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Chapter 1

Introduction

In this thesis, we treat two problems related to evolutionary PDE and one problem on
metric measure spaces theory.

1.0.1 Dissipative solutions to Hamiltonian systems

The first problem concerns the Lagrangian solutions for an infinite dimensional Hamiltonian
system. Since in this class of solutions the energy is dissipated, we will call as dissipative
solutions: they are the closure of sticky particle solutions with respect to the weak topology
of probability measure. Due to the results of nonexistence and nonuniqueness of sticky
particle solution in multidimension [1], the dissipative solutions are a suitable setting for
studying problems regarding sticky solutions. The dissipative solutions solve a wide range
of systems of equations, among which the pressureless Euler solutions, they gradient flow
solutions for Hamiltonian ODE’s in the Wasserstein space [5] (see conservative solutions
in Section 2.3), they extend the work [7] on dissipative solutions for multi-dimensional
pressureless Euler and the work of Hynd [20] on sticky particle solutions with semiconvex
potential.

We consider the family of Hamiltonians H : P2(Rd × Rd) → R defined as

H(µ) =

∫
V (q, p)µ(dqdp) +

1

2

∫ ∫
W (q, p, q′, p′)µ(dq′, dp′)× µ(dqdp),

where V : Rd ×Rd → R, W : (Rd ×Rd)2 → R are functions such that with the assumptions:

1. V (0) =W (0) = 0, ∇V (0) = 0, ∇W (0) = 0 and W (q, p, q′, p′) =W (q′, p′, q, p);

2. V,W are convex C2,1-function

3. V is strictly convex with respect to the first variable.
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6 CHAPTER 1. INTRODUCTION

Note that the first condition comes from the third law of Newton.

We define the projection operator as follows. Denote Γ = L2((0, T ),Rd) and let

M (Γ) =

{
η ∈ P2(L

2((0, T ),Rd)) :
1

2

∫
|γ(0)|2η(dγ) ≤ 1,

1

2

∫ ∫ T

0
|γ̇(t)|2dtη(dγ) ≤ 1

}
be a subset of probabilities with a finite second moment. Let Tt : Γ → Γ be the restriction
map Tt(γ) = γ⌞[t,T ] and η ∈ M a fixed probability. Then Pt : [L

2(Γ, η)]d → [L2(Γ, η,Ωt)]
d

is the projection with respect to the algebra Ωt = T−1
t

(
B(Γt)

)
. This projection can be

explicitly computed, it corresponds to the conditional expectation on the curves with the
same trajectories on time [t, T ].

We say that η ∈ M (Γ) is a dissipative solution with initial speed v0 ∈ [L2(Γ, η)]d if there
is a function v ∈ [L2(Γ, η,Ωt)]

d, playing the role of the momentum, such that for L 1-a.e. t

γ̇(t) = ∇vV (γ(t), v(t, γ)) +

∫
∇vW (γ(t), γ′(t), v(t, γ), v(t, γ′))η(dγ′),

v(t, γ) = Pt

(
v0(γ)−

∫ t

0

∇qV (γ(s), v(s, γ))ds−
∫ t

0

∫
∇qW (γ(s), γ′(s), v(s, γ), v(s, γ′))η(dγ′)ds

)
.

The second equation implies that two particles meeting at time t may either pass through
each other or merge, according to the projection Pt. If the projection is the identity, the
energy is conserved and we are obtaining the unique conservative solution. The opposite
case is when the projection is related to the evaluation map et(γ) = γ(t): the particles
are now forced to merge whenever they occupy the same position, the total energy is now
dissipated and we recover the sticky particle solutions (if they exist). In the general case Pt

specifies the fraction of the particles merging at a given time; also in this case the total
energy is dissipating. See Figure 1.1 for an example of conservative, sticky, and dissipative
solutions.

The main result can be summarized as follows:

Theorem 1.0.1. The following holds

1. For every initial datum there exists a dissipative solution. In particular, there is always
a unique conservative solution. Also, the Wasserstein distance between a dissipative
solution η and the only conservative solution with the same initial datum ηcons is
bounded by the square root of the energy dissipation, up to a constant:

W2(η, ηcons) ≤ C
√
E(0)− E(T ), where E(t) = H((γ(t), v(t))♯η).

2. The set of dissipative solutions is weakly compact, and it coincides with the weak
closure of the set of sticky particle solutions made of finitely many particles.
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Figure 1.1: from left to right, examples of a conservative solution, a sticky solution and a
dissipative solution with the same initial data.

3. There is a Gδ dense set of initial data such that the unique dissipative solution is the
conservative one.

The uniqueness of the conservative solution is a classical result for convex potential.
Here the technical condition of convexity of the potential is crucial, as shown in the following
theorem.

Theorem. For V = v2

2 , there exists W (x−x′) non-convex defined on R and discrete initial
datum such that there are two distinct conservative solutions.

In the case of a potential is a quadratic form, that is when force is linear, if an initial
datum admits a unique dissipative solution, then such a solution is concentrated on a family
of pairwise disjoint trajectories. If the potential is growing locally more than quadratic,
then such a condition is not valid anymore, as shown in the following theorem.

Theorem. There is an initial datum with a unique dissipative solution, i.e. the conservative
one, which is not a sticky particle solution: the solution is not concentrated on a set of
non-intersecting curves.

The results involve convex potentials, while the counterexample of non uniqueness con-
siders an internal potential with fast oscillating second derivative. The semi-convex potential
case is under investigation. In particular, a result of existence/uniqueness/stability is lacking.

1.0.2 Scalar conservation laws with viscosity

The second research addresses a blowup conjecture of [19], concerning nonlinear non-
autonomous conservation laws with viscosity. We consider the problem{

ut + (b(t, x)uk+1)x = uxx, x ∈ R, t ∈ (0,∞),

u(0, x) = u0(x),
(1)
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This is a scalar conservation law with viscosity, where the dissipation term is spreading
the mass on the whole space, while the drift can try to collect all the mass in one point.
The finite time blow-up/global existence will depend on the choice of b and k. In [19]
the authors studied the previous problem in the case b Lipschitz. Their idea is to study
the Lp-norm of the solution. By using the Gagliardo–Nirenberg–Sobolev inequality they
estimate d

dt∥u(t)∥p in terms of ∥u(t)∥ p
2
and by an iterative method, they proved estimate

∥u(T )∥∞ ≤ q̄
1

2q̄−k max

∥u0∥∞,

(
sup

t∈[0,T ]
Lip(b(t))

) 1
2q̄−k

(
sup

t∈[0,T ]
∥u(t)∥q̄

) 2q̄
2q̄−k

 , (1.2)

for any q̄ ≥ 1. This proves the global existence, taking q̄ = 1, in the case k < 2. In the same
paper, the authors show a numerical simulation where the L∞-norm is not controlled. They
ended the paper with three open questions. In particular, the last one is the following:

“Is it possible to guarantee global existence for solutions of the problem (1) when k ≥ 2.”

A method used in [26] shows that for k > 2, there is a blow-up in finite time for certain
solutions. The idea is considering the “energy” E(u) =

∫
x2u and, by considering a specific

field b, estimating
d

dt
E ≤ 2m− C

mα

Eγ
, m = ∥u∥1 mass,

for certain α, γ > 0. For m big enough the energy goes to zero at a finite time, which means
that all the mass is concentrated in {x = 0} and the solution blows up. In this thesis, the
study is extended to the two following distinct cases:

1. b is only integrable:

b ∈ L∞
loc((0,∞), Lp,∞(R)), p ∈ (2,∞],

{
k > 0,

u0 ∈ L1(R) ∩ L∞(R);

2. b has a weak derivative in x:{
b ∈ L∞

loc((0,∞)× R),
bx ∈ L∞

loc((0,∞), Lp,∞(R)), p ∈ (1,∞],


k > 1

2 ,

u0 ∈ L1(R) ∩ L∞(R),∫
|x|2|u0(x)| dx < +∞.

The critical values for the blow-up become

crit(p) =

{
1− 1/p b ∈ Lp,∞,

2− 1/p bx ∈ Lp,∞.

Note that crit(p) = 2 for bx ∈ L∞. The result of the blow-up/global existence can be
summarized as follows.
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Theorem. Assume p is critical (p = crit(p)) or subcritical (p < crit(p)). Every solution
is globally defined. In the supercritical case (p > crit(p)) there are initial solutions with a
finite time blow-up, that is

lim
t→T

∥u(t)∥ = +∞, T ∈ (0,+∞).

This theorem answers the question of [19], showing a different result with respect to
what authors conjectured and their numerical simulation showed.

The main idea for the critical case is to study a rescaled solution about the blow-up
point at time T . Writing t = T (1− e−τ ), the rescaled functions

v(τ, y) =
√
Te−τ/2u

(
T (1− e−τ ),

√
Te−τy

)
,

b̃(τ, y) = (Te−τ )
1−k
2 b
(
T (1− e−τ ),

√
Te−τy

)
,

solve the equation

vτ +
1

2
(yv)y + (b̃v1+k)y = vyy.

The equation involves an additional term that is crucial for the following estimates. By
studying the derivative of the “entropy”

ηa(v) =

{
v2/2 0 ≤ v ≤ a,

a (v − a/2) a < v <∞,

for a small enough, using Gagliardo–Nirenberg–Sobolev estimate, it can be proved that

lim inf
t→∞

∥v∥∞ = 0.

Again by Gagliardo–Nirenberg–Sobolev, it can be achieved the decay

∥v(τ)∥22 ≤ Ce−
τ
2

that leads to the estimate

∥u(T (1− e−τ ))∥2 ≤
C√
T
.

Finally, by adapting the estimate (1.2) of [19], the global existence holds.
In the same article, the long behaviour of the solution is studied. In the subcritical case,

the L∞-norm decay of the solution is not guaranteed. In the critical case, the dissipative
term dominates the drift and the solution decades as the heat equation. In the supercritical
case, the solution requires enough mass in order to blow up in a finite time. If it does
not happen and the solution is uniformly bounded, again the solution decades as the heat
equation. This can be summarized as follows.
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Theorem. In the critical case

∥u∥∞ ≤ C√
T
,

with C depending on u0, ∥b∥p (resp. ∥bx∥p). In the supercritical, every uniformly bounded
solution u ≤ A satisfies

∥u∥∞ ≤ Ĉ√
T

with Ĉ depending on u0, A, k, ∥b∥p (resp. ∥bx∥p). In the subcritical case, there are time-
independent drifts b(x) such that (1) admits time independent solutions.

The multidimensional case is now under investigation, in some particular cases. The
difficulty is that, in the critical case, we use the Gagliardo–Nirenberg–Sobolev inequality to
estimate the L∞-norm of the rescaled solution in terms of the mass and the L2-norm of the
derivative. Such an estimate is no longer valid in higher dimensions.

1.0.3 On the Hausdorff Measure of Rn

The last part of the thesis answers a question raised by David H. Fremlin about the
Hausdorff measure of R2 with respect to a distance inducing the Euclidean topology. More
specifically the question is the following:

let us consider a metric ρ on R2 inducing the Euclidean topology,

is it possible that H2
ρ

(
R2
)
= 0?

This problem is taken from a list of problems in Measure Theory proposed by Fremlin, see
https://www1.essex.ac.uk/maths/people/fremlin/answer.pdf. In particular, we prove that
the Hausdorff n-dimensional measure of Rn is never 0 when considering a distance inducing
the Euclidean topology. This result is achieved by the use of Brouwer degree theory and
technical tools of measure theory.

1.1 Structure of the thesis

Part I

The second chapter is organized as follows.
In Section 2.2 we list the notation we will use throughout the chapter: it is in general

standard notation in analysis. Section 2.2.1 collects the properties of the Hamiltonian
function we require in this thesis, while Section 2.2.2 lists some elementary properties of
the space of curves used here.

The conservative flow is studied in Section 2.3: it is mainly a collection of known results,
or results which are fairly easy to prove, some of their proofs are collected in Appendix 2.A.
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Less standard (but still elementary) is the analysis of initial data for which the trajectories
are not crossing: this is done in Section 2.3.1, where it is shown that we can perturb an
initial data (in case splitting particles) and get that for a fixed small interval the trajectories
are not intersecting (Proposition 2.3.8.

The key part of the chapter begins in Section 2.4. Here the definition of the dissipative
solution is given, Definition 2.4.1, and it is shown that it enjoys some properties: it has
finite energy (Lemma 2.4.5), it enjoys a concatenation property (Lemma 2.4.6), and v(t)

belongs to BV
1/2
t L2

η (Lemma 2.4.7). The latter property gives that the incremental ratio
γ(t+s)−γ(t)

s converges as s↘ 0 to γ̇ uniformly in L2
L 1×η (Lemma 2.4.8).

These estimates are necessary to construct a forward piecewise conservative approximation
to a given dissipative solution, Proposition 2.4.13. There are two key estimates here: the
choice of the time interval where the dissipation is small (Lemma 2.4.10), and the comparison
between the projection of the conservative solution and the dissipative solution (Lemma
2.4.11 and Corollary 2.4.12).
The nice estimate showing that the distance between the dissipative solution and the
conservative one is proportional to the square root of the dissipation of energy is in
Proposition 2.4.16, Section 2.4.2, while the analysis of the case where H is purely quadratic
(and then the ODEs (2.1) are linear) is in Section 2.4.3, where it is shown that the
conservative evolution and the projection Pt commute. In the same section it is shown that,
in this case, the fact that the unique dissipative solution is the conservative one implies
that the conservative trajectories are disjoint, Proposition 2.4.19.

Section 2.5 uses standard arguments to deduce that if ηn, vn(t, γ) is a family of dissipative
solutions converging to η, v(t, γ) weakly, then the measures (γ(t), γ̇, vn(t, γ))♯ηn converges
weakly to (γ(t), γ̇, v(t, γ))♯η, Proposition 2.5.1. This gives a proof of the compactness of
dissipative solution, Theorem 2.5.2, which is simpler w.r.t. the proof of the analogous result
contained in [7].

Section 2.6 concerns the construction of approximations to a dissipative solution made
of finitely many sticky particles. The approach is standard and follows the ideas of [7].
First, if we give final data (position and speed of the particles) and finite set of times ti
and functions Υi(γ) with Pti(Υi) = 0, one can construct a backward dissipative solution by
alternating the backward conservative flow in [ti, ti+1) and requiring that at ti the projection
Pti is acting as

v(ti, γ)− v(ti−, γ) = Υi.

In other words, we are specifying the times and the action of the projection. Lemma 2.6.2
shows that this construction is coherent and the result is a dissipative solution.
In the rest of the section one finds suitable times ti and functions Υi(γi) to obtain the
desired approximation to a dissipative solution: first requiring that Pt acts only at the
time ti (Proposition 2.6.4), then requiring that the approximating dissipative is made of
finitely many particles (Proposition 2.6.6), and finally that the backward trajectories of
these particles are not intersecting (Proposition 2.6.8).
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The result of this section, together with the weak closure of the family of dissipative solutions,
implies that the weak closure of the sticky particle solutions is the set of dissipative solutions,
Theorem 2.6.9: this shows that it is the natural set for studying this kind of problems.

The last section, Section 2.7, concerns the fact that the set of initial data for which
the only dissipative solution is the conservative one is a residual set, Theorem 2.7.1. Its
proof uses a quite standard argument, once it is known that µ 7→ H(µ) is l.s.c. (in this
section V,W are assumed to be convex), the set of finite particle solutions such that the
trajectories are not intersecting is dense (Proposition 2.3.6), and that if the trajectories are
non intersecting then the unique solution is the dissipative one (Lemma 2.4.17).

The appendix contains the proof of some elementary facts about the conservative
solutions (Appendix 2.A), an example of non-uniqueness for the conservative flow if the
Hamiltonian does not satisfy the assumptions of Section 2.2.1 (Appendix 2.B), and an
example where the trajectories of the conservative solution are intersecting, but nevertheless
the unique solution is the conservative one (giving a counterexample to the converse of
Proposition 2.3.8, Appendix 2.C).

Part II

The plan of the third Chapter is the following.

In Section 3.2 we introduce some definitions, notations, and well known results on Lorentz
spaces (Section 3.2.1): comparisons, embeddings, interpolations, Hölder’s inequalities and
convolutions estimates. Since we are using multiplication/convolutions operators and
embedding, the Lorentz space setting more or less gives the same estimates as for Lp. We
also recall a special case of Gagliardo-Niremberg inequality and prove a useful estimate on
the heat kernel.

In Section 3.3 we recall the local existence and uniqueness of the solutions via Duhamel’s
principle. The assumption k ≥ 1

2 and that E(u0) <∞ enters only in this section, and are
needed if we let b be unbounded. The results in this section are standard, and independent
of the main theorems of the thesis.

The main idea of the second part of the thesis is contained in Section 3.4, where we deal
with the global existence of the solutions. Differently from the approach of [19], we use a
standard rescaling the solutions about the blow-up point at time T , Section 3.4.1. By means
of energy estimates for the truncated solution (Lemma 3.4.1) and Gagliardo-Niremberg
inequality (Lemma 3.4.2), we show that in the new variables (τ, y) ∈ R+ × R that the

rescaled solution decays the L2-norm as the Heat kernel τ−
1
4 (Lemma 3.4.3). This fact will

lead to a uniform estimate on the L2-norm of the original solution u (Corollary 3.4.4), and
by adapting the estimate [19, Theorem 3.8] to our case we deduce that ∥u∥∞ is bounded,
Theorem 3.4.5 of Section 3.4.4. This concludes the proof of the first part of Theorem 3.1.1.
In Section 3.4.5 we study the critical cases, and show that the fact that the norm of b
remains constant under rescaling leads to a uniform decay rate, Theorem 3.4.7.

In Section 3.5 we provide examples of solutions blowing up in finite time for k above the
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critical value. The ideas are taken from [26] and adapted to our situation. Theorem 3.5.2
corresponds to the second part of Theorem 3.1.1 for k > 1− 1

p and b(t) ∈ Lp,∞, while the

other case k > 2− 1
p and bx(t) ∈ Lp,∞ is in the statement of Theorem 3.5.4. As observed

already in [26], we notice in Remark 3.5.5 that the L1-norm of the initial data cannot be
too small, otherwise blow-up is not possible.

In Section 3.6 we discuss the long behavior of solutions, proving Theorem 3.1.2. The
proof of the main result of this section, Theorem 3.6.1, gives examples of bounded solutions
in the subcritical case, and by adapting the analysis of the decay for the critical case we
obtain that the solution decay in the critical, or in the supercritical case if we assume that
u ∈ L∞

t,x.

Part III

In Section 4.1 we recall the definition of the Hausdorff measure, and the definition and
some properties of the Brouwer Degree.

The last section contains the main idea of the chapter: given a distance ρ on Rn

topologically equivalent to the Euclidean topology, we build a homotopy between the map
id : (B(0, 1), ρ) → (B(0, 1), deucl) and a Lipschitz map. Using such homotopy and the
Brouwer Degree theory, we prove the existence of a Lipschitz map with the image containing
an open set. This allow to conclude that Hn

ρ (Rn) > 0.
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Chapter 2

Dissipative solutions to
Hamiltonian systems

We extend the notion of dissipative particle solutions [7] to the case of Hamiltonian flow
in the space of probability measures µ ∈ P(Rd × Rd) in the sense of [5], see also [8]. The
Hamiltonian is of the form

H(µ) =

∫
V (q, p)µ(dqdp) +

1

2

∫ ∫
W (q, p, q′, p′)µ(dqdp)µ(dq′dp′),

with at most quadratic growth, so that a conservative flow

q̇ = ∇pV +

∫
∇pWµ, ṗ = −∇qV −

∫
∇qWµ

is uniquely defined.

The dissipative solution is defined by requiring that the equation of p is replaced by

p(t) = Pt

(
p(0) +

∫ t

0

[
−∇qV −

∫
∇qWµ

]
ds

)
.

where Pt is the projection on the space of functions corresponding to the restriction map

Ttγ = γ1Is>t.

Equivalently the particles merge preserving the average momentum p.

We obtain several results on the structure of dissipative solutions; among them, regularity,
dissipation of energy, approximations with finite particles solutions, density of conservative
solutions. The proofs require additional technical difficulties, not present in the analysis of
[7] where H(q, p) = p2/2.

17
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2.1 Introduction

We consider the Hamiltonian function

H(µ) =

∫
V (q, p)µ(dqdp) +

1

2

∫ ∫
W (q, p, q′, p′)µ(dqdp)µ(dq′dp′),

where V,W are smooth semiconvex functions with quadratic growth, W symmetric, and
µ ∈ P2(Rd × Rd) is a probability measure with finite quadratic moments. It is known [5]
that for every µ0 ∈ P2(Rd ×Rd) there is a unique solution t 7→ µ(t) to the Hamiltonian flow

∂tµ(t) + divp,q
(
J∇H(µ(t))µ(t)

)
= 0, µ(0) = µ0.

where J is the symplectic matrix

J =

(
0 I
−I 0

)
, I d× d-identity matrix,

and

∇H(µ) = ∇H(q, p;µ) = ∇V (q, p) +

∫
∇W (q, p, q′, p′)µ(dq′dp′).

At the level of trajectories (Q,P ) in the phase space, these are solutions to

Q(t, q, p;µ0) = q +

∫ t

0
∇vV (Q(s, q, p;µ0), P (s, q, p;µ0))ds

+

∫ t

0

∫
∇vW

(
Q(s, q, p;µ0), P (s, q, p;µ0), Q(s, q′, p′;µ0), P (s, q

′, p′;µ0)
)
µ0(dq

′dp′)ds,

(2.1a)

P (t, q, p;µ0) = p−
∫ t

0
∇qV (Q(s, q, p;µ0), P (s, q, p;µ0))ds

−
∫ t

0

∫
∇qW

(
Q(s, q, p;µ0), P (s, q, p;µ0), Q(s, q′, p′;µ0), P (s, q

′, p′;µ0)
)
µ0(dq

′dp′)ds.

(2.1b)

In this thesis, we study the existence and stability of solutions when the particles are
”sticky”, i.e. they are allowed to merge (thus dissipating energy but preserving momentum)
if they occupy the same position q: this leads to the notion of dissipative solution.

The prototype example is the sticky particle system, where the Hamiltonian is simply

H(µ) =

∫
p2

2
µ(dqdp). (2.2)

In this case, the conservative solution is made of straight lines

q̇(t) = p(t) + q(0), p(t) = p(0).
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The condition for sticky particle solution is that the momentum p is conserved when particles
merge, i.e. in the case of finitely many particles with mass mi colliding at time t̄

qi(t̄) = q, i = i1, . . . , in ⇒
in∑

j=i1

mjpi(t̄−) = pi(t̄+)

in∑
j=i1

mj , i = i1, . . . , in.

In one space dimension, the above condition is suitable to single out a unique sticky particle
solution, see [12, 11, 14, 18, 23] and the references therein for an overview of the results.
In [13], it is shown that when the space dimension d is strictly greater than 1 the existence
and uniqueness of a sticky particle solution is in general false: the correct notion that
preserves the compactness of solutions is the notion of dissipative solutions introduced in
[7]. The main results of [7] are that dissipative solutions form a weakly compact set w.r.t.
the narrow convergence, and the study of the generality of dissipative solutions.
The fundamental difference between a sticky particle solution and a dissipative solution is
that in the first case, if particles occupy the same point in space-time, then they are forced
to merge into a single particle; for dissipative solutions, instead, particles do not need to
merge, but if they do the conservation of momentum is required. Figure 2.1 shows the
different behavior to the three families of solutions (conservative, sticky and dissipative)
in the case of initial data made of 2 particles: observe that dissipative solutions allow
interactions of fraction of the initial particles.
A simple example of dissipative solutions in 1d is

µ(t, dqdp) =


δ(t,1)(dqdp)+δ(−t,−1)(dqdp)

2 t < 0,
1−α
2 δ(−t,−1)(dqdp) +

α+β
2 δ

(β−α
β+α

t,β−α
β+α

)
(dqdp) + 1−β

2 δ(t,1)(dqdp) t ≥ 0,
(2.3)

with α, β ∈ [0, 1]. One can think that only a fraction α of the first particle decides to merge
with a fraction β of the second, resulting in a particle traveling with speed β−α

α+β : the sticky
particle solution is obtained when α = β = 1, and the conservative for α = β = 0.

The main result of this chapter is the extension of the results of [7] to a general
semiconvex Hamiltonian case with quadratic growth.

Theorem 2.1.1. Assume that V (q, p) is semiconvex and uniformly convex in p,W (q, p, q′, p′)
is convex and symmetric, i.e. W (q, p, q′, p′) =W (q′, p′, q, p). Then the following holds.

1. The set of dissipative solutions is not empty, and contains all conservative solutions.

2. The set of dissipative solutions is weakly compact and coincides with the weak closure
of the set of sticky particle solutions made of finitely many particles (Theorem 2.5.2).

3. There is a Gδ-set of initial data such that the unique dissipative solution is the
conservative one (Theorem 2.7.1).
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Figure 2.1: from left to right, examples of a conservative solution, a sticky solution and a
dissipative solution with the same initial data.

We remark that the first point follows immediately from the very definition of dissipative
solutions, Definition 2.4.1.

These results are the exact extension of the results for the sticky particle case. Never-
theless, their proof requires much more effort for the following reason.
For the Hamiltonian (2.2) (and more in general for purely quadratic Hamiltonian, i.e. when
the ODEs (2.1) are linear), the dissipative solution at time t can be computed directly
from the conservative solution as follows: the position and momentum of merged particles
can be obtained by taking the average position and average momentum (i.e. applying the
projection Pt defined below at the conservative flow, Proposition 2.4.18).
For the nonlinear case, the above property is clearly false, and then one has to rely on the
integral formulation of the dissipative solutions (Definition 2.4.1): the correct definition
of the dissipative solution is actually the central point of the chapter, and we give it here
below.

Consider the space of W 1,2-curves in Rd, and define the family of projections

W 1,2([0, T ],Rd) ∋ γ 7→ P̂tγ(τ) = γ(t)1Iτ<t + γ(τ)1Iτ≥t.

Let Ωt be the smallest σ-algebra such that P̂t is measurable, and let Pt be the pro-
jection acting on L2

η. Then η ∈ P2(Γ) is a dissipative solutions if there is a function

v ∈ L2
L 1×η((0, T )× Γ,Rd) such that for L 1-a.e. t

γ̇(t) = ∇vV (γ(t), v(t, γ)) +

∫
∇vW (γ(t), γ′(t), v(t, γ), v(t, γ′))η(dγ′), (2.4a)

v(t, γ) = Pt

(
v0(γ)−

∫ t

0
∇qV (γ(s), v(s, γ))ds−

∫ t

0

∫
∇qW (γ(s), γ′(s), v(s, γ), v(s, γ′))η(dγ′)ds

)
.

(2.4b)
Following the Hamiltonian nomenclature, the function v(·, γ) will be called the momentum
of the particle with trajectory γ at time t. The uniform convexity of V in p implies that
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the first equation, Equation (2.4a), is the graph of Lipschitz function, relating γ̇(t) uniquely
with v(t, γ). The evolution is then described by the second equation, Equation (2.4b), and
the projection acts only on this one: it describes the conservation of momentum.

We end this introduction by listing some additional technical results, which have an
interest on their own.

• The map t 7→ v(t, γ) belongs to BV
1/2
t L2

η (Lemma 2.4.7): note that the conservative

solution has t 7→ p(t) in W 1,2
µ , i.e. the projection reduces the regularity but it still

preserves some regularity w.r.t. t. In particular, the incremental ratio γ(t+s)−γ(t)
s

converges to γ̇(t) in L2
L 1×η (Lemma 2.4.8).

• It is possible to approximate a dissipative solution by alternating the conservative flow
and the projection Pt (Proposition 2.4.13 of Section 2.4.1). This is in some sense the
natural idea of a dissipative solution: the particles travel by the conservative flow, and
then some of them interact and merge. This approximation collects the interaction at
a finite number of times ti. It is important to remark here that by just throwing in a
family of projections, one is not going to construct an approximation of a dissipative
solution: indeed the limit is not in general conservative, since the approximation we
construct needs to project also the positions γ(t). Another approximation we present
below will actually construct dissipative solutions.

• In the sticky particle model (or in linear case i.e. H purely quadratic), the dissipation
of energy E(t) = H((γ(t), v(t))♯η) is immediate since the projection commutes with
the conservative flow. Here the same result holds, together with the fact that the
distance between the conservative solution and the dissipative solution is controlled by√
E(s)− E(t); the analysis is however more complicated and requires some preliminary

estimates (Section 2.4.2 and Proposition 2.4.16).

• As for the sticky particle systems, in the linear case requiring that the trajectories of
the conservative solution are disjoint is a necessary condition in order to have that the
only dissipative solution for a given initial data is the conservative one (Proposition
2.4.19). This is however false for the general case, and in Appendix 2.C an explicit
example is worked out. We observe here that the first example in [13] shows that the
non-crossing of trajectories is not sufficient, if the number of particles is not finite (in
the latter case the analysis becomes trivial).

• The compactness of dissipative solutions is exactly the same result as for the sticky
particle case [7]. Here (Section 2.5), the proof is slightly simplified: it is based on the

use of the BV
1/2
t L2

η compactness of v(t) to prove the weak convergence of vn(t)♯ηn,
where ηn, vn(t) is a sequence of solutions converging to η (Proposition 2.5.1).

• The construction of a backward dissipative approximation (made only of finitely many
particles and also being a sticky particle solution, not just a dissipative solution) to
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any given dissipative solution is the same as in [7]: the only variation is that since the
conservative flow is nonlinear, some additional estimates are needed to assure that
there is an arbitrarily small perturbation such that the trajectories are now disjoint
in some time interval. The proof of the main result here, Proposition 2.6.8, is indeed
based on some elementary properties of the conservative flow, which we present in
Section 2.3.1.

• The last result on the genericity of initial data such that the only dissipative solution
is the conservative one (Theorem 2.7.1) is exactly as in [7], and follows easily from
the analysis of the previous sections.

Finally, it is not clear to us how much of this theory can be extended to convex Hamil-
tonian with super-quadratic growth: at least we would like to have that the conservative
flow is unique and conserves energy. A counterexample to the uniqueness of the dissipative
flow is presented in Appendix 2.B, but the Hamiltonian is not even semiconvex.

2.2 Definitions, assumptions, and notations

Some general notation.

• We will work in the space (t, x) ∈ [0, T ]× Rd or (t, q, p) ∈ [0, T ]× Rd × Rd.

• In a metric space (X, d̂) the ball or radius r about x ∈ X is written as BX
r (x).

Sometimes Br(x) if the space is clear from the context.

• The symplectic matrix J is

J =

[
0 I
−I 0

]
∈ R2d×2d. (2.5)

• The norm in Rd is | · |, and its scalar product by (·, ·). More generally, ∥ · ∥ and (·, ·)
will denote respectively the norm and scalar product on a Hilbert space (here most
of the time L2

ν for some measure ν), and which space is under consideration will be
usually clear from the context.

• The letters s, t, τ are reserved for time variable, x, y, z for the space variable in Rd, and
for the Hamiltonian variables we will use (q, p) ∈ Rd ×Rd. The capital letters X,Y, Z
denote the coordinates of N -particles in Rd, and (Q,P ) the Hamiltonian coordinates
for N -particles; we will also use Q,P in case of a countable or a continuum family of
particles. The time interval in which we consider the solution is [0, T ]. To differentiate
variables we will use x′, x̃, x̂, . . . , and the same for y, z, q, p,X,Q, P, . . . .

• We write xi for the i-th component of x = (x1, x2, . . . ).



2.2. DEFINITIONS, ASSUMPTIONS, AND NOTATIONS 23

• A generic constant is C (if supposedly large), or c (if supposedly small). We use them
if their value depends only on some parameters of the problem, if we do not care
about this dependence we will use the symbol O(1), o(1).

• The letter v = v(t, γ) is reserved for the Hamiltonian coordinate P on the space of
path t 7→ γ(t) ∈ Rd. The evaluation map t, γ 7→ γ(t) will be denoted with γ(t) (this
slightly differs from the standard notation e(t)).

• Since we are in Rd, we will not distinguish between gradient and differential, noting
both with ∇x, ∂x. For Lipschitz curves t 7→ γ(t) ∈ Rd we will use the special notation
dγ/dt = γ̇, and more generally

d

dt
ϕ(t, γ(t)) = ϕ̇(t, γ(t)).

• We will use the Greek letter µ for a measure on the phase space Rd×Rd, η for a measure
of the space of path Γ = L2((0, T ),Rd), L for the Lebesgue measure. Sometimes
we will parameterize curves as t 7→ x(α, t), Q(α, t), P (α, t), . . . with α ∈ [0, 1], and
we will use the measure ϖ(dα) on the space of parameters: in general, we can take
ϖ = L 1⌞[0,1]. A generic measure will be denoted by ν, π, the product of measures
will be denoted by · × ·.

• To avoid confusion, we underline that when the momentum p of a trajectory γ if
considered as a function of the trajectory γ itself, we use the notation v(t, γ). When
the curve γ is parametrized by α ∈ [0, 1], we use Q(t, α), P (t, α). For special solutions
(e.g. discrete in-time dissipative solution), we use the notation X,Y . The choice of
using different symbols for equivalent quantities is in order to stress the different
domains of definition.

• The push-forward of a measure ν according to a map T : X → Y is denoted with T♯ν.

• The disintegration of a measure ν according to a Borel map T : A→ B, A,B Polish
space, is written as

ν =

∫
νym(db), m = T♯ν.

We often interpret m as the restriction of ν to the σ-algebra T−1(B(Y )), where B(Y )
is the Borel σ-algebra on Y , and we will also write

ν =

∫
νT(a)ν(da) =

∫
νaν(da).

• We will use the notation L2
ν(X,Y ), Y Hilbert space, for the space of functions

f : X → Y such that ∫
∥f(x)∥2Y ν(dx) <∞.
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• P2(X), X Banach space, is the set of probability measures with finite quadratic mo-
ments in X. The topology of P2(X) is either the narrow topology or the Wasserstein-2
distance W2.

• The space BV1/2([0, T ], X), X Banach, is defined as the functions f : [0, T ] 7→ X such
that

sup

{ N∑
i=1

∥f(ti)− f(ti−1)∥2X , 0 ≤ t0 ≤ t1 ≤ · · · ≤ tN ≤ T

}
<∞.

We will often shorten the notation to BV
1/2
L 1X or BV

1/2
t X, e.g. BV

1/2
t L2

η.

• A projection operator is denoted by P, with some index in case of dependence from a
parameter or to denote the target space.

2.2.1 Hamiltonian

The assumptions in this section are standard, and give the well-posedness of the conservative
solution (see Section 2.3, and for more general Hamiltonians see [5, 20]).

We consider the family of Hamiltonians H : P2(Rd × Rd) → R defined as

H(µ) =

∫
V (q, p)µ(dqdp) +

1

2

∫ ∫
W (q, p, q′, p′)µ(dq′dp′)× µ(dqdp),

where V : Rd ×Rd → R, W : (Rd ×Rd)2 → R are functions such that with the assumptions:

1. V (0) =W (0) = 0, ∇V (0) = 0 and ∇W (0) = 0;

2. W (q, p, q′, p′) =W (q′, p′, q, p);

3. V,W are functions of class C2,1 with first derivatives L-Lipschitz:∣∣∇V (q, p)−∇V (q′, p′)
∣∣ ≤ L|(q, p)− (q′, p′)|, (2.6a)∣∣∇W (x, v, x′, v′)−∇W (y, w, y′, w′)

∣∣ ≤ L
∣∣(x, v, y, w)− (y, w, y′, w′)

∣∣; (2.6b)

4. there exists λ ≥ 0 such that (x, v) 7→ V (x, v) + λ|x|2/2 is convex, and by (2.6a) it has
at most quadratic growth;

5. (x, v) 7→W (x, v, x′, v′) is convex;

6. for all (x, v) it holds

ΛI ≤ ∇ppV (x, v) ≤ LI, I identity matrix in Rd,

i.e. V is uniformly convex w.r.t. v.
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Here above and in the following we will denote the differentials of V,W w.r.t. the q, p, q′, p′

components as ∇q,∇p,∇q′ ,∇p′ ,∇qq,∇pp, . . . .
For the measure ϖ(dα) and the map (α, t) 7→ (Q(α, t), P (α, t)), we will use the notation

H(t,ϖ) = H(µ(t)), µ(t) = (q(t), p(t))♯ϖ,

i.e. more explicitly

H(t,ϖ) =

∫
V (Q(α, t), P (α, t))ϖ(dα)

+
1

2

∫ ∫
W (Q(α, t), P (α, t), q(t, α′), p(t, α′))ϖ(dα)×ϖ(dα′).

A similar notation will be used for the gradient of H in P2(Rd×Rd) w.r.t. the Wasserstein
distance: we recall that the gradient of a semiconvex functional H : P2(Rd × Rd) → R is
the element of minimal L2

µ-norm in the set of sub-differentials ∂H(µ) (a reference to the
definition of sub-differential can be found in Chapter 10 of [4]). In our case, being the
functions V,W of class C2,1, it is fairly easy to verify that the gradient of H in P2(Rd×Rd)
is given by

∇H(µ) = ∇V (q, p) +

∫
∇W (q, p, q′, p′)µ(dq′dp′),

and that ∇H(t,ϖ) = ∇H(µ(t)), µ(t) = (q(t), p(t))♯ϖ: we shorten the notation for
∇W (q, p, q′, p′) = (∇qW (q, p, q′, p′),∇pW (q, p, q′, p′)).

2.2.2 Probability space of curves

To shorten the notation we will write

Γ := L2((0, T ),Rd), Γt := L2((t, T ),Rd),

and denote by Tt : Γ → Γt the restriction map

Tt(γ) = γ⌞[t,T ].

The measures η which we are going to consider will be supported on the set

M (Γ) =

{
η ∈ P(Γ) :

1

2

∫
|γ(0)|2η(dγ) ≤ C̃1,

1

2

∫ ∫ T

0
|γ̇(t)|2dtη(dγ) ≤ C̃2

}
,

for some constant C̃1, C̃2 which will be estimated explicitly for the solutions (conservative
or dissipative) we consider below. It is standard to verify that M (Γ) is a compact subset of

P2(Γ) w.r.t. the narrow convergence. Notice that the bound on
∫ ∫ T

0 |γ̇(t)|2dtη(dγ) implies
that γ is η-a.e. absolutely continuous (a.c. in the following), so that the value γ(0) is well
defined η-a.e. giving sense to the first condition in the definition of M (Γ).
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Alternatively, observe that η ∈ M (Γ) is concentrated on the space γ ∈W 1,2((0, T ),Rd):
hence one can also consider the map

W 1,2((0, T ),Rd) ∋ γ 7→ P̂tγ(τ) = γ(t)1I[0,t)(τ) + γ(τ)1I[t,T ](τ) ∈W 1,2((0, T ),Rd).

One can switch from Tt to P̂t via the bijection

W 1,2((t, T ),Rd) ∋ γ 7→ γ(t)1I[0,t)(τ)+γ(τ)1I[t,T ](τ) ∈
{
γ ∈W 1,2((0, T ),Rd), γ̇(s) = 0 s ∈ (0, t)

}
.

Let Ωt be the descending Borel fibration generated by Tt,

Ωt = T−1
t

(
B(Γt)

)
,

i.e. the smallest σ-algebra such that Tt is Borel, and let Pt : L
2
η → L2

η be the corresponding
projection. The latter functional can be represented by means of the disintegration of
η ∈ P(Γ) according to the map Tt: indeed if

η =

∫
ωt
γ′(dγ)Tt♯η(dγ

′) =

∫
ωTt(γ′)η(dγ

′),

where Γ ∋ γ′ 7→ ωTt(γ′) ∈ P(Γ) can be taken to be Borel, then [10, Proposition 10.4.18]

(Ptf)(γ) =

∫
f(γ′)ωt

Tt(γ)
(dγ′). (2.7)

The Ptf corresponds to the conditional expectation of f given all the future positions after
t.
As an example, consider the situation in Figure 2.1, page 20, which for convenience we
reproduce above, and let t be the first time of collision. In the conservative case (the
one on the left), the measures ωt

Tt(γ)
are Dirac deltas, since the conservative solutions

are time-reversible and no information is lost. For the sticky solution, ωt
Tt(γ)

is equal to

η (all information is lost), and for the dissipative solution the conditional probabilities
describe how the masses of the two entering trajectories γ, γ′ is distributed across the
exiting trajectories (see formula (2.3)).

The following concatenation property holds: for s < t, let Ts→t : Γs → Γt be the
restriction map such that Ts→t ◦ Ts = Tt. Then by disintegrating according to Ts→t

(Ts)♯η(dγ
′) =

∫
ωs→t
γ′′ (dγ′)(Tt)♯η(dγ

′′).

Hence

η =

∫
ωs
γ′(Ts)♯η

=

∫ [ ∫
ωs
γ′ωs→t

γ′′ (dγ′)

]
(Ts→t)♯((Ts)♯η)(dγ

′′)

=

∫ [ ∫
ωs
γ′ωs→t

γ′′ (dγ′)

]
(Tt)♯η(dγ

′′),
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and from the uniqueness of disintegration

ωt
γ′′(dγ) =

∫
ωs
γ′(dγ)ωs→t

γ′′ (dγ′) (Tt)♯η-a.e. γ
′′.

The above formula corresponds to the composition property

Ps→t ◦ Ps = Pt, (Ps→tf)(γ) =

∫
fωs→t

γ . (2.8)

Lemma 2.2.1 ([10, Theorem 10.2.1]). It holds

lim
t↘s

Ps→t = Ps

strongly in L2
η.

2.3 Conservative solutions

Let H : P2(Rd × Rd) → R be the Hamiltonian considered in Section 2.2.1. Here we
construct the Hamiltonian flow: the results are classical, we adapt them to a suitable form
that will be useful for the study of dissipative solutions. Since this flow preserves the energy,
we will call it conservative flow/solution, as opposed to the dissipative flow/solution of
Section 2.4.

The results in this section are pretty much standard: we give for simplicity the proofs
in the appendix.

Definition 2.3.1. The measure η ∈ P2(Γ) is a conservative solution if there is an L2(η)-
function v : Γ →W 1,2((0, T ),Rd) such that for η-a.e. γ it holds

γ(t) = γ(0) +

∫ t

0

[
∇vV (γ(s), v(s, γ)) +

∫
∇vW (γ(s), v(s, γ), γ′(s), v(s, γ′(s))η(dγ′)

]
ds,

(2.9a)
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v(t, γ) = v0(γ)−
∫ t

0

[
∇qV (γ(s), v(s, γ)) +

∫
∇qW (γ(s), v(s, γ), γ′(s), v(s, γ′(s))η(dγ′)

]
ds,

(2.9b)
where v0 ∈ L2

η.

Let µ(t) ∈ P(Rd × Rd) be the measure

µ(t) = (γ(t), v(t))♯η.

The conservative solution η can be interpreted as the Lagrangian representation of the
measure-valued solution µ(t) to the PDE

∂tµ(t) + div(J∇H(µ(t))µ(t)) = 0, (2.10)

where J is the 2d×2d symplectic matrix (2.5). We thus are in the setting of [5] for existence
and actually uniqueness of a Hamiltonian flow t → µt ∈ P2(Rd × Rd) solving (2.10) and
preserving H. The existence and uniqueness of the solution µ(t) is strictly related to the
existence and uniqueness of the Lagrangian representation η: in the linear transport case
this is well established [2], while in our case the fact that the measure η is a probability on
trajectories γ : [0, T ] → Rd instead of γ : [0, d] → R2d follows from the fact that the time
derivative of (2.9a),

γ̇(t) = ∇vV (γ(s), v(s, γ)) +

∫
∇vW (γ(s), v(s, γ), γ′(s), v(s, γ′(s))η(dγ′),

is a bijection between γ̇ and v(γ).
We give a self-contained proof of these facts in Appendix 2.A.
Define

F (t) : L2(η) → L2(η)

v 7→ F (t, v)(γ) = ∇vV (γ(t), v(γ)) +

∫
∇vW (γ(t), v(γ), γ′(t), v(γ′))η(dγ′)

(2.11)
Recalling that V is uniformly convex in v and W is convex in v, it is easy to verify that F
is well defined for all t, and, moreover, the next proposition holds.

Proposition 2.3.2. The operator (2.11) is uniformly monotone, namely

Λ∥v1 − v2∥22 ≤
(
v1 − v2, F (t, v1)− F (t, v2)

)
≤ 3L∥v1 − v2∥22.

In particular F (t) is a bi-Lipschitz map of L2(η) into itself. The proof is in Appendix
2.A, page 59.

The next result gives the existence, uniqueness, and continuous dependence. Let
(0, 1) ∋ α 7→ Q0(α), P0(α) be given functions in L2(0, 1).
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Proposition 2.3.3. There exist unique functions Q(α, t), P (α, t) ∈ C0([0, T ], L
2(0, 1))

satisfying

Q(α, t) = Q0(α)+

∫ t

0

[
∇pV (Q(α, s), P (α, s))+

∫
∇pW (Q(α, s), P (α, s), Q(α′, s), P (α′, s)dα′

]
ds,

P (α, t) = P0(α)−
∫ t

0

[
∇qV (Q(α, s), P (α, s))+

∫
∇qW (Q(α, s), P (α, s), Q(α′, s), P (α′, s)dα′

]
ds.

Moreover

t 7→ H(t,L1⌞(0,1)) =
∫
V (Q(α, t), P (α, t))dα+

∫ ∫
W (Q(α, t), P (α, t), Q(α′, t), P (α′, t))dαdα′

is constant, (∂tQ(t), P (t)) ∈ L2((0, 1),W 1,2(0, T )) with

∥∂tQ(t)∥L2(0,1), ∥∂tP (t)∥L2(0,1),
1

3L
∥∂2tQ(t)∥L2(0,1) ≤ 3Le3Lt∥(Q0, P0)∥L2(0,1). (2.12)

Finally, if (Q0, P0), (Q
′
0, P

′
0) are two different initial data and (Q(t), P (t)), (Q′(t), P ′(t)) the

corresponding solutions, then it holds∥∥(Q(t), P (t))− (Q′(t), P ′(t))
∥∥
L2(0,1)

≤ e3Lt
∥∥(Q0, P0)− (Q′

0, P
′
0)
∥∥
L2(0,1)

.

Corollary 2.3.4. The measure η = Q(α, t)♯L
1(dα) is a conservative solution concentrated

on M (Γ) with C̃1, C̃2 = 3LTe3LT ∥(x0, v0)∥2L2(0,1).
The measure µ defined as∫

ϕ(x, v)µ(t; dxdv) =

∫ 1

0
ϕ(Q(α, t), P (α, t))dα

is the unique solution to the transport equation (2.10) with initial data µ(t = 0).

Proof. The first statement follows from the definition of the conservative solution. The
fact that µ is unique and solves the transport equation follows by observing that t 7→
(Q(α, t), P (α, t)) is a characteristic for µ-a.e. α, and the uniqueness result above.

For the flow at the level of the ODE in the phase space Rd×Rd, we will use the following
notation: for a given initial data µ0 ∈ P2(Rd × Rd) let (Q(t, q, p;µ0), P (t, q, p;µ0)) be the
unique flow in L∞((0, T ), L2

µ0
(Rd × Rd,Rd × Rd)) such that

Q(t, q, p;µ0) = q +

∫ t

0
∇vV (Q(s, q, p;µ0), P (s, q, p;µ0))ds

+

∫ t

0

∫
∇vW

(
Q(s, q, p;µ0), P (s, q, p;µ0), Q(s, q′, p′;µ0), P (s, q

′, p′;µ0)
)
µ0(dq

′dp′)ds,

(2.13a)
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P (t, q, p;µ0) = p−
∫ t

0
∇qV (Q(s, q, p;µ0), P (s, q, p;µ0))ds

−
∫ t

0

∫
∇qW

(
Q(s, q, p;µ0), P (s, q, p;µ0), Q(s, q′, p′;µ0), P (s, q

′, p′;µ0)
)
µ0(dq

′dp′)ds.

(2.13b)

These equations correspond to the projection on Rd × Rd of (2.9), as it can be easily seen
because

(γ(t), v(t))♯η = µt = (Q(t), P (t))♯µ0.

Using the semigroup property and the fact that (2.13) are time-independent, we have also

Q(t− s,Q(s, q, p;µ0), P (s, q, p;µ0);µs) = Q(t, q, p;µ0),

P (t− s,Q(s, q, p;µ0), P (s, q, p;µ0);µs) = P (t, q, p;µ0).

Remark 2.3.5. The conservative flow (Q,P ) can be defined to all Rd × Rd: indeed the
solution µt is uniquely defined, and the vector field

(q, p) 7→ J∇H(q, p;µt) = J

(
∇V (q, p) +

∫
∇W (q, p, q′, p′)µt(dq

′dp′)

)
is uniformly Lipschitz. We will use the same notation (Q,P )(t, q, p;µ0) as above for the
flow extended to the whole Rd × Rd.

2.3.1 Non-crossing of trajectories

In the following, we will need to study how generic is the crossing of trajectories of N
particles satisfying the Hamiltonian ODE, i.e. solving (2.13) with µ0 finite sum of Dirac
deltas. We will use the notation

qi(t, Q0, P0) = Q(t, qi, pi;µ0), pi(t, Q0, P0) = P (t, qi, pi;µ0), µ0 =
1

N

∑
i

δ(qi,pi).

Proposition 2.3.6. For conservative solutions made of N particles, the set of initial data
such that at least two trajectories cross is of codimention (d− 1) in (Rd × Rd)N .

Proof. The condition of the intersection of the particles w.l.o.g. labeled 1, 2 is{
(Q0, P0) ∈ Rd × Rd : ∃t ∈ R

(
q1(t, Q0, P0) = q2(t, Q0, P0)

)}
.

By the implicit function theorem, the condition above defines a (d − 1)-codimensional
surface if

rank
(
∇Q0,P0(q1 − q2)

)
= d.
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This is implied by the divergence-free property of Hamiltonian flows

det





∇Q0,P0(q1 − q2)
...

∇Q0,P0qN
∇Q0,P0p1

...
∇Q0,P0pN




= det





∇Q0,P0q1
...

∇Q0,P0qN
∇Q0,P0p1

...
∇Q0,P0pN




= 1.

In the following we will need to perturb a finite particle conservative solution preserving
the initial position of the particles and the average speed: more precisely, the initial data
are {qi,j , pi,j}i,j with

qi,j = q̄i,
∑
j

mi,j p̄i,j =

(∑
j

mi,j

)
p̄i, (2.14)

for some constants mi,j > 0. In other words, given {q̄i, p̄i}i, we are allowed to split each
particle q̄i, p̄i into the particles {qi,j , pi,j}j , assigning new initial speeds but preserving the
average speed of the particles starting in the same point. The goal of this splitting is again
to avoid crossing of trajectories, at least for an interval of time independent of the data
{q̄i, p̄i}i, {qi,j , pi,j}i,j .

Remark 2.3.7. A simple example with two distinct particles shows that at least we have to
split one trajectory.

Moreover, it is not possible to perturb the trajectories as in (2.14) requiring them not
to join forever in the future (or in the past): this can be easily seen in the harmonic case
V = p2/2, W = (q − q′)2/2. We observe that the situation is different in the case of free
motion, i.e. V = v2/2, W = 0: indeed one can actually require that the particles do not
meet for every t ̸= 0.

Consider now a conservative solution made of finitely many Dirac deltas µ0 =
∑I

i miδq̄i,p̄i .

Proposition 2.3.8. There exists a time interval (0, t̄), independent of µ0, such that for all
ϵ > 0 there is a finite particle solution

µ′0 =
∑
i

mi

2

(
δq̄i,pi,1 + δq̄i,pi,2

)
,

pi,1 + pi,2
2

= p̄i,

such that the trajectories {qi,j(t)} are not intersecting for t ∈ (0, t̄) and∣∣pi,j − p̄i
∣∣ < ϵ.

Hence it is sufficient to split each particle (q̄i, p̄i) in half, see Figure 2.2.
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Figure 2.2: two crossing particles are perturbed as in Proposition 2.3.8 to avoid the
intersection of the new trajectories.

Proof. Being the conservative flow differentiable w.r.t. the initial data, we compute the
derivative of the flow Q̄(t), P̄ (t) w.r.t. a perturbation of the form

δQ1(0) = (δqi,1(0))i = 0, δQ2(0) = (δqi,2(0))i = 0,

δP1(0) = (δpi,1(0))i = −(δpi,2(0))i = −δP2(0).

It is easy to see that the solution satisfies (δQ1, δP1) = (δQ2, δP2) and that the ODE reduces
to

d

dt


δQ1

δP1

δQ2

δP2

 = diag
(
∇qi,piJ∇qi,piH(q̄i(t), p̄i(t);µt)

)
δQ1

δP1

δQ2

δP2

 ,

∇qi,piJ∇qi,piH(q̄i(t), p̄i(t);µt) =

[
∇qipiV ∇pipiV
−∇qiqiV −∇qipiV

]
(q̄i(t), p̄i(t))

+

∫ [
∇qipiW ∇pipiW
−∇qiqiW −∇qipiW

]
(q̄i(t), p̄i(t), q̄j , p̄j)µ(t; dq̄jdp̄j),

so that the ODEs are decoupled: µ(t) =
∑

imiδq̄i(t),p̄i(t) is the solution of (2.10) with initial
data µ0 =

∑
imiδq̄i,p̄i .
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To prove the same codimension estimate as in the proof of the previous proposition, it
is sufficient to study the ODE

Ȧi(t) = ∇qi,piJ∇qi,piH(q̄i(t), p̄i(t);µt)Ai(t), Ai(0) = I.

The assumptions on V,W gives that∣∣∇qi,piJ∇qi,piH(q̄i(t), p̄i(t);µt)
∣∣ ≤ 3L,

so that one obtains

|Bi(t)| =
∣∣∣∣Ai(t)− I−

∫ t

0
∇qi,piJ∇qi,piH(q̄i(s), p̄i(s);µs)ds

∣∣∣∣ ≤ (e3Lt − 1− 3Lt
)
<

Λ

2
t

for t < t̄, with t̄ depending only on L.

Hence(
δqi,j(t)
δpi,j(t)

)
=

[
I+

∫ t

0
∇qi,piJ∇qi,piH(q̄i(s), p̄i(s);µs)ds+Bi(t)

](
0

δPi,j(0)

)
=

( [ ∫ t
0 ∇

2
pi,piH(q̄i(s), p̄i(s);µs)ds

]
δPi,j(0)[

I−
∫ t
0 ∇qi,piH(q̄i(s), p̄i(s);µs)ds

]
δPi,j(0)

)
+Bi(t)

(
0

δPi,j(0)

)
.

Since, from the uniform convexity of V ,∫ t

0
∇2

pi,piH(q̄i(s), p̄i(s);µs)ds ≥ ΛtI,

and |Bi| ≤ Λt/2 for t ∈ [0, t̄), then∫ t

0
∇2

pi,piH(q̄i(s), p̄i(s);µs)ds+ (Bi)1,2

is invertible for t ∈ (0, t̄).

We thus conclude that the crossing condition

qi,j(t) = qi′,j′(t), for some t ∈ (0, t̄), j ̸= k,

gives a (d − 1)-codimensional manifold in a neighborhood of qi,j = q̄i. Hence there are
perturbations pi,j(0) − p̄i(0) arbitrarily small so that the trajectories do not cross for
t ∈ (0, t̄).
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2.4 Dissipative solution

In this section, we define the dissipative solutions for the Hamiltonian system (2.9), and we
show some basic properties.

Definition 2.4.1. We say that η ∈ M (Γ) is a dissipative solution with initial speed
v0 ∈ L2

η(Γ,Rd) if there is a function v ∈ L2
L 1×η((0, T )× Γ,Rd) such that for L 1-a.e. t

γ̇(t) = ∇vV (γ(t), v(t, γ)) +

∫
∇vW (γ(t), γ′(t), v(t, γ), v(t, γ′))η(dγ′), (2.15a)

v(t, γ) = Pt

(
v0(γ)−

∫ t

0
∇qV (γ(s), v(s, γ))ds−

∫ t

0

∫
∇qW (γ(s), γ′(s), v(s, γ), v(s, γ′))η(dγ′)ds

)
,

(2.15b)
where Pt is the projection (2.7).

One of the reasons for the introduction of the notion of dissipative solution is to obtain a
compactness result for solutions as stated in Theorem 2.5.2. As it is known, this property is
false for sticky particle solutions: an easy example is obtained by considering two particles

in the plane, with the simplest Hamiltonian H =
∫ p2

2 . There is a 1-codimensional cone of
initial velocities such that the particles are colliding, and the sticky particle solution is not
in the closure of all other solutions (the closure of all other solutions is the free/conservative
flow). A more complicated situation is in [13], where an infinite family of dissipative
solutions can be constructed but there is no sticky particle solution.

In the next proposition, we show that the notion of dissipative solutions includes the
conservative ones.

Proposition 2.4.2. Any conservative solution is a dissipative solution.

In particular, every conservative solution is concentrated on a set of trajectories where
Pt coincides with the identity.

Proof. There are two observations to be used here.

1. If η ∈ M (Γ) is a conservative solution, then η is concentrated on trajectories γ ∈
W 2,2((0, T ),Rd): this follows from (2.12) of Proposition 2.3.3.

2. The map v 7→ F (t, v) defined equation (2.11) satisfies

F (t,Ptv) = Pt(F (t,Ptv)), (2.16)

a property that can be easily deduced from the fact that F is a function of γ(t), v(t)
only. In particular, from Proposition 2.3.2 we deduce that if PtF (t, v) = F (t, v) then

0 =
(
v(t)− Ptv(t),Pt(F (t, v)− F (t,Ptv))

)
=
(
v(t)− Ptv(t), F (t, v)− F (t,Ptv)

)
≥ Λ∥v(t)− Ptv(t)∥22,

i.e. v(t) = Ptv(t).
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From the first point we deduce that if Ptγ = Ptγ
′, γ, γ′ ∈ W 2,2((0, T )), then γ̇(t) = γ̇′(t),

i.e. the derivative of γ exists at t and it is the same on the whole level set of Pt: hence

γ̇(t) = F (t, v) = PtF (t, v).

As a consequence, the second point above gives v(t) = Ptv(t), and using the definition of
conservative solution we obtain

v(t) = v0(γ)−
∫ t

0
∇qV (γ(s), v(s, γ))ds−

∫ t

0

∫
∇qW (γ(s), γ′(s), v(s, γ), v(s, γ′))η(dγ′)ds

= Pt

(
v0(γ)−

∫ t

0
∇qV (γ(s), v(s, γ))ds−

∫ t

0

∫
∇qW (γ(s), γ′(s), v(s, γ), v(s, γ′))η(dγ′)ds

)
.

Hence for conservative solutions, Pt is the identity, and a conservative solution is in particular
a dissipative solution.

We observe also that differently from the conservative case where the initial data is
encoded into η, here it is not: for example, considering two particles starting at the same
point but with different speeds, we can just merge them at t = 0, so that their initial speed
is different from the initial one. We will see later (Lemma 2.4.7) that, since one can take
the dissipative solutions to be right continuous, we can specify the initial v0 as the limit of
v(t) as t↘ 0, and that in some sense the solution is characterized by the initial data and
the family of projections Pt (by constructing an approximating sequence depending on the
initial data and the projections, Section 2.4.1).

Remark 2.4.3. Equation (2.15a) is exactly the same as Equation (2.9a). The second equation
(2.15b) expresses the requirement that when trajectories merge, the function v of the exiting
trajectory will be the average of the function v of the incoming trajectories. On the case
V = v2/2, W =W (x, x′), then γ̇ = v, so that v coincides with the speed of the trajectory.

It is interesting to note that Equation (2.15a) is compatible with the projection Pt

used in (2.15b): indeed, define the measure ηt̄ = (Tt̄)♯η, and by Proposition 2.3.2 find
ṽ(t) ∈ L2

ηt̄
(Γt̄,Rd) such that

γ̇(t) = ∇vV (γ(t), ṽ(t, γ)) +

∫
∇vW (γ(t), ṽ(t, γ), γ′(t), ṽ(t, γ′)))ηt̄(dγ

′)

for L 1-a.e. t > t̄. This function ṽ is defined on the σ-algebra B(t̄, T )× Ωt̄, and writing

v(t, γ) = ṽ(t,Tt̄(γ)),

one deduces immediately that

γ̇(t) = ∇vV (γ(t), v(t, γ)) +

∫
∇vW (γ(t), v(t, γ), γ′(t), v(t, γ′)))η(dγ′),

and Proposition 2.3.2 yields that this is the only solution for t > t̄. In particular, by letting
t̄↗ t, one deduces that v(t, γ(t)) is measurable in Ωt for L 1-a.e. t.
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Since (2.15a) gives a one-to-one relation between γ̇ and v, we can state alternatively
that

Definition 2.4.4. We say that η ∈ M (Γ) is a dissipative solution with initial speed
v0 ∈ L2

η(Γ,Rd) if the function v ∈ L2
L 1×η((0, T )× Γ,Rd) given by the relation

γ̇(t) = ∇vV (γ(t), v(t, γ)) +

∫
∇vW (γ(t), γ′(t), v(t, γ), v(t, γ′))η(dγ′),

satisfies

v(t, γ) = Pt

(
v0(γ)−

∫ t

0
∇qV (γ(s), v(s, γ))ds−

∫ t

0

∫
∇qW (γ(s), γ′(s), v(s, γ), v(s, γ′))η(dγ′)ds

)
,

where Pt is the projection (2.7).

We begin with a rough energy estimate.

Lemma 2.4.5. For every dissipative solution

∥(γ(t), v(t))∥L2
η
≤ e3Lt∥(γ(0), v0)∥L2

η
L 1-a.e. t.

The energy E(t) = H((γ(t), v(t)♯η) is actually decreasing, see Proposition 2.4.16 below.
The above lemma shows that the requirement of η ∈ M (Γ) is compatible with the definition
of dissipative solution as in Corollary 2.3.4, because of the relation between γ̇, v given by
Proposition 2.3.2.

Proof. This is a standard Gronwall estimate.

Being Pt a contraction, we have by the Lipschitz estimates on ∇V,∇W , Points (3), (1)
of Page 24, applied to (2.15)

∥(γ(t), v(t))∥L2
η
≤ ∥(γ(0), v0)∥L2

η
+ 3L

∫ t

0
∥(γ(s), v(s))∥L2

η
dr,

for L 1-a.e. t, which gives the statement.

This next lemma is a concatenation property for dissipative solutions.

Lemma 2.4.6. It holds

v(t, γ) = Ps→t

(
v(s, γ)−

∫ t

s
∇qV (γ(r), v(r, γ))dr−

∫ t

s

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

)
,

where Ps→t is the projection (2.8).
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Proof. Using Remark 2.4.3, for L 1-a.e. r ≥ s

Ps

(
∇qV (γ(r), v(r, γ))dr +

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)

)
= ∇qV (γ(r), v(r, γ))dr +

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′),

so that∫ t

s
∇qV (γ(r), v(r, γ))dr +

∫ t

s

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

= Ps

(∫ t

s
∇qV (γ(r), v(r, γ))dr +

∫ t

s

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

)
.

(2.17)

Hence, directly from the definition of v(t, γ) and Pt,Ps→t

Ps→t

(
v(s, γ)−

∫ t

s
∇qV (γ(r), v(r, γ))dr −

∫ t

s

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

)
= Ps→t

(
Ps

(
v0(γ)−

∫ s

0
∇qV (γ(r), v(r, γ))dr −

∫ s

0

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

))
+ Ps→t

(
−
∫ t

s
∇qV (γ(r), v(r, γ))dr −

∫ t

s

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

)
= Pt

(
v0(γ)−

∫ s

0
∇qV (γ(r), v(r, γ))dr −

∫ s

0

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

)
+ Ps→t

(
Ps

(
−
∫ t

s
∇qV (γ(r), v(r, γ))dr −

∫ t

s

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

)
= Pt

(
v0(γ)−

∫ t

0
∇qV (γ(r), v(r, γ))dr −

∫ t

0

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

)
,

where we have used (2.17) in the third equality.

The next estimate plays a key role in the following.

Lemma 2.4.7. Let η ∈ M (Γ) be a dissipative solution. Then the map t→ v(t, γ) is right

continuous and belongs to BV
1
2 ([0, T ], L2

η(Γ,Rd))) with norm

∥v∥
BV

1/2
t L2

η
≤ (1 + 6LT )e3LT ∥(γ(0), v0)∥2L2

η
. (2.18)

Let us denote

G(t, v(t))(γ) =∇qH(γ(t), v(t); η) = −∇qV (γ(t), v(γ))−
∫

∇qW (γ(t), γ′(t), v(γ), v(γ′))η(dγ′).
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The proof stems from the fact that v(t, γ) is the integral of the L2
η-function∇qH(γ(t), v(t); η)

w.r.t. time (which would give the a.c. continuity), composed with projection Pt (which is
responsible for energy dissipation and hence for the BV1/2-norm).

Proof. We compute by Lemma 2.4.5

∑
i

∥v(ti)− v(ti−1)∥22 =
∑
i

[
∥v(ti)∥22 + ∥v(ti−1)∥2L2

η
− 2

∫
(v(ti), v(ti−1))η

]
=
∑
i

[
∥v(ti)∥2L2

η
+ ∥v(ti−1)∥2L2

η
− 2

∫
(v(ti),Pti−1→tiv(ti−1))η

]
=
∑
i

[
∥v(ti)∥2L2

η
+ ∥v(ti−1)∥2L2

η

− 2

∫ (
v(ti),Pti−1→ti

(
v(ti−1) +

∫ ti

ti−1

G(r, v(r))dr

))
η

+ 2

∫ (
v(ti),Pti−1→ti

(∫ ti

ti−1

G(r, v(r))dr

))
η

]
=
∑
i

[
∥v(ti−1)∥2L2

η
− ∥v(ti)∥2L2

η
+ 2

∫ (
v(ti),Pti−1→ti

(∫ ti

ti−1

G(r, v(r))dr

))
η

]
= ∥v(0)∥2L2

η
− ∥v(T )∥2L2

η
+ 2

∑
i

∫ (
v(ti),Pti−1→ti

(∫ ti

ti−1

G(r, v(r))dr

))
η

≤ ∥v(0)∥2L2
η
− ∥v(T )∥2L2

η
+ 6LT sup

t
∥v(t)∥2L2

η

≤ (6LT + 1) sup
t

∥v(t)∥2L2
η
≤ (1 + 6LT )e3LT ∥(γ(0), v0)∥2L2

η
,

where in the first inequality we have used the Lipschitz estimate∥∥∇qH(γ(t), v1(t); η)−∇qH(γ(t), v2(t); η)
∥∥
L2
η
≤ 3L∥v1 − v2∥L2

η

analogous to the second inequality of Proposition 2.3.2.

The BV
1/2
t L2

η regularity gives immediately that the function t 7→ v(t) is strongly
continuous in L2

η outside countably many times. Moreover, as t↘ s, Lemma 2.2.1 gives

lim
t↘s

Pt

(
v(s, γ)−

∫ t

s
∇qV (γ(r), v(r, γ))dr −

∫ t

s

∫
∇qW (γ(r), γ′(r), v(r, γ), v(r, γ′))η(dγ′)dr

)
= v(s, γ)

in L2
η, which is the right continuity property.
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In particular, by Proposition 2.3.2 we obtain γ̇ ∈ BV
1/2
t L2

η and one can take as initial
data

v0(γ) = lim
t↘0

v(t, γ).

This will be our choice in the following.

The next results use the BV
1/2
t L2

η estimate on γ̇(t), v(t) to deduce some useful approxi-

mation properties: these results are actually valid for generic BV1/2X functions, we state
them in the particular form we will use.

Lemma 2.4.8. For all η dissipative, it holds∫ T−s

0

∫ ∣∣∣∣γ(t+ s)− γ(t)

s
− γ̇(t)

∣∣∣∣2η(dγ)dt ≤ (2(1 + 6LT )e3LT ∥(γ(0), v0)∥2L2
η

)
s = O(1)s.

Proof. Write∫ T−s

0

∫ ∣∣∣∣γ(t+ s)− γ(t)

s
− γ̇(t)

∣∣∣∣2η(dγ)dt = ∫ T−s

0

∫ ∣∣∣∣1s
∫ s

0
(γ̇(t+ σ)− γ̇(t))dσ

∣∣∣∣2η(dγ)dt
≤ 1

s

∫ s

0

∫ T−s

0

∫
|γ̇(t+ σ)− γ̇(t)|2η(dγ)dtdσ

=
1

s

∫ s

0

{ [T/s]−2∑
k=0

∫ (k+1)s

ks
+

∫ T−s

([T/s]−1)s

}[∫
|γ̇(t+ σ)− γ̇(t)|2η(dγ)

]
dtdσ

=
1

s

∫ s

0

∫ s

0

[ [T/s]−2∑
k=0

∫
|γ̇(ks+ τ + σ)− γ̇(ks+ τ)|2η(dγ)

]
dτdσ

+
1

s

∫ s

0

∫ T−s

([T/s]−1)s

[ ∫
|γ̇(t+ σ)− γ̇(t)|2η(dγ)

]
dtdσ.

The first integral is estimated as

1

s

∫ s

0

∫ s

0

[ [T/s]−2∑
k=0

∫
|γ̇(ks+ τ + σ)− γ̇(ks+ τ)|2η(dγ)

]
dτdσ ≤ 1

s

∫ s

0

∫ s

0
∥γ̇∥

BV
1/2
t (L2

η)
dτdσ

≤ (1 + 6LT )e3LT ∥(γ(0), v0)∥2L2
η
s,

where we have used the estimate (2.18). Similarly to the last integral

1

s

∫ s

0

∫ T−s

([T/s]−1)s

[ ∫
|γ̇(t+ σ)− γ̇(t)|2η(dγ)

]
dtdσ ≤ 1

s

∫ s

0

∫ T−s

([T/s]−1)s
∥γ̇∥

BV
1/2
t (L2

η)
dtdσ

≤ (1 + 6LT )e3LT ∥(γ(0), v0)∥2L2
η
s.

Adding the two estimates we obtain the statement.
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Lemma 2.4.9. For every ϵ > 0 we can find finitely many times 0 = t0 < t1 < · · · < tN = T
such that

sup
i,ti−1≤s<ti

∥v(s)− v(ti−1)∥L2
η
≤ ϵ.

Proof. Since t 7→ v(t) is right continuous, for every t there is δt such that

sup
0≤τ<δt

∥v(t+ τ)− v(t)∥L2
η
< ϵ, ∥v(t+ δt)− v(t)∥L2

η
≥ ϵ.

Starting from t = 0, define the sequence of times

ti+1 = ti−1 + δti , t0 = 0.

The BV
1/2
t L2

η-regularity gives that

ϵ♯{ti} ≤
∑
i

∥v(ti)− v(ti−1)∥2L2
η
≤ (1 + 6LT )e3LT ∥(γ(0), v0)∥2L2

η
,

so that there are at most O(ϵ−1)-many times ti.

The source of the discontinuities of the map t 7→ v(t) is due to the projection Pt: in
order to get rid of it, define the function

ṽ(t, s, γ) = v(s, γ)−
∫ t

s
∇qH(γ(τ), v(τ, γ); η)dτ

= v(s, γ)−
∫ t

s

[
∇qV (γ(τ), v(τ, γ))ds+

∫
∇qW (γ(τ), v(τ, γ), γ′(τ), v(τ, γ′))η(dγ′)

]
dτ,

so that it holds for all s ∈ [0, t]

v(t, γ) = Pt(ṽ(t, s))(γ).

Lemma 2.4.10. It holds for s ≤ t

∥(I− Pt)ṽ(t, s)∥L2
η
≤ ∥v(t)− v(s)∥L2

η
+ C(t− s).

Proof. Indeed

∥(I− Pt)ṽ(t, s)∥L2
η
≤ ∥v(t)− v(s)∥L2

η
+

∫ t

s
∥∇qH(γ(τ), v(τ))∥L2

η
dτ

≤ ∥v(t)− v(s)∥L2
η
+ C(t− s)∥(γ(s), v(s))∥L2

η
.
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2.4.1 Piecewise conservative approximations to dissipative solutions

The next statements aim to compare a dissipative solution and the conservative solution
with the same initial data and to construct a piecewise conservative approximation. To
shorten the notation, we will write

Q(t, γ; s, η) = Q
(
t− s, γ(s), v(s, γ), (γ(s), v(s))♯η

)
P (t, γ; s, η) = P

(
t− s, γ(s), v(s, γ), (γ(s), v(s))♯η

)
for the lifting of the conservative solution starting at time s with initial measure (γ(s), v(s))♯η.

The first result is that (Q(t, γ; s, η), P (t, γ; s, η) well approximates (γ(t), ṽ(t, s)).

Lemma 2.4.11. It holds∥∥Pt(Q(t, γ; s, η), P (t, γ; s, η))− (γ(t), v(t))
∥∥
L2
η

≤
∥∥(Q(t, γ; s, η), P (t, γ; s, η))− (γ(t), ṽ(t, s))

∥∥
L2
η
≤ C

∫ t

s
∥v(τ)− ṽ(τ)∥L2

η
dτ.

Note that instead∥∥(Q(t, γ; s, η), P (t, γ, s, η))− (γ(t), v(t))
∥∥
L2
η
= O(1)

(
∥v(t)− v(s)∥L2

η
+ t
)
, (2.19)

hence by comparing the projection Pt(Q,P ) we gain an estimate which is regular in time.

Proof. It is enough to set s = 0. We can now compute for 0 ≤ t ≤ t̄∥∥Pt(Q(t, γ; 0, η), P (t, γ; 0, η))− (γ(t), v(t))
∥∥
L2
η
≤
∥∥(Q(t, γ; 0, η), P (t, γ; 0, η))− (γ(t), ṽ(t))

∥∥
L2
η

≤
∫ t

0

∥∥∇H(Q(s, 0), P (s, 0))−∇H(γ(s), v(s))
∥∥
L2
η
ds

≤ 3L

∫ t

0

∥∥(Q(s, 0), P (s, 0))− (γ(s), v(s))
∥∥
L2
η
ds

≤ 3L

∫ t

0

∥∥(Q(s, 0), P (s, 0))− (γ(s), ṽ(s))
∥∥
L2
η
ds

+ 3L

∫ t

0
∥v(s)− ṽ(s)∥L2

η
ds.

Hence by Gronwall’s estimate, we obtain

∥∥(Q(t, γ; 0, η), P (t, γ; 0, η))− (γ(t), ṽ(t))
∥∥
L2
η
≤
∫ t

0
3Le3L(t−s)∥v(s)− ṽ(s)∥L2

η
ds,

which is the second inequality in the statement. The first inequality is deduced from the
fact that Pt is a contraction.



42 CHAPTER 2. DISSIPATIVE SOLUTIONS TO HAMILTONIAN SYSTEMS

In Section 2.6 we need a similar estimate as in the above lemma, but for the backward
flow: the trivial estimate one obtains from Lemmas 2.4.10, 2.4.11 would give∥∥(Q(s, γ; t, η), P (s, γ; t, η))− (γ(s), v(s))

∥∥
L2
η
≤ C

(
(t− s) + ∥v(t)− ṽ(t, s)∥L2

η

)
.

The next corollary, instead, shows that we can get rid of the second term in the r.h.s. above
by considering the conservative solution starting from (γ(t), ṽ(t, γ)) instead of (γ(t), v(t, γ)).

Corollary 2.4.12. It holds∥∥∥(Q(s− t, γ(t), ṽ(t, γ); (γ(t), ṽ(t))♯η
)
, P
(
s− t, γ(t), ṽ(t, γ); (γ(t), ṽ(t))♯η

))
−
(
γ(s), v(s)

)∥∥∥
L2
η

≤ C

∫ t

s
∥v(τ)− ṽ(τ)∥L2

η
dτ.

Recall that

s 7→ Q
(
s, γ(t), ṽ(t, γ); (γ(t), ṽ(t))♯η

)
, P
(
s, γ(t), ṽ(t, γ); (γ(t), ṽ(t))♯η

)
is the solution to the conservative flow starting at time t with measure (γ(t), ṽ(t))♯η.

Proof. The statement is a consequence of the backward stability estimate for the conservative
flow and Lemma 2.4.11:∥∥∥(Q(s, γ(t), ṽ(t, γ); (γ(t), v(t))♯η), P (s, γ(t), ṽ(t, γ); (γ(t), v(t))♯η)

)
− (γ(s), v(s))

∥∥∥
L2
η

≤ C
∥∥∥(γ(t), ṽ(t))− (Q(t, γ; s, η), P (t, γ; s, η)

)∥∥∥
L2
η

≤ C

∫ t

s
∥v(τ)− ṽ(τ)∥L2

η
dτ.

We now define the piecewise conservative solutions Q̃(t, γ; η), P̃ (t, γ; η) by alternating
the conservative flow Q(t, q, p;µ0), P (t, q, p;µ0) with the projection operator Pt: if 0 = t0 <
t1 < · · · < tN = T , define for t ∈ [0, t1)

Q̃(t, γ; η) = Q(t, γ(0), v0(γ);µ0), P̃ (t, γ; η) = P (t, γ(0), v0(γ);µ0), µ0 = (γ(0), v0(γ))♯η,

qt1(γ) = Pt1(Q̃(t1, γ; η)), pt1(γ) = Pt1(P̃ (t1, γ; η)),

and if qti(γ), pti(γ) have been constructed, set for t ∈ [ti, ti+1)

µti = (qti(γ), pti(γ))♯η,

Q̃(t, γ; η) = Q(t− ti, qti(γ), pti(γ);µti), P̃ (t, γ; η) = P (t− ti, qti(γ), pti(γ);µti),

qti+1(γ) = Pti+1(Q̃(ti+1, γ; η)), pti+1(γ) = Pti+1(P̃ (ti+1, γ; η)),
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Proposition 2.4.13. For every ϵ > 0 there exists a piecewise conservative approximation
(Q̃, P̃ ) of the dissipative solution η such that∥∥(Q̃(t, γ; η), P̃ (t, γ; η))− (γ(t), v(t))

∥∥
L2
η
≤ CϵT.

Proof. Let {ti}i be the partition of Lemma 2.4.9: w.l.o.g. we can assume that

|ti+1 − ti| ≤ ϵ, i = 0, . . . , N − 1. (2.20)

Lemma 2.4.10 applied to Lemma 2.4.11 gives that∥∥Pti+1(Q(ti+1, γ; ti, η), P (ti+1, γ; ti, η))− (γ(ti+1), v(ti+1))
∥∥
L2
η
≤ Cϵ(ti+1 − ti).

In each interval [ti, ti+1), we thus estimate by the continuous dependence of the conservative
flow ∥∥(Q̃(t, γ; η), P̃ (t, γ; η))− (Q(t, γ; ti, η), P (t, γ; ti, η))

∥∥
L2
η

≤ e3L(t−ti)
∥∥(Q̃(ti, γ; η), P̃ (ti, γ; η))− (Q(ti, γ; ti, η), P (ti, γ; ti, η))

∥∥
L2
η

= e3L(t−ti)
∥∥(qti(γ), pti(γ))− (γ(ti), v(ti))

∥∥
L2
η
.

(2.21)

In particular, we obtain∥∥(qti+1(γ), pti+1(γ))− (γ(ti+1), v(ti+1))
∥∥
L2
η

≤
∥∥(qti+1(γ), pti+1(γ))− Pti+1((Q(ti+1, γ; ti, η), P (ti+1, γ; ti, η))

∥∥
L2
η

+
∥∥Pti+1(Q(t, γ; ti, η), P (t, γ; ti, η))− (γ(ti+1), v(ti+1))

∥∥
L2
η

≤
∥∥(Q̃(ti+1, γ; η), P̃ (ti+1, γ; η))− (Q(ti+1, γ; ti, η), P (ti+1, γ; ti, η))

∥∥
L2
η

+
∥∥Pti+1(Q(t, γ; ti, η), P (t, γ; ti, η))− (γ(ti+1), v(ti+1))

∥∥
L2
η

≤ e3L(ti+1−ti)
∥∥(qti(γ), pti(γ)− (γ(ti), v(ti))

∥∥
L2
η
+ Cϵ(ti+1 − ti).

From the explicit solution to the difference equation

ai = λiai−1 + bi, ai =

( i∏
j=1

λj

)
a0 +

i∑
j=1

( i∏
k=j+1

λk

)
bj , (2.22)

with the convention
∏

∅ λ = 1, we conclude that∥∥(qti+1(γ), pti+1(γ))− (γ(ti+1), v(ti+1))
∥∥
L2
η

≤
i∑

j=1

( i∏
k=j+1

e3L(ti+1−ti)

)
Cϵ(ti+1 − ti) ≤ CTϵ.

(2.23)

By (2.21), (2.19) and the choice of the intervals as in Lemma 2.4.9 and (2.20), we obtain
the statement.
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Remark 2.4.14. The proof above shows that a dissipative solution is uniquely characterized
by the initial data and the family of projections {Pt}t. However, these projections are such
that Ptγ(t) = γ(t): one must check that in the limit the trajectories t 7→ γ(t) are a.c., which
is not the case for t 7→ Q̃(t, γ).

2.4.2 Some useful estimates for dissipative solutions

We now show that the energy

t 7→ E(t) = H((γ(t), v(t))♯η)

=

∫
V (γ(t), v(t, γ))η(dγ) +

∫ ∫
W (γ(t), v(t, γ), γ′(t), v(t, γ′))η(dγ)η(dγ′)

is decreasing, and relate its decrease with the distance of the dissipative solution to the
conservative one. The first step is the following estimate.

Lemma 2.4.15. It holds for s ≤ t

Λ∥(I− Pt)ṽ(t, s)∥22 ≤ C

∫ t

s
∥(I− Pτ )ṽ(τ, s)∥22ds+ E(s)− E(t). (2.24)

Proof. We compute

E(t)− E(s) = H((γ(t),Ptṽ(t, s))♯η)−H((γ(s), ṽ(s, s))♯η)

≤ −Λ∥(I− Pt)ṽ(t, s)∥22 +H((γ(t), ṽ(t, s))♯η)−H((γ(s), ṽ(s, s))♯η)

= −Λ∥(I− Pt)ṽ(t, s)∥22 +
∫ t

s

∫
∇H(γ(τ), ṽ(τ, s))J∇H(γ(τ), v(τ))η(dγ)dτ.

The latter integrand is for V,W ∈ C2,1∫
∇H(γ(τ), ṽ(τ, s))J∇H(γ(τ), v(τ))η(dγ)

=

∫ [
∇H(γ(τ),Pτ ṽ(τ, s)) +∇v∇H(γ(τ),Pτ ṽ(τ, s))(ṽ(τ, s)− Pτ ṽ(τ, s))

+O((I− Pτ )ṽ(τ, s))
2
]
J∇H(γ(τ), v(τ))η(dγ)

≤ C∥(I− Pt)ṽ(t)∥22,

where we used that for every g ∈ L2
η by the very definition of projection∫ (

ṽ(τ, s)− Pτ ṽ(τ, s))
)
Pτgη = 0.

This is the desired estimate.
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Proposition 2.4.16. The energy E(t) is decreasing in time and it holds∥∥(Q(t, γ; s, η), P (t, γ; s, γ))− (γ(t), ṽ(t, γ))
∥∥
L2
η
≤ C(t− s)

√
E(s)− E(t),∥∥(Q(t, γ; s, η), P (t, γ; s, γ))− (γ(t), v(t, γ))

∥∥
L2
η
≤ C

√
E(s)− E(t),

Proof. From Lemma 2.4.15 and the right continuity of t 7→ v(t) we deduce that

lim sup
t↘s

E(t)− E(s)

t− s
≤ lim sup

t↘s

1

t− s

∫ t

s
∥(I− Pτ )ṽ(τ, s)∥22dτ

≤ lim sup
t↘s

1

2
∥v(t)− v(s)∥22 = 0.

Hence t 7→ E(t) is decreasing.
A Gronwall estimate for (2.24) gives

∥(I− Pt)ṽ(t)∥22 ≤ −
∫ t

0
eC(t−s)DE(ds) ≤ C

(
E(0)− E(t)

)
,

where DE is the measure derivative of the decreasing function E(t), and then by Lemma
2.4.11 ∥∥(Q(t, γ; s, η), P (t, γ; s, γ))− (γ(t), ṽ(t, γ))

∥∥
L2
η
≤ C

∫ t

s

∥∥(I− Pτ )ṽ(τ)
∥∥
L2
η
dτ

≤ C(t− s)
√
E(s)− E(t),∥∥(Q(t, γ; 0, η), P (t, γ; 0, γ))− (γ(t), v(t, γ))

∥∥
L2
η

≤
∥∥(Q(t, γ; 0, η), P (t, γ; 0, γ))− (γ(t), ṽ(t, γ))

∥∥
L2
η
+
∥∥(I− Pt)ṽ(t)

∥∥
L2
η

≤ C(t− s)
√
E(s)− E(t) +

∥∥(I− Pt)ṽ(t)
∥∥
L2
η

≤ C
√
E(s)− E(t).

This concludes the proof.

2.4.3 Some special cases for dissipative solutions

We conclude this section with some special cases, namely when the data are a finite number
of Dirac deltas and when the Hamiltonian is purely quadratic.

Lemma 2.4.17. Assume that

µ0 =
N∑

n=1

mnδ(qn,qn)

and let Q(t, qn, pn;µ0), P (t, qn, pn;µ0) be the conservative solution with initial condition µ0.
If the trajectories {Q(t, qn, pn;µ0)}n do not intersect, then there is a unique dissipative
solution with initial data µ0: in particular it coincides with the conservative one.
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Proof. The proof is immediate by observing that since the trajectories never meet then
Pt = I for all t ≥ 0.

In the case of

V (x, v) =
1

2
(q, p)TA(q, p), W (x, v, x′, v′) =

1

2
(x− x′, v − v′)TB(q − q′, p− p′), (2.25)

i.e. V,W are quadratic, with

AT = A, A22 ≥ ΛI, BT = B ≥ 0,

then the trajectories of the dissipative solution can be computed by projecting the solution
to the conservative one, as in the standard pressureless dynamics. Indeed, the ODEs for
the trajectories are

d

dt

(
Q(t, q, p;µ0)
P (t, q, p;µ0)

)
= J(A+B)

(
Q(t, q, p;µ0)
P (t, q, p;µ0)

)
+

∫
JB

(
Q(t, q′, p′;µ0)
P (t, q′, p′;µ0)

)
µ0(dq

′dp′)

Hence assuming∫
(q, p)µ0(dqdp) = 0 ⇒

∫ (
Q(t, q, p;µ0)
P (t, q, p;µ0)

)
µ0(dqdp) = 0

(i.e. it is preserved in time), we obtain(
Q(t, q, p;µ0)
P (t, q, p : µ0)

)
= eJ(A+B)t

(
q
p

)
,

i.e. the conservative flow is independent from µ0.
Next, consider the piecewise conservative solution constructed in Proposition 2.4.13:

being the projection operator linear, it follows that

(Q̃(t, γ; 0, η), P̃ (t, γ; 0, η)) = eJ(A+B)tPt(γ(0), v0(γ)).

Being the above formula independent of the approximation parameter ϵ present in the
statement of Proposition 2.4.13, we conclude that

Proposition 2.4.18. If V,W are quadratic, and η is a dissipative solution with associated
descending fibration {Ωt}t and projections Pt, then

(γ(t), v(t, γ)) = eJ(A+B)tPt(γ(0), v0).

For the quadratic case (2.25), a converse of Lemma 2.4.17 holds: if there is only the
conservative solution, then the particle trajectories do not intersect. Note that the examples
in [1] show that the existence of a conservative solution with non-intersecting trajectories
does not imply that all solutions are conservative (hence there is only one).
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Proposition 2.4.19. If V,W are quadratic and the only dissipative solution is the conser-
vative one, then η is concentrated on a family of non-intersecting curves.

Proof. We need the following duality result [22]: if ν ∈ P(X), ν ′ ∈ P(X ′), X,X ′ Polish,
Z ⊂ X ×X ′ Borel, and

Π≤(ν, ν ′) =

{
π Borel measure,

∫
ϕ(x1)π(dx1dx2) ≤

∫
ϕν,

∫
ϕ(x2)π(dx1dx2) ≤

∫
ϕν ′
}
,

then

sup
{
π(Z), π ∈ Π≤(ν, ν ′)

}
= min

{
ν(A)+ν ′(A′),Z ⊂ A×X ′∪X×A′, A,A′ Borel

}
. (2.26)

Let η be a dissipative solution such that (γ(0), v0)♯η = µ0. Consider the set

Z =
{
(γ, γ′) : Γ× Γ : γ ̸= γ′ and ∃t ∈ [0, T ] such that γ(t) = γ′(t)

}
,

and assume that there is π ∈ Π≤(η, η) such that π(Z) > 0: we can require π to be symmetric,
i.e. ∫

ϕ(γ, γ′)π(dγdγ′) =

∫
ϕ(γ′, γ)π(dγdγ′),

because Z is symmetric. Let

π =

∫
πγη(dγ)

be the (not normalized) disintegration.
Define the map

(γ, γ′) 7→ τγ,γ′ = argmin
{
γ(t) = γ′(t)

}
.

and define
ϖ(dγdγ′) = π + (I, I)♯(η − (P1)♯π).

This does not correspond to a measure on Γ, and indeed the same curve γ intersects many
others γ′: however (P1)♯ϖ is. Let

Et = τ−1
γ,γ′([0, t]),

i.e. the couples of curves which cross before t, let P̃t be the corresponding projection, and
set

t 7→ (γ̃(t), γ̃′(t)) = P̃te
J(A+B)t(γ(0), γ′(0)).

It is fairly easy to see that t 7→ γ̃(t) is continuous, and then that (γ̃)♯η is a dissipative
solution verifying Proposition 2.4.18. Hence from the assumption that there are no dissipative
solutions, we deduce that

sup
{
π(Z), π ∈ Π≤(η, η)

}
= 0

The duality (2.26) implies that there is an η-negligible set N = A∪A′ such that Z ⊂ N×N ,
and then the proposition is proved.
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In general, when the Hamiltonian is not purely quadratic, it may happen that

sup
{
π(Z), π ∈ Π≤(η, η)

}
> 0

even if the unique solution is the conservative one: we will give an explicit example in
Appendix 2.C.

2.5 Compactness of Dissipative solutions

It is well known that by Prokhorov’s theorem M (Γ) is compact w.r.t. the Wasserstein
distance Wp, p < 2, being η concentrated on curves in W 1,2 with uniformly bounded energy.
Since the set M (Γ) is tight w.r.t. the cost ∥ · ∥2L2 , the Wasserstein distance Wp, p < 2, is
equivalent to the narrow convergence.

Proposition 2.5.1. Let {ηn}n∈N,η dissipative solutions in M (Γ) and suppose Wp(ηn, η) →
0, p > 1. For every continuous bounded function ϕ : (L2(0, T ))3 → R, it holds∫

ϕ(γ, γ̇, vn(γ))ηn(dγ) →
∫
ϕ(γ, γ̇, v(γ))η(dγ).

Recall that v(γ) is computed by (2.15a).

Proof. The proof is divided into two steps.

Step 1. First of all, we show that there is a family of maps Rn, R : [0, 1] → Γ such that

ηn = (Rn)♯L
1, η = R♯L

1, lim
n

∥Rn −R∥L2(0,1) = 0.

The construction is standard, we repeat it for the reader’s convenience.

Let Bi = Bri(γi), i ∈ N, be a family of open balls generating the topology of Γ, and
such that

η(∂Bi) = 0. (2.27)

Define the map S : Γ → [0, 1] such that

γ 7→ α = S(γ) =
∑
i

3−iχBi(γ) ∈ [0, 1].

The map S is clearly injective.

Define the measures µn = S♯ηn, µ = S♯η, and let ϕ ∈ C([0, 1]). Then the function

γ 7→ ϕ

(∑
i

3−iχBi(γ)

)
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is bounded and continuous outside the set ∪i∂Bi, so that by [3, Prop.1.62 b] and (2.27) it
follows

lim
n

∫
ϕ(α)S♯ηn(dα) = lim

n

∫
ϕ(S(γ))ηn(dγ) =

∫
ϕ(S(γ))η(dγ) =

∫
ϕ(α)S♯η(dα),

so that
µn = S♯ηn ⇀ S♯η = µ,

i.e. the measures µn converges weakly to µ.
Next, consider the unique monotone transport maps Gn, G : [0, 1] → [0, 1] such that

µn = (Gn)♯L
1, µ = (G)♯L

1.

It is elementary to see that
lim
n

∥Gn −G∥Lp(0,1) = 0.

Finally, if S−1 : [0, 1] → Γ is a left inverse of S, define the maps

Rn = S−1 ◦Gn, R = S−1 ◦G. (2.28)

If xn = S(γn), x = S(γ) and xn → x, then every Bri(γi) ∋ γ contains definitely γn, hence
γn → γ. This shows that S−1⌞S(Γ) is continuous. Observing now that Gn(α) → G(α)
for L 1-a.e. α ∈ [0, 1], we obtain that Rn = S−1 ◦ Gn : [0, 1] → Γ converges L1-almost
everywhere to R = S−1 ◦G. Using the estimates∫ 1

0
∥Rn(α)∥2L2L 1(dα) =

∫
[0,1]

∥S−1(α)∥2L2µn(dα) =

∫
L2(0,T )

∥γ∥2L2ηn(dγ),

∫ 1

0
∥S−1 ◦G(α)∥2L2L1(dα) =

∫
L2(0,T )

∥γ∥2L2η(dγ),

we deduce that ∥Rn∥Lp((0,1),Γ) converges to ∥R∥Lp((0,1),Γ): this together with the L 1-a.e.
pointwise convergence implies that Rn → R in Lp((0, 1),Γ).

Step 2. The statement thus reduces to

lim
n

∫ 1

0
ϕ
(
Rn(α), Ṙn(α), vn(Rn(α))

)
dα =

∫ 1

0
ϕ
(
R(α), Ṙ(α), v(R(α))

)
dα.

We claim that

Ṙn(α) =
∂

∂t
(Rn(α)) −→

L2((0,1),Γ)

∂

∂t
(R(α)) = Ṙ(α).

By Lemma 2.4.8 we have∫ T−s

0

∣∣∣∣Rn(t+ s, α)−Rn(α, t)

s
− Ṙn(α, t)

∣∣∣∣2dtdα ≤ C(T )s∥(Rn(0), vn(0))∥2L2(0,1),
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∫ T−s

0

∣∣∣∣R(t+ s, α)−R(α, t)

s
− Ṙ(α, t)

∣∣∣∣2dtdα ≤ C(T )s∥(R(0), v(0))∥2L2(0,1),

Hence by triangle inequality and the convergence Rn → R

lim sup
n

∫ (∫ T−s

0

∣∣Ṙ(α, t)− Ṙn(α, t)
∣∣2dt)p/2

dα

≤ C(p) lim sup
n

∫ (∫ T−s

0

∣∣∣∣R(t+ s, α)−R(α, t)

s
− Rn(t+ s, α)−Rn(α, t)

s

∣∣∣∣2ds)p/2

dα

+ C(T, p)s∥(R(0), v(0))∥2L2(0,1)

= 6C(T, p)s∥(R(0), v(0))∥2L2(0,1).

Letting s↘ 0 we obtain the desired convergence Ṙn → Ṙ. Using again Proposition 2.3.2
we deduce that the function vn(t, Rn(α)) converges to v(t, R(α)) in L

2(0, 1) for L 1-a.e. α.
Finally for a continuous bounded function ϕ : (L2(0, 1))3 → R

lim
n

∫
ϕ(γ, γ̇, vn)ηn(dγ) = lim

n

∫
ϕ

(
Rn(α),

∂Rn(α)

∂t
, vn(Rn(α))

)
dα

=

∫
ϕ

(
R(α),

∂R(α)

∂t
, v(R(α))

)
dα =

∫
ϕ(γ, γ̇, v(γ))η(dγ).

Theorem 2.5.2. Let {ηn}n∈N be a sequence of dissipative solutions supported on M such
that Wp(ηn, η) ↘ 0, p > 1. Then η is dissipative solution.

Proof. Since (2.15a) is satisfied because of Proposition 2.5.1, we have to prove that equation
(2.15b) passes to the limit: if Rn, R : [0, 1] → Γ are the functions (2.28) in the proof of
Proposition 2.5.1, then (2.15b) can be rewritten as

vn(t, Rn(α, t)) = Pt,n

(
F (Rn, vn(Rn))

)
= Pt,n

(
v0,n(Rn(α))−

∫ t

0
∇qV

(
Rn(α, s), vn(s,Rn(α))

)
−
∫ t

0
∇qW

(
Rn(α, s), vn(s,Rn(α)), Rn(s, α

′), vn(s,Rn(α
′))
)
dα′
)
,

where Pt,n is the projection in L2(0, 1) corresponding to the descending fibration in (0, 1)
obtained through the map Tt ◦Rn,

(0, 1) ∋ α 7→ Tt(Rn(α))(τ) = Rn(α, t)1I[0,t) +Rn(α, τ)1I[t,T ] ∈ Γ.

If ψ : Γ → R is continuous, then∫
ψ(Tt ◦Rn(α))F (Rn(α), vn(Rn(α)))(t)dα =

∫
ψ(Tt ◦Rn(α))Pt,n

(
F (Rn(α), vn(Rn(α)))(t)

)
dα,

=

∫
ψ(Tt ◦Rn(α))vn(t, Rn(α))dα,
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so that, passing to the limit and by the pointwise convergence of Rn, vn we obtain∫
ψ(Tt ◦R(α))F (R(α), v(R(α)))(t)dα =

∫
ψ(Tt ◦R(α))v(t, R(α))dα,

which, due to the arbitrariness of ψ, reads as

Pt(F (R(α), v(R(α)))(t)) = Pt(v(t, R(α))),

or in the original coordinates

Pt(F (γ(t), v(t, γ))) = Pt(v(t, γ)).

By (2.15a) the functions v(t, γ) depends only on (t,Tt(γ)) : this together with the right
continuity gives that Pt(v(t, γ)) = v(t, γ), and therefore

Pt(F (γ(t), v(t, γ))) = Pt(v(t, γ)) = v(t, γ).

which is the requirement to be a dissipative solution.

The following statement is elementary, because of the quadratic growth of V,W .

Lemma 2.5.3. The energy η 7→ H((γ(t), v(t)♯η) is continuous w.r.t. the Wasserstein-2
convergence.

Remark 2.5.4. Note that for the Hamiltonian

H(µ) =

∫ (
p2

2
− q2

2

)
µ(dqdp),

with the initial data

µn =
1

n2
(
δ(n,0) + δ(−n,0)

)
+

(
1− 2

n2

)
δ0,0,

the energy is not l.s.c., being

H(µn) = −2 < H(µ∞) = 0.

Clearly µn is not converging to µ w.r.t. Wasserstein-2, but it converges for all p < 2.

2.6 Discretization

The aim of this section is to prove that the set of dissipative solutions is the closure of
the set of finite particle dissipative solutions. We will first approximate a given dissipative
solution with a dissipative solution with dissipation only at finitely many times, then with a
dissipative solution with finitely many particles, and finally with a sticky particle solution.
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Definition 2.6.1. A dissipative solution is a discrete in-time dissipative solution if there
exists a partition 0 = t0 < t1 < · · · < tN = T such that in every interval [ti, ti+1) the
solution v(t) coincides with the conservative solution with initial measure (γ(ti), v(ti))♯η.

Recall that (Q(t, q, p;µ0), P (t, q, p;µ0)) is the conservative trajectory starting from q, p
with initial measure µ0. Thus the above definition can be rewritten as

γ(t) = Q
(
t− ti, γ(ti), v(ti, γ);µti

)
, v(t, γ) = P

(
t− ti, γ(ti), v(ti, γ);µti

)
,

for t ∈ [ti, ti+1), with
µti = (γ(ti), v(ti))♯η.

We begin by introducing a general method of constructing discrete in-time dissipative
solutions. Let η ∈ P(Γ), and consider L2

η functions (y(γ), w(γ)). Let 0 = t0 < t1 < · · · <
tN = T be a partition of [0, T ] and for every i = 1, . . . , N let Υi(γ) ∈ L2

η be given functions
such that

Pti(Υi) = 0.

Define the functions X(t, γ), Y (t, γ) recursively as follows: for t ∈ [tN−1, tN ] set{
X(t, γ) = Q

(
t− tN , y(γ), w(γ);µT

)
,

Y (t, γ) = P
(
t− tN , y(γ), w(γ);µT

)
,

µN = (y, w)♯η,

and for t ∈ [ti−1, ti), i = 1, . . . , N − 1,{
X(t, γ) = Q

(
t− ti, X(ti, γ), Y (ti, γ) + Υi(γ);µti

)
,

Y (t, γ) = P
(
t− ti, X(ti, γ), Y (ti, γ) + Υi(γ);µti

)
,

µi = (X(ti), Y (ti))♯η. (2.29)

In other words, the trajectories X,Y are constructed by alternating the conservative flow
(Q,P )(t, q, p;µ) with the projection Pti , i = 1, . . . , N − 1 (Figure 2.3): instead of assigning
the initial data, we assign the projections

Υi = Y (ti−)− Y (ti) = (I− Pti)Y (ti−).

Lemma 2.6.2. The measure η̃ = X♯η is a dissipative solution with initial velocity v0(γ) =
Y (0, γ). Moreover

E(0) ≤ E(T ) + C
∑
i

∥Υi∥2η.

Proof. The function Ẋ(t, γ) and Y (t, γ) satisfies Equation (2.15a) by construction, and
Equation (2.9b) holds in each internal [ti, ti+1) with initial data v(ti, γ). We have thus only
to verify that

v(ti, γ) = Pti(v(ti−))(γ), i = 1, . . . , N − 1.
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Figure 2.3: the discrete in-time dissipative solution of Lemma 2.6.2.

By construction, v(t, γ) depends only on γ⌞[t,T ], so that

v(ti, γ)− Pti(v(ti−))(γ) = Pti

(
v(ti)− v(ti−)

)
(γ) = Pti(−Υi)(γ) = 0.

The energy is jumping only at times ti of the amount

E(ti−)− E(ti) = O(1)∥Υi∥2η,

so that the energy estimate holds.

We next study the stability w.r.t. the data (y, w), {Υi}i. Let (X,Y ) and (X ′, Ỹ ′) be
discrete in-time dissipative solution with the same time partition and constructed with
initial data (y, w), (y′, w′) and Υi,Υ

′
i, i = 1, . . . , N − 1.

Lemma 2.6.3. It holds

∥(X(t), Y (t))− (X ′(t), Y ′(t))∥L2
η
≤ C

(
∥(y, w)− (y′, w′)∥L2

η
+

N−1∑
i=1

∥Υi −Υ′
i∥L2

η

)
.

In particular, by taking (y′, w′) = 0,Υ′
i = 0 we obtain that the solution belongs to

M (Γ), with

C̃1, C̃2 = O(1)

(
∥(y, w)∥L2

η
+

N−1∑
i=1

∥Υi∥L2
η

)
.

Proof. By stability, for t ∈ [ti, ti+1) it holds

∥(X(t), Y (t))− (X ′(t), Y ′(t))∥L2
η

≤ e3L(ti+1−t)∥(X(ti+1−), Y (ti+1−))− (X ′(ti+1−), Y ′(ti+1−))∥L2
η

≤ e3L(ti+1−t)
(
∥Υi+1 −Υ′

i+1∥L2
η
+ ∥(X(ti+1), Y (ti+1))− (X ′(ti+1), Y

′(ti+1))∥L2
η

)
.

The statement is thus a direct application of (2.22) as in the proof of Proposition 2.4.13.
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Proposition 2.6.4. If η is a dissipative solution, then for every ϵ > 0 there is a discrete
in-time dissipative solution η′ = X♯η such that for all t ∈ [0, T ]

∥(X(t), Y (t))− (γ(t), v(t))∥L2
η
< ϵ.

Proof. The proof is analogous to the proof of Proposition 2.4.13, the only difference being
that we will follow the backward solution of Lemma 2.6.2 above, so that, we do not need
to apply the projection to the variable Q. In particular, the constructed function is a
dissipative solution, as stated in Lemma 2.6.2.

Consider the partition 0 = t0 < t1 < · · · < tN = T of Lemma 2.4.9, and define

Υi = ṽ(ti, ti−1, γ)− v(ti, γ).

Let X,Y be the discrete in-time dissipative solutions constructed in Lemma 2.6.2: at each
time step [ti, ti+1) we obtain from Corollary 2.4.12∥∥(X(t, γ), Y (t, γ))− (γ(t), v(t))

∥∥
L2
η

≤
∥∥∥(X(t, γ), Y (t, γ))

−
(
Q
(
t− ti+1, γ(ti+1), ṽ(ti+1, ti, γ); (γ(ti+1), ṽ(ti+1))♯η

)
,

P (t− ti+1, γ(ti+1), ṽ(ti+1, ti, γ); (γ(ti+1), ṽ(ti+1))♯η)
)∥∥∥

L2
η

+
∥∥∥(Q(t− ti+1, γ(ti+1), ṽ(ti+1, ti, γ); (γ(ti+1), ṽ(ti+1))♯η

)
,

P
(
t− ti+1, γ(ti+1), ṽ(ti+1, ti, γ); (γ(ti+1), ṽ(ti+1))♯η

))
− (γ(t), v(t))

∥∥∥
L2
η

≤ e3L(ti−t)
∥∥(X(ti+1−, γ), Y (ti+1−, γ))− (γ(ti+1), ṽ(ti+1, ti, γ))

∥∥
L2
η

+ C

∫ ti+1

ti

∥v(s)− ṽ(s)∥L2
η
ds

≤ e3L(ti−t)
∥∥(X(ti+1, γ), Y (ti+1, γ))− (γ(ti+1), v(ti+1, γ))

∥∥
L2
η

+ Cϵ(ti+1 − ti).

Hence, applying the solution formula (2.22) to the above formula when t = ti as in (2.23),∥∥(X(t, γ), Y (t, γ))− (γ(t), v(t))
∥∥
L2
η
≤ Cϵ.

The measure (X,Y )♯η satisfies the statement.
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The next step is to discretize the number of particles.

Definition 2.6.5. A discrete in-time dissipative solution is a discrete in-time dissipative
particle solution if η is made of Dirac masses. If the number of deltas is finite, it is a
dissipative finite particle solution.

Proposition 2.6.6. If η is a discrete in-time dissipative solution and ϵ > 0, then there
exists a finite particle solution η′ = X♯η such that for all t ∈ [0, T ]

∥(X(t), Y (t))− (γ(t), v(t))∥L2
η
≤ ϵ.

Proof. The proof follows immediately from Lemma 2.6.3, if we can find simple functions
(y′, w′, {Υ′

i}i) approximating

y(γ) = γ(T ), w(γ) = v(T, γ), Υi(γ) = v(ti−, γ)− v(ti, γ)

(in the last formula we have used that η is a discrete in-time solution where the projection
is applied at times ti), with the property that

∥y − y′∥L2
η
+ ∥w − w′∥L2

η
+
∑
i

∥Υi −Υ′
i∥L2

η
< ϵ.

The existence of such approximations is elementary.
It remains only to prove that the solution (X ′, Y ′) of constructed in Lemma 2.6.2 by

using y′, w′, {Υ′}i simple functions is a finite particle solution: this is immediate, since from
the explicit form of the solution (2.29) the functions (X ′, Y ′) are measurable in the finite
algebra generated by (y′, w′, {Υ}i).

The last step is to prove that we can construct a sticky particle solution made of finitely
many particles.

Definition 2.6.7. A discrete finite particle solution is a finite sticky particle solution if for
every t ∈ [0, T ] the maps Tt and et induce the same equivalence relation.

Proposition 2.6.8. If η is a finite dissipative solution and ϵ > 0, there exists η′ = X♯η
finite sticky particle solution such that

∥(X(t), Y (t))− (γ(t), v(t))∥L2
η
≤ ϵ.

Proof. As in the previous proof, it is enough to find simple functions y′, w′, {Υ′
i}i approxi-

mating
y(γ) = γ(T ), w(γ) = v(T, γ), Υi(γ) = v(ti−, γ)− v(ti, γ),

with the property that

∥y − y′∥L2
η
+ ∥w − w′∥L2

η
+
∑
i

∥Υi −Υ′
i∥L2

η
< ϵ,
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and, moreover, such that the dissipative solution constructed by Lemma 2.6.2 is actually a
sticky particle solution.

Observe that if {Xi(t)}Ni=1 are the trajectory of a finite dissipative solution η such that

Xi(t) ̸= Xj(t) ⇒ ∀ 0 ≤ s ≤ t
(
Xi(s) ̸= Xj(s)

)
,

then η is a sticky particle solution: indeed {t : Xi(t) = Xj(t)} must be an interval of
the form [t, T ] or empty, and this means that when two particles collide then they stick
together.

W.l.o.g. we can assume that the time steps ti satisfies

ti − ti−1 < δt,

being δt the time step for which Proposition 2.3.8 holds.

We begin by considering the final data y, w, and let M be the number of particles. If
the backward trajectories are not intersecting, then no perturbation is needed. Otherwise,
by Proposition 2.3.8 there are arbitrarily small perturbations y′ − y, w′ − y such that the
trajectories are not intersecting in [tN−1, tN ). In particular, we can assume that

∥y − y′∥L2
η
+ ∥w − w′∥L2

η
< ϵ2−T/δt .

The number of particles is increased by at most 2M .

Assume to have found perturbations up to time ti+1 such that in each time interval
[tj , tj+1), j ≥ i + 1, the trajectories are not intersecting, and the number of particles is
2N−i−1M . The initial data for the backward solution are

γ(ti+1), v(ti+1, γ) + Υi+1(γ).

We can then again find perturbations Υ′
i+1(γ) such that the number of particles is at most

2N−iM and

∥Υi −Υ′
i∥L2

η
< ϵ2−T/δi .

After a finite number of steps we arrive to t = 0: the total perturbation is

∥y − y′∥L2
η
+ ∥w − w′∥L2

η
+
∑
i

∥Υi −Υ′
i∥L2

η
<
T

δt
ϵ2−T/δt < ϵ,

and the number of particles is at most 2T/δtM .

The above result implies directly the following.

Theorem 2.6.9. The weak closure of the set of finite sticky particle solutions with bounded
second-order moments for γ(0), v(0) is the set of dissipative solutions.
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2.7 A Gδ dense set of initial data

We have proved that for dissipative solutions the energy E(t) = H((γ(t), v(t))♯η) is de-
creasing in time, and actually that the energy dissipation controls the distance from the
conservative flow. In this section, we want to prove that the set of initial data for which
there is only one dissipative solution (which is then the conservative one) is of second
category in the set of initial data.

In this section, we assume that H is convex, so that µ 7→ H(µ) is l.s.c. w.r.t. the narrow
convergence. Define for µ ∈ P2(Rd × Rd) the functional

D(µ) = max
{
H(µ)−H((γ(T ), v(T )♯η), (γ(0), v(0))♯η = µ

}
.

By compactness of M (Γ) and l.s.c. of η 7→ H((γ(t), v(t)♯η), the maximum is attained.
Being the supremum of u.s.c. functionals, D(µ) is u.s.c., and when D(µ) = 0 then every
dissipative solution with the initial data µ has 0 dissipation, i.e. it coincides with the
conservative one.

Using Proposition 2.3.6, we deduce the following

Theorem 2.7.1. The set D0 = {µ : D(µ) = 0} ⊂ P2(Rd × Rd) is a dense Gδ set w.r.t.
narrow convergence.

Proof. First of all, D0 is a Gδ-set, being

D0 =
⋂
n

{
µ : D(µ) < 2−n

}
, D(µ) u.s.c..

Next, by Proposition 2.6.8, the finite sticky particle solutions are dense and, by Proposition
2.3.6, the set of initial data so that the trajectories are not intersecting is dense in the set
of finite sticky particle solutions. Finally, for the non-intersecting trajectories, the unique
solution is the conservative one by Lemma 2.4.17.
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Appendix of Chapter 1

2.A Proofs of Section 2.3

Proposition 3.2, page 28. The operator (2.11) is uniformly monotone, namely

Λ∥v1 − v2∥22 ≤
(
v1 − v2, F (t, v1)− F (t, v2)

)
≤ 3L∥v1 − v2∥22. (2.30)

Proof of Proposition 2.3.2, page 28. The bound from above follows immediately by the
Lipschitz bounds on ∇V,∇W , which gives that F (t) is Lipschitz:

∥F (t, v1)− F (t, v2)∥2 ≤ 3L∥v1 − v2∥L2
η
.

For the estimate from below, we observe that by symmetry

W (x, v, x′, v′) =W (x′, v′, x, v) ⇒ ∇pW (x, v, x′, v′) = ∇p′W (x′, v′, x, v),

so that∫ (
v1(γ)− v2(γ), F (t, v1)(γ)− F (t, v2)(γ)

)
η(dγ)

=

∫ (
v1(γ)− v2(γ),∇pV (γ(t), v1(γ))−∇pV (γ(t), v2(γ))

)
η(dγ)

+

∫ ∫ (
v1(γ)− v2(γ),∇pW (γ(t), v1(γ), γ

′(t), v1(γ
′))

−∇pW (γ(t), v2(γ), γ
′(t), v2(γ

′))
)
η(dγ′)η(dγ)

≥ Λ∥v1 − v2∥2L2
η

+
1

2

∫ ∫ (
v1(γ)− v2(γ),∇pW (γ(t), v1(γ), γ

′(t), v1(γ
′))

−∇pW (γ(t), v2(γ), γ
′(t), v2(γ

′))
)
η(dγ′)η(dγ)

+
1

2

∫ ∫ (
v1(γ

′)− v2(γ
′),∇p′W (γ(t), v1(γ), γ

′(t), v1(γ
′))

−∇p′W (γ(t), ṽ2(t, γ), γ
′(t), v2(γ

′))
)
η(dγ′)η(dγ),

59
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and then by uniform convexity((
v1(γ)− v2(γ)
v1(γ

′)− v2(γ
′)

)
,

(
∇pW (γ(t), v1(γ), γ

′(t), v1(γ
′))−∇pW (γ(t), v2(γ), γ

′(t), v2(γ
′))

∇p′W (γ(t), v1(γ), γ
′(t), v1(γ

′))−∇p′W (γ(t), v2(γ), γ
′(t), v2(γ

′))

))
≥ 0,

and then we conclude∫ (
v1(γ)− v2(γ), F (t, v1)(γ)− F (t, v2)(γ)

)
η(dγ) ≥ Λ∥v1 − v2∥2L2

η
.

This is the lower bound of (2.30).

Proposition 2.3.3, page 29. There exist unique functions Q(α, t), P (α, t) ∈ C0([0, T ], L
2(0, 1))

satisfying

Q(α, t) = Q0(α)+

∫ t

0

[
∇pV (Q(α, s), P (α, s))+

∫
∇pW (Q(α, s), P (α, s), Q(α′, s), P (α′, s)dα′

]
ds,

P (α, t) = P0(α)−
∫ t

0

[
∇qV (Q(α, s), P (α, s))+

∫
∇qW (Q(α, s), P (α, s), Q(α′, s), P (α′, s)dα′

]
ds.

Moreover

t 7→ H(t,L1⌞(0,1)) =
∫
V (Q(α, t), P (α, t))dα+

∫ ∫
W (Q(α, t), P (α, t), Q(α′, t), P (α′, t))dαdα′

is constant, (∂tQ(t), P (t)) ∈ L2((0, 1),W 1,2(0, T )) with

∥∂tQ(t)∥L2(0,1), ∥∂tP (t)∥L2(0,1),
1

3L
∥∂2tQ(t)∥L2(0,1) ≤ 3Le3Lt∥(Q0, P0)∥L2(0,1).

Finally, if (Q0, P0), (Q
′
0, P

′
0) are two different initial data and (Q(t), P (t)), (Q′(t), P ′(t)) the

corresponding solutions, then it holds∥∥(Q(t), P (t))− (Q′(t), P ′(t))
∥∥
L2(0,1)

≤ e3Lt
∥∥(Q0, P0)− (Q′

0, P
′
0)
∥∥
L2(0,1)

.

Proof of Proposition 2.3.3, page 29. The existence, uniqueness, and continuous dependence
estimates boil down to the same computation: study the Lipschitz constant of the map

(Q(α, t), P (α, t)) 7→
(
x0(α)+

∫ t

0
∇vH(Q(α, s), P (α, s))ds, v0(α)−

∫ t

0
∇qH(Q(α, s), P (α, s))ds

)
.

We show the continuous dependence: using the Lipschitz estimates for V,W ,

∥Q(t)−Q′(t)∥2 =
∥∥∥∥Q0 −Q′

0 +

∫ t

0

(
∇vH(Q(s), P (s))ds−∇vH(Q′(s), P ′(s))

)
ds

∥∥∥∥
2

≤ ∥Q0 −Q′
0∥+ 3L

∫ t

0

∥∥(Q(s), P ′(s))− (Q′(s), P ′(s))
∥∥
2
ds,
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Figure 2.4: two different conservative solutions of the Hamiltonian system (2.32), i.e. the
stationary solution (red) and the solution Q̄ of Proposition 2.B.3 (green).

∥P (t)− P ′(t)∥2 =
∥∥∥∥P0 − P ′

0 −
∫ t

0

(
∇qH(Q(s), P (s))ds−∇qH(Q′(s), P ′(s))

)
ds

∥∥∥∥
2

≤ ∥P0 − P ′
0∥+ 3L

∫ t

0

∥∥(Q(s), P ′(s))− (Q′(s), P ′(s))
∥∥
2
ds.

Hence the continuous dependence follows by a Gronwall-type estimate.

A similar estimate gives that for 3Lt < 1 the above map is a contraction when (Q0, P0) =
(Q′

0, P
′
0), so that one deduces uniqueness. The convergence to the initial data follows from

(2.9).

The estimates on ẍ, v̇ follow by differentiating the ODE (2.9) and Proposition 2.3.2, and
the conservation of energy H(t,L1⌞(0,1)) directly by differentiating w.r.t. t (which is now
allowed since ẋ, v̇ are in L2(0, 1).

2.B An example of non-uniqueness

We present an example of non-uniqueness for the ODE in dimension 1 with Hamiltonian

H(µ) =

∫
v2

2
µ(dxdv) +

∫
W (x− x′)µ× µ(dxdvdx′dv′),

where the potential W is not semiconvex. The measure µ will be purely atomic.

The idea of the proof is that with a suitable distribution of masses and a suitable
choice of the potential W , the ODE of one particle (here the one located at 0) has an
Hölder dependence on the position, allowing for two solutions. The computations below
just make this idea precise. Figure 2.4 depicts the two different conservative solutions: one
is stationary (red), while in the other the particles are moving toward each other (green).

A natural question is whether this example can be adapted to W semiconvex, where a
solution can be constructed [20].

Let

ϕ(x) =

{
x |x| ≤ 1,

sign(x) |x| > 1,
Φ(x) =

{
x2/2 |x| ≤ 1,

|x| − 1/2 |x| > 1.

and define

ψ(x) =
∑
n∈N

ϕ(n16x)

n16
, Ψ(x) =

∑
n

Φ(n16x)

n32
. (2.31)
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Let µ0 be the initial configuration

µ0(dx) = δ0(dx) +
∑
n

1

n8
δn3(dx),

with speed 0 for all n = 0, 1, . . . .
Define

W (x) =


−Φ(n16(x− n3))/n24 |x− n3| ≤ 1/3,

smooth ∼ n−8 1/3 < |x− n3| < 1/2,

0 otherwise.

n ∈ Z \ {0},

which is explicitly

W (x) =


−n8(x− n3)2/2 |x− n3| ≤ n−16,

(n16|x| − 1/2)/n24 n−16 < |x| ≤ 1/3,

smooth ∼ n−8 1/3 < |x− n3| < 1/2,

0 otherwise.

Its derivative is

W ′(x) =


−ϕ(n16(x− n3))/n8 |x− n3| ≤ 1/3,

smooth ∼ n−8 1/3 < |x− n3| < 1/2,

0 otherwise.

which is explicitly

W ′(x) =


−n8(x− n3) |x− n3| ≤ n−16,

sign(x)/n8 n−16 < |x| ≤ 1/3,

smooth ∼ n−8 1/3 < |x− n3| < 1/2,

0 otherwise.

Its second derivative is

W ′′(x) =


−n8 |x− n3| ≤ n−16,

0 n−16 < |x| ≤ 1/3,

smooth ∼ n−8 n−16 < |x− n3| < 1/2,

0 otherwise,

showing that it is not semiconvex.
We have ∫

x2µ0(dx) =
∑
n

1

n8
(n3)2 <∞,
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∫
W (x− y)µ0(dx)µ0(dy) =

∑
n

1

n8
−Φ(0)

n12
= 0.

We have observed that the only solutions to

n3 −m3 = z3, m, n ∈ N, z ∈ Z

is when n = m, z = 0 or m = 0, n = z or n = 0, z = m, so that if the positions xn(t) are
such that

|xn − n3| < 1/4

then

W (xn − xm) ̸= 0 ⇔ ∃k ∈ Z
(
|xn − xm − k3| < 1/2

)
⇔ ∃k ∈ Z

(
|n3 −m3 − k3| < 1

)
and the last inequality implies(

n = m ∧ k = 0
)

∨
(
n = k ∧ m = 0

)
∨
(
m = −k ∧ n = 0

)
.

In particular, if the position remains inside n3 + [−1, 1]/4, then∑
n,n′

mnmn′W (xn − xn′) = 2
∑
n≥1

mnW (xn − x0) ≃
∑
n

n−8−8 <∞.

Let

qn = xn − n3.

When

xn = n3 + qn ∈ n3 + [−1/4, 1/4],

the equation (2.9) for this case can be rewritten as a system of second order ODEs: using
q̇n = vn, it is immediate to see that

q̈0 =
∑+∞

n=1miW
′(qn − q0)

q̈1 = m0W
′(q0 − q1)

q̈2 = m0W
′(q0 − q2)

...

q̈n = m0W
′(qn − q0)

...
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which is explicitly (being ϕ antisymmetric)

q̈0 =
∑+∞

n=1
ϕ(n16(q0−qn))

n16

q̈1 = ϕ(q1 − q0)

q̈2 = 2−8ϕ(216(q2 − q0))
...

q̈n = n−8ϕ(n16(qn − q0))
...

(2.32)

2.B.1 Non-uniqueness for the particle in the origin

Consider the ODE
ü = ψ(u), u(0) = u′(0) = 0,

where ψ is given in (2.31). Multiplying by u̇ and integrating

u̇2

2
= Ψ(u),

which has a solution not identically 0 if and only if∫ δ

0

1√
Ψ(u)

du <∞.

We study the Hölder exponent of the function Ψ when 0 ≤ u≪ 1.
Using the explicit formulas for Ψ we have

Ψ(u) =
∑
n

n−32Φ(n16u)

=

( ∑
n16u≤1

n−32

)
(n16u)2

2
+

∑
n16u>1

n−32

(
n16u− 1

2

)

=

( ∑
n16u≤1

1

)
u2

2
+

( ∑
n16u>1

n−16

)
u− 1

2

∑
n16u>1

n−32.

We now use the estimates ∑
n16u≤1

∼
∫ u−1/16

1
dω ∼ u−1/16,

∑
n16u>1

n−16 ∼
∫ ∞

u−1/16

ω−16dω =
1

15
u15/16,
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∑
n16u>1

n−32 ∼
∫ ∞

u−1/16

ω−32dω =
1

31
u31/16.

Hence for u≪ 1 it holds

Ψ(u) ∼
(
1

2
+

1

15
− 1

2

1

31

)
u31/16 =

256

465
u31/16.

since ∫ δ

0

1√
Ψ(ω)

dω ∼
∫ δ

0
ω−31/32dω ≃ δ1/32.

Thus there is no uniqueness, and the nonzero solution will behave like t32.

2.B.2 Non-uniqueness - part 2

Before we assumed that the other particles remain in qn = 0 (i.e. xn = n3). The idea of
this section is that they will approach q0, so that, the actual force in q0 is larger.

Let Θ(t, u) be a continuous function such that

3

2
≥ Θ(t, u) ≥ Ψ′(u) ∼ u15/16, u ∈ [0, 1/4],

and consider the ODE

ü = Θ(t, u) ⇒


ṫ = 1,

u̇ = w,

ẇ = Θ(t, u).

The forward-in-time invariant region S ⊂ R3 we consider is the region

S =
{
0 ≤ u ≤ 1/4,

√
u/2 ≤ t ≤ 2ζ−1(u), ζ̇(ζ−1(u)) ≤ w ≤ 2

√
u
}
,

where ζ(t) is the graph of the non-zero solution to

u̇ =
1

2

√
Ψ(u), u(0) = 0,

which we know to behave like

ζ(t) ∼ t32, ζ̇(ζ−1(u)) ∼ u31/32

by the computation at the end of the previous section. The other bound is obtained by
solving

u̇ = w, ẇ = 2 ⇒ u = t2, w = t.
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The region is forward invariant because

w = 2
√
u ⇒ ẇ

u̇
=

Θ(t, u)

2
√
u

≤ 3

4
√
u
<

1√
u
= ∂u(2

√
u),

w = ζ(u) ⇒ ẇ

u̇
=

Θ(t, u)

ζ(u)
≥ Ψ′(u)

ζ(u)
>

Ψ′(u)/8

ζ(u)
= ∂u(ζ(u)),

t =

√
u

2
⇒ ṫ

u̇
=

1

w
≥ 1

2
√
u
>

1

4
√
u
= ∂u

(√
u

2

)
,

t = 2ζ−1(u) ⇒ ṫ

u̇
=

1

w
≤ 1

ζ ′(ζ−1(u))
<

2

ζ ′(ζ−1(u))
= ∂u(2ζ

−1(u)).

In all formulas above we are comparing the vector field (1, w,Θ(t, u)) with the tangent to
the boundary (whose slope is at the r.h.s. of the previous formulas).

The strict inequalities give that the flow is entering the region S: in particular, every
trajectory entering in S at some point (t, x, w) ∈ ∂S is exiting S in some point in the
interior of the region

E =

{
u =

1

4
, ζ ′(ζ−1(1/4)) ≤ w ≤ 1,

1

4
≤ t ≤ ζ−1(1/4)

}
.

Lemma 2.B.1. If Ψ′(u) ≤ Θ(t, u) ≤ 3/2, there is a trajectory starting from (0, 0) at t = 0
and reaching u(t̄) = 1/4 inside S with 1/2 < t̄ < ζ−1(1/4).

Proof. Consider a sequence of points (tn, xn, wn) ∈ ∂S converging to (0, 0, 0), let γn be a
trajectory starting from (tn, xn, wn) inside S. Then, up to subsequences, the limit trajectory
γ satisfies the statement.

We will denote such a trajectory with q̂0(t), and we can assume that it is defined for
t ∈ [0, 1/2] and q̂0(t) > 0 for t > 0.

We next analyze the other components. The ODE for |qn| ≤ 1/3 is

q̈n = n−8ϕ
(
n16(qn − q0(t))

)
, qn(0) = q̇n(0) = 0. (2.33)

We assume that the function q0(t) is given, and it is ≥ 0. Then the ODE above is rewritten
as

q̇n = wn, ẇn = n−8ϕ(n16(qn − q0(t)),

and then the quarter plane {qn, wn ≤ 0} is forward invariant for t ∈ [0, 1/3]: indeed the
vector field is of order n−8 and Lipschitz, and

qn = 0 ⇒ q̇n ≤ 0,

wn = 0, ⇒ ẇn ≤ 0.

We have used that q0 ≥ 0 and the uniqueness of the solution: hence
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Lemma 2.B.2. For every q0(t) ≥ 0 there is a unique solution qn(t) to (2.33) such that

−O(n−8) ≤ qn(t), q̇n(t) ≤ 0.

Finally, define the compact set

K = Lip([0, 1/3], [−1, 1])×
(
Lip([0, 1/3], [−1, 1])

)N ⊂ (C0([0, 1/3],R))N0

with the product topology. Given Q = {qn(t)}n ∈ K, then construct Q′ = {q′n(t)}n ∈ K as
the point whose coordinates are

q′0 = a solution by Lemma 2.B.1 with Θ(t, u) =
∑
n

n−16ϕ(n16(u− qn(t))),

q′n = the solution by Lemma 2.B.2.

Since qn ≤ 0 for n ≥ 1, then

Ψ′(u) =
∑
n

n−16ϕ(n16u) ≤ Θ(t, u) =
∑
n

n−16ϕ(n16(u−qn(t))) ≤
3

2
, 0 ≤ u,−qn(t) ≤

1

2
,

so that the assumptions of Lemma 2.B.1 are satisfied for 0 ≤ t ≤ 1
3 .

It is fairly easy to see that Q 7→ Q′ maps K into K.

Repeating the process countably many times, we obtain a family of point Qi = {qn,i}n ∈
K: assume by compactness that

lim
i
qn,i(t) = q̄n(t)

in C0 up to subsequences. Then

Θi(t, q0,i) =
∑
n

n−16ϕ(n16(q − 0, i(t)− qn,i(t))) → Θ̄(t, q̄0) =
∑
n

n−16ϕ(n16(q̄0(t)− q̄n(t)))

because the series is uniformly convergent and

ϕ(n16(q0(t)− qn(t)) → ϕ(n16(q̄0(t)− q̄n(t)).

In particular, since each q0,i is a trajectory in S by Lemma 2.B.1, we deduce

Proposition 2.B.3. The limit point Q̄ = {q̄n(t)}n is a non constant solution to (2.32).
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2.C An non-trivial example of uniqueness

Consider the space (t, x) ∈ R+ × R3: in this section we will use the notation

q = (q1, q2, q3), p = (p1, p2, p3), q, p ∈ R3,

i.e. qi, pi are the i-th component of the vectors q, p.

Assume

H(µ) =

∫
p2

2
µ+

ϵ

2

∫ ∫
q21(q

′
1)

2

4
µ× µ =

∫
p2

2
µ+

ϵ

2

(∫
q21
2
µ

)2

,

with 0 < ϵ ≪ 1. The Hamiltonian has not quadratic growth, but since we will consider
solutions for t ∈ [−1, 2] such that

supp(µ) ⊂ {|q| ≤ 12} × R3,

we can alter the function W (q, q′) = ϵq21(q
′
1)

2/4 outside BR3

12 (0) arbitrarily.

The Hamiltonian ODE in the second and third coordinates is

q̇i = pi, ṗi = 0, i = 2, 3,

whose solution is

qi(t) = pi(0)t+ qi(0), i = 2, 3,

while the first component satisfies the ODE

q̇1 = p1, ṗ1 = −ϵ
(∫

(q′1)
2

2
µ(dq′)

)
q1. (2.34)

For α ∈ [−1, 1] consider the initial data for i = 2, 3

(q2, q3)(α, 0) = (α,−|α|), (p2, p3)(α, 0) = (−sign(α), 1).

The solutions are

(q2, q3)(α, t) =
(
α− sign(α)t, t− |α|

)
,

and then the unique intersection point of the trajectories q(α), q(α′) occurs only for

α′ = −α, t = |α|, (q2, q3)(α, |α|) = (0, 0).

Claim 1: there are initial data at t = −1 such that the conservative solution (Q(t), P (t))
satisfies

q1(α, |α|) = q1(−α, |α|) = 0, p1(α, |α|) = −p1(−α, |α|) = −1.
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Proof. It is a standard contraction argument for the map

{
q1(α, t), p1(α, t)

}
α
7→
{∫ t

|α|
p1(α, τ)dτ,−sign(α)− ϵ

∫ t

|α|

(∫
p1(α

′, τ)2

2
µ(dα′)

)
q1(α, τ)dτ

}
,

which is a contraction for ϵ≪ 1 and t ∈ [−1, 2].

The values {Q(α,−1), P (α,−1)} are the initial data for the dissipative solutions we are
going to study.

When we consider a possible dissipative solution η, the projection of the motion on the
component 2,3 is exactly a sticky particle system in two dimensions, or more precisely it is
a dissipative solution to the sticky particle PDE in dimension 2. The third component gives

Pt

(
p3(α, 0)−

∫ t

0
∇xH(q3(s), p3(s))ds

)
= Pt(1) = 1,

so that the third component of the trajectories of the dissipative solution is again

q3(t) = t− |α|.

In particular, only the particles (|α|,−|α|) can interact, and only at time |α|, and no
additional interactions can occur at a later time.

We can thus write the dissipative solution with the parametrization q(|α|, β), p(|α|, β),
β ∈ [0, 1], with the measure L2(d|α|dβ), and the projection Pt as P|α| acting on L2(dβ).
The function α 7→ Pα can be assumed Borel, in the sense that for every f ∈ L2(dβ) the
function α 7→ Pα(f) is Borel.

Let (Q̂, P̂ )(|α|, β) be a dissipative solution with initial data {Q(α,−1), P (α,−1)}, which
in the parametrization (|α|, β) corresponds to

(Q,P )(|α|, β,−1) =

{
(Q,P )(−|α|,−1) β ∈ [0, 1/2],

(Q,P )(|α|,−1) β ∈ (1/2, 1].

Let t0 ∈ [1, 2] be the first time such that

∀t > t0

(∫ t

t0

[ ∫ ∣∣(I− P|α|)Q(|α|, β, τ)
∣∣2d|α|dβ]dτ > 0

)
.

Here and in the following (Q,P ) is the conservative solution, while (Q̂, P̂ ) is the dissipative
one (both parametrized by |α|, β).

As an approximation for the dissipative solution, we define

(Q̌, P̌ )(|α|, β, t) =

{
(Q,P )(|α|, β) t ≤ |α|,
P|α|(Q,P )(|α|, β) t > |α|,



70 CHAPTER 2. DISSIPATIVE SOLUTIONS TO HAMILTONIAN SYSTEMS

i.e. the trajectories obtained by patching together the conservative solution before the
merging time |α|, and its projection after the merging time. This is not a solution, since one
has for the first component of a trajectory of the approximate dissipative solution above

¨̌q1(|α|, β) = −ϵ∥q1∥
2
2

2
q̌1(|α|, β) ̸= −ϵ∥q̌1∥

2
2

2
q̌1(|α|, β). (2.35)

In particular, for t > t0 it holds by Jensen’s inequality and strict convexity of | · |2∫ t

t0

∥q̌1∥22
2

− ∥q1∥22
2

dτ < 0.

The contradiction we will arrive is exactly in the inequality above, which implies that
the particles q1(|α|, β ∈ [0, 1/2]), q1(|α|, β ∈ (1/2, 1]) with arrive late at the merging time
t = |α|.

Claim 2: The correction δq1, δp1 to q̌1, p̌1 satisfies

˙δq1 = δp1, ˙δp1 = −ϵ
(∫

(q̌1 + δq1)
2

2
L2

)
δq1 + ϵ

[
∥q1∥22
2

−
∫

(q̌1 + δq1)
2

2
L2

]
q̌1, (2.36)

with initial data (0, 0).

Proof. Just substitute and use (2.35).

We next use the following simple estimate: if

ẋ = v, v̇ = a(t)x+ b(t), x(0), v(0) = 0,

then for every δ > 0 there exists t̄ such that for t ∈ [0, t̄]

|x(t)| ≤ (1 + δ)

∫ t

0
(t− τ)|b(τ)|dτ, |v(t)| ≤ (1 + δ)

∫ t

0
|b(τ)|dτ. (2.37)

Moreover t̄ = δ
3(1+∥a∥∞) suffices.

Claim 3: It holds ∫ ∣∣δq1(t)∣∣L2 ≤ 2ϵ

∫ t

t0

(
∥q1∥22
2

− ∥q̌1∥22
2

)
dτ.
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Proof. The estimate (2.37) applied to (2.36) yields

|δq1(|α|, β, t)| ≤ (1 + δ)ϵ

∫ t

t0

∣∣∣∣∥q1∥222
−
∫

(q̌1 + δq1)
2

2
L2

∣∣∣∣|q̌1(|α, β, τ)|dτ,
for

0 ≤ t− t0 ≤ t̄ =
δ

3(1 + ϵ supτ∈[t0,t]
∫ (q̌1(τ)+δq1(τ))2

2 L2)
.

It is an easy computation to show that the first equation gives the claim if ϵ≪ 1 and, in
particular, the choice t̄ = 1/4 can be allowed.

With the above claim, we obtain that∫ t

t0

(
∥q1(τ)∥22

2
−
∫

(q̌1(τ) + δq1(τ))
2

2
L2

)
dτ =

(
1 +O(ϵt)

) ∫ t

t0

(
∥q1(τ)∥22

2
− ∥q̌1(τ)∥22

2

)
dτ > 0

for 0 < t− t0 < t̄, and then using again (2.36) we conclude that δq1 < 0 in a small positive
time interval (t0, t1). This implies that for t0 < |α| < t1 the particles solving the ODE
(2.34) (i.e. the ones which have not yet interacted) will have

q1(|α|, β ∈ [0, 1/2], |α|) < 0 < q1(|α|, β ∈ (1/2, 1], |α|),

contradicting the assumption that they are interacting, i.e. q1(|α|, β ∈ [0, 1/2], |α|) =
q1(|α|, β ∈ (1/2, 1], |α|).
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Chapter 3

Existence and blow-up for
non-autonomous scalar
conservation laws with viscosity

In this chapter we consider a question posed in [19], namely the blow-up of the PDE

ut + (b(t, x)u1+k)x = uxx

when b is uniformly bounded, Lipschitz and k = 2. We give a complete answer to the
behavior of solutions when b belongs to the Lorentz spaces b ∈ Lp,∞, p ∈ (2,∞], or
bx ∈ Lp,∞, p ∈ (1,∞]. See also [9].

3.1 Introduction

We study the global in time existence and long time behavior for the initial value problem{
ut + (b(t, x)uk+1)x = uxx, x ∈ R, t ∈ (0,∞),

u(0, x) = u0(x) ∈ L1(R) ∩ L∞(R),
(3.1)

where b(t, x) is a non-autonomous drift and u0 is the initial datum. This question was
raised in [19], where the subcritical case was analyzed. It is not restrictive to assume that

u(t, x) ≥ 0,

because the PDE 3.1 is monotone w.r.t. the initial data. Moreover by scaling u(a2t, ax) we
can assume that ∥u0∥1 = ∥u(t)∥1 = 1, where we have used that the PDE is in divergence
form.

In this thesis we consider drifts b which are in weak-LP or with derivative in weak-Lp.
More precisely, we make the following assumptions on the initial data u0 and exponent k:

75
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1. b is only integrable:

b ∈ L∞
loc((0,∞), Lp,∞(R)) with p ∈ (2,∞],

{
k > 0,

u0 ∈ L1(R) ∩ L∞(R);
(3.2)

2. b has a weak derivative in x:{
b ∈ L∞

loc((0,∞)× R),
bx ∈ L∞

loc((0,∞), Lp,∞(R)) with p ∈ (1,∞],


k ≥ 1

2 ,

u0 ∈ L1(R) ∩ L∞(R),
E(u0) :=

∫
x2|u0(x)| dx < +∞.

(3.3)

The space Lp,∞ is the standard Lorentz space, see Subsection 3.2.1 for the precise definition:
we just recall here that Lp,∞ is also referred to as the weak-Lp space.

The case k = 0 corresponds to a linear PDE, which can be studied by means of the
Duhamel formula: hence we will restrict ourselves to k > 0. The assumption k ≥ 1

2 in (3.3)
is due to the fact that the drift b may be unbounded. If b is uniformly bounded that one
can remove this assumption. It has actually no influence in the blow-up behaviour, which
is a local property.

The aim is to investigate the relation between the exponents k and p so that the
solution exists globally in L∞ and to study the behaviour of u(t) for t→ ∞. In the time
interval [0, T ) where u(t) ∈ L∞

loc([0, T ), L
∞(R)), classical contraction principles show that

the solution is unique in the class

u ∈ L∞
loc([0, T ), L

∞(R)) ∩ C0([0, T ), Lp′(R)) under assumptions (3.2),

u ∈ L∞
loc([0, T ), L

∞(R)) ∩ C0([0, T ), L2(R)) under assumptions (3.3).
(3.4)

(See Section 3.3 for details).
The results of this thesis about the existence of a bounded solution can be summarized

in the following theorem.

Theorem 3.1.1. Assume that the drift b and the initial condition u0 satisfy (3.2) with
k ≤ 1− 1

p or satisfy (3.3) with k ≤ 2− 1
p . Then solution u(t) of (3.1) is globally defined

[0,∞).
Conversely, assume that b, u0 satisfy (3.2) with k > 1− 1

p or satisfy (3.3) with k > 2− 1
p .

Then there are bounded initial data such that the corresponding solutions of (3.1) blow up
in L∞ in finite time.

In particular, under the conditions of the first part of the previous statement, the
solution is unique in the regularity class (3.4).

The first part of the above statement is contained in Theorem 3.4.5, Section 3.4.4. The
second part instead in given in Theorems 3.5.2 and 3.5.4, Section 3.5.
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The analysis of the subcritical case k < 2 and b bounded, Lipschitz has been done in
[19]. The above theorem extends their results to other classes of drift b. The blow-up results
follow the analysis in [26], where a specific drift is considered in the multidimensional case
with k = 2.

Concerning the long time behavior, we assume uniform bounds on b, i.e. we strengthen
the conditions on b as follows:

1. under the assumptions (3.2), we also require

b ∈ L∞((0,∞), Lp,∞(R)), p ∈ (2,∞]; (3.5)

2. under the assumptions (3.3), we also require

b ∈ L∞((0,∞)× R), bx ∈ L∞((0,∞), Lp,∞(R)), p ∈ (1,∞]. (3.6)

We obtained the following results (Theorem 3.6.1, Section 3.6):

Theorem 3.1.2. Assume that the solution is bounded for all t > 0 and the conditions (3.2),

(3.5), k ≥ 1− 1
p hold, or (3.3), (3.6), k ≥ 2− 1

p hold. Then ∥u(t)∥∞ ≲ t−
1
2 as t→ ∞.

Viceversa, assume (3.2), (3.5) with k < 1− 1
p or (3.3), (3.5) with k < 2− 1

p . Then there
are drifts b and initial data u0 such that the corresponding solutions of (3.1) do not decay
to 0 as t→ ∞.

In particular, in the case bx ∈ L∞
loc((0,∞), L∞(R)) we answer to a question raised in

[19], precisely Question 3:

“Is it possible to guarantee global existence for solutions of the problem (1)

when k ≥ 2, p = ∞?”
(3.7)

The problem (1) referred above in (3.7) and considered there is the PDE{
ut + (b(x, t)uk+1)x = µ(t)uxx,

u0 ∈ L1(R) ∩ L∞, u0 ≥ 0
(3.8)

with µ strictly positive continuous function and b uniformly bounded and Lipschitz. The
PDE (3.8) and (3.1) are equivalent because of the following time transformation:

u(t, x) = v(τ(t), x), τ̇(t) = µ(t), τ(0) = 0,

which leads to the equation (3.1), namely

vt + (b̃(τ, x)vk+1)x = vxx, b̃(τ(t), x) =
b(t, x)

µ(t)
.

The results of the above theorem can be summarized in the following table: setting

critic(p) =

{
1− 1/p b ∈ Lp,∞,

2− 1/p bx ∈ Lp,∞,

we have
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k < critic(p) k = critic(p) k > critic(p)

b ∈ Lp,∞, 2 < p ≤ ∞
or bx ∈ Lp,∞, 1 < p ≤ ∞

global existence
no decay in general

global existence

and decay as t−
1
2

blow-up in finite time,

if bounded then decay as t−
1
2

3.2 Preliminaries

Given a function f ∈ L1
loc(R), and α ≥ 0 we define the α-moment of f as

Mα(f) =

∫
|x|α|f | dx.

In particular we will use the notation

m(f) =M0(f), as the mass of f , E(f) =M2(f), as the energy of f .

We will write

(f ∧ g)(x) := min{f(x), g(x)}, (f ∨ g)(x) := max{f(x), g(x)}.

The letter C will be a constant that could change line by line, also we use the symbol
a ≲ b as shorthand for a ≤ Cb for some constant C. We will write a ≃ b if both a ≲ b and
b ≲ a hold.

The symbol ∗ will denote the convolution operation:

(f ∗ g)(x) =
∫
f(y)g(x− y)dy.

3.2.1 Lorentz spaces

We briefly recall the definition and some results about Lorentz space, see [25].

Let f∗ : (0,∞) → R be the symmetric decreasing rearrangement defined by

f∗(x) = inf
{
α > 0 : L1

({
|f | > α

})
| ≤ x

}
,

and let f∗∗(x) be the function defined by

f∗∗(x) =
1

x

∫ x

0
f∗(y)dy.

Define

∥f∥p,q =


(∫ ∞

0

[
x

1
p f∗∗(x)

]q dx
x

) 1
q

q ∈ [1,∞), p ∈ (1,∞)

sup
x>0

x
1
p f∗∗(x) q = ∞, p ∈ [1,∞].

(3.9)
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Note that

∥f∥1,∞ = ∥f∗∥1 = ∥f∥1, ∥f∥∞,∞ = lim
x↘0

f∗∗(x) = ∥f∥∞.

By Hardy’s inequality [25, Lemma 2.3][ ∫ ∞

0

(
x1/p−1

∫ x

0
|f(t)|dt

)q dx

x

]1/q
≤ p′

[ ∫ ∞

0

(
x1/p|f(x)|

)q dx
x

]1/q
,

1

p
+

1

p′
= 1, p ∈ (1,∞),

and some fairly easy computations, one can verify that for 1 < p <∞ the above definition
is equivalent to

|||f |||p,q =


(∫ ∞

0

[
x

1
p f∗(x)

]q dx
x

) 1
q

q ∈ [1,∞), p ∈ [1,∞),

sup
x>0

x
1
p f∗(x) q = ∞, p ∈ [1,∞].

(3.10)

For p = q = ∞ the equivalence is elementary. For p = 1, q = ∞ the quantity in (3.10)
is the weak-L1 norm, while (3.9) corresponds to the L1-space: the L1-norm in the above
definition is realized for p = q = 1. It is elementary to deduce that for p ∈ (1,∞)

∥fk∥p,q ≤ p′|||fk|||p,q = p′|||f |||kkp,kq ≤ p′∥f∥kkp,kq. (3.11)

It is immediate to check that

∥fk∥∞,∞ = ∥fk∥∞ = ∥f∥k∞ = ∥f∥k∞,∞.

Definition 3.2.1 (Lorentz space). The Lorentz space Lp,q is the space of (equivalence
classes of) measurable functions f such that ∥f∥p,q < ∞. It is a Banach space with the
norm ∥ · ∥p,q.

We will use the following results.

Proposition 3.2.2 ([25, Lemma 2.2]). Let 1 < p <∞, then

∥f∥p ≤ ∥f∥p,p ≤ p′∥f∥p, where
1

p
+

1

p′
= 1.

Proposition 3.2.3 ([25, Lemma 2.5]). Suppose 1 < p <∞ and 1 ≤ q < r ≤ ∞, then

∥f∥p,r ≤
(
q

p

) 1
q
− 1

r

∥f∥p,q.

Another elementary estimate we use is the following.
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Lemma 3.2.4. For p1 < p < p2 and q, q1, q2 ≥ 1 it holds

∥f∥p,q ≤
(

1
q
p − q

p2

+
1

q
p1

− q
p

) 1
q
(
p

q1

) 1
q2

1
p− 1

p2
1
p1

− 1
p2

(
p

q2

) 1
q1

1
p1

− 1
p

1
p1

− 1
p2 ∥f∥

1
p− 1

p2
1
p1

− 1
p2

p1,q1 ∥f∥

1
p1

− 1
p

1
p1

− 1
p2

p2,q2 .

Proof. The fundamental estimate is that, being f∗∗ decreasing, then

q

p
x̄

q
p (f∗∗(x̄))q ≤

∫ x̄

0

[
x

1
p f∗∗(x)

]q dx
x

≤ ∥f∥qp,q. (3.12)

Hence we can write for q <∞

∥f∥qp,q =
[ ∫ x̄

0
+

∫ ∞

x̄

][
x

1
p f∗∗(x)

]q dx
x

=

∫ x̄

0
x

q
p
− q

p2

(
x

1
p2 f∗∗(x)

)q dx
x

+

∫ ∞

x̄
x

q
p
− q

p1

(
x

1
p1 f∗∗(x)

)q dx
x[

(3.12) for p1, p2
]

≤
∫ x̄

0
x

q
p
− q

p2 ∥f∥qp2,q2
dx

x
+

∫ x̄

0
x

q
p
− q

p1 ∥f∥qp1,q1
dx

x

=
1

q
p − q

p2

(
p

q2

) q
q2

∥f∥qp2,q2 x̄
q
p
− q

p2 +
1

q
p1

− q
p

(
p

q1

) q
q1

∥f∥qp1,q1 x̄
q
p
− q

p1 .

One can directly check that the same estimate holds for q = ∞ as

∥f∥p,∞ ≤
(
p

q2

) 1
q2

∥f∥p2,q2 x̄
1
p
− 1

p2 +

(
p

q1

) 1
q1

∥f∥p1,q1x
1
p
− 1

p1 ,

and similarly for q1 = ∞ and/or q2 = ∞.
Optimizing w.r.t. to x̄,

x̄
1
p1

− 1
p2 =

( p
q1

) 1
q1 ∥f∥p1,q1( p

q2

) 1
q2 ∥f∥p2,q2

,

one obtains the statement.

Theorem 3.2.5 (Hölder’s inequality in Lorentz spaces, [25, Theorem 3.4, Theorem 3.5]).
If 1 < p, p1, p2 <∞ and 1 ≤ q, q1, q2 ≤ ∞ satisfy

1

p
=

1

p1
+

1

p2
,

1

q
≤ 1

q1
+

1

q2
,

then
∥fg∥p,q≤ p′∥f∥p1,q1∥g∥p2,q2 .

where 1/p+ 1/p′ = 1.
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If

1 =
1

p1
+

1

p2
, 1 ≤ 1

q1
+

1

q2
,

then
∥fg∥1 ≤ ∥f∥p1,q1∥g∥p2,g2 .

Corollary 3.2.6. If fx ∈ Lp,∞, p > 1, then

|f(x)− f(x′)| ≤ p′∥f∥p,∞|x− x′|
1
p′ .

Proof. For p = ∞ the estimate is just the Lipschitz regularity of f .
We have by the last formula of Theorem 3.2.5

|f(x)| =
∣∣∣∣ ∫ fx(x

′)1I(0,x)dx
′
∣∣∣∣

≤ ∥fx∥p,∞∥1I(0,x)∥p′,1 = ∥fx∥p,∞p′|x|
1
p′ .

Theorem 3.2.7 ([25, Theorem 2.6]). If 1 < p, p1, p2 <∞ and 1 ≤ q1, q2, q ≤ ∞ satisfy

1

p
+ 1 =

1

p1
+

1

p2
,

1

q
≤ 1

q1
+

1

q2
,

then
∥f ∗ g∥p,q ≤ 3p∥f∥p1,q1∥g∥p2,q2 .

We recall also Young’s theorem on convolution on Lp-spaces:

∥f ∗ g∥p ≤ ∥f∥p1∥g∥p2 ,
1

p
+ 1 =

1

p1
+

1

p2
,

which holds also in the case p = 1 (with the constant 3p replaced by 1). The case p = ∞
gives also [25, Theorem 3.6]

∥f ∗ g∥∞ ≤ ∥f∥p,q∥g∥p′,q′ , (3.13)

with 1/p+ 1/p′ = 1, 1/q + 1/q′ ≥ 1. We will also use the following variant of the above
inequality when g ∈ L∞,

∥f ∗ g∥p,q ≤ ∥f∥p,q∥g∥∞.

3.2.2 Gagliardo-Nirenberg inequality

We recall the Gagliardo–Nirenberg interpolation inequality in 1-dimension.

Proposition 3.2.8 (Gagliardo-Nirenberg interpolation inequality,[24]). Let 1 < q < p, then

∥f∥p ≲ ∥fx∥θ2∥f∥1−θ
q

with
1

p
= −θ

2
+

1− θ

q
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3.2.3 Heat kernel

Recall that the heat kernel G : R+ × R → R is

G(t, x) =
1√
4πt

e−x2/(4t).

In the following we will use the estimate below.

Proposition 3.2.9. For 1 < p < +∞ it holds ∥Gx∥p,1 ≤ Cp′t1/2p−1.

Proof. We estimate

|Gx(t, x)| ≤
C

t
1[−

√
2t,

√
2t](x) + 1R\[−

√
2t,

√
2t](x)|Gx(t, x)|,

thus

(Gx(t, x))
∗ ≤ C

t
1[0,2

√
2t](x) + 1[2

√
2t,∞](x)Gx

(
t,
x

2

)
,

therefore

∥Gx(t)∥p,1 ≤
∫ 2

√
2t

0

[
x1/p

1

x

∫ x

0

C

t
dy

]
dx

x

+

∫ ∞

2
√
2t

[
x1/p

1

x

∫ x

2
√
2t

∣∣∣∣Gx

(
t,
y

2

)∣∣∣∣dy]dxx
≃ p′t

1
2p

−1
.

3.3 Local existence and uniqueness

For the sake of completeness, in this section we prove some classical results of local existence
and uniqueness for L∞∩L1-solutions of (3.1). Define the integral operator Φ[u] by Duhamel
formula

u 7→ Φ[u](t) = G(t) ∗ u0 +
∫ t

0
Gx(t− s) ∗ (b(s)uk(s)) ds.

Notice that ∥u(t)∥1 = ∥u0∥1, as required being the PDE in conservation form.

Proposition 3.3.1. Let b ∈ L∞
t L

p,∞
x , p ∈ (2,∞], k ≥ 0, u0 ∈ L∞ ∩ L1(R) and 1

p + 1
p′ = 1.

Then u 7→ Φ[u] is a contraction in the set

S =
{
u ∈ L∞([0, t̄]× R) ∩ C([0, t̄], Lp′,1(R)) : ∥u∥∞ ≤ r, u(0) = u0

}
,

with t̄ sufficiently small and r ≥ 2∥u0∥∞. In particular, there is a unique bounded solution
for (3.1), and it belongs to the space L∞((0, t̄)× R) ∩ C([0, t̄], Lp′(R)).
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We first prove that t 7→ Φ[u](t) is continuous in L∞ when u ∈ S and t > 0: this will be
useful later on, and shows also the continuity of t 7→ Φ[u](t) in every integral norm ∥ · ∥q,
q ∈ [1,∞] for t > 0.

Lemma 3.3.2. For every u ∈ L∞
t,x((0, t̄) × R) the function t 7→ Φ[u](t) is continuous in

L∞(R) for t > 0.

Proof. Compute

∥u(t+ δ)− u(t)∥∞ =

∥∥∥∥(G(t+ δ)−G(t)) ∗ u0 +
∫ t+δ

0
Gx(t+ δ − s) ∗ b(s)u1+k(s)ds

−
∫ t

0
Gx(t− s) ∗ b(s)u1+k(s)ds

∥∥∥∥
∞[

Theorem 3.2.7
]

≤ ∥G(t+ δ)−G(t)∥1∥u0∥∞

+ C

∫ t+δ

t
∥Gx(t+ δ − s)∥p′,1∥b(s)u1+k(s)∥p,∞ds

+ C

∫ t

0
∥Gx(t+ δ − s)−Gx(t− s)∥p′,1∥b(s)u1+k(s)∥p,∞ds[

Proposition 3.2.9
]

≤ ∥G(t+ δ)−G(t)∥1∥u0∥∞

+ C∥b∥p,∞∥u∥k+1
∞

(
δ

1
2p′ +

∫ t

0
∥Gx(t+ δ − s)−Gx(t− s)∥p′,1ds

)
.

The last terms converge to 0 as δ → 0 uniformly in every interval of the form [t0, t1],
t0 > 0.

Proof of Proposition 3.3.1. We start by deducing the uniform continuity in L1 as t → 0:
this will give the continuity in time for ∥ · ∥q, q ∈ [1,∞). From Theorem 3.2.7 in the first
inequality we obtain

∥u(t)− u0∥1 ≤ ∥G(t) ∗ u0 − u0∥1 +
∫ t

0
∥Gx(t− s)∥1∥b(s)u1+k(s)∥1ds[

Theorem 3.2.5
]

≤ ∥G(t) ∗ u0 − u0∥1 +
∫ t

0
∥Gx(t− s)∥1∥b(s)∥p,∞∥u1+k(s)∥p′,1ds[

Lemma 3.2.4
]
≤ ∥G(t) ∗ u0 − u0∥1 + C∥b∥p,∞rk+1/p

∫ t

0

1√
t− s

ds,

which converges to 0 uniformly once u0 is fixed. Hence, by Lemma 3.3.2 above, t 7→ Φ[u](t)
is uniformly continuous in L1.
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We next prove that Φ(S) ⊂ S: indeed using again Theorem 3.2.5 in the first inequality,
it holds

∥Φ[u](t)∥∞ ≤ ∥u0∥∞ +

∫ t

0
∥Gx(t− s)∥p′,1∥b(s)uk+1(s)∥p,∞ ds

≤ ∥u0∥∞ +

∫ t

0
∥Gx(t− s)∥p′,1∥b(s)∥p,∞∥u(s)∥k+1

∞ ds[
Proposition 3.2.9

]
≤ ∥u0∥∞ + Ct

1
2p′ ess-sup

s∈[0,t]
∥u(s)∥k+1

∞[
2∥u0∥∞ ≤ r

]
≤ r

2
+ Ct̄

1
2p′ rk+1,

where in the first line we have used (3.13). Taking t̄≪ 1 it holds that Φ(S) ⊂ S.

Finally the same computations show that Φ[u] is a contraction in C([0, t̄], Lp′,1(R)):

∥Φ[u](t)− Φ[v](t)∥p′,1 ≤ C

∫ t

0
∥Gx(t− s)∥p′,1∥b(s)∥p,∞∥u1+k(s)− v1+k(s)∥p′,1ds

≤ C∥b∥p,∞t
1

2p′ rk∥u− v∥
CtL

p′,1
x
,

so that for t̄ ≪ 1 the statement follows. The case p = ∞ follows by Hölder’s inequality
because ∥b∥∞,∞ = ∥b∥∞, and gives a contraction in CtL

1
x.

For the second case, i.e. Conditions (3.3), we start by proving that the second moment
M2(u(t)) is bounded if the solution u of (3.1) belongs to L∞

t,x.

Lemma 3.3.3. Let b ∈ L∞, bx ∈ L∞
t L

p,∞
x , p ∈ (1,∞], k ≥ 1

2 , u0 ∈ L∞∩L1(R), E(u0) <∞
and 1

p + 1
p′ = 1. If ∥u∥L∞

t,x
≤ r, then

∫
(1 + x2)|u(t)|dx ≤

(∫
(1 + x2)|u0|dx

)
eC(1+rk)t.

Proof. Using the estimates by Corollary 3.2.6

|b(x)| ≤ ∥bx∥p,∞x1/p
′
+ |b(0)| ≤ C

√
1 + x2 ≤ C(1 + |x|),
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by (3.1) it holds

d

dt

∫
(1 + x2)u dx =

∫
(1 + x2)(ux − buk+1)xdx

= −2

∫
xuxdx+

∫
2xbuk+1dx

≤ 2

∫
u dx+ 2

∫
|xb|uk+1 dx

≤ 2∥u∥1 + C

∫
(1 + x2)uk+1 dx

≤ C(1 + ∥u∥k∞)

∫
(1 + x2)|u|dx.

Since ∥u∥∞ ≤ r, one integrates the differential inequality to obtain the statement.

Corollary 3.3.4. Let b ∈ L∞, bx ∈ L∞
t L

p,∞
x , p ∈ (1,∞], k ≥ 1

2 , u0 ∈ L∞ ∩ L1(R),
E(u0) <∞ and 1

p + 1
p′ = 1. If u(t) ∈ L∞ and M2(u0) <∞, then t 7→ Φ[u](t) is uniformly

continuous in the interval t ∈ [t0, t1] with t0 > 0,

Proof. Following the same line as in Lemma 3.3.2 above,

∥u(t+ δ)− u(t)∥∞

≤ ∥G(t+ δ)−G(t)∥1∥u0∥∞ +

∫ δ

0
∥Gx(δ − s)∥2∥b(t+ s)u1+k(t+ s)∥2ds

+

∫ t

0
∥Gx(t+ δ − s)−Gx(t− s)∥2∥b(s)u1+k(s)∥2ds

≤ ∥G(t+ δ)−G(t)∥1∥u0∥∞ + C
(
∥u1+k∥L2

t,x
+ sup

[t0,t1]
E(u(t))

1
2 ∥u∥

1
2
+k

∞
)
δ

1
4

+ C
(
∥u1+k∥2 + sup

[t0,t1]
E(u(t))

1
2 ∥u∥

1
2
+k

∞
)∫ t

0
∥Gx(t+ δ − s)−Gx(t− s)∥2ds,

where we recall that E(u) is the second moment of u. As in the previous case, the r.h.s.
converges to 0 uniformly for t ≥ t0.

We remind that by Corollary 3.2.6, if bx(t) ∈ Lp,∞, then b(t) is 1
p′ -Holder and in

particular it is defined at every point.

Proposition 3.3.5. Assume that b(t, x = 0) is uniformly bounded, bx ∈ L∞
t L

p,∞
x , k ≥ 0

and u0 ∈ L∞ ∩ L1(R) with bounded second order moment E(u0). Then u 7→ Φ[u] is a
contraction in the set

S =
{
u ∈ L∞([0, t̄]× R) ∩ C([0, t̄], L2(R)), ∥u∥∞ ≤ r, u(0) = u0

}
,
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with t̄ sufficiently small and r > 2∥u0∥∞. In particular, there is only one bounded solution
for (3.1), and it belongs to the space C([0, t̄], L2(R)).

Proof. Following the same line of the proof of Proposition 3.3.1 we study first the continuity
for t↘ 0:

∥u(t)− u0∥1 ≤ ∥G(t) ∗ u0 − u0∥1 +
∫ t

0
∥Gx(t− s)∥1∥b(s)u1+k(s)∥1ds

≤ ∥G(t) ∗ u0 − u0∥1

+ C

∫ t

0
∥Gx(t− s)∥1

[
(∥b(s, 0)∥∞ + 1)∥uk(s)∥∞∥uk(s)∥∞E(u(s))

]
ds

≤ ∥G(t) ∗ u0 − u0∥1 + Crk
[
(∥b(x = 0)∥∞ + 1) + sup

[0,t]
E(u(t))

]√
t,

which converges to 0 as t→ 0. Hence, together with Corollary 3.3.4 we obtain the uniform
continuity in every Lp-space.

Next,

∥Φ[u](t̄)∥∞ ≤ ∥u0∥∞ +

∫ t̄

0
∥Gx(t̄− s)∥2∥b(s)uk+1(s)∥2 ds

≤ ∥u0∥∞ + C
(
∥b(x = 0)∥L∞

t
+ 1 + sup

[0,t̄]

E(u(t))
1
2
)
∥u∥k+

1
2∞

∫ t̄

0
∥Gx(t̄− s)∥2ds

≤ ∥u0∥∞ + C(1 + eCt̄(1+rk)/2)rk+
1
2 t̄

1
4

≤ r

2
+ C(1 + eCt̄(1+rk)/2)rk+

1
2 t̄

1
4 ,

Taking t̄≪ 1 it holds that Φ(S) ⊂ S.

Finally, for positive solutions,∫
(1 + x2)

(
Φ[u](t̄, x)− Φ[v](t̄, x)

)
≤
∫ t̄

0
∥Gx(t̄− s)∥2∥b(s)(u1+k(s)− v1+k(s))∥1ds

≤ C
(
(∥b(0)∥L∞

t
+ 1)(∥u∥k−

1
2

L∞
t,x

+ ∥v∥k−
1
2

L∞
t,x

)
)
∥u− v∥CtL2

x
t̄
1
4

+
(
E(u)1/2∥u∥k−

1
2

L∞
t,x

+ E(v)1/2∥v∥k−
1
2

L∞
t,x

)
∥u− v∥CtL2

x
t̄
1
4 ,

so that for t̄≪ 1 Φ is a contraction.

Remark 3.3.6. The condition E(u0) < +∞ that we used in Proposition 3.3.5 will not play
a role in the rest of the thesis, in the sense that the estimates obtained are independent on
E(u0). The same can be said for the condition k ≥ 1

2 . Clearly for the blow-up it is more
interesting to study the PDE for large k.
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3.4 Global existence in the subcritical and critical case

In order to prove the global existence we consider a standard rescaling about a possible
blow-up at point (T, x̂), where w.l.o.g. we assume that x̂ = 0. We will show that the
rescaled solutions decrease to 0 with the appropriate speed in L2-norm at time T in the
critical and subcritical case, so that the original unscaled solution is bounded by using the
estimates contained in [19].

3.4.1 Rescaled variables

Set

t = T (1− e−τ ),

and define

v(τ, y) =
√
Te−τ/2u

(
T (1− e−τ ),

√
Te−τy

)
,

b̃(τ, y) = (Te−τ )
1−k
2 b
(
T (1− e−τ ),

√
Te−τy

)
.

The rescaled equation for v : R+ × R → [0,∞) is then

vτ +
1

2
(yv)y + (b̃v1+k)y = vyy, v(τ = 0) =

√
Tu0(

√
Ty).

We observe that

∥b̃(τ)∥p,∞ = (Te−τ )
1−k−1/p

2

∥∥b(T (1− e−τ ))
∥∥
p,∞,

hence in particular in the critical and subcritical case it holds

sup
τ>0

∥b̃(τ)∥p,∞ ≤ T
1−1/p−k

2 sup
t∈(0,T )

∥b(t)∥p,∞ ≤ CT
1−1/p−k

2 , when k ≤ 1− 1

p
=

1

p′
.

(3.14)
In the same way, for bx ∈ Lp,∞(R)

∥b̃y(τ)∥p,∞ = (Te−τ )
2−k−1/p

2

∥∥b(T (1− e−τ ))
∥∥
p,∞, (3.15)

and then

sup
τ>0

∥b̃y(τ)∥p,∞ ≤ T
2−1/p−k

2 sup
t∈(0,T )

∥bx(t)∥p,∞ ≤ CT
2−1/p−k

2 , for k ≤ 2− 1/p. (3.16)

Moreover we observe that

∥v(τ)∥22 =
√
Te−

τ
2 ∥u(T (1− e−τ ))∥22. (3.17)
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3.4.2 Entropy dissipation

If η : R → R is a smooth C1,1-function, then

d

dτ

∫
η(v) =

∫
η′vτ =

∫
η′(v)vyy +

∫
η′
(
− 1

2
yv − b̃vk+1

)
y

. (3.18)

Here we consider the entropy ηa given by

ηa(v) =

{
v2/2 0 ≤ v ≤ a,

a (v − a/2) a < v <∞,

and denote

va = v ∧ a.

The parameter a will be chosen later on to be sufficiently small.

Lemma 3.4.1. Assume the exponent are critical or subcritical, i.e. Conditions (3.2) with
k ≤ 1− 1

p or Conditions (3.3) and k ≤ 2− 1
p . Then for every time τ̄ there exists a constant

a = a(p, k, e
τ̄

T ) such that it holds

d

dτ

∫
ηa(v(τ, y)) dy ≤ −∥va,y(τ)∥22

2
− ∥va(τ)∥22

8
(3.19)

for τ ≥ τ̄ . If k = 1− 1
p in (3.2) or k = 2− 1

p in (3.3) then a = a(p, k) is independent on
τ̄ , T .

Proof. By integration by parts, Equation (3.18) becomes

d

dτ

∫
ηa(v)dy = −∥va,y∥22 −

1

4
∥va∥22 +

∫
va,y b̃v

k+1
a . (3.20)

Assume first Conditions (3.2), and let

1

p
+

1

p′
=

1

2
, 2 < p <∞.

Fixed p > 2, choose 2 < p̃′ < p′ such that (1 + k)p̃′ > 2 (so the constants below do not
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depend on p̃′) and compute∣∣∣∣ ∫ va,y b̃v
k+1
a

∣∣∣∣ ≤ ∥b̃vk+1
a ∥2∥va,y∥2[

Proposition 3.2.2
]

≤ ∥b̃vk+1
a ∥2,2∥va,y∥2[

Theorem 3.2.5
]

≤ C∥b̃∥p,∞∥vk+1
a ∥p′,2∥va,y∥2[

(3.11) and (3.14)
]

≤ C(p)(Te−τ )
1− 1

p−k

2 ∥va∥k+1
(k+1)p′,(k+1)2∥va,y∥2[

Proposition 3.2.3
and Lemma 3.2.4, p′ > p̃′ > 2

]
≤ C(p)(Te−τ )

1− 1
p−k

2 ∥v∥
(k+1)(1− p̃′

p′ )
∞

· ∥va∥
(k+1) p̃

′
p′

(k+1)p̃′,(k+1)p̃′∥va,y∥2[
Proposition 3.2.2

]
≤ C(p)(Te−τ )

1− 1
p−k

2 ∥v∥
(k+1)(1− p̃′

p′ )
∞ ∥va∥

(k+1) p̃
′

p′

(k+1)p̃′ ∥va,y∥2∥va∥(k+1)p̃′ ≤ C(p, k)∥va,y∥
1
2
− 1

(k+1)p̃′
2

·∥va∥
1
2
+ 1

(k+1)p̃′
2

 ≤ C(p, k)(Te−τ )
1− 1

p−k

2 ∥v∥
(k+1)(1− p̃′

p′ )
∞

· ∥va,y∥
( k+1

2
− 1

p̃′ )
p̃′
p′+1

2 ∥va∥
( k+1

2
+ 1

p̃′ )
p̃′
p′

2[
∥va∥∞ ≤ ∥va∥

1
3
1 ∥va,y∥

2
3
2

]
≤ C(p, k)(Te−τ )

1− 1
p−k

2 ∥va,y∥
(k+1)( 2

3
− 1

6
p̃′
p′ )−

1
p′+1

2

· ∥va∥
( k+1

2
+ 1

p̃′ )
p̃′
p′

2αβ ≤ αγ

2 + 2
1

γ−1β
γ

γ−1 ,
γ = 2

(k+1)( 2
3
− 1

6
p̃′
p′ )−

1
p′+1

 ≤ 1

2
∥va,y∥22 + C(p, k)(Te−τ )

1− 1
p−k

1−(k+1)( 23− 1
6

p̃′
p′ )+

1
p′

· ∥va∥
2

k+1
2

p̃′
p′ +

1
p′

1−(k+1)( 23− 1
6

p̃′
p′ )+

1
p′

2

[
∥va∥22 ≤ ∥va∥∞∥va∥1 ≤ a

]
≤ 1

2
∥va,y∥22 + C(p, k)(Te−τ )

1− 1
p−k

1−(k+1)( 23− 1
6

p̃′
p′ )+

1
p′

· a

k+1
3 (2+

p̃′
p′ )−1

1−(k+1)( 23− 1
6

p̃′
p′ )+

1
p′ ∥va∥22[

a =
1

C̄(p, k)

(
eτ̄

T

) 1− 1
p−k

k+1
3 (2+

p̃′
p′ )−1

]
≤ 1

2
∥va,y∥22 +

1

8
∥va∥22.

(3.21)

Substituting (3.21) into (3.20) we get (3.19).
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Assume instead (3.3) and k ≤ 2 − 1
p : using here 1

p + 1
p′ = 1, 1 < p < ∞, and a fixed

1 < p̃′ < p′ such that (2 + k)p̃′ > 2, we have

∣∣∣∣ ∫ va,y b̃v
k+1
a

∣∣∣∣ ≤ 1

k + 2

∣∣∣∣ ∫ b̃yv
k+2
a

∣∣∣∣[
Theorem 3.2.5

]
≤ C(k)∥b̃y∥p,∞∥vk+2

a ∥p′,1[
(3.15),(3.11)

]
≤ C(p, k)(Te−τ )

2− 1
p−k

2 ∥va∥k+2
(k+2)p′,k+2[

Proposition 3.2.3
and Lemma 3.2.4, 1 < p̃′ < p′

]
≤ C(p, k)(Te−τ )

2− 1
p−k

2 ∥v∥
(k+2)(1− p̃′

p′ )
∞ ∥va∥

(k+2) p̃
′

p′

(k+2)p̃′∥va∥(k+2)p̃′ ≤ C(p, k)∥va,y∥
1
2
− 1

(k+2)p̃′
2

·∥va∥
1
2
+ 1

(k+2)p̃′
2

 ≤ C(p, k)(Te−τ )
2− 1

p−k

2 ∥v∥
(k+2)(1− p̃′

p′ )
∞

· ∥va,y∥
( k+2

2
− 1

p̃′ )
p̃′
p′

2 ∥va∥
( k+2

2
+ 1

p̃′ )
p̃′
p′

2[
∥va∥∞ ≤ ∥va∥

1
3
1 ∥va,y∥

2
3
2

]
≤ C(p, k)(Te−τ )

2− 1
p−k

2 ∥va,y∥
(k+2)( 2

3
− 1

6
p̃′
p′ )−

1
p′

2

· ∥va∥
( k+2

2
+ 1

p̃′ )
p̃′
p′

2αβ ≤ 1
2α

γ + 2
1

γ−1β
γ

γ−1 ,
γ = 2

(k+2)( 2
3
− 1

6
p̃′
p′ )−

1
p′

 ≤ 1

2
∥va,y∥22 + C(p, k)(Te−τ )

2− 1
p−k

2−(k+2)( 23− 1
6

p̃′
p′ )+

1
p′

· ∥va∥
2

k+2
2

p̃′
p′ +

1
p′

2−(k+2)( 23− 1
6

p̃′
p′ )+

1
p′

2

[∥v∥22 ≤ ∥v∥∞∥v∥1] ≤ 1

2
∥va,y∥22 + C(p, k)(Te−τ )

2− 1
p−k

2−(k+2)( 23− 1
6

p̃′
p′ )+

1
p′

· a

k+2
3 (2+

p̃′
p′ )−2

2−(k+2)( 23− 1
6

p̃′
p′ )+

1
p′ ∥va∥22[

a ≤ 1

C̄(p, k)

(
eτ

T

) 2− 1
p−k

k+2
3 (2+

p̃′
p′ )−2

]
≤ 1

2
∥va,y∥22 +

1

8
∥va∥22.

(3.22)

so that (3.19) follows as in the other cases.
The case p = ∞ for the Condition (3.2)(resp. Condition (3.3)) i.e. b ∈ L∞

t,x (resp. bx ∈ L∞
t,x),

can be treated in a much simpler way, because ∥b̃∥∞,∞ = ∥b∥∞ (resp. ∥b̃y∥∞,∞ = ∥bx∥∞) :
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by following the same lines as above, assuming Condition (3.2), p = ∞, it holds∣∣∣∣ ∫ va,y b̃v
k+1
a

∣∣∣∣ ≤ ∥b̃∥∞∥vk+1
a ∥2∥va,y∥2

≤ C(Te−τ )
1−k
2 ∥va∥k+1

(k+1)2∥va,y∥2[
∥va∥2(k+1) ≤ C(k)∥va,y∥

1
2
− 1

2(k+1)

2 ∥va∥
1
2
+ 1

2(k+1)

2

]
≤ C(k)(Te−τ )

1−k
2 ∥va,y∥

1+ k
2

2 ∥va∥
1+ k

2
2[

αβ ≤ 1

2
αγ + 2

1
γ−1β

γ
γ−1 , γ =

2

1 + k
2

]
≤ 1

2
∥va,y∥22 + C(k)(Te−τ )

1−k

1− k
2 ∥va∥

2
1+ k

2

1− k
2

2

≤ 1

2
∥va,y∥22 + C(p, k)(Te−τ )

1−k

1− k
2 a

2k

1− k
2 ∥va∥22[

a =
1

C̄(k)

(
eτ̄

T

) 1−k
2k
]

≤ 1

2
∥va,y∥22 +

1

8
∥va∥22,

and assuming Condition (3.3), p = ∞, it holds∣∣∣∣ ∫ va,y b̃v
k+1
a

∣∣∣∣ ≤ 1

k + 2

∣∣∣∣ ∫ b̃yv
k+2
a

∣∣∣∣
≤ C(k)∥b̃y∥∞∥vk+2

a ∥1
≤ C(k)(Te−τ )

2−k
2 ∥va∥k+2

k+2[
∥va∥k+2 ≤ C(k)∥va,y∥

1
2
− 1

k+2

2 ∥va∥
1
2
+ 1

k+2

2

]
≤ C(k)(Te−τ )

2−k
2 ∥va,y∥

k
2
2 ∥va∥

2+ k
2

2[
αβ ≤ 1

2
αγ + 2

1
γ−1β

γ
γ−1 , γ =

4

k

]
≤ 1

2
∥va,y∥22 + C(k)(Te−τ )

2−k

2− k
2 ∥va∥

2
2+ k

2

2− k
2

2

≤ 1

2
∥va,y∥22 + C(k)(Te−τ )

2−k

2− k
2 a

2k

2− k
2 ∥va∥22[

a =
1

C̄(k)

(
eτ̄

T

) 2−k
2k
]

≤ 1

2
∥va,y∥22 +

1

8
∥va∥22,

This concludes the proof.

Set now

eτ̄ = T, ā = a

(
p, k,

eτ̄

T

)
= a

(
p, k, 1), (3.23)

where a(τ̄ , k, p) is given by the previous lemma: notice that it is independent on T .

Lemma 3.4.2. Assume (3.2) and 0 < k ≤ 1− 1
p or (3.3) and 0 < k ≤ 2− 1

p . Then it holds∫ ∞

τ̄

(
∥vā(τ)∥3∞

2
+

∥vā(τ)∥22
8

)
dτ ≤ 3ā

2
.
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Proof. We consider the case b(t) ∈ Lp,∞, the other case being completely similar. By
Lemma 3.4.1 and Gagliardo-Nirenberg inequality we have for τ ≥ τ̄ that

d

dτ

∫
ηā ≤ −1

2
∥vā,y∥22 −

∥vā∥22
8[

∥vā∥∞ ≤ ∥vā,y∥2/32 ∥vā∥1/31

]
≤ −∥vā∥3∞

2∥vā∥1
− ∥vā∥22

8
.

Integrating and observing that

∥vā(τ)∥1 ≤ ∥v(τ)∥1 = ∥u(T (1− e−τ ))∥1 = ∥u0∥1 = 1,∫
ηā(v(τ, y))dy ≤ 1

2
∥vā(τ)∥22 + ā∥v(τ)∥1 ≤

3

2
ā∥u0∥1 =

3ā

2
,

we obtain ∫ ∞

τ̄

(
∥vā(τ)∥3

2
+

∥vā∥22
8

)
dτ ≤

∫
ηā(v(τ̄ , y))dy ≤ 3

2
ā,

which is the statement.

3.4.3 Bounds on the L2-norm

With the results of the above section, we can estimate the L2-norms of the solution. The
quantities ā and τ̄ are defined in (3.23).

Lemma 3.4.3. If b satisfies Conditions (3.2) and k ≤ 1 − 1
p or Conditions (3.3) and

k ≤ 2− 1
p , then it holds

∥v(τ)∥22 ≤ Ĉ(k, p)āe−
τ−τ̄
2 .

Proof. We consider only the case b(t) ∈ Lp,∞ and p <∞, since the other cases (b(t) ∈ L∞

or bx(t) ∈ Lp,∞) can be obtained with similar computations.
Taking p′ > p̃′ ≥ 2, (1 + k)p̃′ > 2, with the same computations as in (3.21) we obtain

d

dτ
∥v∥22 ≤ −1

2
∥vy∥22 + C(p, k)(Te−τ )

1− 1
p−k

1−(k+1)( 23− 1
6

p̃′
p′ )+

1
p′ ∥v∥

2

k+1
2

p̃′
p′ +

1
p′

1−(k+1)( 23− 1
6

p̃′
p′ )+

1
p′

2

[
Teτ̄ = 1, τ ≥ τ̄

]
=

(
− 1

2
+ C(p, k)∥v∥

2

k+1
3 (2+

p̃′
p′ )−1

1−(k+1)( 23− 1
6

p̃′
p′ )+

1
p′

2

)
∥v∥22.

The differential inequality

dz

dτ
≤
(
− 1

2
+ C(p, k)zα

)
z, α > 0,



3.4. GLOBAL EXISTENCE IN THE SUBCRITICAL AND CRITICAL CASE 93

has a solution bounded solution if for some τ̂

C(p, k)z(τ̂)α <
1

4
,

and in this case it holds

z(τ) ≤ 1(
2C(p, k) + e

α
2
(τ−τ̂)( 1

zα(τ̂) − 2C(p, k))
)1/α ≤ 2

1
α z(τ̂)e−

τ−τ̂
2 .

Using Lemma 3.4.2, we estimate the first time τ̃ such that

∥v(τ̃)∥∞ ≤ ā

as follows: if ∥v(τ)∥∞ > a for τ ∈ (τ̄ , τ̃), then ∥va∥∞ = a and then

(τ̃ − τ̄)ā3 =

∫ τ̃

τ̄
∥vā∥3∞dτ ≤ 3ā

2
, so that τ̃ − τ̄ ≤ 3

2ā2
.

Also, notice that by (3.21) and the choice of ā

C(p, k)∥v(τ̃)∥2α2 ≤ C(p, k)āα ≤ 1

8

so that we can take τ̂ = τ̃ . Hence

∥v(τ)∥22 ≤ Ĉ(p, k)āe−
τ−τ̄
2 , τ ≥ τ̄ +

3

2ā2
.

Hence the constant in the statement can be bounded by Ĉ(k, p) ≤ 2

1−(k+1)( 23− 1
6

p̃′
p′ )+

1
p′

k+1
3 (2+

p̃′
p′ )−1

e
3

2ā2 .

Corollary 3.4.4. Assume Conditions (3.2) and k ≤ 1 − 1
p , or Conditions (3.3) and

k ≤ 2− 1
p : then it holds

∥u(t)∥22 ≤ Ĉ(p, k)ā, ∀t ∈ [T − 1, T ). (3.24)

Proof. Recalling that by (3.17)

∥u(T (1− e−τ ))∥22 =
eτ/2√
T
∥v(τ)∥22,

Lemma 3.4.3 and (3.23) give for

t = T (1− e−τ ) ≥ T (1− e−τ̄ ) = T − 1

that

∥u(T (1− e−τ ))∥22 ≤ Ĉ(p, k)ā
e

τ̄
2

√
T

≤ Ĉ(p, k)ā.

This proves (3.24).
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3.4.4 Bound on the L∞-norm

Having proved a uniform bound on the L2-norm, now we are ready to bound the L∞-norm.
This proves the first part of Theorem 3.1.1

Theorem 3.4.5. Assume Conditions (3.2) with k ≤ 1− 1
p or Conditions (3.3) with k ≤ 2− 2

p .
Then u does not blow up at time T .

Proof. We do the proof in the first case, the second being completely similar.
We notice first that the same computations leading to [19, Theorem 3.8] gives

∥u(T )∥∞ ≤ Cmax
{
∥u(T̂ )∥∞, sup

[T̂ ,T ]

∥u(t)∥

1− 1
p

1− 1
p− k

2

2

}
. (3.25)

The statement of the theorem is now a consequence of Corollary 3.4.4 with T̂ = T − 1.
For completeness, we rewrite the proof of [19] for the case b ∈ L∞

t L
p,∞
x , since in that

paper it is only considered the case bx(t) ∈ L∞.

Step 1 . Write for some 2 < p̃ < p (if p = ∞ then p̃ = p)

d

dt

∫
u2ndx = −2(2n− 1)

n

∫
(unx)

2dx− 2n(2n− 1)

∫
u2n−2uxbu

1+kdx

= −2(2n− 1)

n

∫
(unx)

2dx− 2(2n− 1)

∫
unxbu

n+kdx

≤ −2(2n− 1)

n
∥unx∥22 + 2(2n− 1)∥unx∥2∥bun+k∥2

≤ −2n− 1

n
∥unx∥22 + (2n− 1)n∥bun+k∥22[

1 =
2

p
+
p− 2

p

]
≤ −2n− 1

n
∥unx∥22 + Cn(2n− 1)∥b∥2p,∞∥un+k∥22p

p−2
,2[

(3.11)
]

≤ −2n− 1

n
∥unx∥22 + C(p)n(2n− 1)∥b∥2p,∞∥un∥2(1+

k
n
)

(1+ k
n
) 2p
p−2

,(1+ k
n
)2
.

(3.26)

For 2 < p̃ < p <∞, use now Lemma 3.2.4 with exponents

p1 =

(
1 +

k

n

)
2 < p̄ =

(
1 +

k

n

)
2p

p− 2
< p2 =

(
1 +

k

n

)
p̃′ =

(
1 +

k

n

)
2p̃

p̃− 2
,

q1 = p1 =

(
1 +

k

n

)
2, q̄ = q1, q2 = p2 =

(
1 +

k

n

)
2p̃

p̃− 2
,

so that

∥un∥(1+ k
n
) 2p
p−2

,(1+ k
n
)2 ≤ C(p, k, n)∥un∥1−θ

(1+ k
n
)2,(1+ k

n
)2
∥un∥θ

(1+ k
n
) 2p̃
p̃−2

,(1+ k
n
) 2p̃
p̃−2

,
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with

θ =
p̃

p
∈ (0, 1),

C(p, k, n) =

(
p2

2(p− p̃)

) 1

(1+ k
n )2

(
p

p− 2

) 1−θ

(1+ k
n )

2p̃
p̃−2

( p
p−2
p̃

p̃−2

) θ

(1+ k
n )2

.

By Proposition 3.2.2 we conclude that

∥un∥(1+ k
n
) 2p
p−2

,(1+ k
n
)2 ≤ C(p, k, n)∥un∥1−θ

(1+ k
n
)2
∥un∥θ

(1+ k
n
) 2p̃
p̃−2

,

for another constant C(p, k, n) which is uniformly bounded w.r.t. n once p, p̃, k are fixed.
We can thus continue (3.26) as

d

dt

∫
u2ndx ≤ −2n− 1

n
∥unx∥22 + Cn(2n− 1)∥b∥2p,∞∥un∥2(1+

k
n
)(1−θ)

(1+ k
n
)2

∥un∥2(1+
k
n
)θ

(1+ k
n
)p̃′
.

For p = ∞ one obtains the same formula above with p̃′ = 2 and θ = 1.

Step 2. Hence ∥u∥2n is increasing only if

∥unx∥2 ≤ Cn∥un∥(1+
k
n
)(1−θ)

(1+ k
n
)2

∥un∥(1+
k
n
)θ

(1+ k
n
)p̃′
.

Then using the embeddings by Gagliardo-Niremberg with exponents

1

(1 + k
n)p̃

′
=

p̃− 2

2p̃(1 + k
n)

= −a
2
+

1− a

1
, a =

2

3

(
1− p̃− 2

2p̃(1 + k
n)

)
,

for the function w = un we obtain

∥wx∥2 ≤ Cn∥un∥(1+
k
n
)(1−θ)

(1+ k
n
)2

(
∥wx∥a2∥w∥1−a

1

)(1+ k
n
)θ
.

Using similarly Gagliardo-Niremberg with

1

(1 + k
n)2

= − b
2
+ 1− b, b =

2

3

(
1− 1

(1 + k
n)2

)
,

we can write

∥wx∥2 ≤ Cn
(
∥wx∥b2∥w∥1−b

1

)(1+ k
n
)(1−θ)(∥wx∥a2∥w∥1−a

1

)(1+ k
n
)θ

= Cn∥wx∥
(1+ k

n
)[b(1−θ)+aθ]

2 ∥w∥(1+
k
n
)[(1−b)(1−θ)+(1−a)θ)]

1

= Cn∥wx∥
(1+ k

n
) 2
3
(1− p−2

(1+ k
n )2p

)

2 ∥w∥
(1+ k

n
)( 1

3
+ 2

3
p−2

(1+ k
n )2p

)

1 .
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This can be rewritten as

∥wx∥
2
3
(1− 1

p
− k

n
)

2 ≤ Cn∥w∥
2
3
(1− 1

p
+ k

2n
)

1 .

Using again Gagliardo-Niremberg we get

∥w∥2 ≤ C∥wx∥
1
3 ∥w∥

2
3
1 ≤ Cn

1
2

1− 1
p− k

n ∥w∥
1+

k
2n

1− 1
p− k

n

1 ,

which rewritten for u becomes

∥u∥2n ≤ C
1
nn

1
2n

1− 1
p− k

n ∥u∥
1+

k
2n

1− 1
p− k

n
n . (3.27)

Step 3. The above estimate implies that

max
t∈[t0,t]

∥u(t)∥2n ≤ max

{
∥u(t0)∥2n, C

1
nn

1
2n

1− 1
p− k

n sup
t∈[t0,t]

∥u∥
1+

k
2n

1− 1
p− k

n
n

}
,

because the solution u is decreasing when (3.27) is not satisfied.

Iterating the procedure for n = 2m, k = 1, . . . ,M , one obtains

max
t∈[t0,t]

∥u(t)∥2M ≤ max

{
∥u(t0)∥2M ,

. . .

Cα(4,M)2β(4,M)∥u(t0)∥γ(4,M)
4 ,

Cα(2,M)2β(2,M) max
t∈[t0,t]

∥u∥γ(2,M)
2

}
.

The constants α(M ′,M), β(M ′,M), γ(M ′,M) are computed by iterating the exponent of
(3.27):

γ(M ′,M) =

M∏
n=M ′+1

1− 1
p − k

2n

1− 1
p − k

2n−1

=
1− 1

p − k
2M

1− 1
p − k

2M′
, γ(M,M) = 1,

α(M ′,M) =
M−1∑
n=M ′

2−nγ(n+ 1,M) ≤ ᾱ,

β(M ′,M) =

M−1∑
n=M ′

n2−n−1

1− 1
p − k

2n

γ(n+ 1,M) ≤ β̄.
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By applying repeatedly Hölder’s inequality

∥u(t0)∥γ(M
′,M)

2M′ ≤
(
∥u(t0)∥

2
3

2M′+1
∥u(t0)∥

1
3

2M′−1

)γ(M ′,M)
= ∥u(t0)∥γ(M

′+1,M)

2M′+1
∥u(t0)∥γ(M

′−1,M)

2M′−1
,

we get

max
t∈[t0,t]

∥u(t)∥2M ≤ Cᾱ2β̄ max

{
∥u(t0)∥2M , max

t∈[t0,t]
∥u∥γ(2,M)

2

}
.

Letting M → ∞ one recovers (3.25).

We conclude with the following corollary, which follows by using (3.25) in [0, t] because
the bound of Corollary 3.4.4 is uniform in t.

Corollary 3.4.6. Assume that ∥b(t)∥p,∞ under Conditions (3.5) with k ≤ 1 − 1
p (or

∥bx(t)∥p,∞ under conditions (3.6) with k ≤ 2 − 1
p) is uniformly bounded for t ∈ (0,∞).

Then ∥u(t)∥∞ is uniformly bounded.

3.4.5 The critical case k = 1− 1
p
or k = 2− 1

p

In this section we study the case (3.5) when ∥b(t)∥p,∞ is uniform bounded in time and the
exponent is critical, i.e. k = 1 − 1

p , p > 2, or Conditions (3.6) with ∥bx(t)∥p,∞ uniformly

bounded in time and k = 2− 1
p , p > 1. We consider only the first case, being the analysis

completely similar.
It follows form Lemma 3.4.2 that instead of (3.23) we can just choose τ̄ = 0 and

ā = a(p, k) and then Lemma 3.4.3 gives

∥v(τ)∥22 ≤ Ĉ(k, p)āe−
τ
2 .

Using the definition of v we obtain for τ ≥ 0

∥u(T (1− e−τ ))∥2 ≤
C√
T
. (3.28)

Letting τ → ∞ we obtain the decay of the L2-norm as for the heat kernel.
Again Chebyshev’s inequality applied to Lemma 3.4.2 gives that there exists τ̂ ∈ 3

2ā2
[1, 2]

such that ∥v(τ̂)∥∞ ≤ ā, and then

∥u(T (1− eτ̂ ))∥∞ =
∥v(τ̂)∥∞√
Te−τ̂

≤ āe
3
ā2

√
T
.

Using again the estimate (3.25) and noticing that for the critical case k = 1− 1
p

k
2

1− 1
p − k

2

= 2,
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using (3.28) we get for T̂ = T (1− e−τ̂ ) ≥ T (1− e−
3

2ā2 )

∥u(T )∥∞ ≤ Cmax
{
∥u(T̂ )∥∞, sup

T̂ ,T

∥u(t)∥22
}

≤ Cmax

{
1√
T
,

1√
T̂

}
≤ C√

T
.

We thus have proved the following

Theorem 3.4.7. If b ∈ L∞
t L

p,∞
x , p ∈ (1,∞], and k = 1− 1

2 , or bx ∈ L∞
t L

p,∞
x , p ∈ (1,∞]

and k = 2− 1
p , then for a constant C independent on u0 it holds

∥u(t)∥∞ ≤ C√
t
.

3.5 Blow-up in finite time

In this section we show that above the critical exponent k > 1 − 1
p for the case (3.2) or

k > 2− 1
p for the case (3.3), the solutions blow up in general: we will prove this statement

for time independent b ∈ Lp(R) in the first case and bx ∈ Lp(R) in the second case. A
similar result has already been proved in [26], we repeat it here for completeness.

3.5.1 Case (3.2)

Let 0 < α < 1, β > α and k > 1− α. Consider an integrable function b ∈ Lp(R) satisfying

|x|−α ≥ −b(x) ≥ |x|−α1I|x|≤x̄ + |x|−β1I|x|>x̄ (3.29)

with αp < 1, βp > 1, and the constant x̄ given by

1 ≤ x̄ ≤
(
β + k − 1

α+ k − 1

) k
β−α

. (3.30)

Proposition 3.5.1. Fix a positive measurable function f : R → [0,∞).

1. If (
2k

k − (1− α)

)− k
3k+1+α

(∫
fk+1|xb|

)− 1
3k+1+α

E
k+1

3k+1+α ≤ x̄, (3.31)

then

m ≤ 2

(
2k

k − (1− α)

) 2k
3k+1+α

(∫
fk+1|xb|

) 2
3k+1+α

E
k−(α+1)
3k+1+α . (3.32)
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2. If (∫
fk+1|xb|dx

)− 1
3k+1−β

(
2k

k − (1− β
)

)− k
3k+1+β

E
k+1

3k+1−β ≥ x̄, (3.33)

then

m ≤ (1 + 2
k−(1−β)

k+1 )

(
2k

k − (1− β)

) 2k
3k+1+β

(∫
fk+1|xb|dx

) 2
3k+1+β

E
k−(1−β)
3k+1+β . (3.34)

Proof. Case 1. We compute

m =

∫
fdx =

∫ R

−R
fdx+

∫
|x|>r

fdx

≤
∫ R

−R
f |x|

1−α
k+1

1

|x|
1−α
k+1

dx+
1

R2

∫
|x|>R

|x|2fdx

≤
(∫ R

−R
fk+1|x|1−αdx

) 1
k+1

(∫ R

−R

(
1

|x|

) 1−α
k

) k
k+1

+
1

R2
E

[
if R ≤ x̄

]
≤
(∫

R
fk+1|xb|

) 1
k+1
(

2k

k − (1− α)

) k
k+1

R
k−(1−α)

k+1 +
1

R2
E.

Choosing

R =

(
2k

k − (1− α)

)− k
3k+1+α

(∫
fk+1|xb|

)− 1
3k+1+α

E
k+1

3k+1+α ≤ x̄,

we obtain

m ≤ 2

(
2k

k − (1− α)

) 2k
3k+1+α

(∫
fk+1|xb|

) 2
3k+1−α

E
k−(1−α)
3k+1+α ,

which is estimate (3.32).
Case 2. Similarly to the previous case, we compute

m =

∫
fdx =

∫
|x|≤M

fdx+

∫
|x|>M

fdx

≤
∫
|x|≤M

f |xb|
1

1+k
1

|xb|
1

1+k

dx+
1

M2
E

[
if x̄ ≤M

]
≤
(∫

fk+1|xb|dx
) 1

k+1

(∫
|x|≤x̄

(
1

|x|

) 1−α
k

dx+

∫
x̄<|x|≤M

(
1

|x|

) 1−β
k

) k
k+1

+
1

M2
E

[
(3.30)

]
≤
(∫

fk+1|xb|dx
) 1

k+1
(

2k

k − (1− β)

) k
k+1

(2M)
k−(1−β)

k+1 +
1

M2
E.
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Choosing

M :=

(
2k

k − (1− β)

)− k
3k+1+β

(∫
fk+1|xb|

)− 1
3k+1+β

E
k+1

3k+1+β ,

we conclude that

m ≤ (1 + 2
k−(1−β)

k+1 )

(
2k

k − (1− β)

) 2k
3k+1+β

(∫
fk+1|xb|dx

) 2
3k+1+β

E
k−(1−β)
3k+1+β ,

which is (3.34).

Theorem 3.5.2. Assume (3.2) and k > 1− 1
p . If E(u0) is sufficiently small and b satisfying

(3.29) and (3.30), then the solution of (3.1) blows up in finite time.

Proof. The choice of the constant x̄ covers at least one of the two cases (3.31) or (3.33) :
indeed

x̄3k+1+β

(
2k

k − (1− β)

)k

≤ x̄3k+1+α

(
2k

k − (1− α)

)k

,

if and only if (3.30) holds. Then by Proposition 3.5.1 and computing dE
dt by (3.1), one

obtains

dE

dt
≤ 2m− 2

∫
xbuk+1dx

≤ 2m− Cmin

{
m

3k+1+α
2

E
k−(1−α)

2

,
m

3k+1+β
2

E
k−(1−β)

2

}
.

The exponents
k − (1− α)

2
,
k − (1− β)

2
> 0

by the choice of α, β, which gives the blow-up in finite time because of the ODE

ẏ = a− b

yγ
, γ > 0

has a solution converging to 0 in finite time like

y(t) ≃ (T − t)
1

1+γ

if the initial data is < (b/a)1/γ . This last condition reads as

E(t = 0) ≲ min
{
m

3k+α−2
k−(1−α) ,m

3k+β−2
k−(1−β)

}
.
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The final observation is that since m(u) is constant, the worst case for E(u) is reached
by u = ∥u∥∞1I(− m

2∥u∥∞
, m
2∥u∥∞

) and then

E(u) =

∫
x2udx ≥

∫ m
2∥u∥∞

− m
2∥u∥∞

x2∥u∥∞dx =
m3

12∥u∥2∞
,

and thus the fact that E(u) → 0 forces u to blow up in L∞ as the Hölder inequality
implies.

3.5.2 Case (3.3)

Let α ∈ (0, 1], k > 1 + α and consider a smooth odd bounded function b with bx ∈ Lp such
that for x ≥ 0

min{xα, (x̄)α
}
≤ −b(x) ≤ min{xα, (2x̄)α}, x̄ ≥ 1, (3.35)

and (1− α)p < 1.

Proposition 3.5.3. For every measurable positive function f : R → [0,∞) the following
holds.

1. If (
2k

k − (α+ 1)

)− k
3k+1−α

(∫
fk+1|xb|dx

)− 1
3k+1−α

E
k+1

3k+1−α ≤ x̄, (3.36)

then

m ≤ 2

(
2k

k − (α+ 1)

) 2k
3k+1−α

(∫
fk+1|xb|dx

) 2
3k+1−α

E
k−(α+1)
3k+1−α .

2. If (
2k

k − 1

)− k
3k+1

(∫
fk+1|xb|dx

)− 1
3k+1

E
k+1
3k+1 ≥ x̄, (3.37)

then

m ≤ (1 + 2
k−1
k+1 )

(
2k

k − 1

) 2k
3k+1

(∫
fk+1|xb|dx

) 2
3k+1

E
k−1
3k+1 .

Proof. Case 1. Define

R′ :=

(
2k

k − (α+ 1)

)− k
3k+1−α

(∫
fk+1|xb|dx

)− 1
3k+1−α

E
k+1

3k+1−α , (3.38)
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and compute by Hölder inequality

m =

∫
fdx =

∫
|x|≤R′

fdx+

∫
|x|>R′

fdx

≤
(∫

fk+1|x|α+1dx

) 1
k+1

(∫
|x|≤R′

1

|x|
1+α
k

dx

) k
k+1

+
1

R′2E

[
(3.36)

]
=

(∫
fk+1|xb|dx

) 1
k+1
(

2k

k − (α+ 1)

) k
k+1

(R′)
k−(α+1)

k+1 +
1

(R′)2
E

[
(3.38)

]
= 2

(
2k

k − (α+ 1)

) 2k
3k+1−α

(∫
fk+1|xb|dx

) 2
3k+1−α

E
k−(α+1)
3k+1−α ,

which is the first estimate.

Case 2. Define

M ′ :=

(
2k

k − 1

)− k
3k+1

(∫
fk+1|xb|dx

)− 1
3k+1

E
k+1
3k+1 , (3.39)

and compute

m =

∫
fdx =

∫
|x|≤M ′

fdx+

∫
|x|>M ′

fdx

≤
(∫

fk+1|xb|dx
) 1

k+1

(∫
|x|≤M ′

1

|xb|
1
k

dx

) k
k+1

+
1

(M ′)2
E

[
(3.35), (3.37)

]
≤
(∫

fk+1|xb|dx
) 1

k+1

(
2

∫ x̄

0

1

|x|
1+α
k

dx+ 2

∫ M ′

x̄

1

|x(x̄)α|
1
k

dx

) k
k+1

+
1

(M ′)2
E

[
x̄ ≥ 1

]
≤
(∫

fk+1|xb|dx
) 1

k+1
(

2k

k − 1

) k
k+1

(2M ′)
k−1
k+1 +

1

(M ′)2
E

[
(3.39

]
= (1 + 2

k−1
k+1 )

(
2k

k − 1

) 2k
3k+1

(∫
fk+1|xb|

) 2
3k+1

E
k−1
3k+1 .

This is the second estimate in the statement.

Theorem 3.5.4. Assume (3.3) and k > 2− 1
p . If E(u0) ≪ 1 and b satisfying (3.29) with

x̄ ≥
(

k − 1

k − (α+ 1)

) k
α

, (3.40)

then the solution of (3.1) blows up in finite time.
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Proof. The choice of the constant c covers at least one of the cases (3.36) or (3.37): indeed,
as in the proof of Theorem 3.5.2, the condition (3.40) implies that

x̄3k+1−α

(
2k

k − (1 + α)

)k

≤ x̄3k+1

(
2k

k − 1

)k

.

Then by Proposition 3.5.3 and (3.1), one obtains

dE

dt
≤ 2m− Cmin

{
m

3k+1−α
2

E
k−(α+1)

2

,
m

3k+1
2

E
k−1
2

}
,

which leads to E(t) → 0 if

E(t = 0) ≲ min
{
m

3k−1−α
k−(1−α) ,m

3k−1
k−1
}
.

As in the previous case, E(t) ↘ in finite time implies ∥u(t)∥∞ blows up.

Remark 3.5.5. Observe that if u is bounded then

∥u∥31
∥u∥2∞

≲ E,

so that

m
2k−(1−α)

2

E
k−(1−α)

2

≳ m1−α− k
2 ∥u∥k−(1−α)

∞ ,

m
3k+1

2

E
k−1
2

≳ ∥u∥k−1
∞ m2.

Hence if m≪ 1, the blow up may not be possible.
This is also easily verified directly by the estimate (obtained as in (3.21))

d

dt
∥u∥22 ≤ −∥ux∥22 + C∥b∥p,∞∥ux∥2∥u∥k+1

(k+1)p̃′

≤ −∥ux∥22 + C∥u∥
1
p̃′
1 ∥ux∥2∥u∥

k+1− 1
p̃′

∞ .

Thus ∥u∥22 is bounded if

∥u∥
1
p′
1 ∥u∥

k+1− 1
p̃

∞ ≲
∥u∥

3
2∞

∥u∥
1
2
1

≲ ∥ux∥2, ∥u∥
k− 1

2
− 1

p′
∞ ≲

1

∥u∥
1
2
+ 1

p′
1

.

where we have used Gagliando-Niremberg inequality. Hence using again the bound (3.25)
we have that this bound can be prolonged up to +∞ if ∥u∥1 ≪ 1.

A completely similar estimate can be done for the case bx ∈ L∞Lp,∞, p ∈ (1,∞].
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3.6 Long behavior of solutions

In this last section, we discuss the long behavior of the solutions when there are uniform
bounds on the drift b:

1. b ∈ L∞((0,∞), Lp,∞(R)
)
for the case (3.2),

2. bx ∈ L∞((0,∞), Lp,∞(R)
)
, b ∈ L∞

loc((0,∞)× R
)
for the case (3.3).

We prove the following theorem.

Theorem 3.6.1. The following holds.

1. If k < 1− 1
p , then there are drifts b = b(x) ∈ Lp,∞ admitting a stationary solution;

similarly, if k < 2− 1
p , there are drift bx(x) ∈ Lp,∞

x admitting a stationary solution.

2. If k ≥ 1 − 1
p , b ∈ L∞

t L
p,∞
x or k ≥ 2 − 1

p , bx ∈ L∞
t L

p,∞
x , every uniformly bounded

solution u(t) decays to 0 as t−
1
2 in the L∞-norm.

Proof. Point (1). Define the function

u(x) =
1

(1 + x2)
1−1/p

2k

,

which is a stationary solution to (3.1) in L1 if k < 1− 1
p and the drift b is given by

b(x) = −
1− 1

p

k

x

(1 + x2)
1+1/p

2

.

Being |b(x)| ∼ |x|−1/p for |x| ≫ 1, we have that b ∈ Lp,∞(R).
For the case bx ∈ Lp,∞, one can similarly show that

u(x) =
1

(1 + x2)
2− 1

p
2k

,

which gives the drift

b(x) = −
2− 1

p

k

x

(1 + x2)
1
2p

.

Point (2). We have only to consider the supercritical case, being k = 1 − 1
p studied in

Section 3.4.5.
For the case b ∈ L∞

t L
p,∞
x , we observe that

bu1+k = (bu
k−1+ 1

p )u
1− 1

p = b̂u
1− 1

p ,
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with

∥b̂∥p,∞ ≤ ∥u∥
k−1+ 1

p
∞ ∥b∥p,∞.

Hence the analysis of the critical case can be applied here, deducing that ∥u(t)∥∞ ≤ C√
t
.

For the case bx ∈ Lp,∞, we follow the computations of (3.22):∣∣∣∣ ∫ va,y b̃v
k+1
a

∣∣∣∣ ≤ 1

k + 2

∣∣∣∣ ∫ b̃yv
k+2
a

∣∣∣∣
≤ C∥b̃y∥p,∞∥vk+2

a ∥p′,1

≤ C∥b̃y∥p,∞∥va∥
k−2+ 1

p
∞ ∥v

2− 1
p
+2

a ∥p′,1[
∥v(τ)∥∞ ≲ (Te−τ )

1
2
]

≤ C(Te−τ )
2− 1

p−k

2 (Te−τ )
k−2+ 1

p
2 ∥va∥

2+2− 1
p

(2− 1
p
)p′,2[

as in (3.22)
]

≤ 1

2
∥va,y∥22 +

1

8
∥va∥22.

Hence one can repeat the same analysis as in the critical case k = 2− 1
p , replacing ∥bx∥p,∞

with ∥bx∥∞∥u∥
k−2+ 1

p
∞ . In particular one obtains the decay ∥u(t)∥∞ ≲ t−

1
2 .

Remark 3.6.2. By slightly changing the exponents in the subcritical case, it is possible to
show that actually the vector field can be taken in Lp (or bx ∈ Lp) in Point (1) of the above
theorem.
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Chapter 4

On the Hausdorff Measure of Rn

In this chapter, we answer a question raised by David H. Fremlin about the Hausdorff
measure of R2 with respect to a distance inducing the Euclidean topology. In particular
we prove that the Hausdorff n-dimensional measure of Rn is never 0 when considering a
distance inducing the Euclidean topology. Finally, we show via counterexamples that the
previous result does not hold in general if we remove the assumption on the topology. See
also [6].

4.1 Introduction

This chapter aims to answer an open question stated by D. H. Fremlin in his famous book
[17], which can be found moreover indicated by letter code ’GV’ on
https://www1.essex.ac.uk/maths/people/fremlin/answer.pdf:

let us consider a metric ρ on R2 inducing the Euclidean topology,

is it possible that H2
ρ

(
R2
)
= 0?

(Q)

By Hn
ρ we denote the n-dimensional Hausdorff measure according to Definition 4.1.1 below.

Before stating our main theorem in Section 4.2, we recall in this introductory section some
classical tools for the convenience of the reader (see [16], [21] for further details).

Definition 4.1.1 (Hausdorff measure). Let (X,d) be a metric space. We define the
n-dimensional Hausdorff outer measure of A ∈ P(X) as

Hn
d(A) := supδ>0Hn

δ,d(A), with (4.1)

Hn
δ,d(A) := inf

{∑
i∈I

diam(Ai)
n : A ⊆ ∪i∈IAi, diam(Ai) ≤ δ

}
, (4.2)

where diam(U) = supx,y∈U d(x, y) and I is an at most countable collection of indices.

109
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Remark 4.1.2. The usual definition of Hausdorff measure is given scaling the result by a
dimensional constant that, for instance, in the Euclidean case is equal to 2−nωn, where ωn

is the volume of the unit n-ball. We opted to overlook the constant in order to simplify the
notation. Clearly, Theorem 4.2.1 is not affected by this choice.

To prove our result we will exploit the following well-known theorem.

Theorem 4.1.3 (Dini). Let (K, d) be a compact metric space. Let fn : K → R be continuous
functions such that

fn ≤ fn+1 ∀n ∈ N (4.3)

and assume that

f(x) = lim
n→+∞

fn(x) ∀x ∈ K, (4.4)

exists and the function f : K → R is also continuous. Then (fn)n∈N converges uniformly to
f on K.

Moreover, we briefly recall the definition and some properties of the Brouwer Degree.
See for instance [15] for a complete treatment of this topic.

Theorem 4.1.4 (Brouwer Degree). There exists a unique function, called Brouwer Degree
and denoted by deg, from the set of couples (D, f), where D ⊂ Rn is open and bounded and
f : D̄ → Rn is continuous with 0 /∈ f(∂D), into the set Z, which satisfies the following three
properties:

• (Normalization) deg[id, D] = 1 if 0 ∈ D.

• (Additivity) deg[f,D] = deg[f,D1] +deg[f,D2] if D1 and D2 are disjoint open subsets
of D such that 0 /∈ f(D̄ \ (D1 ∪D2)).

• (Homotopy invariance) If F ∈ C([0, 1] × D̄,Rn) and 0 /∈ F ([0, 1] × ∂D), then
deg[F (t, ·), D] is independent of t ∈ [0, 1].

For the proof of the Brouwer Degree Theorem see [15, Section 1.2.5.].

Definition 4.1.5. If D ⊂ Rn is open and bounded, f ∈ C(D̄,Rn) and z /∈ f(∂D), the
Brouwer degree deg[f,D, z] is defined by deg[f,D, z] = deg[f(·)− z,D].

Proposition 4.1.6 ([15, Corollary 1.2.5]). If z /∈ f(D̄), then deg[f,D, z] = 0.
Equivalently, if deg[f,D, z] ̸= 0, there exists at least one x ∈ D such that f(x) = z.
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4.2 Main results

We are now in the position to state our main theorem.

Theorem 4.2.1. Let (Rn, ρ) be a metric space with ρ inducing the Euclidean topology, then
Hn

ρ (Rn) > 0.

Proof. Assume by contradiction that there exists a distance ρ in Rn such that Hn
ρ (Rn) = 0.

We denote by B(0, 1) the closed unit ball with respect to Euclidean metric and we consider
the identity map

id : (B(0, 1), ρ) −→ (B(0, 1),deucl). (4.5)

Such a map is a homeomorphism by assumption, but it carries no metric information a
priori. Let us write

id(x) =
(
π1(x), . . . , πn(x)

)
(4.6)

and define

πεi (x) := min
z∈B(0,1)

[
πi(z) +

1

ε
ρ(x, z)

]
∀i = 1, ..., n ∀x ∈ B(0, 1), (4.7)

where we are using that B(0, 1) is compact also for the metric ρ. The latter functions are
Lipschitz, since they are the infimum of a family of equi-Lipschitz functions, more precisely

|πεi (x)− πεi (y)| ≤
1

ε
ρ(x, y) ∀x, y ∈ B(0, 1). (4.8)

We say that the functions πεi converge uniformly in the compact ball B(0, 1) to the compo-
nents of the identity as ε→ 0. In order to prove that, for every εm → 0 consider a sequence
(zεm)m ⊆ B(0, 1) such that

πεmi (x) = πi(zεm) +
1

εm
ρ(x, zεm). (4.9)

Since (zεm)m is bounded, by compactness there exists a convergent subsequence. Due to
equation (4.9) and the bound

1 ≥ πi ≥ πεmi ≥ −1, (4.10)

it follows that limm→+∞ ρ(zεm , x) = 0, which means that (zεm)m converges to x, leading
to the pointwise convergence. Now, since we have πεi (x) ≥ πε+γ

i (x) for every γ, ε > 0 and
for every x ∈ B(0, 1), by Dini’s theorem πεmi converges uniformly to πi on B(0, 1) for every
i = 1, ..., n. Summing up we have obtained a sequence

F ε = (πε1, ..., π
ε
n) : (B(0, 1), ρ) −→ (Rn,deucl) (4.11)

such that
deucl

(
F ε(x), F ε(y)

)
≤ Cερ(x, y) ∀x, y ∈ B(0, 1) (4.12)
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with Cε > 0 and such that it converges uniformly to the identity in B(0, 1). The following
claim is of crucial importance.
Claim: there exists ε > 0 such that F ε(B(0, 1)) has non-empty interior.
Fix ε̂ > 0 such that

sup
x∈B(0,1)

deucl(F
ε(x), x) ≤ 1

2
(4.13)

for every ε ∈ [0, ε̂] and consider the function

F : [0, ε̂]× B(0, 1) → Rn (4.14)

defined by the relation F (ε, ·) = F ε for ε > 0 and F (0, ·) = id. We prove that the function
F is a continuous function, or in other words that F is a homotopy between id and F ε̂.
First we observe that for every εm ↗ ε in (0, ε̂], given zε such that

F ε
i (x) = πi(zε) +

1

ε
ρ(x, zε), (4.15)

then

πi(zε) +
1

εm
ρ(x, zε) ≥ F εm

i (x) ≥ F ε
i (x) (4.16)

and taking the limit for m → +∞, we obtain that limm→+∞ F εm
i (x) = F ε

i (x). Also, for
every εm ↘ ε in (0, ε̂] and every x ∈ B(0, 1), we have

1 ≥ πi(x) ≥ F ε
i (x) ≥ F εm

i (x) ≥ −1. (4.17)

Given zm such that

F εm
i (x) = πi(zm) +

1

εm
ρ(zm, x), (4.18)

up to a subsequence, we have that zm → ẑ. By equation (4.17), ẑ realizes the minimum
for F ε

i (x), thus we have F εm
i (x) → F ε

i (x). For a generic sequence εm → ε in (0, ε̂] and for
every x ∈ B(0, 1) fixed, up to subsequences we can assume either εm ↘ ε or εm ↗ ε, hence
we have that F εm

i (x) → F ε
i (x). In general, given εm → ε in (0, ε̂] and xm → x in B(0, 1),

consider zm satisfying equation (4.18) as before and observe that

|F εm
i (xm)− F ε

i (x)| ≤ |F εm
i (xm)− F εm

i (x)|+ |F εm
i (x)− F ε

i (x)|

≤ ρ(xm, x)

εm
+ o(1) = o(1) for m→ +∞. (4.19)

Finally, consider the last case when εm → 0 and xm → x in B(0, 1), then

|F εm
i (xm)− πi(x)| ≤ |F εm

i (xm)− πi(xm)|+ |πi(xm)− πi(x)| ≤ o(1), (4.20)

because of uniform convergence, whence F is an homotopy between id and F ε̄.
Now we consider the topological degree of the function F ε̂ with respect to the set B(0, 1)
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and any point of B(0, 12), the open ball of radius 1
2 . We recall that the map F ε̂ is homotopy

equivalent to the map id, and observe that equation (4.13) implies that for any y ∈ B(0, 12),
we have y /∈ F ε(B(0, 1) \B(0, 1)). Therefore, we can apply homotopy invariance obtaining
that

1 = deg(id,B(0, 1), y) = deg(F ε̂,B(0, 1), y) (4.21)

for every y ∈ B(0, 12), hence, by Proposition 4.1.6, it follows B(0, 12) ⊆ F ε̂(B(0, 1)), proving
the claim.
Since F ε̂(B(0, 1)) contains a non-empty open set and F ε̂ is Lipschitz, we get

Hn
deucl

(
F ε̂(B(0, 1))

)
≤ Cn

ε Hn
ρ (B(0, 1)) = 0, (4.22)

which is a contradiction since the n-dimensional Hausdorff measure on Rn with the Euclidean
distance gives positive measure to not empty open sets.

Remark 4.2.2. The same proof of Theorem 4.2.1 can be adapted to prove that any nonempty
open set A is such that Hn

ρ (A) > 0.

Remark 4.2.3. Removing the assumption that ρ induces the Euclidean topology, counterex-
amples show that Hn

ρ (Rn) might vanish. Consider, for instance, the metric space (C,d),
where C ⊂ R is the Cantor set and d denotes the usual one-dimensional Euclidean distance.
Having C the cardinality of the continuum, there exist bijections gn : C → Rn. Then, define
on Rn the metric ρ(x, y) = d(g−1

n (x), g−1
n (y)).

Given any collection (Ai)i∈N that covers C, follows that (gn(Ai))i∈N covers Rn and diam(Ai) =
diam(gn(Ai))∀i ∈ N. Clearly, also the opposite direction applies. Therefore, we have

Hn
ρ (Rn) = Hn

d (C) = 0 (4.23)

that shows a counterexample.

Remark 4.2.4. Note that, under previous assumptions on ρ, it is not true in general that
dimρ

H(Rn) = n. In fact, choosing ρ(x, y) = deucl(x, y)
1/2, the distance ρ induces the

Euclidean topology, but in this case

Hs
deucl

(A) = H2s
ρ (A)

for all A ⊆ Rn, s ≥ 0, see for example [16]. For this reason we get that dimρ
H(Rn) = 2n.
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