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Measurement-induced transitions beyond Gaussianity: A single particle description
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Repeated measurements can induce entanglement phase transitions in the dynamics of quantum systems.
Interacting models, both chaotic and integrable, generically show a stable volume-law entangled phase at low
measurement rates that disappears for free, Gaussian fermions. Interactions break the Gaussianity of a dynamical
map in its unitary part, but non-Gaussianity can be introduced through measurements as well. By comparing the
entanglement and non-Gaussianity structure of different protocols, we propose a single particle indicator of the
measurement-induced phase transition, and we use it to argue in favor of the stability of the transition when
non-Gaussianity is purely provided by measurements.
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I. INTRODUCTION

Entanglement is a fundamental feature of quantum me-
chanics, and in the past few decades it has become a resource
of primary importance for quantum information tasks [1],
as well as a key tool to describe the physics of quantum
many-body systems [2], both in and out of equilibrium. Typ-
ical eigenstates in the middle of the energy spectrum have
extensive entanglement entropy, and this plays an impor-
tant role in the understanding of thermalization and of its
exceptions [3–5]. In contrast, ground states of gapped Hamil-
tonians are short-range entangled because local interactions
generate quantum correlations only between sufficiently near
degrees of freedom, correspondingly producing entanglement
entropies proportional to the area of the boundary between
the subsystems [6,7]. A notable exception is provided by one-
dimensional (1D) critical points, where the divergence of the
correlation length is associated with a universal logarithmic
scaling of the entanglement [8].

Phase transitions typically arise as a result of competing
interactions or driving mechanisms that steer a many-body
system towards macroscopically different states. An interest-
ing competition in quantum systems is found in monitored
dynamics [9], where measurements contrast the entanglement
generation induced by the unitary evolution. When the mea-
surement rate is increased, this competition is able to drive a
dynamical transition called measurement-induced phase tran-
sition (MIPT), which was first witnessed in simulated hybrid
quantum circuits [10–20], and some signatures of the phase
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transition have now been experimentally observed [21–23].
Following the dynamics of a pure state, the quantum trajec-
tories generated by measurements reach a steady state that
undergoes a transition from a volume-law entangled phase to
an area-law entangled phase characterized by the Zeno effect.
The stability of extensive entanglement for small measure-
ment rates can be understood as a consequence of scrambling:
a unitary evolution spreads any information that was ini-
tially encoded in localized degrees of freedom, protecting it
from local projective measurements because fully retrieving
it would require measuring global operators [14,24]. When
the unitary evolution is generated by a generic nonintegrable
Hamiltonian, it is natural to expect the same phenomenol-
ogy of random circuits since they are a model of chaotic
dynamics. This was indeed observed and, notably, even at
integrable points different properties in the MIPT have not
been identified [25–28]. Other entanglement phases can be
introduced by long-range models [20], but when restricting
to short-range systems, an important exception is provided
by free fermions with local occupation measurements: the
volume-law is much more unstable and disappears at any
finite rate of measurements [29–39], leaving the place to a
subextensive region whose nature is currently debated. This
regime was initially associated with a logarithmic BKT-like
critical phase [30,31], while more recent numerical works and
theoretical studies based on a mapping to nonlinear sigma
models argue that the logarithm should saturate to area law in
the thermodynamic limit [33,37]. Different symmetries may
play a role in determining the properties and the stability of
the transition [36,40].

An important difference between free fermions and other
integrable models is Gaussianity [41], which is preserved by
measurements of particle numbers. The volume law-entangled
phase arises with interactions, but a similar Gaussianity-
breaking can be achieved with suitable measurements. Is
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FIG. 1. (a) Graphical representation of the monitored dynamics associated with hopping fermions with measurements of the current;
the first line always refers to this case, while the second line refers to the trajectories generated by the interacting Hamiltonian with nj

measurements represented in (d). (b),(e) Stationary entanglement entropies at γ ∈ [0.05, 2.0] for different bipartitions {1, 2, . . . , �} on a chain
with fixed length (L = 40 for Jj , L = 30 for nj). The volume-law growth of S∞ in the interacting case appears in (e) sufficiently far from the
boundary where it is affected by the finite size. At the critical point, the entanglement is scale invariant and shows a linear growth with respect
to the logarithm of the chord length x = 2L/π sin(π�/L) as shown in (b),(e) (notice the log scale on the x axis). (d),(h) Occupations of the
natural orbitals at different measurement rates: volume-law steady states are associated with a smooth spectrum, while in the area-law phase
the spectrum is gapped.

the non-Gaussianity introduced by measurements sufficient
to stabilize the phase transition? In this work, we address
this question by comparing the entanglement and the non-
Gaussianity structure of hopping fermions with repeated
measurements of their current, and we find that non-Gaussian
measurements are able to restore the volume law/area law
MIPT. A relevant role is played by the one-body reduced
density matrix of the evolving state, which encodes all two-
point correlations and allows us to measure non-Gaussianity.
Its eigenstates, called natural orbitals, are single particle states
adapted to the many-body problem, and we find that the infor-
mation about the original state that they retain is sufficient to
witness the transition, as their occupation spectrum shows the
opening of a gap in the area-law phase. This provides a new
indicator of the MIPT, which is remarkably simple to access
since it requires only the calculation of two-point functions.

II. MODEL AND DYNAMICAL PROTOCOLS

We study the quench dynamics of a system evolving un-
der the combined effect of a Hermitian Hamiltonian H and
repeated projective measurements of an observable Q at a
finite rate γ . Consider an open chain with L sites and hopping
spinless fermions with Hamiltonian

H = −1

2

L−1∑
j=1

(c†
j c j+1 + c†

j+1c j ) + U
L−1∑
j=1

n jn j+1, (1)

where everything is expressed in units of the hopping en-
ergy. Having defined N = ∑

j n j , [H, N] = 0 and the total
number of fermions is a conserved U (1) charge. The Heisen-
berg equation of motion of its local density nj takes the
form of a continuity equation that defines the current Jj =
−i/2 (c†

j c j+1 − c†
j+1c j ).

A. Monitored evolution

The system is initially prepared in a product state |ψ0〉,
and if no measurements take place, it evolves as |ψ (t )〉 =
exp(−iHt )|ψ0〉. In every time interval of width dt there is
a probability of γ dt of measuring a local operator Qj , and
as a result the state collapses into the eigenspace associated
with one of its eigenvalues q, chosen with probability given
by Born’s rule pψ (q) = 〈ψ |�q

j |ψ〉, where �
q
j is the projector

on the qth eigenspace. A representation of the two protocols
is given in Fig. 1. Measurements are local, but not necessarily
single-site: we will consider occupation numbers Qj = n j and
currents Qj = Jj , which are bond operators. In both cases,
[Qj, N] = 0 and the U (1) symmetry is preserved, but notice
that neighboring currents do not commute, and the order in
which their measurements are performed matters. Current op-
erators have three eigenvalues, J = ±1/2, 0, associated with
the eigenspaces V±1/2 = span{(c†

j+1 ± ic†
j )|00〉} and V0 =

span{|00〉, c†
j c

†
j+1|00〉} on the two-site vacuum |00〉. The

eigenstates in V±1/2 are Gaussian, while the last eigenspace is
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degenerate and we expect to introduce non-Gaussianity every
time we project on it, because linear combinations of Gaussian
states do not generally preserve their Gaussianity. Following
its evolution conditioned on measurement outcomes, the state
remains pure and evolves along a stochastic trajectory called a
quantum trajectory [9], defined as a realization of the process
that solves the stochastic Schrödinger equation (SSE),

d|ψ (t )〉 =
⎧⎨
⎩dt

⎡
⎣−iH + γ

2

∑
j,q

(〈
�

q
j

〉
t

2
− �

q
j

2

)⎤⎦

+
∑

j,q

dNjq(t )

⎛
⎜⎝ �

q
j√〈

�
q
j

〉
t

− 1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ |ψ (t )〉. (2)

dNjq(t ) = 0, 1 s.t. dNjq(t )dNj′q′ (t ) = δqq′δ j j′dNjq(t )
and dNjq(t ) = γ dt 〈�q

j 〉t , 〈�q
j 〉t ≡ 〈ψ (t )|�q

j |ψ (t )〉 are
increments of independent Poisson variables that count the
occurrences of each measurement outcome on the realization.
Each trajectory reaches a steady state, and all quantities
calculated over it are stochastic. Linear observables O do not
provide further information about the steady state, because
in that case tr(|ψ (t )〉〈ψ (t )| O) = tr(ρ O) and the mean state
relaxes towards ρ∞ ∝ I. For a discussion of the SSE and
of the unconditional dynamics of ρ, see Appendix A. The
only way to observe the MIPT is to evaluate first a nonlinear
functional on the steady state of each trajectory |ψ∞〉 before
taking the average over trajectories and not vice versa.
The most common indicator of MIPTs is the entanglement
entropy SA(ψ ) = −tr(ρA log ρA), where ρA = trĀ(|ψ〉〈ψ |) is
the reduced density matrix of a subsystem A. Other nonlinear
quantities that witness the transition have been discussed
[42,43], and here we describe how the transition affects the
non-Gaussianity of the states. In particular, we find that a
gap in the occupation spectrum of the natural orbitals opens
up at the MIPT, as shown in Fig. 1 and discussed later in
more detail.

B. Numerical simulation

The measurement terms of the SSE associated with
occupation measurements are quadratic and preserve the
Gaussianity of a trajectory. We are interested in generating
non-Gaussianity, either by interactions in the unitary part
−iH or by nonquadratic measurement terms like those pro-
vided by the eigenprojectors of the current (see Appendix C),
and to simulate such trajectories we resort to tensor network
methods. By formulating the quantum channel in its Kraus
representation, as shown in Appendix A, the solutions of the
SSE (2) can be directly formulated as a tensor network of
the kind represented in Fig. 1. The growth of entanglement
is tamed by the measurements, enabling us to simulate the
dynamics up to long times. Fermionic models can be im-
plemented as a tensor network thanks to the Jordan-Wigner
transformation, which maps their anticommuting degrees of
freedom into qubits. The Hamiltonian (1) becomes an XXZ
chain with longitudinal field, particle numbers nj become
Pauli σ z

j operators, and Jj translates into the spin current. For
more details on the simulations, see Appendix C.

III. RESULTS

We start by considering the quantum trajectories generated
by evolving the Néel state on a chain with L sites under
the free Hamiltonian (1) with U = 0 and random projective
measurements of the current at a fixed rate γ . The evolution is
simulated with a time evolving block decimation (TEBD)-like
[44] algorithm interspersed with measurements. To character-
ize the steady state, we measure the entanglement entropies
SA(t ), A = {1, . . . , �} over left-right bipartitions and the cor-
relation matrices 〈c†

i c j〉. The observables are calculated with a
late-time average on each trajectory for all times t > trel after
relaxation, together with the average over trajectories.

A. Steady-state entanglement

The stationary entanglement entropies, denoted by
S∞(�) ≡ SA(∞) for |A| = �, are shown in Fig. 1 from γ =
0.05 to γ = 2.0, and we check their scalings with both the
subsystem size � and the total size L. For frequent measure-
ments, the entanglement is upper-bounded and the system is
in the area law, while in the rare-measurement regime no clear
volume law appears. At low measurement rates, 0.05 < γ <

0.11, we always see subextensive entanglement that is initially
superlogarithmic and appears to approach a log for sufficiently
large subsystem sizes �. However, � ≈ L/2 is also a region
with strong finite-size effects, and it is difficult to faithfully
tell what the phase should be from the entanglement entropy
alone. To better understand the extent of finite-size effects,
consider now the case of interacting Hamiltonian (1) with
U = 1 and Gaussian measurements of nj , which is expected
to exhibit a volume-law/area-law MIPT [25–27]. The results
are presented again in Fig. 1. After the transient regime,
the stationary entanglement entropy S∞(�) distinguishes two
regimes with distinct scaling behaviors: for small measure-
ment rates it is extensive, S∞(�) ∼ �, while for higher rates
independent of the subsystem size, S∞(�) ∼ �0. The differ-
ence can be appreciated for subsystems sufficiently far from
the boundary, since the volume law shows an inflection for
� ≈ L/2 that is a finite-size effect and it is expected to grow
unbounded for L → ∞. In the thermodynamic limit, the two
regimes correspond to stable dynamical phases separated by a
MIPT, which for our limited sizes smoothes into a crossover.
Notice how the finite-size effect close to half-chain makes
the growth of entanglement look similar to the current mea-
surements case. Given our data, when the non-Gaussianity
is induced by measurements, it is difficult to discern if the
thermodynamic rare-measurement behavior is supposed to be
logarithmic, subextensive, or volume-law. The entanglement
barrier of MPS prevents us from reaching sufficiently small
rates to unambiguously see past the crossover. To clarify
the picture, we go beyond the entanglement classification by
studying the non-Gaussianity structure of the stationary states.
This will show the stability of the volume law.

B. Total non-Gaussianity

Gaussian states can be identified by checking whether
Wick’s theorem holds, but it is simpler to look at the
correlation matrix Ci j (ψ ) = 〈ψ |c†

i c j |ψ〉, which is the ma-
trix representation of the one-body reduced density operator
ρ (1)(ψ ) = ∑

i j Ci j (ψ ) c†
i c j . Its eigenvectors, the natural or-
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FIG. 2. Total non-Gaussianity for current measurements on a
free Hamiltonian and for occupation measurements on an interacting
Hamiltonian, (a) compares its time evolution for γ = 0.05 in both
cases, and (b) the behavior of its stationary value as a function of
the measurement rate. Both graphs are generated for a chain with
L = 30 sites, and the stationary values have been renormalized by the
particle number because NG is extensive. Gaussianity is immediately
broken by interactions as well as current measurements, but for
current measurements the relaxation process is slower and the overall
amount of non-Gaussianity that they introduce is smaller.

bitals |φα〉 s.t. ρ (1)(ψ )|φα〉 = να|φα〉, are a basis of single
particle states that retains information about the many-body
correlations of the state. Our dynamics is always number-
conserving, so there is no need to consider anomalous
correlations ∼cc, c†c†. The eigenvalues να are occupation
numbers, and N = ∑

α να is the total number of particles.
Pure Gaussian states are Slater determinants; the normal
modes coincide with the natural orbitals, and the eigenvalues
of Ci j can only be 0 or 1 if the mode is empty or occupied,
respectively, so that να �= 0, 1 characterize the departure of
a state from Gaussianity. A natural way to measure the non-
Gaussianity of a pure state |ψ〉 is then to use a binary entropy

NG(ψ ) =
∑

α

H2(να ), (3)

H2(ν) = −να log ν − (1 − να ) log (1 − να ). (4)

As shown in Appendix B, this definition is related to the
distance between |ψ〉 and the closest Gaussian state. The
properties of the quantum relative entropy grant its well-
behavedness from the point of view of resource theory.

Let us consider first the evolution of NG(t ) ≡ NG(ψ (t ))
for the interacting Hamiltonian (1) with U = 1 and Gaussian
n j measurements and for the free Hamiltonian with U = 0 and
current measurements. The results are shown in Fig. 2, and as
expected, current measurements break Gaussianity. The pro-
file has an initial transient regime where it increases in parallel
to the amount of non-Gaussian operations performed, before
saturating to a stationary value. Thanks to the continuous non-
Gaussianity pumping, the behavior is similar in the two cases,
even if the stationary regime is provided by different balances:
in the former, the NG is brought by the unitary evolution and
reduced by measurements, while in the latter, measurements
are what introduces NG.

It is natural to ask whether the nonlinear quantity NG∞ ≡
NG(ψ∞) is able to detect the MIPT, and in Fig. 2 we
show that it is not: it is always smoothly decreasing as a
function of the measurement rate γ . When we measure nj ,
NG∞(γ ) → 0 for γ → ∞. This is a consequence of the

“freezing” process typical of the Zeno effect: for γ → ∞,
n j is measured at all sites and the state is locked in the Néel
configuration, which is Gaussian. In the opposite limit γ → 0,
the non-Gaussianity increases, getting close to its maximal
value SG,max = 2N log 2, corresponding to a flat spectrum
να = 1/2 for all α = 1, . . . , L. This condition is compatible
with the particle number conservation from the Néel state,
N = ∑

α να = L/2. For current measurements, there is an
obvious difference with nj measurements in the large rate
limit: NG∞(γ ) has a finite asymptote for γ → ∞. Current
measurements do not commute, and even when all sites are
measured it is impossible to project the state in a product state
because of J = 0 outcomes, causing a finite non-Gaussianity
remnant. The functional shape is similar, with an initial non-
Gaussianity peak and a monotonous decay. This behavior was
expected in the n j case, where the effect of measurements is
to push the state closer to Gaussianity, but it is totally non-
trivial when measuring currents, because now measurements
are what introduces non-Gaussianity in the dynamics as well.
For γ = 0, the state is Gaussian at all times and NG∞ = 0;
introducing a small measurement rate, one could expect an
initial regime with increasing non-Gaussianity that is instead
absent. As soon as a γ > 0 is turned on, NG∞(γ ) jumps to
its maximal value, meaning that the two limits γ → 0 and
t → ∞ do not commute. Indeed, a small absolute number
of measurements introduces little non-Gaussianity, since for
short times NG(t )  1, but here we are taking the stationary
limit first, and for every finite γ the state has undergone an
extensive amount of measurements, which allows it to reach
its long-time non-Gaussianity balance.

C. MIPT and single particle occupation spectra

The total non-Gaussianity highlights the similarities be-
tween nonunitary “interactions” provided by measurements
and the actual interactions, but it is not informative about the
MIPT. We obtain new insights on the transition by looking
directly at the eigenvalues να . Consider first the interacting
Hamiltonian with U = 1 and n j measurements. Deep in the
Zeno phase, the large fraction of measured sites keeps the
state close to a collection of eigenstates of n j , and the state
is almost single particle. Correspondingly, half of the natural
orbitals are almost fully occupied, να ≈ 1, while the other
half is almost unoccupied, να ≈ 0, as shown in Fig. 1. There
is a jump ν = νN − νN+1 → for γ → ∞. Decreasing γ ,
the discontinuity remains at all rates until γ ∗ = 0.21: for
γ � γ ∗ the spectrum appears smooth and ν closes in the
thermodynamic limit, as shown in Fig. 3. A continuous spec-
trum is expected for an ergodic phase as a consequence of
eigenstate thermalization hypothesis [45], and the entangle-
ment at γ ∗ reproduces the scale-invariant behavior S∞(�) =
α log( 2L

π
sin π�

L ) + s0, where the chord length in the argu-
ment of the log takes into account the finite size of the
system [8]. Increasing the interaction strength U pushes to
higher values the volume law and the discontinuity moves
correspondingly: the appearance of the area law is associated
with the opening of a gap in the spectrum of the one-body
reduced density matrix, which is then an indicator of the
measurement-induced phase transition, and we identify γ ∗ =
γc. Similarities between MIPTs in d spatial dimension and
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FIG. 3. (a) Finite-size scaling of the slopes at the opening of the
gap for the interacting case with measurements of nj . The inset shows
the scaling of the gaps ν = νN − νN−1. Increasing the size L adds
new eigenvalues να ∈ [0, 1], producing an obvious scaling of the
gaps. Rescaling all spectra in the same domain α = 0, . . . , L − 1 →
α/L ∈ [0, 1], the slopes νL grow unbounded if a gap remains in the
thermodynamic limit. We expect a closure of the gap if ν decreases
faster than the average spacing ∼1/L, i.e., if the slope tends to 0. The
crossing signals the opening of the gap at the critical point γ = 0.21,
where the entanglement entropies collapse on the CFT curve (c).
The dashed line is a linear extrapolation in 1/L of the gap. For
comparison, we plot in (b) the scaling of the entropies in the volume
law for γ = 0.05.

localized systems in d + 1 have been noted before, and our
work enlarges the list, since an analogous phenomenon has
been described in the context of many-body localization
(MBL) [36–38,46–48]. In the case of MBL, the role of the
long-time steady state is played by high-energy eigenstates
of the Hamiltonian, and the pinning of states is introduced
by a disordered potential instead of stochastic measurements,
but again the ergodic phase is analogously characterized by
a smooth spectrum with a gap that opens up at the transition
[45,49,50]. For current measurements (Fig. 4), in the area-law
region the spectrum of the correlation matrix is gapped as
expected, but it never approaches the step function να = 1
for α < L/2, να = 0 for α > L/2 even in the γ → ∞ limit.
This is again a consequence of the noncommuting nature
of currents The gap remains present in the thermodynamic
limit until γ ∗ = 0.11, where it displays critical behavior. We

FIG. 4. (a) Finite-size scaling of the gaps and the associated
slopes for the free Hamiltonian with current measurements. We see
again a crossing at γ = 0.11, where the entanglement has a clear crit-
ical behavior (c), indicating the opening of the gap and the transition
towards the area law. At γ = 0.05 we see tiny deviations from the
critical collapse that can be interpreted as a signal of the finite-size
crossover.

estimate γc = γ ∗ as the critical rate at which the area law
emerges, and for γ < γc the system is in a distinct dynamical
phase. With non-Gaussian measurements, the single particle
gap supports the presence of a stable measurement-induced
phase transition in a system of free fermions, and the subex-
tensive regime is the finite-size crossover associated with a
volume-law phase. The lower NG shown in Fig. 2 explains
why the volume law appears less clearly with current mea-
surements at the rates observed, in a similar way to how
reducing the coupling constant U lowers the total NG and
correspondingly pushes the transition towards smaller val-
ues of γ . For small measurement rates, the effects of the
noncommutativity of the currents are of higher order in γ dt
and negligible, therefore this transition is unrelated to the
measurement frustration mechanism [19] and only due to the
non-Gaussian nature of quantum trajectories.

IV. CONCLUSIONS

In this work, we have discussed the role of non-Gaussianity
in measurement-induced phase transitions by studying the
quantum trajectories generated by current measurements.
Non-Gaussian states are characterized by a nontrivial spec-
trum of their one-body reduced density matrix, and we
observe an opening of a gap corresponding to the transition
toward the area law. Our findings show that there are no fun-
damental differences between introducing non-Gaussianity
unitarily through interactions and nonunitarily through mea-
surements as far as the entanglement transition is concerned,
as in the thermodynamic limit both stabilize the MIPT. How-
ever, a clear volume-law growth of the entanglement has not
been observed. The reason lies in the measurement protocol
itself, which has broken Gaussianity but not strongly enough,
in a similar way to an interaction term with a small coupling
that would push the transition towards the rare-measurement
regime.
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APPENDIX A: CONDITIONAL
AND UNCONDITIONAL DYNAMICS

Here we present a derivation of the stochastic Schrödinger
equation given in the main text. Consider, for simplicity,
measurements of a single local observable Q j at a fixed site
j with only two outcomes q1, q2 and associated projectors
�q1 , �q2 s.t.

∑
q �q = I. Starting from an initial pure state

|ψ〉, a projective measurement of Q is made with probability
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γ dt , which will result in one of the two outcomes with the
proper probability pψ (q) = 〈ψ |�q|ψ〉. Otherwise, we just let
the state evolve unitarily. This quantum map is encoded in the
Kraus operators K0 = I − iHdt − K

2 , K1 = √
γ dt�q1 , K2 =√

γ dt �q2 , where the nonunitary part K = K†
1 K1 + K†

2 K2 =
γ dt in the no-click term is a renormalization fixed by the
conservation of probability

∑
q K†

q Kq = I. The Hamiltonian
evolution could be included in the other cases as well, but
it would result in a difference of higher order o(dt ) and we

neglect it. Then

|ψ (t )〉 → |ψ (t + dt )〉 = Km|ψ (t )〉√
〈K†

mKm〉t

(A1)

with probability 〈ψ (t )|K†
mKm|ψ (t )〉 ≡ 〈K†

mKm〉t takes into ac-
count both the classical probability of making a measurement
and the quantum probability generated by Born’s rule. We
obtain the stochastic update rule

|ψ (t )〉 → �q1 |ψ (t )〉√〈
�q1

〉
t

, prob = γ dt pt (q1), → �q2 |ψ (t )〉√〈
�q2

〉
t

, prob = γ dt pt (q2),

→ [ I − iHdt − K/2]|ψ (t )〉√
1 − 〈K〉t

, prob = 1 − γ dt .

Monitoring a complete observable provides K = γ dt ∝ I, which simplifies the evolution without measurements to |ψ (t +
dt )〉 = (I − iHdt )|ψ (t )〉 up to O(dt ). We want to follow the dynamics of a pure state conditioned on the measurement
results, generating random trajectories of pure states called quantum trajectories. The trajectories can be characterized by
defining the stochastic variables Nq(t ), which count the number of measurements with outcome q on a given realization
until time t . Their increments satisfy dNq(t ) = 0, 1 ⇒ dNq(t )2 = dNq(t ). On average, the increment equals the probability
of making a measurement with the corresponding outcome dNq(t ) = 〈K†

q Kq〉t = γ dt pt (q) and it defines a Poisson process.
Using (1 + x)α = 1 + αx + O(x2), we can take advantage of dNq to write the evolution compactly as

|ψ (t + dt )〉 = |ψ (t )〉 +
∑

q

dNq(t )
�q|ψ〉√〈�q〉t

+
⎛
⎝1 −

∑
q

dNq(t )

⎞
⎠[I − iHdt − K

2
+ 〈K〉t

2

]
|ψ (t )〉. (A2)

Recalling that K is of order dt , dNq can be neglected in the last term apart from the product with the identity. Then

d|ψ (t )〉 =
{∑

q

dNq(t )

(
�q√〈�q〉t

− 1

)
− dt

[
iH + γ

2

∑
q

(�q − 〈�q〉t )

]}
|ψ (t )〉, (A3)

which is the stochastic Schrödinger equation presented in
the main text, besides the trivial generalization to take into
account measurements on all sites j. Here we focused on
the case of strong projective measurements, but an analogous
procedure could be followed to obtain the quantum jump SSE
for a generic POVM. The unconditional dynamics, instead,
physically corresponds to a monitoring process where the
measurement outcomes are discarded, and after each mea-
surement the state is averaged over them. In this way, a
single measurement is enough to turn the initial pure state into
a mixture,

ρ(t + dt ) = |ψ (t + dt )〉〈ψ (t + dt )|
=
∑

m

prob(m) ρm =
∑

m

Kmρ(t )K†
m, (A4)

where ρm = Kmρ(t )K†
m is the resulting density matrix condi-

tioned on the outcome. This defines the Kraus representation
of a Markovian quantum channel, which evolves in time ac-
cording to the Lindblad equation,

dρ

dt
= −i[H, ρ] + γ

∑
q

(
�qρ�q − 1

2
{�q, ρ}

)
. (A5)

For example, monitoring σ z
j on a chain of L spins (which

is equivalent to measuring nj on a fermionic chain under

Jordan-Wigner) corresponds to the substitution �q → �±
j =

1
2 (I ± σ z

j ),
∑

q → ∑
j,±. Then

dρ

dt
= −i[H, ρ] + γ

2

∑
j

(
σ z

j ρσ z
j − 1

2

{
σ z

j , ρ
})

, (A6)

and the measurements have provided a dephasing noise term
that drives the system towards infinite temperature. The
same is typically true for all these master equations, be-
cause measurements provide Hermitian Lindblad operators,
which always make the Liouvillian unital. Unital means that
ρ̇ = L(ρ) = 0 for ρ ∝ I, and the maximally mixed state is
expected to be the stationary solution towards which the mean
state relaxes.

APPENDIX B: TOTAL NON-GAUSSIANITY

Let |ψ〉 be a pure fermionic Gaussian state, i.e., a
Slater determinant, and consider its correlation matrix
Ci j (ψ ) = 〈c†

i c j〉. Then |ψ〉 = ∏
α (a†

α )να |vac〉 on some set
of single particle states defined by the creation operator a†

α

and the correlation matrix is diagonal on the basis of states
a†

α|vac〉 with eigenvalues να = 0, 1. In the main text, we have
described how to characterize the departure of a pure state
from Gaussianity by inspecting the spectrum of its one-body
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reduced density operator ρ (1)(ψ ) = ∑
i j Ci j (ψ ) c†

i c j .
However, this criterion holds only for pure states. In general,
it remains possible to quantify how far a mixed state is
distant from being Gaussian (which for mixed states means
an exponential of a quadratic form of creation/annihilation
operators). A resource theory of non-Gaussianity was put
forward in [52,53] for bosonic states. Here we present a direct
extension for fermions. The distance of two quantum states
ρ, σ is often described in terms of their relative entropy,

S(ρ||σ ) = tr[ρ(log ρ − log σ )]. (B1)

S(ρ||σ ) is not an actual metric (nor a quasimetric) because it
does not respect symmetry and triangle inequality, but it is a
meaningful measure of distinguishability since the probability
of not distinguishing σ from ρ after N measurements
on σ is exp{−NS(ρ||σ )} [54]. Since Gaussian states are
completely characterized by their correlation matrix, given a
non-Gaussian state ρ and Ci j = tr(ρ c†

i c j ) we can construct its
Gaussian partner ρG. As it is natural to expect, ρG is actually
the closest Gaussian state to ρ since minσ {S(ρ||σ )} =
S(ρ||ρG) when σ is varied among the set of Gaussian states
[55]. Then we can quantify the amount of non-Gaussianity
in a state by the relative entropy NG(ρ) = S(ρ||ρG). In the
normal mode basis, Gaussian states can be expressed as
tensor products of exponentials of quadratic single-mode
Hamiltonians, then log ρG is a second degree polynomial
operator in the ladder operators, and the calculation of
tr[ρ log ρG] involves only combinations of second moments
〈c†

i c j〉 = tr[ρ c†
i c j] = tr[ρG c†

i c j]. As a consequence, ρ

can be replaced by ρG and the total non-Gaussianity
reduces to

NG(ρ) ≡ S(ρ||ρG) = S(ρG) − S(ρ). (B2)

For a pure state |ψ〉, S(ρ) ≡ S(ψ ) = 0, and NG(ψ ) reduces
to the entropy calculated as if it were Gaussian,

NG(ψ ) = −
∑

α

[να log να + (1 − να ) log (1 − να )]. (B3)

The properties of the relative entropy ensure that
(1) NG(ρ) � 0 (= 0 iff ρ = ρG).
(2) NG(ρ1 ⊗ ρ2) = NG(ρ1) + NG(ρ2).
(3) NG(UρU †) = NG(ρ) for any U = e−iH , where

H = H† is a quadratic Hamiltonian.
(4) NG(trAρ) � NG(ρ) under a partial trace over an arbi-

trary subsystem A.
(5) NG(G(ρ)) � NG(ρ) for any Gaussian quantum

channel G.
The property (i) is just a restating of Klein’s inequality,

and it means that Gaussian states are indeed free states. En
passant, notice that point (i) is also an alternative proof of the
fact that Gaussian states maximize the Von Neumann entropy
at a fixed correlation matrix. Points (ii) and (iii) grant that
appending free states and unitary Gaussian transformations
are free operations. The proof of (ii) is trivial, while (iii) can
be proven by noting that tr(UρU † c†

i c j ) = tr(ρ U †c†
i c jU ) and

(UρU †)G can be constructed by calculating the correlation
matrix on the transformed operators ci → U †ciU . For an
infinitesimal U = e−iλH ≈ I − iλH , ci evolves according to

the Heisenberg equation ċi(λ) = i[H, ci]. Assuming particle
number conservation, we can take H = ∑

j,k h jkc†
j ck and

ċi(λ) = −i
∑

j hi jc j . If H is quadratic, [H, ci] contains only

linear terms in ci (or c†
i if the conservation law is broken) and

the evolved ci remains a single particle operator. The finite
transformation ci → U †ciU is equivalent to a unitary rotation
in the single particle ci space �c → U �c , U = e−ih and the
correlation matrix changes only up to a similarity transforma-
tion. For pure states this is already sufficient to prove that NG
is invariant, since the two matrices have the same spectrum.
In general, (UρU †)G = UρGU † because they have the same
correlation matrix, then NG(UρU †) = S(UρU †||UρGU †) =
S(ρ||ρG) = NG(ρ) as Von Neumann entropies are invariant
under global unitaries. The quantum relative entropy is
monotonously decreasing under partial traces and this
property is inherited by NG: (trAρ)G = trA(ρG) implies
NG(trAρ) � NG(ρ). From a resource-theory point of view,
this means that discarding a part of the system is correctly
regarded as a free operation. A Gaussian channel G is a CPTP
map that evolves Gaussian states into other Gaussian states,
therefore it can be expressed as G(ρ) = trE [U (ρ ⊗ σG)U †],
where the system ρ is coupled to a Gaussian environment σG

that is traced out after a common evolution with a Gaussian
unitary. Putting the statements above together with (ii), the
property (v) follows: NG(G(ρ)) � NG(U (ρ ⊗ σG)U †) =
NG(ρ) + NG(σG) = NG(ρ). Notice the importance of
having a Gaussian environment: if the state of the environment
is generic, we only have NG(G(ρ)) � NG(ρ) + NG(σ ). For
pure states, NG(ψ ) given by Eq. (B3) is concave. Expanding
the channel in its Kraus representation implies the stronger
inequality

∑
q pqNG(Gqψ ) � NG(ψ ), which means that

non-Gaussianity cannot decrease on average also along
quantum trajectories, when the average is performed after the
calculation of the nonlinear quantity.

APPENDIX C: DETAILS ON THE SIMULATION

When the dynamics is restricted to special classes of
quantum states, such as Gaussian or Clifford states, the sys-
tem can be simulated in an exact and efficient way on a
classical computer. Here we are interested in the dynamics
of a generic interacting quantum system, and we simu-
late our models using tensor networks, which provide an
approximation of the desired state by truncating its quan-
tum correlations. Area-law entangled states on a 1D spin
chain can be naturally encoded as a matrix product state
(MPS), while volume-law states can be well represented as
an MPS if the bond dimension, the parameter that controls
the entanglement truncation, is chosen appropriately. To rep-
resent fermionic degrees of freedom, we need to map our
operators in terms of spin variables, keeping track of Jordan-
Wigner strings. Having defined σ± = 1

2 (σ x ± iσ y) and as-
suming |n = 0〉 ≡ | ↑ 〉 |n = 1〉 ≡ | ↓ 〉, the Jordan-Wigner
mapping is

c j =
j−1∏
k=1

σ z
j · σ+

j , c†
j =

j−1∏
k=1

σ z
j · σ−

j , n j = 1 − σ z
j

2
.

(C1)
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After the transformation, the Hamiltonian (1) becomes

H = − 1

4

L∑
j=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)

+ U

4

L∑
j=1

(
1 − σ z

j − σ z
j+1 + σ z

j σ
z
j+1

)
. (C2)

The local relation σ z
j = 1 − 2n j has two consequences: pro-

jective measurement of the local occupations are equivalent
to measurements of the spin, and the U (1) symmetry of the
original model corresponds exactly to the U (1) symmetry of
the spin chain generated by the conserved magnetization M =∑

j σ
z
j . The correspondence therefore extends to the current

operator

Jj = − 1
4

(
σ

y
j σ

x
j+1 − σ x

j σ
y
j+1

)
, (C3)

which is the opposite of the usual spin current because ac-
cording to σ z

j = 1 − 2n j the magnetization increases in the
direction where the occupations decrease. Local occupations
are associated with the projectors

�n=0,1
j = I ± σ z

j

2
. (C4)

The current has an eigenvalue with double degeneracy Jj =
0 and two nondegenerate eigenvalues Jj = ±1/2, associated
with the eigenstates

|ψ0,0〉 = | ↑↑ 〉, |ψ0,1〉 = | ↓↓ 〉, (C5)

|ψ±〉 = 1√
2

(| ↑↓ 〉 ∓ i| ↓↑ 〉). (C6)

Measuring Jj corresponds to applying the projectors

�J=0
j = I + σ z

j σ
z
j+1

2
, (C7)

�
J=±1/2
j = I − σ z

j σ
z
j+1 ∓ σ

y
j σ

x
j+1 ± σ x

j σ
y
j+1

4
. (C8)

The quantities that we study in order to characterize the
dynamics are the entanglement entropy of connected sub-
systems and the fermionic correlation matrix. Some care

is needed when calculating the entanglement entropy of
fermionic modes through the Jordan-Wigner transformation,
because it is a nonlocal mapping: the Hilbert spaces of all
the fermionic and spin chains are in correspondence, but not
those of subsystems. However, for a connected subchain A, all
Jordan-Wigner strings connecting i, j ∈ A are fully contained
in A, so no problems arise, and SA can be calculated directly
in terms of the dual spin variables. Assuming i < j, the corre-
lation matrix is

〈c†
i c j〉 =

〈
σ−

i

j−1∏
k=i

σ z
k σ+

j

〉
. (C9)

Along a quantum trajectory, the state remains pure. We repre-
sent it as an MPS, and its dynamics can be simulated with
a modified TEBD algorithm. We divide it into N discrete
time steps of width dt , each composed of a unitary part
exp(−iHdt )|ψ〉 and measurements. The unitary evolution is
implemented with the usual TEBD, with an even-odd Trotter
decomposition scheme. Then, if the measurement rate is γ ,
we extract a random number x j for each site (or bond) j, and
if x j < γ dt , a projective measurement of the observable Qj is
performed. In that case, we compute the probabilities pψ (q) =
〈ψ |�q

j |ψ〉 for each eigenstate q, and according to them we
extract which projector �

q
j we apply at the measured j. This

completes a step, and the procedure is iterated N times. In
the case of current measurements, it is important to apply the
projectors in a randomized order, because it may happen that
many operators are measured at the same time step, and since
they do not commute, the order is relevant. Measurements
act on specific sites, breaking the translation and reflection
invariance of the dynamics for single trajectories. The random
location of measurements restores the symmetry on the mean
state, and the average entanglement entropy is a function only
of subsystem size SA = S(|A|). For projectors applied in a
fixed order, e.g., from left to right, the mean state loses the
symmetry as well, and for A = {1, . . . , �} if S(�) �= S(L −
�), even if SA = SAC . Randomizing the position of measure-
ments is preferable because this asymmetry is fictitious and
disappears in the continuum limit, since for dt → 0 the prob-
ability of having neighboring measurements at the same time
step is O(dt2).
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