasistationary states and the range of pair interactions, Phys. Rev. Lett. 105 (21) http://dx.doi.org/10.1103/

physrevlett.105.210602.
77

http://dx.doi.org/10.1103/PhysRevResearch.2.012041
https://link.aps.org/doi/10.1103/PhysRevResearch.2.012041
http://dx.doi.org/10.1103/PhysRevLett.111.207202
http://dx.doi.org/10.1103/PhysRevA.92.041603
https://link.aps.org/doi/10.1103/PhysRevA.92.041603
http://dx.doi.org/10.1016/j.aop.2016.07.026
http://dx.doi.org/10.1103/PhysRevA.99.043404
https://link.aps.org/doi/10.1103/PhysRevA.99.043404
https://link.aps.org/doi/10.1103/PhysRevA.99.043404
https://link.aps.org/doi/10.1103/PhysRevA.99.043404
http://dx.doi.org/10.1103/PhysRevB.99.121112
https://link.aps.org/doi/10.1103/PhysRevB.99.121112
https://link.aps.org/doi/10.1103/PhysRevB.99.121112
https://link.aps.org/doi/10.1103/PhysRevB.99.121112
http://dx.doi.org/10.1063/1.1703946
http://dx.doi.org/10.21468/SciPostPhys.11.4.076
https://scipost.org/10.21468/SciPostPhys.11.4.076
http://dx.doi.org/10.1103/PhysRev.146.349
http://dx.doi.org/10.1103/PhysRev.146.349
http://dx.doi.org/10.1103/PhysRev.146.349
https://link.aps.org/doi/10.1103/PhysRev.146.349
http://dx.doi.org/10.1103/PhysRevB.8.281
http://dx.doi.org/10.1103/PhysRevB.8.281
http://dx.doi.org/10.1103/PhysRevB.8.281
http://dx.doi.org/10.1103/PhysRevE.92.052113
http://dx.doi.org/10.1007/BF01645907
http://dx.doi.org/10.1007/BF01645907
http://dx.doi.org/10.1007/BF01645907
http://dx.doi.org/10.1103/PhysRevB.96.104432
http://dx.doi.org/10.1103/PhysRevLett.111.147205
http://dx.doi.org/10.1103/PhysRevE.89.062120
https://link.aps.org/doi/10.1103/PhysRevE.89.062120
http://dx.doi.org/10.1103/PhysRevE.95.012143
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb74
http://dx.doi.org/10.1103/PhysRevB.64.184106
https://link.aps.org/doi/10.1103/PhysRevB.64.184106
http://dx.doi.org/10.1088/1742-5468/2015/05/P05026
http://arxiv.org/abs/1503.03727
http://dx.doi.org/10.1088/1742-5468/2016/04/043302
http://dx.doi.org/10.1103/PhysRevLett.87.030601
http://dx.doi.org/10.1080/s00023-020-00924-2
https://books.google.ch/books?id=MDYihVaJgDIC
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb81
http://dx.doi.org/10.1103/PhysRevA.71.064101
http://dx.doi.org/10.1103/PhysRevA.71.064101
http://dx.doi.org/10.1103/PhysRevA.71.064101
https://link.aps.org/doi/10.1103/PhysRevA.71.064101
http://dx.doi.org/10.1103/PhysRevA.69.054101
http://dx.doi.org/10.1103/PhysRevA.69.054101
http://dx.doi.org/10.1103/PhysRevA.69.054101
https://link.aps.org/doi/10.1103/PhysRevA.69.054101
http://dx.doi.org/10.1103/PhysRevB.71.224420
http://dx.doi.org/10.1016/0029-5582(65)90862-X
http://dx.doi.org/10.1016/0029-5582(65)90863-1
http://dx.doi.org/10.1016/0029-5582(65)90864-3
http://dx.doi.org/10.1080/j.nuclphysb.2004.11.008
http://dx.doi.org/10.1103/PhysRevB.100.104306
https://link.aps.org/doi/10.1103/PhysRevB.100.104306
http://dx.doi.org/10.1103/PhysRevB.95.245111
https://link.aps.org/doi/10.1103/PhysRevB.95.245111
http://dx.doi.org/10.1088/1742-5468/ab2903/pdf
http://dx.doi.org/10.1016/j.physa.2021.126040
http://dx.doi.org/10.1103/PhysRevLett.109.267203
http://dx.doi.org/10.1103/PhysRevLett.113.156402
http://dx.doi.org/10.1103/physrevlett.105.210602
http://dx.doi.org/10.1103/physrevlett.105.210602
http://dx.doi.org/10.1103/physrevlett.105.210602


N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92
[96] S.S. Roy, H.S. Dhar, Effect of long-range interactions on multipartite entanglement in Heisenberg chains, Phys. Rev. A 99 (6) (2019) 062318,
http://dx.doi.org/10.1103/PhysRevA.99.062318.

[97] F. Franchini, et al., An Introduction to Integrable Techniques for One-Dimensional Quantum Systems, vol. 940, Springer, 2017, http:
//dx.doi.org/10.1007/978-3-319-48487-7.

[98] F. Kranzl, S. Birnkammer, M.K. Joshi, A. Bastianello, R. Blatt, M. Knap, C.F. Roos, Observation of magnon bound states in the long-range,
anisotropic Heisenberg model, arXiv preprint arXiv:2212.03899, https://doi.org/10.48550/arXiv.2212.03899.

[99] E. Lieb, T. Schultz, D. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Physics 16 (3) (1961) 407–466, URL https://www.
sciencedirect.com/science/article/pii/0003491661901154?via%3Dihub.

[100] A. Lerose, F.M. Surace, P.P. Mazza, G. Perfetto, M. Collura, A. Gambassi, Quasilocalized dynamics from confinement of quantum excitations,
Phys. Rev. B 102 (2020) 041118, http://dx.doi.org/10.1103/PhysRevB.102.041118, URL https://link.aps.org/doi/10.1103/PhysRevB.102.041118.

[101] C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler, B. Vogell, M. Dalmonte, P. Hauke, R. Blatt, P. Zoller, U(1) wilson lattice gauge theories
in digital quantum simulators, New J. Phys. 19 (10) (2017) 103020, http://dx.doi.org/10.1088/1367-2630/aa89ab.

[102] B.M. McCoy, T.T. Wu, Two-dimensional Ising field theory in a magnetic field: Breakup of the cut in the two-point function, Phys. Rev. D 18
(1978) 1259–1267, http://dx.doi.org/10.1103/PhysRevD.18.1259, URL https://link.aps.org/doi/10.1103/PhysRevD.18.1259.

[103] R. Verdel, F. Liu, S. Whitsitt, A.V. Gorshkov, M. Heyl, Real-time dynamics of string breaking in quantum spin chains, Phys. Rev. B 102 (2020)
014308, http://dx.doi.org/10.1103/PhysRevB.102.014308, URL https://link.aps.org/doi/10.1103/PhysRevB.102.014308.

[104] M. Collura, A. De Luca, D. Rossini, A. Lerose, Discrete time-crystalline response stabilized by domain-wall confinement, Phys. Rev. X 12 (2022)
031037, http://dx.doi.org/10.1103/PhysRevX.12.031037, URL https://link.aps.org/doi/10.1103/PhysRevX.12.031037.

[105] I. Frérot, P. Naldesi, T. Roscilde, Multispeed prethermalization in quantum spin models with power-law decaying interactions, Phys. Rev. Lett.
120 (2018) 050401, http://dx.doi.org/10.1103/PhysRevLett.120.050401, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.050401.

[106] O.L. Acevedo, L. Quiroga, F.J. Rodriguez, N.F. Johnson, New dynamical scaling universality for quantum networks across adiabatic quantum
phase transitions, Phys. Rev. Lett. 112 (3) (2014) 030403, http://dx.doi.org/10.1103/PhysRevLett.112.030403.

[107] M.J. Hwang, R. Puebla, M.B. Plenio, Quantum phase transition and universal dynamics in the Rabi model, Phys. Rev. Lett. 115 (18) (2015)
180404, http://dx.doi.org/10.1103/PhysRevLett.115.180404.

[108] S. Bachmann, M. Fraas, G.M. Graf, Dynamical crossing of an infinitely degenerate critical point, Ann. Henri Poincaré 18 (5) (2017) 1755–1776,
http://dx.doi.org/10.1007/s00023-016-0539-9.

[109] S.A. Weidinger, M. Knap, Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system, Sci. Rep. 7
(1) (2017) 1–10, http://dx.doi.org/10.1038/srep45382.

[110] M. Syed, T. Enss, N. Defenu, Dynamical quantum phase transition in a bosonic system with long-range interactions, Phys. Rev. B 103 (2021)
064306, http://dx.doi.org/10.1103/PhysRevB.103.064306, URL https://link.aps.org/doi/10.1103/PhysRevB.103.064306.

[111] E.H. Lieb, Exact solution of the F model of an antiferroelectric, Phys. Rev. Lett. 18 (24) (1967) 1046–1048, http://dx.doi.org/10.1103/PhysRevLett.
18.1046.

[112] P. Calabrese, J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. Theory Exp. 2004 (6) (2004) 06002, http://dx.doi.org/
10.1088/1742-5468/2004/06/P06002.

[113] A.M. Läuchli, C. Kollath, Spreading of correlations and entanglement after a quench in the one-dimensional Bose–Hubbard model, J. Stat. Mech.
Theory Exp. 2008 (05) (2008) P05018, http://dx.doi.org/10.1088/1742-5468/2008/05/p05018.

[114] H. Kim, D.A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable system, Phys. Rev. Lett. 111 (2013) 127205, http:
//dx.doi.org/10.1103/PhysRevLett.111.127205, URL https://link.aps.org/doi/10.1103/PhysRevLett.111.127205.

[115] A. Nahum, J. Ruhman, S. Vijay, J. Haah, Quantum entanglement growth under random unitary dynamics, Phys. Rev. X 7 (2017) 031016,
http://dx.doi.org/10.1103/PhysRevX.7.031016, URL https://link.aps.org/doi/10.1103/PhysRevX.7.031016.

[116] T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau, I. Bloch, C. Gross, Microscopic observation of magnon bound states and their dynamics,
Nature 502 (7469) (2013) 76–79, http://dx.doi.org/10.1080/nature12541.

[117] S.R. Manmana, S. Wessel, R.M. Noack, A. Muramatsu, Strongly correlated fermions after a quantum quench, Phys. Rev. Lett. 98 (2007) 210405,
http://dx.doi.org/10.1103/PhysRevLett.98.210405.

[118] P. Barmettler, D. Poletti, M. Cheneau, C. Kollath, Propagation front of correlations in an interacting bose gas, Phys. Rev. A 85 (5) http:
//dx.doi.org/10.1080/physreva.85.053625.

[119] G. Carleo, F. Becca, L. Sanchez-Palencia, S. Sorella, M. Fabrizio, Light-cone effect and supersonic correlations in one- and two-dimensional
bosonic superfluids, Phys. Rev. A 89 (3) http://dx.doi.org/10.1080/physreva.89.031602.

[120] M. Kormos, M. Collura, G. Takács, P. Calabrese, Real-time confinement following a quantum quench to a non-integrable model, Nat. Phys. 13
(3) (2017) 246–249, http://dx.doi.org/10.1038/nphys3934.

[121] K.A. Landsman, C. Figgatt, T. Schuster, N.M. Linke, B. Yoshida, N.Y. Yao, C. Monroe, Verified quantum information scrambling, Nature 567
(7746) (2019) 61–65, http://dx.doi.org/10.1038/s41586-019-0952-6.

[122] M.C. Tran, A.Y. Guo, C.L. Baldwin, A. Ehrenberg, A.V. Gorshkov, A. Lucas, Lieb-Robinson light cone for power-law interactions, Phys. Rev. Lett.
127 (2021) 160401, http://dx.doi.org/10.1103/PhysRevLett.127.160401, URL https://link.aps.org/doi/10.1103/PhysRevLett.127.160401.

[123] M.B. Hastings, T. Koma, Spectral Gap and Exponential Decay of Correlations, Comm. Math. Phys. 265 (2006) 781.
[124] M. Foss-Feig, Z.-X. Gong, C.W. Clark, A.V. Gorshkov, Nearly linear light cones in long-range interacting quantum systems, Phys. Rev. Lett. 114

(15) (2015) 157201, http://dx.doi.org/10.1103/PhysRevLett.114.157201.
[125] C.-F. Chen, A. Lucas, C. Yin, Speed limits and locality in many-body quantum dynamics, arXiv preprint arXiv:2303.07386, http://dx.doi.org/10.

48550/arXiv.2303.07386.
[126] J. Eisert, M. Van Den Worm, S.R. Manmana, M. Kastner, Breakdown of quasilocality in long-range quantum lattice models, Phys. Rev. Lett.

111 (26) (2013) 260401, http://dx.doi.org/10.1103/PhysRevLett.111.260401.
[127] A.S. Buyskikh, M. Fagotti, J. Schachenmayer, F. Essler, A.J. Daley, Entanglement growth and correlation spreading with variable-range interactions

in spin and fermionic tunneling models, Phys. Rev. A 93 (5) (2016) 053620, http://dx.doi.org/10.1103/PhysRevA.93.053620.
[128] J. Schachenmayer, A. Pikovski, A.M. Rey, Dynamics of correlations in two-dimensional quantum spin models with long-range interactions: a

phase-space monte-carlo study, New J. Phys. 17 (6) (2015) 065009, http://dx.doi.org/10.1088/1367-2630/17/6/065009.
[129] J. Schachenmayer, B.P. Lanyon, C.F. Roos, A.J. Daley, Entanglement growth in quench dynamics with variable range interactions, Phys. Rev. X

3 (3) (2013) 031015, http://dx.doi.org/10.1103/PhysRevX.3.031015.
[130] M.C. Tran, C.-F. Chen, A. Ehrenberg, A.Y. Guo, A. Deshpande, Y. Hong, Z.-X. Gong, A.V. Gorshkov, A. Lucas, Hierarchy of linear light cones with

long-range interactions, Phys. Rev. X 10 (2020) 031009, http://dx.doi.org/10.1103/PhysRevX.10.031009, URL https://link.aps.org/doi/10.1103/
PhysRevX.10.031009.

[131] J. Schachenmayer, A. Pikovski, A.M. Rey, Many-body quantum spin dynamics with monte carlo trajectories on a discrete phase space, Phys.
Rev. X 5 (1) (2015) 011022, http://dx.doi.org/10.1103/PhysRevX.5.011022.

[132] J.C. Budich, M. Heyl, Dynamical topological order parameters far from equilibrium, Phys. Rev. B 93 (2016) 085416, http://dx.doi.org/10.1103/
PhysRevB.93.085416, URL https://link.aps.org/doi/10.1103/PhysRevB.93.085416.
78

http://dx.doi.org/10.1103/PhysRevA.99.062318
http://dx.doi.org/10.1007/978-3-319-48487-7
http://dx.doi.org/10.1007/978-3-319-48487-7
http://dx.doi.org/10.1007/978-3-319-48487-7
http://arxiv.org/abs/2212.03899
https://doi.org/10.48550/arXiv.2212.03899
https://www.sciencedirect.com/science/article/pii/0003491661901154?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0003491661901154?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0003491661901154?via%3Dihub
http://dx.doi.org/10.1103/PhysRevB.102.041118
https://link.aps.org/doi/10.1103/PhysRevB.102.041118
http://dx.doi.org/10.1088/1367-2630/aa89ab
http://dx.doi.org/10.1103/PhysRevD.18.1259
https://link.aps.org/doi/10.1103/PhysRevD.18.1259
http://dx.doi.org/10.1103/PhysRevB.102.014308
https://link.aps.org/doi/10.1103/PhysRevB.102.014308
http://dx.doi.org/10.1103/PhysRevX.12.031037
https://link.aps.org/doi/10.1103/PhysRevX.12.031037
http://dx.doi.org/10.1103/PhysRevLett.120.050401
https://link.aps.org/doi/10.1103/PhysRevLett.120.050401
http://dx.doi.org/10.1103/PhysRevLett.112.030403
http://dx.doi.org/10.1103/PhysRevLett.115.180404
http://dx.doi.org/10.1007/s00023-016-0539-9
http://dx.doi.org/10.1038/srep45382
http://dx.doi.org/10.1103/PhysRevB.103.064306
https://link.aps.org/doi/10.1103/PhysRevB.103.064306
http://dx.doi.org/10.1103/PhysRevLett.18.1046
http://dx.doi.org/10.1103/PhysRevLett.18.1046
http://dx.doi.org/10.1103/PhysRevLett.18.1046
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2008/05/p05018
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevLett.111.127205
https://link.aps.org/doi/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevX.7.031016
https://link.aps.org/doi/10.1103/PhysRevX.7.031016
http://dx.doi.org/10.1080/nature12541
http://dx.doi.org/10.1103/PhysRevLett.98.210405
http://dx.doi.org/10.1080/physreva.85.053625
http://dx.doi.org/10.1080/physreva.85.053625
http://dx.doi.org/10.1080/physreva.85.053625
http://dx.doi.org/10.1080/physreva.89.031602
http://dx.doi.org/10.1038/nphys3934
http://dx.doi.org/10.1038/s41586-019-0952-6
http://dx.doi.org/10.1103/PhysRevLett.127.160401
https://link.aps.org/doi/10.1103/PhysRevLett.127.160401
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb123
http://dx.doi.org/10.1103/PhysRevLett.114.157201
http://arxiv.org/abs/2303.07386
http://dx.doi.org/10.48550/arXiv.2303.07386
http://dx.doi.org/10.48550/arXiv.2303.07386
http://dx.doi.org/10.48550/arXiv.2303.07386
http://dx.doi.org/10.1103/PhysRevLett.111.260401
http://dx.doi.org/10.1103/PhysRevA.93.053620
http://dx.doi.org/10.1088/1367-2630/17/6/065009
http://dx.doi.org/10.1103/PhysRevX.3.031015
http://dx.doi.org/10.1103/PhysRevX.10.031009
https://link.aps.org/doi/10.1103/PhysRevX.10.031009
https://link.aps.org/doi/10.1103/PhysRevX.10.031009
https://link.aps.org/doi/10.1103/PhysRevX.10.031009
http://dx.doi.org/10.1103/PhysRevX.5.011022
http://dx.doi.org/10.1103/PhysRevB.93.085416
http://dx.doi.org/10.1103/PhysRevB.93.085416
http://dx.doi.org/10.1103/PhysRevB.93.085416
https://link.aps.org/doi/10.1103/PhysRevB.93.085416


N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92
[133] B. Nachtergaele, R. Sims, Lieb-Robinson bounds and the exponential clustering theorem, Comm. Math. Phys. 265 (1) (2006) 119–130,
http://dx.doi.org/10.1007/s00220-006-1556-1.

[134] B. Nachtergaele, Y. Ogata, R. Sims, Propagation of correlations in quantum lattice systems, J. Stat. Phys. 124 (1) (2006) 1–13, http:
//dx.doi.org/10.1007/s10955-006-9143-6.

[135] B. Nachtergaele, H. Raz, B. Schlein, R. Sims, Lieb-Robinson bounds for harmonic and anharmonic lattice systems, Comm. Math. Phys. 286 (1)
(2009) 1073–1098, http://dx.doi.org/10.1007/s00220-008-0630-2.

[136] I. Prémont-Schwarz, A. Hamma, I. Klich, F. Markopoulou-Kalamara, Lieb-Robinson bounds for commutator-bounded operators, Phys. Rev. A 81
(2010) 040102, http://dx.doi.org/10.1103/PhysRevA.81.040102, URL https://link.aps.org/doi/10.1103/PhysRevA.81.040102.

[137] I. Prémont-Schwarz, J. Hnybida, Lieb-Robinson bounds on the speed of information propagation, Phys. Rev. A 81 (2010) 062107, http:
//dx.doi.org/10.1103/PhysRevA.81.062107, URL https://link.aps.org/doi/10.1103/PhysRevA.81.062107.

[138] Z.-X. Gong, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, Persistence of locality in systems with power-law interactions, Phys. Rev. Lett. 113 (3)
(2014) 030602, http://dx.doi.org/10.1103/PhysRevLett.113.030602.

[139] Z. Eldredge, Z.-X. Gong, J.T. Young, A.H. Moosavian, M. Foss-Feig, A.V. Gorshkov, Fast quantum state transfer and entanglement renormalization
using long-range interactions, Phys. Rev. Lett. 119 (2017) 170503, http://dx.doi.org/10.1103/PhysRevLett.119.170503, URL https://link.aps.org/
doi/10.1103/PhysRevLett.119.170503.

[140] M.C. Tran, C.-F. Chen, A. Ehrenberg, A.Y. Guo, A. Deshpande, Y. Hong, Z.-X. Gong, A.V. Gorshkov, A. Lucas, Hierarchy of linear light cones with
long-range interactions, Phys. Rev. X 10 (2020) 031009, http://dx.doi.org/10.1103/PhysRevX.10.031009, URL https://link.aps.org/doi/10.1103/
PhysRevX.10.031009.

[141] M.C. Tran, A.Y. Guo, A. Deshpande, A. Lucas, A.V. Gorshkov, Optimal state transfer and entanglement generation in power-law interacting
systems, Phys. Rev. X 11 (2021) 031016, http://dx.doi.org/10.1103/PhysRevX.11.031016, URL https://link.aps.org/doi/10.1103/PhysRevX.11.
031016.

[142] T. Kuwahara, K. Saito, Strictly linear light cones in long-range interacting systems of arbitrary dimensions, Phys. Rev. X 10 (2020) 031010,
http://dx.doi.org/10.1103/PhysRevX.10.031010, URL https://link.aps.org/doi/10.1103/PhysRevX.10.031010.

[143] G. Jona-Lasinio, C. Presilla, Chaotic properties of quantum many-body systems in the thermodynamic limit, Phys. Rev. Lett. 77 (1996)
4322–4325, http://dx.doi.org/10.1103/PhysRevLett.77.4322, URL https://link.aps.org/doi/10.1103/PhysRevLett.77.4322.

[144] T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens (Eds.), The Hamiltonian Mean Field Model: From Dynamics To Statistical Mechanics and Back,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, http://dx.doi.org/10.1007/3-540-45835-2_16.

[145] D. Mukamel, S. Ruffo, N. Schreiber, Breaking of ergodicity and long relaxation times in systems with long-range interactions, Phys. Rev. Lett.
95 (24) (2005) 240604, http://dx.doi.org/10.1103/PhysRevLett.95.240604, arXiv:0508604, URL https://link.aps.org/doi/10.1103/PhysRevLett.95.
240604.

[146] R. Bachelard, M. Kastner, Universal threshold for the dynamical behavior of lattice systems with long-range interactions, Phys. Rev. Lett. 110
(2013) 170603, http://dx.doi.org/10.1103/PhysRevLett.110.170603, URL https://link.aps.org/doi/10.1103/PhysRevLett.110.170603.

[147] S. Schütz, G. Morigi, Prethermalization of atoms due to photon-mediated long-range interactions, Phys. Rev. Lett. 113 (20) (2014) 203002,
http://dx.doi.org/10.1103/PhysRevLett.113.203002.

[148] S. Schütz, H. Habibian, G. Morigi, Cooling of atomic ensembles in optical cavities: Semiclassical limit, Phys. Rev. A 88 (3) (2013) 033427,
http://dx.doi.org/10.1103/PhysRevA.88.033427.

[149] S. Schütz, S.B. Jäger, G. Morigi, Thermodynamics and dynamics of atomic self-organization in an optical cavity, Phys. Rev. A 92 (6) (2015)
063808, http://dx.doi.org/10.1103/PhysRevA.92.063808.

[150] A. Campa, T. Dauxois, D. Fanelli, S. Ruffo, Physics of Long-Range Interacting Systems, Oxford Univ. Press, 2014, http://dx.doi.org/10.1093/acprof:
oso/9780199581931.001.0001.

[151] J. Barré, B. Gonçalves, Ensemble inequivalence in random graphs, Phys. A 386 (1) (2007) 212–218, http://dx.doi.org/10.1016/j.physa.2007.08.015.
[152] I. Latella, A. Pérez-Madrid, A. Campa, L. Casetti, S. Ruffo, Thermodynamics of nonadditive systems, Phys. Rev. Lett. 114 (2015) 230601,

http://dx.doi.org/10.1103/PhysRevLett.114.230601, URL https://link.aps.org/doi/10.1103/PhysRevLett.114.230601.
[153] I. Ispolatov, E.G.D. Cohen, On first-order phase transitions in microcanonical and canonical non-extensive systems, Physica A 295 (3) (2001)

475–487, http://dx.doi.org/10.1016/S0378-4371(01)00159-5, arXiv:cond-mat/0101311.
[154] S. Gupta, M. Potters, S. Ruffo, One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics

of spatial fourier modes, Phys. Rev. E 85 (2012) 066201, http://dx.doi.org/10.1103/PhysRevE.85.066201, URL https://link.aps.org/doi/10.1103/
PhysRevE.85.066201.

[155] S. Gupta, A. Campa, S. Ruffo, Overdamped dynamics of long-range systems on a one-dimensional lattice: Dominance of the mean-field mode and
phase transition, Phys. Rev. E 86 (2012) 061130, http://dx.doi.org/10.1103/PhysRevE.86.061130, URL https://link.aps.org/doi/10.1103/PhysRevE.
86.061130.

[156] S. Schütz, S.B. Jäger, G. Morigi, Dissipation-assisted prethermalization in long-range interacting atomic ensembles, Phys. Rev. Lett. 117 (8)
(2016) 083001, http://dx.doi.org/10.1103/PhysRevLett.117.083001.

[157] L. Hruby, N. Dogra, M. Landini, T. Donner, T. Esslinger, Metastability and avalanche dynamics in strongly correlated gases with long-range
interactions, Proc. Natl. Acad. Sci. 115 (13) (2018) 3279–3284, http://dx.doi.org/10.1073/pnas.1720415115.

[158] Y. Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal. 142 (2) (1996) 406–445, http://dx.doi.org/10.
1006/jfan.1996.0155, URL https://www.sciencedirect.com/science/article/pii/S002212369690155X.

[159] D. Thouless, The Anderson model, J. Non-Cryst. Solids 8–10 (1972) 461–469, http://dx.doi.org/10.1016/0022-3093(72)90177-9, amorphous and
Liquid Semiconductors.

[160] J. Fröhlich, T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys. 88 (2)
(1983) 151–184, http://dx.doi.org/10.1007/BF01209475, https://cmp/1103922279.

[161] B. Simon, M. Taylor, T. Wolff, Some rigorous results for the Anderson model, Phys. Rev. Lett. 54 (1985) 1589–1592, http://dx.doi.org/10.1103/
PhysRevLett.54.1589, URL https://link.aps.org/doi/10.1103/PhysRevLett.54.1589.

[162] A. Scardicchio, T. Thiery, Perturbation theory approaches to Anderson and many-body localization: some lecture notes, 2017, arXiv:1710.01234.
[163] M. Antoni, S. Ruffo, Clustering and relaxation in Hamiltonian long-range dynamics, Phys. Rev. E 52 (3) (1995) 2361–2374, http://dx.doi.org/

10.1103/PhysRevE.52.2361, URL https://link.aps.org/doi/10.1103/PhysRevE.52.2361.
[164] J. Berges, T. Gasenzer, Quantum versus classical statistical dynamics of an ultracold bose gas, Phys. Rev. A 76 (2007) 033604, http:

//dx.doi.org/10.1103/PhysRevA.76.033604, URL https://link.aps.org/doi/10.1103/PhysRevA.76.033604.
[165] S. Sotiriadis, J. Cardy, Quantum quench in interacting field theory: A self-consistent approximation, Phys. Rev. B 81 (2010) 134305,

http://dx.doi.org/10.1103/PhysRevB.81.134305, URL https://link.aps.org/doi/10.1103/PhysRevB.81.134305.
[166] A. Chiocchetta, A. Gambassi, S. Diehl, J. Marino, Dynamical crossovers in prethermal critical states, Phys. Rev. Lett. 118 (2017) 135701,

http://dx.doi.org/10.1103/PhysRevLett.118.135701, URL https://link.aps.org/doi/10.1103/PhysRevLett.118.135701.
[167] J.C. Halimeh, M.F. Maghrebi, Quantum aging and dynamical universality in the long-range o(n→∞) model, Phys. Rev. E 103 (2021) 052142,

http://dx.doi.org/10.1103/PhysRevE.103.052142.
79

http://dx.doi.org/10.1007/s00220-006-1556-1
http://dx.doi.org/10.1007/s10955-006-9143-6
http://dx.doi.org/10.1007/s10955-006-9143-6
http://dx.doi.org/10.1007/s10955-006-9143-6
http://dx.doi.org/10.1007/s00220-008-0630-2
http://dx.doi.org/10.1103/PhysRevA.81.040102
https://link.aps.org/doi/10.1103/PhysRevA.81.040102
http://dx.doi.org/10.1103/PhysRevA.81.062107
http://dx.doi.org/10.1103/PhysRevA.81.062107
http://dx.doi.org/10.1103/PhysRevA.81.062107
https://link.aps.org/doi/10.1103/PhysRevA.81.062107
http://dx.doi.org/10.1103/PhysRevLett.113.030602
http://dx.doi.org/10.1103/PhysRevLett.119.170503
https://link.aps.org/doi/10.1103/PhysRevLett.119.170503
https://link.aps.org/doi/10.1103/PhysRevLett.119.170503
https://link.aps.org/doi/10.1103/PhysRevLett.119.170503
http://dx.doi.org/10.1103/PhysRevX.10.031009
https://link.aps.org/doi/10.1103/PhysRevX.10.031009
https://link.aps.org/doi/10.1103/PhysRevX.10.031009
https://link.aps.org/doi/10.1103/PhysRevX.10.031009
http://dx.doi.org/10.1103/PhysRevX.11.031016
https://link.aps.org/doi/10.1103/PhysRevX.11.031016
https://link.aps.org/doi/10.1103/PhysRevX.11.031016
https://link.aps.org/doi/10.1103/PhysRevX.11.031016
http://dx.doi.org/10.1103/PhysRevX.10.031010
https://link.aps.org/doi/10.1103/PhysRevX.10.031010
http://dx.doi.org/10.1103/PhysRevLett.77.4322
https://link.aps.org/doi/10.1103/PhysRevLett.77.4322
http://dx.doi.org/10.1007/3-540-45835-2_16
http://dx.doi.org/10.1103/PhysRevLett.95.240604
http://arxiv.org/abs/0508604
https://link.aps.org/doi/10.1103/PhysRevLett.95.240604
https://link.aps.org/doi/10.1103/PhysRevLett.95.240604
https://link.aps.org/doi/10.1103/PhysRevLett.95.240604
http://dx.doi.org/10.1103/PhysRevLett.110.170603
https://link.aps.org/doi/10.1103/PhysRevLett.110.170603
http://dx.doi.org/10.1103/PhysRevLett.113.203002
http://dx.doi.org/10.1103/PhysRevA.88.033427
http://dx.doi.org/10.1103/PhysRevA.92.063808
http://dx.doi.org/10.1093/acprof:oso/9780199581931.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199581931.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199581931.001.0001
http://dx.doi.org/10.1016/j.physa.2007.08.015
http://dx.doi.org/10.1103/PhysRevLett.114.230601
https://link.aps.org/doi/10.1103/PhysRevLett.114.230601
http://dx.doi.org/10.1016/S0378-4371(01)00159-5
http://arxiv.org/abs/cond-mat/0101311
http://dx.doi.org/10.1103/PhysRevE.85.066201
https://link.aps.org/doi/10.1103/PhysRevE.85.066201
https://link.aps.org/doi/10.1103/PhysRevE.85.066201
https://link.aps.org/doi/10.1103/PhysRevE.85.066201
http://dx.doi.org/10.1103/PhysRevE.86.061130
https://link.aps.org/doi/10.1103/PhysRevE.86.061130
https://link.aps.org/doi/10.1103/PhysRevE.86.061130
https://link.aps.org/doi/10.1103/PhysRevE.86.061130
http://dx.doi.org/10.1103/PhysRevLett.117.083001
http://dx.doi.org/10.1073/pnas.1720415115
http://dx.doi.org/10.1006/jfan.1996.0155
http://dx.doi.org/10.1006/jfan.1996.0155
http://dx.doi.org/10.1006/jfan.1996.0155
https://www.sciencedirect.com/science/article/pii/S002212369690155X
http://dx.doi.org/10.1016/0022-3093(72)90177-9
http://dx.doi.org/10.1007/BF01209475
https://cmp/1103922279
http://dx.doi.org/10.1103/PhysRevLett.54.1589
http://dx.doi.org/10.1103/PhysRevLett.54.1589
http://dx.doi.org/10.1103/PhysRevLett.54.1589
https://link.aps.org/doi/10.1103/PhysRevLett.54.1589
http://arxiv.org/abs/1710.01234
http://dx.doi.org/10.1103/PhysRevE.52.2361
http://dx.doi.org/10.1103/PhysRevE.52.2361
http://dx.doi.org/10.1103/PhysRevE.52.2361
https://link.aps.org/doi/10.1103/PhysRevE.52.2361
http://dx.doi.org/10.1103/PhysRevA.76.033604
http://dx.doi.org/10.1103/PhysRevA.76.033604
http://dx.doi.org/10.1103/PhysRevA.76.033604
https://link.aps.org/doi/10.1103/PhysRevA.76.033604
http://dx.doi.org/10.1103/PhysRevB.81.134305
https://link.aps.org/doi/10.1103/PhysRevB.81.134305
http://dx.doi.org/10.1103/PhysRevLett.118.135701
https://link.aps.org/doi/10.1103/PhysRevLett.118.135701
http://dx.doi.org/10.1103/PhysRevE.103.052142


N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92
[168] C. De Grandi, A. Polkovnikov, Adiabatic perturbation theory: From Landau–Zener problem to quenching through a quantum critical point, in:
Lecture Notes in Physics, 2010, pp. 75–114, http://dx.doi.org/10.1007/978-3-642-11470-0_4.

[169] A. Chandran, A. Nanduri, S.S. Gubser, S.L. Sondhi, Equilibration and coarsening in the quantum o(n) model at infinite n, Phys. Rev. B 88 (2013)
024306, http://dx.doi.org/10.1103/PhysRevB.88.024306, URL https://link.aps.org/doi/10.1103/PhysRevB.88.024306.

[170] C. Anteneodo, C. Tsallis, Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions, Phys. Rev. Lett. 80 (1998)
5313–5316, http://dx.doi.org/10.1103/PhysRevLett.80.5313, URL https://link.aps.org/doi/10.1103/PhysRevLett.80.5313.

[171] C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005, URL https://books.google.ch/books?id=CgByyoBJJwgC.
[172] R. Dabrowski, G.V. Dunne, Time dependence of adiabatic particle number, Phys. Rev. D 94 (6) (2016) 443.
[173] P. Reimann, Foundation of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett. 101 (2008) 190403, http://dx.doi.

org/10.1103/PhysRevLett.101.190403, URL https://link.aps.org/doi/10.1103/PhysRevLett.101.190403.
[174] N. Linden, S. Popescu, A.J. Short, A. Winter, Quantum mechanical evolution towards thermal equilibrium, Phys. Rev. E 79 (6) (2009) 061103,

http://dx.doi.org/10.1103/PhysRevE.79.061103.
[175] T.R. de Oliveira, C. Charalambous, D. Jonathan, M. Lewenstein, A. Riera, Equilibration time scales in closed many-body quantum systems, New

J. Phys. 20 (3) (2018) 033032, http://dx.doi.org/10.1088/1367-2630/aab03b, URL arXiv:1704.06646.
[176] J.M. Kosterlitz, D.J. Thouless, R.C. Jones, Spherical model of a spin-glass, Phys. Rev. Lett. 36 (1976) 1217–1220, http://dx.doi.org/10.1103/

PhysRevLett.36.1217, URL https://link.aps.org/doi/10.1103/PhysRevLett.36.1217.
[177] S.F. Edwards, R.C. Jones, The eigenvalue spectrum of a large symmetric random matrix, J. Phys. A Math. General 9 (10) (1976) 1595–1603,

http://dx.doi.org/10.1088/0305-4470/9/10/011.
[178] L. Dell’Anna, S. Fantoni, P. Sodano, A. Trombettoni, Critical temperature of non-interacting bose gases on disordered lattices, J. Stat. Mech.

Theory Exp. 2008 (11) (2008) P11012, http://dx.doi.org/10.1088/1742-5468/2008/11/p11012.
[179] M.L. Mehta, Random Matrices, third ed., in: Pure and applied mathematics, vol. 142, Academic Press, 2004, URL http://gen.lib.rus.ec/book/

index.php?md5=ec21c5f5cbb6f1ff9071a854e06f9b3a.
[180] D. Cirano, G. Irene, Random Fields and Spin Glasses: A Field Theory Approach, first ed., Cambridge University Press, 2006, URL http:

//gen.lib.rus.ec/book/index.php?md5=e78d76132a5b94f9fb16c2d9ac1f8828.
[181] A.J. Short, Equilibration of quantum systems and subsystems, New J. Phys. 13 (5) (2011) 053009, http://dx.doi.org/10.1088/1367-2630/13/5/

053009.
[182] C. Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. Lond. Ser. A 137 (833) (1932) 696–702, http://dx.doi.org/10.1098/rspa.1932.0165.
[183] B. Damski, The simplest quantum model supporting the Kibble–Zurek mechanism of topological defect production: Landau–Zener transitions

from a new perspective, Phys. Rev. Lett. 95 (3) (2005) 1301, http://dx.doi.org/10.1103/PhysRevLett.95.035701.
[184] S. Boixo, R.D. Somma, Necessary condition for the quantum adiabatic approximation, Phys. Rev. A 81 (2010) 032308, http://dx.doi.org/10.

1103/PhysRevA.81.032308, URL https://link.aps.org/doi/10.1103/PhysRevA.81.032308.
[185] M. Born, V. Fock, Beweis des Adiabatensatzes, Z. Phys. 51 (3–4) (1928) 165–180, http://dx.doi.org/10.1007/BF01343193.
[186] W. Zwerger, Limited adiabaticity, Nat. Phys. 4 (6) (2008) 444–446, http://dx.doi.org/10.1038/nphys979.
[187] W.H. Zurek, Cosmological experiments in condensed matter systems, Phys. Rep. 276 (4) (1996) 177–221.
[188] J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys. 59 (6) (2010) 1063–1189, http:

//dx.doi.org/10.1080/00018732.2010.514702.
[189] A. del Campo, W.H. Zurek, Universality of phase transition dynamics: Topological defects from symmetry breaking, Internat. J. Modern Phys.

A 29.
[190] W.H. Zurek, U. Dorner, P. Zoller, Dynamics of a quantum phase transition, Phys. Rev. Lett. 95 (10) (2005) 1301, http://dx.doi.org/10.1103/

PhysRevLett.95.105701.
[191] J. Dziarmaga, Dynamics of a quantum phase transition: Exact solution of the quantum Ising model, Phys. Rev. Lett. 95 (24) (2005) 245701,

http://dx.doi.org/10.1103/PhysRevLett.95.245701.
[192] A. Dutta, A. Dutta, Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain, Phys. Rev. B 96 (12) (2017) 1301,

http://dx.doi.org/10.1103/PhysRevB.96.125113.
[193] A. Polkovnikov, Universal adiabatic dynamics in the vicinity of a quantum critical point, Phys. Rev. B 72 (16) (2005) 161201.
[194] N. Defenu, G. Morigi, L. Dell’Anna, T. Enss, Universal dynamical scaling of long-range topological superconductors, Phys. Rev. B 100 (2019)

184306, http://dx.doi.org/10.1103/PhysRevB.100.184306, URL https://link.aps.org/doi/10.1103/PhysRevB.100.184306.
[195] U. Divakaran, V. Mukherjee, A. Dutta, D. Sen, Defect production due to quenching through a multicritical point, J. Stat. Mech. Theory Exp.

2009 (2) (2009) 02007, http://dx.doi.org/10.1088/1742-5468/2009/02/P02007, arXiv:0807.3606.
[196] S. Deng, G. Ortiz, L. Viola, Anomalous nonergodic scaling in adiabatic multicritical quantum quenches, Phys. Rev. B 80 (2009) 241109,

http://dx.doi.org/10.1103/PhysRevB.80.241109, URL https://link.aps.org/doi/10.1103/PhysRevB.80.241109.
[197] T. Caneva, R. Fazio, G.E. Santoro, Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model, Phys. Rev. B 78 (10) http://dx.doi.org/10.

1103/physrevb.78.104426.
[198] L. Landau, E. Lifshitz, Mechanics: Volume 1, No. V. 1, Elsevier Science, 1982.
[199] H.R. Lewis, Classical and quantum systems with time-dependent Harmonic-Oscillator-type Hamiltonians, Phys. Rev. Lett. 18 (13) (1967)

510–512, http://dx.doi.org/10.1103/PhysRevLett.18.510.
[200] H.R. Lewis Jr., Class of exact invariants for classical and quantum time-dependent harmonic oscillators, J. Math. Phys. 9 (11) (1968) 1976–1986,

http://dx.doi.org/10.1063/1.1664532.
[201] H.R. Lewis Jr., W.B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a

time-dependent electromagnetic field, J. Math. Phys. 10 (8) (1969) 1458–1473, http://dx.doi.org/10.1063/1.1664991.
[202] R. Botet, R. Jullien, P. Pfeuty, Size scaling for infinitely coordinated systems, Phys. Rev. Lett. 49 (7) (1982) 478–481, http://dx.doi.org/10.1103/

PhysRevLett.49.478.
[203] S. Dusuel, J. Vidal, Finite-size scaling exponents and entanglement in the two-level BCS model, Phys. Rev. A 71 (2005) 060304, http:

//dx.doi.org/10.1103/PhysRevA.71.060304, URL https://link.aps.org/doi/10.1103/PhysRevA.71.060304.
[204] J. Vidal, S. Dusuel, Finite-size scaling exponents in the Dicke model, Europhys. Lett. 74 (5) (2006) 817, http://dx.doi.org/10.1209/epl/i2006-

10041-9.
[205] P. Ribeiro, J. Vidal, R. Mosseri, Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections,

Phys. Rev. E 78 (2) (2008) 2007, http://dx.doi.org/10.1103/PhysRevE.78.021106.
[206] C. de Grandi, A. Polkovnikov, Adiabatic perturbation theory: From Landau–Zener problem to quenching through a quantum critical point, in:

Quantum Quenching, Annealing and Computation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 75–114, http://dx.doi.org/10.1007/
978-3-642-11470-0_4.

[207] A. Polkovnikov, V. Gritsev, Breakdown of the adiabatic limit in low-dimensional gapless systems, Nat. Phys. 4 (6) (2008) 477–481, http:
//dx.doi.org/10.1038/nphys963.

[208] F.J. Gómez-Ruiz, J.J. Mayo, A. del Campo, Full counting statistics of topological defects after crossing a phase transition, Phys. Rev. Lett. 124
(2020) 240602, http://dx.doi.org/10.1103/PhysRevLett.124.240602, URL https://link.aps.org/doi/10.1103/PhysRevLett.124.240602.
80

http://dx.doi.org/10.1007/978-3-642-11470-0_4
http://dx.doi.org/10.1103/PhysRevB.88.024306
https://link.aps.org/doi/10.1103/PhysRevB.88.024306
http://dx.doi.org/10.1103/PhysRevLett.80.5313
https://link.aps.org/doi/10.1103/PhysRevLett.80.5313
https://books.google.ch/books?id=CgByyoBJJwgC
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb172
http://dx.doi.org/10.1103/PhysRevLett.101.190403
http://dx.doi.org/10.1103/PhysRevLett.101.190403
http://dx.doi.org/10.1103/PhysRevLett.101.190403
https://link.aps.org/doi/10.1103/PhysRevLett.101.190403
http://dx.doi.org/10.1103/PhysRevE.79.061103
http://dx.doi.org/10.1088/1367-2630/aab03b
http://arxiv.org/abs/1704.06646
http://dx.doi.org/10.1103/PhysRevLett.36.1217
http://dx.doi.org/10.1103/PhysRevLett.36.1217
http://dx.doi.org/10.1103/PhysRevLett.36.1217
https://link.aps.org/doi/10.1103/PhysRevLett.36.1217
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1088/1742-5468/2008/11/p11012
http://gen.lib.rus.ec/book/index.php?md5=ec21c5f5cbb6f1ff9071a854e06f9b3a
http://gen.lib.rus.ec/book/index.php?md5=ec21c5f5cbb6f1ff9071a854e06f9b3a
http://gen.lib.rus.ec/book/index.php?md5=ec21c5f5cbb6f1ff9071a854e06f9b3a
http://gen.lib.rus.ec/book/index.php?md5=e78d76132a5b94f9fb16c2d9ac1f8828
http://gen.lib.rus.ec/book/index.php?md5=e78d76132a5b94f9fb16c2d9ac1f8828
http://gen.lib.rus.ec/book/index.php?md5=e78d76132a5b94f9fb16c2d9ac1f8828
http://dx.doi.org/10.1088/1367-2630/13/5/053009
http://dx.doi.org/10.1088/1367-2630/13/5/053009
http://dx.doi.org/10.1088/1367-2630/13/5/053009
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1103/PhysRevLett.95.035701
http://dx.doi.org/10.1103/PhysRevA.81.032308
http://dx.doi.org/10.1103/PhysRevA.81.032308
http://dx.doi.org/10.1103/PhysRevA.81.032308
https://link.aps.org/doi/10.1103/PhysRevA.81.032308
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1038/nphys979
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb187
http://dx.doi.org/10.1080/00018732.2010.514702
http://dx.doi.org/10.1080/00018732.2010.514702
http://dx.doi.org/10.1080/00018732.2010.514702
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb189
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb189
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb189
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevB.96.125113
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb193
http://dx.doi.org/10.1103/PhysRevB.100.184306
https://link.aps.org/doi/10.1103/PhysRevB.100.184306
http://dx.doi.org/10.1088/1742-5468/2009/02/P02007
http://arxiv.org/abs/0807.3606
http://dx.doi.org/10.1103/PhysRevB.80.241109
https://link.aps.org/doi/10.1103/PhysRevB.80.241109
http://dx.doi.org/10.1103/physrevb.78.104426
http://dx.doi.org/10.1103/physrevb.78.104426
http://dx.doi.org/10.1103/physrevb.78.104426
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb198
http://dx.doi.org/10.1103/PhysRevLett.18.510
http://dx.doi.org/10.1063/1.1664532
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1103/PhysRevLett.49.478
http://dx.doi.org/10.1103/PhysRevLett.49.478
http://dx.doi.org/10.1103/PhysRevLett.49.478
http://dx.doi.org/10.1103/PhysRevA.71.060304
http://dx.doi.org/10.1103/PhysRevA.71.060304
http://dx.doi.org/10.1103/PhysRevA.71.060304
https://link.aps.org/doi/10.1103/PhysRevA.71.060304
http://dx.doi.org/10.1209/epl/i2006-10041-9
http://dx.doi.org/10.1209/epl/i2006-10041-9
http://dx.doi.org/10.1209/epl/i2006-10041-9
http://dx.doi.org/10.1103/PhysRevE.78.021106
http://dx.doi.org/10.1007/978-3-642-11470-0_4
http://dx.doi.org/10.1007/978-3-642-11470-0_4
http://dx.doi.org/10.1007/978-3-642-11470-0_4
http://dx.doi.org/10.1038/nphys963
http://dx.doi.org/10.1038/nphys963
http://dx.doi.org/10.1038/nphys963
http://dx.doi.org/10.1103/PhysRevLett.124.240602
https://link.aps.org/doi/10.1103/PhysRevLett.124.240602


N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92
[209] S. Vishveshwara, Defect or no defect: It’s a toss up, Physics 13 (2020) 98, http://dx.doi.org/10.1103/Physics.13.98, URL https://link.aps.org/doi/
10.1103/Physics.13.98.

[210] Y. Bando, Y. Susa, H. Oshiyama, N. Shibata, M. Ohzeki, F.J. Gómez-Ruiz, D.A. Lidar, S. Suzuki, A. del Campo, H. Nishimori, Probing the
universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond, Phys. Rev. Res. 2 (2020) 033369,
http://dx.doi.org/10.1103/PhysRevResearch.2.033369, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.033369.

[211] J.-M. Cui, F.J. Gómez-Ruiz, Y.-F. Huang, C.-F. Li, G.-C. Guo, A. del Campo, Experimentally testing quantum critical dynamics beyond the
Kibble–Zurek mechanism, Commun. Phys. 3 (1) (2020) 44, http://dx.doi.org/10.1038/s42005-020-0306-6.

[212] S. Gherardini, L. Buffoni, N. Defenu, Universal defects statistics with strong long-range interactions, 2023, arXiv:2305.11771.
[213] S. Deffner, E. Lutz, Nonequilibrium work distribution of a quantum harmonic oscillator, Phys. Rev. E 77 (2008) 021128, http://dx.doi.org/10.

1103/PhysRevE.77.021128, URL https://link.aps.org/doi/10.1103/PhysRevE.77.021128.
[214] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D.A. Smith, E. Demler, J. Schmiedmayer, Relaxation and

prethermalization in an isolated quantum system, Science 337 (6100) (2012) 1318–1322, http://dx.doi.org/10.1126/science.1224953, arXiv:
https://www.science.org/doi/pdf/10.1126/science.1224953, URL https://www.science.org/doi/abs/10.1126/science.1224953.

[215] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, Local emergence of thermal correlations in an isolated quantum many-body
system, Nat. Phys. 9 (10) (2013) 640–643, http://dx.doi.org/10.1038/nphys2739.

[216] S. Hild, T. Fukuhara, P. Schauß, J. Zeiher, M. Knap, E. Demler, I. Bloch, C. Gross, Far-from-equilibrium spin transport in Heisenberg
quantum magnets, Phys. Rev. Lett. 113 (2014) 147205, http://dx.doi.org/10.1103/PhysRevLett.113.147205, URL https://link.aps.org/doi/10.1103/
PhysRevLett.113.147205.

[217] P. Bordia, H.P. Lüschen, S.S. Hodgman, M. Schreiber, I. Bloch, U. Schneider, Coupling identical one-dimensional many-body localized systems,
Phys. Rev. Lett. 116 (2016) 140401, http://dx.doi.org/10.1103/PhysRevLett.116.140401, URL https://link.aps.org/doi/10.1103/PhysRevLett.116.
140401.

[218] P. Bordia, H. Lüschen, U. Schneider, M. Knap, I. Bloch, Periodically driving a many-body localized quantum system, Nat. Phys. 13 (5) (2017)
460–464, http://dx.doi.org/10.1080/nphys4020.

[219] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schneider, I. Bloch, Probing slow relaxation and many-body localization in
two-dimensional quasiperiodic systems, Phys. Rev. X 7 (2017) 041047, http://dx.doi.org/10.1103/PhysRevX.7.041047, URL https://link.aps.org/
doi/10.1103/PhysRevX.7.041047.

[220] E.A. Yuzbashyan, O. Tsyplyatyev, B.L. Altshuler, Relaxation and persistent oscillations of the order parameter in fermionic condensates, Phys.
Rev. Lett. 96 (2006) 097005, http://dx.doi.org/10.1103/PhysRevLett.96.097005, URL https://link.aps.org/doi/10.1103/PhysRevLett.96.097005.

[221] P. Barmettler, M. Punk, V. Gritsev, E. Demler, E. Altman, Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench,
Phys. Rev. Lett. 102 (2009) 130603, http://dx.doi.org/10.1103/PhysRevLett.102.130603, URL https://link.aps.org/doi/10.1103/PhysRevLett.102.
130603.

[222] M. Eckstein, M. Kollar, P. Werner, Thermalization after an interaction quench in the Hubbard model, Phys. Rev. Lett. 103 (2009) 056403,
http://dx.doi.org/10.1103/PhysRevLett.103.056403, URL https://link.aps.org/doi/10.1103/PhysRevLett.103.056403.

[223] B. Sciolla, G. Biroli, Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose-Hubbard model, Phys. Rev.
Lett. 105 (2010) 220401, http://dx.doi.org/10.1103/PhysRevLett.105.220401, URL https://link.aps.org/doi/10.1103/PhysRevLett.105.220401.

[224] A. Mitra, Time evolution and dynamical phase transitions at a critical time in a system of one-dimensional bosons after a quantum quench, Phys.
Rev. Lett. 109 (2012) 260601, http://dx.doi.org/10.1103/PhysRevLett.109.260601, URL https://link.aps.org/doi/10.1103/PhysRevLett.109.260601.

[225] J. Marino, M. Eckstein, M.S. Foster, A.M. Rey, Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems:
theory and experiments, Rep. Progr. Phys. 85 (11) (2022) 116001, http://dx.doi.org/10.1088/1361-6633/ac906c.

[226] M. Heyl, A. Polkovnikov, S. Kehrein, Dynamical quantum phase transitions in the transverse-field Ising model, Phys. Rev. Lett. 110 (13) (2013)
135704.

[227] M. Heyl, Dynamical quantum phase transitions in systems with broken-symmetry phases, Phys. Rev. Lett. 113 (2014) 205701, http:
//dx.doi.org/10.1103/PhysRevLett.113.205701, URL https://link.aps.org/doi/10.1103/PhysRevLett.113.205701.

[228] A. Peres, Stability of quantum motion in chaotic and regular systems, Phys. Rev. A 30 (1984) 1610–1615, http://dx.doi.org/10.1103/PhysRevA.
30.1610.

[229] T. Gorin, T. Prosen, T.H. Seligman, M. Žnidarič, Dynamics of loschmidt echoes and fidelity decay, Phys. Rep. 435 (2–5) (2006) 33–156,
http://dx.doi.org/10.1080/j.physrep.2006.09.003.

[230] J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664–679, http://dx.doi.org/10.1103/PhysRev.82.664, URL
https://link.aps.org/doi/10.1103/PhysRev.82.664.

[231] P. Talkner, E. Lutz, P. Hänggi, Fluctuation theorems: Work is not an observable, Phys. Rev. E 75 (2007) 050102, http://dx.doi.org/10.1103/
PhysRevE.75.050102, URL https://link.aps.org/doi/10.1103/PhysRevE.75.050102.

[232] M. Campisi, P. Hänggi, P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Modern Phys. 83 (2011)
771–791, http://dx.doi.org/10.1103/RevModPhys.83.771, URL https://link.aps.org/doi/10.1103/RevModPhys.83.771.

[233] T. Palmai, Edge exponents in work statistics out of equilibrium and dynamical phase transitions from scattering theory in one-dimensional
gapped systems, Phys. Rev. B 92 (2015) 235433, http://dx.doi.org/10.1103/PhysRevB.92.235433, URL https://link.aps.org/doi/10.1103/PhysRevB.
92.235433.

[234] A. Gambassi, A. Silva, Large deviations and universality in quantum quenches, Phys. Rev. Lett. 109 (2012) 250602, http://dx.doi.org/10.1103/
PhysRevLett.109.250602, URL https://link.aps.org/doi/10.1103/PhysRevLett.109.250602.

[235] F. Pollmann, S. Mukerjee, A.G. Green, J.E. Moore, Dynamics after a sweep through a quantum critical point, Phys. Rev. E 81 (2010) 020101,
http://dx.doi.org/10.1103/PhysRevE.81.020101, URL https://link.aps.org/doi/10.1103/PhysRevE.81.020101.

[236] S. Vajna, B. Dóra, Topological classification of dynamical phase transitions, Phys. Rev. B 91 (2015) 155127, http://dx.doi.org/10.1103/PhysRevB.
91.155127, URL https://link.aps.org/doi/10.1103/PhysRevB.91.155127.

[237] M. Heyl, Scaling and universality at dynamical quantum phase transitions, Phys. Rev. Lett. 115 (2015) 140602, http://dx.doi.org/10.1103/
PhysRevLett.115.140602, URL https://link.aps.org/doi/10.1103/PhysRevLett.115.140602.

[238] J.C. Halimeh, V. Zauner-Stauber, Dynamical phase diagram of quantum spin chains with long-range interactions, Phys. Rev. B 96 (2017) 134427,
http://dx.doi.org/10.1103/PhysRevB.96.134427, URL https://link.aps.org/doi/10.1103/PhysRevB.96.134427.

[239] S. Vajna, B. Dóra, Disentangling dynamical phase transitions from equilibrium phase transitions, Phys. Rev. B 89 (2014) 161105, http:
//dx.doi.org/10.1103/PhysRevB.89.161105, URL https://link.aps.org/doi/10.1103/PhysRevB.89.161105.

[240] M. Schmitt, S. Kehrein, Dynamical quantum phase transitions in the Kitaev honeycomb model, Phys. Rev. B 92 (2015) 075114, http:
//dx.doi.org/10.1103/PhysRevB.92.075114, URL https://link.aps.org/doi/10.1103/PhysRevB.92.075114.

[241] S. Campbell, Criticality revealed through quench dynamics in the Lipkin-Meshkov-Glick model, Phys. Rev. B 94 (2016) 184403, http:
//dx.doi.org/10.1103/PhysRevB.94.184403, URL https://link.aps.org/doi/10.1103/PhysRevB.94.184403.

[242] S.A. Weidinger, M. Heyl, A. Silva, M. Knap, Dynamical quantum phase transitions in systems with continuous symmetry breaking, Phys. Rev.
B 96 (2017) 134313, http://dx.doi.org/10.1103/PhysRevB.96.134313, URL https://link.aps.org/doi/10.1103/PhysRevB.96.134313.
81

http://dx.doi.org/10.1103/Physics.13.98
https://link.aps.org/doi/10.1103/Physics.13.98
https://link.aps.org/doi/10.1103/Physics.13.98
https://link.aps.org/doi/10.1103/Physics.13.98
http://dx.doi.org/10.1103/PhysRevResearch.2.033369
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033369
http://dx.doi.org/10.1038/s42005-020-0306-6
http://arxiv.org/abs/2305.11771
http://dx.doi.org/10.1103/PhysRevE.77.021128
http://dx.doi.org/10.1103/PhysRevE.77.021128
http://dx.doi.org/10.1103/PhysRevE.77.021128
https://link.aps.org/doi/10.1103/PhysRevE.77.021128
http://dx.doi.org/10.1126/science.1224953
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1224953
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1224953
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1224953
https://www.science.org/doi/abs/10.1126/science.1224953
http://dx.doi.org/10.1038/nphys2739
http://dx.doi.org/10.1103/PhysRevLett.113.147205
https://link.aps.org/doi/10.1103/PhysRevLett.113.147205
https://link.aps.org/doi/10.1103/PhysRevLett.113.147205
https://link.aps.org/doi/10.1103/PhysRevLett.113.147205
http://dx.doi.org/10.1103/PhysRevLett.116.140401
https://link.aps.org/doi/10.1103/PhysRevLett.116.140401
https://link.aps.org/doi/10.1103/PhysRevLett.116.140401
https://link.aps.org/doi/10.1103/PhysRevLett.116.140401
http://dx.doi.org/10.1080/nphys4020
http://dx.doi.org/10.1103/PhysRevX.7.041047
https://link.aps.org/doi/10.1103/PhysRevX.7.041047
https://link.aps.org/doi/10.1103/PhysRevX.7.041047
https://link.aps.org/doi/10.1103/PhysRevX.7.041047
http://dx.doi.org/10.1103/PhysRevLett.96.097005
https://link.aps.org/doi/10.1103/PhysRevLett.96.097005
http://dx.doi.org/10.1103/PhysRevLett.102.130603
https://link.aps.org/doi/10.1103/PhysRevLett.102.130603
https://link.aps.org/doi/10.1103/PhysRevLett.102.130603
https://link.aps.org/doi/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1103/PhysRevLett.103.056403
https://link.aps.org/doi/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.105.220401
https://link.aps.org/doi/10.1103/PhysRevLett.105.220401
http://dx.doi.org/10.1103/PhysRevLett.109.260601
https://link.aps.org/doi/10.1103/PhysRevLett.109.260601
http://dx.doi.org/10.1088/1361-6633/ac906c
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb226
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb226
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb226
http://dx.doi.org/10.1103/PhysRevLett.113.205701
http://dx.doi.org/10.1103/PhysRevLett.113.205701
http://dx.doi.org/10.1103/PhysRevLett.113.205701
https://link.aps.org/doi/10.1103/PhysRevLett.113.205701
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1080/j.physrep.2006.09.003
http://dx.doi.org/10.1103/PhysRev.82.664
https://link.aps.org/doi/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
https://link.aps.org/doi/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/RevModPhys.83.771
https://link.aps.org/doi/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/PhysRevB.92.235433
https://link.aps.org/doi/10.1103/PhysRevB.92.235433
https://link.aps.org/doi/10.1103/PhysRevB.92.235433
https://link.aps.org/doi/10.1103/PhysRevB.92.235433
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.250602
https://link.aps.org/doi/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevE.81.020101
https://link.aps.org/doi/10.1103/PhysRevE.81.020101
http://dx.doi.org/10.1103/PhysRevB.91.155127
http://dx.doi.org/10.1103/PhysRevB.91.155127
http://dx.doi.org/10.1103/PhysRevB.91.155127
https://link.aps.org/doi/10.1103/PhysRevB.91.155127
http://dx.doi.org/10.1103/PhysRevLett.115.140602
http://dx.doi.org/10.1103/PhysRevLett.115.140602
http://dx.doi.org/10.1103/PhysRevLett.115.140602
https://link.aps.org/doi/10.1103/PhysRevLett.115.140602
http://dx.doi.org/10.1103/PhysRevB.96.134427
https://link.aps.org/doi/10.1103/PhysRevB.96.134427
http://dx.doi.org/10.1103/PhysRevB.89.161105
http://dx.doi.org/10.1103/PhysRevB.89.161105
http://dx.doi.org/10.1103/PhysRevB.89.161105
https://link.aps.org/doi/10.1103/PhysRevB.89.161105
http://dx.doi.org/10.1103/PhysRevB.92.075114
http://dx.doi.org/10.1103/PhysRevB.92.075114
http://dx.doi.org/10.1103/PhysRevB.92.075114
https://link.aps.org/doi/10.1103/PhysRevB.92.075114
http://dx.doi.org/10.1103/PhysRevB.94.184403
http://dx.doi.org/10.1103/PhysRevB.94.184403
http://dx.doi.org/10.1103/PhysRevB.94.184403
https://link.aps.org/doi/10.1103/PhysRevB.94.184403
http://dx.doi.org/10.1103/PhysRevB.96.134313
https://link.aps.org/doi/10.1103/PhysRevB.96.134313


N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92
[243] J. Lang, B. Frank, J.C. Halimeh, Dynamical quantum phase transitions: A geometric picture, Phys. Rev. Lett. 121 (2018) 130603, http:
//dx.doi.org/10.1103/PhysRevLett.121.130603, URL https://link.aps.org/doi/10.1103/PhysRevLett.121.130603.

[244] M. Abdi, Dynamical quantum phase transition in Bose-Einstein condensates, Phys. Rev. B 100 (2019) 184310, http://dx.doi.org/10.1103/
PhysRevB.100.184310, URL https://link.aps.org/doi/10.1103/PhysRevB.100.184310.

[245] J.C. Halimeh, D. Trapin, M. Van Damme, M. Heyl, Local measures of dynamical quantum phase transitions, Phys. Rev. B 104 (2021) 075130,
http://dx.doi.org/10.1103/PhysRevB.104.075130, URL https://link.aps.org/doi/10.1103/PhysRevB.104.075130.

[246] B. Žunkovič, M. Heyl, M. Knap, A. Silva, Dynamical quantum phase transitions in spin chains with long-range interactions: Merging different
concepts of nonequilibrium criticality, Phys. Rev. Lett. 120 (13) (2018) 6, http://dx.doi.org/10.1103/PhysRevLett.120.130601.

[247] P. Uhrich, N. Defenu, R. Jafari, J.C. Halimeh, Out-of-equilibrium phase diagram of long-range superconductors, Phys. Rev. B 101 (2020) 245148,
http://dx.doi.org/10.1103/PhysRevB.101.245148, URL https://link.aps.org/doi/10.1103/PhysRevB.101.245148.

[248] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B.P. Lanyon, M. Heyl, R. Blatt, C.F. Roos, Direct observation of dynamical quantum
phase transitions in an interacting many-body system, Phys. Rev. Lett. 119 (2017) 080501, http://dx.doi.org/10.1103/PhysRevLett.119.080501,
URL https://link.aps.org/doi/10.1103/PhysRevLett.119.080501.

[249] B. Žunkovič, A. Silva, M. Fabrizio, Dynamical phase transitions and loschmidt echo in the infinite-range xy model, Philos. Trans. Royal Soc. A:
Math. Phys. Eng. Sci. 374 (2069) (2016) 20150160.

[250] J.C. Halimeh, V. Zauner-Stauber, I.P. McCulloch, I. de Vega, U. Schollwöck, M. Kastner, Prethermalization and persistent order in the absence
of a thermal phase transition, Phys. Rev. B 95 (2017) 024302, http://dx.doi.org/10.1103/PhysRevB.95.024302, URL https://link.aps.org/doi/10.
1103/PhysRevB.95.024302.

[251] J. Lang, B. Frank, J.C. Halimeh, Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising
model, Phys. Rev. B 97 (2018) 174401, http://dx.doi.org/10.1103/PhysRevB.97.174401, URL https://link.aps.org/doi/10.1103/PhysRevB.97.174401.

[252] I. Homrighausen, N.O. Abeling, V. Zauner-Stauber, J.C. Halimeh, Anomalous dynamical phase in quantum spin chains with long-range
interactions, Phys. Rev. B 96 (2017) 104436, http://dx.doi.org/10.1103/PhysRevB.96.104436, URL https://link.aps.org/doi/10.1103/PhysRevB.96.
104436.

[253] J.C. Halimeh, M. Van Damme, V. Zauner-Stauber, L. Vanderstraeten, Quasiparticle origin of dynamical quantum phase transitions, Phys. Rev.
Res. 2 (2020) 033111, http://dx.doi.org/10.1103/PhysRevResearch.2.033111, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.033111.

[254] N. Defenu, T. Enss, J.C. Halimeh, Dynamical criticality and domain-wall coupling in long-range hamiltonians, Phys. Rev. B 100 (2019) 014434,
http://dx.doi.org/10.1103/PhysRevB.100.014434, URL https://link.aps.org/doi/10.1103/PhysRevB.100.014434.

[255] E. Canovi, P. Werner, M. Eckstein, First-order dynamical phase transitions, Phys. Rev. Lett. 113 (26) http://dx.doi.org/10.1080/physrevlett.113.
265702.

[256] F. Andraschko, T. Enss, J. Sirker, Purification and many-body localization in cold atomic gases, Phys. Rev. Lett. 113 (21) http://dx.doi.org/10.
1080/physrevlett.113.217201.

[257] H.E. Stanley, Spherical model as the limit of infinite spin dimensionality, Phys. Rev. 176 (1968) 718–722, http://dx.doi.org/10.1103/PhysRev.
176.718, URL https://link.aps.org/doi/10.1103/PhysRev.176.718.

[258] V. Zauner-Stauber, J.C. Halimeh, Probing the anomalous dynamical phase in long-range quantum spin chains through fisher-zero lines, Phys.
Rev. E 96 (2017) 062118, http://dx.doi.org/10.1103/PhysRevE.96.062118, URL https://link.aps.org/doi/10.1103/PhysRevE.96.062118.

[259] T. Mori, T.N. Ikeda, E. Kaminishi, M. Ueda, Thermalization and prethermalization in isolated quantum systems: a theoretical overview, J. Phys.
B: At. Mol. Opt. Phys. 51 (11) (2018) 112001, http://dx.doi.org/10.1088/1361-6455/aabcdf.

[260] B. Sciolla, G. Biroli, Dynamical transitions and quantum quenches in mean-field models, J. Stat. Mech. 2011 (11) (2011) P11003, http:
//dx.doi.org/10.1088/1742-5468/2011/11/P11003.

[261] F. Haake, M. Kuś, R. Scharf, Classical and quantum chaos for a kicked top, Z. Phys. B Condens. Matter 65 (3) (1987) 381–395, http:
//dx.doi.org/10.1007/bf01303727.

[262] F. Haake, Quantum Signatures of Chaos, Springer Berlin Heidelberg, 2010, http://dx.doi.org/10.1007/978-3-642-05428-0.
[263] R.H. Dicke, Coherence in Spontaneous Radiation Processes, Phys. Rev. 93 (1) (1954) 99–110, http://dx.doi.org/10.1103/PhysRev.93.99, URL

https://link.aps.org/doi/10.1103/PhysRev.93.99.
[264] M. de Aguiar, K. Furuya, C. Lewenkopf, M. Nemes, Chaos in a spin-boson system: Classical analysis, Ann. Physics 216 (2) (1992) 291–312,

http://dx.doi.org/10.1016/0003-4916(92)90178-o.
[265] T. Mori, Classical ergodicity and quantum eigenstate thermalization: Analysis in fully connected Ising ferromagnets, Phys. Rev. E 96 (2017)

012134, http://dx.doi.org/10.1103/PhysRevE.96.012134, URL https://link.aps.org/doi/10.1103/PhysRevE.96.012134.
[266] R.J. Valencia-Tortora, S.P. Kelly, T. Donner, G. Morigi, R. Fazio, J. Marino, Crafting the dynamical structure of synchronization by harnessing

bosonic multilevel cavity qed, Phys. Rev. Res. 5 (2023) 023112, http://dx.doi.org/10.1103/PhysRevResearch.5.023112.
[267] M. Eckstein, M. Kollar, Nonthermal steady states after an interaction quench in the Falicov-Kimball model, Phys. Rev. Lett. 100 (2008) 120404,

http://dx.doi.org/10.1103/PhysRevLett.100.120404, URL https://link.aps.org/doi/10.1103/PhysRevLett.100.120404.
[268] A. Gambassi, P. Calabrese, Quantum quenches as classical critical films, Europhys. Lett. 95 (6) (2011) 66007, http://dx.doi.org/10.1209/0295-

5075/95/66007.
[269] M. Schiró, M. Fabrizio, Time-dependent mean field theory for quench dynamics in correlated electron systems, Phys. Rev. Lett. 105 (2010)

076401, http://dx.doi.org/10.1103/PhysRevLett.105.076401.
[270] M. Schiró, M. Fabrizio, Quantum quenches in the Hubbard model: Time-dependent mean-field theory and the role of quantum fluctuations,

Phys. Rev. B 83 (2011) 165105, http://dx.doi.org/10.1103/PhysRevB.83.165105.
[271] M. Sandri, M. Schiró, M. Fabrizio, Linear ramps of interaction in the fermionic Hubbard model, Phys. Rev. B 86 (2012) 075122, http:

//dx.doi.org/10.1103/PhysRevB.86.075122.
[272] M.S. Foster, M. Dzero, V. Gurarie, E.A. Yuzbashyan, Quantum quench in a p+ ip superfluid: Winding numbers and topological states far from

equilibrium, Phys. Rev. B 88 (2013) 104511, http://dx.doi.org/10.1103/PhysRevB.88.104511.
[273] E.A. Yuzbashyan, M. Dzero, V. Gurarie, M.S. Foster, Quantum quench phase diagrams of an s-wave BCS-BEC condensate, Phys. Rev. A 91 (2015)

033628, http://dx.doi.org/10.1103/PhysRevA.91.033628, URL https://link.aps.org/doi/10.1103/PhysRevA.91.033628.
[274] A. Maraga, A. Chiocchetta, A. Mitra, A. Gambassi, Aging and coarsening in isolated quantum systems after a quench: Exact results for the

quantum O(n) model with n → ∞, Phys. Rev. E 92 (2015) 042151, http://dx.doi.org/10.1103/PhysRevE.92.042151, URL https://link.aps.org/
doi/10.1103/PhysRevE.92.042151.

[275] A. Chiocchetta, M. Tavora, A. Gambassi, A. Mitra, Short-time universal scaling and light-cone dynamics after a quench in an isolated quantum
system in dspatial dimensions, Phys. Rev. B 94 (13) (2016) 134311.

[276] P. Titum, M.F. Maghrebi, Nonequilibrium criticality in quench dynamics of long-range spin models, Phys. Rev. Lett. 125 (2020) 040602,
http://dx.doi.org/10.1103/PhysRevLett.125.040602, URL https://link.aps.org/doi/10.1103/PhysRevLett.125.040602.

[277] K. Xu, Z.-H. Sun, W. Liu, Y.-R. Zhang, H. Li, H. Dong, W. Ren, P. Zhang, F. Nori, D. Zheng, et al., Probing dynamical phase transitions with
a superconducting quantum simulator, Sci. Adv. 6 (25) (2020) eaba4935, http://dx.doi.org/10.1126/sciadv.aba4935, URL https://www.science.
org/doi/10.1126/sciadv.aba4935.
82

http://dx.doi.org/10.1103/PhysRevLett.121.130603
http://dx.doi.org/10.1103/PhysRevLett.121.130603
http://dx.doi.org/10.1103/PhysRevLett.121.130603
https://link.aps.org/doi/10.1103/PhysRevLett.121.130603
http://dx.doi.org/10.1103/PhysRevB.100.184310
http://dx.doi.org/10.1103/PhysRevB.100.184310
http://dx.doi.org/10.1103/PhysRevB.100.184310
https://link.aps.org/doi/10.1103/PhysRevB.100.184310
http://dx.doi.org/10.1103/PhysRevB.104.075130
https://link.aps.org/doi/10.1103/PhysRevB.104.075130
http://dx.doi.org/10.1103/PhysRevLett.120.130601
http://dx.doi.org/10.1103/PhysRevB.101.245148
https://link.aps.org/doi/10.1103/PhysRevB.101.245148
http://dx.doi.org/10.1103/PhysRevLett.119.080501
https://link.aps.org/doi/10.1103/PhysRevLett.119.080501
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb249
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb249
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb249
http://dx.doi.org/10.1103/PhysRevB.95.024302
https://link.aps.org/doi/10.1103/PhysRevB.95.024302
https://link.aps.org/doi/10.1103/PhysRevB.95.024302
https://link.aps.org/doi/10.1103/PhysRevB.95.024302
http://dx.doi.org/10.1103/PhysRevB.97.174401
https://link.aps.org/doi/10.1103/PhysRevB.97.174401
http://dx.doi.org/10.1103/PhysRevB.96.104436
https://link.aps.org/doi/10.1103/PhysRevB.96.104436
https://link.aps.org/doi/10.1103/PhysRevB.96.104436
https://link.aps.org/doi/10.1103/PhysRevB.96.104436
http://dx.doi.org/10.1103/PhysRevResearch.2.033111
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033111
http://dx.doi.org/10.1103/PhysRevB.100.014434
https://link.aps.org/doi/10.1103/PhysRevB.100.014434
http://dx.doi.org/10.1080/physrevlett.113.265702
http://dx.doi.org/10.1080/physrevlett.113.265702
http://dx.doi.org/10.1080/physrevlett.113.265702
http://dx.doi.org/10.1080/physrevlett.113.217201
http://dx.doi.org/10.1080/physrevlett.113.217201
http://dx.doi.org/10.1080/physrevlett.113.217201
http://dx.doi.org/10.1103/PhysRev.176.718
http://dx.doi.org/10.1103/PhysRev.176.718
http://dx.doi.org/10.1103/PhysRev.176.718
https://link.aps.org/doi/10.1103/PhysRev.176.718
http://dx.doi.org/10.1103/PhysRevE.96.062118
https://link.aps.org/doi/10.1103/PhysRevE.96.062118
http://dx.doi.org/10.1088/1361-6455/aabcdf
http://dx.doi.org/10.1088/1742-5468/2011/11/P11003
http://dx.doi.org/10.1088/1742-5468/2011/11/P11003
http://dx.doi.org/10.1088/1742-5468/2011/11/P11003
http://dx.doi.org/10.1007/bf01303727
http://dx.doi.org/10.1007/bf01303727
http://dx.doi.org/10.1007/bf01303727
http://dx.doi.org/10.1007/978-3-642-05428-0
http://dx.doi.org/10.1103/PhysRev.93.99
https://link.aps.org/doi/10.1103/PhysRev.93.99
http://dx.doi.org/10.1016/0003-4916(92)90178-o
http://dx.doi.org/10.1103/PhysRevE.96.012134
https://link.aps.org/doi/10.1103/PhysRevE.96.012134
http://dx.doi.org/10.1103/PhysRevResearch.5.023112
http://dx.doi.org/10.1103/PhysRevLett.100.120404
https://link.aps.org/doi/10.1103/PhysRevLett.100.120404
http://dx.doi.org/10.1209/0295-5075/95/66007
http://dx.doi.org/10.1209/0295-5075/95/66007
http://dx.doi.org/10.1209/0295-5075/95/66007
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevB.83.165105
http://dx.doi.org/10.1103/PhysRevB.86.075122
http://dx.doi.org/10.1103/PhysRevB.86.075122
http://dx.doi.org/10.1103/PhysRevB.86.075122
http://dx.doi.org/10.1103/PhysRevB.88.104511
http://dx.doi.org/10.1103/PhysRevA.91.033628
https://link.aps.org/doi/10.1103/PhysRevA.91.033628
http://dx.doi.org/10.1103/PhysRevE.92.042151
https://link.aps.org/doi/10.1103/PhysRevE.92.042151
https://link.aps.org/doi/10.1103/PhysRevE.92.042151
https://link.aps.org/doi/10.1103/PhysRevE.92.042151
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb275
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb275
http://refhub.elsevier.com/S0370-1573(24)00140-6/sb275
http://dx.doi.org/10.1103/PhysRevLett.125.040602
https://link.aps.org/doi/10.1103/PhysRevLett.125.040602
http://dx.doi.org/10.1126/sciadv.aba4935
https://www.science.org/doi/10.1126/sciadv.aba4935
https://www.science.org/doi/10.1126/sciadv.aba4935
https://www.science.org/doi/10.1126/sciadv.aba4935


N. Defenu, A. Lerose and S. Pappalardi Physics Reports 1074 (2024) 1–92
[278] M. Caprio, P. Cejnar, F. Iachello, Excited state quantum phase transitions in many-body systems, Ann. Physics 323 (5) (2008) 1106–1135,
http://dx.doi.org/10.1016/j.aop.2007.06.011.

[279] V.M. Bastidas, P. Pérez-Fernández, M. Vogl, T. Brandes, Quantum criticality and dynamical instability in the kicked-top model, Phys. Rev. Lett.
112 (2014) 140408, http://dx.doi.org/10.1103/PhysRevLett.112.140408, URL https://link.aps.org/doi/10.1103/PhysRevLett.112.140408.

[280] L.F. Santos, F. Pérez-Bernal, Structure of eigenstates and quench dynamics at an excited-state quantum phase transition, Phys. Rev. A 92 (2015)
050101, http://dx.doi.org/10.1103/PhysRevA.92.050101.

[281] L.F. Santos, M. Távora, F. Pérez-Bernal, Excited-state quantum phase transitions in many-body systems with infinite-range interaction:
Localization, dynamics, and bifurcation, Phys. Rev. A 94 (2016) 012113, http://dx.doi.org/10.1103/PhysRevA.94.012113.

[282] F. Pérez-Bernal, L.F. Santos, Effects of excited state quantum phase transitions on system dynamics, Fortschr. Phys. 65 (6–8) (2017) 1600035,
http://dx.doi.org/10.1002/prop.201600035.

[283] J. Chávez-Carlos, T.L. Lezama, R.G. Cortiñas, J. Venkatraman, M.H. Devoret, V.S. Batista, F. Pérez-Bernal, L.F. Santos, Spectral kissing and its
dynamical consequences in the squeezed Kerr-nonlinear oscillator, arXiv preprint arXiv:2210.07255, http://dx.doi.org/10.48550/arXiv.2210.
07255.

[284] Á.L. Corps, A. Relaño, Dynamical and excited-state quantum phase transitions in collective systems, Phys. Rev. B 106 (2) (2022) 024311,
http://dx.doi.org/10.1103/PhysRevB.106.024311.
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