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Abstract: The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics
and cosmology describing the mass distribution of stars from low mass all the way up to massive
and very massive stars. It is intimately linked to a wide variety of topics, including stellar and binary
evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the
IMF still remains highly uncertain. In this work, we aim to determine the IMF with a novel approach
based on the observed rates of transients of stellar origin. We parametrize the IMF with a simple but
flexible Larson shape, and insert it into a parametric model for the cosmic UV luminosity density,
local stellar mass density, type Ia supernova (SN Ia), core-collapse supernova (CCSN), and long
gamma-ray burst (LGRB) rates as a function of redshift. We constrain our free parameters by matching
the model predictions to a set of empirical determinations for the corresponding quantities via a
Bayesian Markov Chain Monte Carlo method. Remarkably, we are able to provide an independent
IMF determination with a characteristic mass mc = 0.10+0.24

−0.08 M⊙ and high-mass slope ξ = −2.53+0.24
−0.27

that are in accordance with the widely used IMF parameterizations (e.g., Salpeter, Kroupa, Chabrier).
Moreover, the adoption of an up-to-date recipe for the cosmic metallicity evolution allows us to
constrain the maximum metallicity of LGRB progenitors to Zmax = 0.12+0.29

−0.05 Z⊙. We also find which
progenitor fraction actually leads to SN Ia or LGRB emission (e.g., due to binary interaction or
jet-launching conditions), put constraints on the CCSN and LGRB progenitor mass ranges, and test
the IMF universality. These results show the potential of this kind of approach for studying the IMF,
its putative evolution with the galactic environment and cosmic history, and the properties of SN Ia,
CCSN, and LGRB progenitors, especially considering the wealth of data incoming in the future.

Keywords: initial mass function; stellar and binary evolution; supernovae; gamma-ray bursts;
galaxy evolution

1. Introduction

The stellar initial mass function (IMF) describes the mass distribution of stars in
the zero-age main sequence (ZAMS). It plays a pivotal role in many different topics of
astrophysics and cosmology, spanning from stellar and binary evolution to galaxy evolution
and cosmological reionization. Past and current empirical determinations of the IMF rely
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either on the observation of stellar populations inside our Galaxy and in the Local Group
or on the study of the suggested correspondence between the IMF and the mass function
of observed pre-stellar dense cores (see, e.g., the recent review by [1] and references
therein). Regarding the first method, the IMF can be inferred either from direct star
counts, in the case of resolved stellar populations, or via careful modeling of, e.g., galaxy
spectra or gravitational lensing in the case of unresolved stellar populations (see [1] and
references therein). Based on these observational results, a number of parametrizations
have been introduced to model the IMF, the most common being those by [2–9]. However,
as pointed out, e.g., in [10,11], a large part of IMF measurements underestimate the scatter
observed in the IMF slopes, as well as the difficulty in disentangling systematics from
physical IMF environmental dependencies. These limitations also threaten the common
assumption of an IMF universality, with a number of works suggesting IMF dependence
on, e.g., redshift, metallicity, and/or star formation rate (SFR) (e.g., [11–17]). On the theory
side, numerous works have tried to explain the physical origin of the IMF characteristic
mass, identifying its peak and high-mass slope (see [1] and references therein). Despite all
these efforts, many fundamental uncertainties still exist around the properties of the IMF
and its physical nature.

The IMF plays a key role in the study of stellar transients since it describes the mass
distribution of their progenitors. In particular, it is crucial for computing the cosmic rates
of type Ia supernovae (SNe Ia) and core-collapse supernovae (CCSNe). Moreover, the IMF
critically determines the amount of UV radiation emitted by stars in galaxies.

Young massive stars are responsible for the emission of ionizing radiation in the UV
band. The corresponding UV luminosity density can be computed by integrating UV
luminosity functions measured with galaxy surveys (e.g., [18–21]). Since UV light traces the
abundance of young massive stars, it is intimately linked to the star formation rate (SFR).
Consequently, the cosmic UV luminosity density, ρUV(z), can be converted to a cosmic star
formation rate density (SFRD), ρSFR(z), which indicates the amount of star-forming mass
available at redshift z per unit time and comoving volume. This conversion is recurrently
performed using a factor kUV , expressing the efficiency in the production of UV photons
from stars. The value of kUV clearly depends on the IMF as the latter determines the relative
number of massive stars compared to low-mass ones [22–27].

SNe Ia are thermonuclear transients arising in binary systems composed of at least
one white dwarf (WD) from progenitor stars of at least 2–3 M⊙ (e.g., [28,29]). CCSNe,
instead, represent the endpoint of massive star evolution above ∼8 M⊙, and are believed
to arise from the collapse of the more external layers of the star onto the iron core and the
subsequent neutrino-driven explosion (e.g., [30–34]). Great uncertainties revolve around
the upper limit of CCSN progenitors, which might vary in the range of ∼20–25 M⊙ all
the way up to 100 M⊙ (e.g., [35–37]). Indeed, stars inside this mass range are thought to
experience fall-back of the ejected material onto the core, giving rise to a faint “failed” SN,
and collapse into a BH (e.g., [36–41]). Above ∼100 M⊙, stars develop pair instability inside
their core, and end their lives before completing all nuclear burning stages [35,36]. Given
the dependence of SNe Ia and CCSNe on the progenitor mass, the IMF explicitly enters in
setting their rates.

There exists another class of stellar transients that, differently from SNe Ia and CCSNe,
exhibit a crucial dependence on metallicity, i.e., long gamma-ray bursts (LGRBs). According
to the “collapsar” scenario, LGRBs arise from the collapse of massive stars, and the forma-
tion of an accretion disk around the BH remnant. If the disk is sufficiently massive, and the
BH sufficiently spinning, a jet can be launched perpendicularly to the disk, powering the
LGRB emission [42]. Host galaxy studies and simulations show an LGRB preference for
low-metallicity environments, suggesting the existence of a maximum metallicity above
which stars cannot produce these transients (e.g., [36]). A number of LGRBs have been
observed in association with type Ib/c SNe, suggesting a shared progenitor (e.g., [43–49]).
This might indicate a preferential origin in binary systems, where the progenitor can be
stripped of its envelope by means of the companion. All in all, the properties of LGRB pro-
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genitors, and especially their mass range, are still unknown. The joint study of LGRBs and
the cosmic metallicity (Z) evolution holds the potential to uncover the elusive progenitors
of LGRBs, and increase our understanding of galaxy evolution.

As explained above, the IMF is deeply intertwined with both stellar transients and
galaxy UV luminosity. Due to the realization of this fil rouge, in this paper, we are motivated
to attempt to infer the IMF with a novel method, based on combining observational
constraints related to these quantities, in a way that is completely independent from
previous IMF determinations.

Specifically, we build a parametric model for the cosmic UV luminosity density, local
stellar mass density (SMD), and SN Ia, CCSN, and LGRB rates as a function of redshift,
and constrain the model parameters in order to match the observational determinations
available for these quantities. We achieve this by employing a Bayesian Markov Chain
Monte Carlo method (MCMC). Our approach also allows us to constrain the properties of
SN Ia and CCSN progenitors. Moreover, the adoption of an up-to-date recipe for the cosmic
metallicity evolution enables us to study the properties of LGRB progenitors. Finally, we
explore what the set of observational constraints adopted here can tell us about the putative
IMF evolution with redshift, and discuss how variations in our model assumptions can
alter our results.

This work is structured as follows: In Section 2, we describe how we compute the
different quantities presented above, and introduce the free parameters of our model. Then,
we explain the basics of our MCMC, and present our results in Section 3. We discuss our
findings in Section 4, as well as some variations in the model assumptions, and, finally, draw
our conclusions in Section 5. Throughout this work, we assume a flat ΛCDM cosmology,
with parameters H0 = 70 km s−1 Mpc−1, ΩM = 0.3. We adopt the value of Z⊙ = 0.0153
for the Solar metallicity [50], and 12 + log(O/H)⊙ = 8.76 for the Solar oxygen abundance.
Unless specified otherwise, we consider absolute metallicities.

2. Methods

We follow a parametric, semi-empirical approach in order to model the cosmic UV
luminosity density, ρUV(z), the local SMD, ρ⋆,0, and the SN Ia, CCSN, and LGRB rates as
a function of redshift, RIa(z), RCC(z), RLGRB(z). We then employ a Bayesian MCMC in
order to match our model predictions to the data. This allows us to keep the number of
physical assumptions to the minimum, and obtain an estimate of the model parameters
that is directly informed by observations.

Throughout this work, we assume an IMF with a Larson shape [51],

ϕ(m) ∝ mξ e−mc/m, (1)

with free parameters mc, the characteristic mass, and the slope ξ.

2.1. UV Luminosity Density

The UV luminosity density, ρUV(z), represents the energy in the UV photons present
at a given redshift per unit time and comoving volume, typically expressed in units of
erg s−1 Mpc−3. We adopt a standard [24] functional form,

ρUV(z) = ρUV,0
(1 + z)α

[1 + (1 + z)/γ]β
, (2)

where the normalization ρUV,0 is the local UV luminosity density. Based on the assumed
IMF, one can convert this quantity to an SFRD via the following equation:

ρSFR = ρUV/kUV(mc, ξ), (3)

where kUV is the UV photons’ production efficiency in units of erg s−1 Hz−1 M−1
⊙ yr. We

compute it by employing the PARSEC stellar evolution code [52–60]. In particular, we use
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stellar evolution tracks to compute the mean production rate of UV photons, and then
average the result over the IMF to obtain kUV . For simplicity, we adopt fixed values for
the age and metallicity of the stellar population, 109 yr and Z = 0.02, respectively. We
check that varying the stellar age to 108 yr and 1010 yr, and the metallicity to Z = 0.002 and
0.0002, has a negligible effect on the results.

In order to fit ρUV , we consider a set of the most recent SFRD determinations from UV, IR,
and submm surveys, including the JWST surveys [19–21,61–68]. We convert ρSFR to ρUV via
Equation (3) according to the IMF used in these works. We decide to restrict the data to z < 9
since, as shown below, the observational constraints on the stellar transient rates employed
in this work do not exceed this redshift (in particular, those related to the LGRB rate). This
choice also allows us to avoid the uncertainties in the SFRD data at higher redshifts.

2.2. Local Stellar Mass Density

By integrating the SFRD from z = ∞ down to a given redshift z, one can compute
the total amount of star-forming mass accumulated throughout the whole history of the
Universe down to that redshift per unit comoving volume, i.e., the SMD (see, e.g., [24]):

ρ⋆(z) = (1 − R)
∫ z

∞
ρSFR(z)

dt
dz

dz (4)

R accounts for the fraction of stellar mass returned into the ISM or IGM during stellar
evolution via winds or SN explosions. We compute it following [24], under the assumption
that stars above 1 M⊙ lose mass the moment they are born (the “instantaneous recycling
approximation”):

R =
∫ 300 M⊙

1 M⊙
dm (m − ωm) ϕ(m), (5)

where ϕ(m) is the IMF, and the upper limit of integration is the maximum stellar mass
considered in this work. ωm is the remnant mass, which we compute using the initial–
final mass relation (IFMR) from [69] for m > 8 M⊙ and that from [70–72] for m < 8 M⊙.
In particular, we consider the result from [69] for Z = 0.02. We find that employing the
IFMR for Z = 0.002 and Z = 0.0002 has a negligible effect on the results. The adopted
IFMR for m < 8 M⊙ is computed at Z = 0.014. As discussed, e.g., by [70], the IFMR is not
expected to exhibit a crucial dependence on metallicity in this mass range.

In order to obtain an observational constraint on the local SMD, we consider a re-
cent determination of the galaxy stellar mass functions (GSMFs) by [73] based on the
COSMOS2020 galaxy catalog. We focus on the results obtained in the lowest redshift bin,
z∼0.2–0.5. GSMFs represent the number of galaxies per unit stellar mass and comoving
volume, Φ(M⋆) = d2N/dM⋆ dV. By integrating over stellar mass, one can compute the
total mass in stars per unit comoving volume, i.e., the SMD:

ρ⋆,0 ≡ ρ⋆(z ∼ 0.35) =
(∫

dM⋆ M⋆ Φ(M⋆)

) 〈
M⋆/LUV

〉〈
M⋆/LUV

〉
Ch

, (6)

where z∼0.35 is the mean redshift in the considered bin. The factors on the right of the
integral are the stellar mass-to-light ratios, which we use to convert from the Chabrier
IMF used in [73] to the IMF adopted here (as performed, e.g., in [24]). We compute these
quantities via the PARSEC stellar evolution tracks. Finally, we compare this observational
constraint with the SMD from Equation (4), computed at z = 0.35.

2.3. Core-Collapse Supernova Rate

Regarding the CCSN rate, we start by computing the number of CCSNe produced per
unit of star-forming mass according to the following equation:

dnCC
dM⋆

=
∫ Mup

CC

Mlow
CC

dm ϕ(m), (7)
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where we integrate the IMF over the mass range of the CCSN progenitors. The minimum
stellar mass to produce a CCSN, Mlow

CC , is expected to be around 8 M⊙ (e.g., [36,37]).
On the other hand, the upper limit Mup

CC is highly uncertain (e.g., [35–37]). Based on these
considerations, we decide to fix Mlow

CC = 8 M⊙, and keep Mup
CC as a free parameter. Finally,

we compute the CCSN rate as a function of redshift as follows:

RCC(z) =
dnCC
dM⋆

× ρSFR(z) (8)

In doing so, we assume no delay between star formation and the CCSN explosion
since the corresponding timescale (≲100 Myr) is negligible on cosmological scales.

We compare this to a set of observational determinations of the CCSN rate from the
literature, spanning a redshift range up to z∼2.3 [12,74–87]. This set comprises, to the best
of our knowledge, all existing data available for this quantity. All rates are derived for
H0 = 70 km s−1 Mpc−3, the same value adopted in this work.

2.4. Type Ia Supernova Rate

SNe Ia are thermonuclear explosions of WDs in binary systems triggered either by
accretion from a companion star (the “single-degenerate” scenario, SD) or by a merger with
another WD (“double degenerate”, DD). We compute the number of SNe Ia produced per
unit of star-forming mass as

dnIa
dM⋆

= NIa

∫ Mup
Ia

Mlow
Ia

dm ϕ(m). (9)

We agnostically account for all effects of binary evolution with the normalization
factor NIa, similarly to, e.g., in [28,82,84,88–93]. NIa also includes the binary fraction, fbin,
i.e., the fraction of stars lying in a binary with respect to the whole stellar population. Then,
we integrate the IMF over the expected mass range of SN Ia progenitors. WD progenitors
lie at masses starting from ∼0.7–0.8 M⊙, i.e., the minimum mass for a star to complete the
MS, and finally evolve into a WD on a timescale less than the age of the Universe. However,
it is believed that, in order for the WD to give rise to an SN Ia, the progenitor star must
be at least 2–3 M⊙ (e.g., [28,29]). On the other hand, there is overall consensus placing
the upper limit of SN Ia progenitors at ∼8 M⊙ at the onset of core collapse. For these
reasons, we fix Mlow

Ia = 3 M⊙, and Mup
Ia ≡ Mlow

CC = 8 M⊙. We check that moving Mlow
Ia to

2 M⊙ does not affect our results significantly. As in the case of CCSNe, we do not consider
any dependence on metallicity, a standard assumption (but see, e.g., [94–97], where this
assumption is challenged).

Since, differently from CCSNe, the timescales for an SN Ia explosion after the birth of
the progenitor star are not negligible, we compute the SN Ia rate by convolving the SFRD
with a delay time distribution (DTD), Ψ(t), following [29]:

RIa(z) =
dnIa
dM⋆

×
∫ t(z)

40 Myr
dτ ρSFR(t − τ) Ψ(τ), (10)

where t(z) is the age of the Universe at redshift z, and we choose the lower cut of 40 Myr
as the delay time associated with stars of ∼8–10 M⊙. We adopt a DTD of the form ∝ t−1

following [29,98] and the references therein.
We match this theoretical SN Ia rate to a set of observational determinations from the

literature, reaching up to z∼2.3 [74–76,78,79,82,84,85,90,99–130]. This set represents, to the
best of our knowledge, all existing data available for this quantity. All rates are derived for
H0 = 70 km s−1 Mpc−3, the same value adopted in this work.
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2.5. Long Gamma-Ray Burst Rate

In order to model the LGRB rate, we first compute the number of LGRBs produced
per unit of star-forming mass, dnLGRB/dM⋆, as follows:

dnLGRB
dM⋆

(Z) =

NLGRB

∫ Mup
LGRB

Mlow
LGRB

dm ϕ(m) if Z ≤ Zmax,

0 if Z > Zmax.
(11)

Here, we integrate the IMF over the mass range of LGRB progenitors, and ascribe
all uncertainties related to, e.g., progenitor rotation, jet-launching conditions, and LGRB
emission to a normalization factor NLGRB in front of the integral. In addition, we implement
a dependence of dnLGRB/dM⋆ on metallicity by defining a maximum metallicity Zmax above
which LGRBs are suppressed. Indeed, the higher the progenitor metallicity, the more mass
and angular momentum will be lost via stellar winds. Given that the remnant rotation must
be high enough to launch the relativistic jet, too high metallicities hinder LGRB emission
(e.g., [131–135]).

Since LGRB occurrence depends on the metallicity of the environment where their pro-
genitors form, their study requires a treatment of the galaxy metallicity evolution through-
out cosmic history. We resort to a fundamental metallicity relation (FMR), ZFMR(M⋆, ψ),
linking galaxy metallicity to stellar mass and SFR, ψ. In particular, we consider the recent
determination by [136], taking also into account the offset from the FMR found in [137]
above z∼3 (we fit their results with a simple power-law function). Due to the intrinsic de-
pendencies of ZFMR on M⋆ and ψ, we build the Z-dependent SFRD by convolving GSMFs
with a galaxy main sequence (MS), relating stellar mass and SFR according to the following
equation (see also [138]):

d3MSFR
dtdVd log Z

(Z, z) =
∫

d log M⋆
d2N

dVd log M⋆
(M⋆, z)

×
∫

d log ψ ψ
dp

d log ψ
(ψ, M⋆, z)

× dp
d log Z

(Z, ZFMR(M⋆, ψ), σZ).

(12)

For coherence with our SMD computation, we consider the GSMFs by [73], while,
for the MS, we follow [139]. dp/d log ψ is a log-normal SFR distribution, accounting for
both MS and starburst galaxies (SBs). The latter are galaxies with a particularly high
SFR which identify a separate region above the MS in the M⋆ − ψ plane. We treat SBs
following [140]. dp/d log Z(Z, ZFMR, σZ) describes a log-normal Z distribution around the
FMR with dispersion σZ.

We then use the result from Equation (12) to compute the fraction of star formation
taking place below a certain metallicity at a given redshift, F, as follows:

F(z, Zmax, σZ) =

∫ log Zmax

−∞
d log Z

d3MSFR
dtdVd log Z

(Z, z)∫
d log Z

d3MSFR
dtdVd log Z

(Z, z)
. (13)

F not only depends on redshift and Zmax, but also on the parameter σZ, i.e., the
dispersion in the galaxy metallicity distribution (entering dp/d log Z in Equation (12)).

We finally compute the LGRB rate as a function of redshift as follows:

RLGRB(z) =
dnLGRB

dM⋆
× F(z, Zmax, σZ) ρSFR(z), (14)

where ρSFR(z) is the SFRD from Equation (3).
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Inferring the LGRB intrinsic rate from observations is more complex than in the case of
SNe Ia and CCSNe. Indeed, after the computation of the observed rate from the data, some
additional observational biases must be addressed (see, e.g., [141]). On the one hand, only
LGRBs with jets oriented towards our line of sight can be observed. In order to account for
the off-axis population, a correction based on the jet opening angle is required. Moreover,
LGRBs are detected up to much higher redshifts than SNe Ia and CCSNe; thus, a fraction of
the population will inevitably be too faint to be detected with a given instrument. One can
overcome this bias by assuming an underlying LGRB luminosity function and integrating
it below the detection threshold of the instrument. Noticeably, [142] derives the intrinsic
LGRB rate and luminosity function as a function of redshift by simulating a population of
sources with randomly oriented jets and matching the predictions of their model to several
datasets of LGRB observables. These comprise peak flux and energy, fluence, duration,
redshift, isotropic equivalent luminosity and energy, and jet opening angle distributions.
They also account, for the first time in an LGRB population study, for relativistic effects due
to the jet orientation and beaming. We decide to adopt an updated version of their LGRB
rate determination, taking into account more recent observations of LGRBs at high redshift
(see Appendix A) to match the outcome of our model.

2.6. MCMC

We perform an MCMC by using the Python package (version 3.12.3) emcee (https://
emcee.readthedocs.io/en/stable/, accessed on 25 September 2024 [23]), selecting
2 × 102 walkers. The number of steps needed for the MCMC to converge is approxi-
mately 4 × 104. There are 13 free parameters to be constrained: θ = [log ρUV,0, α, β, γ,
log mc, ξ, log NIa, log Mup

CC, σZ, log NLGRB, log Zmax, log Mlow
LGRB, log Mup

LGRB]. The first four
parameters define the shape and normalization of ρUV(z); NIa is the fraction of stars in the
mass range of SN Ia progenitors that actually give rise to an SN Ia; Mup

CC is the maximum
CCSN progenitor mass; and log mc and ξ are the IMF characteristic mass and slope. The last
five parameters are instead related to the metallicity evolution and the properties of LGRB
progenitors: σZ represents the dispersion of the galaxy metallicity distribution; NLGRB is
the fraction of stars with a mass in the range of LGRB progenitors that produce a successful
LGRB emission; Zmax is the maximum metallicity for LGRBs; and Mlow/up

LGRB set the mass
range of LGRB progenitors. We define uniform priors in the ranges log ρUV,0 = [25, 26.5],
α = [0, 7], β = [4, 10], γ = [0, 5], log mc = [−2, 2], ξ = [−5, 0], log NIa = [−3, 0],
log Mup

CC = [log(10), log(150)], σZ = [0, 1], log NLGRB = [−3, 0], log Zmax = [−4,−1],
log Mlow

LGRB = [log(10), log(150)], log Mup
LGRB = [log(10), log(150)]. For every observable O,

we then compute the logarithmic likelihood as follows:

lnLO(θ) = −1
2 ∑

i

[
(O(zi, θ)− Di)

2

s2
i

+ ln(2πs2
i )

]
, (15)

where the sum runs over the redshifts zi of the corresponding data points. O(zi, θ) is the
model observable computed at zi for a given choice of parameters θ, while Di is the i-th
data point. In the additional term inside the sum, s2

i = σ2
i + O(zi, θ)2e2 ln f , where σi is the

uncertainty associated with Di. f is an additional free parameter that takes into account
possible systematics in the data. We allow ln f to vary uniformly in [−10, 1]. According to
the Bayes theorem, the posterior probability for the choice of parameters θ can be computed
as log P(θ) = log p(θ) + ∑O logLO(θ), where log p(θ) is 0 if all parameters are within
their prior ranges; otherwise, it returns −∞. The MCMC takes these quantities as input
and computes the best fit for the model parameters, as well as their marginal and joint
posterior probability distributions. We plot the latter quantities via the Python package
GetDist (https://getdist.readthedocs.io/en/latest/, accessed on 25 September 2024). As
explained in Section 2.5, due to the complex observational biases linked to LGRB detection,
we consider the determination of the LGRB rate as a function of redshift following [142]
(more specifically, an updated version of their result; see Appendix A). For this reason,

https://emcee.readthedocs.io/en/stable/
https://emcee.readthedocs.io/en/stable/
https://getdist.readthedocs.io/en/latest/
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we compute the likelihood terms related to LGRBs following a conceptually different,
but formally identical, approach. In particular, from the updated LGRB rate determination
by [142], we only sample 10 points, uniformly spaced in cosmic age. By doing so, we take
into account the fact that the number of LGRB observations decreases when going to higher
redshift, with only a few LGRB detections achieved so far at very high redshift (e.g., z > 6).
We then define Gaussian priors around each of these points, with errors equal to the 1σ
uncertainty of the LGRB rate determination at the corresponding redshifts. The constraints
informed by these priors allow us to estimate the model parameters. We stress that the
posterior probability computed in this way is mathematically identical to that shown above,
i.e., log P(θ) = log p(θ) + ∑O logLO(θ) and Equation (15), since the additional terms of the
Gaussian priors are the same as those in Equation (15). Therefore, the computation of the
posterior probability for the parameter space describing LGRBs and the cosmic metallicity
evolution is fully consistent with that for the UV luminosity density, local SMD, SN Ia, and
CCSN rate parameters.

3. Results

In this section, we present the results obtained in this work. Our result for the IMF
is displayed in Figure 1. We find the parameters related to LGRBs and the cosmic Z
evolution to be somewhat disentangled from the rest of the parameter space. In particular,
the IMF estimate is fully determined by the UV luminosity density, local SMD, SN Ia,
and CCSN rates, and does not require LGRBs to be considered as well. On the other
hand, adding the latter transients allows us to also put constraints on the LGRB progenitor
properties and the cosmic Z evolution. For this reason, and for more clarity, we present
separately the results obtained for the parameters related to ρUV(z), ρ⋆,0, RIa(z), and RCC(z)
(Section 3.1, Figure 2) and those for RLGRB(z) and the cosmic Z evolution (Section 3.2,
Figure 4 For completeness, we also report in Appendix B a corner plot with all posteriors
found by the MCMC for the whole parameter space (Figure A2). See Table 1 for the median
values obtained for all parameters with 1σ uncertainties. The total reduced chi square
amounts to χ2

red = 1.17. In Figures 3 and 5, we show the fits obtained for ρUV(z), ρ⋆,0,
RCC(z), RIa(z), and RLGRB(z) in comparison with the corresponding datasets. Finally,
in Section 3.3, we test the assumption of IMF evolution with z.
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Figure 1. Initial-mass function (IMF) fit as a function of stellar mass. We show the median of the
posterior distributions with a blue solid line, as well as the 1 and 2σ uncertainty bands around the
median. For comparison, we plot the Salpeter, Kroupa, and Chabrier IMFs as gray lines.
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3.1. Stellar Initial Mass Function, Type Ia Supernovae, and Core-Collapse Supernovae

Our method allows us to obtain for the first time an IMF determination based on the ob-
served rates of stellar transients. We infer an IMF with characteristic mass
log mc = −0.99+0.52

−0.77 (i.e., mc = 0.10+0.24
−0.08 M⊙) and slope ξ = −2.53+0.24

−0.27. The IMF slope is
remarkably compatible with those typically adopted based on the observed stellar popula-
tions in the local Universe. One can see this agreement in Figure 1, where we show our
result in comparison with the Salpeter (ξ = −2.35, [2]), Kroupa (ξ = −2.3, −2.7, [4,6,8]),
and Chabrier IMFs (ξ = −2.3, [7]). We note that the uncertainties in log mc only en-
large the error band at log mc ≲ −0.5, a mass range poorly constrained also by local
IMF determinations.

As one can see in Figure 2, the ρUV parameters are particularly well constrained due
to the relatively small uncertainties of the corresponding data, at least at low redshift.
The larger scatter and error bars of the SN Ia and CCSN rate data points raise the uncertain-
ties for the other parameters. This combines with the fact that, as described in Section 2,
their computation requires the conversion from ρUV to ρSFR, and the inclusion of the IMF.
The quantities the MCMC struggles the most to constrain are log mc and log Mup

CC. This
is to be expected since we are only able to survey stellar masses down to 3 M⊙, i.e., the
assumed minimum mass of SN Ia progenitors, while we cannot put any constraint at
lower masses. Moreover, the high-mass end of the IMF is only covered by the CCSN
and LGRB rate, for which we have a less constraining dataset. Nonetheless, we retrieve
estimates also for these quantities, albeit with larger error bars. In particular, we find
log Mup

CC = 1.76 ± 0.22 M⊙ at 1σ confidence level. This means a range of ∼[35–95] M⊙
and a median value of ∼58 M⊙. Finally, we obtain an estimate for the fraction of SN Ia pro-
genitors that actually produce an SN Ia of log NIa = −1.45+0.10

−0.13, or NIa = 3.5 ± 0.9 × 10−2

in non-logarithmic values.
As shown in Figure 3a, we obtain a ρUV fit peaking at z ≳ 2. One can notice how

our fit does not intercept some of the data points, which, indeed, exhibit a significant
scatter. This is possibly due to the fact that we combine data from several works that are
independent from each other and are obtained from different galaxy surveys in different
bands. As explained in Section 2.6, we account for the possible resulting systematics via
an additional parameter f in the computation of the likelihood, the value of which is
estimated by the MCMC. The same also applies to our results on the CCSN and SN Ia rates
(Figure 3c,d), which are similarly based on datasets from different works obtained from
independent surveys.

Figure 3b shows the fit we obtain for the local SMD. More specifically, the quantity
we consider in this plot is the local SMD divided by the mass-to-light ratio, ⟨M⋆/LUV⟩,
from Equation (6). In this way, we bring all quantities that depend on the IMF parameters
onto one side of the equation and leave only the observational constraint on the other side
(see Section 2.2). We indicate the latter with a purple line and error band. We also show
ρ⋆,0/⟨M⋆/LUV⟩ as a function of log mc for three fixed IMF slopes, indicated with gray lines.
As one can see, our fit appears to be systematically higher than the data. This is a mani-
festation of the well-known mismatch between these two SMD determinations, for which
an explanation is yet to be found (see, e.g., [24] and references therein). Nonetheless, this
comparison is enough for us to constrain the IMF, and, in particular, its slope. Indeed,
the plot clearly shows how shallow slopes lead to ρ⋆,0/⟨M⋆/LUV⟩ values which are too
high with respect to the empirical constraint and are thus excluded. Only slopes ξ < −2
are allowed. See Section 4.1 for a deeper discussion about this aspect.

Despite the SN Ia and CCSN data points displaying relatively large error bars, we are
still able to constrain the rates of these transients to good accuracy thanks to the interlink
with ρUV . As shown in Figure 3c, RCC peaks at z ≳ 2, resembling ρUV . Indeed, we
are reminded that RCC is simply a re-normalized ρSFR, the multiplication factor being
dnCC/dM⋆ (Equation (8)). On the contrary, as described in Section 2, the computation of
RIa involves the adoption of a DTD. As a consequence, RIa peaks at lower redshift, closer
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to z = 1.5 (Figure 3d). One can notice how, in both cases, the error bands become wider at
increasing redshifts, where the data are more sparse and uncertain.
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Figure 2. Corner plot showing the individual and joint posterior probability distributions only for
the parameters related to ρUV , ρ⋆,0, RIa, and RCC, including the IMF parameters log mc and ξ. We
show the 1, 2, and 3σ confidence level regions in progressively lighter shades. The best-fit values are
shown as red crosses.

Finally, we find relevant degeneracies between parameters ρUV,0, ξ, and log NIa.
The correlation between ξ and log NIa can be explained with the fact that higher ξs decrease
the number of stars in the range of SN Ia progenitors, between 3 and 8 M⊙. As a conse-
quence, NIa must increase in order to meet the observational constraints on RIa. Moreover,
increasing ρUV,0 makes it necessary to decrease log NIa, and therefore also ξ, to avoid
producing too many SN Ia events.

It is important to stress that ρUV(z), ρ⋆,0, RIa(z), and RCC(z) are sufficient to provide
a robust IMF determination without the need to resort to LGRBs and the metallicity
evolution formalism. Indeed, by running the MCMC without the set of constraints on
RLGRB(z), we obtain an IMF compatible with that presented in this section with parameters
log mc = −0.95+0.39

−0.98 and ξ = −2.71+0.30
−0.33. We report the posterior distributions obtained

in this case in Appendix B (Figure A3), as well as the parameter estimates (Table A1),
for completeness. The reduced chi square is χ2

red∼1.25, similar to the case with LGRBs.
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Figure 3. Fits obtained for the UV luminosity density, local stellar mass density (SMD), core-collapse
supernova (CCSN), and type Ia supernova (SN Ia) rates as function of redshift compared with the
corresponding observational determinations (purple dots and error bars). The blue line and bands
show the median and 1, 2σ percentiles of the posterior distribution. (a) UV luminosity density
fit as function of redshift. The data points are from [19–21,61–68]. (b) Local SMD fit, compared
with the observational determination obtained from [73]. (c) CCSN rate fit as function of redshift.
The data points are from [12,74–87]. (d) SN Ia rate fit as function of redshift. The data points are
from [74–76,78,79,82,84,85,90,99–130].

3.2. Long Gamma-Ray Bursts and Cosmic Metallicity Evolution

In Figure 4, we show the MCMC results for the parameter space describing LGRB
progenitors and the cosmic Z evolution. Noticeably, we find an interplay between the
maximum metallicity of LGRB progenitors, Zmax, and the dispersion of the galaxy Z dis-
tribution, σZ. In particular, the smaller σZ is, the higher Zmax must be in order to provide
a sufficient LGRB rate to match the observations. We are able to constrain σZ = 0.49+0.17

−0.27,
and log Zmax = −2.75+0.54

−0.24. In non-logarithmic values, Zmax = 1.8+4.4
−0.8 × 10−3. More-

over, we find log NLGRB = −0.99 ± 0.51, meaning that a median of ∼10%, and from
∼3% to 33% at 1σ level, of stars in the mass range of LGRB progenitors satisfy the con-
ditions for LGRB emission. Regarding the mass range of LGRB progenitors, the MCMC
is only able to retrieve log Mlow

LGRB < 1.38 and log Mup
LGRB > 1.71 (at 1σ), corresponding to

∼Mlow
LGRB < 24 M⊙ and Mup

LGRB > 51 M⊙.
As one can see from Figure 5, the 1σ uncertainty on the LGRB rate fit is somewhat larger

than for the quantities showed above, reflecting the uncertainties in the parameter estimates.
This is mainly due to the dearth of observational constraints at high redshifts. The LGRB rate
peaks between z = 2 and 3, higher than the ρUV peak (Figure 3a). Indeed, according to our
model, Zmax completely cuts the Z-dependent SFRD distribution above its value, with the
effect of shifting the position of the SFRD peak to higher redshifts. See also [143], where this
effect is discussed in depth, for the cosmic rate of pair-instability supernovae.
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As already pointed out, we find Zmax to anti-correlate with σZ. Moreover, log NLGRB
correlates with log Mlow

LGRB, since increasing the lower limit on the mass of LGRB progenitors
reduces the value of the integral in Equation (14), requiring a higher log NLGRB.
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Figure 4. Same as Figure 2 only for the parameters related to RLGRB and the cosmic Z evolution.
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Figure 5. Long gamma-ray burst (LGRB) rate fit as a function of redshift compared to the constraints
from [142], updated as described in the Appendix (purple dots and error bars). We show the median
and 1, 2σ percentiles with a blue line and bands.
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Table 1. Estimates of the model parameters obtained by combining the observational determinations
for ρUV(z), ρ⋆,0, RCC(z), RIa(z), and RLGRB(z). The errors represent the 1σ uncertainties. We also
report the corresponding units in the third column, where dashes indicate dimensionless quantities.

log ρUV,0 25.90 ± 0.06 log(erg s−1 Mpc−3)

α 3.19+0.20
−0.23 -

β 6.43 ± 0.38 -
γ 2.95 ± 0.22 -

log mc −0.99+0.52
−0.77 log(M⊙)

ξ −2.53+0.24
−0.27 -

log NIa −1.45+0.10
−0.13 -

log Mup
CC 1.76 ± 0.22 log(M⊙)

σZ 0.49+0.17
−0.27 -

log NLGRB −0.99 ± 0.51 -
log Zmax −2.75+0.54

−0.24 -

log Mlow
LGRB <1.38 log(M⊙)

log Mup
LGRB >1.71 log(M⊙)

ln f −4.39+0.22
−0.18 -

3.3. IMF Evolution with Redshift

As explained above, in this work, we make the assumption of a universal IMF, inde-
pendent from, e.g., redshift, metallicity, or SFR. In this section, we suspend this assumption,
and explore whether the observational constraints employed in this work can provide any
indication of an IMF evolution with redshift.

We prescribe a redshift dependence for both the IMF characteristic mass and slope.
For the former, we adopt a simple power-law dependence, following [144]:

mc(z) = mc,0 (1 + z)γ, (16)

where mc,0 is the IMF characteristic mass at z = 0, and γ describes the evolution with
redshift. We instead parametrize the evolution of the IMF slope as in [145]:

ξ(z) =

{
ξ0 if z < z0

ξ0 − fim f (z − z0) if z ≥ z0,
(17)

where ξ0 is the IMF slope at z = 0, and z0 is the redshift at which the slope begins to vary.
We implement this redshift dependence in the computation of all quantities presented in
Section 2, leading to ρUV(z), ρ⋆,0, RIa(z), RCC(z), and RLGRB(z). Finally, we run the MCMC
with the additional free parameters [mc,0, ξ0, γim f , fim f , z0], where we substitute mc from
the previous sections with mc,0 and ξ with ξ0. Thus, we end up with a total of 16 free
parameters, plus the factor ln f from Section 2.6. We note right away that we are also trying
to run the MCMC with mc(z) being variable and ξ fixed, and with mc being fixed and ξ(z)
variable, but we obtain similar results as in the case where both parameters are variable.
Thus, we only report the results for the latter case.

Figure 6 shows the IMF fit we obtain at z = 0, z = 4, and z = 9 in order to show the
IMF dependence on redshift. In Figure 7, we show the posterior probabilities we obtain
for the parameter space related to the IMF evolution, while, in Table 2, we report the
corresponding parameter estimates. For the complete corner plot over the whole parameter
space, and the table with all parameter estimates, see Appendix C. The reduced chi square
is χ2

red∼1.25, similar to that obtained in the case of a universal IMF.
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Figure 6. IMF fit as a function of stellar mass obtained in the case of variable IMF with redshift. In order
to show the IMF evolution, we plot the results obtained for z = 0, z = 4, and z = 9 (blue, orange, and
green lines, respectively). Solid lines indicate the median of the posterior distributions, while the shaded
areas correspond to the 1σ errors. For comparison, we plot the Salpeter, Kroupa, and Chabrier IMFs
as gray lines. We also show the IMF at the epoch of reionization (z∼6–10) derived in [146], assuming
the [147] escape fraction of ionizing photons. See the text for a comparison with our results.

According to our results, the IMF slope appears to be non-evolving with redshift,
with an estimate of fim f < 0.026 at 1σ confidence level. The parameter z0 instead remains
unconstrained. On the other hand, the estimate we find for γim f = 0.53+0.21

−0.43 indicates a
mild evolution of the IMF characteristic mass with redshift. Both slope and characteristic
mass estimates at z = 0, ξ0 = −2.55+0.25

−0.29, and log mc,0 = −1.08 ± 0.51 are compatible with
those obtained assuming a universal IMF. The same is valid also for the other parameter
estimates; see Figure A4 and Table A2 in Appendix C.

In Figure 6, we also show the result for the IMF at the epoch of reionization, i.e., z∼6–10
from [146], obtained by combining constraints from astrophysical and cosmological data.
In particular, we report their result for the [147] escape fraction of ionizing photons. Our
IMF slopes are compatible, and we agree in finding no evidence of evolution for this
parameter. On the other hand, the [146] IMF exhibits a significantly higher characteristic
mass than that found here. We stress that the set of observational constraints adopted in
this work is not enough to make an accurate assessment regarding the IMF evolution with
redshift. In particular, we are not able to sample low masses relevant to constraining mc,
especially at high redshifts where we only have LGRB data. On the other hand, ref. [146]
focuses on the reionization redshifts z∼6–10, where they impose more robust and stringent
constraints. Therefore, this comparison is not meant to be rigorous, and should be taken
with caution.

Despite the uncertainties highlighted above, this exploration shows that it might be
possible in the future to use this approach to further study the IMF evolution throughout
cosmic history, and/or the galactic environment, thanks to more and more constrain-
ing data.
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4. Discussion
4.1. Initial Mass Function

In this work, we find that the observational constraints coming from the UV luminosity
density, the local SMD and the SN Ia and CCSN rates as a function of redshift allow us to
obtain a new determination of the stellar IMF. Remarkably, our result is compatible with
the most common IMFs traditionally assumed, inferred from stellar observations in the
local Universe, e.g., the Salpeter, Kroupa, and Chabrier IMFs. This might indicate that
these IMFs describe stellar populations not only locally, but at least up to Cosmic Noon
(i.e., z∼2–3), up to which we have SN Ia and CCSN rate data. Since we do not make any
assumption for the IMF outside of a flexible Larson-shaped parametrization, our result is
directly informed by the observed stellar transient rates.
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Figure 7. Corner plot with individual and joint posterior probabilities obtained in the case of variable
IMF with redshift only for the subset of the parameter space describing the IMF and its evolution.
For other details, see the caption of Figure 2.

We find the local SMD to play an important role in constraining the IMF, as can be
appreciated by looking at Figure 3b. As one can see, shallow slopes are excluded since they
produce too high ρ⋆,0/⟨M⋆/LUV⟩ values. This limits it to slopes ξ ≲ −2. If we remove
the constraint on the local SMD, a second peak appears in the ξ posterior distribution.
The original peak remains around ξ∼−2.5, while the second one lies around ξ∼−1.5. We
believe the latter to be a non-physical solution allowed by the data. Including the local SMD
in our dataset completely eliminates this solution. Indeed, while shallower IMF slopes
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increase kUV , leading to lower SFRD (Equation (3)) and lower local SMD (Equation (4)),
the mass-to-light ratio ⟨M⋆/LUV⟩ decreases more steeply for ξ ≳ −2. As a consequence,
ρ⋆,0/⟨M⋆/LUV⟩ starts to rapidly increase at ξ ≳ −2, becoming too high with respect to the
observational constraint (Equation (6), where we moved ⟨M⋆/LUV⟩ to the other side of the
equation). The result is that IMFs with a slope below ∼−2 are ruled out.

Table 2. Estimates of the parameters describing the IMF evolution obtained by implementing an
IMF dependence on redshift. The errors represent the 1σ uncertainties. The third column reports the
corresponding units, where dashes indicate dimensionless quantities. Note how the parameter z0

remains unconstrained by the MCMC.

log mc,0 −1.08 ± 0.51 log(M⊙)
ξ0 −2.55+0.25

−0.29 -
γim f 0.53+0.21

−0.43 -
fim f < 0.026 -
z0 - -

By adopting a constant IMF, we are assuming that the IMF is universal throughout
the redshift range considered in this work. This is a common approximation, despite
a number of works exploring the IMF dependence on the environment, e.g., redshift,
metallicity, and SFR (e.g., [11–17]). The fact that we obtain an IMF compatible with local
stellar observations might support the IMF universality. In order to further explore this
point, we try to implement a redshift dependence for the IMF and see if the MCMC can
find any evidence of evolution. We find that the observables employed here do not support
any significant variation of the IMF slope with redshift. On the other hand, they indicate a
mild increase in the IMF characteristic mass with redshift. The uncertainties of the datasets
we employ, and the dearth of constraints at high redshift, prevent us from saying anything
more about the IMF evolution. Nonetheless, our results show how this treatment could
enable us to obtain more stringent constraints in the future, when many more observations
will be available.

4.2. Type Ia and Core-Collapse Supernova Progenitors

As described in Section 2, in order to be able to constrain the IMF and the other
parameters of interest, we decide to agnostically account for all uncertainties related to the
binary nature of SNe Ia with a constant factor NIa in front of the IMF integral in Equation (9).
NIa represents the fraction of stars with progenitor mass in the range for SNe Ia which
actually explode as SNe Ia. It also agnostically accounts for the fraction of stars lying in
binaries, fbin. We find NIa = 3.5 ± 0.9 × 10−2, meaning that roughly 2 to 5% of stars give
rise to SNe Ia given that their mass is in the SN Ia progenitor range. As already shown
in Section 3, log NIa is degenerate with the IMF slope, motivating the uncertainties in
its estimate.

If we multiply NIa by the IMF integral over the mass range of SN Ia progenitors,∫ 8 M⊙
3 M⊙

ϕ(m) dm∼0.016 M−1
⊙ (for our median log mc and ξ), we obtain the number of SNe

Ia produced per unit stellar mass with respect to the entire stellar population, i.e., dnIa/dM⋆.
Using our NIa estimate, we obtain dnIa/dM⋆ = 5.6± 1.4× 10−4 M−1

⊙ . This is in accordance
with previous works that computed this quantity using approaches similar to ours, where
dnIa/dM⋆ generally falls around 1 × 10−3 M−1

⊙ [28,76,84,90–92,148]. The lower and higher
values are, respectively, 3.4 × 10−4 M−1

⊙ [76] and 1.14 × 10−2 M−1
⊙ [91], accounting for un-

certainties. The most distant results from 1× 10−3 M−1
⊙ are due to the adoption of extreme

DTDs and SFRDs. In comparing our results with the literature, when needed, we convert
their results to the quantity dnIa/dM⋆, accounting for the IMF adopted in each work.

fbin is still quite uncertain (e.g., [149]). References [150,151] measure the local fbin as
a function of stellar mass via direct observations in the Solar neighborhood. According
to their results, stars in the mass range of SN Ia progenitors (i.e., 3–8 M⊙, as assumed in
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this work) would have a probability of between roughly 0.5 and 0.7 of lying in a binary
(increasing with mass). Assuming that this measured fbin behavior is valid also at higher
redshifts, we fix fbin and compute the quantity bIa = NIa/ fbin. bIa describes the fraction of
stars in the mass range of SN Ia progenitors, which produce SNe Ia, given that they are in
a binary system. If we fix fbin = 0.5, we obtain bIa = 7.0 ± 1.8 × 10−2. Fixing fbin = 0.7
instead gives bIa = 5.0± 1.3× 10−2. This means that, accounting for the uncertainties in our
NIa estimate and in fbin, roughly from 4% to 10% of stars lying in binaries, with a mass in
the SN Ia progenitor range, actually give rise to an SN Ia due to the processes happening in
the binary.

As our results suggest, this kind of study offers the opportunity to constrain the
properties of SN Ia progenitors and delve into aspects such as the relative contribution to
the SN Ia rate coming from the SD and DD scenarios (see also, e.g., [93]) and the evolution
of WD binary systems.

The upper mass limit of CCSN progenitors, Mup
CC, is very uncertain. Indeed, it is still

not clear what the transition mass is between type II and type Ib/c CCSN subtypes, and at
what masses failed SNe start to take place. Mup

CC might lie between ∼20 and 25 M⊙ all the
way up to 100 M⊙. Our results point to Mup

CC ∈[35–95] M⊙, with a median value of ∼58 M⊙.
Even though the observational constraints we employ do not allow us to add much to
what is already known, this shows the potential of this type of study for estimating this
quantity, especially with the growth of observational data in the future (e.g., [152–156]). It is
worth mentioning that the lack of CCSN observations from progenitors above ∼20–25 M⊙
might be due to observational biases. In particular, CCSNe from more massive progenitors
might be too dim to be detected (e.g., [37,40,41]). In this case, it would be more correct
to consider our parameter Mup

CC as the maximum mass of CCSN progenitors that can be
observed. A possible addition to this work would thus be to correct for this observational
bias and find the maximum mass of all CCSN progenitors, detectable or undetectable.

4.3. Long Gamma-Ray Bursts and Cosmic Metallicity Evolution

We see that adding the LGRB rate, and prescribing a cosmic Z evolution recipe, allows
us to put constraints on relevant quantities related to LGRB progenitors and the cosmic
metallicity evolution. LGRBs are expected to arise only at metallicities lower than a certain
value of Zmax. Remarkably, we are able to constrain this quantity to Zmax = 1.8+4.4

−0.8 × 10−3,
or 12 + log(O/H)= 7.83+0.54

−0.24. As explained in Section 2, we find an interplay between Zmax
and the dispersion in the galaxy metallicity distribution, σZ, and we are able to constrain
the latter to σZ = 0.49+0.17

−0.27. Reference [142] finds a threshold value of 12 + log(O/H) = 8.6,
or Zmax∼1 × 10−2, which is somewhat higher than our result. Also, LGRB host galaxy
studies tend to show a preference for Zmax from ∼6 × 10−3 up to Solar values ∼2 × 10−2

(e.g., [157–161]). On the other hand, the values generally found by single stellar evolution
simulations are more consistent with our results, Zmax ∼2–6 ×10−3 (e.g., [45,135,162]).
Accounting for the possible binary nature of LGRB progenitors in simulations might
significantly change the latter results. For example, rotating stars in binaries can keep most
of their initial surface velocity, or even increase it, and might thus give rise to LGRBs even
at higher metallicities (see, e.g., [161] and references therein). Moreover, the observed LGRB
dependence on metallicity might also be due to an underlying IMF variability, rather than
simply the progenitor evolution (e.g., [145,161]).

Similarly, as discussed for the SN Ia rate, we account for all uncertainties regarding
LGRB progenitors and emission by putting a constant factor NLGRB in front of the integral
in Equation (14). In this way, we agnostically account for all conditions related to the
progenitor rotation, the mass of the accretion disk that forms after the progenitor explodes as
an SN, the nature of the remnant, the launch of the relativistic jet, and, finally, the conversion
of its energy into LGRB emission. Moreover, we account for the possible binary nature of the
progenitor, which might favor LGRB emission. We find NLGRB = 10+23

−7 × 10−2, meaning
that, as a median value, ∼10% of stars in the mass range of LGRB progenitors satisfy the
conditions for LGRB emission. Within a 1σ confidence level, this percentage ranges from
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∼3% to ∼33%. As one can see from Figure 4, the uncertainties in this quantity are mostly
due to those in the LGRB progenitor mass range. Indeed, despite the MCMC being able
to retrieve a fit for Mlow

LGRB and Mup
LGRB, the uncertainties are significant: Mlow

LGRB < 24 M⊙
and Mup

LGRB > 51 M⊙ at 1σ. Given the huge uncertainty in these quantities in the literature,
these results still give us an indication of where LGRB progenitor masses might lie.

There have been a number of associations of LGRBs with type Ib/c SNe, suggesting a
common progenitor. SN Ib/c, or “stripped-envelope” supernovae, are a subtype of CCSNe
arising from “Wolf–Rayet” stars that lost their envelope. As already presented, we find a
maximum mass of CCSN progenitors, comprising both type II and Ib/c SNe, of ∼58+37

−23 M⊙
at 1σ. On the other hand, we obtain estimates of Mlow

LGRB < 24 M⊙ and Mup
LGRB > 51 M⊙.

Given the overlap of the mass ranges of CCSN and LGRB progenitors, and, in particular,
between Mup

CC and Mup
LGRB, our results appear to be compatible with LGRB and SN Ib/c

sharing a common progenitor, even though the uncertainties we find do not allow us to
make any further statement. Nonetheless, this treatment suggests the potential of this type
of study to unveil the nature of transient progenitors, any possible association among them,
and other uncertain aspects such as failed SNe.

Finally, one of the open questions about LGRB progenitors revolves around the nature
of the remnant, which is believed to be either a BH or an NS. According to the “collapsar”
scenario, a highly spinning BH remnant surrounded by a sufficiently massive accretion disk
would be a necessary condition to launch a relativistic jet. On the other hand, the “mag-
netar” scenario predicts the remnant to be a highly magnetized, and rapidly spinning,
NS. In principle, one could use the results obtained in this work to distinguish between
these two scenarios based on the constraints on the LGRB progenitor masses. For example,
if Mlow

LGRB was lying above the expected masses of the NS progenitors, then the “magnetar”
hypothesis would be excluded in favour of the BH remnant one. However, the high uncer-
tainties we obtain for these quantities prevent us from saying anything about this matter.
It would be nonetheless intriguing to explore this aspect once more constraining data are
available in the future (e.g., [145,163,164]).

4.4. Variation on the Cosmic Z Evolution Prescription

As explained above, in order to compute the LGRB rate as a function of redshift, we
adopt the FMR by [136], further implementing the offset from the FMR found in [137].
In this section, we compare our results to the case where we do not consider the offset
from [137] and only adopt the original [136] FMR (Figure 8). To ease the reading, we will
refer to the two cases as C20 and C20+23. As one can see in Table A3 in Appendix D,
the parameter estimates obtained in the C20 case are compatible with those obtained in
this work (compare with Table 1).

As shown in Figure 8a,b, the galaxy metallicity decreases much more slowly with
redshift for the C20 FMR with respect to the C20+23 one. By looking at Figure 8c,d, we can
see that both FMRs seem to produce relatively good fits to the observational points. If we
compute the corresponding chi squares, we actually find that the C20 case is somewhat
disfavored, with χ2

LGRB = 3.5 as opposed to χ2
LGRB = 1.5 for the C20+23 FMR. This can

be better appreciated by looking at Figure 8e,f, where we show the LGRB fit as a function
of cosmic age instead of redshift. Indeed, the fit somehow struggles to intercept some of
the points in the C20 case (Figure 8f). Even though the uncertainties and low significance
of these results prevent us from drawing any robust conclusion, they might suggest the
potential of this approach to discriminate between different Z evolutions in the future,
with more LGRB observations available at high redshift. For example, if the results shown
in this section were reproduced at higher significance level, then FMRs with a steeper
decrease with redshift would be favored with respect to more constant ones.
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5. Conclusions

In this work, we seek to find a new determination of the stellar IMF, inferred from
the observed rates of stellar transients. We adopt a parametric approach in order to
model the UV luminosity density, local SMD, and SN Ia, CCSN, and LGRB rates as a
function of redshift, and constrain the model parameters in order to reproduce the ob-
servational data available for these quantities. Remarkably, we obtain an IMF compat-
ible with those typically assumed based on stellar observations in the local Universe,
e.g., the Salpeter, Kroupa, and Chabrier IMFs. In particular, we infer an IMF slope of
ξ = −2.53+0.24

−0.27, consistent with the usual values of −2.3 (Chabrier, Kroupa), −2.35 (Salpeter),
and −2.7 (Kroupa, Scalo). We stress that our determination is completely independent
from all previous ones. Moreover, our parametric approach allows us to keep the number
of physical assumptions at the minimum, leading to a fully observation-driven IMF deter-
mination. We also find that, according to our results, a fraction NIa = 3.5 ± 0.9 × 10−2 of
stars in the mass range of SN Ia progenitors actually explode as SNe Ia due to the processes
happening in the binaries.

The LGRB rate is not crucial for inferring the IMF, which can be robustly determined
even by considering only the UV luminosity density, local SMD, and SN Ia and CCSN
rates. However, considering the LGRB rate, along with an up-to-date, semi-empirical
determination of the galaxy metallicity evolution throughout cosmic history, enables us to
extend the study to LGRB progenitors and the cosmic metallicity evolution. Interestingly,
an interplay emerges between the maximum metallicity of LGRB progenitors and the
dispersion in the galaxy metallicity distribution. We find an estimate of Zmax = 0.12+0.29

−0.05
Z⊙, which is in accordance with previous theoretical determinations in the literature.
Moreover, we find that a fraction NLGRB = 10+23

−7 × 10−2 of stars in the mass range of
LGRB progenitors actually produce an LGRB. This fraction agnostically accounts for all
conditions required to have LGRB emission, including progenitor rotation, accretion disk
mass, remnant nature, and jet-launching and jet-energy conversion to LGRB. Moreover, it
might contain the possible effect of LGRBs arising in binary systems.

Finally, we attempt to constrain the masses of CCSN and LGRB progenitors. Due
to the simplicity of the model, and the limits of the adopted constraints, we are only
able to obtain Mup

CC∼58+37
−23 M⊙ for the upper mass limit of CCSN progenitors. Similarly,

we obtain Mlow
LGRB < 24 M⊙ and Mup

LGRB > 51 M⊙ for LGRB progenitors. We also test
the hypothesis of an IMF varying with redshift, finding no evidence of evolution for the
IMF slope, while the characteristic mass exhibits a mild increase with redshift. Despite the
uncertainties associated with these results, they show the potential of this approach to study
the progenitors of stellar transients and their IMF, especially considering the increased
wealth of data in the future. Indeed, a number of missions relevant to this purpose are
programmed or already ongoing, such as the Euclid, JWST, the Vera Rubin Observatory,
the Nancy Grace Roman Space Telescope, the Zwicky Transient Facility, WFIRST, ULTIMATE-
Subaru, and the Gamow Explorer missions (e.g., [145,152–156,163–173]). In particular, up to
thousands or even tens of thousands SNe are expected to be observed, reaching out to higher
redshifts than are currently set (e.g., [152–156,166,170]). Moreover, new determinations of
the SFRD and/or UV luminosity density are promised, especially at high redshifts, e.g., by
the JWST (https://www.stsci.edu/jwst/). These achievements might also allow us to
shed light on topics such as the competing scenarios for LGRB progenitors, their putative
association with those of SNe Ib/c, and the IMF universality.

https://www.stsci.edu/jwst/
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Figure 8. Comparison between the Z-dependent SFRDs (upper panels) and LGRB rate fits we obtain
by adopting the FMR by [136] plus the offset from [137] (left panels) and the original FMR by [136]
without the offset from [137] (right panels). We show the LGRB fits both as function of redshift
(middle panels) and cosmic age (lower panels). σZ is fixed to 0.15 in the upper panels.
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Appendix A. Update on LGRB Rate Determination by Ghirlanda and Salvaterra 2022

In this work, we consider the updated version of the LGRB rate determination as a
function of redshift by [142]. This was obtained by updating the BAT6 sample used in [142],
which contained 79 GRBs up to May 2014, with all the bursts that satisfy the definition of
the BAT6 sample as described in [174]. This new sample contains 124 GRBs up to December
2022. With this new sample, the updated parameters (with their associated 1σ uncertainties)
describing the LGRB rate as a function of redshift (see Equation (1) of [142]) are as follows:
ρ0 = 68.33+23.87

−19.68 Gpc−3 yr−1, pz,1 = 3.13+0.25
−0.28, pz,2 = 3.44+0.21

−0.25, and pz,3 = 5.33+0.37
−0.33, and the

luminosity evolution parameter is δ = 1.05+0.38
−0.18. In Figure A1, we show a comparison

between the two determinations. As one can see, the new LGRB rate peaks at slightly
higher redshift, around z∼3, and decreases less steeply with respect to the old one, leading
to an enhanced occurrence of LGRBs at high redshift.

Appendix B. Additional MCMC Results

We report in Figure A2 the corner plot containing the posterior probabilities we obtain
for the whole parameter space regarding the IMF, ρUV(z), ρ⋆,0, RIa(z), RCC(z), RLGRB(z),
and the cosmic Z evolution.

In Figure A3 and Table A1, we instead report the MCMC results obtained without
considering LGRBs and the cosmic Z evolution, only employing the constraints on ρUV(z),
ρ⋆,0, RIa(z), and RCC(z). As one can see, these results are compatible with those shown in
Figure A2 (or Figure 2) and Table 1.

Table A1. Estimates of the model parameters for the case where we do not consider LGRBs and the
cosmic Z evolution.

log ρUV,0 25.93+0.07
−0.08 log(erg s−1 Mpc−3)

α 3.50+0.27
−0.31 -

β 6.32 ± 0.36 -
γ 2.61+0.19

−0.23 -
log mc −0.95+0.39

−0.98 log(M⊙)

ξ −2.71+0.30
−0.33 -

log NIa −1.54+0.11
−0.15 -

log Mup
CC 1.73 ± 0.24 log(M⊙)

ln f −4.32+0.21
−0.17 -

Appendix C. Additional Results for IMF Variation

In this section, we present the corner plot for the whole parameter space obtained in
the case of the IMF being variable with redshift (Figure A4), as well as Table A2 with all
parameter estimates, to supplement the results shown in Section 3.3.
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Table A2. Estimates of the model parameters in the case of variable IMF with redshift.

log ρUV,0 25.93 ± 0.07 log(erg s−1 Mpc−3)

α 3.11+0.22
−0.25 -

β 6.31+0.38
−0.42 -

γ 2.95+0.22
−0.26 -

log mc,0 −1.08 ± 0.51 log(M⊙)

ξ0 −2.55+0.25
−0.29 -

log NIa −1.46+0.10
−0.11 -

log Mup
CC 1.79+0.38

−0.16 log(M⊙)

γim f 0.53+0.21
−0.43 -

fim f < 0.026 -
z0 — -
σZ 0.60+0.39

−0.12 -
log NLGRB −1.15 ± 0.56 -
log Zmax −2.44+0.56

−0.46 -

log Mlow
LGRB < 1.45 log(M⊙)

log Mup
LGRB > 1.73 log(M⊙)

ln f −4.38+0.26
−0.19 -

Appendix D. Parameter Estimates for the FMR Variation

We report in Table A3 the parameter estimates returned by the MCMC for the FMR
variation by [136], without the offset from [137] that we instead implement in this work.
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Figure A1. Comparison between the LGRB rate as a function of redshift obtained in [142] (gray
line) and the updated determination employed in this work, accounting for more recent LGRB
observations (purple line). Bands represent the corresponding 1σ uncertainties.
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Figure A2. Same as Figure 2, for the whole parameter space.
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Figure A4. Corner plot with individual and joint posterior probabilities for the case of IMF variable
with redshift, for the whole parameter space. For other details, see the caption of Figure 2.

Table A3. Parameter estimates for the variation with FMR by [136], without the offset from [137].

log ρUV,0 25.88+0.05
−0.06 log(erg s−1 Mpc−3)

α 3.32 ± 0.23 -
β 5.93 ± 0.28 -
γ 2.74 ± 0.20 -

log mc −0.94+0.60
−0.74 log(M⊙)

ξ −2.46 ± 0.25 -
log NIa −1.41+0.11

−0.13 -

log Mup
CC 1.76 ± 0.22 log(M⊙)

σZ 0.36+0.11
−0.14 -

log NLGRB −0.69+0.68
−0.18 -

log Zmax −2.76+0.46
−0.30 -

log Mlow
LGRB < 1.34 log(M⊙)

log Mup
LGRB 1.82+0.33

−0.13 log(M⊙)

ln f −4.32+0.19
−0.16 -
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