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Pressure control using stochastic cell rescaling
Mattia Bernetti1 and Giovanni Bussi1, a)

Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy

(Dated: 15 January 2025)

Molecular dynamics simulations require barostats to be performed at constant pressure. The usual recipe is to employ
the Berendsen barostat first, which displays a first-order volume relaxation efficient in equilibration but results in
incorrect volume fluctuations, followed by a second order or Monte Carlo barostat for production runs. In this paper,
we introduce stochastic cell rescaling, a first-order barostat that samples the correct volume fluctuations by including a
suitable noise term. The algorithm is shown to report volume fluctuations compatible with the isobaric ensemble and its
anisotropic variant is tested on a membrane simulation. Stochastic cell rescaling can be straightforwardly implemented
in existing codes and can be used effectively both in equilibration and in production phases.

I. INTRODUCTION

Molecular dynamics (MD) simulations can be used to char-
acterize the dynamical properties of microscopic systems by
simulating their evolution according to the Hamilton equa-
tions of motion.1 However, the Hamilton equations are valid
only for isolated systems and need to be amended to describe
the coupling with external baths. Most common cases are
thermostats and barostats. The former are used to transfer
heat so as to properly control temperature. The latter are
used to transfer mechanical work, thereby allowing for ex-
ternal pressure, stress, or surface tension to be controlled.
Pressure control in MD was first introduced in the pioneer-
ing work of Andersen2 using an extended Lagrangian for-
malism. This framework was then extended to allow peri-
odic cells of arbitrary shapes.3,4 A number of variants of these
methods have been published5–17 with either improved inte-
gration schemes, small modifications to control errors when
the number of simulated particles is small, or generalization
to liquid interfaces. The volume degree of freedom can also
be coupled to a stochastic thermostat in a so-called Langevin
piston approach.18–24 All the methods mentioned so far as-
sociate an inertia to the volume, resulting in a second-order
differential equation for its time evolution, which is stochas-
tic for Langevin piston algorithms. An alternative approach
is to use a Monte Carlo procedure to resample the volume
every few steps of MD.25,26 The Monte Carlo barostat is sim-
pler to implement, since it does not require the calculation
of the virial, but it is sometime considered less efficient than
virial-based barostats.27 The only barostat based on a first-
order differential equation is the weak coupling or Berendsen
barostat.28 This barostat intuitively changes the volume by an
increment proportional to the difference between the internal
and external pressure and is very efficient in equilibrating the
system. However, it does not sample a predictable ensem-
ble. The usual rule of the thumb is thus to use the Berendsen
barostat for equilibration, followed by either a second-order
barostat or a Monte Carlo barostat for production (see Fig. 1,
middle panel).29

In this work, we propose a new scheme that is based on
a first-order differential equation but, at variance with the
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FIG. 1. Graphical representation of protocols for a constant-pressure
simulation. In the traditional pipeline (middle panel), an equili-
bration run using a first-order Berendsen barostat28 is followed by
a production run using a second-order barostat.2–24 Indeed, using
a second-order barostat on a non-equilibrated system might lead
to oscillations and instabilities (upper panel). The here introduced
stochastic cell rescaling algorithm relaxes straight to the correct vol-
ume and then produces correct fluctuations (lower panel). It can thus
be used both for equilibration and production runs.

Berendsen scheme, samples the correct isothermal-isobaric
ensemble (see Fig. 1, lower panel). To achieve this result,
we add a suitably designed stochastic term to the Berendsen
barostat, in the spirit of what was done in the stochastic veloc-
ity rescaling algorithm30 to amend the Berendsen thermostat.
The resulting algorithm can also be seen as a high-friction
variant of the Langevin piston barostat. We derive and test
several possible integration schemes and provide a reference
implementation for all of them in an educational MD code.
One of the integration schemes is also implemented and tested
in a modified version of the popular MD code GROMACS.31

The algorithm produces correct volume fluctuations for a wide
range of the control parameters in a Lennard-Jones fluid and
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in liquid water. The method is also tested on the calculation
of solvation free energies, for which a recent paper suggested
incorrect results arising from use of the Berendsen barostat,32

and its semi-isotropic version is tested on a membrane simu-
lation.

II. METHODS

A. Stochastic cell rescaling

We consider a system composed of N atoms with coordi-
nates and momenta qi and pi contained in a box of volume V .
For compactness, in the following we indicate the vector of all
coordinates and momenta as q and p, respectively. According
to Hamilton equations, p and q evolve as

dpi =−∂U
∂qi

dt (1a)

dqi =
pi

mi
dt (1b)

where t is the time, mi is the mass of the i-th particle, and
U the potential energy of the system, which depends on the
positions q.

To obtain ensemble averages in the NPT ensemble, where
the number of particles, the external pressure, and the temper-
ature are constant, the volume V has to be allowed to fluctuate
so as to sample states with probability

P(p,q,V ) ∝ e−
K+U+P0V

kBT . (2)

Here, K = ∑i p2
i /(2mi) is the kinetic energy of the system, P0

is the external pressure, kB is the Boltzmann constant and T is
the temperature. Equation 2 can be equivalently written as

−kBT logP(p,q,V ) = K +U +P0V +C (3)

where C is an arbitrary constant.
The goal of a barostat is to induce changes in the volume

V that preserve the NPT distribution. These changes are typ-
ically made at constant scaled positions s = q/ 3

√
V , so that

Cartesian positions q have to be uniformly scaled. Many al-
gorithms implement this change at constant scaled momenta
π = p 3

√
V as well, thus scaling Cartesian positions q and mo-

menta p with inverse factors.2–7,11–14,16,18,19,22,23 This scaling
preserves the phase-space volume and originally stems from
the use of a Hamiltonian formalism in the Andersen barostat.2

In other methods, this scaling factor is modified by a small
correction that vanishes as the number of atoms in the simu-
lated box grows.8–10,15,17,20,24 However, provided one evalu-
ates the compression factor properly, scaling momenta is not
strictly necessary, as suggested in Ref. 21. In the derivation
below, we will assume that momenta are scaled with an in-
verse factor with respect to positions. A similar algorithm
can be derived assuming that momenta are not scaled (see
Sec. II B).

To obtain a continuous trajectory, we consider changes of
V obtained by the solution of a first-order differential equa-
tion. The most general first-order differential equation for

the single variable V with a preassigned stationary distribu-
tion P(V ) is stochastic and has the following form:

dV = D
∂ log(DP)

∂V
dt +

√
2DdW . (4)

Here dW is a Wiener noise and the equation is written us-
ing Ito stochastic calculus.33 D is an arbitrary function of
the volume V that can be interpreted as a diffusion coeffi-
cient. The stationarity of distribution P can be demonstrated
by considering the associated Fokker-Planck equation ∂P

∂ t =

− ∂

∂V

(
DP ∂ logDP

∂V − 1
2

∂

∂V (2DP)
)
= 0. By inserting Eq. 3 in

Eq. 4, with simple manipulation, the most general stochastic
differential equation for V preserving the isothermal-isobaric
distribution can be shown to be in the form

dV =− D
kBT

(
∂K
∂V

+
∂U
∂V

+P0 −
kBT
D

∂D
∂V

)
dt +

√
2DdW .

We notice that the term ∂U
∂V is meant to be taken at fixed scaled

coordinates and corresponds to the negative of the contribu-
tion of the potential energy to the internal pressure. The term
∂K
∂V instead has to be computed at fixed scaled momenta, thus
defining K = V−2/3

∑i π2
i /(2mi). We thus have ∂K

∂V = − 2K
3V ,

and this term corresponds to the negative of the kinetic contri-
bution to the internal pressure. The center-of-mass contribu-
tion to the internal pressure might be optionally included (see
Supplementary Material, Sec. I).

We then arbitrarily set D = βT V kBT
τP

, where βT is an estimate
of the isothermal compressibility of the system and τP is a
characteristic time associated to the barostat. The resulting
differential equation is

dV =−βTV
τP

(
∂K
∂V

+
∂U
∂V

+P0 −
kBT
V

)
dt+

√
2kBT βTV

τP
dW .

This equation on V can be converted to an equivalent equation
on the strain ε = log(V/V0), where V0 is a reference volume
that is needed to have the correct dimensionality,34 and can be
arbitrarily set to V0 = 1nm3. By means of the Ito chain rule,33

one obtains

dε =−βT

τP
(P0 −Pint)dt +

√
2kBT βT

V τP
dW , (5)

where Pint =
2K
3V − ∂U

∂V might be computed either including
or excluding the center-of-mass contribution (see Supplemen-
tary Material, Sec. I). The interpretation of Eq. 5 is straigh-
forward. The deterministic term increases or decreases the
volume when the internal pressure is respectively larger or
smaller than the external one. Thanks to our definition of D,
this term is equivalent to the one used in the popular Berend-
sen barostat.28 The stochastic term, however, allows volume
fluctuations to be properly controlled. Equation 5 can be also
derived by taking the high-friction limit of a Langevin piston
algorithm14,18 with a volume-dependent friction, provided the
additional drift is taken into account correctly35 (see Supple-
mentary Material, Sec. II). Equation 5 can then be coupled
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with Hamilton equations 1a and 1b and with a thermostat to
sample the isothermal-isobaric ensemble. The increment in
the volume logarithm leads to a rescaling of the cell matrix.
We thus refer to this scheme as stochastic cell rescaling.

B. Working with unscaled momenta

The derivation reported in the previous Section assumes
that volume changes are operated at constant scaled positions
s and momenta π . It is possible to keep scaled positions s and
physical momenta p fixed, instead, resulting in an algorithm
where momenta are not scaled when volume changes. In this
case, an extra factor V N has to be inserted in Eq. 2, that in turn
results in the use of the external temperature in evaluating the
ideal gas pressure contribution in Pint. At the same time, the
gradient of the kinetic energy with respect to the volume used
in Eq. 4 would be zero. It can be seen that this change simply
leads to the need to compute the internal pressure using the
average kinetic energy instead of the instantaneous one.21

In brief, two formulations of our algorithm are possible:

• A formulation where momenta are scaled by a factor
that is the inverse of the factor used to scale the posi-
tions, and the internal pressure is calculated as Pint =
2K
3V − ∂U

∂V .

• A formulation where momenta are untouched while
scaling the simulation box, and the internal pressure is
calculated as Pint =

NkBT
V − ∂U

∂V .

If using a global thermostat so that center-of-mass momentum
is conserved, N should be replaced with N − 1. See Supple-
mentary Material, Sec. I, for further discussion on the center-
of-mass contribution to the internal pressure.

We notice that most barostat implementations choose the
first formulation, which makes deriving a reversible integra-
tor slightly more complex since positions and momenta must
be evolved simultaneously. However, this formulation might
be convenient when using constraints36,37 or rigid bodies.38 In
these cases, indeed, the probability distributions of positions
and momenta do not factorize, making the ideal gas contribu-
tion more difficult to compute, whereas the kinetic tensor im-
plicitly contains the information about the position-dependent
distribution of momenta. Ref. 21 uses the second formulation
instead. Also the Monte Carlo barostat described in Refs. 25
and 26 does not scale momenta, and indeed includes explic-
itly a (V ′/V )N term in the acceptance calculation, where V ′ is
the proposed volume. The Berendsen barostat28 uses a hybrid
formulation where the pressure is computed using the instan-
taneous kinetic energy, as in the first formulation, but the mo-
menta are not scaled when changing the simulation volume,
as in the second formulation.

The use of the instantaneous kinetic energy instead of its
average value can be seen as a source of noise in the dynam-
ics of the volume. In particular, the kinetic energy has fluctu-

ations equal to
√

3N
2 kBT and an autocorrelation time τK that

is system dependent and that can be controlled by choosing

the parameters of the thermostat. These fluctuations can be
approximated as an additional noise term in Eq. 5. If τK is
significantly smaller than the relaxation time of the volume
(τK ≪ τP) this noise can be considered as white and equal

to βT
τP

2
3V

√
3N
2 kBT

√
τKdW = βT kBT

τPV

√
2NτK

3 dW . The ratio be-
tween the standard deviation of this noise and the standard
deviation of the random noise in Eq. 5 is

βT kBT
τPV

√
2NτK

3√
2kBT βT

V τP

=

√
τKNkBT βT

3τPV
≈

√
τKNσ2

V
3τP⟨V ⟩2 . (6)

In the last step we exploited the fact that βT =
σ2

V
⟨V ⟩kBT , where

σ2
V are the fluctuations of the volume, and we approximated

V with its average value ⟨V ⟩. Since in condensed phases
we expect the relative volume fluctuations to be smaller than√

1/N, and we assumed τK ≪ τP, the contribution of the ad-
ditional noise is negligible. This is the case for most of the
practical applications considered here, with the used thermo-
stat settings. However, in general settings, the two sources
of noise might be comparable. It is thus important to imple-
ment stochastic cell rescaling so that, if the internal pressure is
computed using the instantanous kinetic energy, momenta are
scaled with the correct factor whenever the volume changes.

C. Effective energy drift

Stochastic cell rescaling is based on the use of Hamilton
equations 1a and 1b and of the stochastic differential equa-
tion 5, both satisfying detailed balance. When they are in-
tegrated with a finite time step algorithm, however, detailed
balance is violated. This violation can be monitored during
the simulation30,39 and used to determine if the time step and
the other simulation parameters were chosen correctly, to ver-
ify that forces are correctly computed as the negative deriva-
tives of the energy function, or to compute the acceptance for
a so-called Metropolized integrator.40 This contribution can
be interpreted as the work performed by the integration algo-
rithm on the system.41 In the case of pure Hamilton equations,
this drift corresponds exactly to the change in the total energy
of the system. When a thermostat is used, its contribution to
the drift has to be added.30,39 Similarly, the barostat will con-
tribute to the drift.

In order to compute the contribution of the barostat to the
drift, it is necessary to compute the relative probabilities of
generating forward steps, where ε → ε ′, and backward steps,
where ε ′ → ε . We notice that the prefactor of the stochastic
term in Eq. 5 depends explicitly on ε . As discussed in more
details in Supplementary Material, Sec. III, this dependence
might increase detailed-balance violations. By performing a
change of variable to λ = eε/2√V0 =

√
V , instead, by means

of the Ito chain rule,33 one obtains the following differential
equation

dλ =−βT λ

2τP

(
P0 −Pint −

kBT
2V

)
dt +

√
kBT βT

2τP
dW . (7)
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In this equation, the prefactor of the stochastic term is a con-
stant. By simply integrating this equation with finite differ-
ence increments, the drift can be computed in the same way
as it is computed in the high-friction limit of the Langevin
equation,39 and corresponds to the calculation of the accep-
tance in the so-called smart Monte Carlo method42 (see Sup-
plementary Material, Sec. IV).

It it important to recall that the effective energy drift quanti-
fies how much detailed balance is violated. However, detailed
balance is not a necessary condition for reaching the target
stationary distribution.43 In addition, it has been shown that
this drift might overestimate the errors observed in sampling
the configurational degrees of freedom.44

D. Integration of the equations of motion

We considered three different ways to integrate Eqs. 1a, 1b,
and 5. In all of them, it is possible to postpone the calculation
of the virial to every NP steps in a multiple-time-step fashion45

in order to speed up the calculation. In the last two algorithms,
it is possible to define the effective energy drift (see Sec. II C).
More details are reported in Supplementary Material, Sec. V.

Euler integrator. The volume is evolved by propagating
its logarithm using a finite time step approximation of Eq. 5.
Positions and velocities are then evolved using velocity Verlet.
Forces are not recomputed after the volume change. As a
consequence, the obtained trajectory is not reversible.

Reversible Euler integrator. The volume is evolved by
propagating its square root using a finite time step approx-
imation of Eq. 7. Positions and velocities are then evolved
using velocity Verlet. Forces are recomputed after the vol-
ume change. As a consequence, the obtained trajectory is re-
versible. However, this is paid with an extra force calculation
every NP steps. In order to quantify the effective energy drift,
the virial needs to be recomputed after the volume change.

Trotter-based integrator. The volume is evolved by propa-
gating its square root using a finite time step approximation of
Eq. 7. Positions and velocities are evolved using velocity Ver-
let simultaneously with volume change using a Trotter split-
ting. There is no need to recompute forces after the volume
change. However, in order to quantify the effective energy
drift, the virial needs to be computed also at the step immedi-
ately after the one at which scaling was applied. The obtained
trajectory is reversible.

For simplicity, we decided to use Eq. 5 in the Euler integra-
tor, where the effective energy drift would not be well-defined
anyway, whereas we used Eq. 7 for the reversible implementa-
tions. All the three schemes can be implemented either scaling
or not scaling velocities upon volume change (see Sec. II B).
For each of the integrators, Table I summarizes the cost in
term of how many force and virial calculations are required
on average for each simulation step. These integrators, sim-
ilarly to those discussed in Ref. 17, can in principle be used
with an arbitrarily large NP, provided that τP is also chosen
large enough.

Integrator Reversible Nforces Nvirial
Euler no 1 1/NP

Reversible Euler yes 1+1/NP 2/NP
Trotter yes 1 min(1,2/NP)

TABLE I. Computational overhead for the discussed integrators. In-
tegrators are named as discussed in the main text. NP is stride for the
propagation of the barostat. Nforces and Nvirial are the average number
of times forces and virial need to be calculated for every MD step,
respectively. For all the integrators, the equation of the barostat is
propagated every 1/NP steps.

E. Semi-isotropic version

Eq. 5 can be generalized to cases where ε is a matrix rep-
resenting the deformation of the system. We here derive the
equations required to sample the constant surface-tension en-
semble NPγT , where the equilibrium probability reads9

P(p,q,A,L) ∝ e−
K+U+P0AL−γ0A

kBT . (8)

Here A is the area of the simulation box in the xy plane, L is its
height, and γ0 is the surface tension multiplied by the number
of surfaces.

We arbitrarily set the diffusion coefficients for A and L as
DA = 2βT A2kBT

3V τP
and DL = βT L2kBT

3V τP
, respectively. By defining

the variables εxy = log(A/A0) and εz = log(L/L0), and fol-
lowing a procedure similar to the one above, these equations
of motion are obtained:

dεxy =−2βT

3τP

(
P0 −

γ0

L
−

Pint,xx +Pint,yy

2

)
dt+

√
4kBT βT

3V τP
dWxy

(9a)

dεz =− βT

3τP
(P0 −Pint,zz)dt +

√
2kBT βT

3V τP
dWz (9b)

Here Pint,xx, Pint,yy, and Pint,zz are components of the internal
pressure tensor and the two noise terms dWxy and dWz are ex-
plicitly written with different subscripts to remark that they
have to be drawn independently. For an extensive derivation
of Eqs. 9 see Supplementary Material, Sec. VI.

By taking the sum of the two equations above and setting
γ0 = 0, one obtains Eq. 5. This means that, if no external
tension is applied, the dynamics of the volume in the semi-
isotropic case will be identical to the isotropic case. In princi-
ple, it is possible to tune separately the compressibility of the
system in the xy and z directions (see Supplementary Mate-
rial, Sec. VII, for the special case where cell height L is kept
constant), or even to choose a non-diagonal diffusion matrix
for the A and L variables. This choice would only affect the
timescale at which A and L equilibrate, leaving the sampled
distribution unchanged.

F. Computational details

Simulations of the Lennard-Jones fluid were performed us-
ing a modified version of the SimpleMD program. A system
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of N = 256 particles was simulated in a cubic box with a time
step of 0.005 for 107 steps, accumulating statistics every 10
steps. Forces were truncated at distance 2.5. Temperature was
set to T = 1.5 and controlled with a stochastic velocity rescal-
ing thermostat30 with relaxation time τT = 0.05. Pressure was
set to P0 = 1 and controlled using stochastic cell rescaling with
a range of control parameters. All parameters are reported in
reduced Lennard-Jones units. All the reported quantities were
computed discarding the initial 2.5×106 steps.

Simulations of the liquid water, host-guest and guest only,
and the membrane systems were performed with a modified
version of GROMACS 2019.4.31 The liquid water system
comprised 2850 waters in a rhombic dodecahedron box. The
TIP3P model46 was used to represent the water molecules.
A short equilibration run lasting 500 ps was first conducted
in the NV T ensemble. The production phase consisted of
three sets of NPT simulations using the Parrinello-Rahman,4

Berendsen,28 and stochastic cell rescaling barostats, respec-
tively. In each set, a range of control parameters was explored,
using 1 bar as reference for isotropic pressure coupling in all
cases. All simulations lasted 10 ns and statistics were saved
every 200 steps (0.4 ps). The reference temperature was 300
K in all runs and was controlled through a stochastic velocity
rescaling thermostat30 with a relaxation time τT = 0.1 ps. A
Verlet cut-off scheme was employed for neighbor searching,
updating the neighbor list every 10 steps. All shown results
were obtained discarding the first 2 ns of simulation.

A smaller water box, comprising 900 TIP3P water
molecules, was employed to perform the physical vali-
dation tests indicated in Refs. 47 and 48. To conduct
these tests, the physical_validation package, an open-source
and platform-independent Python library (https://physical-
validation.readthedocs.io) in which they are implemented,
was used. For each barostat (Berendsen, Parrinello-Rahman
and stochastic cell rescaling), two simulations of 10 ns each
were run at the reference pressure of 1 bar and 301 bar, re-
spectively, with NP = 10 steps and τP = 1 ps for Berend-
sen and Parrinello-Rahman and τP = 0.5 ps for stochastic
cell rescaling. All GROMACS input files were taken and
adapted from the examples/water_ensemble subfolder coming
with the package.

Free energy differences for the host-guest (OA-G3) and
guest only (G3) systems were computed from expanded en-
semble simulations in solution, conducted using coordinates,
topology, and set-up provided by Ref. 32. A detailed de-
scription of the simulation parameters can be found therein.
Briefly, decoupling of the guest was achieved by completely
turning off charges first and then removing Van der Waals
interactions in both the host-guest and guest only systems.
The entire procedure comprised a total of 40 lambda win-
dows. A velocity Verlet integrator was used with a time step
of 2 fs. The expanded ensemble simulations were divided in
two stages: an initial equilibration stage to adaptively esti-
mate the expanded ensemble weights and the following pro-
duction phase in which the weights were kept fixed. For
the host-guest system, 60 ns were required for the equilibra-
tion of weights with Berendsen and stochastic cell rescaling,
while for the guest only systems about 30 ns were necessary

in all cases. From the production stage, free-energy differ-
ences were computed with the multistate Bennett acceptance
ratio (MBAR) method49 using the alchemical_analysis tool
version 1.0.250 along with pymbar version 3.0.5. The free
energy associated to the presence of the restraints on the cen-
ter of mass in the decoupled state was computed as ∆Grestr =

− 3
2 log

(
2πkBT

k

)
+ logVmol = 16.73 kJ/mol, where k = 1000

kJ/(mol·nm2) is the coupling constant and Vmol = 1.66 nm3 is
the volume corresponding to the one molar standard state.

Replica exchange simulations for decoupling of the guest
only in solution were performed using 40 replicas correspond-
ing to the windows employed to turn off charges and removing
Van der Waals interactions in the expanded ensemble simula-
tions, thus resulting in a Hamiltonian replica-exchange pro-
tocol. Two variants of the system with varying size of the
box were considered: the same used for the expanded en-
semble simulations, taken from Ref. 32, where a distance of
1.2 nm from all guest heavy atoms in all directions was ap-
plied, and a smaller one where such distance was set to 0.8
nm. A leap-frog integrator was used with a time steps of 2
fs and exchanges between replicas were attempted every 400
steps (0.8 ps). Production runs were conducted for a total of
5 ns/replica and were used to compute the free-energy differ-
ences through Bennett’s acceptance ratio method (BAR)51 as
implemented in the gmx bar module of GROMACS. Decou-
pling of the guest E20 (donepezil, extracted from PDB ID:
1EVE) was conducted according to the same set-up. Lig-
and parameters were determined using the General Amber
Force Field (GAFF)52 following the RESP procedure53 to de-
termine the molecule charges. During the simulations, the
conformation of the ligand was kept fixed by restraining the
root-mean-square displacement from the crystal conformation
computed after superimposing the two structures. To this end,
the RESTRAINT feature of the bias module of PLUMED54

was used, setting a force constant of 209200 kJ/(mol·nm2) for
the harmonic restraint.

The membrane system was built as described in the
“KALP15 in DPPC” (the KALP model peptide in a lipid
bilayer of dipalmitoylphosphatidylcholine) tutorial,55 which
protocol was based on a previous work56 and used the GRO-
MOS96 53A6 force field,57 extended to include Berger lipid
parameters.58 The procedure included usage of the Inflate-
GRO methodology59 to pack the lipids around the embed-
ded protein. After solvation, a system comprising 126 DPPC
lipid and 4182 SPC water molecules60 was obtained. En-
ergy minimization and equilibration of the system were con-
ducted as described in detail in the tutorial. As for the liquid-
water system, the production phase consisted of three sets
of NPT simulations using the Parrinello-Rahman, Berendsen
and stochastic cell rescaling barostats. A reference pressure
of 1 bar was employed for semi-isotropic pressure coupling
in all cases, along with τP = 2 ps and a compressibility of
4.5x10−5 bar−1. The temperature was set to 323 K and was
controlled through the Nose-Hoover thermostat6,61 with a re-
laxation time τT = 0.5 ps, coupling separately a first group
comprising the protein and DPPC lipids and a second one in-
cluding the solvent and ion molecules. All simulations lasted
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100 ns and statistics were saved every 200 steps (0.4 ps). All
shown results were obtained analyzing the second half of the
trajectory.

In all simulations, statistical errors were determined using
block analysis62 with a variable number of blocks and con-
servatively using the largest estimate for the error. For all
the simulations performed using the Parrinello-Rahman baro-
stat, fluctuations were imposed to be isotropic (Lennard-Jones
fluid, liquid water and guest-only systems) or semi-isotropic
(membrane system), as implemented in GROMACS. Indeed,
the fully flexible version of the Parrinello-Rahman barostat is
known to be unstable in these cases. The resulting equations
of motion for the box are thus not exactly equivalent to those
of the Andersen2 or Martyna-Tobias-Klein8 algorithms, but
are representative of a second-order barostat.

III. NUMERICAL TESTS

A. Lennard-Jones fluid

We tested stochastic cell rescaling on the simulation of a
Lennard-Jones fluid in the NPT ensemble. We first performed
a range of simulations at constant volume, computed the av-
erage internal pressure, and integrated it so as to obtain a
reference distribution for the volume V . The predicted vol-
ume fluctuations correspond to an isothermal compressibility
βT ≈ 0.3. This value is used as an input in the simulations
performed with the barostat. The distribution of the volume
obtained using barostat parameters NP = 1 and τP = 1 is per-
fectly overlapping with the reference one (see Fig. S1).

We then evaluated the robustness of the results by monitor-
ing volume average and fluctuations when changing barostat
parameters, testing the three discussed integrators (Fig. 2). We
first fixed NP = 1 and investigated the dependence of the re-
sults on τP (Fig. 2a). Any τP ≥ 0.1 report results consistent
with the reference. As expected, the statistical error on the
volume and on its fluctuations grows with τP. This suggests
that, in order to equilibrate and sample the volume variable
as quickly as possible, τP should be chosen as small as pos-
sible. The autocorrelation time of V can be seen to be close
to τP when τP is large enough (see Fig. S2). The relationship
between stochastic cell rescaling and the Langevin piston ap-
proach can be appreciated by comparing the autocorrelation
function of the volume in a Langevin piston with decreasing
values of the barostat mass (see Fig. S3). We then fixed τP = 1
and investigated the dependence of the results on NP (Fig. 2b).
NP ≥ 10 resulted in a volume variance observably larger than
its reference value. Interestingly, the three introduced integra-
tors resulted in very similar accuracy when used with the same
parameters.

For the two integrators that allow an effective energy drift
to be defined, we computed this drift for all the chosen sets of
parameters (Fig. 2c). As long as τP ≥ 1 and NP = 1 the drift
was of the order of 10−6 energy units per step, comparable
to the one obtained in NV T simulations. By testing different
values of NP, we observed that the drift steadily grew with NP.
This drift can be used to estimate if the violations of detailed

c)

b)

a)

FIG. 2. Results from simulations of a Lennard-Jones fluid. a) Av-
erage and fluctuations of the volume (left and right panels, respec-
tively) as a function of the time constant for pressure coupling (τP)
at fixed frequency for pressure coupling (NP = 1). b) Average and
fluctuations of the volume (left and right panels, respectively) as a
function of the frequency for pressure coupling (NP) at fixed time
constant for pressure coupling (τP = 1). c) Effective energy drift
per step, obtained from the slope of a line interpolating the effective
energy drift on the entire trajectory. With some settings, a negative
slope is obtained and is here shown as 10−10.

balance induced by the barostat are exceeding those that are
present also in absence of the barostat.14

All the reported results were obtained using the formula-
tion in which momenta are scaled when volume changes (see
Sec. II B). Results obtained without scaling momenta were
equivalent and are reported in Fig. S4.

B. Liquid water

We then tested stochastic cell rescaling on the simulation
of a box of TIP3P water molecules. These simulations were
done using GROMACS, which includes an implementation
of the Parrinello-Rahman algorithm4 that is known to report
results in the NPT ensemble and can thus be used as a refer-
ence. We also tested the Berendsen algorithm,28 that neglects
the noise term and is expected produce incorrect volume fluc-
tuations. In the comparison between the Parrinello-Rahman
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b)

a)

FIG. 3. Results from simulations of a TIP3P water box. a) Average
and fluctuations of the volume (left and right panels, respectively)
as a function of the time constant for pressure coupling (τP) at fixed
frequency for pressure coupling (NP = 1). b) Average and fluctua-
tions of the volume (left and right panels, respectively) as a function
of the frequency for pressure coupling (NP) at fixed time constant
for pressure coupling (τP = 2 for Parrinello-Rahman and Berendsen,
τP = 0.5 for stochastic cell rescaling).

and the two other schemes, one should consider that there is
not an equivalence in the definition of τP. Thus, results at the
same τP cannot be directed compared.

We first analyzed the dependence of volume averages and
fluctuations as a function of τP, setting NP = 1 (Fig. 3a). Vol-
ume averages were always consistent in the three schemes,
but the Parrinello-Rahman implementation showed some in-
stability for the smallest choice of τP = 0.1 ps. Volume fluc-
tuations obtained with Parrinello-Rahman and with stochas-
tic cell rescaling were consistent and lead to an estimate of

the isothermal compressibility equal to βT =
σ2

V
⟨V ⟩kBT ≈ 1.05×

10−3 nm3

kJ/mol ≈ 6.3× 10−5bar−1. These results are consistent
with those reported in Ref. 63 for the same water model. We
notice that this value is markedly different from the experi-
mental value βT,exp = 4.5× 10−5bar−1. This discrepancy is
known for the TIP3P model. The experimental compressibil-
ity has been here used as an input parameter. The effect of
choosing an input compressibility that is inconsistent with the
compressibility of the simulated system is only to change the
effective relaxation time of the volume, as it can be seen by
computing its autocorrelation function (see Fig. S5). Fluc-
tuations were significantly underestimated by the Berendsen
barostat. Counterintuitively, the fluctuations reported by the
Berendsen barostat increased when τP decreased. We inter-
pret this effect as a consequence of the fact that the amplitude
of the fictitious noise that is implicitly included in the Berend-
sen barostat by the usage of the instantaneous kinetic energy
grows when τP decreases (see Eq. 6), partly compensating for
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FIG. 4. Dependence of performance on choice of NP. Results are
for the water box simulation in GROMACS and were produced us-
ing 4 cores on a Intel® Xeon® CPU E5-2620 v2 (2.10GHz) and 1
NVIDIA GeForce GTX TITAN GPU. Error bars report the standard
deviation over 5 simulations lasting 1 ns. The red dashed line and
shade report the performance and standard deviation, respectively, of
an NV T simulation for the same system.

the lack of an explicit noise term.
We then analyzed the dependence of volume averages

and fluctuations as a function of NP, setting τP = 2 ps
for Parrinello-Rahman and Berendsen and τP = 0.5 ps for
stochastic cell rescaling (Fig. 3b). In all cases, a too large NP
resulted in an overestimation of the fluctuations. For this spe-
cific system and simulation parameters, NP = 10 seems a rea-
sonable compromise for all barostats. We notice that NP = 10
is already capable to give a significant performance boost (see
Fig. 4).

A validation similar to the one reported in Refs. 47 and 48
was then performed on a smaller water box. The results are
reported in Fig. S6 and in Table S1, and confirm that the qual-
ity of the volume distributions obtained with our implementa-
tion of the stochastic cell rescaling algorithm is significantly
more reliable than the one obtained with the Berendsen baro-
stat. Interestingly, stochastic cell rescaling appears as slightly
closer to the reference result than the Parrinello-Rahman baro-
stat (Table S1), although this might depend on the technical
details of the integration scheme implemented in GROMACS.

C. Free energy differences

We then tested the impact of the barostat algorithm on the
calculation of the solvation and absolute binding free energies
for small molecules. This is a relevant case since the incor-
rect volume fluctuations produced by the Berendsen barostat
were recently suggested to significantly affect absolute bind-
ing affinities.32 We here used the same settings reported in
Ref. 32, and in particular the same extended ensemble proto-
col, on a host-guest system (OA-G3) and on a guest-only sys-
tem (G3). Since the extended ensemble protocol is not com-
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TABLE II. Free-energy differences (kJ/mol) for decoupling of the
guest 5-hexenoic acid in host-guest (OA-G3) and guest only (G3)
simulations in solution performed with the Expanded Ensemble
method. ∆G in the standard state is computed subtracting the con-
tribution of the restraint acting on the guest in the decoupled state.

OA-G3 G3 ∆G
Berendsen 433.1 ± 0.6 389.0 ± 0.5 -27.3 ± 0.7

Stochastic cell rescaling 432.6 ± 0.6 387.9 ± 0.5 -28.0 ± 0.7

TABLE III. Free-energy of solvation (kJ/mol) computed from decou-
pling simulations of the guest (G3) and ligand E20 in solution per-
formed with the Hamiltonian Replica Exchange method. The sim-
ulations of G3 were performed at varying box sizes: a larger one
defined with a 1.2 nm distance (-d 1.2) from the guest in all direc-
tions, and a smaller one with a 0.8 nm distance (-d 0.8).

G3 -d 1.2 G3 -d 0.8 E20
Berendsen 389.40 ± 0.05 389.65 ± 0.10 173.02 ± 0.14

Parrinello-Rahman 389.35 ± 0.17 389.03 ± 0.12 172.28 ± 0.13
Stochastic cell rescaling 389.41 ± 0.06 389.31 ± 0.14 172.70 ± 0.13

patible with the Parrinello-Rahman implementation present in
GROMACS, we only report results obtained with stochastic
cell rescaling and Berendsen algorithms. The solvation free
energies obtained with different barostats are close to each
other (see Table II). Their differences, which enter in the
calculation of the absolute binding free energy, agree within
the respective statistical error. We remark that the absolute
binding free energies reported in Table II did not include cor-
rections for finite size effects, and should not be compared
quantitatively with those reported in Ref. 32. However, these
corrections are expected to be independent of the choice of the
barostat.

In order to better investigate the possible effects of incorrect
volume fluctuations on the calculation of solvation free ener-
gies, we tested the guest-only system in a replica-exchange
protocol that is compatible with the Parrinello-Rahman baro-
stat implemented in GROMACS. In this case, the size of the
water box was decreased so as to amplify the impact of the
barostat algorithm (see Table III). For all the tested settings,
the discrepancy between the results obtained with the Berend-
sen, stochastic cell rescaling, and Parrinello-Rahman barostats
were below a fraction of kJ/mol. We notice that the reported
estimate of the statistical error is likely an underestimation
since it does not take into account the exchange of coordi-
nates between the replicas. Tests performed with a larger lig-
and (E20), representative of typical drug molecules pursued in
medicinal chemistry frameworks, confirm that differences are
small (< 1 kJ/mol) and likely not correlated or weakly corre-
lated with the choice of the barostat.

D. Membrane simulation

We finally tested the impact of the barostat algorithm on the
equilibration of a model membrane, including a short trans-
membrane protein. In this case we employed the anisotropic
version of the stochastic cell rescaling, Berendsen, and

Parrinello-Rahman algorithms, where no external tension is
applied to the membrane. Whereas the simulations are prob-
ably too short to properly equilibrate this system, it is clear
that stochastic cell rescaling and Parrinello-Rahman provide
consistent results, whereas the Berendsen barostat leads to a
suppression of the fluctuations both in the membrane surface
and in the cell size in the direction orthogonal to the mem-
brane (Table IV). Time series for the simulated trajectories
are reported in Fig. S7.

IV. DISCUSSIONS

In this work, we introduced a barostat named stochastic
cell rescaling that is driven by a first order differential equa-
tion on the volume. The formulation makes it very similar to
the popular Berendsen barostat,28 but includes a noise term
to enforce the correct volume fluctuations. Being based on a
first-order differential equation, the method can be used effec-
tively in equilibration phases. The tested systems range from
simple fluids to macromolecular constructs and are modeled
using intra and inter-molecular interactions as well as con-
straints. A version suitable to control surface tension is also
presented and tested on a membrane system. In all tested
cases, the fluctuations obtained with a reference implementa-
tion of the Parrinello-Rahman algorithm were reproduced for
a broad range of choices of the relaxation time of the barostat.
Our algorithm can be implemented using either the instanta-
neous kinetic energy or its average value, resulting in very
similar behaviors in the tested cases. The choice between the
two formulations can be guided by practical reasons, such as
the ease of their implementation in a given MD code. The
algorithm can be easily modified to make usage of the molec-
ular virial (see, e.g., Refs. 12, 13, 17, and 22) provided that
molecular positions and, optionally, velocities are scaled in-
stead of atomic ones. Stochastic cell rescaling can in principle
be combined with any thermostat to sample the isothermal-
isobaric ensemble. In particular, in the membrane simulation
presented here we tested its usage in combination with the
Nose-Hoover thermostat,6,61 whereas in the other simulations
we used stochastic velocity rescaling.30 In general, our recom-
mendation would be Langevin dynamics,64 if a local thermo-
stat is desired to independently thermalize all degrees of free-
dom, or stochastic velocity rescaling, if a global thermostat is
preferred so as to avoid slowing down particle diffusion.65

Similarly to the Berendsen barostat, our scheme has a sin-
gle control parameter, τP, that controls the equilibration rate,
but has to be complemented with an estimate of the isother-
mal compressibility of the system βT . For the simulation of
solvated systems, this compressibility is largely dependent on
the properties of the solvent, so that in typical applications one
can just use an estimate of its value for water. For other sys-
tems, it can be estimated by computing volume fluctuations

σV in a test run and using the relationship βT =
σ2

V
⟨V ⟩kBT . In any

case, only the ratio βT/τP between these two parameters en-
ters the algorithm, implying that an incorrect estimate of βT
by, for instance, a factor two would result in an error in the
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TABLE IV. Average (⟨V ⟩) and fluctuations (var(V )) of the volume, area of the simulation box along the xy plane (A) and length of the box
along the z axis (L) for a lipid membrane system. The system comprises a bilayer made up of DPPC lipids and the short transmembrane protein
KALP15. Note that the membrane is oriented in such a way that the lipid bilayer lies on the xy plane and the normal of the bilayer is aligned
with the box z axis.

Parrinello-Rahman Stochastic cell rescaling Berendsen
⟨V ⟩ (nm3) 280.30 ± 0.03 280.23 ± 0.02 280.25 ± 0.03
σ2

V (nm6) 0.723 ± 0.005 0.728 ± 0.010 0.227 ± 0.004
⟨A⟩ (nm2) 38.03 ± 0.07 37.88 ± 0.09 38.45 ± 0.09
σ2

A (nm4) 0.35 ± 0.02 0.379 ± 0.015 0.277 ± 0.012
⟨L⟩ (nm) 7.372 ± 0.014 7.399 ± 0.018 7.290 ± 0.016
σ2

L (nm2) 0.0125 ± 0.0007 0.0143 ± 0.0006 0.0094 ± 0.0004

control of the relaxation time of the barostat of a factor two.
Given the robustness of the results as a function of τP, we con-
sider this as a minor drawback. We notice that this holds also
for the original Berendsen barostat.

The relationship between stochastic cell rescaling and the
Berendsen barostat is very similar to the relationship between
stochastic velocity rescaling and the Berendsen thermostat.
Importantly, the probability distribution of the kinetic energy
is known a priori, allowing the equations of the stochastic
velocity rescaling thermostat to be solved exactly.30 On the
contrary, the probability distribution of the volume depends in
a non trivial manner on the coordinates. As a consequence,
the barostat equations must be integrated approximately with
a finite time step algorithm, and results might be incorrect if
the coupling parameter τP is chosen too small. We here tested
a number of algorithms showing that, whereas only some of
them allow detailed-balance violations to be quantified, all
of them can be used in practical applications for reasonable
choices of the input parameters. We make available all the al-
gorithms in an educational MD code and the simplest one in
the GROMACS code. Source codes and instructions can be
found at http://github.com/bussilab/crescale.

Stochastic cell rescaling can be seen as a first-order version
of the Langevin piston algorithm,18 and indeed it can be ob-
tained by choosing a piston inertia small enough and a friction
coefficient correspondingly large (see Supplementary Mate-
rial, Sec. II). The analogy between the Langevin piston and
the Berendsen barostat was already pointed out in Ref. 18, al-
though resulting in a first-order equation that was suggested
to be difficult to implement. Since the original Langevin pis-
ton algorithm was based on the Andersen thermostat, where
absolute changes of the volume are driven rather than rela-
tive ones, the first-order equation suggested in Ref. 18 differs
from Eq. 5, and its deterministic part thus differs from the one
used in the Berendsen barostat. The advantage of the present
formulation is that it can be straightforwardly implemented in
any code supporting the Berendsen barostat, whereas a stan-
dard Langevin piston implementation should be built on top
of a second-order barostat. In addition, stochastic cell rescal-
ing works by construction in the high-friction limit and it is
thus expected to be always stable in equilibration phases, still
retaining the correct fluctuations in production runs.

A number of papers have shown artifacts related to the
use of the Berendsen thermostat, see, e.g., Refs. 47, 48, 66–
68, including broken reversibility and incorrect fluctuations.

The artifacts on the reversibility are relatively small.68,69 The
largest issue is the underestimation of energy fluctuations,
that has an effect on replica-exchange simulations where the
incorrectly distributed energies are used to compute accep-
tance probabilities.67 The Berendsen barostat, similarly, is
known to result in incorrect volume fluctuations (see, e.g.,
Refs. 47, 48, and 70), and thus should not be used to evalu-
ate compressibilities. The incorrect volume fluctuations could
also introduce significant artifacts in replica-exchange sim-
ulations where replicas are simulated at different pressure71

or surface tension.72 In these cases, a barostat reproducing
correct volume fluctuations has to be considered as manda-
tory. We here tested the result of free-energy calculations
required to estimate ligand affinities, that were recently re-
ported to be dependent on barostating details and, in particu-
lar, to display measurable artifacts induced by the use of the
Berendsen barostat.32 According to our results, all the tested
barostats, including the Berendsen one, were leading to equiv-
alent results in this specific application. This suggests that
the discrepancies observed in Ref. 32 might be a consequence
of some other implementation detail, and that artifacts of the
Berendsen barostat on the properties of solvated molecules
that are not directly correlated with volume fluctuations might
be small. Nevertheless, we recommend stochastic cell rescal-
ing as a better alternative since, thanks to the additional noise,
it is guaranteed to sample the correct distribution.

The semi-isotropic version of stochastic cell rescaling was
tested on a membrane simulation. These tests are more qual-
itative, since it is difficult to obtain statistically converged re-
sults on this system within the simulated time scales. Further
tests will be necessary to see if pathological behaviors appear
when the fraction of one phase is much larger than the frac-
tion of the other phase, or when the difference in compress-
ibility between the two phases is larger. It will be important to
verify how stochastic cell rescaling compares with Parrinello-
Rahman4 and anisotropic Martyna-Tobias-Klein8 algorithms
in these difficult cases. A more flexible formulation where
all the elements of the cell matrix can be adjusted will be the
subject of a later work.

In summary, stochastic cell rescaling provides a simple
first-order barostat that can be equally used in equilibration
and production runs and can be adopted as a drop-in replace-
ment of the Berendsen barostat, with minimal implementation
changes that allow the isothermal-isobaric fluctuations to be
properly sampled.



10

V. SUPPLEMENTARY MATERIAL

Supplementary Material includes Supplementary Methods
related to the center-of-mass contribution to the pressure, the
relationship with Langevin piston algorithm, more details on
the integration of equations of motion and on the calculation
of the energy drift, and the full derivation of the semi-isotropic
version of the barostat. Supplementary Material also includes
Supplementary Results related to the validation of the volume
distributions, autocorrelation functions of the volume, results
obtained with the formulation of the barostat where the aver-
age kinetic energy is used to compute the internal pressure,
physical validation tests on a water box, and time series for
the membrane simulations.
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