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Abstract

Exploring Dark Matter’s Nature from Local Galactic Dynamics to High-z
JWST Observations

by Giovanni Gandolfi

The Cold Dark Matter paradigm emerged as the prevailing solution to the cos-
mic missing mass conundrum. While highly successful on cosmological scales,
this model is partially inconsistent with galaxy-scale observations. This thesis
addresses such a challenge by pursuing a dual approach.
The first part presents a model featuring a dynamical non-minimal dark matter-
gravity coupling originally developed in Bettoni et al. (2014). Such an effect is
theoretically motivated and could solve some of the long-standing galaxy-scale
issues of the Cold Dark Matter paradigm exploiting a single free parameter: the
non-minimal coupling lengthscale. To begin with, I will study the self-gravitating
equilibria of the dark matter halo predicted by this framework. Remarkably, the
non-minimal coupling can produce cored dark matter halo profiles, similar in
shape to the phenomenological Burkert model. Moreover, the predicted profiles
are consistent with the core-surface density relation observed for dwarf galaxies.
A Bayesian analysis will then test the non-minimally coupled dark matter model
against stacked rotation curves of a broad sample of spiral galaxies. In terms
of reduced chi-squared, the fits yielded by this model are always superior to the
standard, Cold Dark Matter Navarro–Frenk–White profile and always competitive
with the phenomenological Burkert profile. On the other hand, I will show how
this model can explain the observed interplay between dark matter and baryons
in late-type galaxies, embodied by tight dynamical scaling relations such as the
Radial Acceleration Relation.
The analysis predicts a power-law relationship between the non-minimal cou-
pling lengthscale and the virial mass of dark matter haloes. After using the
non-minimally coupled dark matter model to fit galaxy clusters’ pressure profiles
from the X-COP collaboration, I will show that such scaling holds consistently
from the dwarf-galaxy regime up to galaxy clusters’ virial masses. Overall, this
single-parameter simple model shows a rich phenomenology in a comprehensive
set of scales capable of addressing long-standing issues of the Cold Dark Matter
paradigm.
In the second part of the thesis, I will discuss how high-redshift observations from
new, high-resolution instruments such as the James Webb Space Telescope can sig-
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nificantly enhance our knowledge about dark matter. Specifically, I will present
a new technique to constrain dark matter astroparticle properties that relies on
JWST’s cutting-edge high-redshift observations of the cosmic star formation rate
density. The forecasts obtained with this technique demonstrate how upcoming
ultra-faint galaxy surveys in the (pre) reionization era will be determinant to probe
the microscopic nature of the elusive dark matter particles, potentially ruling out
alternative dark matter models to the pure Cold Dark Matte framework.
In summary, the apparatus created within this thesis introduces novel techniques
that have the potential to play a crucial role in the evaluation of both established
and future models concerning dark matter or modified gravity theories. On the
one hand, the analysis framework developed for assessing the characteristics of
the non-minimally coupled dark matter model can be adapted for scrutinizing
other alternative dark matter scenarios or modified gravity theories, including
the ongoing investigation of the Fractional Gravity framework. On the other
hand, the extensive observations conducted by JWST will extend further into the
high-redshift Universe, rendering the methodologies outlined in this thesis ex-
ceptionally valuable in generating new and competitive constraints on the nature
of dark matter.
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Chapter 1

Introduction

Cosmological observations tantalised us with a profound revelation: more than
80% of the Universe’s mass is dark matter (DM; Aghanim et al. 2020). From the
end of the radiation era (around 70,000 years after the Big Bang) up to redshifts
of 𝑧 ≥ 0.5, DM has been dominant in shaping the cosmos around us. This cosmic
enigma embodies the key to comprehending the Universe’s past, its present, and
the mysteries of its future.

While the current ΛCDM paradigm can withstand most cosmological tests,
galaxy-scale observations hint at potential gaps in our understanding of DM — or
perhaps even the nature of gravity itself. Thus, the relentless quest to understand
this fundamental cosmic cornerstone continues.

On the one hand, uncovering the secrets of DM requires robust and creative
theoretical frameworks to articulate its physical nature. On the other hand, a
thorough comparison with empirical data and a deep understanding of potential
degeneracies between new physics and experimental errors are necessary to iden-
tify which models can be viable. Thus, this thesis follows a dual path between
theory and observations.

Chapter 1 provides a brief introduction to the concept of DM and its interpretation
in the concordance cosmological model (i.e., the Cold Dark Matter paradigm, or
CDM).

Chapter 2 presents the challenges of the CDM paradigm on galactic scales, along
with a review of the scientific community’s main proposals to address these dis-
crepancies.

Chapter 3 introduces a model where DM is non-minimally coupled to gravity,
an effect designed to resolve the galactic-scale problems associated with CDM.
The chapter discusses the characteristics of the DM halos predicted by this model
and its phenomenology on galactic and galaxy cluster scales, highlighting ongo-
ing and future developments.

Chapter 4 forecasts how cutting-edge observations from the James Webb Space
Telescope (JWST) can impose astroparticle constraints on DM, potentially distin-
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guishing between alternative DM models and CDM.

Chapter 5 draws the due conclusions and explores the new avenues that would
naturally expand the work hereby presented.

Throughout this thesis I will adopt the standard, flat cosmology of Aghanim
et al. (2020) with rounded parameter values: matter density Ω𝑀 ∼ 0.31, baryon
density Ω𝑏 ∼ 0.05, Hubble constant 𝐻0 = 100ℎ𝑘𝑚𝑠−1Mpc−1 with ℎ ∼ 0.68. A
Chabrier (2003) initial mass function (IMF) is assumed.

1.1 A brief history of Dark Matter

Galileo used his telescope to reveal an unseen part of the Universe, showing that
the cosmos is more than what meets the eye. In the following centuries, the tech-
nological and epistemological ground that led to the discovery of DM became
more and more fertile. French mathematician Friederich Bessel (1844) discussed
how stars’ proper motions could unveil the presence of faint companions via
gravity. This is one of the first attempts to predict the existence of undiscovered
astronomical objects based only on their gravitational influence. Then, the inven-
tion of astrophotography in the late 19th century led to a baffling discovery: stars
are unevenly distributed across the sky. The scientific community was surprised:
were these dark patches in dense star fields related to an actual lack of stars, or
were they produced by the presence of opaque matter along the line of sight? The
problem led to the development of several ingenious techniques. Lord Kelvin and
Henri Poincaré proposed to describe stars in the Milky Way as a gas of particles
acting under the influence of gravity and to use their velocity dispersion to con-
strain the amount of unseen matter (which Poincaré dubbed matière obscure, i.e.
dark matter; Kelvin 1904; Poincare 1906). Their work was followed by the ones of
scientists such as Ernst Öpik, Jacobus Kapteyn and his pupil Jan Oort.

Hubble and Humason (1931) noticed that the Coma galaxy cluster exhibited
a larger velocity dispersion than other clusters. Two years later, Swiss-American
astronomer Fritz Zwicky had a brilliant insight. He exported from the world of
thermodynamics a theorem that he used to estimate the mass of the Coma cluster:
the virial theorem. His analysis indicated that the measured velocity dispersion
differed from that expected by more than an order of magnitude, suggesting the
presence of an unseen component of matter in the cluster far more abundant than
visible matter (Zwicky 1933). Today, we know that ∼ 80% of clusters’ mass is DM,
while most of the baryonic mass is attributable to the intracluster gas. Only a few
per cent of the total mass budget is contained in the optically visible galaxies (e.g.,
Voit 2005; Gonzalez et al. 2013).

Interestingly, in the subsequent paper Zwicky (1937), the astronomer discusses
the possibility of studying rotation curves (RCs) of galaxies to infer their mass
distribution. Early analysis of M31’s RC indicated a rising trend at large radii
(Babcock 1939; Schwarzschild 1954; van de Hulst et al. 1957; Schmidt 1957; Kahn
& Woltjer 1959). The significant contrast between RCs predicted through pho-
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tometry and those measured through 21-cm observations started to suggest the
presence of substantial, unseen mass in the outer regions of galaxies. Nonetheless,
it was in the 1970s that the concept of requiring extra mass in the outer sections of
certain galaxies started to gain widespread acceptance within the scientific com-
munity. The high-quality radio measurements by Brandt (1965); Roberts (1966);
Shobbrook & Robinson (1967) and most notably by Rubin & Ford (1970) allowed
to map the RCs of galaxies beyond the optical disc, showing that the observed RCs
peaked at larger radii than predicted (see e.g. the modelling by Freeman 1970). In
later years, new observations showed how the problem of missing mass at large
radii extended to most spiral galaxies (Rogstad & Shostak 1972; Roberts & Rots
1973; Bosma 1978; Rubin et al. 1978).

In the late 1980s, the idea that the absent mass might be composed of one or
more undiscovered subatomic particle species had garnered substantial backing,
propelling it to the forefront as the prevailing concept for DM. Concurrently,
during that same period, some pioneering research (Peebles 1982; Blumenthal
et al. 1984; Davis et al. 1985) was laying the foundation for the predominant
framework characterising DM phenomena which endures to this day: the CDM
model.

1.2 The ΛCDM Universe

The CDM model describes DM’s phenomenology in the context of the concor-
dance cosmological model, i.e. ΛCDM, which details the formation of the Uni-
verse over the time since the Big Bang in remarkable precision. The ΛCDM
framework divides the mass-energy budget of the Universe into a dark energy
(DE) component (parametrised by a cosmological constant Λ), CDM and bary-
onic (i.e., standard, visible) matter. The relative contributions of DE and DM are
estimated as ΩΛ ∼ 68.7% and ΩCDM ∼ 26.4%, while baryonic matter makes up
only about 4.9 % (Aghanim et al. 2020). This framework assumes inflationary
initial conditions and General Relativity (GR) as the correct theory of gravity.

According to the ΛCDM paradigm, the Universe’s evolution began about 13.8
billion years ago with the Big Bang. At that time, the Universe was a hot and dense
plasma in almost perfect thermal equilibrium. At just about 𝑡 ∼ 10−35 s after the
beginning of everything, space expanded exponentially by many orders of mag-
nitude in a process called inflation, required to explain the observed isotropy of
the Cosmic Microwave Background (CMB). The scalar field driving the expansion
fluctuated, and these quantum fluctuations started to seed the formation of cos-
mic structures. Right after inflation, something crucial happened: the Universe
reheated to a very dense and hot plasma, and then it adiabatically cooled once
again, continuing its expansion. It is in this reheating phase that the first Stan-
dard Model particles were produced (e.g., Allahverdi et al. 2010). As the plasma
cooled down, the temperature fell below the reaction energies of the different in-
teractions, and the Universe’s constituents underwent phase transitions. At some
point between the Quantum Chromodynamics (QCD) phase transition (i.e., when
quarks formed protons and neutrons) and the first recombination of nuclei and
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electrons to bound atom states, another essential transition took place: the decou-
pling of DM particles from thermal equilibrium (also known as freeze-out). Then,
about three minutes from the beginning, nuclear reactions thermally formed the
first light elements in the Universe, such as helium, deuterium or lithium. This
process is known as Big Bang nucleosynthesis (BBN) (Weinberg 1979). Knowing
the corresponding reaction rates, one can calculate the primordial abundances of
these light elements, which can be compared with present Universe abundances
(accounting for stellar evolution reprocessing). Besides lithium, a good agreement
between these quantities is generally found.

As the early Universe unfolded, primordial fluctuations generated sound
waves that, like ripples, travelled through the photon-baryon plasma. As recom-
bination happened, these plasma density waves could not propagate anymore,
being frozen into place. These baryonic acoustic oscillations (BAOs) were im-
printed in the CMB signal originating at this epoch (𝑧 ∼ 1100). No longer diluted
by radiation pressure, baryons started falling into the gravitational wells provided
by DM. Indeed, the tiny fluctuations in the plasma seen in the CMB suggest that
the evolution of cosmic structures was propelled by matter that had separated
from the influence of photons prior to the recombination era.

In the first few hundred million years of the Universe, the first stars and galaxies
had formed1 (see, e.g., Bromm et al. 2009). Their radiation provided the energy
for the reionisation of the Universe, turning most of the neutral atoms back into
a plasma of ions and electrons (e.g., Robertson et al. 2010). Slowly, even larger
structures like galaxy clusters and superclusters begin to form. It is thought that
most clusters with masses above 1015𝑀⊙ formed at redshifts 𝑧 < 1 (Voit 2005).
At this very epoch, DE, interpreted as a time-independent cosmological constant,
started to dominate the energy density of the Universe and to reaccelerate its
expansion.

Currently, the ΛCDM model boasts numerous observational achievements on
cosmic scales. This framework precisely anticipates the presence and characteris-
tics of the CMB, including its temperature anisotropies and polarisation (Hinshaw
et al. 2007; Shafieloo & Hazra 2017; Aghanim et al. 2020). ΛCDM is also consis-
tent with the broad, large-scale structure of the Universe reconstructed through
the observation of baryons, e.g. in sky surveys like 2dFGRS (Folkes et al. 1999),
SDSS (Abazajian et al. 2003) to Lyman-𝛼 forest observations (Weinberg et al. 2003),
which map the distribution of neutral hydrogen. DM structures can be indirectly
observed through galaxy clustering and gravitational lensing (e.g., Massey et al.
2010). Moreover, CDM predicts the observed abundances of hydrogen, deuterium
and helium (Jedamzik & Pospelov 2009).

1Further details on how cosmic structures form within the CDM framework will be given in
Sec. (1.3.2).
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1.3 The Cold Dark Matter model

1.3.1 CDM particle properties
In the CDM paradigm, DM comprises particles that interact minimally, primarily
through long-range gravitational forces or, in some cases, weak nuclear interac-
tions. These particles are termed cold since they featured non-relativistic velocities
at decoupling. These low velocities impart a vanishing equation of state in a cos-
mological context, effectively rendering CDM as pressureless dust within this
environment. As stated, CDM particles are thought to freeze-out of thermal equi-
librium in the early Universe, becoming cold relics. As such, they must have a
substantial mass, typically ranging from the MeV to the GeV scale and beyond.

Probably the most well-known CDM particle candidate is the hypothetical
non-baryonic weakly interacting massive particle (WIMP; e.g., Jungman et al.
1995), which fits the model of early Universe relic DM particles. The Standard
Model of particle physics does not predict WIMP-like particles. However, various
extensions, such as Supersymmetry, predict hypothetical elementary particles
that are good WIMP candidates (this coincidence is sometimes dubbed the WIMP
miracle; Jungman et al. 1995).

The present-day relic abundance of DM derived from the most inclusive data
combination in Aghanim et al. (2020) reads as ΩCDMℎ

2 = 0.120 ± 0.001. One
can constrain WIMPs’ cross-section by comparing this value with theoretical pre-
dictions of WIMPs’ relic density (e.g., Feng 2010). At the high temperatures of
the early Universe, DM particles and their antiparticles form from and annihi-
late into lighter Standard Model particles2. As the Universe expands and cools,
the average thermal energy of these lighter particles decreases, becoming insuf-
ficient to form DM particle-antiparticle pairs. Parallely, the annihilation of DM
particle-antiparticle pairs still proceeds. Net, the number density of DM parti-
cles starts decreasing exponentially after crossing the temperature 𝑇 ∼ 𝑚DM/20
(Kamionkowski 1998), with 𝑚DM being the DM particle mass. The DM particle
number density drops, becoming so low that particle-antiparticle reactions cease
entirely. As the Universe expands, the total DM particle number remains roughly
constant (Griest 1993). Now, the self-annihilation cross-section only weakly de-
pends on the DM particle mass and hence can be approximated as

𝜎𝑣 [cm3 s−1] ≈ 3 × 10−27 cm3 s−1

ΩCDMℎ2 .

The measured density ΩCDMℎ
2 ∼ 0.1 is then achieved by a self-annihilation

cross-section of 𝜎𝑣 ∼ 10−26cm3 s−1 (Bertone & Hooper 2018), a value roughly
corresponding to the cross-section for the weak interaction. Particles with a larger
interaction cross-section would continue to annihilate for a longer time and thus
would have a smaller number density when the annihilation interaction ceases.

In recent years, the astrophysical community has shown interest in QCD axions
as possible WIMP candidates. These particles were originally theorised to resolve

2DM is initially in thermal equilibrum with the early Universe particle bath, meaning that
particle processes creating and destroying DM happen at equal rates.
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the strong CP problem in QCD. Other potential WIMPs include massive neutrinos
(whether sterile or not) and supersymmetric particles like neutralinos, gravitinos,
sneutrinos, axinos (Jungman et al. 1995), and Kaluza-Klein particles (Cheng et al.
2002).

An alternative idea envisages CDM as an ensemble of compact celestial ob-
jects. These objects would elude traditional observations because of their faint
luminosity, lower than typical stars. In principle, these objects could consist of
planets, brown dwarfs, red dwarfs, white dwarfs, neutron stars, and black holes.
Collectively, these are known as Massive Halo Compact Objects, or MACHOs.
However, extensive searches for MACHOs through gravitational microlensing
surveys (Paczynski 1986; Nemiroff 1987; Lasserre et al. 2000; Tisserand et al. 2007)
and measurements of cosmic baryon density, derived from observations of pri-
mordial light element abundances and the CMB (e.g., Fukugita et al. 1998), have
convincingly demonstrated that these entities cannot constitute the primary com-
ponent of DM within galaxies.

1.3.2 Structure formation in the CDM framework
CDM particles exhibit negligible free streaming velocities. This means they do not
diffuse away from density perturbations before gravitational collapse. As a result,
CDM structures grow over time, coalescing in a hierarchical, stochastic bottom-
up process: non-linear, virialised DM structures (i.e., haloes) form earlier as mass
decreases. These structures originate from the collapse of primordial mass den-
sity perturbations dominated by CDM. Then, baryons cool and collapse within
the potential wells sourced by such perturbations, and galaxies form. The higher
gas densities at high redshifts render this cooling process more efficient at earlier
epochs. Parallely, the inverse Compton cooling rate increases markedly with red-
shift, and this catalyses the rapid condensation of small, dense gas clouds. These
condensing clouds subsequently lose both energy and orbital angular momentum
through dynamical friction interactions with the surrounding DM halo.

As stated, cosmic structures start from non-relativistic and collisionless CDM
density perturbations. As long as these perturbations are small, their growth can
be described via Newtonian gravity. Their evolution equation reads as

𝛿(𝑟, 𝑡) ≡ 𝜌(𝑟, 𝑡) − �̄�(𝑡)
�̄�(𝑡) ,

with 𝜌(𝑟, 𝑡) = �̄�(𝑡)[1+ 𝛿(𝑟, 𝑡)] being the matter density at a position 𝑟 and time
𝑡, and �̄�(𝑡) being the average density of the Universe at a time 𝑡.

In the linear regime (𝛿 ≪ 1), the perturbations’ evolution is well described
by hydrodynamical equations for a pressureless fluid, i.e., the mass conservation,
Euler and Poisson equations. These equations are linear, and thus one can factorise
the density perturbation 𝛿(𝑥, 𝑡) as 𝛿(𝑥, 𝑡) = 𝐷(𝑡)𝛿 (𝑥, 𝑡0), with 𝐷(𝑡) being the
growth factor of cosmological perturbations (normalised so that 𝐷 (𝑡0) = 1 at the
present cosmic time 𝑡0).

As a density perturbation becomes non-linear (𝛿 ≥ 1), its evolution can be
described only through simulations or analytical approximations. A meaningful
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approximation is given by the spherical collapse model, which sees perturbations
as uniform spherical regions with an initial density contrast 0 < 𝛿 ≪ 1 at 𝑧 ∼ 𝑧rec.
As time passes, the spherical region expands more slowly than the background,
and the density contrast can grow in the linear regime up to 𝛿 ∼ 1. When
𝛿 ∼ 1.686, the expansion of the sphere stops, and the enclosed mass starts to
collapse, forming, in the context of this idealised model, a singularity.

Reality, though, is far more complex. The collapse of matter overdensities is
not expected to obey spherical symmetry, nor is its density distribution expected
to be uniform. During an actual collapse, DM particles experience phase mixing
and violent relaxation. Instead of collapsing into a singularity, they form an
equilibrium system that satisfies the virial theorem. Denoting 𝐾 as the system’s
kinetic energy and 𝑊 as its gravitational energy, the virial theorem states that
at equilibrium 𝐾 = −𝑊/2. Assuming an Einstein–de Sitter cosmology, virialised
halos are characterised by a typical overdensity 𝜌/�̄� = 18𝜋2 ∼ 178. Note that
the average matter density of the Universe can be written as �̄� = Ωm𝜌crit , where
Ωm(z) is the matter density parameter and 𝜌crit (z) the critical density, related to
the present-day critical density 𝜌crit ,0 by 𝜌crit (𝑧)/𝜌crit ,0 = 𝐻2(𝑧)/𝐻2

0 .
Virialised DM halos do not have a uniform density distribution, and neither

do they own a well-defined edge. Yet, it is helpful to define the mass and radius
of a DM halo. The size of a halo is usually associated with its virial radius 𝑟v, com-
monly defined as the radius of a sphere at redshift 𝑧 containing an overdensity
with average density Δc𝜌crit , where Δc is the critical overdensity for virialisation.
For an Einstein–de Sitter Universe, Δc = 18𝜋2, yet, in general, this quantity de-
pends on redshift. In ΛCDM cosmology, Δc ∼ 101 at 𝑧 = 0 and Δc ∼ 178 at
high redshifts. However, a wildly adopted and simple choice is the redshift-
independent value Δc ∼ 200.

The total mass of a DM halo is traditionally associated with its virial mass:

𝑀v ≡ 4𝜋
3 Δc𝜌crit 𝑟

3
v, (1.1)

and thus, the virial radius reads as

𝑟v =

[
2𝐺𝑀v

Δc(𝑧)𝐻2(𝑧)

]1/3
.

At z=0 and for Δc = 200, one obtains

𝑟200 ≃ 206.3
(
𝑀200

1012𝑀⊙

)1/3 (
ℎ

0.7

)−2/3
kpc. (1.2)

1.3.3 Statistical properties of CDM haloes
Sec. (1.3.2) described the evolution of a DM overdensity up until virialisation.
Yet, rather than focusing on single overdensities, one can consider the statistical
properties of the cosmological perturbations and their evolution, studying cos-
mological DM halos as an evolving population. The perturbation 𝛿(𝑟) is then
considered a realisation of an underlying probability distribution, i.e., a random

7



Chapter 1. Introduction

field. A valuable tool to describe the statistical properties of this distribution is
the correlation function:

�(𝑥) ≡
〈
𝛿
(
®𝑥′
)
𝛿
(
®𝑥′ + ®𝑥

)〉
,

where ®𝑥 and 𝑥 = | ®𝑥 | represent comoving coordinates and ⟨· · · ⟩ denotes the
average over 𝑥′. Note that the correlation function depends only on the modulus
of ®𝑥 due to the expected isotropy of the fluctuation density field.

The characteristic spatial scales of the density fluctuation field can be easily
estimated in Fourier space. If the Universe is homogeneous and isotropic on large
scales, one can take a Universe’s cubic volume𝑉 sufficiently large that fluctuations
in the field can be considered periodic since they happen on smaller scales than
the box size. Under this approximation, the field 𝛿(®𝑥) can be re-written as a
Fourier series:

𝛿(®𝑥) =
∑
®𝑘

𝛿®𝑘𝑒
𝑖 ®𝑘· ®𝑥 ,

where the Fourier coefficients 𝛿®𝑘 are given by

𝛿®𝑘 =
1
𝑉

∫
𝑉

𝛿(®𝑥)𝑒−i®𝑘· ®𝑥 d3 ®𝑥.

Here, ®𝑘 is a vector with components 𝑘𝑖 = 2𝜋𝑁𝑖/𝑙, with 𝑁𝑖 being integers
(𝑖 = 1, 2, 3) and 𝑙 = 𝑉1/3.

The power spectrum of the fluctuations is defined as

𝑃(𝑘) ≡ 𝑉
〈��𝛿®𝑘

��2〉 ,
with 𝑘 = |𝑘 | being the wavenumber and ⟨· · · ⟩, now denoting an average

over different realisations of the perturbation’s field. Indeed, 𝑃(𝑘) measures the
amount of fluctuations on scales � = 2𝜋/𝑘. Note also that, by definition, the
correlation function and the power spectrum are the Fourier transforms of one
another.

The global amount of fluctuations due to modes with all possible wavenumbers
is given by the variance of the perturbation field 𝜎:

𝜎2 =
1

2𝜋2

∫ ∞

0
𝑃(𝑘)𝑘2 d𝑘.

One can express the field’s variance contributed by fluctuations on scales above
a given threshold (e.g., by smoothing the field on scales smaller than a particular
value 2𝜋/𝐾):

𝜎2
𝐾(ℳ) = 1

2𝜋2

∫ ∞

0
𝑊𝐾(𝑘)𝑃(𝑘)𝑘2 d𝑘.

Here, 𝑊𝐾(𝑘) is a 𝑘-space filter function (i.e., 𝑊𝐾 ≈ 1 for 𝑘 ≲ 𝐾 and 𝑊𝐾 ≈ 0 for
𝑘 ≳ 𝐾), and the mass 𝑀 associated with the wavenumber 𝐾 scales as ℳ ∝ 𝐾−3. If
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the power spectrum trends as the power-law 𝑃(𝑘) ∝ 𝑘𝑛s (with 𝑛s being its spectral
index), then 𝜎2

𝐾
∝ ℳ−(3+𝑛s)/3, which is the case of the primordial power spectrum.

The power spectrum at a time 𝑡 after recombination can be parameterised as

𝑃(𝑘, 𝑡)
𝑃0 (𝑘0)

= 𝐷2(𝑡)𝑇2(𝑘)
(
𝑘

𝑘0

)𝑛s

,

where 𝑇(𝑘) is the transfer function, parametrising the different evolution of
perturbations with different characteristic scales, 𝑘0 is a reference wavenumber
and 𝑃0(𝑘) ≡ 𝑃(𝑘, 𝑡0). Since by definition𝐷 (𝑡0) = 1, the present-day (𝑡 = 𝑡0) linearly
extrapolated power spectrum 𝑃0(𝑘) is given 𝑃0(𝑘)/𝑃0 (𝑘0) = 𝑇2(𝑘) (𝑘/𝑘0)𝑛s .

The effect of the transfer function in CDM cosmology is to partially suppress
fluctuations on smaller scales (i.e., larger 𝑘). In this framework, the transfer func-
tion’s shape is determined by the presence of a finite horizon — at any finite time
𝑡, the size of the observable and causally connected Universe is of the order of
𝑐𝑡. Perturbations on scales larger than the horizon size are purely affected by
gravity, and hence they are free to grow. Instead, the growth of perturbations on
smaller scales is damped by radiation pressure, especially until matter is still cou-
pled with radiation. Specifically, since the radiation-driven expansion timescale
is shorter than the collapse timescale, perturbations entering the horizon during
the radiation-dominated era (𝑧eq ∼ 3400) grow slower than those entering during
the matter era.

The CDM transfer function 𝑇 → 1 for 𝑘 ≪ 𝑘eq, while 𝑇 → 0 for 𝑘 ≫ 𝑘eq, with
𝑘eq being the wavenumber associated to the size of the horizon 2𝜋/𝑘eq ∼ 125 Mpc
at the epoch of matter–radiation equivalence. When DM is not cold, the transfer
function may also account for the effect of free streaming. Indeed, particles with
non-negligible kinetic energy are not confined by the potential wells of small-scale
fluctuations, which are further damped. As discussed in Sec.(2.2.2) and displayed
in Fig. (4.2), the power spectrum of a model such as Warm Dark Matter differs
from the CDM one for the presence of a cut-off at high 𝑘.

A pivotal quantity to the statistic description of DM halo populations is the
halo mass function (HMF), which returns the number density of haloes with
masses between 𝑀 and 𝑀 + 𝑑𝑀. The HMF can be estimated analytically using
the Press–Schechter formalism (Press & Schechter 1974):

d𝑛
dℳ(ℳ) =

√
2
𝜋

�̄�

ℳ2
𝛿c
𝜎𝐾

exp

(
− 𝛿2

c

2𝜎2
𝐾

) ���� d ln 𝜎𝐾
d lnℳ

���� . (1.3)

The HMF’s shape is determined by 𝜎𝐾(𝑀), and thus the HMF depends on
the power spectrum 𝑃(𝑘). Also, for a fixed 𝑃(𝑘), the HMF depends on redshift
through the critical overdensity for collapse 𝛿c(𝑧), which scales increasingly with
𝑧. The redshift dependence of the Press-Schechter HMF is illustrated in Fig.(1.1).

The Press–Schechter framework served as a basis to develop more sophisti-
cated formalisms (e.g., Sheth & Tormen 1999; Warren et al. 2006; Tinker et al.
2008; Angulo et al. 2012; Bocquet et al. 2016; Despali et al. 2016; Diemer 2020).
The majority of these models can account for DM subclumps embedded in larger
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Figure 1.1: Redshift dependence of the Press-Schechter HMF given by Eq.(1.3)
for a Aghanim et al. (2020) cosmology generated utilising the COLOSSUS python
package (Diemer 2018).

ones. Moreover, they can connect the properties of progenitor and descendant
halos, allowing them to construct halo merger trees.

1.3.4 The Navarro–Frenk–White profile
Once CDM haloes are virialised, a precise analytical expression can characterise
their internal density distribution. Gravity-only N-body simulations of collision-
less CDM particles predict self-similar DM haloes that, over a broad range of
masses and redshift, show an internal DM density distribution following the
universal Navarro–Frenk–White (NFW) profile (see Navarro et al. 1996; Łokas &
Mamon 2001):

𝜌DM(𝑟) = 𝛿c𝜌c𝑟
3
𝑠

𝑟 (𝑟 + 𝑟𝑠)2
. (1.4)

Here, 𝛿𝑐 is the dimensionless characteristic overdensity of the halo, 𝜌c =

3𝐻2
0/8𝜋𝐺 is the local critical density, and 𝑟𝑠 is a scale radius of the profile. The

virial mass 𝑀𝑣 of Eq. (1.1) and the concentration 𝑐 ≡ 𝑟v/𝑟𝑠 , defined in terms of the
virial radius expressed by Eq. (1.2), can be used to fully characterise the profile
since 𝛿𝑐𝜌𝑐 = 𝑀v𝑐

3𝑔(𝑐)/4𝜋𝑟3
v with 𝑔(𝑐) ≡ [ln(1 + 𝑐) − 𝑐/(1 + 𝑐)]−1.

The overall trending of the NFW profile is shown in Fig.(1.2) for different
values of the scale radius 𝑟𝑠 . The asymptotic behaviour of the NFW profile at
𝑟 ≫ 𝑟𝑠 returns 𝜌(𝑟) ∝ 𝑟−3. Instead, for small radii 𝑟 ≪ 𝑟𝑠 , Eq. (1.4) diverges as
𝜌(𝑟) ∝ 𝑟−1, indicating a steep slope near the centre of the DM halo.
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Figure 1.2: A qualitative comparison between the NFW profile given by Eq. (1.4)
(fixing 𝜌0,NFW = 𝛿𝑐𝜌𝑐 = 0.38 M⊙/pc3) and the Burkert profile given by Eq. (1.5)
(fixing 𝜌0,Burkert = 1 𝑀⊙/pc3) varying the NFW scale radius 10 kpc ≲ 𝑟𝑠 ≲ 30 kpc
and the Burkert core radius 5 kpc ≲ 𝑟0 ≲ 15 kpc.

1.4 Galaxy-scale issues of the Cold Dark Matter model
The CDM paradigm has proven highly successful in replicating the observed
phenomenology of DM on cosmological scales. Yet, this framework encounters
challenges when attempting to account for certain observed behaviours of DM on
galactic scales. In this section, I review the major controversies associated with
the CDM paradigm on these small scales, whereas possible solutions are detailed
in Chapter 2.

1.4.1 The Core-Cusp problem
Addressed earlier in Sec. (1.3.4), CDM gravity-only N-body simulations produce a
steep, power-law-like density profile for halos at inner radii, well characterised by
the NFW profile in Eq. (1.4). However, observations present a contrasting picture,
revealing a flat, or cored DM density in the inner regions of galaxies, particularly in
the case of DM-dominated dwarf galaxies. DM density profiles for these galaxies
are well approximated by the phenomenological Burkert profile (Burkert 1995):

𝜌DM(𝑟) =
𝜌0𝑟

3
0

(𝑟 + 𝑟0)
(
𝑟2 + 𝑟2

0
) . (1.5)

Here, 𝜌0 and 𝑟0 denote the density and radius associated with the DM halo
core (i.e., the region where the profile’s slope is flat). The observed inconsistency
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between these empirical cored profiles and the steeper predictions of the CDM
model has been coined the core-cusp problem (e.g., Boylan-Kolchin & Ma 2004;
Navarro 2006; de Blok 2010; Navarro et al. 2017). Fig.(1.2) contains a visual
depiction of such discrepancy.

1.4.2 Missing satellites problem
CDM simulations predict galaxies like the Milky Way should count hundreds of
sub-halos. Observations instead revealed only tenths (∼ 60) of these satellites
(Klypin et al. 1999; Moore et al. 1999; Drlica-Wagner et al. 2015; Bechtol et al.
2015; Koposov et al. 2015). This observed discrepancy is termed missing satellites
problem. The leading explanation for this conundrum envisages small DM halos as
inefficient in forming stars (e.g., Wheeler et al. 2014; Shen et al. 2014). Hence, these
haloes could easily fall below the sensitivity thresholds of current instrumentation.
Indeed, simulations estimate that the Milky Way should host hundreds of faint,
luminous satellites (Tollerud et al. 2008; Hargis et al. 2014; Newton et al. 2018;
Jethwa et al. 2018). Hence, it is essential to consider completeness corrections
when comparing simulation results to Milky Way subhaloes surveys. Doing so
suggests that the number of Milky Way satellites agrees with the number of
luminous satellites predicted by CDM down to halo masses of ∼ 108𝑀⊙ (Kim
et al. 2018). However, the missing satellite problem could still apply to ultra-faint
dwarf galaxies (with typical halo masses ranging even below 105𝑀⊙, Acuna et al.
2023).

1.4.3 The too-big-to-fail problem
Milky Way satellites’ predictions of the CDM model needed to be reconciled with
observations. Hence, a hypothesis emerged: many satellites might exist, but
their stars had been stripped away through tidal interactions, rendering them
invisible. This proposed solution, however, gave rise to a new challenge termed
too-big-to-fail problem (e.g., Boylan-Kolchin et al. 2011; Boylan-Kolchin et al. 2012;
Garrison-Kimmel et al. 2014; Smercina et al. 2018). Indeed, satellite galaxies
predicted by simulations should be so massive that they should unmistakably
harbour visible stars. The observed luminosity function (or one accounting for
baryonic physics) predicts numerous intermediate-mass systems within the Local
Group and similar nearby systems. Yet, these satellites seem nowhere to be found
(e.g., Tremaine & Richstone 1977). Observationally, this translates into a large gap
between the brightness of the first and second-brightest galaxies in groups and
clusters. Stellar feedback processes may reduce the density within the centres of
satellite galaxies, resulting in shallower density profiles partially devoided of stars
(e.g., Lovell et al. 2017). However, this solution remains a topic of debate (e.g.,
Papastergis & Shankar 2016). Tidal effects, such as shocks and stripping, may
modify the mass distribution of dark and baryonic matter in satellites (Tomozeiu
et al. 2016), as well as gravitational interactions and merging processes within
groups and clusters (Ostriker & Hausman 1977; Choi et al. 2017). Notably, recent
literature suggests that the observed gap between the first and second-brightest
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satellites is well-replicated in state-of-the-art simulations of galaxy formation,
such as EAGLE (Schaye et al. 2015) and Illustris (Genel et al. 2014). After all, it
is possible that modern CDM simulations do not suffer from the too-big-to-fail
problem at all (e.g., Ostriker et al. 2019).

1.4.4 Angular momentum problem
In the prevailing hierarchical clustering framework, galactic discs take shape
within the gravitational wells of DM halos as baryonic matter cools and con-
denses through dissipative processes. Discs formed in this manner are expected
to possess the observed angular momentum and spatial extent for a given mass
and profile shape (e.g., Fall & Efstathiou 1980). However, this hinges on the crucial
condition that the infalling gas conserves most of its original angular momentum.
CDM numerical simulations have consistently indicated a persistent challenge in
this sense (see, e.g., Navarro & Benz 1991; Haslbauer et al. 2022). When these
simulations exclusively consider cooling processes, the infalling gas undergoes
substantial angular momentum loss. Consequently, the resulting discs appear
significantly smaller than what observational data demand. This discrepancy is
aptly called the angular momentum problem. To solve it, a mechanism is required to
impede, or at the very least delay, the collapse of small protogalactic gas clouds.
Such a mechanism would allow the gas to retain a larger fraction of its angular
momentum as it settles into the forming disc. In contrast, calculations of galaxy
formation through semi-analytical techniques, which assume an initial angular
momentum distribution in baryons identical to that of DM and the conservation
of this distribution during baryonic collapse, demonstrate better agreement with
observed disc sizes (Fall & Efstathiou 1980; Mo et al. 1998; Cole et al. 2000).

1.4.5 The Radial Acceleration Relation and the DM-baryons in-
terplay

Observations revealed robust empirical scaling relationships between baryons and
DM in spiral galaxies, which are a priori unexpected within the CDM framework
(see, e.g., Lapi et al. 2018). The most renowned is the baryonic Tully–Fisher
relation (BTFR). The BTFR links a spiral galaxy’s asymptotic circular velocity𝑉flat
to its baryonic mass 𝑀b as𝑉4

flat ∼ 𝑀b (McGaugh et al. 2000; Papastergis et al. 2016;
Zackrisson et al. 2015; Lelli et al. 2016; Lelli et al. 2019). NFW profiles of CDM
haloes predict a curvature in the BTFR that contradicts observed data (Desmond
2017). Yet, abundance matching techniques between the HMF and the luminosity
distribution of galaxies predict a relationship between the stellar and halo mass
whose normalisation is close to the BTFR one, particularly for baryonic masses
around 1010𝑀⊙ (Di Cintio & Lelli 2016; Desmond 2017). However, at higher
masses, abundance matching overestimates the halo mass of disc galaxies, failing
to reproduce the BTFR’s shape. Furthermore, the exceptionally low intrinsic
scatter of the BTFR contradicts abundance matching predictions (Posti et al. 2019).

Additionally, CDM struggles to explain the diversity of RC shapes in galaxies
with matching asymptotic circular velocities (and total baryonic mass on the
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BTFR). These RCs encompass a range of central DM density profiles, from cuspy
NFW-like central distributions projected in DM-only simulations to expansive,
constant-density DM cores (Ogle et al. 2019). Moreover, observations revealed a
direct correlation between the average DM density within 2 kpc and the baryon-
induced rotational velocity at that radius (Ghari et al. 2019a). This subtends a link
between RC shapes and baryon surface density (Donato & Salucci 2004; Swaters
et al. 2009).

The unexpected diversity of RCs at a given velocity scale, their uniformity
at a specific baryonic surface density scale, and their adherence to the BTFR are
summarised by the so-called Radial Acceleration Relation (RAR). The RAR is
a tight empirical relationship between two a priori independent quantities: the
(total) gravitational radial acceleration 𝑔tot = GMtot (< 𝑟)/𝑟2 inferred from galaxy
RCs with different masses and velocities and the acceleration associated with the
luminous matter distribution 𝑔bar = GMbar(< r)/r2, which is mainly probed by
photometric observations. The RAR was initially proposed in McGaugh et al.
(2016) by exploiting the individual high-quality RCs of the SPARC sample (see
Lelli et al. 2016). In Lelli et al. (2017), an overall representation of the RAR was
introduced in terms of the following function:

𝑔tot =
𝑔bar

1 − 𝑒−
√
𝑔bar/𝑔†

+ �̂�𝑒−
√
𝑔bar𝑔†/�̂�2

, (1.6)

with 𝑔† = (1.20 ± 0.24) × 10−10 m s−2 and �̂� = (9.2 ± 0.2) × 10−12 m s−2 being
fitting parameters, whose values were derived from the analysis of the SPARC
sample. The recent literature argued that the parameter 𝑔† could represent an
acceleration scale governing the average internal dynamics of galaxies. Since the
existence of such a scale in the standard cosmological model is far from trivial,
this phenomenon has been interpreted as a possible sign of modified gravity (e.g.,
Hossenfelder & Mistele 2018; Green & Moffat 2019; O’Brien et al. 2019; Islam
& Dutta 2020; Petersen & Lelli 2020). More specifically, the empirical constant
𝑔† would be interpreted as the fundamental acceleration scale 𝑎0 in the MOND
framework (see Sec. (2.2.6)). Indeed, the value of 𝑔† derived both in McGaugh
et al. (2016) and Lelli et al. (2017) is compatible with the expected value of the
MONDian characteristic acceleration scale 𝑎0 ∼ 1.2×10−10 m s−2. Notice, however,
that such an interpretation is still highly debated, with some works supporting
it (see, e.g., Li et al. 2018; Ghari et al. 2019b) and some others ruling it out (e.g.,
Marra et al. 2020; Rodrigues & Marra 2020). Yet, the ongoing debate around the
hypothesised fundamental nature of the RAR is beyond the scope of this thesis.

The RAR has been studied in various galaxy samples (Lelli et al. 2017; Rong
et al. 2018; Chae et al. 2019; Oman et al. 2020; Brouwer et al. 2021), including
dwarf disc and low surface brightness galaxies (Di Paolo et al. 2019), as well as
in galaxy clusters (Tian et al. 2020; Chan & Del Popolo 2020; Pradyumna et al.
2021; Pradyumna & Desai 2021; Eckert et al. 2022; Tam et al. 2023). Albeit hydro-
dynamical simulations in the ΛCDM framework have succeeded in reproducing
the overall observed shape of the galactic RAR (Eckert et al. 2022; Ludlow et al.
2017; Garaldi et al. 2018; Dutton et al. 2019; Paranjape & Sheth 2021), its precise
normalisation and minimal scatter continue to present an intriguing challenge for
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this paradigm.

This Chapter explored the core attributes of the CDM paradigm and highlighted
its contrasts with the observed phenomena of DM at the galactic level. The follow-
ing Chapter will provide an overview of the primary mechanisms put forward by
the astrophysical community to address these problematics.
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Chapter 2

Solving CDM’s galaxy scales
controversies

Why is CDM at variance with galaxy-scale observations? Some astrophysicists
think the missing piece of this dark puzzle should be sought in galaxy-scale
baryonic physics. Baryonic processes can indeed reshape part of CDM haloes’
potential well. Another possiblity is that DM is not cold at all. This scenario
then calls for new DM particle candidates substantially different from CDM ones.
These new particle properties should agree with the observed DM galaxy-scale
phenomenology of DM, yet at the same time, they should recover a similarly
successful cosmology with respect to CDM. Other physicists, instead, believe that
the CDM paradigm is correct and that gravity should be modified. A more radical
class of modified gravity theories eliminates the need for DM in the cosmos. In
the subsequent section, I will offer a brief review of these concepts, evaluating
their merits in solving CDM’s galaxy scale issues and lingering questions.

2.1 Baryonic processes
As baryons get accreted by DM halos, various processes may come into play,
potentially altering the halo’s structure. Indeed, some authors argue how baryonic
processes could alleviate the core-cusp problem (e.g., Zentner et al. 2022), the
missing satellites problem (Wheeler et al. 2014; Shen et al. 2014) or even reproduce
the non-trivial tight dynamical scaling laws between DM and baryons such as the
RAR (Di Cintio et al. 2014; Di Cintio & Lelli 2016; Santos-Santos et al. 2016; Keller
& Wadsley 2017; Ludlow et al. 2017; Desmond 2017; Navarro et al. 2017; Wheeler
et al. 2019). This section briefly recaps some of the leading processes discussed in
the literature.

2.1.1 Feedback processes
Baryonic feedbacks encompass several processes supplying energy to the inter-
stellar medium, potentially altering DM haloes’ potential distribution. These
processes source from radiation pressure, stellar winds, supernovae and the ac-
tivity of supermassive black holes in galaxies (Natarajan 1999; Efstathiou 2000;
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Gnedin & Zhao 2002; Peirani et al. 2006; Mashchenko et al. 2008; Kereš et al.
2009; Dutton & van den Bosch 2009; Sawala et al. 2010; Governato et al. 2010,
2012; Scannapieco et al. 2012; Agertz et al. 2013; Freundlich et al. 2016; Read et al.
2016; Katz et al. 2018; Bose et al. 2019). Feedback mechanisms produce rapid
fluctuations in the halo’s potential, transferring their energy to DM particle orbits
(Teyssier et al. 2013; Pontzen & Governato 2014). The net effect is that DM par-
ticles may be prevented from penetrating into the halo’s inner regions, creating
a cored distribution. Although baryonic feedback may mitigate the core-cusp
issue, its effectiveness in redistributing DM within halos without some degree
of fine-tuning is debated (Mac Low & Ferrara 1999; Mo & Mao 2004; Kuzio de
Naray & Spekkens 2011; Oñorbe et al. 2015; Bland-Hawthorn et al. 2015; McGaugh
2021). This is especially true in low-mass, DM-dominated dwarf galaxies, typi-
cally characterised by cored DM halo profiles (e.g., Ferrero et al. 2012). Indeed,
analytical models suggest that in galaxies with stellar masses 𝑀∗ ≲ 107𝑀⊙ there
is not enough energy in supernovae alone to create DM cores extending above
∼ 1 kpc (Peñarrubia et al. 2012). Furthermore, episodic feedback simulations
showed how the energy required for solving the too-big-to-fail problem exceeds
that available from supernovae in galaxies with 𝑀∗ ≲ 107𝑀⊙ (Garrison-Kimmel
et al. 2013). Finally, baryonic feedbacks may increase the angular momentum of
DM haloes (e.g., Couchman & Thacker 2003; Zhang & Dai 2021).

2.1.2 Adiabatic contraction
As baryons condense in the centre of DM haloes, they may pull DM particles
inward, thereby increasing their density in central regions (Blumenthal et al.
1986; Gnedin et al. 2004; Gustafsson et al. 2006). As a response, the DM halo
contracts adiabatically, diminishing its radius1. In the simplest modelisations of
this process, the halo can be seen consisting of spherical shells which contract
but do not cross each other (Blumenthal et al. 1986). The resulting deepening of
the gravitational potential may trigger a star formation burst in the halo’s central
region. At this point, feedback (e.g., from supernovae or supermassive black
holes) might then eject a significant portion of the baryonic material, lowering
the DM halo’s concentration and creating a flatter inner radii shape for the halo
density profile (Navarro et al. 1996; Read & Gilmore 2005; Pontzen & Governato
2012; Benítez-Llambay et al. 2017; Bose et al. 2019; Li et al. 2023).

2.1.3 Dynamical friction and dynamical flattening
Clumpy material falling into the centre of the DM halo during galaxy formation
may experience significant dynamical friction. Contrarily to radiative dissipation,
the resulting energy and momentum loss are conserved and transferred to the DM
background. This process may expand the DM halo and heat its central region,
inducing a uniform DM density at inner radii (El-Zant et al. 2001; El-Zant et al.

1In reality, the gas can be re-heated by shocks during halo mergers and accretion along the
surrounding filaments. Also, dissipationless evolution may erase the effect of gas cooling on the
DM distribution, e.g., Gao et al. (2004)
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2004; Tonini et al. 2006; Romano-Diaz et al. 2008; Goerdt et al. 2010; El-Zant et al.
2016). Other dynamical processes may also erase the central DM cusp predicted
by CDM. In principle, the growth of supermassive black holes, especially when
surrounded by a dense star cluster (as in the Milky Way centre), could lead to a
shallower central DM distribution (Merritt et al. 2002; Gnedin & Primack 2004).
Moreover, if a supermassive black hole forms through a merger, DM particles
might be ejected from the central halo region via three-body interactions (Gnedin
& Primack 2004).

2.2 Alternative DM scenarios
A class of solutions to the galaxy scale problems of the CDM paradigm hypoth-
esises new properties for DM that depart from the original Cold picture. The
astrophysics community has considered numerous alternative models to CDM,
and in this section, I will summarise the main paradigms discussed in the modern
literature.

2.2.1 Hot Dark Matter
Hot dark matter (HDM) envisages DM as a low-mass thermal relic particle. Pos-
sible candidates are neutrinos with typical velocities ∼ 100 km s−1, axions with
∼ 1 eV mass (Hannestad et al. 2005, 2007; Hannestad et al. 2008; Hannestad et al.
2010; Archidiacono et al. 2013) or possibly light dark photons (i.e., force carri-
ers associated with a new, hidden or dark U(1) gauge symmetry; e.g., Eddine
Ennadifi 2022). The typical high velocities of these particles (≳ 100 km s−1) are
larger than the characteristic speed associated with the potential wells of galaxies
(∼ 100 km s−1). Hence, HDM particles are prevented from being gravitationally
bound on galaxy scales, in a phenomenon called free streaming. The magnitude
of these free streaming effects implies that galactic DM cannot be made entirely
of HDM. Moreover, the high uniformity of CMB speaks against these particles’
high velocity since they cannot form clumps as small as galaxies beginning from
such a smooth initial state. Indeed, the bulk of the recent literature only considers
mixed Hot and Cold DM scenarios (e.g., Das et al. 2022; Hervas Peters et al. 2023).

2.2.2 Warm Dark Matter
The Warm Dark Matter (WDM) paradigm is a midpoint between the Hot and
Cold DM models. Even if observations rule out HDM, non-negligible velocity
dispersions corresponding to keV-scale particles represent a viable region of pa-
rameter space that could solve CDM challenges. Various theoretical models of
WDM particles have been proposed, considering different production mecha-
nisms, decoupling temperatures, interactions and decay mechanisms. Spin-1/2
particles, such as sterile neutrinos, can be viable WDM candidates. These are
particles produced at the early Universe’s high temperatures that may have never
been in thermal equilibrium (Lovell et al. 2014; Kennedy et al. 2014; Lovell et al.
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2017; Boyarsky et al. 2019; Sen 2021; Dekker et al. 2022; Yunis et al. 2023; Horner
et al. 2023). Masses of sterile neutrinos depend on the particular model of parti-
cle production, but ∼ 1 keV masses show good agreement with simulations and
observations (de Vega & Sanchez 2010; de Vega et al. 2012; de Vega & Sanchez
2012; de Vega & Sanchez 2012; Destri et al. 2013a,b; Destri et al. 2013; de Vega
et al. 2014; Sanchez et al. 2016; Villanueva-Domingo et al. 2018). Other WDM par-
ticle candidates are axinos, hypothetical fermionic superpartners of axions (Kim
2002; Seto & Yamaguchi 2009; Bae et al. 2018; Vogel & Abazajian 2023). Another
possibility is offered by spin-3/2 particles such as gravitinos, theoretical particles
appearing in Standard Model extensions, constrained by cosmological observa-
tions to have masses ≲ 1 keV (Pagels & Primack 1982; Blumenthal et al. 1982;
Bond et al. 1982; Abazajian et al. 2001; Baltz & Murayama 2003; Asaka et al. 2006;
O’Shea & Norman 2006; Gorbunov et al. 2008; Vogel & Abazajian 2023; Dayal &
Giri 2023), or non-supersimmetric particles. Simulations and observations sug-
gest that keV-scale WDM particles could be immune to some of CDM’s small-scale
issues, such as the core-cusp problem, the too-big-too-fail problem and satellite
counts and distribution (e.g., Lovell et al. 2012; Anderhalden et al. 2013). In this
mass range, WDM particles are interested by non-negligible free streaming effects.
Hence, these particles suppress structures on Mpc scales and below. Indeed, this
suppression is what distinguishes WDM from CDM in simulations (see, e.g., Fig.
(4.2)). However, galaxy counts, strong lensing phenomena, observations of stellar
streams, Lyman-𝛼 forest observations and combinations of these set lower limits
on the WDM particle mass at significantly greater scales than the optimal scale
of 1-2 keV (Polisensky & Ricotti 2011; Iršič et al. 2017b; Cherry & Horiuchi 2017;
Nadler et al. 2019; Gilman et al. 2020; Nadler et al. 2021; Gilman et al. 2021). For
instance, the combined constraints from strong lensing and galaxy counts hint at
a lower limit of approximately 9.8 keV (at the 95% confidence level; Zelko et al.
2022). This lower limit rises to 11 keV when combining limits from stellar streams,
galaxy counts, and lensing (Banik et al. 2021).

2.2.3 Fuzzy Dark Matter
Fuzzy Dark Matter (𝜓DM) postulates that DM is composed of non-interacting
ultra-light scalar particles with a mass around 𝑚 ∼ 10−22 eV (e.g., Hu et al. 2000;
Schive et al. 2014a; Hui et al. 2021). Interestingly, particles with 𝑚 ≪ 1 eV attain
extremely high occupation numbers in galactic halos. Hence, 𝜓DM behaves as
a classical field 𝜙 = 𝐴 cos(𝑚𝑡 − 𝛼) (with 𝐴 and 𝛼 being amplitude and phase
terms), which can be described with a collective wavefunction2 Ψ(®𝑟, 𝑡) = 𝐴𝑒 𝑖𝛼 out
of the amplitude and phase of the field itself. Indeed, 𝜓DM displays a unique
astrophysical behaviour due to its macroscopic kpc-scale de Broglie wavelength
�dB ≡ 2𝜋

𝑚𝑣 (with𝑚 and 𝑣 being the typical particle masses and velocities), and hence
quantum effects are significant at a galaxy-scale level. 𝜓DM particles cannot be
confined to scales smaller than their de Broglie length. Thus, per the Uncertainty
Principle, this translates into a wide dispersion in the particle momenta’s space.

2This wavefunction obeys Eq.(2.2.4), yet, differently from the BEC DM model described in
Sec. (2.2.4), no self-interaction term is present.
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Hence, 𝜓DM particles exert a quantum pressure opposing gravity, giving rise to a
rather interesting phenomenology. On galactic scales, this quantum pressure can
counterbalance the gravitational effects of DM. Indeed, 𝜓DM simulations antici-
pate the presence of spherical solitonic standing wave cores with few kiloparsecs
diameters. Consequently, the 𝜓DM paradigm generates cored DM halo profiles
through the effects of quantum pressure (Schive et al. 2014a,b; Schive et al. 2016).
These cores exhibit small-scale fluctuations characterised by fringes attributed
to wave interference, often called granules (Schive et al. 2014a; Mocz et al. 2017;
Veltmaat et al. 2018; Hui et al. 2017). Such characteristic sets 𝜓DM cores apart
from the smoother structure of, e.g., WDM ones. Moreover, quantum pressure
renders 𝜓DM haloes more concentrated than in other DM paradigms (Mocz et al.
2019). Smaller galaxies are expected to possess broader cores with lower densities
because the soliton size increases at lower momentum levels (Pozo et al. 2023).
However, Burkert (2020) shows that 𝜓DM cores cannot reproduce the observed
core surface density scaling for dwarf galaxies with halo masses 𝑀 ≤ 1011𝑀⊙
(Salucci & Burkert 2000; Burkert 2015; see Sec. (3.2.5)).

𝜓DM predicts almost identical large-scale structures to CDM in terms of the
network of filaments and clusters (Schive et al. 2014a; Mocz et al. 2017). However,
quantum pressure suppresses structures below ∼ 109𝑀⊙ for particle masses ∼
10−22 eV (Schive et al. 2016), and galaxy formation is delayed with respect to
CDM. In the CDM framework, gravitational attraction from the early formation
of the first halos disrupts filaments earlier than in 𝜓DM. The extended filaments’
lifetimes in this framework promote the formation of a more significant number of
stars within them. This results in a notable disparity in the location and extent of
stellar profiles in CDM and 𝜓DM galaxies (Mocz et al. 2019, 2020). Furthermore,
this phenomenon causes baryonic objects to appear more diffuse or smoothed
compared to CDM, suggesting their potential as effective tracers of DM in the
𝜓DM model.

Various observational studies constrained the 𝜓DM particle’s mass: Jeans
modelling of dwarf spheroidal galaxies (dSphs,𝑚 ≥ 10−22 eV; Schive et al. 2014a,b;
Mocz et al. 2017; Veltmaat et al. 2018; Chen et al. 2017; Niemeyer 2020; Safarzadeh
& Spergel 2020; Hayashi et al. 2021); the analysis of stellar dispersion in ultra-
faint dwarf galaxies (𝑚 > 3 × 10−19 eV; Dalal & Kravtsov 2022); Lyman-𝛼 forest
observations of cosmic structures (𝑚 > 3.8 × 10−21 eV from Iršič et al. 2017a and
𝑚 > 2 × 10−20 eV from Rogers & Peiris 2021); Milky Way subhalo population
observations (𝑚 > 2.9 × 10−21 eV; Nadler et al. 2021); Milky Way stellar streams
observations (𝑚 > 2.2 × 10−21 eV; Banik et al. 2021) and flux ratio anomalies in
gravitationally lensed quasars (𝑚 > 10−21 eV; Laroche et al. 2022).

2.2.4 Bose–Einstein Condensate Dark Matter

The Pauli exclusion principle postulates that fermions are prohibited from occu-
pying identical quantum states. Bosons, however, do not adhere to this restriction.
Consequently, when the bosons’ density is sufficiently high, and their temperature
is significantly low, they merge into a unified quantum state called Bose–Einstein
condensate (BEC). BECs are describable through a wave function at a nearly
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macroscopic scale. In this regime, bosons become correlated as their wavelengths
overlap, specifically when their thermal wavelength surpasses the mean inter-
particle distance. This requires the particle temperature to fall below the critical
threshold 𝑇𝑐 = 2𝜋ℏ2𝑛2/3/𝑚𝑘𝐵, which is determined by the mass of the condensate
particles 𝑚 and their number density 𝑛, with ℏ being the reduced Planck constant
and 𝑘𝐵 being the Boltzmann’s constant (Dalfovo et al. 1999; Cornell & Wieman
2002; Pethick & Smith 2002; Griffin et al. 2009).

The macroscopic wave function of the condensate and its dynamics can be
described through the Gross–Pitaevskii equation, which provides a mean-field
description of the condensate’s behaviour, treating the many-particle quantum
system as a single, coherent entity. The time-dependent Gross–Pitaevskii equation
reads as:

𝑖ℏ
𝜕Ψ(®𝑟, 𝑡)

𝜕𝑡
=

(
− ℏ2

2𝑚∇2 +𝑉(®𝑟) + 𝑔 |Ψ(®𝑟, 𝑡)|2
)
Ψ(®𝑟, 𝑡).

Here, Ψ(®𝑟, 𝑡) represents the total BEC wavefunction, which in the Hartree-
–Fock approximation can be expressed as the product of the single bosonic par-
ticle wavefunctions. The term −ℏ2/(2𝑚)∇2 describes a repulsive effect stemming
from the quantum pressure developed by the Uncertainty Principle (analogously
to 𝜓DM, see Sec. (2.2.3)), whereas 𝑉 is the potential acting on the condensate.
Finally, 𝑔 represents the strength of the inter-particle interactions and reads as
𝑔 = 4𝜋ℏ2𝑎𝑠/𝑚, with 𝑎𝑠 being the scattering length.

BECs are characterised by an intrinsic lengthscale called the healing length of
the condensate. This lengthscale parametrises how quickly the wavefunction of
the BEC can adjust to changes in the potential, characterising the typical scale
of time/space variations of the condensate amplitude. The healing length � can
be found by equating the quantum pressure and the interaction energy of the
condensate:

� =
1√

8𝜋𝑛𝑎𝑠
. (2.1)

The concept of healing length will be reprised in Sec. (3.1.3) when discussing
the characteristics of the non-minimally coupled DM model presented in Chapter
3.

The process of Bose–Einstein condensation was initially observed experimen-
tally in 1995 with dilute alkali gases, such as rubidium and sodium vapours, which
were confined in a magnetic trap and cooled to extremely low temperatures (An-
derson et al. 1995; Bradley et al. 1995; Davis et al. 1995). Subsequently, quantum
degenerate gases have been created by combining laser and evaporative cooling
techniques, opening up exciting avenues of research at the intersection of atomic,
statistical, and condensed matter physics. The concept that DM could exist in the
form of a BEC was first contemplated in the works of Sin (1994) and Ji & Sin (1994).
These studies used the non-relativistic Gross–Pitaevskii equation to describe the
condensate, deriving numerical solutions. An alternative approach was proposed
by Boehmer & Harko (2007), who introduced the Madelung representation of the
wave function, an equivalent alternative formulation of the Schrödinger equation
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using hydrodynamical variables (Madelung 1926). Within this framework, DM
is believed to consist of non-relativistic bosons condensing into gravitationally
confined Newtonian condensates (Harko & Madarassy 2012; Harko & Lobo 2015).
In this scenario, the BEC DM’s density and pressure are described by a barotropic
equation of state with index 𝑛 = 1.

The repulsive interaction developed by bosons occupying the same ground
energy state hinders the formation of central density cusps in DM haloes. Indeed,
BEC DM has proven to suitably fit RCs of dwarf galaxies, low surface brightness
galaxies, and regular spiral galaxies (Harko 2011; Dwornik et al. 2013; Zhang et al.
2018; Crăciun & Harko 2020; Harko & Madarassy 2022). The size and mass of BEC
DM haloes and the condensate’s collapse time significantly depends on two key
parameters: the DM particle’s mass and the scattering length (Harko 2014). An
analysis carried out on galaxy cluster scales has suggested that BEC DM’s particle
mass is approximately on the order of �eV, with a scattering length of 10−7 fm
(Harko et al. 2015). Studies of Milky Way satellites in BEC DM instead hint at
particle masses of 10−22 eV (Lee & Lim 2010), whereas fits to RCs of spiral galaxies
suggest the 10−6 − 10−4 eV range, with a lower bound for the scattering length of
10−14 fm (Pires & de Souza 2012).

BEC DM has undergone testing on various fronts, such as the study of the
collapse of BEC DM haloes (Harko 2019; Harko et al. 2022), gravitational lensing
(Harko & Lobo 2015), the formation of BEC DM structures on stellar scales (Li et al.
2012), and the cosmological ramifications of this condensation process (Harko
2011; Harko & Mocanu 2012). While quantum mechanical effects dominate at
small scales and shape the DM halo mass distribution, BEC DM resembles an
assembly of cold particles at larger scales. Indeed, BEC DM particles are light
enough to produce small mass condensates that naturally coalesce over cosmic
time, forming structures akin to the bottom-up hierarchical clustering of CDM
(Harko 2011).

2.2.5 Self-Interacting Dark Matter
The CDM model suggests that DM is non-relativistic and interacts primarily
through gravity. However, one intriguing avenue is the potential introduction of
new forces beyond gravity between DM particles. Indeed, this reciprocal scat-
tering of DM particles could enhance galactic and sub-galactic DM phenomenol-
ogy. Such interaction may also produce deviations from CDM in the DM power
spectrum, influencing individual halos and their statistical properties (see, e.g.,
Fig. (4.2)). This is the core idea behind the Self-Interacting Dark Matter (SIDM)
paradigm.

As the halo grows, the self-interaction transfers energy from the outer and
hotter parts of the halo to the inner and colder ones. This exchange renders
the halo inner region isothermal, creating flat cores, while the outer region is
well-described by the NFW profile (Ray et al. 2022). SIDM predicts halo shapes
remarkably different from the CDM paradigm. Self-interactions isotropise DM
particle’s orbits, leading to closely spherical inner halo regions (Peter et al. 2013).
Instead, CDM’s halo velocity dispersion anisotropy can be substantial, with the
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halos’ shapes being distinctly triaxial in the centre. It is also argued that the
SIDM paradigm can alleviate the missing satellites problem since interactions
between DM particles can kick particles out of subhalos (e.g., Spergel & Steinhardt
2000). This effect, coupled with the increased tidal disruption of cored subhalos
compared to cuspy subhalos, leads to fewer Milky Way satellites than in CDM
cosmology. However, constant cross-section SIDM models predict mass losses due
to scattering events inefficiently altering the subhalo mass function (Vogelsberger
et al. 2012; Dooley et al. 2016). Furthermore, the observed great variety in the
shapes of RCs (e.g., de Blok et al. 2001; Simon et al. 2005; Kuzio de Naray et al.
2010; Adams et al. 2014) could be explained in the SIDM framework since it is
unclear if the physics of star formation can create the observed diversity of density
profiles (Oman et al. 2015; Creasey et al. 2017; Kamada et al. 2017; Valli & Yu 2018;
Robertson et al. 2018; Ren et al. 2019; Zavala et al. 2019).

SIDM models positing DM self-scattering as the only relevant dark sector
interaction can recover the successes of ΛCDM at cosmological scales. Mass
and momentum conservation ensures a large-scale linear density perturbation
evolution unaffected by DM self-interactions (Cyr-Racine et al. 2016), featuring a
linear power spectrum identical to the CDM one. However, new DM interaction
beyond self-scattering could alter the evolution of DM density fluctuations, e.g.,
when a relativistic or massless particle mediates self-interactions (see the review
Adhikari et al. 2022). In a scenario where DM interacts with a relativistic species
during the early Universe, a phenomenon similar to BAOs emerges, known as
dark acoustic oscillations. However, the amplitude of such oscillations in the matter
power spectrum can be notably larger due to the greater abundance of DM than
baryons. Consequently, the damping effect resulting from the relativistic species
diffusing out of DM overdensities can profoundly affect the formation of cosmic
structures, effectively erasing density perturbations on scales below the mean free
path of the relativistic species. The specific scale at which this erasure occurs and
the shape of the damping envelope in the matter power spectrum depends on the
type and strength of the interaction between DM and the relativistic species (e.g.,
Feng et al. 2009; Cyr-Racine & Sigurdson 2013). When the momentum transfer
rate involved in elastic scattering process goes below the Hubble rate, kinetic
decoupling occurs, and the kinetic decoupling temperature dictates the deviation
of the SIDM matter power spectrum from the standard CDM case (Huo et al.
2018).

2.2.6 MOND and modified gravity theories

Modifying gravity is a possible avenue that can be adopted to solve the galaxy-
scales issues of the CDM paradigm. There are a plethora of scenarios contem-
plating DM in modified gravity frameworks (e.g., Benetti et al. 2023a,b) or that
aim to eliminate the need for DM in the cosmos, such as 𝑓 (𝑅) or 𝑓 (𝑅, 𝑇) theo-
ries (e.g. Sotiriou & Faraoni 2010; Shabani & Moraes 2023), or MOdified Gravity
(MOG, Moffat 2005; Nieuwenhuizen et al. 2018). However, in this thesis I will
mainly focus on Modified Newtonian Dynamics (MOND; Milgrom 1983), one
of the most popular modified gravity theories born to solve the missing mass
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problem without recurring to DM.
There is a fundamental idea that motivated the introduction of MOND: while

Newton’s laws were accurately tested in high-acceleration settings (i.e., within the
Solar System and on Earth), these laws needed to be experimentally validated in
extremely low acceleration regimes, e.g. in the outskirts of galaxies. Consequently,
Milgrom (1983) proposed that the gravitational acceleration acting on an object
should read as

� (𝑔/𝑎0) ®𝑔 = ®𝑔𝑁
where 𝑎0 ∼ 1.2 × 10−10𝑚/𝑠 is an empirical scale acceleration that separates

MONDian (low accelerations, 𝑔 < 𝑎0) and Newtonian (high accelerations 𝑔 > 𝑎0)
regimes, and it is a universal constant. The function �(𝑥), with 𝑥 = 𝑔/𝑎0, is known
as interpolation function. MOND does not yield a definite theoretical prediction on
the analytical shape of �, yet it should generally behave as

�(𝑥) =
{

1 if |𝑥 | ⩾ 1
𝑥 if |𝑥 | ≪ 1

. (2.2)

This behaviour of � lets Eq.(2.2.6) recover Newtonian gravity for 𝑎 > 𝑎0. In
general, two families of interpolation functions are widely used in the MONDian
literature:

�(𝑥) =
[

1 + (1 + 4𝑥−𝑝)1/2

2

]1/𝑝

,

�(𝑥) =
[
1 − exp

(
−𝑥𝛿/2

)]−1/𝛿
,

with the parameters 𝑝 and 𝛿 being positive real numbers. For the 𝑝-family,
𝑝 = 1 and 𝑝 = 2 return the so-called simple and standard interpolating functions,
respectively. For the 𝛿-family, 𝛿 = 1 returns the interpolation function corre-
sponding to Eq.(1.6), i.e., the one best describing the RAR in galaxies (Famaey &
McGaugh 2012; Dutton et al. 2019). These functions alongside Eq.(2.2.6) were used
to fit a wide range of spirals’ RCs (Li et al. 2021; López-Corredoira & Betancort-Rĳo
2021; Mohanty & Harish 2023; Lelli et al. 2023).

Note that MOND phenomenology can be interpreted either as a modification
of gravity or a modification of inertia itself, depending if, in the non-relativistic
action of the theory, one alters the kinetic or the potential term (Milgrom 2002;
Milgrom & Sanders 2005). It is yet to be clear whether if data favour modified
gravity or modified inertia MOND (Lelli et al. 2016; Petersen & Frandsen 2017;
Li et al. 2018; Frandsen & Petersen 2018; Petersen 2019), yet the two frameworks
could be discriminated by measuring suitably extended and finely-sampled RCs
of extremely low-surface-brightness galaxies (Petersen & Lelli 2020). In this thesis,
I will refer to MOND in the modified gravity interpretation.

Non-relativistic extensions of the standard MOND framework are AQUAL (a
quadratic Lagrangian; Tiret & Combes 2007; Bekenstein 2009; Skordis & Zlosnik
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2012; López-Corredoira & Betancort-Rĳo 2021; Milgrom 2023), QUMOND (quasi-
linear MOND; McGaugh et al. 2012; Galianni et al. 2012; Trenkel & Wealthy 2014;
López-Corredoira & Betancort-Rĳo 2021; Milgrom 2023) and TRIMOND (tripo-
tential theories; Milgrom 2023), comprising both AQUAL and QUMOND. Instead,
there are several relativistic extensions of MOND. A common feature is their ca-
pability to reduce to standard MOND in the non-relativistic limit. However,
their predictions in the relativistic regime can vary significantly from paradigm
to paradigm. Among the first relativistic extensions proposed for MOND, one
can find RAQUAL (Relativistic AQUAdratic Lagrangian; Bekenstein & Milgrom
1984), TeVeS (Tensor Vector Scalar theories; Bourliot et al. 2007), GEA theories
(Generalised Einstein Aether; Zlosnik et al. 2008; Thomas et al. 2023), Bimetric
MOND (BIMOND; Clifton & Zlosnik 2010; Milgrom 2022) or Relativistic MOND
(RMOND; Skordis & Złośnik 2021; Kashfi & Roshan 2022). Recently, these rela-
tivistic extensions of MOND were constrained by the observation of gravitational
wave signals (Sanders 2018).

GR is the only 4D tensorial theory of gravity obeying the Strong Equivalence
Principle (SEP)3, and hence, 4D tensorial theories departing from GR can break
the SEP in different ways. Specifically, MOND’s breaking of SEP manifests by the
introduction of an External Field Effect (EFE) in the model’s action (Milgrom 1983).
The internal dynamics of MONDian subsystems embedded in larger systems
may be influenced by their potential (even if the gravitational field is constant).
In MOND, the EFE should be relevant for binary stars, star clusters, and satellite
galaxies embedded in the field of a larger galaxy. Also, galaxies falling in the
potential of clusters or the general surrounding large-scale structure should feel
the EFE. This effect is a generic prediction of all MOND formulations (Milgrom
2014) and there are some claims of its observations in dwarf, ultra-diffuse and
normal spiral galaxies (McGaugh & Milgrom 2013; Lelli et al. 2016; Chae et al.
2020, 2021; Chae 2022). Moreover, the EFE has been recently studied in the context
of simulations and numerical studies (e.g., Zonoozi et al. 2021; Oria et al. 2021).

Over the years, MOND has been thoroughly tested against RCs of spirals.
Since it is a phenomenological model designed for this task, it generally yielded
remarkable results while keeping the parameter 𝑎0 at a fixed value (Sanders 2019;
Lelli et al. 2023). Furthermore, MOND could be exempt from the angular momen-
tum problem (Haslbauer et al. 2022). Also, this framework may naturally explain
the existence of the RAR4 (Kroupa et al. 2018; Desmond 2023) and other empirical
relationships linking DM to baryons in spiral galaxies. Indeed, the MONDian
framework predicts naturally a relation linking the asymptotic velocity 𝑣f of a
galaxy with its baryonic mass 𝑀b, namely 𝑣4

f = 𝑎0𝐺𝑀b, which is in perfect accor-
dance with the observed BTFR. However, the recent literature debates MOND’s
capability in explaining the baryons-DM interplay in galaxies (e.g., Desmond
et al. 2023; Rodrigues & Marra 2020) and in galaxy clusters (Pradyumna & Desai

3Besides GR, there is another theory obeying the SEP in 4D — Nördstrom Gravity. Yet,
differently from GR, this theory describes gravity by a scalar field in flat spacetime, and it has
been ruled out by simple arguments (such as the lack of light deflection or failure in accounting
for Mercury’s periastron precession, see, e.g., Deruelle 2011).

4In this case, the acceleration scale 𝑔† appearing in Eq. (1.6) is interpreted as a fundamental
acceleration scale in galaxies, which is remarkably close to the value of 𝑎0.

25



Chapter 2. Solving CDM’s galaxy scales controversies

2021). Moreover, MOND struggles to reproduce the mass distribution of clus-
ters (McGaugh 2015), the observed collisionless behaviour of a substantial mass
component in colliding clusters (e.g. the Bullet Cluster5; Clowe et al. 2006), and
to develop a cosmological extension in agreement with CMB anisotropies and
matter power spectra observations (Dodelson 2011). Recently, it was claimed that
RMOND is consistent with these observables. Yet, although there is no DM parti-
cle postulated in this framework, the corrections that are induced to the standard
Friedmann equations via the existence of the extra vector and scalar fields appear-
ing in RMOND may just mimic the DM behaviour.

Overall, the challenges faced by the CDM framework on galaxy scales remain
without a conclusive and all-encompassing resolution, leaving the discussion
ongoing. In the following Chapter, I will present an alternative approach to con-
structing a DM phenomenology tailored to galaxy-scale dynamics while preserv-
ing the achievements of the CDM paradigm at cosmological levels. This approach
introduces a model in which DM exhibits non-minimal coupling to gravity.

5Some efforts to reconcile MOND with merging clusters and clusters’ dynamical mass estimates
have been carried out in the literature, albeit they require a certain fine tuning (e.g., Li et al. 2013;
López-Corredoira et al. 2022).
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Chapter 3

Non-Minimally Coupled Dark
Matter

3.1 Theoretical Background
This section explores the possibility that DM is dynamically non-minimally cou-
pled with gravity. The particular coupling adopted here was originally presented
in Bettoni et al. (2011); Bettoni et al. (2012, 2014); Bettoni & Liberati (2015), and
this Chapter aims to characterise and test its interesting phenomenology from the
scales of dwarf galaxies up to cluster ones. The following sections are based on
the discoveries presented in Gandolfi et al. (2021); Gandolfi et al. (2022a); Gandolfi
et al. (2023).

3.1.1 Motivation

How can one build a model capable of keeping DM’s non-collisionality in a
cosmological setting while enhancing its phenomenology at the scales of galaxies?
One of the possible answers is to consider a non-minimal coupling (NMC) between
DM and gravity. Introducing such NMC has a double-fold advantage. On the
theoretical side, it is allowed by the Einstein Equivalence Principle (Buchbinder
et al. 1992, Di Casola et al. 2015), and it might be required for the renormalizability
of quantum field theories in curved spacetimes (e.g., Sonego & Faraoni 1993;
Bruneton et al. 2009). Observationally, the NMC may help explain the puzzling
empirical relationships between DM and baryons recalled in Chapter 1, which
are not trivially explainable based on galaxy formation processes (see Sec. (1.4.5)).
Indeed, these relationships may hint at the presence of a DM-baryon interaction.
If such interaction is non-negligible, it cannot be accounted for by weak DM-
baryons interaction predicted by beyond-Standard Model physics. Consequently,
I will not deal with any specific DM particle model, instead adopting a standard
fluid approximation and describing DM as a simple scalar field1.

1Such a fluid approximation might not describe the entire matter fields’ microphysics. How-
ever, neglecting these effects is a reasonable approximation when describing astrophysical (i.e.,
macroscopic) systems such as galaxies or clusters of galaxies.
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How can one explain the observed interplay between DM and baryons within
galaxies? Possibly, DM could behave geometrically at specific scales, providing an
effective metric for baryons in galactic environments. Thus, baryons would play
their dynamics on some modified gravitational background. In this scenario, the
gravitational metric (i.e., the metric associated with the Einstein frame, describing
gravitational field’s dynamics, whose lead contribution is DM’s) and the physical
metric (the metric experienced by baryons) will not coincide anymore, unlike
in the standard GR picture. The DM field’s properties may also determine the
physical metric experienced by baryons, and thus, the two metrics should be
linked by a reasonable kind of transformation depending on the DM scalar field.
As shown in Bekenstein (1993), disformal transformations are the most general
class of transformations between physical and gravitational metrics, preserving
causality and the Weak Equivalence Principle. Disformal transformations are
commonly utilised to model relativistic extensions of MOND (e.g., TeVeS and
RAQUAL; see Sec. (2.2.6)). However, the model hereby presented assumes that
DM is indeed present in the Universe (unlike what happens in TeVes and RAQUAL
theories).

Identifying the gravitational metric with 𝑔�� and the physical metric with �̃���,
a general expression of a disformal transformation linking the two is given by:

�̃��� = 𝑒2𝜑 [
𝒜(𝜑,𝒳)𝑔�� + ℬ(𝜑,𝒳)∇�𝜑∇�𝜑

]
. (3.1)

Here𝒜 andℬ are functions to be specified (ifℬ = 0 a conformal transformation
is recovered), 𝜑 is an extra scalar field (identified as DM) and 𝒳 = −1

2 𝑔��∇�𝜑∇�𝜑
is the standard field’s kinetic term. Bruneton & Esposito-Farese (2007) and Brune-
ton et al. (2009) proved that it is possible to force the DM field 𝜑 to recover a
MOND-like phenomenology at galaxy scales with the following choice of the
coefficients 𝒜 and ℬ:

𝒜 =

(
𝑒𝛼𝜑 −

𝜑

𝛼
𝑋𝑒𝑚𝜛𝑢(𝑋)

)2
− 1,

ℬ = −4
𝜑

𝛼
𝑋𝑒𝑚𝜛

(𝜕𝜑)2 .
(3.2)

Here 𝛼 is a pure number characterizing the coupling of 𝜑 to matter and 𝑋, 𝜛
and 𝑢 being functions defined as

𝜛 =

(√
(𝜕𝜑)2
𝜑 − 𝑚

)−1
,

𝑋 =

√
𝛼𝑎0
𝑐

√
𝜛

−𝜑𝑒𝑚𝜛 ,

𝑢(𝑥) = (1 + 𝑥)−1 + ln(1 + 𝑥).

(3.3)

However, as conjectured in Bettoni et al. (2011); Bettoni et al. (2012, 2014) and
Bettoni & Liberati (2015), way simpler choices for the coefficients of the disformal
transformation expressed in Eq. (3.1) can yield to an interesting phenomenology
for DM at galactic scales.
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3.1.2 Action and field equations
To determine which kind of interaction can translate into an effective coupling via
the disformal metric in Eq. (3.1), one can start from a general action of the form

𝑆 = 𝑆EH[𝑔��] + 𝑆bar[𝑔�� ,𝜓] + 𝑆DM[𝑔�� , 𝜑] + 𝑆int[𝑔�� ,𝜓, 𝜑] . (3.4)

Here 𝑆EH = �
∫

d4𝑥
√−𝑔 𝑅 (with � = 1/(16𝜋𝐺)) represents the standard gen-

eral relativity Einstein-Hilbert action expressed in terms of the Ricci scalar 𝑅 in
natural units 𝑐 = ℏ = 1; 𝑆bar and 𝑆DM respectively represents the baryonic and
DM actions, and 𝑆int is the interaction term. The scalar fields 𝜓 and 𝜑 are thought
of as collective variables, respectively encoding baryons and DM.

The interaction term 𝑆Int should produce an effective metric along which stan-
dard matter propagates:

𝑆bar[𝑔�� ,𝜓] + 𝑆int[𝑔�� ,𝜓, 𝜑] ≈ 𝑆bar[�̃��� ,𝜓, 𝜑] = 𝑆bar[𝑔�� + ℎ�� ,𝜓, 𝜑], (3.5)

with ℎ�� being a generic symmetric tensor parametrising the transformation
between the physical and gravitational metric. If one wants such transformation
to be a disformal one as in Eq. (3.1), then ℎ�� ∝ ∇�𝜑∇�𝜑. Expanding Eq. (3.5) up
to 𝒪(ℎ2) order, one obtains:

𝑆bar[�̃��� ,𝜓] = 𝑆bar[𝑔�� + ℎ�� ,𝜓, 𝜑] ≈ 𝑆bar[ �̃���]
��
ℎ��=0 + ℎ��

𝛿𝑆bar
𝛿 �̃���

����
ℎ��=0

+ 𝒪(ℎ2) =

= 𝑆bar[𝑔��] + ℎ��
𝛿𝑆bar
𝛿𝑔��

+ 𝒪(ℎ2) = 𝑆bar[𝑔��] −
1
2

∫
d4𝑥

√−𝑔 𝑇��
bar ∇�𝜑∇�𝜑 + 𝒪(ℎ2).

Hence, the desired interaction term in Eq. (3.4, 3.5) is, up to 𝒪(ℎ2):

𝑆int[𝑔�� ,𝜓, 𝜑] ∝
∫

d4𝑥
√−𝑔 𝑇��

bar ∇�𝜑∇�𝜑, (3.6)

where 𝑇��
bar is the baryonic matter stress-energy tensor (SET). The interaction

term in Eq. (3.6) implicitly implies choosing 𝒜 = ℬ = 1 for the disformal trans-
formation expressed in Eq. (3.1).

If one expresses the full action in terms of the physical metric �̃��� ≡ 𝑔�� + ℎ��
(which is equivalent to choose a frame in which baryons follow the geodesics of
this metric, i.e., the Jordan frame), then the DM field gets non-minimally coupled
to gravity:

𝑆 = 𝑆EH[�̃���] + 𝑆bar[�̃��� ,𝜓] + 𝑆DM[�̃��� , 𝜑] + 𝜖𝐿2
∫

d4𝑥
√
−�̃� �̃��� ∇�𝜑∇�𝜑. (3.7)

The last term in the above action is an NMC between gravity and the DM scalar
field. Here, 𝐿 is a coupling lengthscale introduced for dimensional consistency,
and it constitutes the true free parameter of this model. 𝜖 = ±1 is instead a uni-
tary, dimensionless constant representing the coupling’s polarity (undetermined
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a priori), serving as a bookkeeping parameter to keep track of the effects of the
NMC easily. Finally, �̃��� is the Einstein tensor expressed in terms of the physical
metric �̃���, and the DM field has been implicitly redefined through a conformal
factor. This is the same kind of NMC considered, e.g., in Bettoni et al. (2014) and
Ivanov & Liberati (2020), whereas the shape of ℎ�� is radically different from the
one considered in the MOND-inspired scenario of Bruneton et al. (2009).

As argued in Bettoni et al. (2014) and Bettoni & Liberati (2015), the only other
NMC term with the same physical dimensions that still leads to second-order
field equations would be proportional to the Ricci scalar as 𝒳𝑅. However, such
coupling is equivalent to that appearing in Eq. (3.7) modulo a surface term (see
Bettoni et al. 2012). Moreover, as argued in Bettoni & Liberati (2013), the action
given in Eq. (3.7) is a subcase of the Horndeski one, which constitutes the most
general scalar-tensor theory giving rise to second-order field equations. Indeed,
the coupling term �̃��� ∇�𝜑∇�𝜑 itself is proportional to a term of the Horndeski
Lagrangian. Note also that the coupling hereby considered is written in terms
of a real scalar field for simplicity. However, the NMC in Eq. (3.6) can be easily
generalised to a complex scalar field as �̃���∇�𝜑∇�𝜑†.

The model’s field equations are found by varying the Jordan frame total action
given by Eq. (3.7) to the physical metric �̃��� (see Appendix (A) for the complete
derivation):

1
8𝜋𝐺𝐺�� = 𝑇

bar
�� + 𝑇DM

�� + 𝜖𝐿2𝑇NMC
�� , (3.8)

where:

𝑇bar
�� = (𝜌 + 𝑝)𝑢�𝑢� + �̃���𝑝;

𝑇
𝜑
�� = ∇�𝜑∇�𝜑 − 1

2 �̃��� �̃�
𝛼𝛽𝜕𝛼𝜑𝜕𝛽𝜑 − �̃���𝑉(𝜑);

𝑇NMC
�� = �̃���𝐺𝛼𝛽∇𝛼𝜑∇𝛽𝜑 + 𝑅�� �̃�𝛼𝛽∇𝛼𝜑∇𝛽𝜑 − 𝑅∇�𝜑∇�𝜑

+ 2�̃�𝜎�∇𝛼∇𝜎 (∇𝛼𝜑∇�𝜑) − □
(
∇�𝜑∇�𝜑

)
− �̃���∇𝛼∇𝛽

(
∇𝛼𝜑∇𝛽𝜑

)
+

(
�̃���□ − ∇�∇�

)
(∇𝛼𝜑∇𝛼𝜑) ,

Here, □ = ∇𝛼∇𝛼 denotes the d’Alembert operator. By varying the total action
in Eq. (3.7) to the DM scalar field 𝜑, one obtains the scalar field equation of motion,
which reads as

□𝜑 +𝑉′(𝜑) + 2𝜖𝐿2𝐺��𝜕�𝜑𝜕�𝜑 = 0. (3.9)

Appendix (B) contains the complete derivation of Eq. (3.9). If the NMC is
absent (i.e. 𝜖 = 0) and 𝑉(𝜑) = −1/2𝑚2𝜑2, with 𝑚 being the mass of the particle
associated with the field 𝜑, the standard Klein-Gordon equation is retrieved.
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3.1.3 Physical origin of the NMC
The NMC in Eq. (3.7) arises when the lengthscale 𝐿 is comparable with the local
curvature scale. However, one may ask: what is the physical origin of 𝐿? Indeed,
there are a plethora of dynamical mechanisms that could easily result in DM
spontaneously developing an effective characteristic lengthscale in galactic haloes.
One such process is DM phase transitions happening in virialised structures, i.e.,
the lengthscale 𝐿 could be tied with DM’s collective behaviour. For instance,
as previously mentioned in Sec. (2.2.4), BECs develop a coherence lengthscale
called healing length. As a result, BECs may indeed develop an NMC with
gravity (e.g., Bettoni et al. 2011; Bettoni & Liberati 2015). DM could also develop a
macroscopic characteristic length phenomenologically. The same physical process
making DM depart from a pressureless dust equation of state (EoS) in galaxies
could also be responsible for the emergence of 𝐿. Finally, DM could develop a
characteristic lengthscale when considering a fluid description instead of scalar
field DM. Under this framework, the mean free path of the fluid constituents
could indeed reasonably be comparable with the curvature scale (e.g., Bettoni
et al. 2011). The NMC lengthscale would then naturally stem from the averaging
procedure associated with the fluid description of matter. However, the precise
physical origin of the coupling scalelength 𝐿 in Eq. (3.7) is yet to be pinpointed.
Since the focus of this work is to test the phenomenology of this model, an agnostic
approach will be adopted in this regard.

Before continuing, an important remark is in order: the NMC DM model
considered here does not consist of a fundamental theory of modified gravity. It
does not consist of a scalar-tensor theory, and although the usual coincidence of
physical and gravitational metric was relaxed, GR still holds. Thus, the NMC
lengthscale 𝐿 is not a new fundamental constant of nature. It is instead assumed
to be a coherence lengthscale dynamically developed by DM in galactic haloes.
Hence, the expectation is that it will show some dependence on the characteristics
of the single DM haloes.

3.1.4 NMC DM in the Newtonian limit
Investigations of gravitational dynamics at the level of galaxies are best performed
in the Newtonian limit of the theory, which is recovered by taking the weak field
limit of the gravitational interaction. This is a useful approximation to describe
low-density and small-velocity physical systems such as galaxies. As shown in
Bettoni et al. (2014) and detailed in Appendix (C), the NMC considered in Eq. (3.7)
leads to the following modified version of the Poisson equation:

∇2Φ = 4𝜋𝐺 [(𝜌 + 𝜌bar) − 𝜖 𝐿2 ∇2𝜌], (3.10)

where Φ is the Newtonian potential, and 𝜌bar and 𝜌 are the baryon and DM
mass densities respectively. Such modified Poisson equation implies that the
source for gravity is not just the total matter density in itself but also the spatial
inhomogeneities in the DM distribution. Remarkably, the same formal modifica-
tion can be obtained starting directly from a cosmological fluid description (see
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Bettoni & Liberati 2015), albeit in this case, there is no fundamental reason to
couple the fluid directly to the Einstein tensor — and indeed, it is necessary to
couple separately the fluid to the Ricci scalar and/or Ricci tensor to get the same
kind of modification, as in Bettoni et al. (2014). It is also worth reporting that the
same form of modified Poisson equation can be derived in Born–Infeld gravity
(e.g., Beltran Jimenez et al. 2018).

3.1.5 Constraining the NMC with gravitational waves

The NMC here considered is of Horndeski type and leads to a local modification
of the speed of gravity to the speed of light. Ivanov & Liberati (2020) tested this
NMC using the joint detection of GW170817 and its electromagnetic counterpart
GRB170817A (Abbott et al. 2017a,b). In this analysis, the NMC is assumed to
emerge via a Bose–Einstein condensation in virialised structures. When it is not in
the condensate phase, the DM scalar field is assumed to oscillate in order to behave
as pressureless CDM in a cosmological setting (as, e.g., in Turner 1983). Since
there is no complete mathematical theory of condensation in curved spacetimes,
there is no a priori knowledge on how strong the gravitational field needs to be
in order for the condensation to occur — is DM in the condensate phase only
inside galactic halos or also inside cluster halos? This uncertainty is parametrised
by introducing a free parameter 𝛽 ≡ �̃�/(𝛼�) in the analysis, with �̃� being the
NMC lenghtscale on cluster scales (kept as a free parameter), � being the healing
length of the condensate and 𝛼 =

(
�̄�𝑐𝑙/�̄�𝑔ℎ

)−1/2
𝑅ℎ,𝑔/𝑅ℎ,𝑐𝑙 ∼ 0.1 being an empirical

constant taking into account the fact that a BEC in the whole cluster would have
a different healing length than a BEC in a galaxy (with �̄�𝑐𝑙 = 3 × 10−24 kg/m5 and
𝑅ℎ,𝑐𝑙 = 1.2 × 1023 m being the assumed typical total average density and virial
radius of clusters and �̄�𝑔ℎ = 10−23 kg/m3 and 𝑅ℎ,𝑔 = 200𝑘𝑝𝑐 = 6 × 1021 m being
the same thing for galaxies). In order to parametrise the field oscillations (which
could be damped by the NMC when DM is in the condensate phase), two other
free parameters are introduced — 𝛾1 =

𝑚eff,gal
𝑚 and 𝛾2 =

𝑚eff,cl
𝑚 , with 𝑚 being the

mass scale of the DM field and 𝑚eff being an effective mass related to the effective
period of dampened oscillations in galaxies (𝑚eff,gal) or clusters (𝑚eff,cl). In total,
this model has five free parameters: 𝛽, 𝛾1, 𝛾2, the mass scale of the condensate 𝑚
and the galactic NMC lengthscale 𝐿.

The dominant effect on 𝛾-ray bursts’ (GRBs) time delay to the corresponding
gravitational wave (GW) signal may be assumed to come from three primary
sources: the Milky Way DM halo, the host galaxy halo and, eventually, from the
halos of clusters between Earth and the event. Moreover, it is assumed that GWs
and GRBs pass through the centre of each halo and that a Burkert profile describes
their internal structure. Under these assumptions, the authors obtain a relative
difference between the speed of gravity 𝑐𝑔 and the speed of light Δ𝑐𝑔 ≡

𝑐𝑔−𝑐
𝑐 given

by

Δ𝑐𝑔(𝑟) =
𝜌0,𝑔𝐿

2

4𝑀2
𝑝𝑚

2𝑟2
0,𝑔
𝐹

(
𝑟

𝑟0,𝑔

)
.
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Here, 𝜌0,𝑔 = 3 × 10−22 kg m−3 and 𝑟0,𝑔 = 15 kpc are assumed typical values
for the Burkert’s galactic halo profile core density and radius, 𝑀𝑝 is the reduced
Planck mass given by 𝑀𝑝 ≡ 1/

√
8𝜋𝐺 = 2.4 × 1027eV and 𝐹(𝑥) is a function given

by

𝐹(𝑥) :=
(
1 + 2𝑥 + 3𝑥2)2

(1 + 𝑥)3 (1 + 𝑥2)3
.

The total time lag between electromagnetic and GWs can be written as an
integral over the line of sight:

Δ𝑡 = 2
∫ ℓ/2

0
d𝑟Δ𝑐𝑔(𝑟),

with ℓ = 40 Mpc being the distance between the source and the observer.
Accounting for the contribution of both the field’s time gradients (Δ𝑡𝑔,𝑜𝑠𝑐 ,Δ𝑡𝑐𝑙,𝑜𝑠𝑐 ,
dominated by the possible oscillation of the field) and spatial gradients (Δ𝑡𝑐𝑙 ,Δ𝑡𝑔)
in both clusters and galaxies, the overall arrival time delay formula reads as

Δ𝑡𝑡𝑜𝑡 = Δ𝑡𝑔 + Δ𝑡𝑔,𝑜𝑠𝑐 + Δ𝑡𝑐𝑙 + Δ𝑡𝑐𝑙,𝑜𝑠𝑐

=
𝜌0,𝑔𝐿

2

4𝑀2
𝑝𝑚

2𝑟0,𝑔
𝐹

(
𝑟max,𝑔

𝑟0,𝑔

)
+ 16𝜋𝐺𝑅ℎ,𝑔 �̄�𝑔ℎ𝛾2

1𝐿
2

+
𝑁𝛼2𝛽2𝜌0,𝑐𝑙𝐿

2

4𝑀2
𝑝𝑚

2𝑟0,𝑐𝑙
𝐹

(
𝑟max,𝑐𝑙

𝑟0,𝑐𝑙

)
+ 4𝜋𝐺ℓ �̄�𝑐𝑙𝛼2𝛽2𝛾2

2𝐿
2,

with𝑁 being the number of clusters between Earth and the source. With no os-
cillations anywhere in the condensate phase (i.e., {𝛽 = 0, 𝛾1 = 0} or {𝛽 = 1, 𝛾1 = 0,
𝛾2 = 0}), the gradients are far too small to affect significantly the arrival time dif-
ference between GWs and GRBs. The retrieved constraints are 𝑚 ≳ 10−24eV and
1/𝐿 ≳ 10−28eV. Instead, in the case of undamped field oscillations (either in the
galactic halo, the cluster one or both), {𝛽 = 0, 𝛾1 = 1},{𝛽 = 1, 𝛾1 = 1, 𝛾2 = 0},{𝛽 = 1,
𝛾1 = 0, 𝛾2 = 1} and {𝛽 = 1, 𝛾1 = 1, 𝛾2 = 1}. In this case, the inferred constraints are
𝑚 ≳ 10−21eV and 1/𝐿 ≳ 10−25eV. All in all, the analysis proves that the constraint
does not depend on whether the condensation happens only inside galaxy halos
or also within cluster halos. However, it depends strongly on whether the scalar
field oscillates or whether the NMC suppresses the oscillations. These constraints
were obtained at an order of magnitude level, yet this analysis shows a promising
avenue to constrain NMC DM properties.

As an initial endeavour in investigating the phenomenology of the NMC DM
model, it is essential to characterise the properties of self-gravitating DM struc-
tures anticipated by this theoretical framework. This will be the focal point of the
upcoming Section.
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3.2 Self-gravitating equilibria of DM halos

3.2.1 Fluid approximation
As a first step in studying the NMC DM model’s phenomenology, it is crucial to
characterise NMC DM haloes and their self-gravitating equilibria. As this analysis
is focused on assessing the features of virialised NMC DM structures, baryons
will be neglected. Hence, in this Section, the density term 𝜌 will always refer to
the DM density.

The self-gravitating equilibria of DM halos can be specified in the fluid ap-
proximation (Teyssier et al. 1997, Subramanian et al. 2000, Lapi & Cavaliere 2011,
Nadler et al. 2018) via the continuity, Euler (or Jeans, in this context), and Poisson
equations: 

𝜕𝑡 𝜌 + ∇ · (𝜌 v) = 0,

𝜕𝑡 v + (v · ∇) v +
1
𝜌
∇ 𝑝 = −∇Φ,

∇2Φ = 4𝜋𝐺 (𝜌 − 𝜖 𝐿2 ∇2𝜌).

(3.11)

Here, v is the bulk velocity. The pressure 𝑝 = 𝜌 𝜎2
𝑟 does not represent the

relativistic pressure 𝑝 ≈ 0 adopted for DM in a cosmological context. However,
it is instead the pressure dynamically generated by the random motions of the
DM particles in approximate virial equilibrium within the gravitational potential.
Such pressure is usually specified in terms of a radial velocity dispersion 𝜎2

𝑟 or,
more generally, of an anisotropic stress tensor 𝜎2

𝑖 𝑗
. Finally, the last equation in the

system of Eqs. (3.11) is the modified Poisson equation given by Eq. (3.10). As it
will be clear, a negative polarity 𝜖 = −1 is required to obtain physically acceptable
DM density distributions, whereas 𝐿will be closely related to the DM core radius.
Note that NMC terms do not appear in the Euler equation since they are found
to be sub-leading in the non-relativistic limit (i.e., expansion in 1/𝑐2; see Bettoni
et al. 2014).

To close the system of Eqs. (3.11), the pressure must be related to the density via
a certain EoS. The EoS adopted here originates from the gravitational assembly of
DM halos via accretion and mergers from the cosmic web. This EoS stems from the
progressive stratification of DM’s pseudo-entropy 𝐾 ≡ 𝑝/𝜌5/3, or equivalently of
the coarse-grained phase-space density 𝜌/𝜎3

𝑟 ∝ 𝐾−3/2, in terms of a simple power-
law profile 𝐾(𝑟) ∝ 𝑟𝛼. Although the physical origin of this scale-free behaviour
is not fully understood (see Nadler et al. 2018; Arora & Williams 2020), 𝑁−body
simulations (Peirani et al. 2006; Navarro et al. 2010; Ludlow et al. 2011; Gao et al.
2012; Nolting et al. 2016; Butsky et al. 2016) have shown this to approximately
hold over more than three orders of magnitude in radius within virialised halos,
with power-law index 𝛼 ≈ 1.25 − 1.3. Such values are indeed expected based
on simple self-similar arguments (see Bertschinger 1985; Lapi & Cavaliere 2009,
2011; Nadler et al. 2018) and also broadly consistent with observations (see Lapi
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& Cavaliere 2009; Chae 2014; Munari et al. 2014). On this basis, but to keep some
degree of generality, the following EoS parametrisation is adopted:

𝑝(𝜌, 𝑟) = � 𝜌Γ 𝑟𝛼 = 𝜌𝛼 𝜎
2
𝛼

(
𝜌

𝜌𝛼

)Γ (
𝑟

𝑟𝛼

)𝛼
, (3.12)

where 𝑟𝛼 is a reference radius, 𝜌𝛼 is defined as 𝜌𝛼 ≡ 𝜌(𝑟𝛼) and 𝜎2
𝛼 ≡ 𝜎2

𝑟 (𝑟𝛼). Here
the fiducial values Γ ≈ 5

3 and 𝛼 ≈ 1.3 will be adopted. Some authors (e.g., Schmidt
et al. 2008; Hansen et al. 2010) have claimed that it is the quantity 𝜌/𝜎𝜖

𝑟 ∝ 𝑟−� with
𝜖 ≲ 3 to feature a powerlaw behavior. However in the parametrization of Eq. (3.12)
hereby considered this just amounts to take 𝛼 = 2

3 � and Γ = 1 + 2
𝜖 .

Under static (v = 0), spherically symmetric, and isotropic conditions (see
Sec. (3.3) for a generalisation), the Eqs. (3.11) becomes:

1
𝜌

d𝑝
d𝑟 = −

dΦ
d𝑟 ,

1
𝑟2

d
d𝑟

(
𝑟2 dΦ

d𝑟

)
= 4𝜋𝐺

[
𝜌 − 𝜖 𝐿2 1

𝑟2

d
d𝑟

(
𝑟2 d𝜌

d𝑟

)]
,

(3.13)

supplemented with the trivial mass conservation constraint ℳ(𝑡) =const,
where

ℳ ≡ 4𝜋
∫ ∞

0
d𝑟 𝑟2 𝜌(𝑟) , (3.14)

is the total mass ℳ of the DM halo.

3.2.2 The fundamental equation and its solutions
It is convenient to introduce normalized variables 𝑟 ≡ 𝑟/𝑟𝛼, �̄� ≡ 𝜌/𝜌𝛼 and define
the quantities � ≡ 4𝜋𝐺 𝜌𝛼 𝑟

2
𝛼/𝜎2

𝛼 and � ≡ 𝜖 𝐿2/𝑟2
𝛼. To understand the physical

meaning of �, one can choose 𝑟𝛼 = 𝑟max to be the point at which the circular
velocity 𝑣2

𝑐 (𝑟) ≡ 𝐺𝑀(< 𝑟)/𝑟 peaks at a value 𝑣2
𝑐 (𝑟max) = 4𝜋𝜌(𝑟max) 𝑟2

max, so that
� = 𝑣2

𝑐 (𝑟max)/𝜎2(𝑟max) is seen to compare the estimate 𝜎2(𝑟max) for the random
kinetic energy with that 𝑣2

𝑐 (𝑟max) for the gravitational potential.
Eliminating dΦ/d𝑟 from Eqs. (3.13) and using the EoS Eq. (3.12) yields the

following fundamental equation for the density

�̄�′′ +
(Γ − 2)

�̄�′2

�̄�
+

𝛼 (2Γ − 1) + 2Γ
Γ

�̄�′

𝑟
+

𝛼 (𝛼 + 1)
Γ

�̄�

𝑟2 − 2� �
�̄�2−Γ �̄�′

Γ 𝑟𝛼+1 + �
�̄�3−Γ

Γ 𝑟𝛼

1 − � �
�̄�2−Γ

Γ 𝑟𝛼

= 0 ,

(3.15)
while the mass conservation constraint now reads ℳ = 𝜌𝛼 𝑟

3
𝛼 𝑓ℳ in terms of

the shape factor 𝑓ℳ = 4𝜋
∫ ∞

0 d𝑟 𝑟2 �̄�(𝑟). The solution space of such an equation
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Figure 3.1: Example aimed at illustrating the shooting technique adopted to solve
the fundamental Eq. (3.15) and to find the physically acceptable solutions. Radial
coordinates and density profile values are normalised to the reference radius 𝑟𝛼
where the logarithmic slope 𝛾 ≡ −d log 𝜌

d log 𝑟 of the profile is 𝛾𝛼 = 2−𝛼
2−Γ . The differential

equation is integrated inward of 𝑟𝛼 with boundary condition 𝜌(𝑟𝛼) = 𝜌𝛼 and
𝜌′(𝑟𝛼) = −𝛾𝛼

𝜌𝛼

𝑟𝛼
. Red lines show shot solutions for different values of the constant

� appearing in Eq. (3.15). The black line is the only physical profile for � = �Γ,𝛼

(for � > �Γ,𝛼 shot solutions are below the physical profile, while for � < �Γ,𝛼 are
above). The two dashed lines indicate the asymptotic slope 𝛾0 = 𝛼

Γ
in the inner

region and the slope 𝛾𝛼 at 𝑟 = 𝑟𝛼. This example considers the minimally-coupled
case � = 0, and EoS parameters Γ = 5

3 and 𝛼 = 𝛼crit = 35
27 , yielding �Γ,𝛼 ≈ 2.5,

𝛾0 = 7
9 and 𝛾𝛼 = 19

9 .

is rather rich. For Γ = 5
3 and � = 0 it has been quite extensively studied in the

literature to describe the radial structure of standard ΛCDM halos (see Williams
et al. 2004; Hansen 2004; Austin et al. 2005; Dehnen & McLaughlin 2005; Lapi &
Cavaliere 2009). A generalised form of this equation with a generic Γ and featuring
the addition of the NMC will be used.

It is now convenient to look for power-law behaviours �̄� ≃ 𝑟−𝛾 to understand
the general features of the solutions. Substituting in the fundamental equation
yields

Γ (Γ − 1)
(
𝛾 − 𝛼

Γ

) (
𝛾 − 𝛼 + 1

Γ − 1

)
− � �

𝛾 (𝛾 − 1)
𝑟𝛾 (2−Γ)+𝛼 = −

�

𝑟𝛾 (2−Γ)+𝛼−2
. (3.16)

Focusing first on the minimally coupled case (� = 0), it is evident that trivial
power-law solutions with slope 𝛾 = 𝛾𝛼 ≡ 2−𝛼

2−Γ are admitted, implying � = �PL ≡
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2 (Γ−𝛼) (𝛼+4−3Γ)
(2−Γ)2 . These values are not physically acceptable at small and large radii

since the gravitational force and mass would diverge. However, they provide the
behaviour of any solution at intermediate radii. It is now numerically convenient
to choose 𝑟𝛼 as the reference radius where the logarithmic slope of the density
is −𝛾𝛼. Then, one can integrate inward and outward to find general solutions.
In terms of the normalised variables, this corresponds to setting the boundary
conditions as �̄�(1) = 1 and �̄�′(1) = −𝛾𝛼. When integrating inward of 𝑟𝛼, it is
found that the density profile features a physically acceptable behaviour only for
a specific value of � = �Γ,𝛼, somewhat different from the �PL defined above. In
particular, for such value �Γ,𝛼 the profile asymptotes for 𝑟 ≪ 1 to �̄� ∝ 𝑟−𝛾0 with
𝛾0 ≡ 𝛼

Γ
, consistently with the power counting in Eq. (3.16). For � > �Γ,𝛼, the profile

has wiggles (i.e., change of sign in the second derivative) and steepens toward
the centre, implying a diverging gravitational force. In contrast, for � < �Γ,𝛼, the
profile develops a central hole. The optimal value �Γ,𝛼 can be found by a shooting
technique, i.e., automatically solving inward the differential equation with dif-
ferent slopes −𝛾𝛼 at 𝑟𝛼 until the desired, physical inner asymptotic behaviour is
found. Fig. (3.1) depicts the results achieved with this technique.

Fig. (3.2) illustrates the resulting full density profiles for three different values
of 𝛼. The outer behaviour of the profile turns out to be physical only for 𝛼 ≤
𝛼crit ≡ Γ(5Γ−6)

3Γ−2 . The outer slope is too flat to imply a diverging mass for 𝛼 > 𝛼crit.
For 𝛼 < 𝛼crit the solution �̄� ∝ 𝑟−𝛾∞ attains a slope 𝛾∞ ≡ 𝛼+1

Γ−1 at a finite large
radius before an outer cutoff. For 𝛼 = 𝛼crit the cutoff is pushed to infinity and
the slope 𝛾∞,crit ≡ 5Γ+2

3Γ−2 is attained only asymptotically for 𝑟 → ∞, consistently
with the power-counting from Eq. (3.16). Correspondingly, the intermediate and
inner slopes read 𝛾𝛼,crit ≡ 5Γ−2

3Γ−2 and 𝛾0,crit ≡ 5Γ−6
3Γ−2 , respectively. These different

behaviors are illustrated in Fig. (3.2) for the fiducial value Γ = 5
3 . In such a case,

the power-law solutions have 𝛾𝛼 = 6 − 3 𝛼 and �PL = 6 (5 − 3 𝛼) (𝛼 − 1), while the
physical solutions feature an inner slope 𝛾0 = 3 𝛼

5 and an outer slope 𝛾∞ =
3 (1+𝛼)

2 .
In the inset of Fig. (3.2), the values of �𝛼,Γ are reported as a function of 𝛼. For
𝛼 = 𝛼crit =

35
27 one gets 𝛾0,crit ≡ 7

9 , 𝛾𝛼,crit =
19
9 , 𝛾∞,crit =

31
9 , and �𝛼,Γ = 200

81 ≈ 2.5.

When including the NMC � ≡ 𝜖 𝐿2

𝑟2
𝛼
, the solution space changes appreciably.

First, 𝜖 (hence �) must be negative. Otherwise, the inner profile diverges at a
finite radius. Then, for any negative value of �, there is again an optimal value
of � = �Γ,𝛼,� such that the inner profile is physical, with limiting central slope
𝛾0 = 0 (i.e., a core). This again follows the power counting in Eq. (3.16) since the
second term on the left-hand side dominates the behaviour for small 𝑟 ≪ 1. Other
solutions with � smaller or larger than �Γ,𝛼,� are not physically acceptable. Indeed,
they feature non-monotonic behaviours with the density first flattening and then
steepening toward a central slope 𝛾0 = 1, or they develop a central hole. As for
the outer behaviour, the profile has a cutoff at a finite radius ℛ setting the effective
halo boundary, which is smaller for more negative values of �. The physically
acceptable profiles for different � and the related values of the constant �Γ,𝛼,� are
illustrated in Fig. (3.4). The corresponding distributions of mass, circular velocity
and velocity dispersion for a few values of the NMC � are also depicted in Fig.
(3.3).

37



Chapter 3. Non-Minimally Coupled Dark Matter

Figure 3.2: Examples aimed at showing the outer behaviour of the density profiles
from solving the fundamental Eq. (3.15). The illustrated profiles refer to the
minimally coupled case (� = 0) with EoS parameter Γ = 5

3 and three different
values of 𝛼. The red line corresponds to 𝛼 = 35

27 = 𝛼crit, for which the density
asymptotes to a slope 𝛾∞ = 𝛼+1

Γ−1 ≈ 31
9 . The blue line refers to 𝛼 = 1.25 < 𝛼crit, for

which the slope 𝛾∞ is attained at a finite radius before a cutoff. Finally, the green
line refers to 𝛼 = 1.4 > 𝛼crit, for which the outer slope is unphysical, as it would
lead to a diverging mass. The inset reports the dependence of the constant �Γ,𝛼

on 𝛼 for the full solutions (coloured dots and solid black line) and for the pure
power-law solutions (dashed black line).
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Figure 3.3: Profiles of mass (top left panel), circular velocity (top right panel)
and velocity dispersion (bottom left panel) corresponding to a few of the density
profiles illustrated in Fig. (3.2), with EoS parameters Γ = 5

3 and 𝛼 = 𝛼crit =
35
27 .

Several values for the NMC are represented: � = 0 (black), −0.001 (orange), −0.01
(magenta), −0.1 (cyan).
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Figure 3.4: Density profiles for EoS parameters Γ = 5
3 and 𝛼 = 𝛼crit = 35

27 and
for different values of the NMC � = 0 (grey), −0.001 (orange), −0.005 (brown),
−0.01 (magenta), −0.025 (red), −0.05 (green), −0.075 (blue), −0.1 (cyan). The inset
reports the corresponding values of the constant �Γ,𝛼,� for the physical solutions
as a function of � (coloured dots and solid line) and for the � = 0 case (dashed
black line).

40



3.2. Self-gravitating equilibria of DM halos

3.2.3 NMC DM density profiles VS other literature profiles
It is now interesting to compare the shape of the NMC DM physical solutions
to some classic literature density profiles, characterised by different analytic ex-
pressions and numbers of parameters commonly adopted to fit simulations or
observations. To this purpose, it is convenient to use a radial coordinate 𝑟 ≡ 𝑟/𝑟−2

normalised to the radius 𝑟−2 where the logarithmic density slope d log 𝜌
d log 𝑟 = −2. and

to rescale the density profile �̂� ≡ 𝜌/𝜌(𝑟−2) accordingly. Specifically, the following
density profiles will be considered.

• 𝛼𝛽𝛾 profiles

The 𝛼𝛽𝛾 profiles (Zhao 1996) are a family of density profiles described by
three parameters, featuring the shape

�̂�(𝑟) = 𝑟−𝜏

(
1 + 𝑤

1 + 𝑤 𝑟𝜔

)�
, (3.17)

where the three parameters 𝜏, 𝜔, � describe respectively the central slope,
the middle curvature and the outer decline of the density run, while 𝑤 ≡
− 2−𝜏

(2−𝜏−𝜔 �) . Familiar empirical profiles are recovered for specific values of the
triplet (𝜏, 𝜔, �). Plummer’s profile (Plummer 1911) corresponds to (0, 2, 5/2),
Jaffe’s (Jaffe 1983) to (2,1,2), and Hernquist’s (Hernquist 1990) to (1, 1, 3).
The standard NFW profile is obtained for the parameter triple (1, 1, 2). For
a generalisation with a different inner slope, often referred to as gNFW,
the parameters (𝜏, 1, 3 − 𝜏) apply (Mamon et al. 2019; for a more complex
cored version see also Read et al. 2016). It is worth mentioning that re-
cently Freundlich et al. (2020) have considered a 𝛼𝛽𝛾 profile (referred also
as Zhao–Dekel model) with parameters (𝜏, 1

2 , 7− 2𝜏), that can provide good
fits to the density profiles from both𝑁−body, DM-only and hydrodynamical
simulations including baryonic effects.

• Sersic–Einasto profile

The Sersic–Einasto profile (see An & Zhao 2013) is defined as

�̂�(𝑟) = 𝑟−𝜏 𝑒−𝑢 (𝑟
𝜔−1) , (3.18)

where 𝜏 is the inner density slope, 𝜔 is a shape parameter and 𝑢 ≡ (2−𝜏)
𝜔 .

The classic cored Einasto shape (Sérsic 1963; Sérsic 1963; Prugniel & Simien
1997; Graham et al. 2006; also Lazar et al. 2020 for a more complex analytical
expression) is recovered for 𝜏 = 0. N-body simulations in the standard
ΛCDM model are usually well described by the parameter values 𝜔 ≈ 0.15−
0.2 and 𝜏 ≈ 0 (although values 𝜏 ≲ 0.8 are not ruled out given the resolution
of current simulations).

• Soliton profile
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The soliton profile features the shape (see Schive et al. 2014a,b)

�̂�(𝑟) =
(

1 + 𝜔/𝑟2
𝑐

1 + 𝜔 𝑟2/𝑟2
𝑐

)8

, (3.19)

where the normalized core radius reads 𝑟𝑐 =
√

7 𝜔. In numerical simula-
tions of 𝜓DM (see Sec. (2.2.3)), halos are described by a combination of this
solitonic profile with 𝜔 ≈ 0.091 in the inner region and of an NFW profile
in the outskirts.

• BEC DM profile

The profile followed by an interacting BEC (see Sec. (2.2.4)) in the Thomas–
Fermi limit reads

�̂�(𝑟) =
1
𝑟

sin
(
𝜋 𝑟/�̂�

)
sin

(
𝜋/�̂�

) , (3.20)

where the normalized halo boundary is defined by the equality 𝜋/�̂� +
tan

(
𝜋/�̂�

)
= 0. Incidentally, note that such a profile corresponds to the

solution of Eq. (3.16) for Γ = 2 and 𝛼 = � = 0.

• Burkert profile

The Burkert profile given by Eq. (1.5) can be rewritten as

�̂�(𝑟) =
(1 + 𝑟𝑐) (1 + 𝑟2

𝑐 )
(𝑟 + 𝑟𝑐) (𝑟2 + 𝑟2

𝑐 )
, (3.21)

where 𝑟𝑐 is the normalised core radius, defined by the nonlinear algebraic
equation 2 𝑟3

𝑐 + 𝑟2
𝑐 − 1 = 0.

A comparison between the shape of the NMC DM solutions to a few of the
above profiles is detailed in Fig. (3.5), where, for definiteness, Γ = 5

3 and 𝛼 =

𝛼crit = 35
27 are adopted. First, it is evident that the NMC DM density run for

� = 0 describes quite well the NFW and Einasto profiles commonly used to fit
N-body simulations in the standard ΛCDM cosmology. For −0.1 < � < −0.01,
the NMC DM solutions develop a core and the shape out to few/several 𝑟−2 is
remarkably close to the Burkert profile, commonly exploited to fit observations
of dwarf galaxies. There is a progressive deviation from the Burkert profile at
larger distances since the latter has been designed to have a limiting slope close
to the NFW one. In contrast, the NMC DM profiles get truncated at a finite
radius ℛ. However, this is not a concern for an appreciable range of � values
since the truncation occurs at radii much beyond 𝑟−2 that are scantily, if at all,
probed by observations (see also Sec. (3.2.4)). The NMC DM solutions have the
remarkable property of reproducing the Burkert shape in the inner region and
over an extended radial range outward of 𝑟−2. For comparison, other models,
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Figure 3.5: Comparison of NMC density distributions with classic literature pro-
files: NFW (red line), Einasto (magenta line), 𝜓DM (blue line), BEC DM (cyan
line), and Burkert (green line). The dot black line refers to � = 0, the solid black
line is for � = −0.05, and the grey-shaded area illustrates the region covered by
� in the range from −0.1 (lower envelope) to −0.01 (upper envelope). The radial
coordinate and the density profiles have been normalised to the radius 𝑟−2 where
the logarithmic density slope d log 𝜌

d log 𝑟 = −2.
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such as those based on BEC DM, predict a cored density profile with appreciable
deviations from the Burkert shape. Such deviations are expressed in a prominent
cutoff or steep decline outside the core. Note that the NMC DM solutions for
� = −0.05 can be reasonably described by a 𝛼𝛽𝛾 model (cf. Eq. (3.17) with
parameters (𝜏, 𝜔, �) = (0, 3

2 ,
5
2), or by a Sersic–Einasto model (cf. Eq. (3.18) with

parameters (𝜏, 𝜔) = (0, 3
4) up to several 𝑟−2 before the final cutoff.

3.2.4 Comparison with dwarf galaxies rotation curves

The NMC mass distributions are now compared with observed galaxy RCs. Since
baryons are not included in this part of the analysis, fits will focus on dwarf,
strongly DM-dominated galaxies. Specifically, the co-added RC built by Lapi
et al. (2018) is considered. This RC is based on the high-quality measurements
of about 20 dwarf galaxies with 𝐼−band magnitude 𝑀𝐼 ≳ −18.5 from the original
sample by Persic et al. (1996). The sample features an average disc lengthscale
𝑅𝑒 ≲ 1.5 kpc, disc mass 𝑀★ ≲ 109 𝑀⊙ and halo mass ℳ ≲ 1011 𝑀⊙. The co-
added RC is well-measured to a galactocentric distance of about 7 kpc. Fits to
the measured RC with the NFW and Burkert profile are obtained by exploiting
a Levenberg–Marquardt least-squares minimisation routine. The measured RC
is fitted with the NFW and Burkert profile and the NMC DM physical solutions
for different values of the NMC parameter �. The outcomes of this procedure are
illustrated in Fig. (3.6).

As it is well known, the NFW fit (equivalent to the NMC DM solution with
� = 0) struggles to fit the measured dwarf galaxy RCs, yielding a reduced 𝜒2 ≈ 4.
On the other hand, the Burkert profile performs much better, providing a good
fit with a reduced 𝜒2 ≈ 0.58. The NMC solution for � ≈ −0.05 provides a fit
of quality comparable to the Burkert one, yielding practically the same reduced
𝜒2 ≈ 0.61. The current data are compatible within 3𝜎 with any value of � ranging
from −0.1 to −0.01. Accurate determinations of the co-added RC out to 10 kpc or
beyond would be necessary to determine the NMC parameter � to a good level of
precision. Interestingly, one can also see from Fig. (3.6) that there is a tendency
to favour values of � slightly less negative than −0.05, which is what is to be
expected in dwarf galaxies with halo masses ℳ ≲ 1011 𝑀⊙ based on universal
scaling arguments (see Sec. (3.2.5) and in particular Eq. (3.25)).

A best-fit value of the core radius is retrieved from the fit with � ≈ −0.05
(or equivalently from the Burkert one). The inferred core radius value amounts
to 𝑟0 ≈ 2.9 ± 0.1 kpc, which is about twice the average disc lengthscale of the
systems in the considered sample. Such value is remarkably consistent with the
empirical yet still puzzling relationship between core radius and disc scale length
as determined by Donato & Salucci (2004).

The choice of the NMC hereby exploited is relatively simple if compared, for
example, to the one considered in Bruneton et al. (2009), leading to a MONDian
phenomenology on galactic scales. From this perspective, the relatively good
performance of such a simple NMC model in reproducing the measured RCs is
valuable and far from trivial.
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Figure 3.6: Comparison of NMC halo mass distributions with observed dwarf
galaxy RCs. Data points (red stars; Lapi et al. 2018) refer to the co-added RCs of
about 20 dwarf galaxies with I-band magnitude 𝑀𝐼 ≳ −18.5, extracted from the
original sample by Persic et al. (1996). The solid line illustrates the fit via the NMC
DM physical solution with NMC parameter � ≈ −0.05, while the shaded grey area
shows the effect of changing � in the range from −0.1 to −0.01. For comparison,
the dashed line illustrates the fit with the Burkert profile and the dotted line with
the NFW profile.
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3.2.5 Universal Core Surface Density
It has been well established observationally that, at least for dwarf galaxies with
halo masses ℳ ≲ 1011 𝑀⊙, the product of the core density and core radius
(i.e., a sort of core surface density) is an approximately universal constant with
values 𝜌0 𝑟0 ≈ 75+55

−45 𝑀⊙ pc−2 among different galaxies (Salucci & Burkert 2000;
Burkert 2015; see Fig. (3.7)). This somewhat unexpected property poses a serious
challenge to any theoretical model of core formation (e.g., Deng et al. 2018; Burkert
2020). Can NMC DM halos be consistent with such a remarkable scaling law?

Adopting for definiteness Γ = 5
3 and 𝛼 = 𝛼crit = 35

27 , the physical solutions
of Eq. (3.15) subject to the boundary conditions 𝜌(𝑟𝛼) = 𝜌𝛼 and 𝜌′(𝑟𝛼) = −𝛾𝛼

𝜌𝛼

𝑟𝛼
are computed for several values of the NMC parameter �. Using the obtained
normalised profiles, one can fit as a function of |�| = 𝐿2

𝑟2
𝛼

in the range −0.1 ≲ � ≲

−0.01 the following relations involving the normalised boundary radius ℛ, the
core radius 𝑟0, the core density 𝜌0 and the mass shape factor 𝑓ℳ defined below
Eq. (3.15):

ℛ
𝑟𝛼

≃ 0.8 |�|−0.7 , 𝑓ℳ ≃ 9.1 |�|−0.4 ,
𝜌0

𝜌𝛼
≃ 0.9 |�|−0.8 ,

𝑟0
𝑟𝛼

≃ 1.6 |�|0.5 . (3.22)

The above scaling is then combined with the expression for the total massℳ =

𝑓ℳ 𝜌𝛼 𝑟
3
𝛼 and with the definition of the virial radius ℛ = (3ℳ/4𝜋Δvir 𝜌c 𝐸𝑧)1/3 ≈

120𝐸−1/3
𝑧 (ℳ/1011 𝑀⊙)1/3 (see Sec. (1.3.2)). Here 𝜌c ≈ 2.8 × 1011 ℎ2 𝑀⊙ Mpc−3

is the critical density, 𝐸𝑧 ≡ Ω𝑀 (1 + 𝑧)3 + ΩΛ takes into account the formation
redshift 𝑧 of the halo, and Δvir is the nonlinear threshold for virialization, with
values around 100 at 𝑧 ≈ 0 and increasing toward 180 for 𝑧 ≳ 1. Eventually, the
following relations are derived:

𝑟0 ≃ 1.6 𝐿 , 𝑟𝛼 ≃ 1.1 𝐿0.6 ℛ0.4 𝜌0 ≃ 0.3Δvir 𝜌c 𝐸𝑧

(
ℛ
𝐿

)2.1
= 𝜌𝛼

(
ℛ
𝐿

)0.6
. (3.23)

Interestingly, the core radius 𝑟0 is proportional, with a coefficient of order 1, to
the NMC lengthscale 𝐿.

A relation between the core radius 𝑟0 (or 𝐿) and the halo mass ℳ is needed
to proceed further. Such relation is thought not to be fundamental but rather to
stem from two other relationships involving the baryonic mass: (i) the relation
between the stellar (disc) mass and the halo mass (e.g., Moster et al. 2013), which
is known to be originated by baryonic processes related to galaxy formation; (ii)
the relation between the core radius 𝑟0 and the disc scalelength (in turn related to
the stellar mass; e.g., Donato & Salucci 2004), which is instead still not completely
understood. In this part of the analysis, the baryonic component is not included,
and thus, one cannot infer the 𝑟0 −ℳ relation from first principles. However, one
can adopt the outcome 𝑟0 ≈ 4.5 (ℳ/1011 𝑀⊙)0.6 kpc from the dynamical modelling
study by Salucci et al. 2007, and see what this implies for the core surface density.
Specifically, from Eqs. (3.23) the following result is obtained:
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Figure 3.7: Core surface density 𝜌0 × 𝑟0 as a function of the core radius 𝑟0. Data
points from Burkert (2020) are well fitted by the universal value 75+55

−45 𝑀⊙ pc−2

(blue shaded area). The black lines illustrate the prediction for NMC DM halos
for three different halo formation redshifts 𝑧 ≈ 0 (solid), 0.5 (dashed), and 1.5
(dotted).

Σ0 ≡ 𝜌0 × 𝑟0 ≈ 50
(
Δvir
100

)
𝐸0.3
𝑧 𝑀⊙ pc−2 . (3.24)

This result is independent of the halo mass or the core radius and weakly de-
pendent on formation redshift. Fig. (3.7) depicts the above for three values of the
formation redshift 𝑧 ≈ 0, 0.5, 1.5, finding it remarkably consistent with the average
observed relation and its scatter. This is a relevant result: the universality of the
core surface density has proven highly challenging to alternative DM models, even
for those barely consistent with the 𝑟0 −ℳ relation assumed here. For example,
as pointed out by Burkert (2020), 𝜓DM can reproduce the 𝑟0 −ℳ relation, albeit
with some (uncertain) hypothesis on core formation redshift. However, such a
model is considerably out of track regarding the core surface density scaling since
it robustly predicts 𝜌0 ∝ 𝑟−4

0 . The same issue concerns many other DM models
inspired by particle physics, as extensively discussed, e.g., by Deng et al. (2018).

As an aside, from Eqs. (3.7) and the adopted 𝑟0 − ℳ relation, one can also
derive three other interesting scaling laws. First, the dependence of � on halo
mass reads

|�| ≈ 0.04
(

ℳ
1011 𝑀⊙

)0.35
𝐸0.3
𝑧 . (3.25)

This relation confirms that values of the NMC in the range � = −0.1 to −0.01
cover the typical mass range of dwarf galaxies. The dependence of � on halo
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mass/formation redshift will induce slightly different shapes in the profiles, im-
plying a weak violation of self-similarity. Though challenging, it will be inter-
esting to look for such behaviours in real data (see Sec. (3.2.4)). Second, it may
be interesting to derive the dependence on the coupling, hence on mass, of the
inner logarithmic slope 𝛾0.1 measured at a reference radius of 𝑟 ≈ 0.1 𝑟−2 ∼ a few
per cent of ℛ. The scaling |𝛾0.1 | ≃ 0.035 |�|−0.55 is obtained, and after Eq. (3.25) it
translates into the following mass-dependence:

|𝛾0.1 | ≃ 0.2
(

ℳ
1011 𝑀⊙

)−0.2
𝐸−0.16
𝑧 . (3.26)

This relation implies a slight tendency for less massive halos to have flatter profiles
at a fixed radius in the inner region (note that asymptotically, at the centre, all
the NMC DM density profiles are flat). Yet the presence of baryons, neglected
in this analysis, could alter this scaling. In future work, it would be interesting
to assess the entity of such baryonic impact in halos of different masses and how
the outcome compares with the results from ΛCDM hydrodynamical simulations
including feedback effects (e.g., Tollet et al. 2016; Freundlich et al. 2020), that show
a non-trivial mass dependence for the halo inner shape.

Finally, one can compute the halo concentration as 𝑐𝛼 ≡ ℛ
𝑟𝛼

(using ℛ
𝑟−2

yields
similar result), which turns out to be

𝑐𝛼 ≃ 10
(

ℳ
1011 𝑀⊙

)−0.15
𝐸−0.2
𝑧 , (3.27)

in broad agreement and slightly smaller than the outcome of N-body, DM-only
simulations in the standard ΛCDM cosmology (e.g., Bullock et al. 2001; Macciò
et al. 2007).

3.3 Anisotropic conditions
This section will discuss the self-gravitating equilibria of NMC DM halos when
anisotropic conditions apply. One can include these conditions in our treatment
by modifying the second of Eqs. (3.13) as

1
𝜌

d𝑝
d𝑟 + 2𝛽

𝜎2
𝑟

𝑟
= −

dΦ
d𝑟 , (3.28)

where 𝛽 ≡ 1− 𝜎2
�

𝜎2
𝑟

is the Binney (1978) anisotropy parameter in terms of the tangen-
tial and radial velocity dispersions 𝜎� and 𝜎𝑟 , respectively. N-body simulations
suggest 𝛽(𝑟) to increase from central values 𝛽0 ≲ 0, meaning near isotropy, to
outer values 𝛽 ≳ 0.5, meaning progressive prevalence of radial motions. This
overall trend can be physically understood in terms of efficient dynamical relax-
ation processes toward the inner regions, which tend to enforce closely isotropic
conditions, while in the outskirts, the infall energy of accreting matter is more eas-
ily converted by phase mixing into radial random motions (see Lapi & Cavaliere
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2011 for details). Specifically, simulations suggest the effective linear expression
(e.g., Hansen & Moore 2006)

𝛽(𝑟) ≃ 𝛽0 + 𝛽1 [𝛾(𝑟) − 𝛾0] = 𝛽0 − 𝛽1𝛾0 − 𝛽1 𝑟
𝜌′

𝜌
, (3.29)

in terms of the logarithmic density slope 𝛾(𝑟) ≡ −d log 𝜌
d log 𝑟 , with 𝛾0 ≡ 𝛾(0) being a

value yet to be determined, 𝛽0 ≲ 0 and 𝛽1 ≈ 0.2.
Adopting Eq. (3.29) and following the same derivation of the main text, the

fundamental Eq. (3.15) now reads[
1 − � �

�̄�2−Γ

(Γ − 2𝛽1) 𝑟𝛼

]
�̄�′′ + (Γ − 2)

�̄�′2

�̄�
+

+
𝛼 (2Γ − 1) + 2Γ + 2(Γ − 1)𝛽0 − 2[𝛼 + 2 + (Γ − 1)𝛾0]𝛽1

Γ − 2𝛽1

�̄�′

𝑟
+

+
[𝛼 + 1] [𝛼 + 2(𝛽0 − 𝛽1𝛾0)]

Γ − 2𝛽1

�̄�

𝑟2 − 2� �
�̄�2−Γ �̄�′

(Γ − 2𝛽1) 𝑟𝛼+1 + �
�̄�3−Γ

(Γ − 2𝛽1) 𝑟𝛼
= 0 ,

(3.30)

Looking for power-law behaviors �̄� ≃ 𝑟−𝛾 one obtains

Γ (Γ− 1)
[
𝛾 −

𝛼 + 2𝛽0

Γ
− 2

𝛽1

Γ
(𝛾 − 𝛾0)

] [
𝛾 − 𝛼 + 1

Γ − 1

]
−� �

𝛾 (𝛾 − 1)
𝑟𝛾 (2−Γ)+𝛼 = −

�

𝑟𝛾 (2−Γ)+𝛼−2
,

(3.31)
which, remarkably, allows to determine the central slope 𝛾0 self-consistently.

In fact, for minimally coupled halos (� = 0), the anisotropic solutions feature
a modified inner slope 𝛾0 =

𝛼+2𝛽0
Γ

to the isotropic case, while retaining the same
slopes at intermediate radii 𝛾𝛼 = 2−𝛼

2−Γ and in the outer region 𝛾∞ = 𝛼+1
Γ−1 . As

mentioned above, 𝛽0 ≈ 0 so that the changes are minor (if any, 𝛽0 ≲ 0 so that the
inner profile is flattened a bit). In addition, the critical solution is characterised by
a value 𝛼crit =

Γ (5Γ−6)+2𝛽0 (Γ−1) (Γ−2)
3Γ−2 ; in particular, 𝛼crit =

35−4𝛽0
27 holds for for Γ = 5

3 .
The corresponding inner, intermediate and outer slopes read 𝛾0,crit =

5Γ−6+2𝛽0Γ
3Γ−2 ,

𝛾𝛼,crit =
5Γ−2+2𝛽0 (Γ−1)

3Γ−2 , and 𝛾∞,crit =
5Γ+2+2𝛽0 (Γ−2)

3Γ−2 , respectively.
For NMC halos, an inner core with 𝛾0 ≈ 0 is always enforced by the second

term in Eq. (3.31) so that the variations to the isotropic case are minor and limited
to the outermost regions. Fig. (3.8) represents how the NMC density profile
with � = −0.05, Γ = 5

3 and 𝛼 =
35−4𝛽0

27 = 𝛼crit is affected by anisotropies. For
realistic values −0.1 ≲ 𝛽0 ≲ 0.1 and 𝛽0 ≈ 0.2, the profile is marginally affected in
the inner region and at intermediate radii. At the same time, it tends to extend
toward slightly larger radii (i.e., the cutoff moves outward) due to the progressive
prevalence of radial anisotropy in the halo outskirts. Such an effect, though minor,
is more pronounced for larger (more positive) 𝛽0.
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Figure 3.8: Effects of realistic anisotropic conditions on the minimally-coupled
density profile with � = −0.05 with EoS parameters Γ = 5

3 and 𝛼 =
35−4𝛽0

27 = 𝛼crit.
Anisotropy profiles are described by the expression 𝛽(𝑟) = 𝛽0+𝛽1 (𝛾−𝛾0), and are
illustrated in the inset. The purple line refers to the reference profile in isotropic
conditions with 𝛽0 = 𝛽1 = 0, the red line to 𝛽0 = 0 and 𝛽1 = 0.2, the blue line to
𝛽0 = −0.1 and 𝛽1 = 0.2, and the orange line to 𝛽0 = +0.1 and 𝛽1 = 0.2.
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3.4 NMC DM in spiral galaxies

The analysis in Sec. (3.1.1) shows how Eq. (3.10) gives rise to some exciting features
for strongly DM-dominated systems in self-gravitating equilibria. The NMC helps
develop an inner core in DM density profiles, enforcing a shape closely following
the Burkert one out to several core scale radii (see Sec. (3.2.3) and Sec. (3.2.2)).
Moreover, NMC DM-dominated halos are consistent with the core-column den-
sity relation, i.e., with the observed universality of the product between the core
radius 𝑟0 and the core density 𝜌0 observed for dwarf galaxies (see Sec. (3.2.5)).
However, the NMC hypothesis still needs to be tested in galaxies with different
velocities at the optical radius, where the contribution of the baryonic component
to the dynamics can be substantial. This section will show how the NMC DM
model can provide accurate fits of spiral galaxies’ RCs and how such a model can
adequately account for the RAR, with an in-depth comparison to other standard-
lore DM halo density profiles.

3.4.1 Rotation Curve fitting of spiral galaxies

The NMC DM will be used to mass-model stacked RCs of local spiral galaxies
with different velocities at the optical radius and related properties. The inferred
results will be then compared with fits obtained from the standard Newtonian
case for two other classic DM halo shapes, namely the NFW profile of Eq. (1.4)
and the phenomenological Burkert profile of Eq. (1.5).

This analysis relies on the samples of stacked RCs collected by Persic et al.
(1996) for normal spirals divided in 11 average velocity bins, by Dehghani et al.
(2020) for low surface brightness (LSB) spirals divided in 5 average velocity bins
and by Karukes & Salucci (2017) for low-luminosity dwarfs. These stacked RCs
are built by co-adding high-quality individual RCs of thousands of galaxies with
similar velocities at the optical radius and related properties. For each galaxy, the
co-addition is performed after normalising velocities and radii to reference scales,
which are typically the galactic optical radius 𝑟opt and the optical circular velocity
𝑣opt ≡ 𝑣(𝑟opt). Further details on this procedure can be found in Lapi et al. (2018).
The average properties of the sample of stacked RCs hereby considered are listed
in Tab. (3.1).

Stacked RCs are mass-modelled as the sum of a baryonic (disc) component
𝑣2

d(𝑟) = 𝐺𝑀d(< 𝑟)/𝑟 plus a DM contribution 𝑣2
DM(𝑟) = 𝐺𝑀DM(< 𝑟)/𝑟, with

𝑀d(< 𝑟) and 𝑀DM(< 𝑟) the cumulative disc and DM mass, respectively. The
overall velocity model plainly reads as 𝑣2

tot(𝑟) = 𝑣2
d(𝑟) + 𝑣

2
DM(𝑟). The distribution

followed by baryonic matter is modelled as a razor-thin exponential disc (Freeman
1970) with an exponential surface density

Σd(𝑟) = Σ0 exp (−𝑟/𝑟d) ;

here Σ0 = 𝑀d/2𝜋 𝑟2
d is the central value in terms of the total disc mass 𝑀d = 𝑀d(<

∞) and of the disc scale-length 𝑟d ≈ 𝑟opt/3.2. The related contribution to the RC
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is given by (e.g., Binney & Tremaine 1987)

𝑣2
d(𝑟) =

𝐺𝑀d
𝑟d

2 𝑦2 [𝐼0(𝑦)𝐾0(𝑦) − 𝐼1(𝑦)𝐾1(𝑦)] , (3.32)

where 𝑦 ≡ 𝑟/(2 𝑟d), while 𝐼0,1(·) and 𝐾0,1(·) are modified Bessel functions. Con-
tributions from a gaseous disc are negligible and largely unconstrained. Hence,
only the stellar disc is included in the present mass-modelling. In the fits’ radial
range, 𝑟 ≲ 𝑟opt, such contributions are of minor importance and can be neglected.

Three different models are then considered to describe DM’s contribution to
the total RC of each galaxy. Two are based on standard Newtonian gravity but
differ in the DM profile shape: NFW or Burkert, whereas the other is the NMC
DM model. This analysis assumes that the NMC DM model is based on the NFW
profile while including a perturbative correction to the dynamics via the NMC
term appearing in Eq. (3.10).

• NFW profile

The velocity profile predicted by the NFW model can be written in terms of
the halo virial mass 𝑀v and the halo concentration, defined in terms of the
halo virial radius 𝑟v ≈ 260 (𝑀v/1012 𝑀⊙)1/3 (see Sec. (1.3.4)):

𝑣2
DM(𝑟) = 𝐺𝑀v

𝑟v

𝑔(𝑐)
𝑠

[
ln(1 + 𝑐 𝑠) − 𝑐 𝑠

1 + 𝑐 𝑠
]
. (3.33)

Once again, 𝑔(𝑐) ≡ [ln(1 + 𝑐) − 𝑐/(1 + 𝑐)]−1 and 𝑠 ≡ 𝑟/𝑟v. The overall galaxy
RC can be specified in three parameters: the halo mass 𝑀v, the halo concen-
tration 𝑐 and the disc mass 𝑀d.

• NMC model
In spherical symmetry, Eq. (3.10) implies that the total gravitational acceler-
ation writes

𝑔tot(𝑟) = −𝐺𝑀(< 𝑟)
𝑟2 + 4𝜋𝐺 𝜖𝐿2 d𝜌

d𝑟 , (3.34)

where 𝑀(< 𝑟) is the total mass enclosed in the radius 𝑟. The first term is
the usual Newtonian acceleration, and the second is the additional contri-
bution from the NMC. The related RCs 𝑣2

tot(𝑟) = |𝑔tot(𝑟)| 𝑟 of spiral galaxies
predicted in this framework will differ from the standard Newtonian case.
In this analysis, the NMC is treated as a perturbative correction to the
dynamics predicted by the standard NFW profile. Here, the perturbative
parameter is the term 𝐿2/𝑟2

𝑠 , which, as it will be shortly manifest, is always
small for the range of masses probed in our study. Plugging Eq. (1.4) in
Eq. (3.34) one eventually obtains the RC

𝑣2
DM(𝑟) = 𝐺𝑀v

𝑟v

𝑔(𝑐)
𝑠

[
ln(1 + 𝑐 𝑠) − 𝑐 𝑠

1 + 𝑐 𝑠 +
𝜖𝐿2

𝑟2
𝑠

1 + 3 𝑐 𝑠
(1 + 𝑐 𝑠)3

]
. (3.35)
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It is clear that, in the minimally-coupled case, one exactly re-obtains the NFW
RC. The overall RC model has four free parameters: the halo concentration
𝑐, the halo virial mass 𝑀v, the NMC lengthscale 𝐿, and the disc mass 𝑀d.

• Burkert profile

The phenomenological Burkert profile predicts an RC that writes as (see
Salucci & Burkert 2000):

𝑣2
DM(𝑟) = 4𝐺𝑀0

𝑟

{
ln

(
1 + 𝑟

𝑟0

)
− tan−1

(
𝑟

𝑟0

)
+ 1

2 ln

[
1 +

(
𝑟

𝑟0

)2
]}

, (3.36)

where 𝑟0 is the core scale radius, and 𝑀0 = 1.6 𝜌0 𝑟
3
0 . It is customary to

describe the total Burkert’s RC in terms of three parameters: the core radius
𝑟0, the core mass 𝑀0, and the ratio � ≡ 𝑣2

d(𝑟opt)/𝑣2
tot(𝑟opt) of the disc to the

total velocity at the optical radius.

Fits to the stacked RC data with the aforementioned mass models are ob-
tained using the emcee python package for Bayesian Monte Carlo Markov Chain
(MCMC) parameter estimation (see Foreman-Mackey et al. 2013). The outcomes
concerning all velocity bins for each of the galaxy types (normal spirals, LSBs and
dwarfs) are represented in Tab. (3.2), Tab. (3.3) and Tab. (3.4). The results on the
estimated virial masses are consistent for the three profiles. The complete sample
of the corresponding RCs is shown in Appendix (D). In this Section, only three
exemplary bins (one for each kind of spiral galaxy considered in the analysis) are
shown in Fig. (3.9), Fig. (3.10) and Fig. (3.11).

Bin 5 from the Persic et al. (1996) sample is considered in Fig. (3.9). The results
on the estimated virial mass are consistent for the three profiles. The disc mass
is consistent between the NMC and Burkert models, while for the NFW model,
only a relatively loose upper limit can be derived. All in all, the NMC model
curve performs appreciably better in terms of reduced 𝜒2

red ≈ 0.6 to the Burkert
𝜒2

red ≈ 22.5 and to the pure NFW model 𝜒2
red ≈ 11, as can also be appreciated

graphically. The estimated value of the NMC lengthscale is around 0.2 kpc,
roughly corresponding to a sixtieth of 𝑟𝑠 . Fits of the NFW and NMC models are
also performed by imposing the concentration parameter of the halo to satisfy
the relation with the virial mass by Dutton & Macciò (2014). Both fits are not
appreciably altered, but the posterior distribution of the fitted parameters in the
NMC model is still consistent and somewhat narrowed.

Fig. (3.10) refers to Bin 5 in the sample of LSB galaxies by Dehghani et al.
(2020). In this case, the Burkert model yields a reduced 𝜒2

red ≈ 11, the NFW fit
yields 𝜒2

red ≈ 3 and the NMC model performs better yielding 𝜒2
red ≈ 1.411. As

expected, the disc mass in all the fits is poorly constrained since these LSB galaxies
have a significantly extended disc mass distribution relative to the region probed
by the RC.

Finally, in Fig. (3.11), the dwarf galaxy bin is analysed. Since it was initially
designed on purpose, it is not surprising that, in this case, the Burkert profile
yields the best description of the RC with a reduced 𝜒2

red ≈ 0.8. However, the
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NMC model performs decently with 𝜒2
red ≈ 4, and substantially better than the

NFW profile for which 𝜒2
red ≈ 14. Note that such galaxies are strongly DM

dominated in the region probed by the RC. Hence, the disc mass is vanishingly
small and/or unconstrained by all models.

An interesting result is that the NMC model predicts higher values of the
lengthscale 𝐿 in DM halos of higher virial masses — see Fig. (3.12). This trend is
well reproduced by the scaling 𝐿(𝑀𝑣) ∝ 𝑀0.8

𝑣 , broadly consistent with the findings
for DM-dominated dwarf galaxies detailed in Sec. (3.2.5).

As can be seen by looking at the overall results listed in Appendix (D) and
recapped in Tab. (3.2), Tab. (3.3) and Tab. (3.4), the NMC model yields RC fits that
are always superior to the pure NFW one and in several instances comparable or
even better than the Burkert model. Furthermore, Tab. (3.4) contains the results
of performing an F-test to compare the NFW and the NMC models. Such test
suggests that the addition of the parameter 𝐿 effectively improves the fits for the
majority of the bins.

Two caveats are in order here. First, the Burkert profile is phenomenological
and has been designed specifically to fit the RC of dwarf galaxies. Contrariwise,
the NMC DM model is derived theoretically from first principles (though in
a specific scenario), so the fact that its performances on RC fitting for different
kinds of galaxies improves substantially over the pure NFW shape is encouraging.
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Table 3.1: Samples considered for the analysis of stacked RCs: PSS stands for the
sample of normal spirals by Persic et al. (1996), LSB stands for the sample of low
surface brightness spirals from Dehghani et al. (2020), and Dw for the sample
of dwarfs by Karukes & Salucci (2017). For each bin, the optical radius 𝑟opt and
optical velocities 𝑣opt are reported.

Sample/Bin 𝑟opt [kpc] 𝑣opt [km s−1]
PSS 1 4.6 75
PSS 2 5.7 104
PSS 3 6.5 116
PSS 4 7.6 135
PSS 5 8.9 154
PSS 6 10.1 169
PSS 7 11.5 185
PSS 8 13.5 205
PSS 9 15.3 225
PSS 10 18. 243
PSS 11 22.7 279
LSB 1 5.5 44
LSB 2 6.9 73
LSB 3 11.8 101
LSB 4 14.5 141
LSB 5 25.3 206
Dw 2.5 40
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Table 3.2: Results of the MCMC parameter estimation from the fits to the stacked
RCs when using the Burkert profile.

Sample/Bin log 𝑟0 [kpc] log 𝜌0 [M⊙ kpc−3] � ≡ 𝑣2
d(𝑟opt)/𝑣2

tot(𝑟opt) 𝜒2
red

PSS 1 0.596 ± 0.049 7.609 ± 0.080 0.113+0.046
−0.039 0.210

PSS 2 0.790 ± 0.050 7.486+0.062
−0.069 0.249+0.028

−0.024 0.436

PSS 3 0.696+0.066
−0.060 7.638+0.094

−0.13 0.314+0.057
−0.036 0.477

PSS 4 0.796+0.073
−0.062 7.556+0.093

−0.13 0.376+0.058
−0.033 0.589

PSS 5 1.175+0.060
−0.076 7.038 ± 0.071 0.556+0.020

−0.018 22.466

PSS 6 1.179+0.047
−0.053 7.058 ± 0.050 0.545 ± 0.011 1.290

PSS 7 1.297+0.077
−0.11 6.892 ± 0.098 0.632+0.023

−0.020 0.686

PSS 8 3.15+1.2
−0.64 6.301+0.032

−0.053 0.791 ± 0.011 3.851

PSS 9 1.517+0.093
−0.17 6.65 ± 0.12 0.722+0.022

−0.018 1.525

PSS 10 2.26+0.35
−0.54 6.167+0.046

−0.11 0.836+0.015
−0.011 2.279

PSS 11 1.963+0.095
−0.76 6.30+0.24

−0.43 0.823+0.055
−0.024 2.279

LSB 1 0.664+0.062
−0.099 7.03+0.16

−0.12 0.151+0.077
−0.088 0.971

LSB 2 1.259+0.076
−0.16 6.601 ± 0.074 0.534 ± 0.027 3.710

LSB 3 1.272+0.062
−0.079 6.536 ± 0.076 0.518+0.032

−0.030 0.370

LSB 4 3.28+1.7
−0.65 5.911+0.047

−0.075 0.750 ± 0.018 4.882

LSB 5 0.751 ± 0.018 8.019+0.058
−0.036 0.071+0.018

−0.070 12.268

Dw 0.358+0.027
−0.032 7.563 ± 0.045 0.055 ± 0.025 0.760
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Table 3.3: Results of the MCMC parameter estimation from the fits to the stacked
RCs when using the NFW profile.

Sample/Bin 𝑐 log𝑀d [M⊙] log𝑀v [M⊙] 𝜒2
red

PSS 1 6.43+1.2
−0.78 6.8 ± 1.0 12.17+0.13

−0.29 4.265

PSS 2 7.4+2.5
−1.5 8.67+0.61

−0.082 12.45+0.15
−0.43 3.931

PSS 3 5.4 ± 1.7 9.728+0.062
−0.034 12.75+0.23

−0.57 5.730

PSS 4 6.4+2.2
−1.9 9.980+0.063

−0.036 12.66+0.16
−0.49 4.542

PSS 5 22.71 ± 0.75 4.3 ± 2.5 11.779 ± 0.029 10.913

PSS 6 10.2+2.0
−1.7 10.208+0.098

−0.062 12.347+0.067
−0.18 1.166

PSS 7 9.0+4.3
−2.7 10.54+0.10

−0.053 12.435+0.038
−0.41 2.470

PSS 8 26.2+1.9
−1.7 10.19+0.28

−0.091 11.939+0.039
−0.034 1.281

PSS 9 15.0+5.4
−3.8 10.79+0.17

−0.073 12.186+0.032
−0.13 1.392

PSS 10 29.1+2.6
−2.2 10.47+0.33

−0.081 12.091+0.042
−0.036 1.109

PSS 11 18.6+7.1
−4.8 11.19+0.17

−0.10 12.233+0.046
−0.080 0.531

LSB 1 3.51+0.67
−1.3 7.94+0.61

−0.28 11.63+0.25
−0.37 4.335

LSB 2 11.27 ± 0.68 4.4 ± 2.5 11.229+0.043
−0.052 0.456

LSB 3 3.85+0.84
−1.8 9.901+0.096

−0.037 12.28+0.22
−0.42 6.382

LSB 4 12.7+2.0
−1.5 10.31+0.11

−0.074 11.514 ± 0.061 1.502

LSB 5 23.5 ± 1.1 5.1 ± 2.9 12.065 ± 0.022 2.564

Dw 4.42+0.97
−0.70 3.3+1.7

−2.7 11.85+0.17
−0.35 14.519
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Table 3.4: Results of the MCMC parameter estimation from the fits to the stacked
RCs when using the NMC profile. In addition to the fit parameter estimates, the F-
ratio between the NFW and NMC models calculated as in Eq. (11.50) of Bevington
& Robinson (2003), i.e. 𝐹 = (𝜒2

NFW − 𝜒2
NMC)/𝜒

2
NMC,red is reported. Values of 𝐹 are

reported alongside the associated p-values. Here, the null hypothesis is 𝐿 = 0.

Sample/Bin 𝑐 log𝑀d [M⊙] log𝑀v [M⊙] 𝐿 [kpc] 𝜒2
red F p-value

PSS 1 9.14+1.0
−0.84 6.2+1.0

−1.9 11.71+0.10
−0.15 0.254+0.016

−0.012 1.742 25.6 10−4

PSS 2 13.7+2.4
−0.68 7.9+1.3

−1.6 11.712+0.043
−0.16 0.4645 ± 0.0084 0.803 67.2 < 10−5

PSS 3 22.1+2.0
−0.42 7.0 ± 1.7 11.470+0.026

−0.057 0.5192 ± 0.0067 0.511 174.6 < 10−5

PSS 4 23.7+2.3
−0.32 7.1 ± 1.8 11.615+0.023

−0.054 0.6011 ± 0.0091 0.786 82.2 < 10−5

PSS 5 13.6+3.3
−4.3 9.95+0.27

−0.047 12.018+0.069
−0.20 0.208+0.024

−0.035 0.615 285.7 < 10−5

PSS 6 14.2 ± 2.9 10.01+0.27
−0.077 12.122+0.053

−0.14 0.314+0.097
−0.040 1.098 2.0 0.2

PSS 7 32.7+1.4
−1.2 6.9+1.5

−2.3 11.802 ± 0.025 0.915 ± 0.013 1.088 22.6 2 · 10−4

PSS 8 32.5 ± 1.4 6.0 ± 2.3 11.937 ± 0.026 0.443+0.065
−0.042 0.591 20.9 3 · 10−4

PSS 9 31.2+1.8
−1.1 6.4 ± 2.5 12.076 ± 0.026 0.733+0.063

−0.042 0.854 11.7 3.5 · 10−3

PSS 10 44.4 ± 1.6 6.9 ± 1.7 12.043 ± 0.017 1.439 ± 0.030 1.139 0.6 0.5

PSS 11 42.4+2.3
−2.6 7.1 ± 1.8 12.251 ± 0.025 1.858 ± 0.093 0.952 - -

LSB 1 6.05+1.0
−0.88 5.2 ± 1.9 11.07+0.11

−0.19 0.280+0.010
−0.013 1.980 21.2 3 · 10−4

LSB 2 12.98+0.87
−0.65 5.4 ± 2.0 11.123+0.038

−0.051 0.415+0.011
−0.013 1.512 - -

LSB 3 9.4+1.7
−2.1 9.29+0.45

−0.17 11.620+0.054
−0.085 0.350+0.042

−0.028 0.923 101.5 < 10−5

LSB 4 23.7+1.2
−1.0 6.1 ± 2.3 11.516+0.029

−0.026 0.746+0.012
−0.014 1.352 2.9 0.1

LSB 5 26.9 ± 1.3 7.2+1.6
−2.5 12.020 ± 0.022 1.551 ± 0.048 1.411 14.9 10−3

Dw 8.32 ± 0.63 3.3+1.3
−3.3 10.988+0.083

−0.11 0.2259 ± 0.0043 3.987 45.9 < 10−5
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Figure 3.9: Analysis of the stacked RC for bin 5 of the spiral galaxy sample by
Persic et al. (1996). The top left panel illustrates the RC curve data (open symbols)
and the best-fit model for the Burkert (cyan line), NFW (orange line) and NMC
profile (red line). The outcomes of the Bayesian MCMC parameter estimation
are shown as corner plots for the Burkert profile (top right panel), for the NFW
profile (bottom left) and for the NMC model (bottom right, with purple contours
representing the posterior when the halo concentration is constrained by the
relation of Dutton & Macciò 2014 given by Eq. (3.44)).
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Figure 3.10: The same of Fig. (3.9) for the bin 5 of LSB galaxies by Dehghani et al.
(2020).
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Figure 3.11: The same of Fig. (3.9) for the dwarf galaxies by Karukes & Salucci
(2017).
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Figure 3.12: Scaling between 𝐿 and 𝑀v found in the RC fit analysis. The blue
dashed line represents the best fit of data to a simple power function, resulting in
a slope 𝑚best = (0.67 ± 0.16) (the shaded area represents a one-sigma confidence
interval). The red solid line instead represents the generalisation to baryonic-rich
objects of the scaling 𝐿 ∝ 𝑀0.8

v found in the DM-dominated dwarf galaxies regime
(see Sec. (3.2.4)).
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3.4.2 Testing the NMC with the RAR
As discussed in Sec. (1.4.5), the RAR subsumes and generalises a plethora of
well-known dynamical laws of galaxies describing the interplay between DM
and baryons. For with �̂� = 0, the fitting function found in Lelli et al. (2017)
given by Eq. (1.6) accurately represents the RAR for spiral and irregulars, while
the additive term depending on �̂� describes the flattening of the RAR in the
typical acceleration regime proper of dwarf spheroidal galaxies. The aim is to
determine whether the NMC model can adequately reproduce the RAR and
whether it can do so with NMC lengthscale values consistent with those derived
in Sec. (3.4.1) from the analysis of stacked RC data. The RAR is a local scaling
law that combines data at different radii in galaxies with different masses, which
feature different contributions of stellar disc and bulge, gas and DM. The problem
is hence approached via a semi-empirical method. The first step is to build up
mock RCs of galaxies with different properties and then to sample them to derive
the total and baryonic accelerations and construct the RAR.

• DM mass
The first step consists of drawing a vast number of total DM halo masses 𝑀v
within the range 8 < log(𝑀v/𝑀⊙) < 13.3 according to the local halo mass
function (a uniform sampling does not impact appreciably the outcomes).

• Stellar mass
The stellar mass is then derived and associated with each galaxy by using
the relation found by Behroozi et al. (2013) through an abundance matching
technique:

log𝑀★ = log (𝜖𝑀1) + 𝑓

[
log

(
𝑀v
𝑀1

)]
− 𝑓 (0), (3.37)

𝑓 (𝑥) = − log (10𝛼𝑥 + 1) + 𝛿
log[1 + exp(𝑥)]𝛾

1 + exp (10−𝑥) ,

with log𝑀1 = 11.514 being a characteristic halo mass, and parameters
log 𝜖 = −1.777, 𝛼 = −1.412, 𝛿 = 3.508, 𝛾 = 0.316, while allowing for a
log-normal scatter of 0.25 dex.

• Gas mass
The gas mass is then determined by exploiting the relation found with the
stellar mass by Papastergis et al. (2012) and Peeples et al. (2014):

log
(
𝑀HI
𝑀★

)
= −0.43 log

(
𝑀★

𝑀⊙

)
+ 3.75, (3.38)

allowing a lognormal scatter of 0.15 dex. Note that, in this analysis, there is
the implicit assumption that in local galaxies the majority of the interstellar
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medium consists of atomic hydrogen HI and that both the ionised and the
molecular components are minor (see Papastergis et al. 2012; Saintonge et al.
2011). The total gas mass is 𝑀gas ≈ 1.33𝑀HI to account for the contribution
of He.

• Stellar and gas radial distributions

The gaseous and the stellar components are assumed to be distributed in a
razor-thin exponential disc. The stellar disc half-mass radius is determined
from the stellar mass via the relation by Shen et al. (2003)

log
(
𝑅e

kpc

)
=

1
2.47

(
log

(
M★

𝑀⊙

)
− 7.79

)
. (3.39)

applying for 𝑀★ < 109𝑀⊙, and that by Lange et al. (2015)

𝑅e = 0.13
(
𝑀★

𝑀⊙

)0.14 (
1.0 + 𝑀★

14.03 · 1010M⊙

)0.77
kpc (3.40)

for 𝑀★ ≥ 109 𝑀⊙. 𝑅d ≈ 𝑅𝑒/1.678 gives the stellar disc lengthscale. The
allowed lognormal scatter for both these relations amounts to 0.1 dex. The
gas distribution lengthscale is taken as 𝑅gas = 2𝑅d.

• Bulge mass

The galactic bulge mass is determined using the relation with the stellar
mass by Gadotti (2009) and Moran et al. (2012):

𝑀B
𝑀★

=
log (𝑀★/𝑀⊙) − 9.5

4.2 , (3.41)

with a lognormal scatter of 0.1 dex. The implied bulge-to-total mass ratio is
∼ 30% for Milky-Way-like galaxies. The bulge is assumed to be present only
if 𝑀★ ≥ 3 × 109𝑀⊙.

• Bulge radial distribution

The bulge mass is assumed to be radially distributed according to a Hern-
quist profile (Hernquist 1990)

𝜌(𝑟) =
𝑀B𝑅1/4

2𝜋𝑟
(
𝑅 + 𝑅1/4

)3 , (3.42)

where 𝑅1/4 is the radius at which the enclosed bulge mass is a quarter of its
total value. The half-mass radius 𝑅1/2 = (1+

√
2)𝑅1/4 is gauged based on the

scaling relation with the bulge mass by Gadotti (2009)

log
(
𝑅1/2

kpc

)
= 0.30 log

(
𝑀B
𝑀⊙

)
− 3.124, (3.43)
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with a lognormal scatter of 0.1 dex.

• DM radial distribution
The DM mass is radially distributed according to various profiles to test their
performance on the RAR. For the NFW and the NMC models, Eq. (3.33) is
used. The concentration parameter 𝑐 is determined according to the relation
with the halo mass from Dutton & Macciò (2014)

log 𝑐 = 0.905 − 0.101 log
(
𝑀v/1012ℎ−1𝑀⊙

)
, (3.44)

with a lognormal scatter of 0.11 dex.
For the Burkert model, Eq. (3.36) is used by setting the core radius 𝑟0 from
two conditions: (i) the mass within the virial radius must match 𝑀v; (ii) the
core radius and core density must satisfy the universal core surface density
relation 𝜌0 × 𝑟0 ≈ 75𝑀⊙ pc−2 discussed in Sec. (3.2.5), with a scatter of 0.2
dex (see, e.g., Salucci & Burkert 2000; Donato et al. 2009; Burkert 2015, 2020).
Finally, we consider a profile emerging from hydrodynamical simulations
by Di Cintio et al. (2014), which considers DM responses to baryonic ef-
fects (including stellar feedback). Such a profile is essentially a generalised
version of the NFW one featuring the following shape:

𝜌(𝑟) = 𝜌𝑠

(𝑟/𝑟s)𝛾
[
1 + (𝑟/𝑟s)𝛼

] (𝛽−𝛾)/𝛼 . (3.45)

with shape parameters linked to the stellar-to-halo mass ratio 𝑋 ≡ 𝑀★/𝑀v
(see also Stinson et al. 2013) as

𝛼 = 2.94 − log
[ (

10𝑋+2.33)−1.08 +
(
10𝑋+2.33)2.29

]
,

𝛽 = 4.23 + 1.34𝑋 + 0.26𝑋2,

𝛾 = −0.06 + log
[ (

10𝑋+2.56)−0.68 +
(
10𝑋+2.56) ] . (3.46)

• Building up the mock RC

All the mass components and the associated radial distribution 𝑀𝑖(< 𝑅)
have now been specified for any galaxy of given virial mass 𝑀v. The cor-
responding RCs can thus be easily determined from 𝑣2

𝑖
(𝑅) = 𝐺𝑀𝑖(< 𝑅)/𝑅.

The only exception consists in the NMC model, for which the DM velocity
has an additional term 𝑣2

DM(𝑟) = 𝐺𝑀DM(< 𝑟)/𝑟 − 𝜖 𝐿2 𝑟 4𝜋𝐺 d𝜌/d𝑟. Finally,
the overall mock RC is the sum of all the different contributions 𝑣2

tot =
∑
𝑖 𝑣

2
𝑖
.

Fig. (3.13) illustrates four representative mock RCs for galaxies with different
halo masses 𝑀v, highlighting the diverse behaviour when assuming the
NFW, the Burkert, the Di Cintio (DC+14) or the NMC halo profiles. As
for the baryonic components, in moving toward smaller halo masses, the
inner contribution due to the bulge component becomes less prominent,
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while the gas contribution progressively increases to become even more
dominant over the stellar disc. As for the DM models, the halo shapes
are different, with the Burkert profile yielding overall higher velocities in
lower-mass galaxies. The mock RCs are compared to the stacked empirical
RCs considered in Sec. (3.4.1) to test their realism. The outcome is shown
in Fig. (3.14), highlighting the compatibility between the mock curves and
empirical, stacked ones.
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Figure 3.13: Four representative mock RCs for different DM halo masses. In each
panel, the contributions from the stellar disc (orange), gas disc (purple), bulge
(red), overall baryons=bulge+stars+gas (cyan), DM halo (green), and total (black)
are shown. For the green and black colours, dotted lines refer to the NFW profile,
dot-dashed lines to the Burkert profile, dashed lines to the DC+14 profile, and
solid lines to the NMC profile.
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Figure 3.14: Comparison between mock RCs with the empirical stacked RCs
utilised in Sec. (3.4.1). The stacked RCs (dashed black lines) are divided into three
virial mass bins, and for each of these bins, 103 mock curves varying in the range
outlined by the shaded area were generated, with the average mock RC plotted as
a solid line.
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Once the mock RC for each mock galaxy has been characterised, the gravita-
tional acceleration is computed following

|𝑔𝑗(𝑟)| =
𝑣2
𝑗
(𝑟)
𝑟

, (3.47)

the index 𝑗 = bar, tot specifies the baryonic contribution or the total value,
including DM. The RAR is then constructed by binning the mock galaxy sample
in 𝑔bar and extracting the average values and standard deviation of 𝑔tot. For a fair
comparison with the data, the sampled portion of the RC is restricted to twice the
optical radius of each mock galaxy. It is clear that this procedure includes in a
given bin of 𝑔bar objects with different halo masses and at different radii; e.g., an
object can display a low baryonic acceleration either because it has a small halo
mass or because its RC is sampled at large radii.

Fig. (3.15) illustrates the results on the RAR for the DM models listed above
(color-coded). For comparison, a black line with a shaded area is reported, rep-
resenting the determination by Lelli et al. (2017) as in Eq. (1.6). Grey squares
represent binned data for spirals and irregulars, and individual data for dwarf
spheroidal galaxies are highlighted with diamonds (filled symbols are for more
secure determinations). There is a substantial agreement of the RAR for all the
DM models at high baryonic accelerations. Such a regime is mainly dominated
by the contribution at small radii in high-mass galaxies, where the total gravi-
tational acceleration is dominated by baryons, implying 𝑔tot ≈ 𝑔bar irrespective
of the specific DM profile. However, a marked difference among the RAR for
different DM models sets in toward lower baryonic accelerations. Such a regime
is dominated by the behaviour at small/intermediate radii in intermediate and
low-mass galaxies, where the total baryon acceleration 𝑔bar is dominated by the
stellar disc. The total gravitational acceleration is instead contributed by both the
disc and the halo 𝑔tot ≈ 𝑔DM + 𝑔bar. Thus, depending on the DM model, most
of the contribution to 𝑔tot may come from the disc enforcing a behaviour of the
RAR similar to the high acceleration regime or from the DM enforcing an upward
deviation of the RAR.

All in all, both the RAR associated with the Di Cintio and the Burkert models
tend to appreciably deviate downward, to the point of becoming inconsistent with
the measured RAR (especially in dSph) for 𝑔bar ≲ 10−11 m s−2. Contrariwise, the
RAR of the NFW model displays the opposite behaviour, with the corresponding
curve flattening and progressively saturating to values slightly above the observed
RAR, though still consistent with the upper outliers. Nevertheless, one must keep
in mind that the NFW model suffers from poor performances in fitting the indi-
vidual RCs of many dwarf spheroidals (e.g., de Blok 2010) and the stacked dwarf
galaxy RCs analysed here. Finally, the NMC model can reproduce the average
measured RAR when extrapolating to smaller masses, assuming the dependence
𝐿(𝑀v) ∝ 𝑀0.8

v found from the RC analysis of Sec. (3.4.1). Thus, such RAR follows
a profile intermediate between the NFW and the cored ones. Remarkably, the
NMC one is the only model that, in this analysis, can simultaneously reproduce
the RAR and decently fits the stacked RC of spirals, LSBs and dwarf galaxies.

The prediction on the RAR for the MOND framework is also illustrated for
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reference. This may be derived from the relation �(𝑥) 𝑔tot = 𝑔bar where the
simple interpolating function �(𝑥) = 𝑥/(1 + 𝑥) with 𝑥 ≡ 𝑔tot/𝑎0 and 𝑎0 ∼ 1.2 ×
10−10 m s−2 is generally adopted (e.g., Famaey & Binney 2005, Zhao & Famaey
2006; see Sec. (2.2.6)). The MOND outcome is close to the measured RAR at high
acceleration, while it lacks the progressive flattening at low 𝑔bar. However, some
authors pointed out that this simple parameterisation of MOND is not accurate
because of the EFE (see Sec. (2.2.6)). One can account for the EFE by modifying
the interpolating function to read �(𝑥) = (𝑥/1 + 𝑥 + 𝑒) [1 + (2 + 𝑒) 𝑒/𝑥(1 + 𝑒)], with
𝑒 = 𝑔ext/𝑎0 being the strength of the effect to the MOND acceleration scale (as in
Timberlake et al. 2021). This parameter was estimated to be around 𝑒 ≈ 0.033 by
Chae et al. (2020) and Chae et al. (2021) from the analysis of individual galaxy RCs
(Desmond et al. 2018). The RAR from MOND theory including the EFE deviates
downward at low accelerations and can account for some of the bottom outliers.
However, to reproduce the observed RAR for the bulk of the galaxies would
require negative values of 𝑒, which is not supported by observational estimates
and known to be theoretically unfeasible in the MOND framework (see Chae et al.
2020).

Fig. (3.16) represents the RAR expected from the NMC model for different
values of the NMC lengthscale 𝐿/𝑟𝑠 . Plainly, for vanishing 𝐿/𝑟𝑠 , the NFW out-
come is recovered. For 𝐿/𝑟𝑠 progressively increasing, the NMC model spans the
dispersion of the outliers in the RAR at low baryonic accelerations.

In conclusion, the outcomes of this session illustrate that the NMC DM pre-
dicts an interesting galactic-scale phenomenology. By considering the NMC as
a perturbation acting upon the NFW profile, this model faithfully replicates the
RCs of various late-type galaxies. NMC DM also predicts a simple power-law
correlation between the virial mass of structures and the NMC’s lengthscale 𝐿.
This scaling allows to reproduce the RAR down to the regime probed by dwarf
spheroidal galaxies.

However, how well does this model perform when applied to highly massive
structures such as galaxy clusters? Are these structures compliant with the ob-
served relationship between the NMC’s lengthscale and the virial mass of haloes?
The following section will provide a definitive response to these inquiries.
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Figure 3.15: The Radial Acceleration Relation (or RAR). The solid black line with
shades illustrates the average results and its 2𝜎 and 3𝜎 variance from the analysis
of the SPARC database by Lelli et al. (2017). In particular, grey squares refer to
the binned outcome for normal spiral galaxies and diamonds to measurements
in individual dwarf spheroidal (filled symbols are more secure determinations).
Such dwarf spheroidals have large error bars not displayed in this plot for visual
clarity. Thus, the extension of the fit line through this cloud is much less certain
than for the LTGs. The coloured circles illustrate the prediction from our empirical
modelling of RCs when adopting different halo profiles: NFW (green), Di Cintio
(blue), Burkert (cyan) and NMC with a mass-dependent scaling for the coupling
lengthscale 𝐿 (red; see text for details). For reference, the MOND expectations
without (dashed orange) and with (dotted orange) the external field effect (to the
value 𝑒 = +0.033 estimated in Chae et al. 2020) is displayed.
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Figure 3.16: The RAR for the NMC model, with different coupling lengthscales
𝐿/𝑟𝑠 . As expected, setting the coupling length to zero (orange) amounts to recover
the RAR reproduced by the NFW model. The RAR for 𝐿/𝑟𝑠 ∼ 0.077 is also
displayed, i.e. the average value obtained from the RC analysis of large spiral
galaxies (purple). Intermediate values for 𝐿/𝑟𝑠 describe RARs that will lie between
these two extremes. For reference, the RAR obtained assuming a mass-dependent
scaling for the coupling lengthscale 𝐿 as in Fig. (3.15) is also reported (red).
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3.5 NMC DM and Galaxy Clusters
This section collects tests of the NMC DM model on the scales of galaxy clusters.
The aim is to assess its capability to fit the pressure profiles of these massive
structures and to determine if the scale relation predicted by the NMC DM model
retrieved in Sec. (3.4.1) is also satisfied in these regimes.

The thermal pressure profiles2 of galaxy clusters are defined as functions of
the gravitational potential in play. In the framework of the NMC DM model, this
reads as

𝑃th(𝑅) = 𝑃th(0) − 1.8�𝑚p

∫ 𝑅

0
𝑛e(𝑟)

[
𝐺𝑀DM(𝑟)

𝑟2 − 4𝜋𝐺 𝜖𝐿2 d𝜌
d𝑟

]
d𝑟. (3.48)

Here, the electron density (ED) profile is modelled through the Vikhlinin
profile (Vikhlinin et al., 2006)

𝑛𝑒(𝑟)
𝑛0

=
(𝑟/𝑟𝑐)−𝛼/2[1 + (𝑟/𝑟𝑠)𝛾]−�/(2𝛾)

[1 + (𝑟/𝑟𝑐)2](3/2)𝛽−𝛼/4
. (3.49)

Here, 𝛽 ≡ �𝑚p𝜎2/𝑘b𝑇gas is the ratio of the specific energy in galaxies to the
specific energy in the hot gas, with � being the mean molecular weight, 𝑚p being
the mass of the proton, 𝜎 being the one-dimensional velocity dispersion, and 𝑇gas
is the temperature of the intracluster medium (ICM); whereas the additional term
describes a change of slope by � near the radius 𝑟𝑠 , and the parameter 𝛾 controls
the width of the transition region and 𝑟𝑐 is the core radius of the gas distribution.

This analysis exploits the same perturbative approach of Sec. (3.4) (i.e., the
NMC is treated as a perturbation acting over the standard NFW profile). Here,
the NFW profile will be expressed in terms of the halo virial mass 𝑀500 (i.e., the
mass value at which the interior mean density is 500 times the critical density of
the Universe) and the corresponding halo concentration 𝑐 ≡ 𝑟500/𝑟𝑠 , with 𝑟500 ≈
260

(
𝑀500/1012𝑀⊙

)1/3. The DM mass profile in Eq. (3.48) will then coincide with
the NFW mass distribution and, identically to Sec. (3.4), the term d𝜌

d𝑟 will be the
gradient of the NFW density profile. Again, in this analysis, the perturbative
parameter is 𝐿/𝑟𝑠 , a quantity always small for the range of masses hereby probed,
as the results will show.

3.5.1 The X-COP Galaxy Clusters Sample
This analysis relies on data from the XMM-Newton Cluster Outskirts Project
3 (X-COP) data products (see Eckert et al. 2017; Ghirardini et al. 2018; Ettori
et al. 2019; Eckert et al. 2019; Ghirardini et al. 2019). This sample consists of
12 clusters with well-observed X-ray emission and high signal-to-noise ratio in

2Here the gas density 𝑛gas(𝑟) ≈ 1.826 𝑛𝑒(𝑟) is the sum of the electron and proton number
densities, � is the mean molecular weight in a.m.u., and 𝑚𝑝 is the proton mass.

3The datasets are publicly available at the following link:
https://dominiqueeckert.wixsite.com/xcop/about-x-cop
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the Planck Sunyaev–Zel’dovich (SZ) survey (Ade et al. 2016). X-COP data provide
information about the ICM temperature and pressure in a wide radial range, from
0.2 to 2 Mpc.

The methodology adopted here is equivalent to the one earlier implemented
in Haridasu et al. (2022). To constrain the NMC lengthscale (𝐿) alongside the pa-
rameters of the mass profile (Θ𝑀) and the electron density (Θ𝑒), a joint likelihood
ℒ is considered, and it is written as

ℒ = ℒPX + ℒPSZ + ℒED, (3.50)
where the pressure is computed through Eq. (3.48) and the electron density is

modelled as in Eq. (3.49). Here, the first term accounts for the likelihood corre-
sponding to the X-ray temperature 𝑃X data, the second term denotes the likelihood
for the co-varying SZ pressure data and the last term in Eq. (3.50) accounts for
the modelled electron density data. Alongside these primary parameters of the
model, this analysis also includes an additional intrinsic scatter ΣP,int following
the approach in Ghirardini et al. (2018) and Ettori et al. (2019)4.

A Bayesian analysis through MCMC sampling is exploited to achieve the
desired results. To perform the chains’ analysis and plot the contours, the emcee
package and the GetDist package (Lewis 2019) are used. Priors are assumed to be
flat and uniform on all the parametersΘ𝑒 = {𝑛0, 𝛼, 𝛽, 𝜖, 𝑟c, 𝑟s}, ΘM = {𝑀500, 𝑐} and
the NMC characteristic lengthscale 𝐿 in the MCMC analysis. A model comparison
through the Bayesian evidence ℬ (Trotta 2008, 2017; Heavens et al. 2017b) is also
performed using the MCEvidence package (Heavens et al. 2017a)5. Comparing the
Bayesian evidence, one can assess the preference for a given model ℳ1(Θ1) over
the base model (i.e., the NFW model). Also, the Bayesian evidence is contrasted
on the Jeffrey’s scale (Jeffreys 1961), where Δ log(ℬ) < 2.5 and Δ log(ℬ) > 5 imply
either a weak or a strong preference for the extended model, respectively.

3.5.2 Fitting Galaxy Clusters pressure profiles
The results of the MCMC parameter estimation are reported in Tab. (3.6) and
the respective statistical comparison in Tab. (3.5). The reduced chi-squared (𝜒2

red)
values in Tab. (3.5) indicate that for the majority of the clusters, the NMC DM
model generally describes the data comparably and often even better than the
NFW model. Nevertheless, a remark is in order: the NMC lengthscale 𝐿 value
is partially guided by data availability at the innermost radii, and X-COP cluster
pressure profiles are not well characterised in these regions. This lack of data
at small radii relaxes the constraints on the higher end of the possible values
for 𝐿, and it is ultimately responsible for the production of a hole-like feature
(corresponding to low or negative values of pressure) observed in this analysis
for a certain fraction of the cluster pressure profiles at inner radii. However, these
features could be erased by adding one or more data points at inner radii for the
pressure profiles. Unfortunately, such data are not available for the X-COP cluster

4For a more in-depth discussion on the mild differences between the approach hereby exploited
and the analysis performed in Ettori et al. (2019) refer to Haridasu et al. (2022).

5See the online documentation.
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sample. In light of this, values of the NMC lengthscale 𝐿 obtained in this analysis
for clusters exhibiting a hole in their pressure profiles should be interpreted as
upper bounds on the actual values of 𝐿. The NMC DM model does not modify the
estimation of pressure profiles in the cluster’s outskirts. This essentially implies
that the results presented here are not degenerate with any additional physics
that can potentially affect the pressure profile estimation at outer radii, such as
non-thermal pressure support, which, for example, could be important for cluster
A2319 (Eckert et al. 2019). The last column of Tab. (3.5) shows estimates of the
Bayesian evidence Δℬ exploited to compare the two models further, assuming
standard NFW to be the base model. The NMC DM model is preferred for half of
the clusters in the sample, and likewise, it is mildly disfavored by the other half
(up to the more striking case of RXC1825, for which Δℬ = −3.53).

Tab. (3.6) reports the concentration 𝑐500 and virial mass 𝑀500 values from the
MCMC analysis for the NFW and the NMC DM models. Estimates for these
values from the two models are always compatible within the displayed uncer-
tainties, except for cluster RXC1825’s concentration (slightly larger in the NMC
framework than the NFW case) and 𝑀500 (conversely slightly smaller in the NMC
case). Despite this compatibility, the NMC model predicts concentration values
systematically larger than the NFW ones. Tab. (3.6) also features the MCMC es-
timations for the NMC lengthscale 𝐿. Overall, these values of 𝐿 exceed by two
orders of magnitude on average the same values obtained for spiral galaxies in
Sec. (3.4.1). This result is remarkably consistent with the increasing trend ob-
served for spiral galaxies in Gandolfi et al. (2022a) between the mass of DM halos
and the 𝐿 associated with them.

Fig. (3.17) and Fig. (3.18) show two exemplificative profiles (clusters A644 and
A2142) obtained with the MCMC analysis, alongside the posterior contour plots
for 𝑀500, 𝑐 and 𝐿 (all the other pressure profiles and contour plots are displayed in
Appendix (E)). As in the other clusters, both the NFW and the NMC DM models
provide a good description of the general trend of the data. However, the NMC
DM model can better fit the clusters whose data at the innermost radii are tracing
a flattening in the shape of the pressure profiles. Such flattening seems to arise
right within the area in which the NMC effect is active (i.e., within a distance of
𝐿 from the centre of the dark haloes, represented as a blue shaded area in both
Fig. (3.17) and Fig. (3.18)). As mentioned, such an NMC effect should be read with
caution, given the limitation of the temperature data available in the innermost
regions of the cluster.

Fig. (3.19) shows the one-dimensional posterior distribution of the 𝐿 parameter
from the MCMC analysis for the X-COP cluster sample. Consistently with the
galactic dark halos analysed in Sec. (3.4.1), 𝐿 has different values in different halos,
depending on their characteristics (particularly their virial mass). Some halos (e.g.,
RXC1825 or A85) show a one-dimensional posterior converging towards 𝐿 = 0,
suggesting that the DM density profile for these halos may have a cuspy shape,
well reproduced by the NFW model. In other halos (e.g., A2319 and A2255), the
NMC produces typical lengthscale capable of reaching fractions of Mpc. These
values are likely to be slightly overestimated since, as previously discussed, some
of these clusters exhibit an NMC DM pressure profile featuring a central hole.
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Table 3.5: Reduced 𝜒2 from the MCMC parameter estimation for both the NFW
and NMC DM models alongside the Bayesian evidence Δℬ in favour of the NMC
DM model.

Cluster z 𝜒2
red,NFW 𝜒2

red,NMC Δℬ
A85 0.0555 2.9 2.7 -0.89
A644 0.0704 2.4 2.2 0.11
A1644 0.0473 3.9 3.4 1.01
A1759 0.0622 1.7 1.6 1.34
A2029 0.0773 1.6 1.6 -0.15
A2142 0.0909 3.3 3.3 -1.32
A2255 0.0809 6.7 1.8 2.64
A2319 0.0557 7.8 7.1 2.05
A3158 0.0597 2.3 2.1 2.81
A3266 0.0589 6.7 6.8 -1.89

RXC1825 0.0650 3.3 6.1 -3.53
ZW1215 0.0766 0.97 0.86 -0.81

Despite this, the peak of such a one-dimensional posterior is far from 𝐿 = 0,
indicating that the shape of the density profile of these dark halos could be less
cuspy and different from that of the NFW profile. As can be seen in the right
panel of Fig. (3.17), the non-zero values for 𝐿 are essentially accompanied by a
mild positive correlation with 𝑀500 and subsequently a non-Gaussian degeneracy
with the concentration 𝑐. Also, for all the clusters that have a non-zero posterior
for the 𝐿, no correlation with the 𝑀500 parameter is observed as in the case of
A2142, shown in the right panel of Fig. (3.18). In this context, clusters A2255 and
A2319 show a slightly larger value of the lengthscale 𝐿 in the posteriors. Note
that a solid bi-modal behaviour is found for the clusters A2255 and RXC1825. For
these clusters, the maximum posterior region is selected. As can also be seen
from the corresponding Bayesian evidence in favour of the NMC DM model, the
clusters A3158, A2319, and A2255 show a moderate preference (Δℬ ≳ 2), owing to
the slightly larger values of 𝐿. As seen in Fig. (E.1), this evidence in favour of the
NMC DM in these three clusters is essentially driven by the improvement of the
fit accounting for the innermost data point in the X-ray pressure observations. On
the contrary, the cluster RXC1825 prefers the standard NFW scenario at a similar
level of Bayesian evidence.
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Table 3.6: Results of the MCMC parameter estimation for the NFW models and
the NMC DM model.

Cluster 𝑐500,GR 𝑀500,GR/(1014𝑀⊙) 𝑐500,NMC 𝑀500,NMC/(1014𝑀⊙) 𝐿 [kpc]

A85 2.0+0.1
−0.1 6.2+0.2

−0.3 2.0 ± 0.2 6.2+0.3
−0.3 12+6

−10

A644 5+1
−2 4.6 ± 0.4 6.2+1.0

−1.7 4.6 ± 0.4 26+11
−4

A1644 1.1+0.2
−0.4 3.2+0.3

−0.4 1.4+0.3
−0.5 3.3+0.3

−0.3 27+9
−3

A1759 3.0 ± 0.2 4.7+0.2
−0.3 3.4+0.3

−0.3 4.6+0.2
−0.2 20+7

−3

A2029 3.3+0.2
−0.3 7.7 ± 0.4 3.6+0.3

−0.5 7.5 ± 0.4 28+15
−7

A2142 2.3+0.2
−0.2 8.4 ± 0.4 2.4+0.2

−0.3 8.4 ± 0.4 17.3+7
−15

A2255 1.6+0.4
−0.9 4.7 ± 0.4 2.3+0.3

−0.7 4.8 ± 0.3 109+11
−8

A2319 3.8+0.4
−0.6 7.4 ± 0.2 4.6+0.6

−0.8 7.4 ± 0.2 60+17
−5

A3158 2.0+0.3
−0.4 4.0+0.3

−0.3 2.6+0.4
−0.4 4.0 ± 0.2 36+6

−3

A3266 1.7+0.2
−0.2 6.6 ± 0.2 1.7 ± 0.2 6.5+0.3

−0.3 15+5
−13

RXC1825 2.6+0.4
−0.4 4.1+0.3

−0.3 4.0+0.5
−0.9 3.5 ± 0.3 9+3

−8

ZW1215 1.5+0.2
−0.3 7.1 ± 0.7 1.6+0.2

−0.3 7.0 ± 0.6 22+9
−19
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Figure 3.17: Left: Pressure profile and related contour plots for the A644 cluster.
Data are displayed as red dots (SZ effect data) and cyan dots (data from the
temperature profile by X-ray measurements). The black, solid lines represent
the Bayesian MCMC best fit for the NMC DM model, with the grey contour
representing the 68 % confidence interval around the best-fit line. The dashed
blue line represents instead the NFW best fit. The blue shaded area in the profile
represents the region of the dark halo within which the NMC is active, i.e. an area
that extends from the centre of the halo up until 𝐿. Right: The green contours
represent the NMC DM model, while the blue contours represent the NFW fit.

Figure 3.18: Same as Fig. (3.17) but for the A2142 cluster.
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Figure 3.19: The one-dimensional posterior distribution for the lengthscale pa-
rameter 𝐿 as retrieved in the Bayesian MCMC analysis.

3.5.3 The virial mass VS non-minimal coupling lengthscale in
clusters

This section aims to investigate the relation between the NMC lengthscale 𝐿

and the dark halo virial mass 𝑀500 observed as a result of the analysis. This
relationship is an important feature of the NMC DM model, which, as stated
in Sec. (3.1.3), is not to be considered a modified theory of gravity. Therefore,
𝐿 should not be considered a new proposed fundamental constant of nature.
The observed relationship between 𝐿 and 𝑀500 shows that 𝐿 indeed does not
have a universal value and depends on at least one property of the dark haloes
under consideration, as shown in Sec. (3.4.1) for galactic dark halos where such
a relationship was described with a simple power-law. Here, the validity of this
relation is investigated up to the virial mass ranges typical of galaxy clusters. The
present analysis results are shown in Fig. (3.20). Here, the virial masses of the
spiral galaxies of Sec. (3.4.1) and their errors are rescaled from 𝑀200 to 𝑀500 to
homogenise the results. Remarkably, the X-COP clusters data points derived by
the MCMC analysis seemingly agree with the power-law trend of the 𝐿 - 𝑀500
relationship observed in Sec. (3.4.1). An MCMC fit is performed using the model
log10 𝐿 = 𝑎 log10(𝑏𝑀500) to fit both galactic and clusters data simultaneously,
obtaining as parameter values 𝑎 = 0.542±0.005 and 𝑏 = 0.807±0.005. The slope 𝑎
found in this analysis is compatible with the slope (0.7±0.2) found in Sec. (3.4.1) by
fitting a similar power-law to galaxies only. The best-fit line is shown in Fig. (3.20)
as a solid black line with a grey shaded area representing a one-sigma confidence
limit of the fit. In the same figure, a grey dotted line shows the relation 𝐿 = 𝑀0.8

200,
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which is the one retrieved for galactic haloes and it was adopted as a reference
relation to study the capacity of the NMC DM model in reproducing the RAR. In
the galactic virial mass regime, the two power-laws are consistent within a one-
sigma confidence limit, and their slopes are compatible within the errors. The
updated scaling law retrieved in the present analysis translates into an average
variation of the RAR to the one computed in Sec. (3.4.2) by a mere 0.33%, with the
average of such variation being taken for every radial acceleration bin in which
the RAR is computed (spanning from a minimum variation of 0.004% to 1.4%
among all the bins). Such variation is well within the errors associated with the
RAR computed for every single bin of radial acceleration. The RAR’s minimum
and maximum percentage relative uncertainties are 0.67% and 3.27%, respectively,
and the average one is 1.85%. One can thus conclude that the updated 𝐿 - 𝑀500
relation retrieved here, albeit different from the one considered in Sec. (3.4.2),
can still reproduce the RAR in the galactic dark haloes mass regime. That being
said, from Fig. (3.20), it is possible to appreciate the significant difference between
the two power-laws when approaching the cluster dark halo mass regime. This
discrepancy essentially constitutes an improvement over the previous analysis,
which utilised only galaxies to assess the same relation. As previously mentioned,
values for 𝐿 could be slightly overestimated for some clusters. Hence, the real best-
fit power-law could be even less steep than what is found in the present analysis.
Moreover, considering a galaxy cluster dataset that probes the innermost regions
of the halo could help reduce the scatter in the 𝐿 - 𝑀500 relation.
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3.5.4 Scatter in the virial mass VS concentration relation
Fig. (3.21) depicts the correlation between concentration 𝑐 and𝑀500 values inferred
from the MCMC analysis hereby exploited against the relationship between 𝑐200
and𝑀200 of dark halos found in Dutton & Macciò (2014) and given by Eq. (3.44). To
make this comparison, the value of the virial mass 𝑀500 of the clusters is rescaled
to 𝑀200, recalculating the corresponding concentrations accordingly. Then, an
MCMC fit is performed to find the best-fit power law that best describes the data
obtained by exploiting the NFW and NMC DM models. In both these cases, there
is some visible difference between the best-fit power laws and the relationship
found in Dutton & Macciò (2014). This discrepancy is appreciable at least up to
the cluster mass regime, where both the best-fit power laws of the NFW and NMC
DM model intersect the report of Dutton & Macciò (2014). No essential differences
can be identified between the two models since the corresponding data have a
somewhat similar scatter around the Dutton & Macciò (2014) relation. This fact
is expected following the previous examination of the tabulated results of the
MCMC analysis performed here. Fig. (3.21) can provide interesting qualitative
hints on this framework’s expected concentrations of sub-haloes in galaxy clusters.
As argued in Meneghetti et al. (2020), ΛCDM could be at variance with the
observed density and compactness of DM sub-haloes in galaxy clusters. From
the analysis conducted here, the NMC DM model predicts galaxy-sized DM sub-
structures in clusters featuring overall higher concentrations associated with lower
halo mass values to the standard CDM paradigm. However, only future analysis
relying on high-quality data and exploiting a larger sample of galaxy clusters could
confirm this prediction. In this context, the observed tensions at galaxy cluster
scales present a promising way to further test the NMC dark matter scenario and
its phenomenology.
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Figure 3.20: Virial mass (𝑀500) vs. 𝐿 relation. Blue triangles are the same spiral
galaxies data utilised in Sec. (3.4.1). Red circles represent the X-COP cluster
measurements found in the Bayesian MCMC analysis hereby exploited. The best-
fit power-law coincides with the black solid line, whereas the shaded grey area
represents a one-sigma confidence interval. The grey dashed line represents the
𝑀500 VS 𝐿 relation found in Sec. (3.4.1) and exploited in Sec. (3.4.2) to obtain the
results therein. Note that the virial masses of spirals and their errors are rescaled
to 𝑀500 (i.e., a mass at which the interior mean density is 500 times the critical
density of the Universe) since they were originally computed as 𝑀200 (i.e., a mass
at which the interior mean density is 200 times the critical density of the Universe).
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Figure 3.21: Concentration VS virial mass relation. Grey triangles and grey circles
are spiral galaxies analysed in Sec. (3.4.1), and X-COP clusters’ data were obtained
with the NFW model. Blue triangles and red circles represent the retrieved values
assuming the NMC DM model. The orange solid line represents the relation by
Dutton & Macciò (2014) featuring a lognormal scatter of 0.11 dex represented by
the orange area around the line. The purple dashed line and the pink dashed lines
represent the 𝑐200 VS 𝑀200 relations, respectively, found for the NFW model and
the NMC DM model. Note that the cluster virial masses (𝑀500) and their errors
have been downscaled to 𝑀200 to make them comparable to the Dutton & Macciò
(2014) relation.
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3.6 Conclusions and future perspectives

3.6.1 NMC DM’s key results

In this Chapter, I introduced a model that involves a non-minimal coupling (NMC)
between cold dark matter (CDM) and gravity originally proposed in Bruneton
et al. (2009); Bettoni et al. (2014); Bettoni & Liberati (2015). On cosmological
scales, this model reduces to a standard CDM scenario. However, when examining
galactic or galaxy cluster scales, the NMC enhances our understanding of DM and
resolves some of the issues that the CDM paradigm faces on these scales. Here, I
recap the primary findings of this analysis.

• NMC DM haloes exhibit internal structures characterised by cored profiles,
resembling the Burkert phenomenological profile up to the typical scale
radii probed by observations (Sec. (3.2.3));

• These cores align with the observed constancy of core surface density in
dwarf galaxies detailed in Salucci & Burkert (2000) and Burkert (2015)
(Sec. (3.2.5));

• The NMC DM model consistently provides better fits to the stacked RCs
of late-type galaxies, spanning from dwarfs to massive spirals, compared to
the NFW profile in terms of reduced chi-square values. These fits are always
comparable to the Burkert profile ones and always return realistic values for
the DM haloes’ concentrations and virial masses (Sec. (3.2.4), Sec. (3.4.1));

• The analysis of RCs reveals a scaling relationship between the scale length
associated with NMC and the virial mass of DM haloes, approximated by a
simple power-law (Sec. (3.4.1));

• The model effectively describes the thermal pressure profiles of galaxy clus-
ters, affirming a correlation between the NMC scale length (𝐿) and the virial
mass of DM haloes, extending beyond the range of virial masses subtended
by galactic structures (Sec. (3.5.2));

• The mass scaling derived from fitting galaxy RCs and analysing pressure
profiles of galaxy clusters reproduces the Radial Acceleration Relation (RAR
in galaxies, even for dwarf spheroidals (Sec. (3.5.3)).

In summary, the NMC DM model discussed here is a straightforward and
theoretically motivated model that addresses long-standing issues within the
CDM paradigm. This model depends on a single free parameter, the NMC
lengthscale (𝐿). Such lengthscale exhibits a simple scaling law with the halo’s
virial mass, approximable by a power-law. Finally, this model is not necessarily a
modified gravity theory since several possible physical mechanisms could easily
explain the emergence of this NMC in virialised structures (see Sec. (3.1.3)).
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3.6.2 Future perspectives
The future developments of the NMC DM model encompass various aspects,
which are elaborated below.

• The NMC DM model could be further tested to fit the projected velocity
dispersion profiles of dwarf spheroidal galaxies, assessing if the NMC is
active and, if so, checking whether the inferred values of 𝐿 comply with the
observed power-law trend with the virial mass of DM haloes and if these
galaxies comply with the RAR;

• One could test the capability of the NMC DM model to reproduce Milky
Way’s RC built with high-precision astrometric data from GAIA (Chrobáková
et al. 2020; Wang et al. 2023). Indeed, this analysis could tighten even further
the constraints on the NMC lengthscale 𝐿. Knowing the value of 𝐿 for our
galaxy could also provide hints if the NMC could be constrained with Solar
System tests;

• After a theoretical development, the effects of the NMC on strong gravita-
tional lensing effects could be tested empirically, e.g., by assessing if NMC
DM haloes may reproduce the observed Einstein radii of known lenses (e.g.,
Shevchuk et al. 2023);

• The current static investigation could be expanded to include dynamic con-
ditions. This will involve the incorporation of the NMC within full N-body
numerical simulations to understand the role of this effect in structure for-
mation. As conjectured in Bettoni et al. (2012), a repulsive NMC would
generate a pressure term for the DM component able to reduce the growth
of structures at galactic scales. By quantifying the dependence of this sup-
pression on model parameters, it may be possible to obtain new constraints
for NMC DM from comparisons between simulations and observational
data;

• To further validate the NMC DM analysis on cluster scales, a potential future
step would involve using data from well-characterised galaxy clusters at
smaller radii. This could include data from collaborations such as CLASH
(Cluster Lensing and Supernova survey with Hubble; Umetsu et al. 2016).
These observations would probe the regions where the influence of the
NMC is particularly significant, greatly enhancing the constraints on the
lengthscale 𝐿 derived from the X-COP clusters analysis;

• Colliding galaxy clusters could serve as promising systems for studying the
NMC DM model, similar to what has been done, e.g., in SIDM scenarios
(Kahlhoefer et al. 2014). In the NMC model, the total gravitational potential
given by Eq. (3.10) depends on the Laplacian of the DM density. Hence, the
effects of the NMC could be particularly pronounced in regions where the
density of DM changes significantly, e.g., due to the merger of the haloes.
Moreover, the repulsive nature of the NMC could be relevant at the collision
interface, potentially slowing down the merger process;
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• If a repulsive NMC of this kind was active also on large cosmological scales,
it could produce a DE-like effect. Bettoni et al. (2012) shows that a DM fluid
forming BECs at suitably late cosmological time and developing an NMC
with gravity would behave as the superposition of two fluids: one standard
pressureless dust plus a fluid that behaves like a cosmological constant term.
A first step in this sense would be to study the Strong Energy Condition for
the total SET appearing in Eq. (3.8) to asses if the NMC can source a repulsive
effect counteracting the attractive pull of matter. Subsequently, it would be
interesting to constrain such cosmological NMC utilising type Ia SN data,
CMB’s first-peak angular scale, BAO’s temperature spectrum measurements
and estimates of the Universe’s age inferred from cosmic chronometers and
globular clusters;

• Once the phenomenology of the model is soundly characterised and enough
data are collected, an interesting extension of this work would involve pin-
pointing the exact mechanism that gives rise to this NMC between DM and
gravity. Such a physical mechanism should be able to explain the observed
power-law relationship between the NMC length scale 𝐿 and the virial mass
of structures.

The model introduced in this Chapter is a possible addition to the alternative
DM scenarios detailed in Sec. (2.2). Yet, beyond the creation and assessment
of novel models, it is equally crucial to formulate techniques for distinguish-
ing among established paradigms, particularly with state-of-the-art observations
from instruments like the James Webb Space Telescope. This is precisely the
objective of the upcoming Chapter.
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Chapter 4

Dark Matter Astroparticle
Constraints with JWST

4.1 Understanding dark matter through JWST high-z
observations

Equipped with an unprecedented mix of sensitivity and resolution, the James
Webb Space Telescope (JWST) could revolutionise our knowledge of the high-
redshift (𝑧 > 6) Universe and, ultimately, the nature of the dark Universe itself. Its
primary imager, called Near Infrared Camera (NIRCam), has a resolution reaching
0.07 arcsec at 2 microns and, observing in the near-infrared part of the spectrum,
covers wavelengths longward than the Hubble Space Telescope’s (HST) cutoff. In
its first year of activity, JWST was able to peek into the early Universe by identifying
a population of galaxies at redshift 𝑧 > 11 (Naidu et al. 2022a,b; Castellano et al.
2022; Adams et al. 2023; Donnan et al. 2023; Morishita & Stiavelli 2023; Finkelstein
et al. 2023; Atek et al. 2023a,b; Yan et al. 2023; Rodighiero et al. 2023). These early
observations, partially complemented by Near Infrared Spectrograph (NIRSpec)
ones, confirmed the presence of galaxies up to 𝑧 ∼ 13.20 (Robertson et al. 2023).
And surprisingly, some of these galaxies discovered at high-z by JWST seemingly
call into question the current cosmological model — ΛCDM.

4.1.1 Are JWST high-z observations in tension with ΛCDM?

During its first year of activity, JWST has shown its capabilities to question what
we know about the formation of cosmic structures. Indeed, some high-redshift
galaxy candidates discovered by JWST have raised concerns about their consis-
tency with galaxy formation in the standardΛCDM cosmological model, showing
unexpectedly high stellar masses (Boylan-Kolchin 2023; Labbé et al. 2023). In the
standard ΛCDM picture, the available baryonic reservoir of the host DM halo
sets limits to the stellar mass of a galaxy; thus, the mass function of DM haloes
imposes an absolute upper limit on the number density and stellar mass density
expected at any redshift. The recent literature discusses how the most massive
galaxy candidates in JWST observations at 𝑧 ∼ 7 − 10 lie at the edge of the mass
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limits predicted by the ΛCDM paradigm (e.g., Boylan-Kolchin 2023). This tension
could indicate a critical unresolved issue on how galaxies form at early times in
ΛCDM. Some authors took this as proof that the ΛCDM paradigm possibly needs
to be rewritten, and the presence of such massive objects so early in the Universe’s
history could hint at new physics beyond this standard framework (e.g., Dolgov
2023; Deliduman et al. 2023; Gupta 2023; Adil et al. 2023). However, before radi-
cally rewriting part of the known physics, an essential step is to ask how reliable
these early estimates carried out by JWST are.

On the one hand, JWST has opened an unprecedented window into a previ-
ously unknown part of the Universe. This offers new, exciting possibilities — but
also calls for some caution. The most successful tool for identifying ultra-high-
redshift candidates and inferring their properties (such as their stellar mass and
star formation rates) is photometric template fitting, a technique in which one or
more codes are used to compare a series of model spectral templates against the
observed photometry. From this comparison, the redshift and properties of the
observed galaxies are inferred from the best-fit models (either under a frequentist
chi-squared minimisation or a Bayesian likelihood approach). Most of these mod-
els consist of synthetic templates derived from local Universe conditions, either
theoretically disallowed or observationally disproven for galaxies at ultra-high
redshift. For example, many current stellar population templates return ages sur-
passing the age of the Universe at 𝑧 ∼ 12 (Brammer et al. 2008), while, at those
redshifts, the stellar population cannot be more than a few hundred Myr old.
Moreover, a central assumption common to all current templates is a universal
stellar IMF, assumed to coincide with the current Milky Way one. A proper choice
of the IMF may be crucial to understanding the properties of galaxies. In fact, the
light emitted by a galaxy is dominated by the most massive stars, which comprise
only a tiny fraction of the stellar mass — the IMF is therefore necessary to infer
the contribution of the remaining stellar population from that high-mass tail. The
IMF should depend upon several properties of star-forming molecular clouds,
including gas temperature and metallicity, quantities varying wildly as we delve
into the early Universe, favouring bottom-lighter IMFs (Steinhardt et al. 2023).
Moreover, none of the local strong-line metallicity calibrations seems to provide a
good prediction of the observed metallicities at 𝑧 > 7.5 (Curti et al. 2023). Hence,
new templates for the photometric analysis of high-z galaxies must be developed
to derive their physical properties accurately (this was recently done in Larson
et al. 2022 and Steinhardt et al. 2023).

Furthermore, preliminary photometry of many JWST high-redshift galaxy can-
didates is carried out on NIRCam data, sometimes complemented where available
by Mid-Infrared Instrument (MIRI) observations. This process, therefore, sam-
ples only a part of the near/mid-infrared emission of each galaxy and could make
some of their properties unconstrained and unreliable. For example, the red-
dening of a galaxy can be determined by a degeneracy between its redshift and
its dust content, which absorbs starlight in the UV/visible band, reprocessing
and re-emitting it in the far infrared/sub-mm part of the spectrum. In order to
break these degeneracies, it is thus necessary to adopt a multiband observational
approach, sampling the spectral energy distribution (SED) of galaxies in bands
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ranging beyond near/mid-infrared and constraining their properties properly.
Working in synergy with other facilities such as the Atacama Large Millimeter
Array (ALMA), JWST has demonstrated its importance in characterising objects
from the early Universe (e.g., Bakx et al. 2023; Fujimoto et al. 2023).

Another technique that ensures a precise determination of the physical char-
acteristics of galaxies is spectroscopy. Indeed, spectroscopic observations of some
photometric high-z massive early galaxies found with JWST that seemed to defy
the ΛCDM paradigm revealed that these objects were, in fact, lower-redshift con-
taminants (e.g., Kocevski et al. 2023; Arrabal Haro et al. 2023). All this shows the
potential of JWST to test the current cosmological model and our knowledge about
the dark Universe and cosmic structure formation. However, it demonstrates also
that to carry out this investigation, a detailed knowledge of the possible issues
and systematics of data analysis and what the best observation strategies are is
essential.

While the nature of high-redshift galaxies ranging from the end of the epoch
of reionisation up to earlier cosmic times begins to be carefully determined, it
is possible to formulate constraints on how JWST high-z observations targeting
faint galaxies can broaden our knowledge of the astroparticle characteristics of
DM. In the following sections, I will show a method to constrain the properties
of DM based on the analysis of the cosmic star-formation rate (cSFR) density
of high-redshift galaxies, discussing the impact of JWST observations on such
constraints. As will be shown, JWST could discriminate and possibly rule out
various alternative DM models to the pure CDM picture as the ones detailed in
Sec. (2.2).

4.2 DM constraints from the cosmic SFR density at
high redshift

This section will discuss the constraints to DM that can be derived from recent
observations of the cSFR density at high redshift (e.g., Oesch et al. 2018; Bouwens
et al. 2021, 2022; Harikane et al. 2023). This observable crucially depends on the
number density of ultra-faint galaxies, which tend to live within small DM halos,
especially at high redshifts. Thus, their numbers can constrain the low-mass end
shapes of the HMF and the power spectrum, which is sensitive to the microscopic
properties of the DM particles. With respect to other probes of DM exploited in the
literature, the cSFR density is a very basic astrophysical quantity that suffers less
from observational, systematic and modelling uncertainties. The work detailed
in this Section was originally presented in Gandolfi et al. (2022b).

4.2.1 UV luminosity function from HST and JWST
To begin with, the recent determinations of the UV luminosity functions by Oesch
et al. (2018) and Bouwens et al. (2021) out to redshift 𝑧 ∼ 10 and UV magnitudes
𝑀UV ≲ −17 are considered. Fig. (4.1) illustrates the binned luminosity functions
(filled circles) at ≈ 1600 Å in the relevant redshift range 𝑧 ∼ 6− 10 (colour-coded),
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together with the corresponding continuous Schechter function rendition (solid
lines) in the form

d𝑁
d𝑀UV d𝑉 = 𝜙★

ln(10)
2.5 10−0.4 (𝑀UV−𝑀★

UV) (𝛼+1) × 𝑒−10−0.4 (𝑀UV−𝑀★
UV)
. (4.1)

The evolution with redshift of the parameters entering Eq. (4.1) is characterised
according to the expressions by Bouwens et al. (2021, 2022). Toward high 𝑧, these
yield a steepening faint end-slope 𝛼 ≈ −1.95 − 0.11 (𝑧 − 6), an approximately con-
stant characteristic magnitude 𝑀★

UV ≈ −21.04 − 0.05 (𝑧 − 6) and an appreciably
decreasing normalization 𝜙★ ≈ 3.8 × 10−4−0.35 (𝑧−6)−0.027 (𝑧−6)2 Mpc−3. Fig. (4.1) de-
picts the intrinsic luminosity functions after correction for dust extinction (dotted
lines), which have been computed exploiting the relation between extinction, the
slope of the UV spectrum, and observed UV magnitude by Meurer et al. (1999);
Bouwens et al. (2014). The effects of dust extinction on the UV luminosity function
are minor for 𝑀UV ≳ −17 and will be irrelevant for this analysis. The intrinsic
UV luminosity can be related to the physical SFR of galaxies. In particular, for a
Chabrier IMF, age ≳ 108 years, and appreciably sub-solar metallicity the relation
log SFR [M⊙ yr−1] ≈ −0.4 (𝑀UV + 18.5) holds (see Kennicutt & Evans 2012; Madau
& Dickinson 2014; Cai et al. 2014; Robertson et al. 2015; Finkelstein et al. 2019).
The related values are reported on the top axis in Fig. (4.1).

Fig. (4.1) also contains two other datasets. The first one (open circles) is from
Bouwens et al. (2022), which has been able to estimate the luminosity function
down to 𝑀UV ≈ −12.5 by exploiting gravitational lensed galaxies in the Hub-
ble Frontier Field clusters. However, the sample is characterised by a paucity
of detected sources, resulting in considerable statistical uncertainties. Moreover,
possible systematics in the lensing reconstruction and completeness issues do not
yet allow one to draw firm conclusions on the shape of the luminosity function
at such ultra-faint magnitudes. The second set of data (filled squares) involves
the early results from JWST by Harikane et al. (2023), which have provided an
estimate of the luminosity function at 𝑧 ≳ 12, though with relatively low statistics.
Interestingly, at 𝑧 ∼ 12, the shape of the luminosity function is roughly consistent
with the lower redshift estimates, though its evolution in normalisation consid-
erably slows down. More data are needed to confirm such a trend, which could
be very relevant for the astroparticle constraints of this analysis, as it will become
clear shortly.

From the intrinsic UV luminosity functions, the cosmic SFR density can be
computed as

𝜌SFR(𝑧) =
∫ min[𝑀obs

UV ,𝑀
lim
UV]

−∞
d𝑀UV

d𝑁
d𝑀UV d𝑉 SFR , (4.2)

where 𝑀obs
UV is the faintest limit probed by observations (e.g., 𝑀UV ≈ −13 for

Bouwens et al. (2022), or ≈ −17 for Harikane et al. (2023)), and 𝑀lim
UV represents a

limiting magnitude down to which the luminosity function is steeply increasing.
Hence, here, the SFR density contributed by magnitudes𝑀UV ≳ 𝑀lim

UV fainter than
such a limit is negligible. The quantity𝑀lim

UV is somewhat uncertain: as mentioned
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Figure 4.1: The UV luminosity functions at redshifts 𝑧 ∼ 6 (red), 𝑧 ∼ 7 (orange),
𝑧 ∼ 8 (green), 𝑧 ∼ 9 (blue), 𝑧 ∼ 10 (magenta), 𝑧 ∼ 12 (cyan) and 𝑧 ∼ 17 (pink).
Data points are from Oesch et al. (2018) and Bouwens et al. (2021) (filled cir-
cles), Bouwens et al. (2022) (empty circles), and Harikane et al. (2023) (squares).
Coloured lines illustrate Schechter fits to the blank-field measurements from
Bouwens et al. (2021): solid lines refer to the observed luminosity functions,
while dotted lines to the intrinsic ones, after correction for dust extinction via the
UV continuum slope according to the procedure by Bouwens et al. (2014).
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above, the most recent and stringent constraints are from the analysis by Bouwens
et al. (2022), which rules out the presence of a turnover in the luminosity function
brightward of 𝑀UV ∼ −15.5. The data by Bouwens et al. (2022) seem to suggest
a possible flattening of the luminosity function for 𝑀UV ≳ −15, but the large
errors and the systematic uncertainties due to the paucity of sources as well
as incompleteness issues do not allow to make robust conclusions. Thus, in the
following, there will not be any attempt to model the detailed shape of any possible
bending. The extrapolation of the steep Schechter fits to the data by Bouwens et al.
(2021) with a sharp limit at 𝑀lim

UV 1 will instead be used.
The rationale is that at magnitudes fainter than 𝑀lim

UV, the luminosity function
flattens or even bends downwards because the galaxy formation process becomes
inefficient and/or because the power spectrum is cut off due to the microscopic
nature of DM. Such a magnitude limit is connected to two parameters describ-
ing these effects: a threshold halo mass 𝑀GF

H below which galaxy formation is
hindered because of various processes, like photo-suppression by the intense UV
background or inefficiency in atomic cooling by the low temperature and metal-
licity of small halos at high redshift (see Efstathiou (1992); Sobacchi & Mesinger
(2013); Finkelstein et al. (2019)); and astroparticle properties 𝑋 specific of a given
DM scenario (e.g., WDM mass), that characterises the suppression of the power
spectrum at small scales.

4.2.2 Halo mass function and abundance matching
Here, three common non-standard DM scenarios alternative to CDM are consid-
ered: WDM, 𝜓DM, and SIDM (see Sec. (2.2)). In all these scenarios, the number
of small-mass halos is reduced relative to CDM. This is best specified in terms of
the HMF, which can be conveniently written in terms of the CDM one as

d𝑁
d𝑀H d𝑉 =

d𝑁CDM
d𝑀H d𝑉

1 +
(
𝑀cut

H
𝑀H

)𝛽
−𝛾

, (4.3)

where 𝑀H is the DM halo mass, 𝛽 and 𝛾 are shape parameters, and 𝑀cut
H is

a cutoff halo mass. The CDM halo mass function is computed by exploiting the
Python COLOSSUS package Diemer (2018) and the fitting formula by Tinker et al.
(2008) for virial masses. The parameters (𝛽, 𝛾) in Eq. (4.3) are instead derived from
fits to the outcomes of numerical simulations in the considered DM scenarios. The
related values of such parameters and the literature works from which these are
taken (Schneider et al. 2012; Schive et al. 2016; Huo et al. 2018) are reported in
Tab. (4.1). In order to derive robust constraints on different DM scenarios based
on the HMF, it is essential to rely on the results from detailed simulations (as done
here) and not on semi-analytic derivations based on the excursion set formalism,

1In fact, one can easily adopt a smooth bending of the luminosity function and set instead the
upper limit of integration in Eq. (4.2) just to 𝑀obs

UV . E.g., Bouwens et al. (2022) empirically suggest
to multiply Eq. (4.1) by a factor 100.4 (𝛼+1)/2×(𝑀UV+16)2/(𝑀lim

UV+16) for 𝑀UV ≳ −16. In the computation
of the cosmic SFR, this produces practically indistinguishable results from our simple treatment.
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Table 4.1: Parameters describing the ratio of the HMF for different DM scenarios
relative to the standard CDM in terms of the expression [1+(𝑀cut

H /𝑀H)𝛽]−𝛾, where
𝑀H is the halo mass and 𝑀cut

H is a characteristic cutoff scale. The values of the
parameters (𝛽, 𝛾), extracted from fits to the outcomes of numerical simulations in
the considered DM scenarios, are taken from the literature studies referenced in
the last column.

Scenario 𝜷 𝜸 Ref.
WDM 1.0 1.16 Schneider et al. (2012)
𝜓DM 1.1 2.2 Schive et al. (2016)
SIDM 1.0 1.34 Huo et al. (2018)

whose outcomes on the shape of the mass function for masses 𝑀H ≲ 𝑀cut
H are

rather sensitive to several assumptions (e.g., the filter function used in deriving
the mass variance from the power spectrum, the mass-dependence in the collapse
barrier, etc.; see Schneider et al. 2013; Lapi & Danese 2015; May & Springel 2023).

In the WDM model, the cutoff mass 𝑀cut
H is determined by free stream-

ing effects (Schneider et al. 2012; see Sec. (2.2.2) and reads 𝑀cut
H ≈ 1.9 × 1010

M⊙ (𝑚𝑋/keV)−3.33, where 𝑚𝑋 indicates the particle’s mass. However, note that
this cutoff (or half-mode) mass is substantially larger by factors of a few 103 than
the mass related to the typical scalelength for the diffusion of WDM particles out of
primordial perturbations, i.e., the free streaming mass. In 𝜓DM, 𝑀cut

H ≈ 1.6×1010

M⊙ (𝑚𝑋/10−22 eV)−1.33 is related to the coherent behaviour of the particles with
mass 𝑚𝑋 (Schive et al. 2016). In the SIDM scenario, 𝑀cut

H ≈ 7× 107 M⊙ (𝑇𝑋/keV)−3

can be linked to the visible sector temperature 𝑇𝑋 when kinetic decoupling of the
DM particles takes place (Huo et al. 2018).

Fig. (4.2) illustrates the HMF in the different DM scenarios at a reference
redshift 𝑧 ≈ 10 to highlight the dependence on the particle property. For WDM,
it is seen that the HMF progressively flattens to that in standard CDM (black
line). Such deviation occurs at smaller halo masses for higher WDM particle
masses 𝑚𝑋 , and the CDM behaviour is recovered for 𝑚𝑋 → ∞. In the other DM
scenarios the behaviour is similar. Yet, the HMF’s shape past the low-mass end
flattening can be appreciably different. For example, in the 𝜓DM scenario, the
HMF is strongly suppressed for small masses and bends downward rather than
flattening, implying a solid reduction or even an absence of low-mass halos.

It is crucial to characterise the relationship between UV magnitudes and halo
masses. To do so, a standard abundance matching technique (Aversa et al. 2015;
Moster et al. 2018; Cristofari & Ostriker 2019; Behroozi et al. 2019) can be exploited,
i.e., matching the cumulative number densities in galaxies and halos according to
the expression∫ +∞

𝑀H

d𝑀′
H

d𝑁
d𝑀′

H d𝑉 (𝑀′
H, 𝑧 |𝑋) =

∫ 𝑀UV

−∞
d𝑀′

UV
d𝑁

d𝑀′
UV d𝑉 , (𝑀

′
UV, 𝑧) (4.4)

which implicitly defines a one-to-one monotonic relationship 𝑀UV(𝑀H, 𝑧 |𝑋).
Here the quantity 𝑋 stands for the specific property of the DM scenario that de-
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Figure 4.2: HMF at a reference redshift 𝑧 ≈ 10 in different DM scenarios: WDM
(left panel), 𝜓DM (middle panel) and SIDM (right panel). The colorbar refers to
values of keV/𝑚𝑋 for WDM, 10−22 eV/𝑚𝑋 for 𝜓DM and keV/𝑇𝑋 for SIDM. In all
panels, the black line refers to the standard CDM scenario.

termines the behaviour of the HMF for 𝑀H ≲ 𝑀
cut
H : particle mass 𝑚𝑋 in keV for

WDM and in 10−22 eV for 𝜓DM, and kinetic temperature 𝑇𝑋 in keV for SIDM.
Fig. (4.3) shows the outcome of this procedure at a reference redshift 𝑧 ≈ 10 in
the different DM scenarios, highlighting its dependence on the particle property.
Focusing on WDM as a representative case, it is seen that the 𝑀UV(𝑀H, 𝑧 |𝑚𝑥)
relation progressively flattens toward small 𝑀H to the standard CDM case, and
especially so for smaller𝑚𝑋 . At the other end, the relation becomes indistinguish-
able from CDM’s for particle masses 𝑚𝑋 ≳ some keVs. At a given particle mass,
the relation 𝑀H(𝑀UV, 𝑧 |𝑚𝑋) barely depends on redshift 𝑧 ≳ 6. This is because the
cosmic evolution of the UV luminosity function and the halo mass function mirror
each other (see discussion by Bouwens et al. 2021). In the other DM scenarios,
the behaviour of the 𝑀UV(𝑀H, 𝑧 |𝑋) relation is similar, but its shape for small halo
masses is appreciably different. In the 𝜓DM scenario, for example, the relation
flattens abruptly, reflecting the paucity of small halos in the HMF (see Fig. (4.2)).

The rationale is now to compute the cosmic SFR density 𝜌SFR(𝑧) according
to Eq. (4.2) by integrating the luminosity function down to a magnitude limit
𝑀lim

UV(𝑀
GF
H , 𝑧 |𝑋). This limiting magnitude depends on two parameters, namely

the minimum halo mass for galaxy formation𝑀GF
H and the astroparticle properties

𝑋 of a given DM scenario. The aim is to estimate these quantities by comparing
𝜌SFR(𝑧) with the observational determinations.

4.2.3 Bayesian analysis

The descriptions provided in Sec. (4.2.2) highlight that the limiting UV magnitude
𝑀lim

UV depends on two parameters: the limiting halo mass for galaxy formation
𝑀GF

H , and a quantity 𝑋 specific to the DM scenario. Such quantity coincides with
the particle mass 𝑚𝑋 in units of keV for WDM, the particle mass 𝑚𝑋 in units of
10−22 eV for𝜓DM, and the temperature of kinetic decoupling𝑇𝑋 in units of keV for
SIDM. These two parameters effectively encompass various effects determining
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Figure 4.3: Relationship between the UV magnitude 𝑀UV and the halo mass
𝑀H at a reference redshift 𝑧 ≈ 10, derived from the abundance matching of the
observed UV luminosity function and the HMF in different DM scenarios: WDM
(left panel), 𝜓DM (middle panel) and SIDM (right panel). The colorbar refers to
values of keV/𝑚𝑋 for WDM, 10−22 eV/𝑚𝑋 for 𝜓DM and keV/𝑇𝑋 for SIDM. In all
panels, the black line refers to the standard CDM scenario.

𝑀lim
UV. Such effects are related to the efficiency of galaxy formation processes in

small halos and the suppression in the number of low-mass halos due to the
microscopic nature of DM. An added value of the empirical approach pursued
here, which relies on extrapolation of the observed UV luminosity functions down
to 𝑀lim

UV, is that no further parameter is needed to predict the cosmic SFR density
(besides the underlying assumption of an IMF, that in any case marginally affects
the astroparticle constraints, as shown by Lapi et al. 2022).

A Bayesian MCMC framework is exploited to estimate the two parameters
described above, relying on the Python package emcee. For large values of 𝑋,
all the outcomes of the non-standard scenarios converge toward CDM. Hence,
it is convenient to look for an estimate of 1/𝑋 instead of 𝑋 to have a fitting
parameter varying in a compact domain. This analysis exploits a standard Gaus-
sian likelihood ℒ(�) ≡ −∑

𝑖 𝜒
2
𝑖
(�)/2, where � = {𝑀GF

H , 1/𝑋} is the vector of
parameters, and the summation is over different datasets. The corresponding
𝜒2
𝑖
=

∑
𝑗[ℳ(𝑧 𝑗 , �)−𝒟(𝑧 𝑗)]2/𝜎2

𝒟(𝑧 𝑗) is obtained by comparing the empirical model
expectations ℳ(𝑧 𝑗 , �) to the data 𝒟(𝑧 𝑗) with their uncertainties 𝜎2

𝒟(𝑧 𝑗), summing
over the different redshifts 𝑧 𝑗 of the data points. Specifically, the overall data
sample is constituted by robust measurements of the cosmic SFR density (see
summary in Table 4.2) from UV luminosity function data from HST (Bouwens
et al. 2022), UV luminosity function early data from JWST (Harikane et al. 2023),
GRB counts data from Fermi (Kistler et al. 2009) and (sub)mm luminosity function
data from ALMA (Gruppioni et al. 2020). The minimum observational magnitude
limit 𝑀obs

UV of the different datasets is considered in the computation of the cSFR
density.

Flat priors𝜋(�) are adopted on the parameters within the ranges log𝑀GF
H [𝑀⊙] ∈

[6, 11], and 1/𝑋 ∈ [0, 10]. The posterior distribution𝒫(�) ∝ ℒ(�)𝜋(�) is then sam-
pled by running emcee with 104 steps and 200 walkers. Each walker is initialised
with a random position uniformly sampled from the (flat) priors. After checking
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Table 4.2: Overview of the estimate for the cSFR density considered in the Bayesian
analysis of this work. Values and uncertainties refer to log SFR [𝑀⊙ yr−1]. UV
Luminosity Function (LF) HST data are from Oesch et al. (2018); Bouwens et al.
(2021, 2022), UV LF JWST data from Harikane et al. (2023), GRB counts data from
Kistler et al. (2009) and ALMA (sub)mm LF data from Gruppioni et al. (2020).

Data Redshifts Values Uncertainties

{3.8, 4.9, 5.9, {−1.14,−1.4,−1.66, {0.08, 0.07, 0.05,
UV LF [HST] 6.8, 7.9, 8.9, 10.4} −1.85,−2.05,−2.61,−3.13} 0.06, 0.11, 0.11, 0.35}

UV LF
[JWST]

{∼ 9,∼ 12,∼ 17} {−2.90,−3.61, ≲ −3.94} {0.17, 0.27, 0.31}

GRB counts
[Fermi]

{4.49, 5.49, {−1.138,−1.423, {0.184, 0.289,

6.49, 7.74} −1.262,−1.508} 0.359, 0.517}

(sub)mm LF
[ALMA]

{4.00, 5.25} {−1.218,−1.252} {0.219, 0.612}

the auto-correlation time, the first 20% of the flattened chain is removed to ensure
the burn-in. The typical acceptance fractions of the various runs are 30 − 40%.

4.2.4 Results and discussion
Firstly, the analysis is carried out in the standard CDM scenario. The result is
shown by the grey contours/lines in Fig (4.4), Fig (4.5) and Fig (4.6). In the
CDM model, the UV limiting magnitude 𝑀lim

UV depends by construction only
on the threshold minimum halo mass for galaxy formation. The marginalised
constraint on the latter is found to be log𝑀𝐺𝐹

H [𝑀⊙] ≈ 9.4+0.2 (+0.4)
−0.1 (−0.4), a value which

is reasonably close to the photo-suppression mass expected by the intense UV
background during reionisation (e.g., Finkelstein et al. 2019). The corresponding
limiting magnitude at 𝑧 ∼ 10 is around 𝑀lim

UV ≈ −14.7.
The situation differs in the other DM scenarios since the limiting UV magni-

tude can also depend on the DM astroparticle property 𝑋. The results for WDM
are illustrated by the red lines/contours in Fig. (4.4). There is an evident degen-
eracy between the WDM mass 𝑚𝑋 and the threshold halo mass 𝑀GF

H for galaxy
formation. In fact, the exact value for the limiting UV magnitude 𝑀lim

UV can be
obtained with smaller 𝑀GF

H and smaller𝑚𝑋 (see Fig. 4.3). This is because lowering
𝑀GF

H extends the HMF toward smaller masses; thus, more halos are available for
hosting galaxies. Instead, decreasing 𝑚𝑋 progressively flattens the shape of the
HMF, reducing the number of halos and offsetting the previous effect. Such a
situation is possible if 𝑚𝑋 is not too low. Otherwise, the reduction in the halo
number is so drastic that it cannot be compensated by reasonable values of 𝑀GF

H .
Note the minimally acceptable 𝑀GF

H could be around 107−8 𝑀⊙, because below
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Figure 4.4: MCMC posterior distributions in the WDM scenario (red contours and
lines), for the threshold halo mass for galaxy formation 𝑀GF

H , and the inverse of
the DM particle’s mass keV/𝑚𝑋 . For reference, the outcomes in the standard CDM
scenario are also reported (grey contours and lines). The contours show 68% and
95% confidence intervals, and the marginalised distributions are in arbitrary units
(normalised to 1 at their maximum value).

these masses atomic cooling becomes inefficient. A hard limit is further set by
minihalos of 106 𝑀⊙, where the first (pop-III) stars are thought to form.

The marginalized constraints for WDM turns out to be log𝑀𝐺𝐹
H [𝑀⊙] ≈ 7.6+2.2 (+2.3)

−0.9 (−3.3)
and 𝑚𝑋 ≈ 1.2+0.3 (11.3)

−0.4 (−0.5) keV, corresponding to a UV limiting magnitude 𝑀lim
UV ≈

−13.3. There is a clear peak in the posterior for the WDM mass around the keV
scale, which is interesting because such a value has often been invoked to solve
small-scale issues of CDM (see Sec. (2.2.2)). However, larger values of 𝑚𝑋 ≳ a few
keVs that produce outcomes practically indistinguishable for CDM are still well
allowed (within 2𝜎) by the current estimates of the cSFR density.

The situation for 𝜓DM and SIDM is somewhat similar to WDM. The main dif-
ference resides in the behaviour of the HMF at small masses, which induces a dif-
ferent shape in the relationship between 𝑀H and 𝑀UV, affecting the marginalised
constraints.

𝜓DM’s results are illustrated in Fig. (4.5), and only an upper limit of the
threshold halo mass for galaxy formation log𝑀𝐺𝐹

H [𝑀⊙] < 7.9 (< 9.3) can be
provided. However, the particle mass is constrained to𝑚𝑋 ≈ 3.7+1.8 (+12.9.3)

−0.4 (−0.5) ×10−22

eV, corresponding to a UV limiting magnitude𝑀lim
UV ≈ −14.6 at 𝑧 ∼ 10. In the SIDM

scenario, whose results are illustrated in Fig. (4.5), the marginalised constraints
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Figure 4.5: MCMC posterior distributions in the𝜓DM scenario (blue contours and
lines) for the threshold halo mass for galaxy formation 𝑀GF

H and the inverse of
the DM particle’s mass 10−22 eV/𝑚𝑋 . For reference, the outcomes in the standard
CDM scenario are also reported (grey contours and lines). The contours show 68%
and 95% confidence intervals, and the marginalised distributions are in arbitrary
units (normalised to 1 at their maximum value).

read log𝑀𝐺𝐹
H [𝑀⊙] ≈ 7.6+2.2 (+2.3)

−1.1 (−3.2) and 𝑇𝑋 ≈ 0.21+0.04 (+1.8)
−0.06 (−0.07) keV, corresponding to

a UV limiting magnitude 𝑀lim
UV ≈ −13.7 at 𝑧 ∼ 10. The overall marginalised

constraints are summarised in Tab. (4.3).
Fig. (4.7) illustrates the performance of the best-fits on the observed cSFR

density. All DM scenarios (coloured lines) reproduce comparably well with the
available data. This is also highlighted by the 95% credible interval from sampling
the posterior distribution, which is shown only in the WDM case for clarity (red
shaded area). In terms of projection on this observable, different DM scenarios
are consistent with each other, approximately within 2𝜎.

A quantitative model comparison analysis via the Bayes information criterion
(Schwarz 1978; Liddle 2004) is performed, which is defined as BIC≡ −2 lnℒmax +
𝑁par ln𝑁data in terms of the maximum likelihood estimate ℒmax, of the number
of parameters 𝑁par, and the number of data points 𝑁data. The BIC comes from
approximating the Bayes factor, which gives the posterior odds of one model
against another, presuming that the models are equally favoured a priori. DIC,
instead, is an indicator that may be less sensitive to priors (Spiegelhalter et al.
2002). It is defined as DIC≡ −2 logℒ(�̄) + 2 𝑝𝐷 , where the overbar denotes the
mean and the effective number of parameters 𝑝𝐷 is estimated as 𝑝𝐷 ≈ −2 logℒ(�)−
2 logℒ(�̄). Note that what matters is only the relative value of the BIC or the DIC
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Figure 4.6: MCMC posterior distributions in the SIDM scenario (green contours
and lines), for the threshold halo mass for galaxy formation 𝑀GF

H , and the inverse
of the DM kinetic temperature at decoupling keV/𝑇𝑋 . For reference, the outcomes
in the standard CDM scenario are also reported (grey contours and lines). The
contours show 68% and 95% confidence intervals, and the marginalised distribu-
tions are in arbitrary units (normalised to 1 at their maximum value).
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Table 4.3: Marginalised posterior estimates (featuring the mean, 68% and 95%
confidence limits) of the parameters from the MCMC analysis for the different DM
scenarios considered (WDM, 𝜓DM, and SIDM). Specifically, 𝑀GF

H is the threshold
halo mass for galaxy formation, while the astroparticle quantity 𝑋 in the third
column stands for particle mass𝑚𝑋 in keV for WDM, particle mass𝑚𝑋 in 10−22 eV
for 𝜓DM, and kinetic temperature 𝑇𝑋 in keV for SIDM. The last two columns refer
to the value of the Bayes information criterion (BIC) and the Deviance information
criterion (DIC) for model comparison (see Sec. (4.2.4)). The top half of the Table
refers to the current constraints on the cSFR density, while the bottom half refers to
the forecasts for JWST observations extended down to UV magnitude 𝑀UV ≈ −13
(see Sec. (4.2.5)).

Scenario 𝑀𝐺𝐹
𝐻

X BIC DIC

CDM 9.4+0.2 (+0.4)
−0.1 (−0.4) − ≈ 31 ≈ 13

WDM 7.6+2.2 (+2.3)
−0.9 (−3.3) 1.2+0.3 (+11.3)

−0.4 (−0.5) ≈ 33 ≈ 14

𝜓DM < 7.9 (< 9.3) 3.7+1.8 (+12.9)
−0.9 (−1.4) ≈ 33 ≈ 14

SIDM 7.6+2.2 (+2.3)
−1.1 (−3.2) 0.21+0.04 (+1.8)

−0.06 (−0.07) ≈ 33 ≈ 14

CDM + JWST forecast < 7.2 (< 8.5) − ≈ 89 ≈ 130

WDM + JWST forecast < 6.6 (< 8.2) > 1.8 (> 1.2) ≈ 87 ≈ 125

𝜓DM + JWST forecast 6.2+1.3
−1.3 (< 8.2) > 17.3 (> 12) ≈ 92 ≈ 135

SIDM + JWST forecast < 6.8 (< 8.3) > 0.4 (> 0.3) ≈ 89 ≈ 130
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among different models. In particular, a difference larger than 10 indicates robust
evidence favouring the model with the smaller value. The values of the BIC and
the DIC (for the different DM scenarios) are reported in Tab. (4.3) and do not
suggest clear evidence in favour of one scenario over the others or the standard
CDM.
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Figure 4.7: The cosmic SFR density as a function of redshift. UV HST data from
Oesch et al. (2018); Bouwens et al. (2021) are represented by circles, UV JWST
data from Harikane et al. (2023) by crosses, Fermi GRB data from Kistler et al.
(2009) by inverse triangles and (sub)mm ALMA data from Gruppioni et al. (2020)
by squares. Lines illustrate the best fits from the MCMC analysis in various DM
scenarios: CDM (black), WDM (red), 𝜓DM (blue), and SIDM (green). For clarity,
the typical 2𝜎 credible interval from sampling the posterior distribution is shown
only in the WDM scenario as a red-shaded area. For reference, the dotted line is
the classic fitting formula gauged at 𝑧 ≲ 6 by Madau & Dickinson (2014).

4.2.5 Forecasts for JWST
As mentioned in Sec. (4.2) and shown in Fig. (4.1), the early data from JWST at
𝑧 ∼ 12 seems to indicate a slowing down in the evolution of the UV luminosity
function to lower 𝑧 ≲ 10. The effect is also evident in the cSFR density of Fig. (4.7)
since the JWST data (crosses) at 𝑧 ∼ 9− 12 are around the same values as the HST
ones (circles). Yet, the former refer to a UV luminosity function integrated down
to 𝑀obs

UV ≈ −17 while the latter refers to 𝑀obs
UV ≈ −13.

Besides the possible issues related to systematics and completeness effects
in the early JWST observations that future campaigns will clear, one can ask:
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Figure 4.8: Forecasts of the marginalised posteriors on the WDM mass (left panel),
𝜓DM mass (middle panel) and SIDM kinetic temperature at decoupling (right
panel) based on prospective data at 𝑧 ≳ 10 from JWST (solid lines). For reference,
the dashed lines illustrate the current constraints from Fig. (4.4), Fig. (4.5), and
Fig. (4.6). The marginalised distributions are in arbitrary units (normalised to 1
at their maximum value).

what if the JWST data is confirmed and extended to ultra-faint magnitudes? The
following procedure details how one can make a sound and conservative forecast
based on the derived astroparticle constraints. The current cSFR density estimate
from JWST by Harikane et al. (2023) at 𝑧 ≳ 9 is scaled up by 0.4 dex to reflect the
same increase in 𝜌SFR of the HST data by Bouwens et al. (2022) when integrating
the luminosity function from 𝑀obs

UV ≈ −17 to 𝑀obs
UV ≈ −13. A relative uncertainty

is assigned to the JWST data comparable to the HST one by Bouwens et al. (2022).

Fig. (4.8) illustrates the marginalised posteriors on the astroparticle quantities
in the WDM, 𝜓DM and SIDM scenarios. The appreciably higher values of the
cSFR density implied from the putative JWST data tend to go in tension with
the suppression of the power spectrum at small scales in non-CDM scenarios,
erasing the bell-shaped posterior still allowed by the current data. As a conse-
quence, rather stringent lower limits on the astroparticle quantities can be derived:
WDM mass 𝑚𝑋 ≳ 1.8 (1.2) keV, 𝜓DM mass 𝑚𝑋 ≳ 17.3 (12) × 10−22 eV, and SIDM
kinetic temperature 𝑇𝑋 > 0.4 (0.3) keV. These lower bounds would be competi-
tive with current literature constraints that tend to exclude part of the parameter
space in non-CDM models. However, the independent and basic nature of the
cSFR density observable may provide constraints less affected by systematics and
model-dependent interpretations.

Finally, note from Tab. (4.3) that the fit to the forecasted JWST data will require
a pretty low galaxy formation threshold 𝑀GF

H in CDM (and even more extreme
values in the other scenarios). Nonetheless, the upper bounds at 2𝜎 remain
consistent with the atomic cooling limit. Hence, the forecasted JWST data should
not present an insurmountable astrophysical challenge for CDM. This analysis
highlights how upcoming ultra-faint galaxy surveys in the (pre)reionisation era
will probe the microscopic nature of the elusive DM particles.
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4.3 Conclusions and future prospects
The method detailed in this Chapter allows to obtain astroparticle constraints for
DM models as WDM, 𝜓DM and SIDM benefitting from high-z observations by
JWST. However, this analysis based on cSFR density represents only one piece
of the information that high-z JWST observations can offer on the nature of DM.
High-redshift (𝑧 ≥ 6) measurements of the stellar mass functions and the asso-
ciated stellar mass density can be used further to constrain DM scenarios (Dayal
& Giri 2023). Even the galaxy correlation function at small scales of faint objects
probed by JWST can be an informative tool in this sense (Maio & Viel 2023). Galaxy
CO emission investigated by JWST in synergy with ALMA and other arrays (e.g.,
VLA or NOEMA) can be used to constrain DM’s astroparticle properties. In fact,
the DM particle mass indirectly determines the timescale for complete molecule
formation in galaxies — smaller particle masses involve galaxies featuring poorer
number statistics and lower molecular content (Maio & Viel 2023). Finally, further
insights on DM particle properties may come from the observations of the hypo-
thetical Population III stars or even dark stars (e.g., Ilie et al. 2023). At slightly
lower redshifts, JWST Cycle 2 observations will be used to resolve and constrain
the stellar emission of a sample of 16 massive galaxies between 4 < 𝑧 < 5 to
constrain their stellar mass content (proposal 3954; PI Lelli). ALMA high-quality
[CII] data of these sources indicate regularly rotating disks, and by synergising
these observations with the upcoming JWST ones, it will be possible to study the
RCs of galaxies belonging to a previously inaccessible epoch.

Of course, there is room to improve and expand the analysis detailed in this
Chapter. Some future developments include:

• Refining the analysis by updating the data considering even more recent
estimates of the UV luminosity function’s faint-end yielded by JWST obser-
vations (e.g., Leung et al. 2023; Pérez-González et al. 2023);

• Extending this analysis by including new DM models and modified gravity
theories and comparing the obtained cSFR density with CDM predictions. In
principle, any DM or modified gravity paradigm that predicts a suppression
in the low-mass end of the halo mass function could be constrained by this
type of analysis;

• Computing and including completeness corrections for the datasets consid-
ered in the analysis;

• Extending the samples of known high-z galaxy candidates and, conversely,
confirming their nature robustly.

Ultimately, the bounds on DM particle masses inferred with this method could
informatively be cross-correlated with the astroparticle constraints that come from
Lyman-𝛼 forest observations (Viel et al. 2013; Iršič et al. 2017b,a; Villasenor et al.
2023), 𝛾-ray bursts (de Souza et al. 2013; Lapi et al. 2017), cosmic reionisation
(Barkana et al. 2001; Lapi & Danese 2015; Dayal et al. 2017; Lapi et al. 2017;
Carucci & Corasaniti 2019; Lapi et al. 2022), high-z galaxies counts (Pacucci et al.
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2013; Schultz et al. 2014; Menci et al. 2016; Corasaniti et al. 2017), gravitational
lensing (Vegetti et al. 2018; Ritondale et al. 2019), integrated 21 cm data (Carucci
et al. 2015; Chatterjee et al. 2019; Rudakovskyi et al. 2020), 𝛾-ray emission (Bring-
mann et al. 2017; Grand & White 2022), fossil records of the Local Group (Weisz
et al. 2014), dwarf galaxy profiles and scaling relations (Weisz & Boylan-Kolchin
2017; Calabrese & Spergel 2016; Burkert 2020), and Milky Way satellite galaxies
(Kennedy et al. 2014; Horiuchi et al. 2014; Lovell et al. 2016; Newton et al. 2021) or
a combination of these (Nadler et al. 2021; Enzi et al. 2021).
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Chapter 5

Conclusions and future prospects

The results obtained within this thesis are multiple. Chapter 3 presents a model
in which DM is dynamically non-minimally coupled with gravity (as in Bettoni
et al. 2014), testing it against various observables from the scales of dwarf galaxies
up to those of galaxy clusters. All in all, this model has shown a rich and inter-
esting phenomenology capable of solving long-standing problems of the CDM
paradigm. This effort led to the developing of an analysis pipeline that ultimately
allows testing the phenomenology of any DM model or modified gravity theory
predicting deviations to a pure ΛCDM picture in galactic dynamics or galaxy
clusters’ pressure profiles shapes. Indeed, such pipeline has already been used to
test the DM in Fractional Gravity paradigm (see Sec. (5.1) where I briefly summarise
the model’s gist and the main results obtained so far).

In Chapter 4, I detailed a possible method based on cutting-edge JWST high-z
observations to constrain the astroparticle properties of DM. The forecasts re-
trieved in this Chapter show how the upcoming faint galaxy surveys carried
out with this exceptional instrument could discriminate between alternative DM
models and the pure CDM picture. In this sense, a detailed analysis of the ex-
isting deep JWST surveys is essential to find and characterise high-z and faint
galaxies, improving the data on which this method is based. On the other hand,
determining the nature of faint objects like high-z galaxies is highly non-trivial.
To best constrain these objects’ properties, it is then necessary to develop the best
strategies to obtain new observations complementing and strengthening existing
ones.

In these concluding sections, I will summarise the work already carried out
and in progress on both these fronts, detailing the successes achieved and the
challenges still awaiting. This Chapter is based on the discoveries presented in
Benetti et al. (2023a); Benetti et al. (2023b); Benetti et al. (2023c) (Sec. (5.1)) and
Bisigello et al. (2023) (Sec. (5.2)), as well as future JWST proposals (Sec. (5.3)).

5.1 Fractional Gravity
A first and illustrative application of the analysis pipeline developed for the NMC
DM framework pertains to the Fractional Gravity DM model, recently discussed in
Benetti et al. (2023a); Benetti et al. (2023b); Benetti et al. (2023c). This model shares

105



Chapter 5. Conclusions and future prospects

some common characteristics with modified gravity models (Calcagni 2013; Vari-
eschi 2020; Giusti et al. 2020; Giusti 2020; Varieschi 2021; Calcagni & Varieschi
2022; Borjon-Espejel et al. 2022; García-Aspeitia et al. 2022), yet it fundamentally
differs on several key aspects. The central, underlying concept is that DM within
galaxies originates fractional gravity, where a modified Poisson equation deter-
mines the gravitational potential associated with a given DM density distribution.
Such equation incorporates fractional derivatives, representing derivatives of non-
integer type, intending to represent non-local effects that may be needed to solve
small-scale problems in galactic dynamics:

(−Δ)𝑠Φ(𝑟) = −4𝜋𝐺ℓ2−2𝑠𝜌(𝑟), (5.1)

where (−Δ)𝑠 being the fractional Laplacian, 𝑠 ∈ [1, 3/2] is a fractional index
and ℓ is a fractional lengthscale. The general solution of this equation reads

Φ𝑠(𝑟) = −
√
𝜋𝐺ℓ2−2𝑠Γ

( 3
2 − 𝑠

)
4𝑠−3/2(2𝑠 − 1)Γ(𝑠)

𝒥𝜌
𝑠 (𝑟)
𝑟

,

with Γ representing the Euler Gamma function and

𝒥𝜌
𝑠 (𝑟) =

∫ ∞

0
d𝑟′𝑟′𝜌 (𝑟′)

[
(𝑟 + 𝑟′)2𝑠−1 − |𝑟 − 𝑟′|2𝑠−1

]
.

Fractional gravity is not necessarily meant to be an ab initio theory but may
constitute an effective description for a whole class of models implying non-local
effects in the gravitational behaviour of DM (e.g., quantum entanglement between
DM particles). Similarly to the perturbative approach adopted for NMC DM, a
standard NFW density distribution is substantially altered to the Newtonian case
by fractional gravity. Instead, baryons are assumed to originate standard gravity,
though feeling the overall gravitational potential of the system.

Thanks to the analysis pipeline described in Sec. (3.1), it was possible to rela-
tively quickly test the phenomenology of this model against astrophysical obser-
vations from galaxies to clusters, as done with NMC DM. Specifically, in Benetti
et al. (2023a), Benetti et al. (2023b) and Benetti et al. (2023c), we achieved the key
results listed below.

• Fractional gravity predicts an effective density distribution which is flatter
in the inner region to the true NFW one, offering a straightforward solu-
tion to the core-cusp problem of CDM without altering the NFW density
profile indicated by N-body simulations (but rather altering the dynamics it
produces), see Fig. (5.1a) and Fig. (5.1b);

• This model provides accurate fits1 to the stacked RCs and projected ve-
locity dispersion profiles of late-type galaxies with different properties,
from high/low surface-brightness systems to dwarf irregular and dwarf
spheroidal galaxies (i.e., low-mass systems where the effect of fractional
gravity are expected to be particularly relevant and in which the effect of

1For the quantitative analysis see Benetti et al. (2023a).
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baryonic feedbacks is largely subdominant), with the fits performing in most
instances significantly better than the standard Newtonian gravity, see an
example in Fig. (5.1c);

• Fractional gravity reproduces to reasonable accuracy the observed shape
and scatter of the RAR over an extended range of galaxy accelerations; see
Fig. (5.2);

• The fractional gravity framework properly accounts for the universal core
surface density and the scaling relation between the core radius of the DM
component and the disc lengthscale;

• This model performs remarkably well2 in modelling the ICM profiles for the
X-COP galaxy cluster sample;

• Fractional gravity predicts a relationship between the concentration of the
DM profile and the halo mass still consistent with the expectations of N-body
simulations in the ΛCDM framework;

• Fractional gravity predicts a weakening of its effects toward more massive
systems and a consistent scaling of the fractional gravity parameters from
dwarf galaxies to massive clusters, see Fig. (5.3).

In the future we will develop a relativistic extension of this model, while par-
allel testing its phenomenology with the Milky Way RC and assess its effects on
gravitational lensing. All in all, these findings imply that fractional gravity can
substantially alleviate the small-scale issues of the standard CDM paradigm while
remaining successful on large cosmological scales. These results demonstrate how
the analysis pipeline developed in this thesis can efficiently test alternative DM
scenarios or modified gravity frameworks.

In conclusion, a question arises: is there a relationship between Fractional Gravity
and the NMC DM model detailed in Chapter 3? Before proceeding further, let us
take a moment to examine possible analogies between the two frameworks. Both
these models predict a galaxy-scale DM phenomenology compliant with observa-
tions, producing cored profiles agreeing with the observed cored-surface density
relationship, capable of reproducing the RCs of dwarf galaxies as well as mas-
sive spirals’ and adequately describing the empirical tight relationships between
DM and baryons in these galaxies. Additionally, both frameworks predict similar
scaling between the coupling/fractional lengthscale and the haloes’ virial masses.
In particularly massive structures, both paradigms tend to recover a pure CDM
picture. Could there be a relationship between NMC DM and Fractional Gravity,
perhaps with the first model as a special case of the second? In this scenario,
the coherent behaviour of DM responsible for the dynamic development of the
NMC would be an approximation of a broader non-local behaviour of the DM
(parameterised by Fractional Gravity), which leads the dark particles to probe a
substantial part of the halo’s potential wells unconventionally, with each particle

2For the quantitative analysis see Benetti et al. (2023b).
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feeling the overall distribution of the other particles (and thus the potential) in its
entirety (or almost). However, where does this non-locality stem from? Future
work will solve this question, but some hints bring us towards the quantum world.
On the one hand, DM could develop a dynamical NMC with gravity by condens-
ing in BECs, i.e., macroscopic quantum states. Conversely, the non-local “bond
beyond distance” showcased by DM particles in Fractional Gravity could be re-
lated to quantum particle entanglement. Both frameworks rely on a hypothetical
quantum nature of the DM particles capable of manifesting inside haloes. While
this is a promising avenue to pursue, only future in-depth studies on the topic
will provide a definitive answer to the common origin of these paradigms. A key
step to this end involves formulating a relativistic extension of Fractional Gravity.
This step would allow us not only to understand the fundamental physics behind
this model better but also to test it in relativistic regimes, e.g., by studying the
propagation of GWs and their electromagnetic counterparts in this framework or
to evaluate whether fractional effects can take on a DE role as on a cosmological
scale, as may happen in the case of NMC DM.
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Figure 5.1: DM RC (Fig. (5.1a)) and effective density (Fig. (5.1b)) for different
values of the fractional parameter 𝑠 (color-coded). For reference, the dotted line
refers to the maximal value 𝑠 = 3/2. Fig. (5.1c) shows the fit to the stacked RC for
the dwarf galaxy sample considered in Benetti et al. (2023a) (filled circles) with
Newtonian (dashed lines) and Fractional Gravity (solid lines). Red lines refer to
the total rotation curve, blue lines to the disc component, and green lines to the
halo component. For the fractional case, the shaded areas illustrate the 1𝜎 credible
intervals from sampling the posterior distribution.
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Figure 5.2: The radial acceleration relation (RAR) in Fractional Gravity. Green
circles illustrate the outcome for 𝑠 = 1 (independent of ℓ and corresponding to
Newtonian gravity), red circles for 𝑠 = 1.2 and ℓ/𝑟𝑠 = 0.25, and blue circles for
𝑠 = 1.4 and ℓ/𝑟𝑠 = 0.25. The red and blue shaded areas show the effect of varying
ℓ/𝑟𝑠 in the range 0.1 − 0.5. Finally, the black curve is on adopting a halo mass-
dependence in 𝑠 and ℓ/𝑟𝑠 as emerging from the analysis of stacked rotation curve
of Benetti et al. (2023a) (see Fig. 5.3). For reference, the dotted black line displays
the one-to-one relation 𝑔tot = 𝑔bar. Data for spiral galaxies (binned) are from
McGaugh et al. (2016) (squares), for Local Group dwarf spheroidal from Lelli
et al. (2017) (triangles), for Coma Cluster Ultra Diffuse Galaxies from Freundlich
et al. 2022 (reversed triangles), for Centaurus A dwarf spheroidals from Müller
et al. 2022 (diamonds), and for dwarf LSB with 𝑔bar(0.4 ≲ 𝑟/𝑅opt ≲ 1) < −11 from
Di Paolo et al. 2019 (stars).
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Figure 5.3: Scaling relations in fractional gravity from galaxies to clusters: frac-
tional index 𝑠 (left) and lengthscale ℓ (right) vs. DM mass 𝑀200. Magenta circles
refer to the individual X-COP galaxy clusters analysed in Benetti et al. (2023b).
In contrast, magenta crosses represent the stacked cluster sample from the same
work, while cyan stars refer to the stacked RCs of galaxies from Benetti et al.
(2023a). Dashed lines display an orthogonal distance regression (ODR) algorithm
linear fit to the overall data, while a solid line in the left panel shows a nonlinear
ODR fit with limiting values 1 and 1.5 from large to small masses, and a dotted
line in the right panel illustrates the scale radius rs of the NFW profile.

5.2 Searching for high-z galaxies in the CEERS field

As shown earlier, the search for high-z galaxies can be deeply entangled with
understanding the nature of DM. Reddened high-z galaxies may be selected in
photometric catalogues through a colour-based selection (e.g., Hainline et al. 2020)
or, similarly, as dropouts at short wavelengths, relying on the large break in the
continuum flux corresponding to the 912 Å Lyman limit from neutral hydrogen
absorption in the line-of-sight. In Bisigello et al. (2023), we applied this latter
technique on four out of ten CEERS NIRCam pointings in the Extended Groth
Strip (EGS) field relying on the catalogue by Finkelstein et al. (2023), which uses
the co-added F277W+F356W image as detection image. Galaxies were selected to
have a S/N > 3 in the F444W filter and a S/N < 2 in every filter equal or below 2
�m both for JWST and the available archival HST observations in the EGS field,
with a further magnitude cut [F444W] < 29 mag. Moreover, we checked that the
selected galaxies had a S/N < 2 in the co-added F115W+F150W+F200W band
images and subsequently fitted the photometric points with the code Bagpipes
(Carnall et al. 2018). This selection is ideal for identifying very dusty (i.e., with an
absorption index 𝐴𝑉 > 1 mag) galaxies with stellar masses between 106 to 1010𝑀⊙
at 𝑧 < 5, more massive dusty galaxies at 𝑧 = 5 − 18 and galaxies at 𝑧 > 18 due
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to the Lyman absorption, independently of their dust extinction. The obtained
sample of F200W-dropouts contains no strong candidates at 𝑧 > 6.5, and instead,
it consists almost completely (∼ 81%) of 𝑧 < 2 low-mass galaxies, with a median
stellar mass of 107.3𝑀⊙. These galaxies show an exceptional dust extinction with a
median value of 𝐴𝑉 = 4.9 mag, which is unexpected given their low stellar mass.
The remaining galaxies, which are at 𝑧 < 6.5, show similar large dust extinction
(𝐴𝑉 > 1), but they are generally more massive (> 107.5𝑀⊙). However, as seen
by the sample redshift distribution in Fig. (5.4b), 93/133 objects show multiple
solutions that have a probability larger than 10% of being high-z galaxies, showing
multiple peaks in the redshift posterior. Hence, we will characterise these objects
with further observations (e.g., exploiting MIRI coverage were available) while
checking for other high-z candidates in the other NIRCam CEERS pointings.
Alongside this analysis, I will investigate the presence of additional objects not
included in the catalogue by Finkelstein et al. (2023). This procedure will involve
the creation of a catalogue of the CEERS field using the F444W one as detection
image and applying the selection criteria detailed in Bisigello et al. (2023). In
the four pointing examined in Bisigello et al. (2023), nine additional sources were
found with this technique. These sources were absent in the catalogue based
on the F277W+F356W co-added image, as they are faint in one or both bands.
Yet, since four of these sources are detected only in the F444W filter, we did not
attempt to derive any physical property for them. However, there is still to see
what hides in the other CEERS NIRCam pointings.

5.3 DM astroparticle constraints from the abundance
of high-z galaxies

The observed high density of galaxies measured at high redshifts can place strin-
gent constraints on DM particle masses in different frameworks (e.g., de Vega &
Sanchez 2010; Menci et al. 2016; Shirasaki et al. 2021). The argument is straightfor-
ward: for a given limiting magnitude and redshift, the cumulative galaxy number
density should be smaller than the whole halo mass function within a specific
DM scenario, i.e., the observed number of galaxies should not exceed the number
of haloes predicted by a specific theory. Hence:

𝜙obs ≡
∫ ∞

𝐿cut

d𝐿
d𝑛gal

d𝐿 ≤
∫ 𝑀max

𝑀min

d𝑀 d𝑛
d𝑀 , (5.2)

where 𝐿cut is the luminosity corresponding to the limiting magnitude, d𝑛gal/d𝐿
is the galaxy luminosity function. Since the shape of the halo mass function in a
specific scenario depends on the DM particle mass, constraining the abundance of
galaxies at high-redshifts (i.e., where the differences between CDM and alternative
DM scenarios are more visible) can constrain the DM particle mass (see Fig.
(5.5)). In the future, I will, therefore, deal with quantitatively establishing what
constraints deep JWST surveys can have on the astroparticle properties of DM
in terms of high-z galaxies abundances. To do this, one needs to design specific
spectroscopic observations aimed at confirming with the least possible error the
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presence of galaxies at a particular redshift, and on the other hand, there is
the need for studies aimed at characterising the completeness of the reference
surveys3. This method has been successfully applied to constrain the WDM
particle mass relying on data from the Hubble Frontier Field clusters (Menci et al.
2016). However, it is yet to be applied to JWST observations, and it constitute a
possible strategy for a future JWST proposal.

3One could also not account for completeness with the price of obtaining looser astroparticle
constraints.
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(a)

(b)

Figure 5.4: Fig. (5.4a): Redshift distribution, redshift vs stellar mass and redshift
vs 𝐴(𝑉) for F200W-dropouts in the four CEERS pointings (colour points) and
for the entire sample in the NIRCam2 pointing (small black dots). Points with
a red edge are objects in the F200W-dropout sample not found in the catalogue
by Finkelstein et al. (2023) based on photometry derived using the Kron radius.
The sample of F200W-dropouts by Rodighiero et al. 2023 (green empty stars). Fig.
(5.4b): Redshift probability distributions 𝑃(𝑧) of the entire F200W dropout sample
of Bisigello et al. (2023) (coloured line) and average 𝑃(𝑧) (black thick solid line).
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(a) (b)

(c)

Figure 5.5: Lower limits of WDM (Fig.(5.5a)), 𝜓DM (Fig.(5.5b)) and SIDM
(Fig.(5.5c)) masses or temperatures obtained from the UV luminosity function
of galaxies (given by Eq. (4.1)) at 𝑧 = 6. The dashed horizontal lines represent
different lower bounds of the UV luminosity function at 𝑧 = 6, showing how
the excluded space of particle masses or temperatures can broaden with deeper
observations. The solid lines show the maximum number density of DM halos as
a function of WDM, 𝜓DM and SIDM masses or temperatures based on the HMF
given by Eq. (4.3) with the values specified in Tab. (4.1). Assuming a one-to-one
correspondence of DM halos and faint galaxies, one can exclude the alternative
DM models if the maximum number density of DM halos becomes smaller than
the observed galaxy abundance.
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Appendix A

Varying the NMC DM relativistic
action

In the Jordan frame, the NMC DM model’s relativistic action reads as

𝑆 = 𝑆EH
[
�̃���

]
+ 𝑆bar

[
�̃��� ,𝜓

]
+ 𝑆DF

[
�̃��� , 𝜑

]
+ 𝑆NMC

[
�̃��� , 𝜑

]
,

where �̃��� represent the physical metric, linked to the gravitational metric via
a disformal transformation of the kind �̃��� = 𝑔�� + ℎ��, with ℎ�� ∝ ∇�𝜑∇�𝜑.
The action 𝑆EH

[
�̃���

]
is the standard Einstein–Hilbert action given by:

𝑆EH
[
�̃���

]
= �

∫
d4𝑥

√
−�̃�𝑅,

with � = 1/(16𝜋𝐺) in natural units.
Baryons are encoded by the (real) scalar field 𝜓, and their action is represented

by 𝑆bar. Here, baryons are assumed to be described by a perfect fluid with a
pressure 𝑝𝑏 and energy density 𝜌𝑏 with the following stress-energy tensor (SET):

𝑇bar
�� = (𝜌𝑏 + 𝑝𝑏)𝑢�𝑢� + �̃���𝑝𝑏 .

The baryonic action term can be obtained from 𝑇bar
�� = −2/

√
−�̃�𝛿𝑆bar.

The DM action 𝑆DF
[
�̃��� , 𝜑

]
reads as:

𝑆DM
[
�̃��� , 𝜑

]
=

∫
𝑑4𝑥

√
−�̃�ℒ𝜑 ,

with ℒ𝜑 being the standard lagrangian of a scalar field, namely

ℒ𝜑 =
1
2 �̃�

��𝜕�𝜑 𝜕�𝜑 −𝑉(𝜑).

Finally, the NMC part of the action reads as

𝑆NMC
[
�̃��� , 𝜑

]
= 𝜖𝐿2

∫
d4𝑥

√
−�̃�𝐺��𝜕�𝜑𝜕�𝜑.

In order to find the (modified) Einstein equation, one varies the action as
follows:
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𝛿𝑆 =

∫
𝑑4𝑥

[
𝛿𝑆EH

[
�̃���

]
+ 𝛿𝑆bar

[
�̃��� ,𝜓

]
+ 𝛿𝑆DF

[
�̃��� , 𝜑

]
+ 𝛿𝑆NMC

[
�̃��� , 𝜑

] ]
.

I hereby discuss the variation of each one of the single terms appearing in the
action above.

Variation of the Einstein–Hilbert action: the first of the three terms in the ex-
pression above gives the usual Einstein tensor. The variation reads as

𝛿𝑆EH
[
�̃���

]
=

1
16𝜋𝐺

∫
𝑑4𝑥

(
𝛿
√
−�̃�𝑅 +

√
−�̃�𝛿𝑅

)
.

In order to express the variation of the metric determinant 𝛿
√
−�̃� one is re-

quired to consider the Jacobi formula for the differentiation of a determinant:

𝛿 �̃� = 𝛿 det
(
�̃�𝛼𝛽

)
= �̃� �̃�𝛼𝛽𝛿 �̃�𝛼𝛽 .

Hence, the following is obtained:

𝛿
√
−�̃� = − 1

2
√
−�̃�

𝛿 �̃� = − 1
2
√
−�̃�

�̃� �̃�𝛼𝛽𝛿 �̃�𝛼𝛽 =
1

2
√
−�̃�

(−�̃�)�̃�𝛼𝛽𝛿 �̃�𝛼𝛽 =

=
1

2
√
−�̃�

(√
−�̃�

)2
�̃�𝛼𝛽𝛿 �̃�𝛼𝛽 .

One can now take advantage of the following relation:

𝛿(�̃�𝛼𝛽 �̃�𝛼𝛽) = 𝛿 �̃�𝛼𝛽 �̃�𝛼𝛽 + �̃�𝛼𝛽𝛿 �̃�𝛼𝛽 = 0.

The variation of the metric determinant can now be expressed as a function of
the variation of the inverse of the metric:

𝛿
√
−�̃� = −1

2

√
−�̃� �̃�𝛼𝛽𝛿 �̃�𝛼𝛽 .

Plugging the above relation in the Einstein–Hillbert’s action variation and
collecting the common

√
−�̃� we obtain:

𝛿𝑆EH
[
�̃���

]
𝛿 �̃�𝛼𝛽

= �

∫
𝑑4𝑥

√
−�̃�

(
−1

2 �̃�𝛼𝛽𝑅 + 𝑅𝛼𝛽

)
= �

∫
𝑑4𝑥

√
−�̃�𝐺𝛼𝛽 ,

since 𝛿𝑅 = 𝑅𝛼𝛽𝛿 �̃�𝛼𝛽.
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Variation of the DM action: varying the DM scalar field action one gets:

𝛿𝑆DM
[
�̃��� , 𝜑

]
=

∫
𝑑4𝑥𝛿(

√
−�̃�ℒ𝜑) =

∫
𝑑4𝑥 𝛿

[
−1

2
√
−�̃� �̃���𝜕�𝜑𝜕�𝜑 −

√
−�̃�𝑉(𝜑)

]
=

=

∫
𝑑4𝑥

[
−1

2𝛿
√
−�̃� �̃���𝜕�𝜑𝜕�𝜑 − 1

2
√
−�̃�𝛿 �̃���𝜕�𝜑𝜕�𝜑 − 𝛿

√
−�̃�𝑉(𝜑)

]
=

=

∫
𝑑4𝑥

1
2
√
−�̃�

[
1
2 �̃�𝛼𝛽 �̃�

��𝜕�𝜑𝜕�𝜑𝛿 �̃�
𝛼𝛽 − 𝛿 �̃���𝜕�𝜑𝜕�𝜑 − �̃�𝛼𝛽𝛿 �̃�

𝛼𝛽𝑉(𝜑)
]
.

Here, one can drop variations of terms independent of the metric. Hence:

𝛿𝑆DM
[
�̃��� , 𝜑

]
𝛿 �̃�𝛼𝛽

=

∫
𝑑4𝑥

1
2
√
−�̃�

[
−1

2 �̃�𝛼𝛽 �̃�
��𝜕�𝜑𝜕�𝜑 + 𝜕𝛼𝜑𝜕𝛽𝜑 + �̃�𝛼𝛽𝑉(𝜑)

]
,

and thus:

𝑇
𝜑
�� = ∇�𝜑∇�𝜑 − 1

2 �̃��� �̃�
𝛼𝛽𝜕𝛼𝜑𝜕𝛽𝜑 − �̃���𝑉(𝜑).

Variation of the NMC action: the variation of the NMC term reads as

𝛿𝑆NMC
[
�̃��� , 𝜑

]
= 𝜖𝐿2

∫
𝑑4𝑥

√
−�̃�

{
1
2 𝛿𝑅𝛼𝛽 𝜕

𝛼𝜑𝜕𝛽𝜑 + 1
2 𝜕𝛼𝜑𝜕𝛽𝜑

[
𝑅 𝑔�𝛼𝑔�𝛽 − 𝑔��𝑅𝛼𝛽

−𝐺��𝑔𝛼𝛽

]
𝛿 �̃���

}
.

To simplify calculations, I will consider a small perturbative tensor ��� map-
ping the metric in �̃��� → �̃���+���. One can then expand all the relevant quantities
at order 𝒪(�2):

�̃��� → �̃��� − ���;√
−�̃� →

√
−�̃�

(
1 + 1

2 �̃�
�����

)
;

Γ
�
�𝜌 → Γ

�
�𝜌 + 𝑍

�
�𝜌 , with 𝑍𝜎

�𝜌 =
1
2 �̃�

𝜎𝛼 (
∇��𝛼𝜌 + ∇𝜌�𝛼� − ∇𝛼��𝜌

)
;

𝑅�� → 𝑅�� + ∇𝜎𝑍
𝜎
�� − ∇�𝑍

𝜎
�𝜎;

𝑅 → 𝑅 + ∇𝜎𝑍
𝜎
�� �̃�

�� − ∇�𝑍
𝜎
�𝜎 �̃�

�� − 𝑅����� .

The NMC action term can then be expanded at linear order in 𝜖:

𝑆NMC
[
�̃��� , 𝜑

]
=

∫
𝑑4𝑥

√−𝑔
{

1
2

[
�̃���𝐺𝛼𝛽∇𝛼𝜑∇𝛽𝜑 + 𝑅�� �̃�𝑎𝛽∇𝛼𝜑∇𝛽𝜑+

−𝑅∇�𝜑∇𝑣𝜑] ��� +
[
∇𝜎𝑍

𝜎
�� − ∇�𝑍

𝜎
𝜎� −

1
2 �̃���

(
∇𝜎𝑍

𝜎
𝛼𝛽 �̃�

𝛼𝛽 − ∇𝛼𝑍
𝜎
𝜎𝛽 �̃�

𝛼𝛽
)]

∇�𝜑∇𝑣𝜑
}
.
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One can then proceed to rewrite the following terms:

∇𝜎𝑍
𝜎
��∇�𝜑∇�𝜑 =

[
�̃�𝜎�∇𝛼∇𝜎 (∇𝛼𝜑∇�𝜑) − 1

2□ (∇
�𝜑∇�𝜑)

]
��� + boundary;

∇�𝑍
𝜎
𝜎�∇�𝜑∇�𝜑 =

1
2 �̃�

��∇𝛼∇𝛽
(
∇𝛼𝜑∇𝛽𝜑

)
��� + boundary;

�̃�𝛼𝛽∇𝜎𝑍
𝜎
𝛼𝛽∇�𝜑∇�𝜑 =

1
2 (2∇�∇𝑣 − �̃���□) (∇𝛼𝜑∇𝛼𝜑) ��𝑣 + boundary;

�̃�𝛼𝛽∇𝑎𝑍𝜎
𝜎𝛽∇�𝜑∇�𝜑 =

1
2 �̃�

��□ (∇𝛼𝜑∇𝛼𝜑) ��� + boundary.

Plugging these terms into the variation of the NMC action term yields the
NMC stress-energy tensor, which reads as

𝑇NMC
�� = �̃���𝐺𝛼𝛽∇𝛼𝜑∇𝛽𝜑 + 𝑅�� �̃�𝛼𝛽∇𝛼𝜑∇𝛽𝜑 − 𝑅∇�𝜑∇�𝜑

+ 2�̃�𝜎�∇𝛼∇𝜎 (∇𝛼𝜑∇�𝜑) − □
(
∇�𝜑∇�𝜑

)
− �̃���∇𝛼∇𝛽

(
∇𝛼𝜑∇𝛽𝜑

)
+

(
�̃���□ − ∇�∇�

)
(∇𝛼𝜑∇𝛼𝜑) .

Eventually, the Einstein equation comprehensive of the NMC can be written
as:

1
8𝜋𝐺𝐺𝛼𝛽 = 𝑇bar

𝛼𝛽 + 𝑇𝜑
𝛼𝛽 + 𝑇

NMC
𝛼𝛽 . (A.1)

Notice that the effective SET 𝑇NMC
𝛼𝛽 has a somewhat non-standard expression

since it depends on the curvature.
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Appendix B

Deriving the DM scalar field
equation of motion

To obtain the DM scalar field 𝜑 equation of motion, one can vary the model’s
action to the DM scalar field 𝜑. Both the Einstein–Hilbert term and the baryons
term do not give any contribution in this sense, as well as any term depending on√
−�̃�. Indeed, all these terms do not depend on the scalar field 𝜑. Instead, the

DM term and the NMC term will give the following contributions:

𝛿𝑆
[
�̃��� , 𝜑

]
=

∫
d4

√
−�̃�

[
1
2 �̃�

�� (
𝜕�𝛿𝜑𝜕�𝜑 + 𝜕�𝜑𝜕�𝛿𝜑

)
−𝑉′(𝜑)𝛿𝜑+

+𝜖𝐿2
(
𝐺��𝜕�𝛿𝜑𝜕�𝜑 + 𝐺��𝜕�𝜑𝜕�𝛿𝜑

)]
.

Now, thanks to the fact that the variation and partial derivatives can commute,
one can write that:

1
2 �̃�

�� (
𝜕�𝛿𝜑𝜕�𝜑 + 𝜕�𝜑𝜕�𝛿𝜑

)
= �̃���𝜕�𝛿𝜑𝜕�𝜑,

𝜖𝐿2
(
𝐺��𝜕�𝛿𝜑𝜕�𝜑 + 𝐺��𝜕�𝜑𝜕�𝛿𝜑

)
= 2𝜖𝐿2

(
𝐺��𝜕�𝛿𝜑𝜕�𝜑

)
.

Moreover, the following equalities can be established:

∇�(𝑔��𝛿𝜑𝜕�𝜑) = ∇�𝑔
��𝛿𝜑𝜕�𝜑 + 𝑔��∇�𝛿𝜑𝜕�𝜑 + 𝑔��𝛿𝜑∇�𝜕�𝜑 =

= ∇�𝑔
��𝛿𝜑𝜕�𝜑 + 𝑔��𝜕�𝛿𝜑𝜕�𝜑 + 𝑔��𝛿𝜑𝜕�𝜕�𝜑 =

= 𝑔��𝜕�𝛿𝜑𝜕�𝜑 + 𝑔��𝛿𝜑𝜕�𝜕�𝜑,

Here, I made use of the fact that partial derivatives can replace covariant
derivatives if they are applied to a scalar field. Moreover, I dropped the term
depending on ∇�𝑔

�� under the assumption that the connection is metric (i.e.
∇�𝑔

�� = 0). Hence:

𝑔��𝜕�𝛿𝜑𝜕�𝜑 = ∇�(𝑔��𝛿𝜑𝜕�𝜑) − 𝑔��𝛿𝜑𝜕�𝜕�𝜑.
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Similarly, one can write the following:

∇�(𝐺��𝛿𝜑𝜕�𝜑) = ∇�𝐺
��𝛿𝜑𝜕�𝜑 + 𝐺��∇�𝛿𝜑𝜕�𝜑 + 𝐺��𝛿𝜑∇�𝜕�𝜑 =

= ∇�𝐺
��𝛿𝜑𝜕�𝜑 + 𝐺��𝜕�𝛿𝜑𝜕�𝜑 + 𝐺��𝛿𝜑𝜕�𝜕�𝜑 =

= 𝐺��𝜕�𝛿𝜑𝜕�𝜑 + 𝐺��𝛿𝜑𝜕�𝜕�𝜑.

Since the Einstein tensor is divergenceless, i.e. ∇�𝐺
�� = 0, one obtains:

𝐺��𝜕�𝛿𝜑𝜕�𝜑 = ∇�(𝐺��𝛿𝜑𝜕�𝜑) − 𝐺��𝛿𝜑𝜕�𝜕�𝜑.

By plugging these results into the variation of the action, one obtains the
following expression:

𝛿𝑆
[
�̃��� , 𝜑

]
𝛿𝜑

=

∫
d4

√
−�̃�

(
−�̃���𝜕�𝜕�𝜑 −𝑉′(𝜑) − 2𝜖𝐿2𝐺��𝜕�𝜑𝜕�𝜑

)
.

Notice that in the above expression, all the terms in the form ∇�𝐴
�, with 𝐴�

being a generic vector, have been dropped. In fact, the integration of these terms
yields a null boundary term.

Eventually, the variation of the overall model’s action to the scalar field 𝜑 leads
to the following equation of motion:

□𝜑 +𝑉′(𝜑) + 2𝜖𝐿2𝐺��𝜕�𝜑𝜕�𝜑 = 0. (B.1)

If the non-minimal coupling is absent (i.e. 𝜖 = 0) and𝑉(𝜑) = −1
2𝑚

2𝜑2, with 𝑚
being the mass of the particle associated to the field 𝜑, the standard Klein-Gordon
equation is retrieved.
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Appendix C

Newtonian limit of NMC DM

The Newtonian regime is achieved when the gravitational interaction is approx-
imated in the limit of weak fields. This approximation is relevant for physical
systems with low density and slow velocities, making it especially suitable for
studying gravitational dynamics on a galactic scale. To this pro, the metric is
expanded as �̃��� → ��� + ℎ��, with ��� being the Minkowski metric tensor and
ℎ�� representing a small perturbation over it. Then, defining

ℎ̄�� = ℎ�� −
1
2���ℎ → ℎ�� = ℎ̄�� −

1
2��� ℎ̄ ,

and making use of the transverse gauge 𝜕� ℎ̄�� = 0, at first order one obtains

𝐺
(1)
�� ≡ −1

2□ℎ̄�� .

This means that, under the approximation hereby considered, the modified
Einstein equation Eq. (A.1) becomes

−1
2□ℎ̄�� =

8𝜋𝐺𝑁
𝑐4 𝑇�� → □ℎ̄�� = −16𝜋𝐺𝑁

𝑐4

[
𝑇
𝜙
�� + 𝜖𝑇𝑁𝑀𝐶

��

]
.

For the ℎ00 component of the perturbation tensor it holds that

□ℎ00 =
1
2

(
□ℎ̄00 + □ℎ̄11 + □ℎ̄22 + □ℎ̄33

)
.

Knowing that in weak gravity ℎ00 = −2/𝑐2Φ, with Φ being the Newtonian
gravitational potential, one eventually gets

□Φ = − 𝑐
4

4
(
□ℎ̄00 + □ℎ̄11 + □ℎ̄22 + □ℎ̄33

)
=

4𝜋𝐺
𝑐2 (𝑇00 + 𝑇11 + 𝑇22 + 𝑇33), (C.1)

with 𝑇𝑖 𝑗 being the total effective SET appearing in Eq. (3.8). When inserted in
the linearised Einstein equations, such SET has to be taken at zeroth order in ℎ in
the metric expansion. This will mean that covariant derivatives will be reduced
to partial derivatives, and the metric tensor will coincide with the flat, Minkowski
one ���. Furthermore, the curvature terms in Eq. (3.8) will vanish.
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While for simplicity, the NMC formalism was until now presented in terms of
a real scalar field, the coupling can be easily generalized to a complex scalar field
as 𝐺��∇�𝜑∇�𝜑†. Considering a complex scalar field renders it possible to adopt
the Madelung (1926) representation so that the scalar field can be represented as
a fluid (see also Sec. (2.2.4)). In the Madelung approximation, the field is split into
two real components: a modulus 𝜌 representing the probability density associated
with the field and a phase �, reading as 𝜑 =

√
𝜌𝑒 𝑖�. Under this approximation,

the scalar field’s SET can be rewritten as (see Bettoni et al. 2014)

𝑇
𝜙
�� = ∇�𝜙

†∇�𝜙 + ∇�𝜙∇�𝜙
† − 𝑔��

(
𝑔𝛼𝛽∇𝛼𝜙

†∇𝛽𝜙 +𝑉(𝜙)
)
.

In the weak field limit, this expression changes to

𝑇�� = 𝜌𝑢�𝑢� − ���

(
𝜌
𝑐2 + 𝑢2

2 +𝑉(𝜙)
)
+ ℏ2

𝑚2 𝜕�
√
𝜌𝜕�

√
𝜌, (C.2)

with the 4-vector1 𝑢� = ℏ/𝑚∇��. In this regime, the NMC SET instead becomes

𝑇𝑁𝑀𝐶
�� =𝐿2𝜕�𝜕

𝛼

(
ℏ2

𝑚2 𝜕𝛼
√
𝜌𝜕�

√
𝜌 + 𝜌𝑢𝛼𝑢�

)
− 𝐿2

2 □
(
ℏ2

𝑚2 𝜕�
√
𝜌𝜕�

√
𝜌 + 𝜌𝑢�𝑢�

)
− 𝐿2

2 ���𝜕
𝛼𝜕𝛽

(
ℏ2

𝑚2 𝜕𝛼
√
𝜌𝜕𝛽

√
𝜌 + 𝜌𝑢𝛼𝑢𝛽

)
+ 𝐿2

2
(
���□ − 𝜕�𝜕�

) (
ℏ2

𝑚2 𝜕
𝛼√𝜌𝜕𝛼

√
𝜌 + 𝜌𝑢2

)
.

(C.3)

In the left hand size of the linearised Einstein equations Eq. (C.1), the highest-
order term in 𝑐 is of order zero, and it will have to match the right hand side of
the equation when sending 𝑐 → +∞. In the non-relativistic limit, one has that
𝑢0 → 𝑐 and ®𝑢 → ®𝑣 (i.e., the 3-velocity of the fluid), and this dramatically reduces
the number of terms that are relevant in the weak field limit. In fact, the highest
order possible terms in 𝑐 in both Eq. (C.2) and Eq. (C.3) are of order 𝑐2. Hence,
the only terms surviving in the Newtonian limit when 𝑐 → +∞ are the ones of
zero order, while the rest will go to zero.

By computing these terms and opening the box terms as a composition of time
plus spatial derivatives, the following Poisson equation is eventually retrieved:

∇2Φ = 4𝜋𝐺
(
𝜌 − 𝜖𝐿2∇2𝜌

)
.

From this equation, it is clear that the contribution to the gravitational po-
tential by DM is determined not only by the DM density itself but also by its
inhomogeneities.

1Note that the norm of this 4-vector is 𝑢�𝑢� = −𝑐2. Hence, it cannot be considered a real
velocity associated with the fluid. Such a four-velocity can indeed be obtained by defining the
vector 𝑣� ≡ 𝑢�/

√
−𝑢𝛼𝑢𝛼, which has the right norm.
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Appendix D

Stacked Rotation Curve fits

This Appendix contains the fits to stacked RCs for the whole galaxy samples
presented in Sec. (3.4.1) (see Tab. (3.1)).
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Figure D.1: Bin 1 of Persic & Salucci (1995).
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Appendix D. Stacked Rotation Curve fits
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Figure D.2: Bin 2 of Persic & Salucci (1995).
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Figure D.3: Bin 3 of Persic & Salucci (1995).
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Appendix D. Stacked Rotation Curve fits
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Figure D.4: Bin 4 of Persic & Salucci (1995).
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Figure D.5: Bin 6 of Persic & Salucci (1995).
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Appendix D. Stacked Rotation Curve fits
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Figure D.6: Bin 7 of Persic & Salucci (1995).
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Figure D.7: Bin 8 of Persic & Salucci (1995).
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Appendix D. Stacked Rotation Curve fits
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Figure D.8: Bin 9 of Persic & Salucci (1995).
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Figure D.9: Bin 10 of Persic & Salucci (1995).
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Appendix D. Stacked Rotation Curve fits
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Figure D.10: Bin 11 of Persic & Salucci (1995).
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Figure D.11: Bin 1 of LSB galaxies of Dehghani et al. (2020).
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Appendix D. Stacked Rotation Curve fits
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Figure D.12: Bin 2 of LSB galaxies of Dehghani et al. (2020).
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Figure D.13: Bin 3 of LSB galaxies of Dehghani et al. (2020).
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Appendix D. Stacked Rotation Curve fits
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Figure D.14: Bin 4 of LSB galaxies of Dehghani et al. (2020).
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Appendix E

Pressure profiles of the X-COP
clusters

This Appendix contains the pressure profiles reconstructed for the NFW and
NMC DM cases for each of the 12 clusters alongside the complete contour plots
as in Sec. (3.5.2).
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Appendix E. Pressure profiles of the X-COP clusters

Figure E.1: Comparison of the pressure profiles for the NMC DM model (solid
lines) against those of the NFW model (dashed grey lines) for all the 12 clusters
in the X-COP compilation.
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Figure E.2: Continuation of Fig. (E.1).
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Appendix E. Pressure profiles of the X-COP clusters

Figure E.3: A85 contour plots for the NFW pressure profile (top) and NMC DM
pressure profile (bottom).
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Figure E.4: A644 contour plots for the NFW pressure profile (top) and NMC DM
pressure profile (bottom).
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Appendix E. Pressure profiles of the X-COP clusters

Figure E.5: A1644 contour plots for the NFW pressure profile (top) and NMC DM
pressure profile (bottom).
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Figure E.6: A1795 contour plots for the NFW pressure profile (top) and NMC DM
pressure profile (bottom).
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Appendix E. Pressure profiles of the X-COP clusters

Figure E.7: A2029 contour plots for the NFW pressure profile (top) and NMC DM
pressure profile (bottom).
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Figure E.8: A2142 contour plots for the NFW pressure profile (top) and NMC DM
pressure profile (bottom).
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Appendix E. Pressure profiles of the X-COP clusters

Figure E.9: A2255 contour plots for the NFW pressure profile (top) and NMC DM
pressure profile (bottom).
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Figure E.10: A2319 contour plots for the NFW pressure profile (top) and NMC
DM pressure profile (bottom).
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Appendix E. Pressure profiles of the X-COP clusters

Figure E.11: A3158 contour plots for the NFW pressure profile (top) and NMC
DM pressure profile (bottom).
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Figure E.12: A3268 contour plots for the NFW pressure profile (top) and NMC
DM pressure profile (bottom).
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Appendix E. Pressure profiles of the X-COP clusters

Figure E.13: RXC1825 contour plots for the NFW pressure profile (top) and NMC
DM pressure profile (bottom).
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Figure E.14: ZW1215 contour plots for the NFW pressure profile (top) and NMC
DM pressure profile (bottom).
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