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Abstract. We give a pedagogical introduction to the generalized hydrodynamic
approach to inhomogeneous quenches in integrable many-body quantum systems.
We review recent applications of the theory, focusing in particular on two classes
of problems: bipartitioning protocols and trap quenches, which represent two
prototypical examples of broken translational symmetry in either the system
initial state or post-quench Hamiltonian. We report on exact results that have
been obtained for generic time-dependent correlation functions and entangle-
ment evolution, and discuss in detail the range of applicability of the theory.
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Finally, we present some open questions and suggest perspectives on possible
future directions.

Keywords: entanglement in extended quantum systems, quantum integrability
(Bethe ansatz), quantum quenches, quantum transport in one-dimension
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1. Introduction

If an isolated many-body quantum system is prepared in a pure state and left to evolve
unitarily, its state remains pure at all times, eventually experiencing quantum recurrence
and revivals. This is, however, no longer the case if one looks at the density matrix
reduced to finite regions of space. The latter can be driven to a stationary state by the
global unitary dynamics, provided that the whole system is taken to be infinitely large.
This simple observation has led, over the past two decades, to the development of a
rich literature aiming at understanding concepts of local relaxation and thermalisation
in isolated systems, based on first principle investigations [1–4]. This effort has been
triggered in no small part by recent revolutionary experiments on trapped ultracold
atomic gases [5–22], where an unprecedented degree of isolation and control can be
achieved.

An early but central realization of these studies has been that the constrains imposed
by conservation laws with local spatial density bring about qualitative differences in the
relaxation process. Indeed, while in the generic case one observes local thermalisation
[23–26], in integrable systems—characterised by an extensive number of such ‘local’ con-
servation laws—the stationary state is described by a non-thermal statistical ensemble,
the so-called generalized Gibbs ensemble (GGE) [27]. The exceptional non-equilibrium
features of integrable systems can be traced back to the fact that their entire spectrum
can be described in terms of stable quasiparticles. This represents an invaluable aide for
the theoretical description and lead for instance to the exact determination of spectrum
and scattering matrix in such systems [28, 29].

Given the complexity of non-equilibrium many-body phenomena, theoretical research
initially focused on simplified protocols where the essential physics can be revealed. The
most famous example in the recent literature is certainly the quantum quench [30, 31]:
a system is prepared in a homogeneous initial state and left to evolve unitarily under
a local Hamiltonian. Even in this idealised setting, it was not obvious whether integra-
bility could lead to exact results in the presence of interactions. Indeed, although their
spectrum is known, the structure of the eigenstates of interacting integrable systems is
notoriously complicated [28], placing most of the quantities of interest out of the reach
of direct approaches. In fact, the development of analytic methods to provide non-trivial
predictions on the post-quench dynamics has been an important achievement of recent
research [32].
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An immediate obstacle is that GGEs are very hard to handle in the presence of inter-
actions, essentially because they incorporate an extensive number of constraints. This
issue, which at first seriously jeopardised the very utility of GGEs, has been resolved
by introducing more practical alternative representations for these statistical ensembles
[33–35]. In particular, a convenient one is the generalized microcanonical description
[34, 35]. This approach is based on the principle of equivalence of statistical ensembles
and consists in representing the GGE using a single, appropriately chosen, eigenstate of
the Hamiltonian, which is commonly referred to as the representative eigenstate. This
allows one to compute all expectation values in terms of the quasi-momentum distribu-
tion function of the stable quasiparticles in the representative eigenstate. The emerging
physical picture is thus reminiscent of the standard statistical-mechanical description of
non-interacting quantum gases at thermal equilibrium, whose thermodynamic informa-
tion is fully encoded in the momentum distribution—or occupation numbers—of the
free modes. In translational invariant systems this approach can be used to determine
exactly the stationary values of relevant observables even in the presence of non-trivial
interactions [35–37].

Translational invariance, however, is more than a mere technical assumption and lies
at the very heart of the aforementioned theoretical framework: the very qualitative fact
that local subsystems relax to stationary states hinges on the presence of translational
symmetry. On the other hand, in many interesting physical settings these hypotheses
are necessarily violated. For example this happens in cold-atom experiments, due to
finite number of particles and the presence of confining potentials, or in general in all
settings exhibiting a non-trivial transport of conserved charges. The theory of gener-
alized hydrodynamics (GHD) was originally introduced precisely to address the latter
issue, namely to extend the study of quenches in integrable systems to inhomogeneous
settings [38, 39]. GHD is based on the realisation that when translational symmetry is
broken, we can still achieve an efficient late-time description of local subsystems in terms
of space-time-dependent quasi-stationary states. These states can once again be char-
acterised microcanonically in terms of their quasiparticle quasi-momentum distribution
functions. In its basic formulation the GHD approach is valid at the hydrodynamic scale,
but it can be extended to include genuine ‘quantum’ effects, such as the spreading of
entanglement and quantum correlations. Furthermore, differently from Luttinger-liquid
(LL) hydrodynamics, it is not restricted to low energies.

Since its introduction, GHD has experienced a rapid development, already partially
covered in a review [40] and a set of lecture notes [41], proving to be a very versatile
and powerful tool with many applications (most of which are discussed in other con-
tributions to this volume), and being eventually experimentally verified [42, 43] (see
in particular the review by Bouchoule and Dubail in this volume). The aim of this
manuscript, which sets it apart from the other aforementioned surveys, is to provide
a self-contained pedagogical presentation of the theory, with a special focus on the
study of inhomogeneous quantum quenches. In particular, we will consider two proto-
typical quantum quenches where translational symmetry is broken by either the initial
state (‘bipartitioning protocols’) or the post-quench Hamiltonian (‘trap quenches’), and
review recent results in these two important types of problems. We point out that
particular types of these quenches are also treatable by other means (see, e.g. [44–46]).
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Moreover, there exist inhomogeneous quantum quenches after which observables exhibit
behaviours qualitatively similar to the ones considered here but that cannot be addressed
using generalised hydrodynamics [47–51]. Both these aspects will not be covered in this
review.

The rest of this article is organised as follows. We begin in section 2 by introducing
the general formalism of GHD. There we present a pedagogical discussion focusing on
a simple non-interacting model, which we use to highlight the main conceptual and for-
mal points. We first review the case of a homogeneous quench (section 2.2) and show
how one can build on its solution to treat the simplest case of inhomogeneous quench
dynamics: the bipartitioning protocol, i.e. the sudden junction of different homogeneous
states (section 2.3). More general inhomogeneous quenches are discussed in section 2.4,
while in section 2.5 we discuss the changes occurring in the presence of interactions.
We continue with section 3, which contains a review of several works where GHD has
been applied to the study of bipartitioning protocols, focusing in particular on the main
physical implications of the results. Next, section 4 is devoted to the dynamics of quan-
tum entanglement, while section 5 focuses on recent developments to capture quantum
fluctuations around an inhomogeneous background (namely, to compute generic time-
dependent correlation functions for a particular class of states). Section 6 presents a
discussion about genuinely quantum effects in inhomogeneous quenches and how GHD
can be extended to account for them. Finally, section 7 contains our conclusions and a
brief discussion of some of the open questions.

2. GHD approach to inhomogeneous quenches

In this section we provide a self-contained introduction to the main concepts of GHD,
seen as a method to characterise the late-time non-equilibrium dynamics of inhomoge-
neous integrable systems. Since the latter relies heavily upon the formalism developed
to treat the homogeneous case, we begin by considering homogeneous quenches and
briefly review some of the aspects that are directly relevant for the inhomogeneous gen-
eralisation (for a comprehensive review we refer the reader to [52]). Before doing that,
however, we introduce a simple system of non-interacting fermions which we will use
as a paradigm. In sections 2.2–2.4, we use this system to exemplify the main features
of GHD. The appropriate modifications of the treatment to account for interacting
integrable interactions are discussed in section 2.5.

2.1. A simple integrable model

Let us consider a system of spinless fermions on the lattice described by the following
pairing Hamiltonian, with coupling J and chemical potential h

H(h) = −J

L/2∑
x=−L/2+1

(c†xcx+1 + c†x+1cx + c†xc
†
x+1 + cx+1cx + 2hc†xcx) + 2JhL. (1)

https://doi.org/10.1088/1742-5468/ac257d 5

https://doi.org/10.1088/1742-5468/ac257d


J.S
tat.

M
ech.

(2021)
114004

Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects

Here we set the lattice spacing a to one, we assumed the number of sites L to be even,
we denoted by c†x, cx a set of fermionic creation and annihilation operators fulfilling the
canonical anti-commutation relations

{c†x, c†y} = 0 = {cx, cy}, {c†x, cy} = δx,y, (2)

and we assumed periodic boundary conditions (c†L+x = c†x). Note that in the above
equations we set h̄ = 1: we will abide by this convention throughout the entire review
except for section 6, where the h̄ dependence will be restored for pedagogical reasons.

The Hamiltonian (1) is mapped onto a particular spin-1/2 chain (the celebrated
transverse field ising model) through a Jordan–Wigner transformation [53]. The map-
ping from fermions to spins, however, is non-local and forces one to distinguish between
two sectors that differ in the boundary conditions. Specifically, periodic boundary con-
ditions for the fermions are mapped into periodic or anti-periodic boundary conditions
for the spins and vice versa. This requires a slightly more refined analysis but does not
change the main results that we are going to present, which are independent of the
boundary conditions. To avoid this inessential complication we stick to the fermionic
form (1).

Since the Hamiltonian (1) is a quadratic form of fermionic operators and in addition
is translational invariant , it is directly diagonalised by a combination of Fourier and
Bogoliubov transformations. Namely, it can be written as

H(h) = 2J
∑
k

ε(k)

(
b†kbk −

1

2

)
. (3)

Here the sum runs over a discrete, or ‘quantized’, set of rational multiples of π

∑
k

f(k) =

L∑
j=1

f

(
2π

L
j − π

)
, (4)

and we introduced the ‘dispersion relation’

ε(k) =
√
1 + h2 − 2h cos k, (5)

and the ‘Bogoliubov fermions’

b0 =
1√
L

L∑
x=1

c†x, bk �=0 =
1

2
√
L

L∑
x=1

eikx eiΘh(k)/2(cx − c†x) + eikx e−iΘh(k)/2(cx + c†x). (6)

Here

eiΘh(k) =
h− eik

ε(k)
, (7)

is commonly referred to as the Bogoliubov angle. Note that b†k, bp fulfil the canonical
commutation relations (2) with x and y replaced by k and p. We also stress that the
quantization conditions for the quasi-momenta appearing in the sum (3), i.e.

eiLkj = 1 (8)
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do not couple different momenta.
From the representation (3) we see that the Hamiltonian is non-interacting : it is

written as an independent sum of mode operators

nk = b†kbk, [nk,np] = 0, (9)

describing the occupation of a single Bogoliubov mode (a mode k has energy ε(k)). This
means that the eigenstates of the Hamiltonian are readily written as

|{kj}Nj=1〉 = b†k1 . . . b
†
kN
|Ω〉, (10)

where |Ω〉 is the vacuum state such that bk|Ω〉 = 0 for all k.
Let us now proceed to illustrate three key concepts that will play an important role

in the upcoming discussion.

2.1.1. Conserved charges. The Hamiltonian (1) commutes with the following set of
operators

Qn =
∑
k

qn(k)

(
nk −

1

2

)
n = 0, 1, 2, . . . ,L− 1, (11)

where qn(k) are called ‘bare charges’ or ‘single-particle eigenvalues’ and are defined as

q2n(k) = 2Jε(k) cos(nk), q2n+1(k) = 2J sin((n+ 1)k), n = 0, 1, 2, . . . . (12)

One can directly see that Qn commute with the Hamiltonian because they are linear
combinations of the mode operators (note in particular that Q0 = H). These conserved
operators, or ‘charges’, have the following three key properties:

(a) They can all be written as sums of densities that are local in space, i.e. act non-
trivially only on a finite number of neighbouring sites. Specifically, we have [33, 54]

Qn =

L∑
x=1

qn,x + const n = 0, 1, 2, . . . ,L− 1, (13)

with [55, 56]

q2m,x = −J

2

[
(c†x − cx)(c

†
x+m+1 + cx+m+1 + c†x−m+1 + cx−m+1)

− h(c†x − cx)(c
†
x+m + cx+m + c†x−m + cx−m)

]
, (14)

q2m+1,x = −Ji(c†xcx+m+1 − c†x+m+1cx). (15)

Conserved operators with this property are called local conservation laws (or local
charges).

(b) Their number is extensive, i.e. it is proportional to the volume L.

(c) They are linearly independent.

https://doi.org/10.1088/1742-5468/ac257d 7
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These are general features of integrable models. In fact, possessing an extensive set
of independent local conserved charges can be considered the defining feature of an
integrable system, although, in some cases, the notion of independence can be non-
obvious, see, e.g. [57].

Let us now consider the commutator between qn,x and the Hamiltonian. Since qn,x
is local and H has a local density, the commutator is also local. Moreover its sum over
the entire chain gives [H,Qn] = 0. Therefore, there must exist a local operator jn,x such
that

[H, qn,x] = i(jn,x − jn,x−1), (16)

where we included i in order for jn,x to be Hermitian. The local operator jn,x is called
current operator associated with the charge Qn and is completely specified by (16) and
the condition 〈Ω|jn,x|Ω〉 = 0. Note that (16) is nothing but a continuity equation and
can be brought in the standard form by adopting the Heisenberg picture

∂tqn,x(t) = i[H, qn,x(t)] = jn,x−1(t)− jn,x(t), (17)

where we used the standard definition of Heisenberg operators qn,x(t) = eiHtqn,x e
−iHt. As

evident from (16), the current does not simply depend on the charge, but on the very
definition of its density. What is probably less intuitive is that even the total current
Jn =

∑
x jn,x, which is the sum over the entire chain of the current operator, depends

on the definition of the charge density. In particular, our definitions of charge densities
(14) and (15) result in the following total currents [58, 59]

J2n =
Jh

2
(Q2n+1 −Q2n−3), (18)

J2n+1 =
J2

4

∑
x

[
(cx − c†x)(cx+n+2 + c†x+n+2) + (cx + c†x)(cx+n − c†x+n)

]
. (19)

We stress that the above considerations apply to all integrable models regardless of
interactions. In particular, since there is always an extensive number of local conservation
laws, we have an extensive number of operatorial continuity equation (17). The main
difference encountered in the interacting case is that one cannot find explicit expressions
like (14), (15) and (18), (19) for generic charge densities and currents.

2.1.2. Thermodynamic description of expectation values. Another key property of inte-
grable models is that the expectation values in their eigenstates are expressed in terms of
the ‘momentum distribution’ of the corresponding set of quasiparticles. To understand
what this means in our simple example let us look at the following expectation value

〈{kj}Nj=1|c
†
x+�cx|{kj}Nj=1〉 =

1

L

N∑
j=1

e−ikj� cos2(Θh(kj)/2)− eikj� sin2(Θh(k)(kj)/2)

+
1

L

∑
k

eik� sin2(Θh(k)/2), (20)

https://doi.org/10.1088/1742-5468/ac257d 8
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where the sum in the first term of the rhs runs over the momenta of the eigenstate
|{kj}Nj=1〉. Considering now the thermodynamic limit

limth : L,N →∞ with d =
N

L
fixed, (21)

at fixed � we find

limth〈{kj}Nj=1|c
†
x+�cx|{kj}Nj=1〉 =

∫ π

−π

dk
{
e−ik� cos2(Θh(k)/2)ρ(k)

+ eik� sin2(Θh(k)/2)) (1− ρ(k))
}
, (22)

where ρ(k) is the momentum distribution of the quasiparticles, also known as ‘root
density’ in the literature of integrable models, which appears as the weight of the
integrals replacing the sums in the thermodynamic limit

limth
1

L

N∑
j=1

f(kj) =

∫
dk ρ(k)f(k). (23)

Note that some authors define the root density as the limit of a sequence

ρ(k) = limth
1

L(kj+1 − kj)
k ∈ (kj, kj+1). (24)

From the definition of ρ(k), up to O(L0), we have

2πLρ(k)Δk = #ofmomenta in [k, k +Δk] present in the state|{kj}Nj=1〉.
(25)

Equation (22) proves that, in the thermodynamic limit, the expectation value of

c†x+�cx in the eigenstate |{kj}Nj=1〉 depends only on the state’s root density: no other
property of the eigenstate needs to be retained. A completely analogous reasoning can
be applied to the expectation value of all other quadratic combinations of the fermionic
operators in |{kj}Nj=1〉 (provided that their distance is finite in the limit). Moreover,

using that the eigenstates fulfil Wick’s theorem for the fermions c†x, cx, this statement is
extended to all local operators.

Importantly, the correspondence between eigenstates and root densities is not one-
to-one. In fact, exponentially many (in the volume) eigenstates of the Hamiltonian
correspond to the same root density. This can be intuitively understood by noting that
small changes to the distribution {kj}Nj=1 do not change the root density. More precisely
by counting all such ineffective changes one finds that the number of eigenstates corre-
sponding to a given ρ(k) is ≈ eLSYY[ρ] [60], where we introduced the so-called Yang–Yang
entropy

SYY[ρ] =

∫ π

−π

dk {ρt(k) log ρt(k)− ρ(k) log ρ(k) + (ρt(k)− ρ(k)) log (ρt(k)− ρ(k))} ,

(26)

https://doi.org/10.1088/1742-5468/ac257d 9
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and

ρt(k) =
1

2π
(27)

is the total density, namely the density of ‘vacancies’ (or slots) that can or not be
occupied by the momenta [28, 29].

2.1.3. Root density from the charges. The last key property that we want exemplify
here is the so-called ‘string-charge duality’ [37]. Namely, the fact that there is a one-to-
one correspondence between the root density introduced in the previous section and the
expectation values of all charge densities in the thermodynamic limit.

One direction is straightforward: since the charge densities are local operators, the
thermodynamic limit of their expectation values can be expressed in terms of the root
density. In particular, we have

〈qn〉ρ ≡ limth 〈{kj}Nj=1|qn|{kj}Nj=1〉 =
∫ π

−π

dk qn(k)ρ(k), n = 0, 1, 2, . . . . (28)

Note that (28) has a very simple kinetic theoretical interpretation in terms of the quasi-
particles. To find the density of the nth conserved charge one considers the contribution
of a particle with momentum k (qn(k)) times the number of particles of momentum in
[k, k + dk] divided by L(ρ(k)dk) and sums over all allowed values of k.

The key point here is that (28) can be inverted. Namely, one can use it to
find ρ(k) in terms of {〈qn〉ρ}n=0,1,.... This is a straightforward consequence of the fact
that {qn(k)}n=0,1,... is a complete (but not orthogonal) set of functions in L2([−π, π]).
Explicitly we have the following Fourier series expression for the root density

ρ(k) =
1

4πJεh(k)
〈q0〉ρ +

1

2πJεh(k)

∞∑
n=1

〈q2n〉ρ cos(nk) +
1

2πJ

∞∑
n=1

〈q2n−1〉ρ sin(nk). (29)

Note that the string-charge duality implies that the root density can be written as the
expectation of an operator written as an (infinite) linear combination of charge densities.
In the non-interacting case one can re-sum the series and obtain

ρ(k) = lim
μ→0

limth〈{kj}Nj=1|nμ(k)|{kj}Nj=1〉, (30)

with

nμ(k) =
1

L

∑
k′

gμ(k − k′)nk′, (31)

and gμ(x) is a smooth approximation of the periodic Dirac delta function, i.e.

lim
μ→0

gμ(x) =

∞∑
n=−∞

δ(x+ 2πn). (32)
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2.2. Stationary states after homogeneous quenches

Having introduced our toy model (1), we can now move to consider homogeneous quench
problems. Specifically, let us focus on the following protocol

(a) Prepare the system in its ground state |Ψ0〉 = |GS(h0)〉 for a given value h0 of the
chemical potential;

(b) At time t = 0 (suddenly) change the chemical potential to h �= h0;

This means that for t > 0 the system is no longer in equilibrium and undergoes non-
trivial evolution. A crucial point for the following discussion is that both |Ψ0〉 and H(h)
(and hence also |Ψ(t)〉) are translationally invariant.

A natural question is whether, after the quench, the system can eventually go back to
an equilibrium state, i.e. whether it can relax . It is easy to understand that this cannot
happen for the system as a whole. Indeed, relaxation is naturally associated with loss
of information while the evolution of the system is purely unitary and retains all the
information (probabilities are conserved). Nevertheless, relaxation can still be observed
considering finite subsystems in the thermodynamic limit because the system can act
as an effective bath on its own finite parts.

In order to make this intuition quantitative, we probe the physics of local subsystems
by looking at the expectation values of local observables. More precisely, given a local
operator Ox, we consider

lim
t→∞

limth〈Ψ0|Ox(t)|Ψ0〉 = lim
t→∞

limth〈Ψ0|O0(t)|Ψ0〉

= lim
t→∞

limth

∑
n,m

e−i(En−Em)t〈Ψ0|m〉〈n|Ψ0〉 〈m|O0|n〉 (33)

where we denoted by |n〉 the eigenstates of the Hamiltonian, with associated energy
eigenvalues En. If the limit (33) exists for any local observable Ox, then we say that
the system relaxes locally [52]. In this case one can find a stationary state ρ̂s of H (i.e.
[H, ρ̂s] = 0) such that

lim
t→∞

limth〈Ψ0|Ox(t)|Ψ0〉 = limth Tr[O0ρ̂s], (34)

for every local operator Ox. In fact, condition (34) does not specify a state uniquely and
can be fulfilled by many different stationary states ofH. However, all states fulfilling (34)
are equivalent when reduced to finite subsystems in the thermodynamic limit. Therefore
they can be regarded as different representations of the same stationary state, very much
like the different ensembles of standard statistical mechanics [52].

For the quench problem under examination local relaxation can be explicitly proven.
Indeed, one can find a simple integral representation for limth〈Ψ0|O0(t)|Ψ0〉 and evaluate
the limit of infinite times [61, 62]. This can be done every time that both the Hamiltonian
before (H(h0)) and after (H(h)) the quench are quadratic in the same variables. Con-
versely, this is generically impossible in the presence of interactions. Nevertheless,
assuming local relaxation, one can generically find a representation of the stationary
state without solving the dynamics . This can be done in the following two steps

Assume that (34) holds for some stationary state ρ̂s.
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Fix ρ̂s by imposing the conservation of the expectation value of all charge

densities. Indeed, since |Ψ0〉 is translational invariant, taking the expectation value
of (17) we have

∂tlimth〈Ψ0|qn,0(t)|Ψ0〉 = 0, n = 0, 1, 2, . . . , (35)

which implies

limth〈Ψ0|qn,0(0)|Ψ0〉 = lim
t→∞

limth〈Ψ0|qn,0(t)|Ψ0〉

= limth Tr[qn,0ρ̂s], n = 0, 1, 2, . . . . (36)

Let us now show that and are indeed sufficient to fix the stationary state

reached after the quench (a) and (b). We begin by following [34, 35] and representing
ρ̂s microcanonically. Namely we write ρ̂s = |Ψs〉〈Ψs| where |Ψs〉 is a judiciously-chosen
eigenstate of the Hamiltonian. The expectation values in the thermodynamic limit are
then fully characterised by a root density ρs(k) and from (36) we have∫ π

−π

dk qn(k)ρs(k) = limth〈Ψ0|qn,0|Ψ0〉, n = 0, 1, 2, . . . , (37)

which is readily inverted using (29). To find an explicit solution we then only have to
evaluate the ‘initial data’ limth〈Ψ0|qn,0|Ψ0〉. In our case this is easily done by expressing
|Ψ0〉 in terms of the Bogoliubov fermions of the Hamiltonian H(h) (see, e.g. [52]) and
explicitly evaluating the expectation values of (14) and (15). The result reads

limth〈Ψ0|qn,0|Ψ0〉 =
∫ π

−π

dk qn(k)
1− cosΔh,h0(k)

4π
, (38)

where (cf (7))

eiΔh,h0
(k) = eiΘh(k)e−iΘh0

(k). (39)

In fact, in our case we do not need to re-sum (29). Noting that (38) takes the same form
as the lhs of (37) and recalling that {qn(k)} is a complete set we immediately conclude∫ π

−π

dk qn(k)

(
ρs(k)−

1− cosΔh,h0(k)

4π

)
= 0 ∀n ⇒ ρs(k) =

1− cosΔh,h0(k)

4π
.

(40)

One can explicitly verify that ρs(k) agrees with the result found by explicit solution of
the dynamics [61, 62]. We point out that, even if we demonstrated it in a particular

example, the above procedure to obtain the stationary state from the assumptions

and relies on the decoupled form of the charges (11), which are written as sums over
independent modes. Therefore, it can be directly applied to all non-interacting systems
(its generalisation to interacting integrable systems is described in section 2.5).
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Figure 1. Momentum distribution in the stationary state after the quench h0 =
1.5 �→ h = 2.7 versus the thermal one at the same energy density.

From a physical point of view, the main message of the above discussion is that, after
a given transient (which depends on the details of the initial states, and the Hamiltonian
parameters), finite subsystems approach a stationary state that can be determined with-
out solving the dynamics. Note this stationary state is generically non-thermal: see, e.g.
the comparison in figure 1 between (40) and the root density of a thermal state with the
same energy density. Importantly, translational symmetry (of post-quench Hamiltonian
and initial state) implies that the stationary state is the same for all local subsystems
independent of their spatial position. In the next section we will see how this description
has to be modified when translational invariance is broken explicitly.

2.3. Stationarity along rays after bipartitioning protocols

Let us now look at a different quench problem. We consider the case in which the system
is initially separated in two parts, ‘left’ and ‘right’, each prepared in the ground state of
the Hamiltonian for different values of the chemical potential, say hL and hR �= hL. Then,
at time t = 0, the two parts are joined together and left to evolve unitarily according to
the Hamiltonian H(h), with h �= hR �= hL (see figure 2). More precisely, we consider the
following initial state

|Ψ0〉 = |GSL(hL)〉 ⊗ |GSR(hR)〉 (41)

where |GSL(h)〉 and |GSR(h)〉 are respectively the ground states of

HL(h) =

−1∑
x=1−L/2

q
(h)
0,x with c−L/2 = 0,

HR(h) =

L/2∑
x=1

q
(h)
0,x with cL/2+1 = 0, (42)
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Figure 2. Pictorial representation of the bipartitioning protocol. After the sudden
junction of two homogeneous halves a growing region around the junction is affected
by the inhomogeneity. This region is contained in a light cone spreading from the
junction at the maximal speed attainable in the system, i.e. the speed of the fastest
quasiparticles.

and q
(h)
0,x is the energy density operator with field h (cf (14)). Inhomogeneous quench

problems of this kind, i.e. where the initial state is composed by the junction of two
different homogeneous pieces, have been extensively studied in the literature. Of par-
ticular interest have been the sudden junction of two half chains prepared at different
temperatures [38, 39, 63–89] and at different chemical potentials (or fillings) [38, 44, 50,
90–110], but more general initial states have also been considered [38, 111–117], partic-
ularly in relation to studies on the entanglement growth (see section 4 for references).
Here we will refer to inhomogeneous quenches of this kind as ‘bipartitioning protocols’.

The time-evolving Hamiltonian (1) is still invariant under translations but, crucially,
the initial state is not. This means that the expectation values limth〈Ψ(t)|Ox|Ψ(t)〉
maintain a dependence on x and we cannot directly use the strategy of the previous
section to find their large-time limit. As we will see, however, the above strategy can
be successfully modified at the expense of ‘diagonalising’ the continuity equations for a
system with infinitely many conservation laws.

Let us first consider point . Since the expectation values retain a non-trivial

dependence on the position we cannot assume (34). At the same time it is still reasonable
to expect finite subsystems to reach local equilibrium at large enough times. To conciliate
these observations, one might think to impose a condition like (34) with an x-dependent
stationary state. This idea, however, is too naive: an inhomogeneity in the stationary
state inevitably produces dynamics, which makes the infinite-time limit ill defined. In
fact, for the specific bipartite geometry of the initial state, true stationarity can still
emerge along light cones or‘rays’, namely for observables moving away from the junction
at fixed speed. This can be established by analytic calculations in simple cases (see, e.g.
[104, 118–120]), and by direct numerical calculations. Formally, we have

limsc,ζ limth〈Ψ0|Ox(t)|Ψ0〉 = limth Tr[O0ρ̂s(ζ)], (43)

where we introduced the scaling limit

limsc,ζ : x, t→∞ with ζ = x/t fixed. (44)
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This ballistic scaling can be intuitively understood by recalling that in integrable models
the dynamics is interpreted in terms of moving quasiparticles. In this interpretation the
ray dependence comes naturally by noting that observables on a given ray ζ receive a
blend of quasiparticles from the two edges that is fixed by ζ. The ray-dependent station-
ary state ρ̂s(ζ), known as locally quasi-stationary state (LQSS), has been introduced in
[118].

The modification of point is more direct. Instead of imposing the conservation
of the expectation value of all charge densities, we require them to fulfil the continuity
equation

∂t〈Ψ0|qn,x(t)|Ψ0〉+ 〈Ψ0|jn,x(t)|Ψ0〉 − 〈Ψ0|jn,x−1(t)|Ψ0〉 = 0, (45)

which is just the expectation value of (17). Putting all together, we arrive at the following
strategy to predict the late-time properties of the system:

Assume that, in the scaling limit limsc,ζ , every local subsystem is asymptotically
described by ρ̂s(ζ). Namely, assume that (43) holds for every local observable Ox.

Fix ρ̂s(ζ) by imposing (45).

To show that this strategy is able to determine the stationary state we proceed as
in the homogeneous case. We consider the scaling limit, plug (43) in (45), and represent
the stationary state microcanonically obtaining

−ζ∂ζ〈qn,0〉ρζ + ∂ζ〈jn,0〉ρζ= 0, (46)

where 〈·〉ρ denotes the thermodynamic limit of the expectation values in an eigenstate
with root density ρ(k), while ρζ(k) is the root density associated with a given ray ζ.

To proceed, we need to express the expectation values in (46) in terms of the root
densities. The expression for the charge densities is reported in (28) while that for the
currents reads [58]

〈jn,0〉ρ =
∫

dk qn(k)ε
′(k)ρ(k). (47)

Note that, as for the charge densities (28), also the expectation values of the currents
can be interpreted in a kinetic theory fashion. Indeed, viewing the group velocity ε′(k)
as the classical velocity of the quasiparticles with momentum k, we see that (47) is the
expression for the flux of charge Qn generated by the motion of the quasiparticles.

Putting all together and using the completeness of the bare charges {qn(k)} we then
find

−ζ∂ζρζ(k) + ε′(k)∂ζρζ(k) = 0. (48)

The boundary condition for this equation can be found by noting that, since there is
a finite speed for the propagation of signals [121], observables infinitely far from the
junction relax as if the system were homogeneous. Namely

lim
ζ→−∞

limsc,ζ limth〈Ψ0|Ox(t)|Ψ0〉 = limth Tr[O0ρ̂s,L], (49)

lim
ζ→∞

limsc,ζ limth〈Ψ0|Ox(t)|Ψ0〉 = limth Tr[O0ρ̂s,R], (50)
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Figure 3. Profiles of energy density (left) and energy current (right) after the bipar-
titioning protocol starting from the initial state (41) with hL = 0.5, hR = 2.6 and
h = 1.6. The maximum and minimum velocities of the quasiparticles are ζmin = −1,
ζmax = 1, respectively.

where ρ̂s,L and ρ̂s,R are respectively the stationary states reached after the homogeneous
quenches hL → h and hR → h. Using the result (40) and equations (48)–(50) are solved
by

ρζ(k) =
1

4π
− cosΔh,hL(k)

4π
Θ(ε′(k)− ζ)− cosΔh,hR(k)

4π
Θ(ζ − ε′(k)), (51)

where Θ(x) is the step function. Once again, one can directly verify that ρζ(k) agrees
with the result found via explicit solution of the dynamics.

Equation (51) encodes complete information about the local properties of the system
at large times after the quench. In particular, due to the fact that root densities fully
specify the expectation values of local observables, it allows one to access their profiles
throughout the whole light cone ζ ∈ (ζmin, ζmax), where ζmin, ζmax respectively correspond
to the minimum and maximum velocities of the quasiparticles. We note that, despite
the discontinuous step function in (51), since the position of the step changes smoothly
with k, the profiles are continuous in ζ, see, e.g. the example reported in figure 3.

2.4. Quasistationary states after general inhomogeneous quenches

Let us now look at a more general inhomogeneous quench. We consider the case in which
the system is prepared in the ground state of a Hamiltonian of the form (1), but with
a chemical potential hx depending non-trivially on the position. At t = 0 the chemical
potential is then changed to a homogeneous value hx = h for all x and the system is left
to evolve unitarily.

In this case there is no scaling limit in which the expectation value becomes exactly
stationary. Intuitively, however, it is natural to expect that a form of quasi-stationarity
emerges asymptotically in time. Namely, one expects that (43) can be turned into a
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statement of the form

limth〈Ψ0|Ox(t)|Ψ0〉 � limth Tr[O0ρ̂s(x, t)], (52)

where � denotes the leading contribution for large times, i.e. much larger than the
time scale τ th of local relaxation. In writing equation (52) one assumes that at large
enough times, and at the leading order in time, the state becomes locally stationary
and homogeneous. Therefore, it can be replaced by a space-time dependent stationary
state ρ̂s(x, t). In order for this assumption to be consistent, the state ρ̂s(x, t) must be
slowly varying, i.e. there must exist a volume element �× τ of the space-time around
(x, t) such that

Lτ � τ � τth, L� � � � a, (53)

where a and τ th are respectively the lattice spacing of the chain (1) (which we restored
for the sake of clarity) and the local relaxation time, while L� and Lτ are the length
and time scales for the variation of ρ̂s(x, t), cf figure 4. The condition on length scales
in (53) is known as local density approximation (LDA) [6]. Note that, for systems
on the continuum, the lattice spacing a is replaced by the averaged interparticle dis-
tance d. Moreover, we remark that the above condition allows for the substitution (52)
only for expectation values of local observables, i.e. observables with support of the
order of d.

The assumption (52) directly leads to an equation for the root density. Indeed,
repeating the steps of the previous section, with (43) replaced by (52), we find

∂tρx,t(k) + ε′(k)(ρx,t(k)− ρx−1,t(k)) � ∂tρx,t(k) + ε′(k)∂xρx,t(k) � 0, (54)

where ρx,t(k) is the root density representing microcanonically the state ρ̂s(x, t). In the
second step we used that the equation is non-trivial only when ∂tρx,t(k) and ∂xρx,t(k)
are of the same order in time and therefore higher derivatives go beyond the accuracy
of (52).

We see that the final result (54) is a simple non-collisional Boltzmann equation
for ρx,t(k), interpreted as the distribution function of non-interacting classical particles
moving with velocity ε′(k). For a given initial condition imposed at time t = t0 (large
enough to be in the asymptotic regime)

ρx,t0(k) = f(x ;k). (55)

Equation (54) determines the root density for all rescaled times t � t0

ρx,t(k) = f(x− ε′(k)t ;k), (56)

giving a quantitative description of all the local properties of the system at large times
after the quench.

The discussion above is heuristic (for example, it assumes a finite relaxation time
scale, τ th, while this quantity typically diverges for integrable systems). However, it can
be made more precise introducing an appropriate scaling limit. A convenient way to
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Figure 4. Pictorial representation of (space-time) scale separation. In the left side,
ρ(x, t) is the density profile of particles, as it looks like at large scales: the macro-
scopic length- L� and time- Lτ scales are those at which inhomogeneities are
important, and the global evolution takes place. The microscopic scales, instead,
are associated to the interparticle distance d (right) and the local relaxation time
τ th (left). The central part shows the mesoscopic scale, i.e. the volume element �× τ
where the system can be considered at the same time homogeneous in space and
locally relaxed to a quasi-stationary state ρ̂s(x, t), while still containing a thermody-
namically large number of particles. At this intermediate scale, the corresponding
quasiparticle quasi-momentum distribution evolves according to a hydrodynamic
equation (equation (54) for non-interacting systems).

proceed is to introduce a length scale Λ for the variation of hx, namely

hx = g
(x
Λ

)
, (57)

with g(x) smooth function, and the rescaled variables

τ = vMt/Λ, ξ = x/Λ, (58)

where vM = maxk ε
′(k) is the maximal velocity of the quasiparticles. In this language,

the analogue of (43) is obtained by taking the weak inhomogeneity limit Λ→∞ (see,
e.g. appendix B of [122])

lim
Λ→∞

limth〈Ψ0|Ox(t)|Ψ0〉 = limth Tr[O0ρ̂s(ξ, τ)], (59)

and leads to the following equation for the root density in rescaled variables

0 = lim
Λ→∞

Λ
[
∂Λτρξ,τ (k) + ε′(k)

(
ρξ,τ (k)− ρξ− 1

Λ ,τ
(k)
)]

= ∂τρξ,τ(k) + ε′(k)∂ξρξ,τ (k), (60)
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where, once again, ρξ,τ (k) is the root density representing microcanonically the
state ρ̂s(ξ, τ). This more rigorous point of view becomes necessary to properly account
for subleading corrections to (54), which originate from higher orders in the gradient
expansion, see [122, 123]. For a more thorough discussion of this point we refer the
reader to section 6.

2.5. Generalization to interacting integrable models

In the previous sections, we have explained the main ideas underlying GHD in non-
interacting theories. Here we discuss how the conceptual structure carries over to the
interacting integrable case. In particular, here we considered the so-called Bethe ansatz
integrable models [28]. A key feature of these systems is that their spectral properties
can always be understood in terms of stable quasiparticles, which display many analogies
with the excitations of non-interacting theories. In particular, stable quasiparticles are
parametrised by quasi-momenta, or rapidities, λj. However, due to the interactions, the
latter cannot be quantized independently from one another: for an N -quasiparticle state,
the simple relations (8) are typically replaced by [28, 29]

eiLk(λr) = Fr(λ1 . . . ,λN), r = 1 . . .N , (61)

where Fr depend on the specific model considered, while k(λr) is the physical momentum
associated with rapidity λr. The quantization conditions (61) are customarily called
‘Bethe equations’. Although the structure of eigenstates in the presence of interactions
becomes significantly more complicated, expectation values of conserved quantities are
expressed as simple sums over {λj}. For instance, the momentum and energy associated
with a given eigenstate are

P [{λj}j] =
∑
j

k(λj), E [{λj}j] =
∑
j

ε(λj), (62)

where the single-particle momentum k(λ) and energy ε(λ) are model-dependent
functions.

In general λj need not to be real, and can take arbitrary values in the complex
plane. In addition, there might also be different species of quasiparticles connected to
different physical degrees of freedom. For instance, in a Bethe-ansatz integrable system
of particles with spin (like the Hubbard model [124] or the Yang–Gaudin model [28])
one has two distinct species of quasiparticles parametrised by disjoint sets {λj} and
{μj}. Roughly speaking one is connected with spin and the other with charge degrees
of freedom. For simplicity, in this section we will restrict to the case of a single species.

For large volumes, the rapidities {λj} arrange themselves in regular patterns in the
complex plane which are obtained combining a number of ‘basic’ configurations where
the rapidities stay at a fixed distance from one another. The latter can be specified by a
real rapidity and are interpreted as bound states formed by the elementary quasiparti-
cles. Moreover, in the thermodynamic limit the values that these real rapidities can take
become dense and one can describe a solution of (61) in terms of sets of quasi-momenta
distributions ρn(λ). Here, n takes discrete positive integer values, and ρn(λ) is interpreted
as the distribution of the quasi-momenta for a bound-state of n quasiparticles.
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In summary, in all Bethe-ansatz integrable models eigenstates can be described using
root densities as discussed in section 2.1.2 but, differently from the non-interacting case,
for each eigenstate there is now a set of functions {ρn(λ)} (rather than a single one)
with λ ∈ [−Λ,Λ] and n = 1, . . . ,Nb. The maximal values Λ and Nb that λ and n can
take depend on the details of the model and they both can be infinite.

Importantly, due to the non-trivial quantization conditions (61), the ‘available’ values
of λ that could be occupied are not distributed uniformly. Accordingly, differently from
the non-interacting case (cf (27)), the distribution ρt,n(λ) of vacancies becomes non-
trivial. The precise relation between ρn(λ) and ρt,n(λ) is found from (61) (see e.g. [28,
29]) and reads as

ρt,n(λ) =
1

2π
|∂λkn(λ)| −

Nb∑
m=1

∫ Λ

−Λ

dμTn,m(λ− μ)ρm(μ), (63)

where kn(λ) is the momentum of an n-particle bound-state, while Tn,m(λ− μ) encodes all
information about the interactions (it is proportional to the logarithm of the scattering
phase shift [28, 29]). Note that equation (63) does not specify uniquely the functions
ρn(λ), and stationary states must be determined by an independent equation, which is
typically expressed in terms of the function

ηn(λ) = ρt,n(λ)/ρn(λ)− 1. (64)

For example, in the case of thermal stationary states such additional equation takes the
form

log ηn(λ) = −βεn(λ) +

Nb∑
m=1

∫ Λ

−Λ

dμTn,m(λ− μ) log
[
1 + η−1

m (λ)
]
, (65)

where εn(λ) is the energy of a bound-state of n quasiparticles. In analogy with the non-
interacting case, the root densities completely specify the thermodynamic properties of
the system. For instance, given a local charge Qn, the corresponding expectation value
on the state described by {ρn(λ)} is simply

1

L
〈Qn〉ρ = 〈qn,x〉ρ =

Nb∑
m=1

∫ Λ

−Λ

dλ qn,m(λ)ρm(λ). (66)

This formula has once again an intuitive kinetic theoretical interpretation, generaliz-
ing equation (28) to the interacting case. In fact, a generalization exists also for the
expectation value of local currents, which reads

〈jn〉ρ =
Ns∑
m=1

∫ Λ

−Λ

dλ qn,m(λ)vm(λ)ρm(λ), (67)

where the velocities {vn(λ)} are ‘dressed’ by the interactions as described by the
following integral equation
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vn(λ)ρt,n(λ) =
1

2π
∂λen(λ)−

Ns∑
m=1

∫ Λ

−Λ

dμTn,m(λ− μ)vm(μ)ρm(μ), (68)

where {ρt,n(λ)} are given in (63). Differently from equation (66), which follows imme-
diately from the definition of the root densities, formula (67) is highly non-trivial. It
was first conjectured in [38, 39] but its rigorous proof has been accomplished only very
recently [125] (see, however, [126–128] for relevant partial results). For more detail on
this aspect we refer the reader to the contributions by Cubero, Yoshimura, and Spohn;
and Borsi, Pristyák, and Pozsgay to this special issue.

2.5.1. Homogeneous quenches in interacting integrable models. Despite the conceptual
framework being completely analogous to the non-interacting case, the study of quan-
tum quenches in interacting integrable systems is significantly more complicated on the
technical level. In fact, explicit results are typically restricted to simple families of initial
states. In essence, this is due to two main complications.

(a) Strictly local conservation laws are in general not enough to uniquely specify
the root densities, and one also needs to consider quasi-local conserved operators
[129, 130]. These charges are again expressed as sums of densities (cf (13)) but
the densities do not have finite support and exhibit exponentially decaying tails.
It is customary to denote the combined set of local and quasi-local charges by
{Qn,s}s=1/2,1,3/2,... ;n=0,1,... where Qn,1/2 are the usual local charges. The expectation
value of any charge Qn,s on a stationary state described by {ρm(λ)} can again be
written in the form (66) for some appropriate functions {qn,s,m(λ)}. Importantly,
the set of all local and quasi-local charges is complete, in the sense that

Nb∑
m=1

∫ Λ

−Λ

dλ qn,s,m(λ)fm(λ) = 0 ∀ s,n ⇔ fm(λ) = 0. (69)

(b) The analogue of (38), i.e. an explicit expression for initial-state expectation values,
is in general not available. Currently, this can be found only for low entangled
states [131].

When these two complications can be overcome, i.e. a complete family of quasi-local
conservation laws is known and the initial-state expectation values can be computed
exactly, one can follow the ‘string-charge duality’ logic of section 2.2 and arrive at a
full description of the steady state in terms of the root densities ρn(λ). Note that in the
interacting integrable case there is typically no exact solution for the full dynamics to
compare with and one should test the assumption (34) against numerical results. All
the cases considered so far confirmed the validity of (34), see e.g. [129, 131–134].

Finally, we should stress that the string-charge duality is not the only available
approach to determine the post-quench stationary state. Indeed, two complementary
methods are given by the so-called ‘quench action’ [35, 36] and ‘quantum-transfer matrix’
approaches [135–138]. All these methods yield the same results but, depending on the
specific model and initial state, some of them might be difficult (or even impossible) to
implement. For further details on the latter methods we refer the reader to the relevant
literature, see e.g. [36, 37, 135].
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2.5.2. Inhomogeneous quenches in interacting integrable models. As for the case of
homogeneous quenches, the GHD logic outlined in sections 2.2–2.4 can be directly
extended to the interacting integrable case. Specifically, using equations (66) and (67)
for the expectation values of quasi-local charge densities and related currents one finds
the following continuity equation for the root densities {ρn,x,t(λ)} of the LQSS

∂tρn,x,t(λ) + ∂x(vn,x,t(λ)ρn,x,t(λ)) � 0. (70)

In particular, in the case of bipartitioning protocols we can explicitly take the scaling
limit limsc,ζ and obtain

−ζ∂ζρn,ζ(λ) + ∂ζ(vn,ζ(λ)ρn,ζ(λ)) = 0. (71)

These equations differ from their non-interacting counterparts (54) and (48) because
of the presence of space-time dependent velocities. This is a direct consequence of the
interactions (cf (68))—in fact, it is the only interaction effect in (70) and (71)—and has
a very intuitive explanation. The motion of a given quasiparticle is perturbed by the
scatterings with the others: this results in a change in its averaged velocity. Naturally, the
change depends on {ρn,x,t(λ)}, the set of densities of the different species of quasiparticles
at the space-time point (x, t), yielding space-time dependent velocities. Assuming that,
for any λ and n, the equation ζ = vn,ζ(λ) has a unique solution, equation (71) can be
immediately solved in terms of ηn(λ) as follows [38]

ηn,ζ(λ) = ηn,R(λ)Θ(ζ − vn,ζ(λ)) + ηn,L(λ)Θ(vn,ζ(λ)− ζ), (72)

where Θ(x) is the step function, while the ‘left’ and ‘right’ functions ηn,L(λ) and ηn,R(λ)
are those characterising the state at infinite distance from the junction on the right
and on the left-hand side, respectively. Note that (72) is still an implicit solution
because vn,ζ(λ) depends on ηn,ζ(λ). The standard procedure to treat it is by iteration,
see section 3.

Interestingly, the interaction-related complications outlined above do not arise when
deriving equations (70) and (71). Indeed, in the derivation one only needs to assume that
a complete set of quasi-local charges exists, without ever needing their explicit form. The
aforementioned problems, however, emerge when trying to find appropriate boundary
conditions. For example, let us consider equation (71). Repeating the arguments of
section 2.3 we have that a unique solution is found by imposing the boundary conditions
(49) and (50). These are nothing but homogeneous quench problems and, as discussed
before, in the interacting case they can be solved only for special classes of states. In
particular, the simplest cases to treat are bipartitioning protocols where one joins two
different stationary states with known root densities (in this case the homogeneous
quench problems associated with boundary conditions are trivial). This includes the
highly studied cases of two half chains prepared at different temperatures or at different
filling. In the case of equation (70) the problem of finding initial condition proved itself
to be even harder. Up to now it has been solved only when the system is initialised in
a slowly varying stationary state, see, e.g. [139–144]. In this case ρn,x,0(λ) is determined
in terms of the equilibrium root densities within a LDA.
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3. Local physics of inhomogeneous quenches

In this section, we provide a survey of some recent applications of the GHD approach
to the study of inhomogeneous quenches in interacting integrable lattice systems. We
concentrate the discussion to the case of bipartitioning protocols and only focus on the
scaling limit (44) where observables become functions of the ray ζ. Moreover—although
we will also mention results in other models—we will predominantly focus on the
paradigmatic case of the XXZ Heisenberg chain (cf (73)). We present the main physical
results obtained in this regime and their qualitative interpretation, outlining connections
with findings by alternative methods. Relevant results have also been obtained in other
settings, models and limits but they are not covered in detail here. We refer the reader
to the other contributions to this special issue (in particular see those by Bastianello,
De Luca, and Vasseur; Bulchandani, Gopalakrishnan, and Ilievski; De Nardis, Doyon,
Medenjak, and Panfil; Bouchoule and Dubail) for other examples of applications of GHD
to the dynamics of local observables after inhomogeneous quenches.

We begin by exemplifying the procedure discussed in section 2.5.2 for the case of
a bipartitioning protocol in the paradigmatic case of the XXZ Heisenberg chain. The
latter describes a system of spins on the lattice that interact as described by the following
Hamiltonian

H[Δ, h] =
1

4

L/2∑
x=−L/2+1

[σ1,xσ1,x+1 + σ2,xσ2,x+1 + Δσ3,xσ3,x+1]− h

L/2∑
x=−L/2+1

σ3,x. (73)

Here, {σα,x}α=1,...,3 act as Pauli matrices on the local space C2 at site x and like the
identity elsewhere, while h is a magnetic field.

The Hamiltonian (73) is related to a chain of spinless fermions with a quartic inter-
action term via a Jordan–Wigner transformation (we again neglect issues arising from
the boundary conditions), with Δ = 0 corresponding to the non-interacting point. The
quasiparticle content of the model depends on the anisotropy parameter Δ, with a par-
ticularly simple structure observed for Δ > 1. In that case, one has an infinite number
of bound states, Nb = ∞, and λ ∈ [−Λ,Λ] = [−π/2, π/2]. The driving terms and kernels
of equations (63), (65), and (68) are given by

∂λkn(λ) = 2πan(λ), (74)

εn(λ) = −π sinh(η)an(λ) + 2hn, (75)

Tnm(λ) = (1− δnm) a|n−m|(λ) + 2a|n−m|+2(λ) + · · ·+ 2an+m−2(λ) + an+m(λ), (76)

an(λ) =
1

π

sinh(nη)

cosh(nη)− cos(2λ)
, (77)

where we set η = arcoshΔ.
Let us consider a bipartitioning protocol, i.e. we initialise the system in the state

ρ0 = ρL ⊗ ρR (78)

and evolve it with Hamiltonian (73). The GHD prescription to compute the profiles of
local charges and currents can be summarised in the following steps:
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(a) Determine the left/right thermal stationary states (and hence the corresponding
ηL,R(λ)) by solving the homogeneous quench problem. For example in the case
where the left and right halves of the system are initialised in two different thermal
states

ρ̂L/R =
1

ZL/R

e−βL/RH[Δ,hL/R], (79)

one can obtain ηL,R(λ) from equation (65).

(b) For each ray ζ, solve equation (72). Numerically, this can be done by a simple

iterative scheme: one starts with an ansatz for η
(0)
n,ζ(λ), computes the corresponding

velocities v
(0)
n,ζ(λ) using equations (63) and (68), and obtains a new ansatz η

(1)
n,ζ(λ)

using the right-hand side of (72). One proceeds in this way to obtain subsequent

approximations η
(k)
n,ζ(λ), until convergence is reached.

(c) For each ray ζ, use the knowledge of ηn,ζ(λ) to compute ρn,ζ(λ) and vn,ζ(λ) from
equations (63) and (68), and finally obtain the values of the charges and currents
from equations (66) and (67). As discussed in section 2.1.2, the knowledge of ρn,ζ(λ)
allows for the computation of all local properties of the system beyond the den-
sity of conserved charges and their currents. In practice, however, explicit formulae
expressing local observables in terms of root densities are scarce. Important exam-
ples have been found for simple few-point operators in the Heisenberg spin chain
[145, 146], in the Lieb–Liniger model [147–152], and in the sinh-Gordon field theory
[153–155].

These steps are very simple to implement numerically and with straightforward
modifications they can be applied to any integrable model treatable with the formalism
of section 2.5. This has been explicitly demonstrated in multiple studies of bipartitioning
protocols in concrete models [38, 39, 63, 83–85, 87, 89, 105, 106, 156–161]; see also [162]
for a versatile, open-source numerical framework for solving typical equations appearing
within GHD. Furthermore, while the above prescription typically allows one to access
the values of the profiles numerically, there exist cases where fully analytic solutions can
be obtained, as we discuss in the following.

3.1. NESS

Arguably, the most interesting aspect of bipartitioning protocols in integrable systems is
that they allow for the realisation of non-equilibrium steady states (NESS)s—i.e. steady
states supporting non-trivial currents—in the context of isolated quantum lattice sys-
tems (i.e. without resorting to external driving). This contrasts with what happens in
generic (non-integrable) lattice systems where the only local conservation law is the
Hamiltonian. In the latter case assumption (43), together with some physical require-
ments on the form of H (for example invariance under space inversion or time reversal),
allows one to prove that the current vanishes at late times (see, e.g. section 9.2 of [40]).
The latter fact is in agreement with expectations coming from the Fourier law [163,
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164]—which predicts a current proportional to the temperature gradient—and the cur-
rently available numerical evidence [69, 77, 165]. The emergence of non-trivial NESSs
after bipartitioning protocols in integrable systems was first pointed out in the non-
interacting case [97] and then in conformal field theories (CFTs) [67]. Proving that the
NESS survives (integrable) interactions has been the first stark success of GHD [38,
39]. In particular, in the context of lattice systems, the emergence of an NESS was first
demonstrated for the XXZ Heisenberg model in [38, 105], where GHD allowed for a
detailed study of the dependence of charges and currents on the interaction parameter.

In the language of the previous section, the NESS is the LQSS associated with the ray
ζ = 0 (cf (43)). Namely, it is the state that captures the late-time properties of any finite
region at infinite times after the quench. This state has been extensively investigated
in non-interacting systems [65, 66, 68, 70–73, 75, 97, 100, 104, 114, 119, 166–170] and
CFTs [67, 171–178] (see also the dedicated reviews [175, 179]). An important result of
these studies is the determination of all higher cumulants of the NESS currents, which
give access to the full counting statistics of the charges transferred through the junction
(see also [180, 181]).

Within GHD, thermodynamic properties of the NESS can be studied directly from
the general theory introduced in the previous section. For a given bipartitioning proto-
col, the value of the currents are generically found to be non-monotonic functions of the
interaction parameter, see the example reported in figure 5. Note that it is not uncom-
mon to see NESS currents growing with the interaction strength. Another interesting
property of the NESS currents in integrable systems is that they cannot generically be
written as sums of functions involving properties of a single lead only, i.e.

〈jn〉ρ0 �= f(ρL) + f(ρR). (80)

This is in contrast to what happens in free systems and CFTs, and can be viewed as
a transparent signature of the interaction. The simplification discussed above happens
only in some special cases, see e.g. the low-temperature regime for thermal reservoirs
discussed in section 3.3.

While the GHD equations can be typically solved only numerically, closed analytic
expressions for the profiles may be obtained in special cases. In the Heisenberg chain this
happens trivially for Δ = 0, where the system becomes non-interacting. A more inter-
esting example was found in [98], which considered a quench from a ‘domain-wall’ state,
i.e. a bipartitioning protocol where the left and right halves of the system are initialised
in completely polarized states, in opposite z-directions. While, in this case, transport
at the hydrodynamic scale is trivial for Δ > 1, all local observables display non-trivial
ballistic profiles in the regime Δ < 1, and fully analytic expressions may be obtained.
Arguably, the most interesting result of [98] is that the NESS has a nowhere differ-
entiable dependence on the strength of interactions. In particular, the magnetisation
density and current profiles exhibit jumps in correspondence to values of the anisotropy
Δ for which arcos(Δ)/π is a rational number: this is in agreement with the nowhere
differentiable spin Drude weight computed in the linear response regime [182–185] (for
further details see [40] and the contribution by De Nardis, Doyon, Medenjak, and Panfil
to this special issue). The analytic solution of [98] also allowed the authors to analyze
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Figure 5. (Left) Energy current in the NESS of the Heisenberg chain (73) as a
function of the anisotropy Δ. The initial state is obtained by joining together two
thermal states with inverse temperatures βL, βR respectively. The current displays
a maximum for Δ ∼ min

(
β−1
R ,β−1

L

)
, and vanishes exponentially as Δ→∞. (Right)

Profile of magnetization for a bipartitioning protocol in the Heisenberg chain, with
Δ = 2 > 1. The initial state is obtained by joining together two Gibbs states with
inverse temperatures βL = βR = 0 and chemical potentials (βh)L = 1, (βh)R = 2.

the behaviour around the edge of the magnetisation profile, ruling out the presence of
a Tracy–Widom scaling, typical of non-interacting behaviour (see section 6.1).

3.2. Phenomenology of the profiles

Although the structure of the GHD equations is completely general, the details of the
underlying microscopic model encoded in in the parameters Nb and Λ and functions
kn(λ) and Tn,m(λ) (cf section 2.5) give rise to a manifold phenomenology, with signif-
icant qualitative differences in distinct integrable systems. Examples of bipartitioning
protocols have been studied, and often checked against independent numerical meth-
ods, in spin chains and lattices [38, 63, 83, 89, 105, 106, 156–158, 160], quantum gases
[39, 85, 161], hard-rod systems [186], classical [187–189] and quantum [39, 87] field
theories.

In general, from the structure of the GHD equations, it is easy to see that different
bound-states of quasiparticles give rise to non-analyticities {ζ±n }n inside of the light cone
and at its boundaries. These can be understood in terms of the quasiparticles’ motion,
as the non-analytic points ζ±n correspond to the maximum and minimum velocities of
the n-quasiparticle bound-states. The precise nature of such non-analyticities depends
on the initial state and the model considered.

Once again, this could be already appreciated from GHD studies in the Heisen-
berg chain [38, 98, 105]. In the gapless regime of the model, Δ < 1, one has a finite
number of bound states for rational values of arcos(Δ)/π, so that a finite number of
non-analyticities appear [38]. On the contrary, the number of bound-states is always
infinite for Δ � 1, giving rise to a series of non-analytic points, which accumulate inside
the light cone [105]. Typically, ζ±n are easily visible for small values of n, see figures 5 and
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Figure 6. Profiles of the expectation values for σx
j σ

x
j+1 (left) and σx

j σ
x
j+2 (right),

for a bipartitioning protocol in the Heisenberg chain, with Δ = 2 > 1. The initial
state is obtained by joining together two Gibbs states with inverse temperatures
βL = βR = 0 and chemical potentials (βh)L = 1, (βh)R = 2. The visible small ripples
are numerical artefacts.

6 for concrete examples. As n→∞ the velocities converge to a λ-independent value, i.e.

lim
n→∞

vn,ζ(λ) = v∞,ζ . (81)

Accordingly, also the sequence ζ+n converges to a ray ζ∞

lim
n→∞

ζ+n = lim
n→∞

ζ−n = ζ∞, (82)

which corresponds to the velocity of the heaviest quasiparticle.
Interestingly, it was shown in [105] that, depending on the initial state, the profiles

of magnetisation and charges that are odd under spin-flip may exhibit abrupt jumps
at the ray ζ∞. This peculiar behaviour is ultimately related to the structure of the
Bethe ansatz for Δ > 1 and can be heuristically explained by saying that information
about the overall sign of the magnetisation is carried by the heaviest quasiparticles
[105]. An abrupt jump in 〈O〉ζ signals that the expectation value of Ox varies on
length scales shorter than t (i.e. proportional to ta with a < 1), implying that the
transport of Ox is sub-ballistic. This is in agreement with the numerical findings of
[91, 190], which identified diffusive spin-transport (a = 1/2) for Δ > 1 and superdif-
fusive one (a = 2/3) for Δ = 1. In particular, the former type of transport has later
been described in GHD by introducing appropriate subleading corrections to (70)
[159, 191], while the latter is still subject to intensive research in relation to the observed
Kardar–Parisi–Zhang scaling of the profiles [192–197].

Non-analyticities also appear in the case of multiple quasiparticle species, which
corresponds to integrable models with internal degrees of freedom describing for example
particles with spin. Due to their physical relevance, inhomogeneous quenches in these
systems have been widely investigated, resulting in applications of GHD to the Hubbard
model [63, 160, 198, 199], spinful Fermi and Bose gases [85, 161], sine-Gordon model
[87], non-linear sigma model [194], and a special point of the two-component Bariev
model [200]. In these cases, non-analytic points correspond to either different species of
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quasiparticles or bound-states of quasiparticles of the same species. In fact, it is natural
to wonder whether the presence of different species could be directly inferred from the
profiles, or, in other words, if bipartitioning protocols could detect separation effects.
For instance, in the case of spinful fermions one could ask whether there exist some
local observable whose light-cone profile only shows the effect of one of the two species
of excitations.

It turns out that, for bipartition protocols at finite energy densities, non-analyticities
of all quasiparticle species are typically present in the profiles of arbitrary observables, so
that no strict separation happens [85]. However, some separation effects become manifest
in special cases. One of them has been pointed out recently in the study of the Hubbard
model, where an interesting phenomenon called clogging emerges for some fine-tuned
initial states [63, 160]. In essence, clogging consists in the fact that a vanishing charge
current coexists with nonzero energy currents (or vice versa), within a finite region of the
light cone. Its existence has been proven analytically in [63] in the case where half of the
system is initially at half-filling and at infinite temperature, and it has been numerically
observed in the high-temperature regime. In addition, different initial configurations
resulting in clogging were studied in [160], where it was confirmed that it could also
take place in the NESS. In the next section, we will study a different case where some
separation effects become visible, namely the low-temperature regime.

3.3. The low-energy limits

The low-temperature regime of the GHD equations turns out to be particularly inter-
esting and has been subject to several investigations over the past few years [83, 85, 89,
161, 194, 198].

In particular, after a bipartitioning protocol from two thermal states at low (but
different) temperatures, the GHD equations become analytically solvable, yielding qual-
itatively different results depending on whether or not the spectrum of the post-quench
Hamiltonian has a gap. In the gapped phase, variations of the profiles are found to be
exponentially small in the temperatures and are described by non-trivial functions of ζ
[83]. In the gapless regime, instead, the leading order contributions for the profiles are
polynomial functions of the temperature, which turn out to be universal. In fact, in this
limit GHD allows one to recover the predictions of CFT [67, 174, 175]. In order to illus-
trate this, let us consider for concreteness the Hamiltonian (73) in the gapless regime,
which is realized for values (Δ,h) in a strip hmin(Δ) � |h| � hmax(Δ) (see figure 7), and
initialise the system by joining together two thermal states with inverse temperatures
βL, βR. As βL, βR →∞ only low energy modes around the Fermi point are expected to
contribute and the system is expected to be described by a CFT. This implies that the
only relevant quasiparticles are those moving at the Fermi velocity and the profiles of
local observables take the form of a ‘three-step staircase’. In particular the NESS values
(corresponding to the central step) can be computed exactly in the conformal limit,
yielding the following results for the energy density and current [67, 174, 175]

eCFT =
cπ

12v

(
β−2
L + β−2

R

)
, (83a)
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Figure 7. The phase diagram of the XXZ spin-1/2 chain in an external magnetic
field h. The upper line is parametrised by hmax(Δ) = J(1 + Δ)/2 while the lower
one by hmin(Δ) = sinh η

∑∞
j=−∞eijπ/(2π cosh(jη)) for Δ = arccosh(η) > 1.

jeCFT =
πc

12

(
β−2
L − β−2

R

)
, (83b)

where c and v are respectively the central charge and the speed of light in the CFT
(c = 1 for the critical Heisenberg chain, while v is a non-trivial function of Δ and h).
Note that the NESS current (and also the energy density) shows the ‘non-interacting’
structure discussed in section 3.1: it is the sum of two terms, each one depending solely
on the initial state of one lead.

Predictions (83) can be recovered from a low-temperature expansion of the GHD
equations, which also allows one to access higher-order corrections in β−1

L,R [83]. In fact,
GHD reveals modifications to the CFT picture for local observables different from the
energy density and current. In particular, at the edges of the light cone of generic
observables there appears a region of width TL/R = β−1

L,R where the leading contribution
is linear, rather than quadratic, in the temperature. An example is given in figure 8,
where we report the magnetisation profile for an inhomogeneous quench in the critical
Heisenberg chain.

Surprisingly, it was found that such a broadening of light cone could also be described
by a universal function, which can be derived via a non-linear LL approach [89]. Within
this paradigm, one approximates the Hamiltonian spectrum near the Fermi points, using
fermionic quasiparticles with dispersion relation

εr(p) = v|p|+ r

2m∗
|p|p+O

(
p3
)
, kr(p) = r|p|, (84)

where r = ±1, while v and m∗ are phenomenological parameters respectively associated
with the velocity and mass of the quasiparticles. From this approach, one finds that,
in a neighbourhood of the light cone quantified by ζ − v ∼ TL(R)/ (m∗v), the leading
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Figure 8. (Left) Low-temperature spin profile in the gapless phase of the XXZ
Heisenberg chain. The plot corresponds to Δ = 3, h = 1.2. (Right) Low-temperature
profile of the particle current in the Yang–Gaudin model of spinful fermions [85].
The initial state is obtained by joining together two thermal states at different
(low) temperatures, and the same values of chemical potential and non-vanishing
magnetic field.

contribution for the profiles of a given observable O is

δ〈O〉ζ =
d

2πv2
(
TL log

(
1 + em∗v(ζ−v)/TL

)
− TR log

(
1 + em∗v(ζ−v)/TR

))
+O(T 2

L/R), (85)

while d is a constant which depends on the observable of interest. Once again,
equation (85) can be exactly recovered based on low-temperature expansions of the
GHD equations [83]. Note that, also including this correction, the NESS currents are
still of non-interacting type.

The technical steps involved with the low-temperature analysis of the GHD equations
are largely independent of the details of the specific model considered. However, as we
have mentioned, in this limit qualitative differences emerge in models with more than
one quasiparticle species. This is best exemplified in the Yang–Gaudin model of spinful
fermions [29], where the study of bipartitioning protocols at small temperature reveals
spin-charge separation effects [85] (similar features are also observed in Fermi–Bose
mixtures [161]). In this case, the profiles of local observables display a five-step form,
with two distinct light cones propagating from the junction, see figure 8 for an example.
Observing profiles with this structure, one can argue that they are produced by two
decoupled nonlinear LLs, rather than a single one. It is important to stress, however, that
for external magnetic field h �= 0 local observables couple the two theories: this is due to
the fact that the decoupled LLs do not describe individual spin and charge excitations,
but a combination of the two [124, 201]. For h = 0, spin and charge completely decouple
at the level of the LL description [201]. However, by setting h = 0 in the post-quench
Hamiltonian, and constructing the initial state by joining together two Gibbs states at
different temperatures, it is not possible to create a magnetization imbalance. Therefore,
in the ensuing dynamics the magnetization remains frozen (and equal to zero), without
any light cone. In conclusion, within the bipartitioning protocol, it is not possible to

https://doi.org/10.1088/1742-5468/ac257d 30

https://doi.org/10.1088/1742-5468/ac257d


J.S
tat.

M
ech.

(2021)
114004

Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects

observe a genuine separation of spin and charge in the form of two distinct light cones. On
the other hand, it was recently shown that GHD is capable to predict such a separation
for more general inhomogeneous initial states, where the gas is initially confined in
a trap potential [202]. In this case, for vanishing post-quench magnetic field and low
temperatures, an initial spin-charge imbalance lead to the formation of two separate
light cones for spin and charge, whose real-time dynamics can be quantitatively captured
by the GHD equations [202].

Finally, we mention that low-temperature limits of the GHD equations have also been
investigated in integrable quantum field theories [87, 194], where they allowed to clarify
the connection between GHD and the semiclassical approach developed by Sachdev
and collaborators [203–206]. Specifically, Bertini et al [87] considered bipartitioning
protocols in the sine-Gordon model recovering the predictions of [207, 208], based on
the semiclassical approach, as a low-energy limit of the GHD equations. In this limit
the transport of the topological charge was found to be sub-ballistic. Away from the
low-energy limit, however, the numerical solution of the GHD equations showed that
transport is always ballistic, in conflict with the semi-classical predictions [87].

4. Quantum entanglement generated by inhomogeneous quenches

The dynamics of quantum correlations are generically very hard to describe exactly, both
in homogeneous and inhomogeneous settings. This is essentially due to the fact that they
go beyond the purely hydrodynamic description that arises at large times. For example,
although GHD gives us the exact asymptotic values of one-point functions after quenches
from bipartite initial states, connected equal-time correlation functions between points
located at different rays are subleading in the scaling limit (52). There are, however,
some exceptions to this empirical fact where non-trivial correlations can actually be
accessed. For instance, dynamical correlation functions along ballistic light-cones are
indeed accessible within GHD [209, 210] (see also the contribution by Doyon, De Nardis,
Medenjak and Panfil in the present volume). Moreover, as discussed in section 5, one can
recover an effective description for time-dependent quantum correlations for quenches
starting from a particular class of initial states.

In this section we consider another of such remarkable examples. In particular we
show how, retaining some genuine quantum correlations generated at the time of the
quench, one can describe the linear growth of several entanglement measures. The key
for this to happen is the presence of well-defined quasiparticles protected by integrabil-
ity. After a quantum quench, EPR (Einstein–Podolsky–Rosen) correlations are created
between quasiparticles with opposite quasimomenta. The balistic propagation of these
quasiparticles transports these correlations leading to the growth of entanglement. An
important remark is that this ‘quasiparticle picture’ for the entanglement spreading
applies to quenches, both homogeneous and inhomogeneous, in which the steady state
is described by a statistical ensemble with finite density of thermodynamic entropy,
i.e. entropy per volume. For stationary states with zero entropy density entanglement-
related quantities exhibit a sublinear growth as function of time which is not captured
by this approach (see section 5).
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More specifically, to quantify the entanglement we use the Rényi entropies [211–214],
defined as

S
(n)
A (t) =

1

1− n
ln[TrρnA(t)], (86)

where n is a real parameter while ρA(t) is the density matrix of the system at time t
reduced to a subsystem A, i.e.

ρA(t) = TrĀ|Ψ(t)〉〈Ψ(t)|, (87)

with Ā the region complementary to A and |Ψ(t)〉 the evolved state of the system.
The Rényi entropies characterise the spectrum of ρA(t), sometimes called entanglement
spectrum [214], encoding information on how entanglement is shared between A and Ā.
In particular, in the limit n→ 1 one recovers the von Neumann entropy

SA(t) = −Tr ρA(t) ln ρA(t). (88)

Beside their theoretical interest, the quantities (86) are also experimentally rele-
vant. Indeed, in the last few years it has become possible to address the dynamics
of entanglement-related quantities with cold-atom experiments [215–218], and noisy
intermediate scale quantum computers [219].

In the remaining part of this section we show that, combining GHD with a simple
quasiparticle picture, one can describe exactly the asymptotic dynamics of the von
Neumann entropy in a particular scaling limit. The structure of the section is as follows.
In section 4.1, we introduce the quasiparticle picture. In section 4.2, this is applied to
describe the entanglement spreading after homogeneous quenches, both for interacting
and non-interacting systems. In section 4.3, we discuss the entanglement dynamics after
an inhomogeneous quench in free-fermion systems. Finally, in section 4.4, we consider
inhomogeneous quenches in interacting integrable systems.

4.1. Quasiparticle picture: a semiclassical description of entanglement spreading

The quasiparticle picture was originally proposed in the context of CFT [220] to
describe entanglement dynamics after global quenches from homogeneous initial states.
In essence, the idea is that a homogeneous quench produces an extensive number
of quasiparticle excitations, which are responsible for propagating the entanglement
throughout the system. The quasiparticles that are produced far apart are assumed not
to be entangled with one another, i.e. they do not contribute to the coherent quan-
tum correlations. Only quasiparticles that are produced at the same point in space
are entangled. As the entangled quasiparticles propagate through the system, quantum
correlations spread accordingly. A further simplifying assumption is that only pairs of
entangled quasiparticles are produced, the two members of the pair being emitted with
velocities of opposite sign. Finally, entangled quasiparticles travel as free particles, i.e.
they do not interact.

Let us now consider the case in which all the quasiparticles have velocity with the
same magnitude v. This corresponds to models with perfect linear dispersion like CFTs.
Within the quasiparticle picture the von Neumann entropy between a region A and
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Figure 9. Quasiparticle picture for the entanglement spreading after a homoge-
neous quench in integrable systems. Pairs of entangled quasiparticles are produced
uniformly after the quench. We consider the entanglement entropy S�(t) of an inter-
val A embedded in an infinite chain. At a given time t, S�(t) is proportional to the
total number of entangled pairs shared between A and its complement Ā: one quasi-
particle of the pair is inside A, and the other one inside Ā. (a) Linear growth of the
entanglement entropy as 4vt for 2vt < �. The entanglement entropy is proportional
to the portion of the t = 0 axis shaded by the two light cones. At time t all the
right-moving members of the entangled pairs that are shared via the left edge of A
are in the region denoted by the dotted line. (b) At 2vt > � the number of shared
entangled pairs is � and the entanglement entropy exhibits a volume law S�(t) ∝ �.

its complement at a generic time t is proportional to the number of entangled pairs
that are shared between them. Let us consider a finite interval A of length � embedded
in an infinite chain. At short time t � �/(2v) the number of shared entangled pairs is
proportional to the horizontal width of the shaded areas in figure 9 at that time, which
is 4vt. On the other hand, for t > �/(2v) the number of entangled pairs is proportional
to �. In conclusion, one has that

S�(t) = 4vtsΘ(�− 2vt) + �sΘ(2vt− �). (89)

Here, s is the ‘entanglement content’ of each pair of entangled quasiparticles (it is the
contribution of a single pair times the density of pairs). Note that, due to translational
invariance, the only piece of information about A we need to know is the length of the
interval, while the position of A within the chain is not important. For this reason we
used the notation S�(t) in (89).

The interpretation of (89) is straightforward, and it is shown in figure 10. For 2vt < �,
S�(t) grows linearly. All the pairs that originated in the region of the t = 0 axis shaded
by the two light cones are shared between A and Ā. At any time 2vt > � the number of
shared entangled pairs saturates to an extensive value (S�(t) ∝ �). Equation (89), at this
level, has to be regarded as a phenomenological description of the entanglement dynam-
ics. In the next sections, we will show, however, that with minimal modifications the
quasiparticle picture can be made quantitatively accurate in specific integrable systems.

4.2. Entanglement dynamics after homogeneous quenches in integrable systems

Let us now discuss how to apply the quasiparticle picture to microscopic integrable
systems. We first focus on homogeneous quantum quenches in non-interacting models.
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Figure 10. Hydrodynamic description of the entanglement spreading in free-
fermion models after a quench from an inhomogeneous initial state. (a) The initial
state obtained by joining two homogeneous but different states (left (L) and right
(R)) is left to evolve under a homogeneous free-fermion Hamiltonian. Both halves
act as sources of entangled pairs of quasiparticles. The quasiparticles are pro-
duced with opposite momenta and travel with opposite velocities. Given an interval
A = [x1,x2], its entanglement entropy is proportional to the number of entangled
pairs shared with its complement. The entanglement contribution of the pair is the
Yang–Yang entropy of the half where the pair is produced at t = 0. (b) Short-time
entanglement dynamics. The dotted line denotes the allowed position of the right-
moving member of an entangled pair that is shared via the left edge of A at x1. The
corresponding allowed position for the pairs shared via the edge at x2 is not shown.
(c) Entanglement saturation at 2vt = x2 − x1 = �. The number of shared pairs is
� = x2 − x1.

To promote equation (89) to a quantitative prediction, these have to be fixed from the
microscopic data of the integrable model under consideration. As we will see, to do that
one only needs ‘thermodynamic information’ about the system.

Let us begin by considering non-interacting systems. In this case it is quite natu-
ral to associate the entangling quasiparticles with the free modes that diagonalise the
Hamiltonian. Unlike (89), such single-particle modes have a nontrivial dispersion, i.e. a
mode k has energy ε(k) that depends on k (see, e.g. section 2.1). Their velocities are
then given by the group velocities of these modes

v(k) = ε′(k) =
d

dk
ε(k), (90)

which is the same quantity appearing in (47). Note that for non-interacting systems
v(k) depends only on the model’s dispersion, and not on the pre-quench state.

Adopting the quasiparticle picture, we restrict to the situation where only locally
generated pairs are entangled, and we take them to have opposite momentum [221].
This means that correlated pairs are specified by a single momentum k. Assuming an
even dispersion relation ε(k) we then find the following generalisation of (89)

S�(t) = 2t

∫
2|v(k)|t<�

dk|v(k)|s(k) + �

∫
2|v(k)|t>�

dk s(k). (91)

Now, to completely fix (91) we just have to determine the entanglement content of the
pair k, which we denote by s(k) to stress that it now depends of the quasimomentum.
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This can be fixed by imposing that the integrand of (91) relaxes to the density of
thermodynamic entropy of the GGE that describes the steady state after the quench
[222]. For free fermionic systems the latter is nothing but the integrand of the Yang–Yang
entropy in equation (26), namely we have

s(k) = sYY[ρ(k)] ≡
1

2π
log

1

2π
− ρ(k) log ρ(k)−

(
1

2π
− ρ(k)

)
log

(
1

2π
− ρ(k)

)
, (92)

where ρ(k) is the root density of the GGE.
Crucially, for quenches in free fermionic systems the validity of (91) and (92) can be

proved [223]. Namely, by solving exactly the dynamics one can show that (91) gives the
leading order contribution for large t and �, and, in particular, it becomes exact in the
space-time scaling limit t, �→∞, with �/t fixed.

As anticipated before, equation (91) contains only thermodynamic information about
the system and the quench. Indeed, the group velocity of the quasiparticles is a property
of the system’s dispersion relation, and the entropy of the GGE is a thermodynamic
quantity. For systems with a maximal velocity vM (for example those fulfilling the
hypothesis of the Lieb Robinson bound [121]), equation (91) predicts a linear growth
at short times 2vMt < �, followed by a saturation to the volume law scaling S�(t) ∝ � at
asymptotically long times. In contrast with (89) the saturation is not abrupt because the
quasiparticles have a dispersion. Note that, while in the original quasiparticle picture
only pairs of entangled quasiparticles are assumed to contribute to the entanglement
(and such an assumption is verified in several quantum quenches in non-interacting
models [223] and for some initial states in integrable interacting systems [135, 222], see
also [224, 225]), this is not true in general. Specifically, for some initial states multiparti-
cle entanglement, for instance involving triplets of quasiparticles, can be present. Some
of these situations have been investigated in free-fermion systems, and the quasiparticle
picture extended accordingly [226–228].

Let us now discuss quenches from homogeneous initial states in interacting systems.
In particular, let us consider the case of Bethe ansatz solvable models with a single
species of quasiparticles (see section 2.5). In this case the quasiparticle prediction (91)
is modified as follows [222]

S�(t) =
∑
n

⎡
⎢⎣2t ∫

2|vn|t<�

dλ |vn(λ)|sn(λ) + �

∫
2|vn|t>�

dλ sn(λ)

⎤
⎥⎦ , (93)

where the sum runs over the quasiparticle bound states, labeled by n, while λ denotes
the rapidities. Apart from the sum over n, equation (93) has the same structure as (91).
Also the nature of the entangled quasiparticles is the same as compared to free systems:
the quasiparticles in (93) are constructed as the low-lying (particle–hole) excitations
around the stationary thermodynamic macrostate, i.e. the GGE, that describes the
steady state after the quench. However, the properties of the quasiparticles depend on
the specific initial state, unlike the free-fermion case. For instance, the group velocities
of the quasiparticles can be calculated by solving the system of integral equations in
(68), and now depend on the pre-quench state (because the GGE depends on the initial
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state). Finally, in analogy with non-interacting systems, sn(λ) in (93) is set to be equal
to sYY[ρn(λ)], the density of the Yang–Yang entropy of the GGE described by {ρn(λ)}.
The latter is given by

sYY[ρn(λ)] ≡ ρt,n(λ) lnρt,n(λ)− ρn(λ) ln(ρn(λ))

− (ρt,n(λ)− ρn(λ)) ln (ρt,n(λ)− ρn(λ)), (94)

where, in contrast to the free case (cf equation (63)), ρt,n(λ) is a nontrivial function of
λ. We remark that formula (93) can also be generalized to the case of integrable models
with multiple species of particles [229, 230].

Note that, differently from equation (91), equation (93) is a conjecture. Up to now
it has been verified numerically in several quenches in the XXZ Heisenberg model [158,
222] and in nested spin chains [230], as well as analytically for some solvable quenches
in the quantum cellular automaton ‘Rule 54’ [231–233].

Note that, while the quasiparticle picture has been extended to study the Rényi
entropies in the steady state [234–236], also for quenches from inhomogeneous initial
states [237], the full dynamics of the Rényi entropies does not appear to be captured by
a formula similar to (93). We also remark that the quasiparticle picture can be easily
adapted to describe the dynamics of the mutual information between two intervals
[156, 158, 229, 238]. Moreover, it is possible to show that the so-called logarithmic
negativity, which is a genuine entanglement measure between two disjoint intervals,
becomes the same as the mutual information constructed from the Rényi entropy with
Rényi index n = 1/2, cf (86). This has been checked in free-fermion and free-boson
models in [239]. Finally, we mention that, very recently, the quasiparticle picture has
been applied to describe entanglement dynamics in simple free-fermion systems subject
to gain and loss dissipation [240].

4.3. Entanglement dynamics after inhomogeneous quenches: non-interacting systems

Let us now see how the quasiparticle picture can be applied to inhomogeneous setups. We
begin considering the case of non-interacting systems. Specifically, we focus on a biparti-
tioning protocol in the toy model introduced in section 2.1. The initial state is obtained
by joining two semi-infinite chains (left and right) prepared in two homogeneous initial
states. The setup is depicted in figure 9. The core of the original quasiparticle picture,
namely the idea that entanglement propagates via quasiparticles initially produced in
pairs in the bulk of the two chains, remains the same. In contrast to the homogeneous
case, however, pairs produced in the left and right chains have different entanglement
content. On the other hand, since the system is evolved with a free homogeneous
Hamiltonian the velocity of the quasiparticles does not depend on the region where they
are produced. Putting all together, one arrives at the following quasiparticle prediction
for the entanglement of an interval [x1, x2] [241]
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S[x1,x2](t) =

∫
dkΘ(−v(k))

∫ x2

max(x2+2v(k)t,x1)

dx sx−v(k)t(k)

+

∫
dkΘ(v(k))

∫ min(x1+2v(k)t,x2)

x1

dx sx−v(k)t(k). (95)

Note that, because of the absence of translational invariance, we have to keep track of
both x1 and x2, defining the boundary of the subsystem under consideration. Accord-
ingly, our notation for the entanglement entropy has changed to S[x1,x2](t). The integral
over k is over the Brillouin zone [−π, π], v(k) is the quasiparticles’ group velocity, and
sx(k) is the entanglement content of the quasiparticles, which is to be determined.

Before doing that, let us comment on the physical interpretation of (95) (see
figure 9(b)). Let us focus on the first term in (95). This describes the entropy contribution
of the quasiparticles (members of entangled pairs that are shared with the complement
of A) with v(k) < 0 that at time t are within A. They were originated around the edge of
the interval at x2, and at a generic time t are in the region [max(x2 + 2v(k)t, x1)]. The
second term takes into account the quasiparticles with v(k) > 0 that were originated
near the edge on the right of the interval at x1 and are members of an entangled pair
shared via that edge. At the generic time t the allowed position of the quasiparticle is
in the interval [x1, min(x1 + 2v(k)t, x2)].

We now discuss the entanglement content of the quasiparticles. Within the quasipar-
ticle picture there is no creation of entanglement during the evolution, but entanglement
is simply created soon after the quench, and then ‘transported’ by the quasiparticles.
Indeed, because of the argument x− vt of sx−v(k)t in (95) the entanglement contribution
is traced back to the sites where the entangled pairs were produced. As it turns out
[241], the entanglement content sx of the quasiparticles is again fixed by the Yang–Yang
entropy transported from the two initial chains

sx(k) = Θ(−x)sYY[ρL(k)] + Θ(x)sYY[ρR(k)]. (96)

Here ρL/R are the root densities corresponding to the GGEs that describe the bulk of
the two chains, i.e. for x/t→±∞, and sYY is the associated Yang–Yang entropy density
(cf equation (92)). The entanglement content of the quasiparticles can be rewritten in
terms of the root density ρx/t(k) associated with the GGE that describes the system
at time t and distance x from the origin (cf (51)). To do so one uses the fact that the
Yang–Yang entropy density satisfies the same GHD equation (48) to write

sx−v(k)t = Θ(x− v(k)t)sYY[ρR(k)] + Θ(v(k)t− x)sYY[ρL(k)]

= sYY[Θ(x− v(k)t)ρR(k) + Θ(v(k)t− x)ρL(k)]

= sYY[ρx/t(k)], (97)

where in the last step we used (51). Plugging this in (95), one obtains
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S[x1,x2](t) =

∫
dkΘ(−v(k))

∫ x2

max(x2+2v(k)t,x1)

dx sYY[ρx/t(k)]

+

∫
dkΘ(v(k))

∫ max(x1+2v(k)t,x2)

x1

dx sYY[ρx/t(k)]. (98)

Importantly, despite the inhomogeneous setup, equation (98) still predicts a linear
growth at short times, followed by a saturation to a volume-law entropy. The inho-
mogeneous initial condition is reflected in a non-monotonic behaviour at intermediate
times [241]. For later comparison with the interacting case, we specify the above results
to the entanglement production rate between two initial semi-infinite chains. Namely
we fix x1 = 0, x2 →∞ in (98) and neglect the contribution of the right boundary (which
corresponds to choosing open boundary conditions). This yields

S[0,∞] = t

∫
dk v(k)Θ(v(k))(sYY[ρL(k)] + sYY[ρR(k)]). (99)

At this point it is straightforward to rewrite equation (99) in terms of quantities depend-
ing only on the GGE that describes the interface between the two chains, namely

S[0,∞] = t

∫
dk|v(k)|sYY[ρx/t=0(k)]. (100)

Several remarks are in order. First, the entanglement production rate (i.e. the rate at
which the entanglement entropy grows) depends only on the physics at the interface
between the two chains, which is described by ρx/t=0. This is expected because within
the quasiparticle picture the entanglement growth reflects quasiparticles crossing the
interface. Second, the quantity on rhs of equation (100) is nothing but the rate at which
the two chains exchange thermodynamic entropy. Implying that the latter coincides with
the entanglement production rate. We anticipate that while the first property remains
true for interacting integrable systems, the second one does not.

4.4. Entanglement dynamics after inhomogeneous quenches: interacting systems

Let us now discuss the entanglement dynamics after bipartitioning protocols in interact-
ing integrable systems. Once again, the main idea of the quasiparticle picture is the same
as for free models: entangled pairs of quasiparticles are produced in the bulk of the two
chains, with entanglement content given by the density of thermodynamic Yang–Yang
entropy in the GGE for x/t→±∞. Moreover, following the reasoning employed in the
homogeneous interacting case (cf section 4.2), here we assume that the quasiparticles
are nothing but low-lying excitations on the (quasi) stationary state, which in this case
is the LQSS ρ̂s(ζ). This allows us to identify the velocity of the excitations with vn,x/t(λ),
obtained by solving (63) and (68) with ρn(λ) replaced by the root density ρn,x/t(λ) of
the LQSS (cf section 2.5.2).

The main complication introduced by this identification is that the trajectories of
the quasiparticles are not straight lines. This means that, given a pair of entangled
quasiparticles with rapidities λ and −λ forming an entangled pair, it is a nontrivial
task to trace back their trajectories and identify the subsystem in which they were
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produced. This step is, however, necessary to assign to the entangled pair the correct
entanglement content. Still, as we are going to show, it is possible to provide compact
analytical results for the entanglement dynamics. Moreover, these take a rather revealing
form for the entanglement production rate between the two chains.

Let us start by defining as Xn,λ(x, t) the position at time t of a quasiparticle created
at position x with rapidity λ and bound-state index n. The trajectory of the quasiparticle
is determined by the following classical equation of motion [157]

d

dt
Xn,λ(x, t) = vn,Xn,λ(x,t)/t (λ) . (101)

Since vn,x/t(λ) can be determined for any value of x, t by solving (68), the trajectory of
a generic quasiparticle can be obtained numerically from (101) by knowing its initial
position. Alternatively, on can use the the so-called ‘flea gas’ method [242] to simulate
numerically the motion of the quasiparticles and of the entangled pairs [156].

From the analytical point of view, the integration of (101) seems a daunting task. Yet,
in some simple situations it is possible to obtain explicit expressions for the dynamics of
the entanglement entropy [157]. Here, we do not provide the full derivation of the results
but we illustrate the main steps of the reasoning and discuss the physical implications.
Let us begin by noting that equation (101) can be integrated as∫ Xn,λ(x,t)/t

x/t0

dζ

vn,ζ(λ)− ζ
= ln

t

t0
, (102)

with x the initial position of the quasiparticle and t0 a transient time sufficiently large to
ensure the validity of the hydrodynamic description [158]. In order to assign the correct
entanglement content to the quasiparticles one has to trace back the quasiparticles’
trajectory expressing their final position Xn,λ(x, t) in terms of their initial one x. First,
from (102) one can derive [157]

x

t
=Θ

(
ζn,λ −

Xn,λ

t

)
[vmin − vn,−∞(λ)] exp

[∫ Xn,λ/t

vmin

dz

z − vn,λ(z)

]

+Θ

(
Xn,λ

t
− ζn,λ

)
[vmax − vn,∞(λ)] exp

[∫ vmax

Xn,λ/t

dz

vn,z(λ)− z

]
, (103)

where ζn,λ is the solution of ζ = vn,ζ(λ), while vmin = minn minλvn,−∞(λ), and vmax =
maxn maxλvn,∞(λ). Equation (103) gives the initial position x of a generic quasiparticle
in terms of its final one Xn,λ(x, t) at time t. The method used above is similar to the
so-called method of characteristics to solve first order partial differential equations [243].

The crucial step to derive the quasiparticle picture is to establish a relation between
the trajectory of the two quasiparticles forming an entangled pair, i.e. having rapidity λ
and −λ. To this end, one defines a function Jn,λ(ζ) such that Jn,λ(x/t)t is the position
at time t of the quasiparticle labelled by (n,λ) that started at the same point in space
with the quasiparticle labelled by (n,−λ), which at time t is at position x. We do not
provide the explicit expression of Jn,λ(x/t), because is rather unwieldy, and we refer the
interested reader to the original [157].
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In terms of Jn,λ(x/t) one can express the dynamics of the von Neumann entropy of
a given subsystem A = [x1, x2] as follows [157]

S[x1,x2](t) = t
∑
n

∫
dλ {sgn(Jn,−λ(ζ1)− ζ1) sgn(ζ2 − Jn,−λ(ζ1))(ζ1 − vn,ζ1(λ))sn,ζ1(λ)

− sgn(Jn,−λ(ζ2)− ζ1) sgn(ζ2 − Jn,−λ(ζ2))(ζ2 − vn,ζ2(λ))sn,ζ2(λ)} , (104)

where we set ζi = xi/t. The entropies sn,ζ1/2(λ) are obtained by using (63) and (72) and

the definition of the Yang–Yang entropy density (94). Equation (104) is the analog of
(98) for interacting integrable systems. The first term in (104) takes into account con-
tributions to the entanglement entropy due to quasiparticles at the boundary at x1,
whereas the second one accounts for the boundary at x2. Equation (104) becomes much
simpler for the entanglement production rate between two semi-infinite chains. By fixing
x1 = 0, x2 →∞ in (104) and neglecting the contribution of the right boundary one finds

S[0,∞](t) = t
∑
n

∫
dλ sgn(λ)vn,0(λ)sn,0(λ), (105)

where we assumed sgn(vn,±∞(λ)) = sgn(λ), which is the typical situation in biparti-
tioning quenches [157]. Equation (105) predicts a linear growth of the entanglement
entropy, and depends only on the macrostate with x/t→ 0, similar to free fermions (cf
equation (100)). An interesting result is that in the presence of interactions the growth
rate of the entanglement entropy is different from the exchange rate of thermodynamic
entropy, given by

Sexch = t
∑
n

∫
dλ|vn,0(λ)|sn,0(λ). (106)

As noted in the previous subsection this does not happen in the non-interacting case.
The origin of this difference is depicted in figure 11, and it can be traced back to the
dressing of the quasiparticles velocities due to the interactions (see (68)). In particular,
figure 11 shows the possible trajectories of the quasiparticles forming entangled pairs,
which are straight lines outside the light cone, while they are curved inside of it.

Three different situations are possible: in the first one (see figure 11(a)) the quasipar-
ticles forming the entangled pair are in different subsystems at t→∞. Apart from the
dressing of the velocities, this is the same situation observed in quenches from inhomo-
geneous initial states in free-fermion models, and in quenches from homogeneous initial
states in interacting integrable ones. However, as shown in figures 11(b) and (d), inter-
actions can be so strong that the quasiparticles forming an entangled pair are in the
same subsystem at t→∞. In particular, in the example depicted in figure 11(b) both
members of the entangled pair generated on the left chain are on the right one at t→∞,
while the pair in figure 11(d) is confined within the left chain where it originated. The
latter configuration does not contribute to the entanglement. This happens because only
the pairs that are shared between A and Ā contribute to their mutual entanglement,
and the pairs in figure 11(d) are never shared. On the other hand the configuration in
figure 11(b) does contribute to (105). Specifically, an entangled pair as in figure 11(b)
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Figure 11. Dynamics of the entangled quasiparticles in interacting integrable sys-
tems. Only entangled pairs of quasiparticles produced in one of the two subsystems
are considered. Before entering the light cone the quasiparticles follow straight lines
trajectories traveling with opposite velocities. Within the light cone the velocities
are nontrivial functions of the ray ζ = x/t. This implies that within the light cone
the quasiparticles follow nonlinear trajectories. Three different physical situations
are possible: (a) at infinite time the two quasiparticles forming the entangled pair
are in different subsystems. (b) Both members of the pair are in the left subsystem.
(c) Contribution to the entanglement of configurations in (b). At time t entangled
pairs produced in region 1 are either shared or both members of the pair crossed
the origin at x = 0. Both members of the pairs produced in 2 crossed the origin and
are not shared anymore. (d) Both entangled quasiparticles remain in the left chain
and do not contribute to the entanglement entropy. Note that both in (b) and (d)
the velocities change sign before crossing the interface between the two subsystems,
due to the dressing.

contributes to the entanglement until both members of the pair are in the right subsys-
tem. This leads to the factor sign(λ) in (105). An important remark is that the situation
in figure 11(b) occurs for ‘slow’ quasiparticles, for which the dressing of the velocities is
stronger [157]. In particular, this is true for bound states. Indeed, typically, the larger
the bound-state size n is, the smaller is its group velocity. An interesting fact is that
for some inhomogeneous quench protocols by tuning the interaction strength, and hence
changing the quasiparticles velocities, it is possible to completely suppress the contribu-
tion of the bound states to the entanglement dynamics and to transport in general. In
this case the scenario in figure 11(d) holds for bound states with arbitrary λ. Moreover,
there is a ‘critical’ value of interactions strength below which bound-state transport is
permitted. Interestingly, the critical interaction depends on the bound-state size n, and
it decreases on increasing n. This means that by lowering the interaction strength it is
possible to progressively allow for the transport of bound states with larger and larger
n. These effects have been investigated in [237] (see also [158]).

Let us finally discuss some numerical checks of (105). We consider once again the
XXZ Heisenberg spin chain, and focus on the initial state obtained by joining together
the Néel and the tilted ferromagnetic states, which are defined as

|N〉 = |↑↓↑ . . .〉 , (107)

|F , θ〉 = eiθ
∑

jσ
y
j /2 |↑↑↑ . . .〉 , (108)
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Figure 12. Entanglement dynamics from inhomogeneous initial states in the XXZ
spin chain. Here the initial state is obtained by joining two semi-infinite chains
prepared in the Néel state and in the tilted ferromagnet. In the legend, θ is the
tilting angle and Δ the chain anisotropy. The black lines in the figure are tDMRG
data. The dashed lines are the analytic predictions obtained by using (105).

where we denoted by |↑〉, |↓〉 the two local basis states. We focus on the entanglement
entropy between two semi-infinite chains prepared in (107) and (108). In figure 12, we
report exact numerical data for the dynamics of the entanglement entropy between
the two chains obtained by using the time-dependent density matrix renormalization
group (tDMRG) [244]. The figure shows S[x1,x2](t) plotted versus time. The different lines
correspond to different values of the anisotropy Δ of the chain (cf (73)) and different
tilting angles θ (cf (108)). Clearly, the numerical data exhibit a nontrivial transient
dynamics. Note in particular the presence of oscillating corrections. Still, at moderately
long times t ≈ 10 a clear linear behaviour sets in. In all of the cases, this appears to
be accurately captured by equation (105), which is reported as red straight lines in
figure 12.

5. Quantum fluctuations around inhomogeneous backgrounds

While in the previous section we have assumed a quasiparticle picture to gain insight
into the entanglement dynamics, in this section we consider another approach to com-
plements GHD and access exact leading-order quantum correlations out of equilibrium.
This approach, first introduced in [143], is based on the combination of GHD and
a recently-developed inhomogeneous Luttinger-liquid (iLL) description [177, 245, 246]
(see also [167]), and allows one to compute exactly generic time-dependent correlation
functions when evolving from low-energy states.

The initial idea was that, at low energy, inhomogeneous systems can still be treated
using CFT methods at the price of working in a curved background. While the first
works were restricted to equilibrium situations [177], the method was later extended to
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time-dependent problems [246]. Meanwhile, it was realized that, giving up conformal
invariance, the same framework allows us to treat much more general situations both
in [245] and out-of-equilibrium [143]. These ideas are better illustrated considering a
specific model. In particular, following most of the relevant literature, here we focus on
the case of the 1D Bose gas. This choice is also experimentally motivated as 1D Bose
gases in external potentials are now routinely realised in cold-atom experiments, see e.g.
[42, 247–250] and the contribution by Bouchoule and Dubail to this special issue.

We organize the discussion as follows. In section 5.1, we focus on trapped 1D Bose
gases at equilibrium, while in section 5.2 we move to the out-of-equilibrium situation.

5.1. Luttinger-liquid treatment of trapped 1D Bose gases at equilibrium

A 1D Bose gas with point-wise interactions—also known as Lieb–Lininger model
[28, 251]—in the presence of an external potential V (x, t), is described by the following
Hamiltonian

H =

∫
dx

(
1

2m
(∂xΨ

†)(∂xΨ) + (V (x, t)− μ)Ψ†Ψ+ gΨ†2Ψ2

)
, (109)

where μ is a chemical potential and Ψ† = Ψ†(x), Ψ = Ψ(x) are operators that cre-
ate/annihilate a boson at position x, satisfying the canonical commutation relations

[Ψ(x), Ψ†(x′)] = δ(x− x′). (110)

There are several differences with respect to the model considered in the previous
sections: besides its bosonic nature, this model is defined in the continuum and, for a
generic value of g, it is interacting. Moreover, while in the absence of confining potential
the model is Bethe-ansatz solvable [29], V (x, t) breaks integrability.

5.1.1. Homogeneous Luttinger-liquid. In the homogeneous case (i.e. V (x, t) = 0) and
at equilibrium, the low energy physics (i.e. the physics on length and time scales that are
large compared to microscopic ones) of the system (109) is captured by the LL theory
[201] or, equivalenty, the CFT of a free compactified boson φ [252]. For later convenience,
let us briefly review how such a bosonic field, sometime referred to as ‘height field’ [253],
emerges from the microscopic degrees of freedom. In general, any local operator O(x)
in the microscopic model can be written as a sum of local operators in the CFT

O(x) =
∑
j

AO,φj
φj(x), (111)

with AO,φj
non-universal constants, and {φj}j CFT operators, which can be ordered from

the most to the least relevant one, according to their scaling dimension. If we denote the
microscopic density of the physical bosons by ρ̂(x) = Ψ(x)†Ψ(x), then its leading order
in the CFT operators is given by

ρ̂(x) = ρ0 +
1

2π
∂xφ(x) + · · · , (112)

with ρ0 the average (constant) density. The boson correlations are fixed (in imaginary
time) by the following action
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S =
1

2πK

∫
dz dz̄ ∂zφ(z, z̄) ∂z̄φ(z, z̄). (113)

Here z = x+ ivτ , z̄ = x− ivτ , and τ is the imaginary time. The parameters of the model
are K, known as Luttinger parameter and related to the interactions, and v, the sound
velocity [201, 254].

5.1.2. Inhomogeneous conformal field theory in the Tonks–Girardeau limit. Let us now
turn to the case of non-zero external potential. We begin by considering the limit of infi-
nite repulsion, g → +∞, also known as Tonks–Girardeau (TG) limit. This limit describes
hard-core bosons or, equivalently (after a Jordan–Wigner transformation) free fermions.
Specifically, by introducing the fermionic operators

Ψ†
F(x) = eiπ

∫
y<x ρ̂(y)dyΨ†(x), (114)

the Hamiltonian (109) becomes quadratic

H =

∫
dx

(
1

2m
∂xΨ

†
F(x)∂xΨF(x) + V (x, t)Ψ†

F(x)ΨF(x)

)
. (115)

Note that bosonic and fermionic densities are the same under the mapping (114), i.e.

ρ̂(y) = Ψ(y)†Ψ(y) = ΨF(y)
†ΨF(y). (116)

Following the historical development (cf [177]) we begin by considering a gas at equi-
librium at zero-temperature in a time-independent potential V (x). We also assume that
the inhomogeneity changes ‘slowly enough’, namely we are in the regime of equation (53):
at this stage, since we are at equilibrium, it is enough to assume it in the ‘space’ direction,
which is nothing but LDA [6].

In this regime, the system can be considered homogeneous in a small patch (i.e. a
small spatial region) and one can use results from the homogeneous theory. Matching
these patches together, however, imposes constraints on the global low energy theory.
In particular, Dubail et al [177] showed that the only consistent field theory defined
globally on the entire domain such that its propagator has the required local behaviour
everywhere is a CFT of a Dirac fermion or, equivalently, a free boson, in a curved
space-time. The associated action reads

S[φ] =
1

2π

∫
dz dz̄ gab∂aφ(z, z̄)∂bφ(z, z̄)

√
−det g, (117)

where gab is the metric field (a, b ∈ {z, z̄}) and we used that at the free Fermi point
K = 1. Importantly, the latter fact is not modified by the presence of the trapping
potential.

As in the homogeneous case, the bosonic field φ is related to the density fluctuations,
but now around an inhomogeneous average. Namely, at the leading order in the scaling
dimensions, the density is now written as

ρ̂(x) = ρ0(x) +
1

2π
∂φ(x) + · · · , (118)
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where ρ0(x) is fixed by the LDA. In our case, where the inhomogeneity comes from a

generic external potential V (x), it is given by ρ0(x) =
√

μ− V (x). The curved metric
in (117) is fixed by such (inhomogeneous) classical limit of the density. In particular,
there exists a set of coordinates (known as isothermal coordinates) for which the metric
takes the simple form

ds2 = π2ρ0(x)
2 dz′ dz̄′, (119)

with (z′, z̄′) given explicitly by

z′ = x̃+ iτ , x̃ =

∫ x dx′

πρ0(x′)
. (120)

In such ‘stretched’ coordinates the system appears again uniform, except for the (over-
all) conformal factor π2ρ0(x)

2 in equation (119) (which can be eliminated by a Weyl
transformation). Namely, the action is still of the form (117), with gab replaced by the
flat (euclidean) metric. The main difference with respect to the homogeneous case, is
that now the sound velocity characterizing the CFT is not constant, but depends explic-
itly on the position, i.e. v(x) = πρ0(x). This feature leads to the emergence of curved
light cones , as pointed out in [178].

In principle this approach gives access to all the correlation functions. Specifically, in
the case of the Bose gas it leads to explicit predictions for the entanglement entropy (both
in the ground state [177] and in the low-lying excited states [255]) and the one-particle
density matrix 〈Ψ†(x)Ψ(0)〉 [256] for a generic form of the external potential.

Other systems which can be described in terms of a CFT in a curved space are those
where the Hamiltonian is deformed via an envelope function f(x), i.e.

H =

∫
dx f(x)H(x). (121)

Examples studied in the literature include sine-square and Moebius deformations [257],
and the so-called rainbow model [258]. In the latter case, the underlying conformal invari-
ance has been exploited to get analytic predictions and explicit results for entanglement-
related quantities (i.e. different entanglement measures, entanglement Hamiltonian, and
contour [259]).

5.1.3. Inhomogeneous Luttinger-liquid for generic interaction strength. Let us move
away from the TG limit, and look at generic values of the interaction strength, g (cf
(109)). Also in this case we expect that the low energy physics is described by a quadratic
action. This is ultimately related to the universality of the LL description and can be
understood using the following argument (cf [245]).

First we assume that the local degrees of freedom of the system of interest are
captured by a single bosonic field φ associated to a local Hamiltonian. Next, we also
assume that physical observables, and hence the action, are invariant under constant
shifts φ→ φ+ const. This automatically leads to an action of the form

S[φ] =
∫

dx dτ L(∂xφ, ∂τφ, . . .), (122)
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where L is the Lagrangian density. At this point, assuming that the action is minimised
by a unique classical configuration φcl, we expand at second order around the minimum
and define

S[φ] ≡ S[φ+ φcl]− S[φcl] =
1

8π

∫
dx dτ

√
−det g

K(x)
gab∂aφ(x, τ)∂bφ(x, τ), (123)

with metric tensor

g =

⎛
⎜⎜⎝

∂2L
∂(∂xφ)2

∂2L
∂(∂xφ)∂(∂τφ)

∂2L
∂(∂xφ)∂(∂τφ)

∂2L
∂(∂τφ)2

⎞
⎟⎟⎠ , (124)

written in the coordinates (x, τ), and K(x) ≡ [4π
√
det∇2L]−1 is interpreted as a space-

dependent Luttinger parameter. All higher order terms in the expansion of the same
action have scaling dimension larger than 2, and therefore are irrelevant in two dimen-
sions in an RG sense. We refer to this model as inhomogeneous Luttinger-liquid (or iLL
in short): literally, the inhomogeneous (and in general also time-dependent) generaliza-
tion of the standard LL model [254, 260]. Note, however, that also other names appeared
in literature (e.g. it was dubbed inhomogeneous Gaussian free field in [245]).

The action in (117) is a special example of iLL which is also conformally invariant.
This is essentially due to the fact that only the sound velocity of the LL becomes position
dependent, v → v(x), while the Luttinger parameter remains constant. The latter, how-
ever, turned out to be a special property of the infinite interaction limit (free fermionic
point): for finite interaction also the Luttinger parameter generically acquires a spa-
tial dependence, K →K(x), breaking conformal symmetry [245]. Nonetheless, since the
resulting iLL theory is still quadratic, it can be used to numerically evaluate all correla-
tion functions in terms of the two-point function, while the latter is found by solving an
appropriate generalised Poisson equation [245]. All the inhomogeneous parameters are
again obtained from the microscopic model relying on separation of scales, and using
the exact Bethe ansatz solution of the homogeneous case [261–263]. This approach has
been used to compute the density profile (including density ripples) [245], the one-
particle density matrix [245], and the entanglement entropy [264] in the ground state of
the trapped Lieb–Liniger model (and its anyonic generalization [265]) for generic val-
ues of the interactions. Finally, we remark that there are special situations where also
at finite values of the interactions K remains constant [178], and therefore the model
retains conformal invariance. An example is given by the stationary state resulting from
a bipartitioning protocol, where two XXZ chains prepared in two ferromagnetic states
with opposite magnetizations are joined together. There CFT methods were exploited
in [109] to analytically characterise the leading behaviour of the entanglement entropy.
Moreover, in some cases, K has been observed to vary very slowly [266] and therefore
it is still possible to rely on conformal symmetry to get analytic results.
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5.2. Luttinger-liquid treatment of quenches in 1D trapped Bose gases

The inhomogeneous and time-dependent LL point of view outlined above can be
extended to non-equilibrium situations. Every time one has a well-defined (semi)classical
limit (which at equilibrium is given by the LDA), one can include quantum fluctuations
by exhibiting an action, whose minimum reproduces that classical limit, and whose
quadratic expansion gives quantum fluctuating corrections. This action, in turn, defines
a path integral, and, therefore, a standard ‘quantization’ procedure which has been
applied in many different context, from superfluidity [267] to Hall liquids [268]. The
problem, then, becomes how to write explicitly an action satisfying the above require-
ments (whose existence and uniqueness is anyway not guaranteed). Below we are going
to illustrate the solution to this problem, as found in [143].

Before proceeding, however, it is worth recalling the main logic behind this quantiza-
tion. Indeed, our starting point is a fully quantum model (in our case the one described
by the Hamiltonian (109)), where correlations are all contained in the time evolved
quantum state so that no further quantization is needed at this level. However, in typ-
ical situations the full state cannot be constructed explicitly and its correlations are
practically inaccessible. The idea is then to circumvent the problem by first finding
the (semi)classical limit of the theory (the hydrodynamic solution in our case) and
interpreting small fluctuations around such solution as classically propagating linear
sound waves. The latter are eventually ‘re-quantised’ by constructing the aforemen-
tioned action. Note, in particular, that this is not the action associated to the initial
model. In fact, the relation between the two is not generically understood.

As before we will illustrate the method focusing on 1D Bose gases in traps, now
subject to a quantum quench to induce the dynamics.

5.2.1. Quantum hydrodynamics. We begin once again by considering the model in
(109) in the TG limit, and focus on a harmonic trap quench. Namely, we prepare the
system in the ground state of (115) with

V (x, 0) =
1

2
mω2

0x
2, (125)

and suddenly change the frequency to a different value ω �= ω0 (note, however, that for
harmonic traps the quench problem can be solved for generic smooth functions ω(t)
[246]). Since in the TG limit the theory is quadratic and the initial state is Gaussian,
all observables can be computed in terms of two-point functions. In particular, a very
convenient quantity to consider is the so-called Wigner function [269]

nx,t(k) =

∫
dy eiky〈Ψ†

F(x+ y/t, t)ΨF(x− y/t, t)〉, (126)

which fulfils the following evolution equation

∂tnx,t(k) +
k

m
∂xnx,t(k) = ∂xV (x, t)∂knx,t(k). (127)

While this equation is exact for harmonically trapped non-relativistic particles, the
same is not true when considering a relativistic system or free fermions on a lattice (see
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section 6). In addition, from (126) it is clear that nx,t(k) contains the same information

as the two-point function 〈Ψ†
F(x, t)ΨF(y, t)〉, while it does not capture ‘off-diagonal’

contributions (cf section 6) coming from 〈ΨF(x, t)ΨF(y, t)〉 (when it is non-zero) or higher
point correlation functions (present for non-Gaussian initial states).

Here, however, we are not interested in the exact microscopic dynamics of nx,t(k).
Instead, we interpret nx,t(k) as a coarse grained (or semiclassical) slowly varying distri-
bution function in position and momentum, very much like ρx,t(k) in equation (54). In
fact, the evolution equation (127) is nothing but the GHD equation in the presence of a
slowly varying harmonic potential [270]. We remark that such a coarse grained interpre-
tation of the Wigner function has been extensively used to characterise the semiclassical
regime of Fermi gases in 1D [271–273].

Our goal here is to simplify (127) by using the structure of the initial state. To
this end we observe that our initial state (the ground state in the harmonic trap with
ω(t) = ω0), is a particular example of zero-entropy state, namely, it has zero entropy
density (such expression was first introduced in [139]). Those are states whose Wigner
function (in the semiclassical limit) reduces to a characteristic function, parametrised
by a curve Γt (the Fermi contour)

nx,t(k) =

{
1 (x, k) is inside Γt

0 (x, k) is outside Γt

. (128)

Locally, they look like split Fermi seas [274–276], labelled by a finite number of Fermi
points {ka}a=1,...,2Q (see figure 13). Importantly, since entropy is conserved at the hydro-
dynamic level, these states remain zero-entropy states under GHD evolution. Note also,
in connection to section 4, that evolution from such states would give zero entanglement
entropy within the quasi-particle picture (which captures linear growth only). How-
ever, they still display a sublinear growth of entanglement entropy that can be exactly
accessed with the method reviewed in the present section [277].

When evolving from zero entropy states the dynamics of the Wigner function is
encoded in that of the contour Γt, or, equivalently, in that of the Fermi points. Therefore,
the evolution of nx,t(k) can be described in terms of the 2Q evolution equations of the
Fermi points {ka}a=1,...,2Q, which take the form of Burgers equations [278]

∂tka(x, t) +
ka(x, t)

m
∂xka(x, t) = −∂xV (x, t). (129)

In particular, since in our quench both initial and trapping potentials are harmonic,
the Wigner function is just an ellipse that rotates in time [277] (see figure 13(a)). This
means that for any given position x, at any time t there are always no more than two
Fermi points. As a result, the two associated Burgers equations can be re-expressed in
terms of the local density ρ(x, t) (continuity equation) and the hydrodynamic velocity
u(x, t) (Euler equation), thus recovering the conventional hydrodynamic equations⎧⎪⎨

⎪⎩
∂tρ+ ∂x(uρ) = 0

∂tu+ u∂xu =
1

mρ
∂xP − 1

m
∂xV

. (130)
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Figure 13. The curve Γt encircling the points (x, k) at which the Wigner function
nx,t(k) is equal to one. (a) Simple situation occurring in the quench in frequency
of the single well potential (ω0 → ω), where at any given position x there are only
two Fermi points on the contour Γt. (b) More general situation with more than
two Fermi points, occurring in the quench from the double to the single well (at
frequency ω).

Here, P = π2ρ3/(3m) is the quantum pressure (which explicitly depends on h̄, here set
to 1) of the TG gas at zero temperature, the only ‘quantum’ input at this stage. We
stress that the reduction of GHD to standard hydrodynamics is not related to the free
nature of the TG gas, and in fact holds for zero-entropy states of generic interacting
integrable models, as long as the number of Fermi points is two. In general, however,
during the evolution the number of Fermi points might increase, leading to shocks in
the solution of the hydrodynamic equations (note that shocks do not occur, instead, in
zero temperature GHD, as pointed out in [139]).

An action reproducing the equation (130) has been constructed in [246] (see also
[278]). The result is again an iLL of the form (123). Interestingly, in the TG limit
the action is still of the form (117). Namely, it is a CFT (only the sound velocity is
inhomogeneous), with metric explicitly given in terms of the hydrodynamic parameters
as follows

ds2 = π2 ρ(x, t)2
(
(dx− u(x, t)dt)2 − π2ρ(x, t)2 dt2

)
. (131)

This action was used to compute several correlation functions, including a closed-form
expression for the n-particle density matrix [246]. The same technique has also been used
to engineer non-equilibrium scenarios where entanglement entropy shows a non-standard
(namely, non-linear) growth [279]. A similar approach has also been used in [280, 281] to
study transport and correlation functions starting from an inhomogeneous temperature
profile. Finally, Langmann et al [282] proposed a generalisation of the approach to the
case of a CFT with random sound velocity: this can be used to elucidate how purely
ballistic waves in standard CFT acquire normal and anomalous diffusive contributions.
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5.2.2. Generalized quantum hydrodynamics. Even in the TG limit, and for evolutions
from zero-entropy states, it is possible to find cases where the simplified description
(130) does not hold. Indeed, it is sufficient to look at situations where more than two
Fermi points occur [139, 277]. This is the case, for instance, of a quench from a double-to
a single-well potential, see figure 13(b) (note that this setup is also relevant from the
experimental point of view, see, e.g. [42, 43, 283]; for instance, it can model the celebrated
quantum Newton cradle experiment [8]). In this case the hydrodynamic regime is still
described by the Wigner evolution equation, equation (127), and, for zero-entropy states,
it is still equivalent to a set of Burgers equations for the Fermi points, equation (129)
(now four of them, i.e. Q = 2). However, the latter cannot be recast in terms of the two
equations for ρ(x, t) and u(x, t) anymore.

To re-quantize the theory we then have to write an action whose equations of motion
reproduce the Burgers equations (namely the GHD equations) and whose second order
expansion describes (classical) fluctuations around the GHD solution. We refer to this
framework as ‘generalized quantum hydrodynamics’ (note that the theory was originally
dubbed ‘quantum GHD’ [143]; the rearrangement of terms is here aimed at reducing
some potential confusion in relation to the results reviewed in the next section). In this
more general situation, the assumption for the local degrees of freedom to be captured
by a single bosonic field φ becomes questionable. Indeed, from the point of view of
bosonization [201], it is necessary to associate a chiral excitation (field) to each Fermi
point. Therefore, if there are more than two components it is not possible to end up in
a field theory of a single bosonic field.

The crucial observation is that, in phase-space, the problem can be recast in that
of quantising fluctuations of incompressible regions (see [143] for details), which is well
known in the literature on the quantum Hall effect [284–287]. Borrowing from those
results, it is possible to exhibit an action with the desired property, which turns out to
be the one of a chiral boson ϕ living on the Fermi contour (equivalently, around a given
point x, it appears as the sum of 2Q chiral fields {ϕa}). Parametrising this contour as
(x(s), k(s)), and introducing a density operator, which measures the excess number of
occupied states around (x(s), k(s)),

δρ(s) = ∂ϕ(s), (132)

one finds indeed the following commutation relations

[∂ϕ(s), ∂ϕ(s′)] =
1

2πi
δ′(s− s′). (133)

Passing to the usual coordinates (x, t), and to the Hamiltonian formalism, the Hamil-
tonian HGqHD—where the subscript stands for generalized quantum hydrodynam-
ics—generating (129) can be taken as

HGqHD =
1

4π

∑
a,b

∫
dx∂ϕa(x)A

ab∂ϕb(x), (134)

where Aab ≡ ∂εa/∂kb is known as flux Jacobian (with εa, kb energy and momentum,
respectively, of a small excitation around a given Fermi point) and is diagonal in the
TG limit.
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The program described above can be directly generalised to fully interacting inte-
grable models. In fact, it was first carried out for a 1D Bose gas (109) with generic
interaction g [143]. In this case the role of nx,t(k) is played by the ‘filling function’

ϑx,t(λ) =
1

1 + ηx,t(λ)
=

ρx,t(λ)

ρt,x,t(λ)
, (135)

where ρt,x,t(λ) and ηx,t(λ) are defined in terms of ρx,t(λ) in (63) and (64) respectively
(we suppressed the index n assuming no bound states). To proceed one replaces (127)
with the general GHD equation for ϑx,t(λ) in the presence of external potentials [270],
and considers the class of zero-entropy states of the interacting system [274–276], now
labelled by a finite number of ‘Fermi rapidities’ {λa}a=1,...,2Q. The associated filling func-
tion ϑx,t(λ) takes again the form of a characteristic function, and small fluctuations can
be seen as deformations of the Fermi rapidities {λa}. It has been shown in [143] that the
momenta {ka} of quasiparticles satisfy an exact continuity equation (generalizing the
Burger equation valid in the TG limit). Therefore, they are the right quantum variables
to be quantised also in the interacting case. The final result is exactly equation (134),
where the flux Jacobian Aab can generically couple different chiral excitations.

The Hamiltonian (134), together with the symplectic structure (133), defines the
theory of generalized quantum hydrodynamics, which has been applied in both the
free [277] and in the interacting [143] case to get results for correlations functions and
entanglement entropy. Note that it takes the form of a multi-component , spatially inho-
mogeneous, time-dependent LL, but now, importantly, constructed on top of the exact
profile (at the Euler scale) given by GHD, as derived from the full quantum initial model.
Note, finally, that once again, (134) acquires conformal invariance in the TG limit.

6. Dynamical generation of quantum correlations

If we try to reintroduce h̄ in the GHD equation (70) describing time evolution in the low
inhomogeneity limit, we realise that it does not appear explicitly: the equation is essen-
tially classical. Therefore, that equation can only describe how quantum correlations
are transported over time, rather than generated. We have seen in the previous section
that, for a certain class of initial states, one can describe the propagation of initial-state
correlations also in the presence of interactions by means of the theory of generalised
quantum hydrodynamics. Instead, we discuss here how quantum correlations can be
generated dynamically, even when they are not present in the initial state (for example,
when the system is initialised in a product state). To do that we will assigning a precise,
quantitative meaning to the space-time dependent root density that we have qualita-
tively introduced in the previous sections. Consequently, the forthcoming discussion is
less elementary than the rest of the review.

We identify two mechanisms for the generation of quantum correlations:

(a) There are quantum corrections to the asymptotic generalised hydrodynamic
equation (70).
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(b) The state is not completely characterised by root densities.

Let us start with clarifying point (a). Despite the asymptotic GHD equation being
classical, the full quantum evolution is doubtlessly not classical. In fact, the dependence
on h̄ in the von Neumann equation disappears practically only if the density matrix is
stationary. This indicates that there must be quantum corrections to the GHD equation
itself.

Point (b) is clear already in the homogeneous limit, as it is equivalent to the state-
ment that not every state is stationary (see section 2.2). Trivial as it sounds, this
point can nevertheless be a source of confusion: in relevant scaling limits, some observ-
ables are described by expressions that depend only on the root densities, a remarkable
example being the growth of the entanglement entropy after a quantum quench from
a product state—cf section 4. In this case the initial state is not stationary but the
asymptotic expression in equation (93) depends on the state only through the root den-
sity. This paradox is resolved after understanding two points: (i) quantities that time
evolve independently are coupled by the condition that the state is pure; (ii) the growth
of entropy is essentially due to dephasing, which gets rid of the quantities that cannot
be interpreted as root densities (in the non-interacting case, they are parametrised by
the field Ψ defined below) (see, e.g. [222, 223]).

Points (a) and (b) are intimately connected and can be better understood by adopt-
ing the point of view described in the second part of section 2.4, i.e. interpreting (70)
as the leading order contribution in a low inhomogeneity limit. In this way the terms
generating quantum corrections will be identified with the subleading contributions in
the limit. Let us describe how this can be done in the case of free fermion systems, like
the one described by the Hamiltonian H(h) in equation (1).

To access the subleading contributions in (70) one has to first understand what is
the meaning of a space-time dependent root density beyond the leading order. To this
end, there are two possibilities to envisage

(a) Lifting the root density to a function of space and time is just an effective way to
capture the asymptotic evolution.

(b) There is a way to define a space-time dependent root density so that it exactly
describes the time evolution of a class of states.

In the first scenario it is usually sufficient to define the root density so as to approach
the standard root density in the homogeneous limit. An example of such a line of attack
is provided by [123] (and, to some extent, by [159] in an interacting system), which
attempted to go beyond the low inhomogeneity limit by fixing the definition of root
density a priori . The main drawback of a similar description is the impossibility to
describe time evolution exclusively in terms of the root density. For example, if we
enforce definition (31) for a given choice of functions gμ(k), the evolution of the root
density will not be closed (see the discussion around (155)).

On the other hand, at least for non-interacting fermions or equivalent spin chain
models, approach (b) can be successfully applied and one can provide a nonperturba-
tive definition of a special class of states described entirely by the root density [122].
Specifically, the root density can be associated with a Wigner function [269] of the
Bogoliubov fermions diagonalising the system and the special states are such that no
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correlations other than those captured by the root density are present. The latter con-
dition is necessary because the relation between root density and correlation matrix is
not one-to-one—cf point (b). These states extend the notion of locally quasistationary
states beyond the low-inhomogeneity limit (59).

In this section we will assume that the Hamiltonian is homogeneous, like that in
equation (1). A similar approach can however be applied also to fermions described by
inhomogeneous quadratic Hamiltonians [122], and, in particular, to free fermions in a
trap [288–291].

Let us consider the 2-by-2 block of the correlation matrix associated to sites (�,n)

Γ�n =

[
δ�n − 〈(c� + c†�)(cn + c†n)〉 −i〈(c� + c†�)(cn − c†n)〉
−i〈(c� − c†�)(cn + c†n)〉 δ�n + 〈(c� − c†�)(cn − c†n)〉,

]
(136)

where cn can be the spinless fermions of our example with Hamiltonian (1). For the
LQSSs of the Hamiltonian (1), this can be parametrised as follows

Γ�n = h̄
∑
m∈Z

∫∫
[−π,π]2

d2q

π
ei(�−n)q2+i(�+n−m)q1 e−

i
2Θh(h̄(q2+q1))σ

z

e
i
2Θh(h̄(q2−q1))σ

z

×
{
1̂ρm

2 ,o
(h̄q2) + σy

[
ρm

2 ,e
(h̄q2)−

1

4πh̄

]}
, (137)

where ρx,e/o(p) can be interpreted as the even and the odd part (w.r.t. p) of the root
density, respectively. This matrix has indeed two important properties: first, in the
homogeneous limit it describes a generic stationary state, and, second, it is closed under
time evolution [122].

We point out that the space dependence in the root density (highlighted by the
subscript m/2 in (137)) is the result of a particular convention, explained below, in

assigning a position to a product of operators acting on different sites (e.g. c†�cn), which
is however irrelevant in the low-inhomogeneity limit. As long as quadratic operators like
c�cn are concerned, arguably, the most intuitive definition of position is the average x =
(�+ n)/2. This convention has for example the advantage that the position changes in a
simple way under chain inversion. There is, however, a possibly unexpected consequence:
quadratic operators with odd range have integer positions, whereas those with even
range lie on an effective lattice with half-integer positions. To avoid the complication of
specifying which lattice the operator belongs to, we allow x to run over all positions,
independently of whether they are physical or not. Given that, the root density ρx(p)
does not need to capture the expectation value of the operators that cannot have position
x. And this holds true even for values of x that are neither integers nor half-integers, in
which case ρx(p) could in principle assume any value. Fagotti [122] proposed to use these
degrees of freedom to promote ρx(p) to an entire function of x ∈ C. This simplifies the
asymptotic expansion in the limit of low inhomogeneity and makes it more transparent
the correspondence with the kinetic interpretation of the root density.
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Keeping this in mind, we can invert (137) and find

ρ(K)
x (p) =

1

4πh̄
+
∑
y∈ 1

2Z

K(x− y)

∫ π

−π

dq

8π2 h̄

∑
�,n∈Z

ei(n−�) ph̄+i(2y−n−�)q

× Tr

[
Γ�,n e−i 12Θh(p−h̄q)σz I + σy

2
ei

1
2Θh(p+h̄q)σz

]
, (138)

where K(x) is any entire function that equals 0 at nonzero integers and 1 at x = 0 (in
fact, one could also consider more generic interpolations, but we aim at simplicity).

The choice of K(x) is arbitrary because the root density is defined so as to capture
only the expectation values of the operators at either integer or half-integer positions.
This degree of freedom becomes superfluous in the homogeneous limit, where we would
like to drop any dependence on x. It is then convenient to choose K(x) satisfying two
auxiliary properties:∑

z∈ 1
2Z

K(x+ z) = 2 (139)

and ∑
z∈ 1

2Z

K(x+ z)(−1)2z = 0 (140)

for any x ∈ R. A kernel satisfying all the aforementioned constraints is the sinc
interpolation

K(x) =
sin(πx)

(πx)
. (141)

It is then easy to check that, in a stationary state, ρ
(K)
x (p) returns the standard root

density. Note that p in (138) has the dimensions of a momentum (for the sake of sim-
plicity we have set the lattice spacing equal to 1) and the root density is a density in
phase space, which, in turn, has the dimensions of the inverse of an action.

Apart from being consistent with the thermodynamic description of expectation

values in homogeneous states, definition (138) is convenient because ρ
(K)
x,t (p) turns out

to depend on the state only through ρ
(K)
x,0 (p) and vice versa. Specifically, the root density

as defined in (138) evolves in time according to the Moyal dynamical equation

∂tρ
(K)
x,t (p) = {{Eh(p), ρ

(K)
x,t (p)}}, (142)

where Eh(k) = 2Jε(p/h̄), the Moyal bracket is defined as [292]

{{fx(p), gx(p)}} = −i/h̄(fx(p) � gx(p)− gx(p) � fx(p)), (143)

and, for fx(p) and gx(p) 2π-periodic functions of p, the star product � reads as

fx(p) � gx(p) =

∫∫
[−π,π]2

d2q

(2π)2

∑
n,m∈Z

e−i(n−2x)q1f−m
2
(p+ h̄q1)e

−i(m+2x)q2gn
2
(p+ h̄q2). (144)
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Fagotti [122] has interpreted (142) as a non-perturbative version of generalised hydrody-
namics. From that perspective, GHD is the phase-space formulation [292] of quantum
mechanics in a special sector of the Hilbert space spanned by LQSSs. Since we are
considering a homogeneous Hamiltonian, equation (142) can be readily inverted

ρ
(K)
x,t (p) =

∑
z∈ 1

2Z

∫ π

−π

dq

2π
e2iqz e−

i
h̄ (Eh(p+h̄q)−Eh(p−h̄q))tρ

(K)
x−z,0(p). (145)

Note that the sum over z could also be replaced by an integral, as done in [122], but
then the interpolation would explicitly depend on time (instead, (145) is such that
the interpolation of the time evolution is the time evolution of the interpolation). Just
like phase-space quantum mechanics makes the semiclassical expansion in the limit
h̄→ 0 transparent, the GHD equation (142) can be readily expanded in the limit of
low inhomogeneity. To show this point, it is again convenient to choose the sinc kernel.
Indeed, the latter has the property

∑
z∈ 1

2Z

e2iqz
sin[π(x− z)]

π(x− z)
=

∫ ∞

−∞
dz eiqz

sin
[
π
(
x− z

2

)]
π
(
x− z

2

) , (146)

which implies that the sum over z can be exactly replaced by an integral over z.
Therefore, we can write

ρ
(sinc)
x,t (p) =

∫ ∞

−∞
dz

∫ π

−π

dq

2π
eiqz e−

i
h̄ (Eh(p+h̄q)−Eh(p−h̄q))tρ

(sinc)
x− z

2 ,0
(p). (147)

As anticipated in section 2.4, the low-inhomogeneity expansion can be carried out by
introducing an auxiliary parameter b̄ ≡ Λ/a that quantifies the typical scale of the
inhomogeneity. Indeed, let us consider a family of smooth initial conditions

fb,0(x, p) = f1,0

(x
b
, p
)
, (148)

such that fb̄,0(x, p) = ρ
(sinc)
x,0 (p), and calculate fb,t(x, p). If b̄ is large, we can approximate

(147) by its asymptotic expansion in the limit of large b

fb,t(x, p) =

∫ ∞

−∞
dz

∫ πb

−πb

dq

2π
eiqz e−

i
h̄(Eh(p+h̄ q

b )−Eh(p−h̄ q
b ))tf1,0

(x
b
− z

2
, p
)

∼
∫ ∞

−∞
dz

∫ ∞

−∞

dq

2π
eiqz exp

[
−2i

N∑
n=0

h̄2nq2n+1

(2n+ 1)!b2n+1
E

(2n+1)
h (p)t+O(b−2N−3)

]

× f1,0

(x
b
− z

2
, p
)
. (149)

We call this (2N + 1)-th order generalised hydrodynamics. In particular, truncating
the expansion at the third order (N = 1), setting back b to b̄, and integrating over q, we
find the solution to third-order generalised hydrodynamics

ρ
(3)
x,t(p) =

∫
dyAi[y]ρ

(3)

x−E′
h(p)t+

y
2 (E′′′h(p)h̄2t)1/3,0

(p), (150)
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where the physically irrelevant dependency on K is understood. From (149), we can
also easily derive the (2N + 1)-th order hydrodynamic equation: on the one hand, the
time derivative generates a polynomial in q/b; on the other hand, the space derivative
acts as

∂xf1,0

(x
b
− z

2

)
= −2

b
∂zf1,0

(x
b
− z

2

)
, (151)

which is equivalent to

2iq

b
f1,0

(x
b
− z

2

)
(152)

after integrating (149) by parts in z. We then find

∂tρx,t(p) +E ′
h(p)∂xρx,t(p) = h̄2E

′′′
h (p)

24
∂3
xρx,t(p) +O(h̄4∂5

x). (153)

From this equation we can extract a sufficient criterion for the irrelevance of the
corrections ∣∣∣∣ ε′′′(p/h̄)24ε′(p/h̄)

∣∣∣∣�
∣∣∣∣∂xρx,t(p)∂3

xρx,t(p)

∣∣∣∣ ∼ O(b2), (154)

where we assumed that the root density with b = 1 has O(1) derivatives. In our specific
case with dispersion relation (5), there could be problems only when h is close to 1, in
which case one should have b � |h− 1|−1 otherwise observables with range O(|h− 1|−1)
and larger could be affected by the correction.

In bipartitioning protocols, the most visible effect of the corrections in equation (153)
is arguably at the rays where profiles are not smooth in the ballistic limit (cf section 3).
For example, we will see that (153) correctly captures the Airy scaling behaviour around
the light-cone edge [100]. Remarkably, the more naive definition of space-time dependent
root density considered in [123] fails in the same task. In order to understand why we

recall that the relation between ρ
(K)
x (p) and the correlation matrix—equation (138)—is

not one-to-one: if we try to express the correlation matrix in terms of the root density,
we realise that there is more information contained in the former. Fagotti [122, 123]

proposed to introduce an auxiliary odd complex field, called Ψ(K̃)
x (p), to complete the

information. In terms of ρ
(K)
x (p) and Ψ(K̃)

x (p), the correlation matrix can be written as

Γ�n = h̄
∑
m∈Z

∫∫
[−π,π]2

d2q

π
ei(�−n)q2+i(�+n−m)q1 e−

i
2Θh(h̄(q2+q1))σ

z

e
i
2Θh(h̄(q2−q1))σ

z

×
{
1̂ρ

(K)
m
2 ,o

(h̄q2) + σy

[
ρ
(K)
m
2 ,e
(h̄q2)−

1

4πh̄

]
+ σzΨ

(K̃)
m
2 ,R

(h̄q2)− σxΨ
(K̃)
m
2 ,I
(h̄q2)

}
, (155)

where

Ψ
(K̃)
x,R (p) = Re[Ψ(K̃)

x (p)], Ψ
(K̃)
x,I (p) = Im[Ψ(K̃)

x (p)]. (156)
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The function K̃(x), appearing as a superscript of Ψ(K̃)
x (p), represents a degree of freedom

in its definition, as K(x) does for ρ
(K)
x (p), and satisfies the same properties of K(x). In

particular, the auxiliary field can be expressed in terms of the correlation matrix as
follows

Ψ(K̃)
x (p) =

∑
y∈ 1

2Z

K̃(x− y)

∫ π

−π

dq

8π2 h̄

∑
�,n∈Z

ei(n−�) ph̄+i(2y−n−�)q

× Tr

[
Γ�,ne−i 12Θh(p−h̄q)σz σz − iσx

2
ei

1
2Θh(p+h̄q)σz

]
. (157)

Importantly, the auxiliary field time evolves independently of the root density and
satisfies a different dynamical equation

ih̄∂tΨx,t(p) = Eh(p) �Ψx,t(p) + Ψx,t(p) � Eh(−p)

∼ 2Eh(p)Ψx,t(p)− h̄2E
′′
h(p)

4
∂2
xΨx,t(p) +O(h̄4∂4

x) (158)

where the physically irrelevant dependence on K̃ is understood and we have also shown
the first orders of the low-inhomogeneity expansion using that the dispersion relation is
even. In particular, in the low-inhomogeneity limit

e2iEh(p)t/h̄Ψx,t(p) (159)

satisfies the Schrödinger equation of a free particle with effective mass 2/E ′′
h(p). As

for the complete GHD equation, also the dynamical equation of the auxiliary field,
equation (158), can be readily inverted

Ψ
(K̃)
x,t (p) =

∑
z∈ 1

2Z

∫ π

−π

dq

2π
e2iqz e−

i
h̄ (Eh(p+h̄q)+Eh(−p+h̄q))tΨ

(K̃)
x−z,0(p). (160)

The solution to (158) truncated at a given order can be obtained in the same way as the
solution to nth order GHD; in particular, expanding (158) up to the third order (which
vanishes for even dispersion relations like Eh(p)) we have

Ψ
(3)
x,t(p) = e−2 i

h̄Eh(p)t

∫ ∞

−∞
dy

ei sgn(h̄E
′′
h(p)t)y

2√
iπ sgn(h̄E ′′

h(p)t)
Ψ

(3)

x−y
√

|h̄E′′
h(p)t|,0

(p). (161)

In contrast to what happens for the root density (150), the leading correction to the
auxiliary field is captured by a Gaussian kernel.

We are now in a position to understand that a different definition of root density,
ρ̃x(p), mixing the fields ρx(p) and Ψx(p) and approaching ρx(p) in the low-inhomogeneity
limit, which can be formally expressed as

ρ̃x(p) = ρx(p) + Υ[∂xρx(p), ∂
2
xρx(p), . . . ; ∂xΨx(p), ∂

2
xΨx(p), . . . ], (162)

would satisfy a different dynamical equation, irremediably coupled with independent
degrees of freedom. In addition, even neglecting the contributions independent of ρ̃x(p),
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the dynamical equation would have a different low-inhomogeneity expansion, which is
exactly the problem affecting this definition of inhomogeneous root density.

6.1. Behaviour at the light-cone edges

In this section we consider the physics around the edges of the light cone when the
root density describing the initial state is piece-wise continuous. Note that this does not
exactly correspond to the bipartitioning protocols considered so far, where the initial
density matrix takes the form ρ̂(0) = ρ̂L ⊗ ρ̂R: correlations between left and right opera-
tors are still present around the discontinuities of the root density (and of the auxiliary
field). Note however that a state with a piece-wise constant root density and the corre-
sponding partitioned state are almost equivalent everywhere except in regions, localised
around the junctions, of extent proportional to the correlation length. The bipartition-
ing protocol will be considered at the end of this section. We will follow the approach
of [123] but we will define the root density as in the previous section. Specifically, using
the sinc kernel, the correlation matrix is given by equation (137) with the root density

ρx,t(p) =
1

4πh̄
+ lim

ε→0+

∑
s=±1

∫ π
2

− π
2

dq

4πi
e2isqx e−

i
h̄ (Eh(p+h̄sq)−Eh(p−h̄sq))t

×
[
cot
(q
2
− iε
)
�s(p)− tan

(q
2

)
�s(p+ π)

]
, (163)

where we called �±(p) = ρR/L(p)− 1/(4πh̄) the shifted root density at time zero at the
right and at the left of the discontinuity, respectively. Expectation values around a light-
cone edge are completely characterised by the correlation matrix restricted to a moving
subsystem that contains the edge. We consider the scaling limit in which the time is
large and the displacement from the edge scales as t1/3. For pedagogical purposes, we
start by assuming first-order generalised hydrodynamics (which, we remind the reader,
corresponds to expanding the argument of the exponential in (163) at the first order
in q). By carrying out the scaling limit, we find that the correlation matrix behaves as

Γ�,n
1−GHD − Γ�,n

R ∼ 27/3πh̄[ρL(pM)− ρR(pM)]

×
i sin

[
(�−n)pM

h̄

]
1̂ + σy cos

[
(�−n)pM

h̄
+Θh(pM)σ

z
]

(−tE ′′′
h (pM)h̄

2)
1
3

K0(x�, xn), (164)

where ΓR is the correlation matrix associated with ρR(p) (hence, at the right of the
light-cone edge) and we defined the dimensionless displacement as

x� =
21/3(�− vMt)

(−tE ′′′
h (pM)h̄

2)1/3
, (165)
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the kernel K0(x�, xn) as

K0(x�, xn) = θ

(
−x� + xn

2

) sin
[√

−x�+xn
2

(x� − xn)
]

π(x� − xn)
, (166)

and pM is the momentum associated with the maximal velocity, i.e.

E ′
h(p) � E ′

h(pM) =: vM, (167)

for any p. Equation (164) is the result of transporting the quantum correlations in the
initial state at time t through first-order GHD: no additional quantum correlations are
created. Direct comparison with numerical data shows that (164) gives us the correct
qualitative behaviour but does not exactly capture the scaling limit of the correlations.
This gap is filled by third-order generalised hydrodynamics, which, as we have seen,
carries the leading quantum correction to the asymptotic hydrodynamic equation. Note
however that the third order is not expected to be sufficient in situations where the
second derivative of the velocity at its maximum/minimum vanishes (see also [291]).
In order to distinguish the quantum correlations generated dynamically from the ones
present in the initial state, we attach an auxiliary variable χ to the reduced Planck
constant h̄ explicitly appearing in equation (153): h̄→ χh̄. The correct result is then
recovered by setting χ to 1. We obtain

Γ�,n − Γ�,n
R = 27/3πh̄[ρL(pM)− ρR(pM)]

×
i sin

[
(�−n)pM

h̄

]
1̂ + σy cos

[
(�−n)pM

h̄
+Θh(pM)σ

z
]

(−tE ′′′
h (pM)h̄

2)
1
3

Kχ(x�, xn) + o
(
t−

1
3

)
. (168)

where the kernel Kχ[x�, xn] is given by

Kχ[x�, xn] = χ
1
3K1

[
χ− 2

3
x� + xn

2
+ χ

1
3
x� − xn

2
,χ− 2

3
x� + xn

2
− χ

1
3
x� − xn

2

]
, (169)

and K1[x�, xn] is the Airy kernel

K1[x�, xn] =
Ai(x�)Ai

′(xn)− Ai′(x�)Ai(xn)

x� − xn

. (170)

Note that the kernel associated with first-order GHD, namelyK0[x�, xn], can be obtained
by taking the limit

lim
χ→0

Kχ[x�, xn]. (171)

Let us use (168) to compute the connected two-point function of the spin in the
z direction in the vicinity of the light-cone edge. If we assume that the root density
describing the right state is smooth, the two-point function in the right state will decay
exponentially in the distance

|�− n| = |δ�− δn| = (x� − xn)

(
−tE ′′′

h (h̄q̄M)h̄
2

2

)1/3

. (172)
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Therefore, in the scaling limit under exam we can neglect ΓvMt+δ�,vMt+δn
R with respect to

ΓvMt+δ�,vMt+δn. Proceeding in this way we then find

〈szvMt+δ�s
z
vMt+δn〉c =

h̄2

4
(〈σz

vMt+δ�σ
z
vMt+δn〉 − 〈σz

vMt+δ�〉〈σz
vMt+δn〉)

=
h̄2

4
det ΓvMt+δ�,vMt+δn

∼ h̄2

4
det[ΓvMt+δ�,vMt+δn − ΓvMt+δ�,vMt+δn

R ]

∼ −28/3π2 h̄4[ρL(pM)− ρR(pM)]
2 cos2[Θh(pM)]

(−tE ′′′
h (pM)h̄

2)
2
3

[Kχ(x�, xn)]
2. (173)

The only difference between this and the result obtained within first-order GHD is
in the kernel, which appears as a multiplicative factor. This shows that the (quantum)
corrections to first-order GHD do not necessarily translate into corrections in connected
correlation functions: they can have leading effects!

If the state is not an LQSS (for which Ψx,t(p) = 0), we should also consider the
contribution from the auxiliary field. One can however show that the latter is subleading:
specifically, the contribution from Ψ to the fermionic two-point function asymptotically
behaves as O(t−2). This cancellation is convenient, as it allows us to use (173) even in
quench settings, where the state evolves in time also in the bulk.

Finally, let us clarify the relation between the results presented in this section and
the bipartitioning protocols ρ̂(0) = ρ̂L ⊗ ρ̂R discussed in the previous sections. To this
end, we assume that in the two states joined together connected correlations decay
exponentially. Focusing on the part of (155) involving the root density, the correlation
matrices of the two settings differ in a term of the form

h̄

∫
dyAi[y]

∑
m∈Z

∫∫
[−π,π]2

d2 q

π
ei(�+n−m)q1δρ

(K ; 3)
m
2 −E′

h(h̄q2)t+
y
2 (E

′′′
h (h̄q2)h̄

2t)1/3,0
(h̄q2)

×
{
ei(�−n)q2 e−

i
2Θh(q2+q1)σ

z 1̂ + σy

2
e

i
2Θh(q2−q1)σ

z

− e−i(�−n)q2 e
i
2Θh(q2−q1)σ

z 1̂− σy

2
e−

i
2Θh(q2+q1)σ

z

}
(174)

where δρx,0(p) decays exponentially in |x|. We can express the latter property as a
smoothness condition on its Fourier transform:
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δρx,0(h̄q2) =

∫ π

−π

dω

2π
e2iωxρ̃ω(h̄q2), (175)

where ρ̃ω(h̄q2) is a smooth function of ω. By summing over m in (174) we then get

h̄

∫
dyAi[y]

∫∫
[−π,π]2

d2q

π
e
i(x�+xn)

(
−tE′′′

h (pM)h̄2

2

)1/3

q1
eiq1[2(E

′
h(pM)−E′

h(h̄q2))t+y(E′′′
h (h̄q2)h̄

2t)1/3]ρ̃q1(h̄q2)

×
{
ei(�−n)q2 e−

i
2Θh(q2+q1)σ

z 1̂ + σy

2
e

i
2Θh(q2−q1)σ

z

− e−i(�−n)q2 e
i
2Θh(q2−q1)σ

z 1̂− σy

2
e−

i
2Θh(q2+q1)σ

z

}
. (176)

Since all functions are smooth, a change of variables to

k =

(
−tE ′′′

h (pM)h̄
2

2

)1/3

q1 and q =

(
−tE ′′′

h (pM)h̄
2

2

)1/3 (
q2 −

pM
h̄

)
(177)

is sufficient to show that the expression is O(t−
2
3 ), and hence subleading with respect

to (168). In conclusion, equations (168) and (173) describe the light-cone edge even in
the standard bipartitioning protocols where there are no initial correlations between
operators acting on opposite sides of the junction.

7. Conclusions and outlook

We have given a pedagogical account of GHD seen as a theory to describe the large-
time behaviour of quantum many-body systems after inhomogeneous quenches. We have
described the basic ideas of the theory—paralleling the now understood case of homo-
geneous quantum quenches—and its simplest predictions concerning the expectation
values of local observables at infinite times. We have discussed certain extensions of
the theory to keep track of the evolution of quantum correlations. Specifically, we have
showed how GHD can be combined with the quasiparticle picture of [220] to describe
the entanglement growth after inhomogeneous quenches, and how it can be combined
with the iLL framework of [245] to account for the evolution of quantum correlations for
a certain class of small inhomogeneous quenches. Finally we have discussed a systematic
approach to determine higher order corrections to the GHD equations in non-interacting
systems. In spite of the extremely rapid development of GHD (the original papers
appeared less than five years ago and the theory is already the subject of a special
issue) there are still many open questions. Here we discuss some of them, following their
order of appearance in the review.
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• Arguably one of the most pressing open questions concerning the development of
the theory is the ‘initial condition’ problem for equation (70). Namely, there is cur-
rently no standard procedure that, given a slowly varying inhomogeneous initial state
|Ψ0〉, produces a suitable initial condition for equation (70), enabling a quantitative
description of the late-time dynamics. As discussed in section 2.5.2, for interacting
systems this can be done only for a very limited class of initial states.

• As discussed in section 4 the quasiparticle picture for the entanglement spreading
gives us the leading-order description in the space-time scaling limit. An interesting
question is to understand subleading corrections. These are expected due to the fact
that the quasiparticles follow classical trajectories only on average. In fact, due to the
interactions, the motion of a given quasiparticle performs a random walk around the
classical trajectory. This effect is responsible for the diffusive correction to the GHD
equation [159, 191, 293] but its role in the entanglement dynamics is not yet under-
stood. A related question is whether and how exotic transport properties of integrable
systems at some special points, such as superdiffusion, are reflected in the entangle-
ment dynamics. Other open issues pertaining to the study of entanglement are (i)
describing the full-time dynamics of the Rényi entropies based on a quasiparticle
structure, (ii) clarifying how integrability breaking affects the entanglement spread-
ing [294], and (iii) incorporating the effects of dissipation in the quasiparticle picture
[240, 295–297]. Finally, another interesting direction is to investigate the entan-
glement spreading during the out-of-equilibrium dynamics with a time-dependent
Hamiltonian, for instance, by using the approach developed in [298].

• As discussed in section 5, the current construction of generalized quantum hydro-
dynamics is only valid for zero-entropy states. It would be interesting to extend the
theory to include other initial states, such as states at finite (low) temperature. In
analogy with the standard LL theory, we expect it to be feasible and to potentially
reveal an interesting competition between thermal and quantum fluctuations. More-
over, as a theory of linear fluctuations, generalized quantum hydrodynamics cannot
give access to all quantum corrections. There are different ways to take them into
account, corresponding to different kinds of (subleading) contributions. A natural
next step, would be to investigate corrections coming from non-linear quantum fluc-
tuations (namely, taking into account the ‘curvature’ of the dispersion relation): this
is expected to lead to a generalization of standard non-linear LL theory [299]. This
is related to the problem of studying the effects of irrelevant and marginal pertur-
bations of the LL theory, which are far from understood out of equilibrium (see, e.g.
[300], and references therein). Finally another interesting direction pertains to the
experimental validation of such extension of GHD in the context of cold-atom exper-
iments, which would be a natural next step to pursue after the recent experimental
confirmations of GHD itself [42, 43].

• The non-perturbative formulation of generalised hydrodynamics described in
section 6 strongly relies on the applicability of Wick’s theorem. The possibility of
generalising it to interacting integrable systems is an open question. In particular,
in the presence of interactions (in the Hamiltonian), it is unclear whether a class of
inhomogeneous states described by higher-order GHD can be at all defined. We also
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mention that the non-perturbative formulation of section 6 has not yet been extended
to the non-interacting time evolution of states that do not satisfy the Wick’s theorem.
Another aspect that deserves more investigation is the study of connected correlation
functions, which, as shown in section 6, could depend strongly on contributions that
are generally subleading when considering the expectation value of local operators.
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