
ESAIM: COCV 29 (2023) 22 ESAIM: Control, Optimisation and Calculus of Variations
https://doi.org/10.1051/cocv/2023011 www.esaim-cocv.org

OPTIMAL CONTROL OF ENSEMBLES OF DYNAMICAL SYSTEMS∗

Alessandro Scagliotti1,2,**

Abstract. In this paper we consider the problem of the optimal control of an ensemble of affine-control
systems. After proving the well-posedness of the minimization problem under examination, we establish
a Γ-convergence result that allows us to substitute the original (and usually infinite) ensemble with
a sequence of finite increasing-in-size sub-ensembles. The solutions of the optimal control problems
involving these sub-ensembles provide approximations in the L2-strong topology of the minimizers
of the original problem. Using again a Γ-convergence argument, we manage to derive a Maximum
Principle for ensemble optimal control problems with end-point cost. Moreover, in the case of finite
sub-ensembles, we can address the minimization of the related cost through numerical schemes. In
particular, we propose an algorithm that consists of a subspace projection of the gradient field induced
on the space of admissible controls by the approximating cost functional. In addition, we consider an
iterative method based on the Pontryagin Maximum Principle. Finally, we test the algorithms on an
ensemble of linear systems in R2.
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1. Introduction

An ensemble of control systems is a parametrized family of controlled ODEs of the form{
ẋθ(t) = Gθ(xθ(t), u(t)) a.e. in [0, T ],

xθ(0) = xθ0,
(1.1)

where θ ∈ Θ ⊂ Rd is the parameter of the ensemble, u : [0, T ] → Rk is the control, and, for every θ ∈ Θ,
Gθ : Rn × Rk → Rn is the function that prescribes the dynamics of the corresponding system. The peculiarity
of this kind of problem is that the elements of the ensemble are simultaneously driven by the same control u.
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2 A. SCAGLIOTTI

This framework is particularly suitable for modeling real-world control systems affected by data uncertainty
(see, e.g., [28]), or the problem of controlling a large number of particles through a signal (see [9]). Also from
the theoretical viewpoint, there is currently an active research interest in this topic. For instance, the problem
of the controllability of ensembles of linear equations has been recently investigated in [15]. In [2] it was proved
a generalization of the Chow–Rashevskii theorem for ensembles of linear-control systems. In [19, 20] ensembles
were studied in the framework of nuclear magnetic resonance spectroscopy. Moreover, as regards ensembles in
quantum control, we report the contributions [4, 5], and we recall the recent works [3, 11]. Finally, we mention
that the interplay between Reinforced Learning and optimal control of systems affected by partially unknown
dynamics has been investigated in [22, 24–26].

In the present paper, we focus on a particular instance of (1.1), corresponding to the case in which the
dynamics has an affine dependence on the controls. More precisely, we consider ensembles with the following
expression:

{
ẋθ(t) = F θ0 (xθ(t)) + F θ(xθ(t))u(t) a.e. in [0, 1],

xθ(0) = xθ0,
(1.2)

where θ ∈ Θ ⊂ Rd varies in a compact set, and, for every θ ∈ Θ, the vector field F θ0 : Rn → Rn represents the
drift, while the matrix-valued application F θ = (F θ1 , . . . , F

θ
k ) : Rn → Rn×k collects the controlled fields. We set

U := L2([0, 1],Rk) as the space of admissible controls, and, for every θ ∈ Θ, the curve xθu : [0, 1]→ Rn denotes
the trajectory of (1.2) corresponding to the parameter θ and to the control u ∈ U . We are interested in the
optimal control problem related to the minimization of a functional F : U → R+ of the form

F(u) :=

∫
Θ

∫ 1

0

a(t, xθu(t), θ) dν(t)dµ(θ) +
β

2
||u||2L2 (1.3)

for every u ∈ U , where a : [0, 1] × Rn × Θ → R+ is a non-negative continuous function, while ν, µ are Borel
probability measures on [0, 1] and Θ, respectively, and β > 0 is a constant that tunes the L2-squared regulariza-
tion. When the support of the probability measure µ is not reduced to a finite set of points, the minimization
of the functional F is often intractable in practical situations since a single evaluation of F potentially requires
the resolution of an infinite number of Cauchy problems(1.2). Therefore, it is natural to try to replace µ with
a sequence of probability measures (µN )N∈N such that each of them charges a finite subset of Θ, and such that
µN ⇀∗ µ as N →∞. Then, we can consider the sequence of functionals (FN )N∈N defined as

FN (u) :=

∫
Θ

∫ 1

0

a(t, xθu(t), θ) dν(t)dµN (θ) +
β

2
||u||2L2 (1.4)

for every u ∈ U and for every N ∈ N. One of the goals of the present work is to study in which sense the
functionals defined in (1.4) approximate the cost F . It turns out that, when considering the restrictions to
bounded subsets of U , the sequence (FN )N∈N is Γ-convergent to F with respect to the weak topology of L2.
We report that a similar approach was undertaken in [27], where the authors considered ensembles of control
systems in the general form (1.1), and it was proved that the averaged approximations of the cost functional
under examination are Γ-convergent to the original objective with respect to the strong topology of L2. We
insist on the fact that our result is not reduced to a particular case of the one studied in [27]. Indeed, on one
hand, using the strong topology, in [27] it was possible to establish Γ-convergence for more general ensembles
of control systems, and not only under the affine-control dynamics (1.2). On the other hand, in the general
situation considered in [27] the functionals of the approximating sequence are not equi-coercive (often neither
coercive) in the L2-strong topology, and proving that the minimizers of the approximating functionals are (up
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to subsequences) convergent could be a challenging task. However, in the case of affine-control systems we
manage to prove Γ-convergence even if the space of admissible controls U is equipped with the weak topology.
Moreover, if for every N ∈ N we choose uN ∈ arg minU FN , standard facts in the theory of Γ-convergence ensure
that the sequence (uN )N∈N is weakly pre-compact and that each of its limiting points is a minimizer of the
original functional F defined in (1.3). What is more surprising is that—owing to the peculiar form of the cost
(1.3)—it turns out that (uN )N∈N is also pre-compact in the L2-strong topology. Similar phenomena have been
recently observed in [30, 31], respectively in the frameworks of sub-Riemannian geodesics approximations and
of data-driven diffeomorphisms reconstruction.

In the second part of the paper, we restrict our focus to the case of the average end-point cost, i.e., when
ν = δt=1 in the integral at the right-hand side of (1.3) and (1.4). In this framework, from a direct application
of the classical theory, we first derive the Pontryagin Maximum Principle for the problem of minimizing the
functional FN for N ∈ N. Then, using again an argument based on the Γ-convergence, we manage to formulate
the Pontryagin necessary conditions for local minimizers of the functional F . We report that our analysis has
been inspired by the results in [6], where the authors establish the Maximum Principle for a large class of
ensemble optimal control problems with average end-point cost. Even though our strategy is analogous to the
path described in [6] (i.e., first considering auxiliary problems involving discrete measures, and then recovering
the Maximum Principle for the ensemble optimal control problem), our case is not covered by the results
presented in [6]. Namely, in [6] it is required that, for every point in a neighborhood of an optimal trajectory,
the set of the admissible velocities is bounded, and this fact is crucial to prove the continuity of the trajectories
when the controls are equipped with the Ekeland’s metric (see [6], Lem. 5.1). Moreover, we observe that in [6]
the limiting process evokes Ekeland’s variational principle, while we employ Γ-convergence and we endow the
space of controls with the L2-weak topology. Finally, we recall that in [33] the Maximum Principle for minimax
optimal control was derived.

In the last part, we propose two numerical schemes for finite-ensemble optimal control problems with average
end-point cost. More precisely, recalling that U is endowed with the usual Hilbert space structure, we first
consider the gradient field induced by the functional FN : U → R+ on its domain. This is done by adapting to
the affine-control case a result obtained in [30] for linear-control systems. Then, we construct Algorithm 1 as
the orthogonal projection of this gradient field onto a subspace UM ⊂ U such that dim(UM ) <∞. On the other
hand, Algorithm 2 is an adaptation to our problem of an iterative scheme originally proposed in [29], based
on the Maximum Principle. Variants of Algorithm 1 and Algorithm 2 have been recently introduced in [31] as
training procedures of a control-theoretic inspired Deep Learning architecture. We recall that a multi-shooting
technique for ensemble optimal control has been recently investigated in [18].

We briefly outline the structure of this work. In Section 2 we establish some preliminary results. In particular,
we show that the trajectories of the ensemble (1.2) are uniformly C0-stable for L2-weakly convergent sequences
of admissible controls. This property is peculiar to affine-control dynamics and plays a crucial role in the other
sections. In Section 3 we formulate the ensemble optimal control problem related to the minimization of the
functional F : U → R+ defined in (1.3), and we prove the existence of a solution using the direct method
of calculus of variations. In Section 4 we establish the approximation results by showing that the sequence
of functionals (FN )N∈N defined as in (1.4) are Γ-convergent to F with respect to the weak topology of L2.
In Section 5, for every N ∈ N, we compute the gradient field induced by the functional FN on the space of
admissible controls, and we derive the Pontryagin Maximum Principle for the optimal control problem related
to the minimization of FN . Starting from Section 5 we restrict our attention to the end-point integral cost, that
corresponds to the choice ν = δt=1 in (1.3). In Section 6 we prove the Maximum Principle for local minimizers of
the functional F , using a strategy based on Γ-convergence and the construction of auxiliary problems involving
finite ensembles of control systems. In Section 7 we construct two numerical schemes for the minimization of
FN in the case of end-point cost. The first method is based on the gradient field derived in Section 5, while
for the second we make use of the Maximum Principle for finite ensembles. Finally, in Section 8 we test the
algorithms on an approximately controllable ensemble of systems in R2.
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1.1. General notations

We introduce below some basic notations. For every d ≥ 1, we consider the space Rd endowed with the usual
Euclidean norm |z|2 :=

√
〈z, z〉Rd for every z ∈ Rd, induced by the scalar product

〈x, y〉Rd :=

d∑
i=1

xiyi

for every x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd. We sometimes make use of the equivalent norm | · |1 defined

as |z|1 =
∑d
i=1 |zi| for every z ∈ Rd. We recall that the inequality

1√
d
|z|2 ≤ |z|1 ≤

√
d|z|2 (1.5)

holds for every z ∈ Rd.

2. Framework and preliminary results

In this paper, we study ensembles of control systems in Rn with affine dependence in the control variable
u ∈ Rk. More precisely, given a compact set Θ embedded into a finite-dimensional Euclidean space, for every
θ ∈ Θ we are assigned an affine-control system of the form{

ẋθ(t) = F θ0 (xθ(t)) + F θ(xθ(t))u(t),

xθ(0) = xθ0,
(2.1)

where for every θ ∈ Θ we require that F θ0 : Rn → Rn and F θ : Rn → Rn×k are Lipschitz-continuous applications.
We stress the fact that the control u : [0, 1] → Rk does not depend on θ, so it is the same for every control
system of the ensemble. Let us introduce F0 : Rn ×Θ→ Rn and F : Rn ×Θ→ Rn×k defined respectively as

F0(x, θ) := F θ0 (x) and F (x, θ) := F θ(x) (2.2)

for every (x, θ) ∈ Rn ×Θ. We assume that F0 and F are Lipschitz-continuous mappings, i.e., that there exists
a constant L > 0 such that

|F0(x1, θ1)− F0(x2, θ2)|2 ≤ L
(
|x1 − x2|2 + |θ1 − θ2|2

)
(2.3)

and

sup
i=1,...,k

|Fi(x1, θ1)− Fi(x2, θ2)|2 ≤ L
(
|x1 − x2|2 + |θ1 − θ2|2

)
(2.4)

for every (x1, θ1), (x2, θ2) ∈ Rn × Θ. In (2.4) we used Fi(x, θ) to denote the vector obtained by taking the ith

column of the matrix F (x, θ), for every i = 1, . . . , k. Similarly, for every θ ∈ Θ we shall use F θi : Rn → Rn
to denote the vector field corresponding to the ith column of the matrix-valued application F θ : Rn → Rn×k.
We observe that (2.3)–(2.4) imply that the vector fields F θ0 , F

θ
1 , . . . , F

θ
k are uniformly Lipschitz-continuous as

θ varies in Θ. Another consequence of the Lipschitz-continuity conditions (2.3)–(2.4) is that the vector fields
constituting the affine-control system (2.1) have sub-linear growth, uniformly with respect to the dependence
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on θ. Namely, we have that there exists a constant C > 0 such that

sup
θ∈Θ
|F θ0 (x)|2 ≤ C

(
|x|2 + 1) (2.5)

and

sup
θ∈Θ

sup
i=1,...,k

|F θi (x)|2 ≤ C
(
|x|2 + 1) (2.6)

for every x ∈ Rn. Finally, let us consider the application x0 : Θ→ Rn that prescribes the initial state of (2.1),
i.e.,

x0(θ) := xθ0 (2.7)

for every θ ∈ Θ. We assume that x0 is continuous. As a matter of fact, there exists a constant C ′ > 0 such that

sup
θ∈Θ
|x0(θ)|2 ≤ C ′. (2.8)

We set U := L2([0, 1],Rk) as the space of admissible controls, and we equip it with the usual Hilbert space
structure given by the scalar product

〈u, v〉L2 :=

∫ 1

0

〈u(t), v(t)〉Rk dt (2.9)

for every u, v ∈ U . For every u ∈ U and θ ∈ Θ, the curve xθu : [0, 1] → Rn denotes the solution of the Cauchy
problem (2.1) corresponding to the system identified by θ and to the admissible control u. We recall that, for
every u ∈ U and θ ∈ Θ, the existence and uniqueness of the solution of (2.1) are guaranteed by the Carathéodory
Theorem (see, e.g., [17], Thm. 5.3). Given u ∈ U , we describe the evolution of the ensemble of control systems
(2.1) through the mapping Xu : [0, 1]×Θ→ Rn defined as follows:

Xu(t, θ) := xθu(t) (2.10)

for every (t, θ) ∈ [0, 1] × Θ. In other words, for every u ∈ U the application Xu collects the trajectories of the
ensemble of control systems (2.1). We study the properties of the mapping Xu in Subsection 2.2 below. Before
proceeding, we recall some elementary facts in functional analysis.

2.1. General results in functional analysis

We begin by recalling some basic facts about the space of admissible controls U := L2([0, 1],Rk). First of all,
the linear inclusion U ↪→ L1([0, 1],Rk) is continuous, and from (1.5) and the Jensen inequality it follows that

||u||L1 :=

∫ 1

0

|u(τ)|1 dτ ≤
√
k||u||L2 (2.11)

for every u ∈ U . We shall often make use of L2-weakly convergent sequences. Given a sequence (um)m∈N ⊂ U ,
we say that (um)m∈N is convergent to u ∈ U with respect to the weak topology of L2 if

lim
m→∞

〈v, um〉L2 = 〈v, u〉L2
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for every v ∈ U , and we write um ⇀L2 u as m→∞. If um ⇀L2 u as m→∞, then we have

||u||L2 ≤ lim inf
m→∞

||um||L2 . (2.12)

Finally, we recall that any bounded sequence (um)m∈N is pre-compact with respect to the L2-weak topology.
For further details on weak topologies of Banach spaces, the reader is referred to Chapter 3 of [8]. We conclude
this part with the following fact concerning the one-dimensional Sobolev space H1([a, b],Rd) := W 1,2([a, b],Rd).
For a complete survey on the topic, we recommend ([8], Chap. 8).

Proposition 2.1. Let f : [a, b]→ Rd be a function in H1([a, b],Rd). Then, f is Hölder-continuous with exponent
1
2 , namely

|f(t1)− f(t2)|2 ≤ ||f ′||L2 |t1 − t2|
1
2

for every t1, t2 ∈ [a, b], where f ′ ∈ L2([0, 1],Rd) denotes the weak derivative of f .

2.2. Trajectories of the controlled ensemble

We now investigate the evolution of the ensemble of control systems (2.1) when we consider a sequence of
L2-weakly convergent admissible controls. The proof is postponed to the end of the present subsection.

Proposition 2.2. Let us consider a sequence of admissible controls (um)m∈N ⊂ U such that um ⇀L2 u∞ as
m→∞. For every m ∈ N ∪ {∞}, let Xm : [0, 1]×Θ→ Rn be the application defined in (2.10) that collects the
trajectories of the ensemble of control systems (2.1) corresponding to the admissible control um. Therefore, we
have that

lim
m→∞

sup
(t,θ)∈[0,1]×Θ

|Xm(t, θ)−X∞(t, θ)|2 = 0. (2.13)

Remark 2.3. Proposition 2.2 is the cornerstone of the theoretical results presented in this paper. Indeed, the
fact fact that the trajectories of the ensemble (2.1) are uniformly convergent when the corresponding controls
are L2-weakly convergent is used both to prove the existence of optimal controls (see Thm. 3.2) and to establish
the Γ-convergence result (see Thm. 4.6). We stress that the fact that the systems in the ensemble (2.2) have
affine dependence in the controls is crucial for the proof of Proposition 2.2.

In view of the next auxiliary result, we introduce some notations. For every θ ∈ Θ, we define F̃ θ : Rn →
Rn×(k+1) as follows:

F̃ θ(x) := (F θ0 (x), F θ(x)), (2.14)

for every x ∈ Rn, i.e., we add the column F θ0 (x) to the n × k matrix F θ(x). Similarly, for every u ∈ U =
L2([0, 1],Rk), we consider the extended control ũ ∈ Ũ := L2([0, 1],Rk+1) defined as

ũ(t) = (1, u(t))T (2.15)

for every t ∈ [0, 1], i.e., we add the component u0 = 1 to the column-vector u(t).

Lemma 2.4. Let us consider a sequence of admissible controls (um)m∈N ⊂ U such that um ⇀L2 u∞ as m→∞.
For every m ∈ N ∪ {∞} and for every θ ∈ Θ, let xθm : [0, 1]→ Rn be the solution of (2.1) corresponding to the
ensemble parameter θ and to the admissible control um. Then, for every θ ∈ Θ we have

lim
m→∞

||xθm − xθ∞||C0 = 0. (2.16)
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Proof. Let us fix θ ∈ Θ. By means of the matrix-valued function F̃ : Rn → Rn×(k+1) and the extended control
ũ : [0, 1]→ Rk+1 defined in (2.14) and (2.15) respectively, we can equivalently rewrite the affine-control system
(2.1) corresponding to θ as follows: {

ẋθ = F̃ θ(xθ)ũ,

xθ(0) = xθ0,
(2.17)

for every u ∈ U . In other words, any solution xθu : [0, 1]→ Rn of (2.1) corresponding to the admissible control
u ∈ U is in turn a solution of the linear-control system (2.17) corresponding to the extended control ũ ∈ Ũ . On
the other hand, the convergence um ⇀L2 u∞ as m → ∞ implies the convergence of the respective extended
controls, i.e., ũm ⇀L2 ũ∞ as m → ∞. Therefore, (xθm)m∈N is the sequence of solutions of the linear-control
system (2.17) corresponding to the L2-weakly convergent sequence of controls (ũm)m∈N. Moreover, xθ∞ is the
solution of (2.17) associated with the weak-limiting control ũ∞. Using Lemma 7.1 of [30], we deduce (2.16).

We are now in position to prove Proposition 2.2.

Proof of Proposition 2.2. Let us consider a L2-weakly convergent sequence (um)m∈N ⊂ U such that um ⇀L2 u∞
as m → ∞. We immediately deduce that there exists R > 0 such that ||um||2L2 ≤ R for every m ∈ N ∪ {∞}.
Thus, in virtue of Lemma A.5, we deduce that the sequence of mappings {Xm : [0, 1]×Θ→ Rn}m∈N is uniformly
equi-continuous, while Lemma A.2 guarantees that it is uniformly equi-bounded. Therefore, applying the Ascoli-
Arzelà Theorem (see, e.g., [8], Thm. 4.25), we deduce that the family (Xm)m∈N is pre-compact with respect to
the strong topology of the Banach space C0([0, 1]×Θ,Rn). Finally, Lemma 2.4 implies that

lim
m→∞

Xm(t, θ) = X∞(t, θ)

for every (t, θ) ∈ [0, 1]×Θ. In particular, we deduce that the set of limiting points of the pre-compact sequence
(Xm)m∈N is reduced to the single-element set {X∞}. This proves (2.13).

2.3. Adjoint variables of the controlled ensemble

In this subsection we introduce a function Λu, which will play a crucial role in Section 6. Here we consider
an assigned function a : Rn ×Θ→ R such that (x, θ) 7→ ∇xa(x, θ) is continuous. Moreover, we further require
that (x, θ) 7→ ∂

∂xFi(x, θ) is continuous for every i = 0, . . . , k. For every u ∈ U and every θ ∈ Θ, we define the
function λθu : [0, 1]→ (Rn)∗ as the solution of the following differential equation{

λ̇θu(t) = −λθu(t)
(
∂F0(xθu(t),θ)

∂x +
∑k
i=1 ui(t)

∂Fi(x
θ
u(t),θ)
∂x

)
,

λθu(1) = ∇xa(xθu(1), θ),
(2.18)

where the curve xθu : [0, 1] → Rn is the solution of the Cauchy problem (2.1) corresponding to the system
identified by θ and to the admissible control u. We insist on the fact that in this paper λθu is always understood
as a row-vector, as well as any other element of (Rn)∗. The existence and the uniqueness of the solution of (2.18)
follow as a standard application of the Carathéodory Theorem (see, e.g., [17], Thm. 5.3). Similarly as done in
the previous subsection, for every u ∈ U we introduce the function Λu : [0, 1]×Θ→ (Rn)∗ defined as

Λu(t, θ) := λθu(t). (2.19)

In the case of a sequence of weakly convergent controls (um)m∈N, for the corresponding sequence (Λum)m∈N we
can establish a result analogue to Proposition 2.2.
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Proposition 2.5. Let us assume that the mappings (x, θ) 7→ ∂
∂xFi(x, θ) are continuous for every i = 0, . . . , k,

as well as the gradient (x, θ) 7→ ∇xa(x, θ). Let us consider a sequence of admissible controls (um)m∈N ⊂ U such
that um ⇀L2 u∞ as m→∞. For every m ∈ N ∪ {∞}, let Λm : [0, 1]×Θ→ (Rn)∗ be the application defined in
(2.19) that collects the adjoint variables (2.18) corresponding to the admissible control um. Then, we have that

lim
m→∞

sup
(t,θ)∈[0,1]×Θ

|Λm(t, θ)− Λ∞(t, θ)|2 = 0. (2.20)

Before detailing the proof of Proposition 2.5, we establish an auxiliary result with a similar flavor as
Lemma 2.4.

Lemma 2.6. Let us assume that the mappings (x, θ) 7→ ∂
∂xFi(x, θ) are continuous for every i = 0, . . . , k, as well

as the gradient (x, θ) 7→ ∇xa(x, θ). Let us consider a sequence of admissible controls (um)m∈N ⊂ U such that
um ⇀L2 u∞ as m→∞. For every m ∈ N ∪ {∞} and for every θ ∈ Θ, let λθm : [0, 1]→ (Rn)∗ be the solution of
(2.18) corresponding to the ensemble parameter θ and to the admissible control um. Then, for every t ∈ [0, 1]
and for every θ ∈ Θ, we have

lim
m→∞

||λθm(t)− λθ∞(t)||C0 = 0. (2.21)

Proof. The weak convergence um ⇀L2 u∞ as m→∞ implies that there exists R > 0 such that ||um||L2 ≤ R for
every m ∈ N∪{∞}. Let us fix θ ∈ Θ. With the same argument as in the proof of Lemma B.2 we deduce that the
sequence (λθm)m∈N ⊂ H1([0, 1],Rk) is equi-bounded. Therefore, there exists a weakly convergent subsequence

(λθm`)`∈N such that λθm` ⇀H1 λ̄θ as `→∞. Moreover, this implies that λ̇θm` ⇀L2
˙̄λθ as `→∞, while from the

compact inclusion H1 ↪→ C0 we deduce that λθm` →C0 λ̄θ as ` → ∞. In particular, this last convergence and
Lemma 2.4 imply that

λ̄θ(1) = lim
`→∞

λθm`(1) = lim
`→∞

∇xa(xθm`(1), θ) = ∇xa(xθ∞(1), θ), (2.22)

where for everym ∈ N∪{∞} the curve xθm : [0, 1]→ Rn denotes the solution of (2.1) corresponding to the control
um and to the parameter θ. We want to prove that λ̄θ : [0, 1] → (Rn)∗ is the solution of (2.18) corresponding
to the control u∞. We recall that

λ̇θm` = λθm`

(
∂F0(xθm`(·), θ)

∂x
+

k∑
i=1

ui,m`
∂Fi(x

θ
m`

(·), θ)
∂x

)
(2.23)

for every ` ∈ N. We observe that, in virtue of Lemma A.2, there exists KR ⊂ Rn such that xθm(t) ∈ KR for every
m ∈ N∪{∞} and for every (t, θ) ∈ [0, 1]×Θ. Then, owing to the continuity of the mappings (x, θ) 7→ ∂

∂xFi(x, θ)

for every i = 0, . . . , k, we deduce the convergence ∂
∂xFi(xm`(·), θ) →C0

∂
∂xFi(x∞(·), θ) as ` → ∞ for every

i = 0, . . . , k. Summarizing, we have that


λ̇θm` ⇀L2

˙̄λθ

λθm` →C0 λ̄θ

ui,m` ⇀L2 ui,∞ for every i = 1, . . . , k,
∂
∂xFi(xm`(·), θ)→C0

∂
∂xFi(x∞(·), θ) for every i = 0, . . . , k,

as `→∞. (2.24)
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Combining (2.23) and (2.24), we derive that

˙̄λθ = λ̄θ

(
∂F0(xθ∞(·), θ)

∂x
+

k∑
i=1

ui,∞
∂Fi(x

θ
∞(·), θ)
∂x

)
. (2.25)

The identities (2.22) and (2.25) show that λ̄θ ≡ λθ∞, where λθ∞ : [0, 1]→ (Rn)∗ is the unique solution of (2.18)
corresponding to the control u∞. Hence, since any H1-weakly convergent subsequence of (λθm)m∈N must converge
to λθ∞, we get (2.21). Since this argument holds for every choice of θ ∈ Θ, we deduce the thesis.

We are now able to prove Proposition 2.5.

Proof of Proposition 2.5. The argument is the same as in the proof of Proposition 2.2. Namely, Lemma 2.6 guar-
antees the pointwise convergence of the mappings (Λm)m∈N to Λ∞, while Lemma B.1 and Lemma B.4 ensure,
respectively, that the elements of the sequence are uniformly equi-bounded and uniformly equi-continuous.

2.4. Gradient field for affine-control systems with end-point cost

In this subsection we generalize to the case of affine-control systems some of the results obtained in [30] in the
framework of linear-control systems with end-point cost. As we shall see, the strategy that we pursue consists
in embedding the affine-control system into a larger linear-control system, similarly as done in the proof of
Lemma 2.4. Therefore, we can exploit a consistent part of the machinery developed in [30] to cover the present
case. Let us consider a single affine-control system on Rn of the form

{
ẋ(t) = F0(x(t)) + F (x(t))u(t), for a.e. t ∈ [0, 1],

x(0) = x0,
(2.26)

where F0 : Rn → Rn and F : Rn → Rn×k are C2-regular applications that design the affine-control system, and
u ∈ U = L2([0, 1],Rk) is the control. We introduce the functional J : U → R defined on the space of admissible
controls as follows:

J (u) := a(xu(1)) +
β

2
||u||2L2 (2.27)

for every u ∈ U , where a : Rn → R is a C2-regular function and β > 0 a positive parameter. After proving that
the functional J is differentiable, we provide the Riesz’s representation of the differential duJ : U → R.

Before proceeding, it is convenient to introduce the linear-control system in which we embed (2.26). Similar
to (2.14), let F̃ : Rn → Rn×(k+1) be the function defined as

F̃ (x) := (F0(x), F (x)) (2.28)

for every x ∈ Rn. If we define the extended space of admissible controls as Ũ := L2([0, 1],Rk+1), we may consider
the following linear-control system

{
ẋ(t) = F̃ (x(t))ũ(t) for a.e. t ∈ [0, 1],

x(0) = x0,
(2.29)
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where ũ ∈ Ũ . We observe that we can recover the affine system (2.26) by restricting the set of admissible controls
in (2.29) to the image of the affine embedding i : U → Ũ defined as

i[u] :=

(
1
u

)
. (2.30)

We introduce the extended cost functional J̃ : Ũ → R as

J̃ (ũ) := a(xũ(1)) +
β

2
||ũ||2L2 (2.31)

for every ũ ∈ Ũ , where xũ : [0, 1] → Rn is the absolutely continuous solution of (2.29) corresponding to the
control ũ. To avoid confusion, in the present subsection we denote by 〈·, ·〉U and 〈·, ·〉Ũ the scalar products in U
and Ũ , respectively. In the next result we prove that the functional J : U → R defined in (2.27) is differentiable.

Proposition 2.7. Let us assume that F0 : Rn → Rn and F : Rn → Rn×k are C1-regular, as well as the function
a : Rn → R designing the end-point cost. Then, the functionals J : U → R and J̃ : Ũ → R defined, respectively,
in (2.27) and in (2.31) are Gateaux differentiable at every point of their respective domains.

Proof. We observe that the functional J : U → R satisfies the following identity:

J (u) = J̃ (i(u))− β

2
(2.32)

for every u ∈ U , where i : U → Ũ is the affine embedding reported in (2.30). Since i : U → Ũ is analytic, the
proof reduces to showing that the functional J̃ : Ũ → R is Gateaux differentiable. This is actually the case,
since ũ 7→ β

2 ||ũ||L2 is smooth, while the first term at the right-hand side of (2.31) (i.e., the end-point cost) is
Gateaux differentiable owing to Lemma 3.1 of [30].

By differentiation of the identity (2.32), we deduce that

duJ (v) = di[u]J̃
(
i#[v]

)
(2.33)

for every u, v ∈ U , where we have introduced the linear inclusion i# : U → Ũ defined as

i#[v] :=

(
0
v

)
(2.34)

for every v ∈ U . In virtue of Proposition 2.7, we can consider the vector field G : U → U that represents the
differential of the functional J : U → R. Namely, for every u ∈ U , let G[u] be the unique element of U such that

〈G[u], v〉U = duJ (v) (2.35)

for every v ∈ U . Similarly, let us denote by G̃ : Ũ → Ũ the vector field such that

〈G̃[ũ], ṽ〉Ũ = dũJ̃ (ṽ) (2.36)

for every ũ, ṽ ∈ Ũ . In [30] it was derived the expression of the vector field G̃ associated with the linear-control
system (2.29) and to the cost (2.31). In the next result we use it in order to obtain the expression of G. We use
the notation F (x)T to denote the matrix in Rk×n obtained by the transposition of the matrix F (x) ∈ Rn×k, for
every x ∈ Rn. The analogue convention holds for F̃ (x)T , for every x ∈ Rn.
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Theorem 2.8. Let us assume that F0 : Rn → Rn and F : Rn → Rn×k are C1-regular, as well as the function
a : Rn → R designing the end-point cost. Let G : U → U be the gradient vector field on U that satisfies (2.35).
Then, for every u ∈ U we have

G[u](t) = F (xu(t))TλTu (t) + βu(t) (2.37)

for a.e. t ∈ [0, 1], where xu : [0, 1]→ Rn is the solution of (2.26) corresponding to the control u, and λu : [0, 1]→
(Rn)∗ is the absolutely continuous curve of covectors that solves{

λ̇u(t) = −λu(t)
(
∂F0(xu(t))

∂x +
∑k
i=1 ui(t)

∂Fi(xu(t))
∂x

)
a.e. in [0, 1],

λu(1) = ∇a(xu(1)).
(2.38)

Remark 2.9. In this paper, we understand the elements of (Rn)∗ as row-vectors. Therefore, for every t ∈ [0, 1],
λu(t) should be read as a row-vector. This should be considered to give meaning to (2.38).

Proof of Theorem 2.8. In virtue of (2.33), from the definitions (2.35) and (2.36) we deduce that

〈G[u], v〉U = 〈G̃[i[u]], i#[v]〉Ũ = 〈πG̃[i[u]], v〉U (2.39)

for every u, v ∈ U , where G̃ : Ũ → Ũ is the gradient vector field corresponding to the functional J̃ : Ũ → R, and
π : Ũ → U is the linear application

π :

ṽ0

...
ṽk

 7→
ṽ1

...
ṽk

 (2.40)

for every ṽ ∈ Ũ . Therefore, we can rewrite (2.39) as

G = π ◦ G̃ ◦ i, (2.41)

where i and π are defined, respectively, in (2.30) and in (2.40). This implies that we can deduce the expression
of G from the one of G̃. In particular, from Remark 8 of [30] it follows that for every ũ ∈ Ũ we have

G̃[ũ](t) = F̃ (xũ(t))TλTũ (t) + βũ(t) (2.42)

for a.e. t ∈ [0, 1], where xũ : [0, 1]→ Rn is the solution of (2.29) corresponding to the control ũ, and λũ : [0, 1]→
(Rn)∗ is the absolutely continuous curve of covectors that solves{

λ̇ũ(t) = −λũ(t)
∑k
i=0

(
ũi(t)

∂F̃i(xũ(t))
∂x

)
for a.e. t ∈ [0, 1],

λũ(1) = ∇a(xũ(1)).
(2.43)

We stress the fact that the summation index in (2.43) starts from 0. Then, the thesis follows immediately from
(2.41)–(2.43).

Remark 2.10. The identity (2.41) implies that the gradient field G : U → U is at least as regular as G̃ : Ũ → Ũ .
In particular, under the further assumption that F0 : Rn → Rn, F : Rn → Rn×k and a : Rn → R are C2-regular,
from Lemma 3.2 of [30] it follows that G̃ : Ũ → Ũ is Lipschitz-continuous on the bounded sets of Ũ . In particular,
under the same regularity hypotheses, G : U → U is Lipschitz-continuous on the bounded sets of U .
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3. Optimal control of ensembles

In this section we formulate a minimization problem for the ensemble of affine-control systems (2.1). Namely,
let us consider a non-negative continuous mapping a : [0, 1]× Rn ×Θ→ R+, a positive real number β > 0 and
a Borel probability measure ν on the time interval [0, 1]. Therefore, for every θ ∈ Θ we can study the following
optimal control problem: ∫ 1

0

a(t, xθu(t), θ) dν(t) +
β

2
||u||2L2 → min, (3.1)

where the curve xθu : [0, 1] → Rn is the solution of (2.1) corresponding to the parameter θ ∈ Θ and to the
admissible control u ∈ U . We recall that the ensemble of control systems (2.1) is aimed at modeling our partial
knowledge of the data of the controlled dynamical system. Therefore, it is natural to assume that the space of
parameters Θ is endowed with a Borel probability measure µ that quantifies this uncertainty. In view of this
fact, we can formulate an optimal control problem for the ensemble of control systems (2.1) as follows:∫

Θ

∫ 1

0

a(t, xθu(t), θ) dν(t) dµ(θ) +
β

2
||u||2L2 → min . (3.2)

The minimization problem (3.2) is obtained by averaging out the parameters θ ∈ Θ in the optimal control
problem (3.1) through the probability measure µ.

In this section we study the variational problem (3.2), and we prove that it admits a solution. Before pro-
ceeding, we introduce the functional F : U → R+ associated with the minimization problem (3.2). For every
admissible control u ∈ U , we set

F(u) :=

∫
Θ

∫ 1

0

a(t, xθu(t), θ) dν(t) dµ(θ) +
β

2
||u||2L2 . (3.3)

We first prove an auxiliary lemma regarding the integral cost in (3.2).

Lemma 3.1. Let us consider a sequence of admissible controls (um)m∈N ⊂ U such that um ⇀L2 u∞ as m→∞.
For every m ∈ N ∪ {∞}, let Ym : [0, 1]×Θ→ R+ be defined as follows:

Ym(t, θ) := a(t,Xm(t, θ), θ), (3.4)

where Xm : [0, 1] × Θ → Rn is the application defined in (2.10) corresponding to the admissible control um.
Then, we have that

lim
m→∞

sup
(t,θ)∈[0,1]×Θ

|Ym(t, θ)− Y∞(t, θ)| = 0. (3.5)

Proof. Since the sequence (um)m∈N is weakly convergent, there existsR > 0 such that ||um||L2 ≤ R for everym ∈
N ∪ {∞}. For every m ∈ N ∪ {∞}, let Xm : [0, 1]×Θ→ Rn be the application defined in (2.10) corresponding
to the control um. In virtue of Lemma A.2, there exists a compact set K ⊂ Rn such that

Xm(t, θ) ∈ K

for every (t, θ) ∈ [0, 1] × Θ and for every m ∈ N ∪ {∞}. Recalling that the function a : [0, 1] × Rn × Θ → R+

that defines the integral term in (3.3) is assumed to be continuous, it follows that the restriction

ã := a|[0,1]×K×Θ
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is uniformly continuous. In addition, Proposition 2.2 guarantees that Xm →C0 X∞ as m → ∞. Therefore,
observing that

Ym(t, θ) = ã(t,Xm(t, θ), θ) (3.6)

for every (t, θ) ∈ [0, 1]×Θ and for every m ∈ N ∪ {∞}, we deduce that (3.5) holds.

We are now in position to prove that (3.2) admits a solution.

Theorem 3.2. Let F : U → R+ be the functional defined in (3.3). Then, there exists û ∈ U such that

F(û) = inf
U
F .

Proof. We establish the thesis by means of the direct method of calculus of variations (see, e.g., [14], Thm. 1.15).
Namely, we show that the functional F is coercive and lower semi-continuous with respect to the weak topology
of L2. We first address the coercivity, i.e., we prove that the sub-level sets of the functional F are L2-weakly
pre-compact. To see that, it is sufficient to observe that for every M ≥ 0 we have

{u ∈ U : F(u) ≤M} ⊂ {u ∈ U : ||u||2L2 ≤ 2M/β}, (3.7)

where we used the fact that the first term at the right-hand side of (3.3) is non-negative. To study the lower semi-
continuity, let us consider a sequence of admissible controls (um)m∈N ⊂ U such that um ⇀L2 u∞ as m → ∞.
Using the family of applications (Ym)m∈N∪{∞} defined as in (3.4), we observe that the integral term at the
right-hand side of (3.3) can be rewritten as follows∫

Θ

∫ 1

0

a(t, xθum(t), θ) dν(t) dµ(θ) =

∫
Θ

∫ 1

0

Ym(t, θ) dν(t) dµ(θ)

for every m ∈ N ∪ {∞}. Moreover, the uniform convergence Ym →C0 Y∞ as m → ∞ provided by Lemma 3.1
implies in particular the convergence of the integral term at the right-hand side of (3.3):

lim
m→∞

∫
Θ

∫ 1

0

a(t, xum(t)θ, θ) dν(t) dµ(θ) =

∫
Θ

∫ 1

0

a(t, xu∞(t)θ, θ) dν(t) dµ(θ). (3.8)

Finally, combining (2.12) with (3.8), we deduce that

F(u∞) ≤ lim inf
m→∞

F(um).

This proves that the functional F is lower semi-continuous, and therefore we obtain the thesis.

Remark 3.3. The constant β > 0 in (3.3) is aimed at balancing the effect of the squared L2-norm regularization
and of the integral term. This fact can be crucial in some cases, relevant for applications. Indeed, let us assume
that, for every ε > 0, there exists uε ∈ U such that∫

Θ

∫ 1

0

a(t, xθuε(t), θ) dν(t) dµ(θ) ≤ ε

2
.

Then, let us set

β =
ε

||uε||2L2

,
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and let û ∈ U be a minimizer for the functional F : U → R+ defined as in (3.3). Therefore, we have that

∫
Θ

∫ 1

0

a(t, xθû(t), θ) dν(t) dµ(θ) ≤ F(û) ≤ F(uε) ≤ ε.

In particular, this means that, when the constant β > 0 is chosen small enough, the integral cost achieved by
the minimizers of F can be made arbitrarily small.

Remark 3.4. The non-negativity assumption on the cost function a : [0, 1]× Rn ×Θ→ R+ is used to deduce
the inclusion (3.7). This hypothesis can be relaxed by requiring, for example, that a is bounded from below. More
in general, our analysis is still valid for any continuous function a : [0, 1]×Rn ×Θ→ R such that the sublevels
{u ∈ U : F(u) ≤ M} ⊂ U are bounded in L2 for every M ∈ R. For simplicity, we will assume throughout the
paper that a is non-negative.

4. Reduction to finite ensembles via Γ-convergence

In this section we deal with the task of approximating infinite ensembles with growing-in-size finite ensem-
bles, such that the minimizers of the corresponding ensemble optimal control problems are converging. In this
framework, a natural attempt consists in approximating the assigned probability measure µ on the space of
parameters Θ with a probability measure µ̄ that charges a finite number of elements of Θ. Therefore, if µ and
µ̄ are close in some appropriate sense, we may expect that the solutions of the minimization problem involving
µ̄ provide approximations of the minimizers of the original ensemble optimal control problem (3.2). This argu-
ment can be made rigorous using the tools of Γ-convergence. We briefly recall below this notion. For a thorough
introduction to this topic, we refer the reader to the textbook [14].

Definition 4.1. Let (X , d) be a metric space, and for every N ≥ 1 let FN : X → R ∪ {+∞} be a functional
defined over X. The sequence (FN )N≥1 is said to Γ-converge to a functional F : X → R∪{+∞} if the following
conditions holds:

– liminf condition: for every sequence (uN )N≥1 ⊂ X such that uN →X u as N →∞ the following inequality
holds

F(u) ≤ lim inf
N→∞

FN (uN ); (4.1)

– limsup condition: for every x ∈ X there exists a sequence (uN )N≥1 ⊂ X such that uN →X u as N →∞
and such that the following inequality holds:

F(u) ≥ lim sup
N→∞

FN (uN ). (4.2)

If the conditions listed above are satisfied, then we write FN →Γ F as N →∞.

The importance of the Γ-convergence is due to the fact that it relates the minimizers of the functionals
(FN )N≥1 to the minimizers of the limiting functional F . Namely, under the hypothesis that the functionals of
the sequence (FN )N≥1 are equi-coercive, if ûN ∈ arg minFN for every N ≥ 1, then the sequence (ûN )N≥1 is
pre-compact in X , and any of its limiting points is a minimizer for F (see [14], Cor. 7.20). In other words, the
problem of minimizing F can be approximated by the minimization of FN , when N is sufficiently large.

We now focus on the ensemble optimal control problem (3.2) studied in Section 3 and on the functional
F : U → R+ defined in (3.3). As done in the proof of Theorem 3.2, it is convenient to equip the space of
admissible controls U := L2([0, 1],Rk) with the weak topology. However, Definition 4.1 requires the domain X
where the limiting and the approximating functionals are defined to be a metric space. Unfortunately, the weak
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topology of L2 is metrizable only when restricted to bounded sets (see, e.g., [8], Rem. 3.3 and Thm. 3.29). In
the next lemma we see how we should choose the restriction without losing any of the minimizers of F .

Lemma 4.2. Let F : U → R+ be the functional defined in (3.3). Therefore, there exists ρ > 0 such that, if
û ∈ U satisfies F(û) = infU F , then

||û||L2 ≤ ρ. (4.3)

Proof. Let us consider the control ū ≡ 0. If û ∈ U is a minimizer for the functional F , then we have F(û) ≤
F(ū). Moreover, recalling that the function a : [0, 1] × Rn × Θ → R+ that designs the integral cost in (3.2) is
non-negative, we deduce that

β

2
||û||2L2 ≤ F(û) ≤ F(ū).

Thus, to prove (4.3) it is sufficient to set ρ :=
√

2F(ū)/β.

The previous result implies that the following inclusion holds

arg minF ⊂ X ,

where we set

X := {u ∈ U : ||u||L2 ≤ ρ}, (4.4)

and where ρ > 0 is provided by Lemma 4.2. Since X is a closed ball of L2, the weak topology induced on X is
metrizable. Hence, we can restrict the functional F : U → R+ to X to construct an approximation in the sense
of Γ-convergence. With a slight abuse of notations, we shall continue to denote by F the functional restricted to
X . As anticipated at the beginning of the present section, the construction of the functionals (FN )N≥1 relies on
the introduction of a proper sequence of probability measures (µN )N≥1 on Θ that approximate the probability
measure µ prescribing the integral cost in (3.2). We first recall the notion of weak convergence of probability
measures. For further details, see, e.g., the textbook ([12], Def. 3.5.1).

Definition 4.3. Let (µN )N≥1 be a sequence of Borel probability measures on the compact set Θ. The sequence
(µN )N≥1 is weakly convergent to the probability measure µ as N →∞ if the following identity holds

lim
N→∞

∫
Θ

f(θ) dµN (θ) =

∫
Θ

f(θ) dµ(θ), (4.5)

for every function f ∈ C0(Θ,R). If the previous condition is satisfied, we write µN ⇀∗ µ as N →∞.

For every N ≥ 1 we consider a subset {θ1, . . . , θN} ⊂ Θ and a probability measure that charges these elements:

µN :=

N∑
j=1

αjδθj , where

N∑
j=1

αj = 1, αj > 0 ∀j = 1, . . . , N. (4.6)

We assume that the sequence (µN )N≥1 approximates the probability measure µ in the weak sense, i.e., we
require that µN ⇀∗ µ as N →∞.

Remark 4.4. In the applications, there are several feasible strategies to achieve the convergence µN ⇀∗ µ
as N → ∞, and the crucial aspect is whether the probability measure µ is explicitly known or not. If it is,
the discrete approximating measures can be defined, for example, by following the construction proposed in
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Lemma 5.2 of [6]. We observe that the problem of the optimal approximation of a probability measure with
a convex combination of a fixed number of Dirac deltas is an active research field. For further details, see,
e.g., the recent paper [21]. On the other hand, in the practice, it may happen that there is no direct access
to the probability measure µ, but it is only possible to collect samplings of random variables distributed as µ.
In this case, the discrete approximating measures can be produced through a data-driven approach. Namely,
if {θ1, . . . , θN} are the empirically observed samplings, a natural choice is to set in (4.6) αj = 1

N for every
j = 1, . . . , N .

We are now in position to introduce the family of functionals (FN )N≥1. For every N ≥ 1, let FN : X → R+

be defined as follows

FN (u) :=

∫
Θ

∫ 1

0

a(t, xθu(t), θ) dν(t)dµN (θ) +
β

2
||u||2L2 , (4.7)

where xθu : [0, 1]→ Rn denotes the solution on (2.1) corresponding to the parameter θ ∈ Θ and to the control
u ∈ X . We observe that FN and F have essentially the same structure: the only difference is that the integral
term of (3.3) involves the measure µ, while (4.7) features the measure µN . Before proceeding to the main
theorem of the section, we recall an auxiliary result.

Lemma 4.5. Let (µN )N≥1 be a sequence of probability measures on Θ such that µN ⇀∗ µ as N →∞, and let
ν be a probability measure on [0, 1]. Then, the sequence of the product probability measures (ν ⊗ µN )N≥1 on the
product space [0, 1]×Θ satisfies ν ⊗ µN ⇀∗ ν ⊗ µ as N →∞.

Proof. The thesis follows directly from Fubini Theorem and Definition 4.3.

We now show that the sequence of functionals (FN )N≥1 introduced in (4.7) is Γ-convergent to the functional
that defines the ensemble optimal control problem (3.2).

Theorem 4.6. Let X ⊂ U be the set defined in (4.4), equipped with the weak topology of L2. For every N ≥ 1,
let FN : X → R+ be the functional introduced in (4.7), and let F : X → R+ be the restriction to X of the
application defined in (3.3). Then, we have FN →Γ F as N →∞.

Proof. We first establish the liminf condition. Let us consider a sequence of controls (uN )N≥1 ⊂ X such that
uN ⇀L2 u∞ as N → ∞. As done in Lemma 3.1, for every N ∈ N ∪ {∞} let us define the functions YN :
[0, 1]×Θ→ R+ as follows:

YN (t, θ) := a(t,XN (t, θ), θ) (4.8)

for every (t, θ) ∈ [0, 1]×Θ, where, for every N ∈ N ∪ {∞}, XN : [0, 1]×Θ→ Rn is the mapping introduced in
(2.10) that describes the evolution of the ensemble in correspondence of the admissible control uN . From (4.8)
and the definition of the functionals (FN )N≥1 in (4.7), we obtain that

FN (uN ) =

∫
Θ

∫ 1

0

YN (t, θ) dν(t)dµN (θ) +
β

2
||uN ||2L2 (4.9)

for every N ∈ N. Moreover, we observe that the uniform convergence YN →C0 Y∞ as N → ∞ guaranteed by
Lemma 3.1 implies that

lim
N→∞

∫
Θ

∫ 1

0

|YN (t, θ)− Y∞(t, θ)|dν(t)dµN (θ) = 0. (4.10)
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Therefore, using the triangular inequality and Lemma 4.5, from (4.10) we deduce that

lim
N→∞

∫
Θ

∫ 1

0

YN (t, θ) dν(t)dµN (θ) =

∫
Θ

∫ 1

0

Y∞(t, θ) dν(t)dµ(θ). (4.11)

Combining (4.9) with (4.11) and (2.12), we have that

F(u∞) ≤ lim inf
N→∞

FN (uN ),

which concludes the first part of the proof.
We now establish the limsup condition. For every u ∈ X , let us consider the constant sequence uN = u for

every N ≥ 1. In virtue of Lemma 4.5, we have that

lim
N→∞

∫
Θ

∫ 1

0

a(t,Xu(t, θ), θ) dν(t)dµN (θ) =

∫
Θ

∫ 1

0

a(t,Xu(t, θ), θ) dν(t)dµ(θ) (4.12)

for every u ∈ X , where Xu : [0, 1]×Θ→ Rn is defined as in (2.10). This fact gives

F(u) = lim
N→∞

FN (u)

for every u ∈ X , and this shows that the limsup condition holds.

Remark 4.7. We observe that Theorem 3.2 holds also for FN : X → R+ for every N ∈ N. Indeed, the domain
X is itself sequentially weakly compact, and the convergence (3.8) occurs also with the probability measure µN
in place of µ. Therefore, as the functional is FN coercive and sequentially lower semi-continuous with respect
to the weak topology of L2, it admits a minimizer.

The next result is a direct consequence of the Γ-convergence result established in Theorem 4.6. Indeed, as
anticipated before, the fact that the minimizers of the functionals (FN )N∈N provide approximations of the
minimizers of the limiting functional F is a well-established fact, as well as the convergence infX FN → infX F
as N → ∞ (see [14], Cor. 7.20). We stress the fact that, usually, the approximation of the minimizers occurs
in the topology that underlies the Γ-convergence result. However, we can actually prove that, in this case, the
approximation is provided with respect to the strong topology of L2, and not just in the weak sense. Similar
phenomena have been recently described in Theorem 7.4 of [30] and in Remark 6 of [31].

Corollary 4.8. Let X ⊂ U be the set defined in (4.4). For every N ≥ 1, let FN : X → R+ be the functional
introduced in (4.7) and let ûN ∈ X be any of its minimizers. Finally, let F : X → R+ be the restriction to X of
the application defined in (3.3). Then, we have

inf
X
F = lim

N→∞
inf
X
FN . (4.13)

Moreover, the sequence (ûN )N∈N is pre-compact with respect to the strong topology of L2, and any limiting point
of this sequence is a minimizer of F .

Proof. Owing to Theorem 4.6, we have that FN →Γ F as N → ∞ with respect to the weak topology of L2.
Therefore, from Corollary 7.20 of [14] it follows that (4.13) holds and that the sequence of minimizers (ûN )N∈N
is pre-compact with respect to the weak topology of L2, and its limiting points are minimizers of F . To conclude
we have to prove that it is pre-compact with respect to the strong topology, too. Let us consider a subsequence
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(ûNj )j∈N such that ûNj ⇀L2 û∞ as j →∞. Using the fact that û∞ is a minimizer for F , as well as ûNj is for
FNj for every j ∈ N, from (4.13) it follows that

F(û∞) = lim
j→∞

FNj (ûNj ). (4.14)

Moreover, with the same argument used in the proof of Theorem 4.6 to deduce the identity (4.11), we obtain
that ∫

Θ

∫ 1

0

a(t, xθû∞(t), θ) dν(t)dµ(θ) = lim
j→∞

∫
Θ

∫ 1

0

a(t, xθûNj
(t), θ) dν(t)dµNj (θ). (4.15)

Combining (4.14) and (4.15), and recalling the definitions (4.7) and (3.3) of the functionals FN : X → R+ and
F : X → R+, we have that

β

2
||û∞||2L2 = lim

j→∞

β

2
||ûNj ||2L2 ,

which implies that ûNj →L2 û∞ as j →∞. Since the argument holds for every L2-weakly convergent subsequence
of the sequence of minimizers (ûN )N∈N, this concludes the proof.

Remark 4.9. There are two possible interpretations for Theorem 4.6 and Corollary 4.8, depending if the
probability measure µ that defines the limiting functional F is explicitly known or not. If it is, then the
Γ-convergence result can be read as a theoretical guarantee to substitute an infinite-ensemble optimal control
problem with a finite-ensemble one, as illustrated in the Introduction and at the beginning of this section. On the
other hand, in real-world problems, the underlying measure µ may be unknown, but we can collect observations
{θ1, . . . , θN} of random variables distributed as µ, and we consider the empirical probability measure µN =
1
N

∑N
j=1 δθi . In this framework, Theorem 4.6 and Corollary 4.8 can be interpreted as stability results for the

number of observations N . Indeed, from the fact that µN ⇀∗ µ as N →∞, the Γ-convergence of the sequence
(FN )N∈N implies that, when the number of collected observations is large enough, we should not expect dramatic
changes in the solutions of the optimal control problems if we further increase the samplings.

5. Gradient field and maximum principle for the approximating
problems

In the present section we address the question of actually finding the minimizers of the approximating
functionals (FN )N∈N introduced in Section 4. Namely, starting from the result stated in Theorem 2.8 for
a single affine-control system with end-point cost, we obtain the expression of the gradient fields that the
functionals (FN )N∈N induce on their domain. Moreover, we state the Pontryagin Maximum Principle for the
optimal control problems corresponding to the minimization of the functionals (FN )N∈N. Both the gradient
fields and the Maximum Principle will be used for the construction of the numerical algorithms presented in
Section 7.

From now on, we specialize on the following particular form of the cost associated with the ensemble optimal
control problem (3.2):

F(u) =

∫
Θ

a(xθu(1), θ) dµ(θ) +
β

2
||u||2L2 (5.1)

for every u ∈ U , where a : Rn ×Θ→ R+ is a C1-regular function, and β > 0 is a positive parameter that tunes
the L2-regularization. We observe that (5.1) is a particular instance of (3.3). Indeed, it corresponds to the case
ν = δt=1, where ν is the probability measure on the time interval [0, 1] that appears in the first term at the
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right-hand side of (3.2). In other words, we assume that the integral cost in (3.2) depends only on the final state
of the trajectories of the ensemble. For every N ∈ N, let the probability measure µN have the same expression
as in (4.6), i.e., it is a finite convex combination of Dirac deltas centered at {θ1, . . . , θN} ⊂ Θ. Therefore, for
every N ∈ N, the functional FN : U → R+ that we consider in place of (5.1) has the the form

FN (u) =

∫
Θ

a(xθu(1), θ) dµN (θ) +
β

2
||u||2L2 =

N∑
j=1

αja(xθju (1), θj) +
β

2
||u||2L2 (5.2)

for every u ∈ U .

Remark 5.1. In Section 4 for technical reasons we defined the functionals (FN )N∈N on the domain X ⊂ U
introduced in (4.4). However, the functionals (FN )N∈N and the corresponding gradient fields can be defined
over the whole space of admissible controls U .

At this point, it is convenient to approach the minimization of the functional FN in the framework of finite-
dimensional optimal control problems in finite-dimensional Euclidean spaces. For this purpose, we introduce
some notations. For every N ∈ N, let {θ1, . . . , θN} ⊂ Θ be the set of parameters charged by the discrete
probability measure µN . Then, we study the finite sub-ensemble of (2.1) corresponding to the parameters
{θ1, . . . , θN}. Namely, we consider the following affine-control system on RnN :

{
ẋu(t) = FN0 (xu) + FN (xu)u(t), for a.e. t ∈ [0, 1],

xu(0) = x0,
(5.3)

where x = (x1, . . . , xN )T ∈ RnN , and FN0 : RnN → RnN and FN : RnN → RnN×k are applications defined as
follows:

FN0 (x) :=

 F θ10 (x1)
...

F θN0 (xN )

 (5.4)

and

FN (x) :=

 F θ1(x1)
...

F θN (xN )

 =

 F θ11 (x1) . . . F θ1k (x1)
...

...

F θN1 (xN ) . . . F θNk (xN )

 (5.5)

for every x ∈ RnN . Finally, the initial value is set as x0 := (x0(θ1), . . . , x0(θN )), where x0 : Θ → Rn is the
mapping defined (2.7) that prescribes the initial data of the Cauchy problems of the ensemble (2.1). Moreover,
we can introduce the function aN : RnN → R+ defined as

aN (x) = aN ((x1, . . . , xN )) :=

N∑
j=1

αja(xj , θj), (5.6)

where a : Rn × Θ → R+ is the function that designs the integral cost in (5.1), and for every j = 1, . . . , N
the coefficient αj is the weight corresponding to δθj in the convex combination (4.6). In this framework, the
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functional FN : U → R+ can be rewritten as follows:

FN (u) = a(xu(1)) +
β

2
||u||2L2 (5.7)

for every u ∈ U , where xNu : [0, 1]→ RnN is the solution of (5.3) corresponding to the admissible control u. In
the next result we derive the expression of the vector field GN : U → U that represents the differential of the
functional FN , i.e., that satisfies

〈GN [u], v〉U = duFN (v) (5.8)

for every u, v ∈ U .

Theorem 5.2. Let us assume that for every θ ∈ Θ the functions x 7→ F0(x, θ) and x 7→ F (x, θ) are C1-regular,
as well as the function x 7→ a(x, θ) that defines the end-point cost in (5.1). Let {θ1, . . . , θN} ⊂ Θ be the subset of
parameters charged by the measure µN that designs the integral cost in (5.2). Let FN : U → R+ be the functional
defined in (5.2). Then, FN is Gateaux differentiable at every u ∈ U , and we define GN : U → U as the gradient
vector field on U that satisfies (5.8). Then, for every u ∈ U we have

GN [u](t) =

N∑
j=1

αjF
θj (xθju (t))T · λj Tu (t) + βu(t) (5.9)

for a.e. t ∈ [0, 1], where for every j = 1, . . . , N the curve x
θj
u : [0, 1]→ Rn is the solution of (2.1) corresponding

to the parameter θj and to the admissible control u, and λju : [0, 1]→ (Rn)∗ is the absolutely continuous curve
of covectors that solvesλ̇ju(t) = −λju(t)

(
∂F

θj
0 (x

θj
u (t))

∂x +
∑k
i=1 ui(t)

∂F
θj
i (x

θj
u (t))

∂x

)
a.e. in [0, 1],

λju(1) = ∇a(x
θj
u (1), θj).

(5.10)

Remark 5.3. We use the convention that the elements of (Rn)∗ are row-vectors. Therefore, for every j =
1, . . . , N and t ∈ [0, 1], λju(t) should be read as a row-vector. This should be considered to give sense to (5.9)
and (5.10). The same observation holds for Theorem 5.4.

Proof of Theorem 5.2. As done in (5.3), we can equivalently rewrite the sub-ensemble of control systems corre-
sponding to the parameters {θ1, . . . , θN} ⊂ Θ as a single affine-control system in RnN . Moreover, the regularity
hypotheses guarantee that the functions FN0 : RnN → RnN and FN : RnN → RnN×k defined in (5.5) are C1-
regular, as well as the function a : RnN → R+ introduced in (5.6). Therefore, owing to Theorem 2.8, we obtain
the expression for the gradient field induced by the functional FN written in (5.7). Indeed, we deduce that

GN [u] = FN (xu(t))TΛu(t) + βu (5.11)

for every u ∈ U , where xu : [0, 1]→ RnN is the solution of (5.3) corresponding to the control u, and Λu : [0, 1]→
(RnN )∗ is the curve of covectors that solves

{
Λ̇u(t) = −Λu(t)

(
∂FN0 (xu(t))

∂x +
∑k
i=1 ui(t)

∂FNi (xu(t))
∂x

)
for a.e. t ∈ [0, 1],

Λu(1) = ∇xa(xu(1)),
(5.12)
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where FN1 , . . . ,F
N
k : RnN → RnN denote the vector fields obtained by taking the columns of the matrix-valued

application FN : RnN → RnN×k. Moreover, if we consider the curves of covectors λ1
u, . . . , λ

N
u : [0, 1] → (Rn)∗

that solve (5.10) for j = 1, . . . , N , it turns out that the solution of (5.12) can be written as Λu(t) =
(α1λ

1
u(t), . . . , αNλ

N
u (t)) for every t ∈ [0, 1], where α1, . . . , αN are the coefficients of convex combination involved

in the definition of µN (4.6). Finally, owing to this decoupling of Λu, the identity (5.10) can be deduced from
(5.11) using the expression of FN0 , . . . ,F

N
k .

In the previous result we obtained the Riesz’s representation of the differential of the functional FN : U → R+.
We now establish the necessary condition for an admissible control ûN ∈ U to be a minimizer of FN . This
essentially descends as a standard application of Pontryagin Maximum Principle. For a complete survey on the
topic, the reader is referred to the textbook [1].

Theorem 5.4. Under the same assumptions and notations of Theorem 5.2, let ûN = (ûN,1, . . . , ûN,k) ∈ U be a

local minimizer of the functional FN : U → R+ defined as in (5.2). For every j = 1, . . . , N , let x
θj
ûN

: [0, 1]→ Rn
be the solution of (2.1) corresponding to the parameter θj ∈ Θ and to the optimal control ûN . Then, for every

j = 1, . . . , N there exists a curve of covectors λjûN : [0, 1]→ (Rn)∗ such that

λ̇jûN (t) = −λjûN (t)

(
∂F

θj
0 (x

θj
ûN

(t))

∂x +
∑k
i=1 ûN,i(t)

∂F
θj
i (x

θj
ûN

(t))

∂x

)
a.e. in [0, 1],

λjûN (1) = ∇a(x
θj
ûN

(1), θj),

(5.13)

and such that

ûN (t) ∈ arg max
v∈Rk


N∑
j=1

αj

(
−λjûN (t) · F θj (xθjûN (t)) · v

)
− β

2
|v|22

 (5.14)

for a.e. t ∈ [0, 1].

Proof. As done in the proof of Theorem 5.2, we observe that we can equivalently consider the single affine-
control system (5.3) in place of the sub-ensemble of affine-control systems corresponding to the parameters
{θ1, . . . , θN} ⊂ Θ. Moreover, if we rewrite the cost functional FN : U → R+ as in (5.7), we reduce to a standard
optimal control problem in RnN . Let ûN ∈ U be an optimal control for this problem, and let xûN : [0, 1]→ RnN
be the solution of (5.3) corresponding to ûN . Then, from the Pontryagin Maximum Principle (see, e.g., [1],
Chap. 12), there exists ε ∈ {0,−1} and ΛûN : [0, 1]→ (RnN )∗ such that (ε,ΛûN (t)) 6= 0 for every t ∈ [0, 1] and
such that {

Λ̇ûN (t) = −ΛûN (t)
(
∂FN0 (xûN (t))

∂x +
∑k
i=1 ûN,i(t)

∂FNi (xûN (t))

∂x

)
a.e. in [0, 1],

ΛûN (1) = ε∇xa(xûN (1)).
(5.15)

Moreover, for a.e. t ∈ [0, 1] the following condition holds

ûN (t) ∈ arg max
v∈Rk

{
ΛûN (t)

(
FN0 (xûN (t)) + FN (xûN (t))v

)
+ ε

β

2
|v|22
}
. (5.16)

Since the differential equation (5.15) is linear, if ε = 0 we have ΛûN (t) ≡ 0, and this violates the condi-
tion (ε,ΛûN (t)) 6= 0 for every t ∈ [0, 1]. Therefore we deduce that ε = −1. This shows that the optimal
control problem in consideration has no abnormal extremals. Moreover, if we consider the curves of covec-
tors λ1

ûN
, . . . , λNûN : [0, 1] → (Rn)∗ that solve (5.13) for j = 1, . . . , N , it turns out that the solution of (5.15)

corresponding to α = −1 can be written as Λu(t) = (−α1λ
1
ûN

(t), . . . ,−αNλNûN (t)) for every t ∈ [0, 1], where
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α1, . . . , αN are the coefficients of convex combination involved in the definition of µN (4.6). Finally, owing to
this decoupling of Λu, the condition (5.14) can be deduced from (5.16) using the expression of FN0 , . . . ,F

N
k , and

observing that the term ΛûN (t)FN0 (xûN (t)) in (5.16) does not affect the minimizer.

Remark 5.5. We can equivalently reformulate the Maximum condition (5.14) of Theorem 5.4 as follows:

ûN (t) ∈ arg max
v∈Rk

{∫
Θ

−ΛûN (t, θ) · F (XûN (t, θ), θ) · v dµN (θ)− β

2
|v|22
}
, (5.17)

where ΛûN : [0, 1]×Θ→ (Rn)∗ and XûN : [0, 1]×Θ→ Rn are the applications defined, respectively, in (2.19)
and (2.10), and corresponding to the control ûN .

We recall that the Pontryagin Maximum Principle provides necessary condition for minimality. An admissible
control ū ∈ U is a (normal) Pontryagin extremal for the optimal control problem related to the minimization of
FN : U → R+ if there exist λ1

ū, . . . , λ
N
ū : [0, 1]→ (Rn)∗ satisfying (5.13) and such that the relation (5.14) holds.

Remark 5.6. Let ū ∈ U be a critical point for the functional FN : U → R+, i.e., GN [ū] = 0. Therefore, from
(5.9) it turns out that

ū(t) = − 1

β

N∑
j=1

αjF
θj (x

θj
ū (t))T · λjū(t)T

for a.e. t ∈ [0, 1], where for every j = 1, . . . , N the curve x
θj
ū : [0, 1]→ Rn is the trajectory of (2.1) corresponding

to the parameter θj and to the control ū, and λjū : [0, 1]→ (Rn)∗ is the solution of (5.10). We observe that, for

every j = 1, . . . , N , λjū : [0, 1]→ (Rn)∗ solves as well (5.13), and that ū(t) satisfies

ūN (t) ∈ arg max
v∈Rk


N∑
j=1

αj

(
−λj

ūN
(t) · F θj (xθj

ūN
(t)) · v

)
− β

2
|v|22


for a.e. t ∈ [0, 1]. This shows that any critical point of FN : U → R+ is a (normal) Pontryagin extremal for the
corresponding optimal control problem. Conversely, an analogue argument shows that any Pontryagin extremal
is a critical point for the functional FN .

6. Maximum principle for ensemble optimal control problems

In the present section we use a Γ-convergence argument to recover necessary optimality conditions for (local)
minimizers of the functional F defined in (5.1). The result that we prove here is in the same flavor as the
Maximum Principle derived in [6], even though the tools employed are rather different.

Let ū ∈ U be a local minimizer for the functional F . Then, for every ε > 0, we define the following perturbed
functional Fε : U → R+:

Fε(u) :=

∫
Θ

a(xθu(1), θ) dµ(θ) +
β

2
||u||2L2 +

ε

2
||u− ū||2L2 . (6.1)

We immediately observe that the following property holds.

Lemma 6.1. Let us consider the functional F : U → R+ introduced in (5.1) and let ū ∈ U be one of its local
minimizers. Let Fε : U → R+ be defined as in (6.1). Then, there exists ρū > 0 such that

Fε(ū) < Fε(u) ∀u 6= ū with ||u− ū||L2 ≤ ρū
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for every ε > 0.

Proof. Since ū is a local minimizer for F , there exists ρū > 0 such that F(ū) ≤ F(u) for every u satisfying
||u− ū||L2 ≤ ρū. From the definition of Fε in (6.1) and observing that Fε(ū) = F(ū), we deduce the thesis.

For every local minimizer ū ∈ U of the functional F , we set

Xū := {x ∈ U | ||u− ū||L2 ≤ ρū}. (6.2)

Given a sequence of discrete probability measures (µN )N≥1 as in (4.6) such that µN ⇀∗ µ as N →∞, for every
ε > 0 and for every N ≥ 1 we introduce the functional FN,ε : Xū → R+ as follows:

FN,ε(u) :=

∫
Θ

a(xθu(1), θ) dµN (θ) +
β

2
||u||2L2 +

ε

2
||u− ū||2L2 . (6.3)

Similar to Section 4, we can establish a Γ-convergence result.

Proposition 6.2. Let ū ∈ U be a local minimizer of the functional F : U → R+ introduced in (5.1), and let
Xū ⊂ U be the set defined in (4.4), equipped with the weak topology of L2. For every N ≥ 1 and for every ε > 0,
let FN,ε : Xū → R+ be the functional presented in (6.3), and let Fε : Xū → R+ be the restriction to Xū of the
application defined in (6.1). Then, we have that FN,ε →Γ Fε as N → ∞. Moreover, if for every N ≥ 1 we
consider ûN,ε ∈ argminFN,ε, we obtain that

lim
N→∞

||ûN,ε − ū||L2 = 0. (6.4)

Proof. The fact that FN,ε →Γ Fε as N →∞ follows from a verbatim repetition of the arguments of the proof
of Theorem 4.6. In addition, Corollary 7.20 of [14] guarantees that

lim
N→∞

FN,ε(ûN,ε) = inf
Xū
Fε = Fε(ū), (6.5)

and that any of the weak-limiting points of the sequence (ûN,ε) ⊂ Xū is itself a minimizer of the restriction of
Fε to Xū. However, owing to Lemma 6.1, we know that ū is the unique minimizer of the restriction of Fε to
Xū. Therefore, we deduce that ûN,ε ⇀L2 ū as N → ∞. We are left to show that the latter convergence holds
also with respect to the strong topology of L2. Using a similar reasoning as in the proof of Corollary 4.8, from
(6.5) we obtain the identity

β

2
||ū||2L2 = lim

N→∞

(
β

2
||ûN,ε||2L2 +

ε

2
||ûN,ε − ū||2L2

)
.

Finally, recalling the weak semi-continuity of the L2-norm (2.12), the previous expression yields (6.4).

We are now in position to prove the Maximum Principle for the local minimizers of the ensemble optimal
control problem related to the functional F : U → R+.

Theorem 6.3. Let us assume that the mappings (x, θ) 7→ ∂
∂xFi(x, θ) are continuous for every i = 0, . . . , k, as

well as the gradient (x, θ) 7→ ∇xa(x, θ). Let ū ∈ U be a local minimizer of the functional F : U → R+ introduced
in (5.1). Let Xū : [0, 1]×Θ→ Rn be the mapping defined in (2.10) that collects the trajectories of the ensemble
corresponding to the control ū, and let us consider the application Λū : [0, 1]×Θ→ (Rn)∗ introduced in (2.19)



24 A. SCAGLIOTTI

that satisfies{
∂tΛū(t, θ) = −Λū(t, θ)

(
∂F0(Xū(t,θ),θ)

∂x +
∑k
i=1 ūi(t)

∂Fi(Xū(t,θ),θ)
∂x

)
for a.e. t ∈ [0, 1],

Λū(1, θ) = ∇xa(Xū(1, θ), θ),
(6.6)

for every θ ∈ Θ. Then, we have that

ū(t) ∈ arg max
v∈Rk

{∫
Θ

−Λū(t, θ) · F (Xū(t, θ), θ)) · v dµ(θ)− β

2
|v|22
}

(6.7)

for a.e. t ∈ [0, 1].

Proof. Let us fix ε > 0 and, for every N ≥ 1, let us consider the functional FN,ε : Xū → R+ and let ûN,ε ∈
arg minXū FN,ε. As done in the proof of Theorem 5.4, the problem of minimizing FN,ε over Xū can be reduced to
a classical optimal control problem with end-point cost. Therefore, using similar computations as in the proof of
Theorem 5.4, we deduce that for every N ≥ 1 the control ûN,ε is associated with a normal Pontryagin extremal
of the cost functional FN,ε. Using the notations introduced in Remark 5.5, if we consider the application
ΛûN,ε : [0, 1] × Θ → (Rn)∗ defined in (2.19) and corresponding to the admissible control ûN,ε ∈ U , we obtain
that for a.e. t ∈ [0, 1]

ûN,ε(t) ∈ arg max
v∈Rk

{∫
Θ

−ΛûN,ε(t, θ) · F (XûN,ε(t, θ), θ)) · v dµN (θ)− β

2
|v|22 −

ε

2
|v − ū(t)|22

}
,

i.e.,

ûN,ε(t) =
1

β + ε

(
εū(t)−

∫
Θ

[
ΛûN,ε(t, θ) · F (XûN,ε(t, θ), θ))

]T
dµN (θ)

)
(6.8)

for a.e. t ∈ [0, 1] and for every N ≥ 1. For every N ≥ 1, we denote by ZN ⊂ [0, 1] the set of instants with null
Lebesgue measure where the identity (6.8) does not hold. In virtue of Proposition 6.2, we have that ûN,ε →L2 ū
as N →∞, and, up to the extraction of a subsequence that we do not rename for simplicity, this implies that
there exists Z∞ ⊂ [0, 1] with zero Lebesgue measure such that ûN,ε(t)→ ū(t) as N →∞ for every t ∈ [0, 1]\Z∞.
On the other hand, owing to Proposition 2.2 and Proposition 2.5, we deduce that for every t ∈ [0, 1] the sequence
of functions (f tN )N≥1 satisfy f tN →C0 f t as N →∞, where f tN , f

t : Θ→ Rm are defined as follows:

θ 7→ f tN (θ) =
[
ΛûN,ε(t, θ) · F (XûN,ε(t, θ), θ))

]T
,

θ 7→ f t(θ) = [Λū(t, θ) · F (Xū(t, θ), θ))]
T
.

Moreover, recalling that µN ⇀∗ µ as N → ∞ by assumption, if we set Z := Z∞ ∪
⋃
N≥1 ZN , then for every

t ∈ [0, 1] \ Z we can take the pointwise limit of (6.8) as N →∞, which yields:

ū(t) =
1

β + ε

(
εū(t)−

∫
Θ

[Λū(t, θ) · F (Xū(t, θ), θ))]
T

dµ(θ)

)
,

i.e.,

ū(t) = − 1

β

∫
Θ

[Λū(t, θ) · F (Xū(t, θ), θ))]
T

dµ(θ) (6.9)
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for a.e. t ∈ [0, 1]. From (6.9) - which we observe does not depend on the choice of ε > 0 - we finally obtain
(6.7).

Remark 6.4. Theorem 6.3 shows that any local minimizer of the functional F is associated with a normal
extremal of the ensemble optimal control problem. Moreover, we observe that there are no nontrivial abnormal
extremals. Indeed, if we take ε ∈ R and we consider Λū(1, θ) = ε∇xa(Xū(1, θ), θ) for every θ ∈ Θ as the final-time
datum for (6.6), when ε = 0 we obtain (Λū, ε) ≡ 0. Finally, we observe that, in virtue of the concave quadratic
term −β/2|v|22, the maximization problem (6.7) always admits a solution. Hence, there are no singular arcs.

Remark 6.5. For some global minimizers ū ∈ U of the functional F : U → R+ defined as in (3.3), Theorem 6.3
can be directly deduced from the Γ-convergence result established in Section 4. Namely, this is the case for
those global minimizers ū ∈ arg minU F that can be recovered as the limiting points of the minimizers of the
approximating functionals FN : U → R+ introduced in (4.7). Indeed, if ûN ∈ arg minU FN for everyN ≥ 1
and ū ∈ U is an L2-strong accumulation point of the sequence (ûN )N≥1, then Corollary 4.8 guarantees that
ū ∈ arg minU F , and we can obtain the condition (6.7) by repeating the proof of Theorem 6.3 with ε = 0.

However, in general, given a family of functionals IN : X → R on a metric space (X , d) such that IN →Γ I
as N → ∞, there could be elements in arg minX I that cannot be recovered as limiting points of minimizers
of (IN )N≥1. For instance, if we set X = [−1/2, 1/2] with the Euclidean distance, we have that the functions
IN : X → R defined as IN (x) := |x|N are Γ-converging as N → ∞ to the function I ≡ 0. On one hand, we
have that arg minX I = X , while arg minX IN = {0} for every N ∈ N. As a matter of fact, the minimizers of I
in X \ {0} cannot be recovered as a limit of minimizers of (IN )N∈N.

For this reason, in our case, the introduction of the auxiliary functionals Fε and (FN,ε) in, respectively, (6.1)
and (6.3) is precisely aimed at managing this situation, as well as deducing the Maximum Principle also for
local minimizers, and not only for global minimizers.

Remark 6.6. Results concerning the necessary optimality conditions for ensemble optimal control problems
are of great interest from the theoretical viewpoint. A natural question is whether they could be successfully
employed to derive numerical methods for the approximate resolutions of such problems. Some efforts in this
direction were done in [7], where the authors obtain a mean-field Maximum Principle for problems with uncertain
initial datum and with the controlled dynamics unaffected by the unknown parameter. In that framework, a
key-ingredient of the Maximum Principle Theorem 4.1 of [7] is a real-valued function ψ ∈ C1([0, 1], C2

c (Rn))
that solves a backward-evolution PDE. We observe that the quantity ∇xψ is somehow related to the function
Λu that we introduced in our discussion (see [7], Prop. 4.9, for more details). In [7] the authors proposed a
numerical scheme for their mean-field optimal control problem relying on an approximated computation of the
solution of the backward-evolution PDE. Despite the encouraging results obtained in the experiments, the main
drawback of this approach is that the resolution of the PDE is affordable only in low dimensions (e.g., in [7]
examples in dimensions 1 and 2 were considered).

7. Numerical schemes for optimal control of ensembles

In the present section we introduce two numerical schemes for finite-ensemble optimal control problems with
end-pint cost. The starting points are the results of Section 5, and we follow an approach similar to [31]. The first
method consists of the projection of the field GN : U → U induced by FN onto a finite-dimensional subspace
UM ⊂ U . The second one is based on the Pontryagin Maximum Principle and it was first proposed in [29].

Before proceeding, we introduce the notations and the framework that are shared by the two methods. Let
us consider the interval [0, 1], i.e., the evolution time horizon of the ensemble of controlled dynamical systems
(2.1), and for M ≥ 2 let us take the equispaced nodes {0, 1

M , . . . , M−1
M , 1}. Recalling that U := L2([0, 1],Rk), let
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us define the subspace UM ⊂ U as follows:

u ∈ UM ⇐⇒ u(t) =


u1 if 0 ≤ t < 1

M
...

uM if M−1
M ≤ t ≤ 1,

(7.1)

where u1, . . . , uM ∈ Rk. For every l = 1, . . . ,M , we shall write ul = (u1,l, . . . , uk,l) to denote the components of
ul ∈ Rk. Then, any element u ∈ UM will be represented by the following array:

u = (ui,l)
i=1,...,k
l=1,...,M . (7.2)

For every N ≥ 1, let µN be the discrete probability measure (4.6) on Θ that approximates the probability
measure µ involved in the definition of the functional F : U → R+ in (5.1). Let {θ1, . . . , θN} ⊂ Θ be the points

charged by µN , and, for every j = 1, . . . , N , let x
θj
u : [0, 1]→ Rn be the solution of (2.1) corresponding to the

parameter θj and to the control u. Then, for every j = 1, . . . , N and l = 0, . . . ,M we define the array that
collects the evaluation of the trajectories at the time nodes:

(xjl )
j=1,...,N
l=0,...,M , xjl := xθju

(
l

M

)
. (7.3)

We observe that in (7.3) we dropped the reference to the control that generates the trajectories. This is done
to avoid hard notations, since we hope that it will be clear from the context the correspondence between
trajectories and control. Similarly, for every j = 1, . . . , N , let λju : [0, 1]→ (Rn)∗ be the solution of (5.10), and
let us introduce the corresponding array of the evaluations:

(λjl )
j=1,...,N
l=0,...,M , λjl := λju

(
l

M

)
. (7.4)

7.1. Projected gradient field

In this subsection we describe a method for the numerical minimization of the functional FN : U → R+

defined as in (5.2). This algorithm consists of the projection of the gradient field GN : U → U derived in (5.9)
onto the finite-dimensional subspace UM ⊂ U defined as in (7.1). This approach has been introduced in [31],
where it has been studied the problem of observations-based approximations of diffeomorphisms. We observe
that we can explicitly compute the expression of the orthogonal projector PM : U → UM . Indeed, we have

PM [u](t) =


M
∫ 1
M

0
u(t) dt if 0 ≤ t < 1

M ,
...

M
∫ 1
M−1
M

u(t) dt if M−1
M ≤ t ≤ 1,

(7.5)

for every u ∈ U . Thus, we can can define the projected field GNM : UM → UM as

GNM [u] := PM [GN [u]] (7.6)

for every u ∈ UM , and we end up with a vector field on a finite-dimensional space. At this point, in view of the
numerical implementation of the method, it is relevant to observe that the computation of GN [u] requires the
knowledge of the trajectories xθ1u , . . . , x

θN
u : [0, 1]→ Rn and of the curves λ1

u, . . . , λ
N
u : [0, 1]→ (Rn)∗. However,

during the execution of the algorithm, we have access only to the (approximated) values of these functions at
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the time nodes {0, 1
M , . . . , 1}. Therefore, we need to adapt (7.6) to meet our needs. For every u ∈ UM , let us

consider the corresponding arrays (xjl )
j=1,...,N
l=0,...,M and (λjl )

j=1,...,N
l=0,...,M defined as in (7.3) and (7.4), respectively. In

practice, they can be computed using standard numerical schemes for the approximation of ODEs. For every
l = 1, . . . ,M , we use the approximation

M

∫ l
M

l−1
M

N∑
j=1

αj

(
F θj (xθju (t))T · λju(t)T

)
+ βu(t) dt

' 1

2

N∑
j=1

αj

(
F θj (xjl−1)T · λj Tl−1 + F θj (xjl )

T · λj Tl
)

+ βul,

where α1, . . . , αN are the coefficients of convex combination involved in the definition of µN =
∑N
j=1 αjδθj .

Then, for every u ∈ UM , after computing the corresponding arrays (xjl )
j=1,...,N
l=0,...,M and (λjl )

j=1,...,N
l=0,...,M with a proper

ODEs integrator scheme, we use the quantity ∆u = (∆u1, . . . ,∆uM ) ∈ UM to approximate GNM [u], where we set

∆ul :=
1

2

N∑
j=1

αj

(
F θj (xjl−1)T · λj Tl−1 + F θj (xjl )

T · λj Tl
)

+ βul (7.7)

for every l = 1, . . . ,M . We are now in position to describe the Projected Gradient Field algorithm. We report
it in Algorithm 1.

Remark 7.1. We observe that the for loops at the lines 9–12 and 18–21 (corresponding, respectively, to the
update of the curves of covectors and of the trajectories) can be carried out in parallel with respect to the index
j = 1, . . . , N . This can be considered when dealing with large sub-ensembles of parameters.

Remark 7.2. The step-size γ > 0 for Algorithm 1 is set during the initialization of the method, and it is
adaptively adjusted through the if clause at the lines 23–30 via the classical Armijo-Goldstein condition (see,
e.g., [23], Sect. 1.2.3). We observe that, if the update of the control at the r-th iteration is rejected, at the

r + 1-th iteration it is not necessary to re-compute the array of covectors (λjl )
j=1,...,N
l=0,...,M . In this regards, the if

clause at the line 8 prevents this computation in the case of rejection at the previous passage.

7.2. Iterative maximum principle

In this subsection we present a second numerical method for the minimization of the functional FN : U → R+,
based on the Pontryagin Maximum Principle. The idea of using the Maximum Principle to design approximation
schemes for optimal control problems was well established in the Russian literature (see [10] for a survey paper
in English). Here we adapt to our problem the method proposed in [29], which is in turn a stabilization of one
of the algorithms reported in [10]. Finally, this approach has been recently followed in [31] in the framework of
diffeomorphisms approximation.

The key idea relies on iterative updates of the control through the resolution of a maximization problem
related to the condition (5.14). However, the substantial difference from Algorithm 1 consists in the fact that
the controls and the trajectories are computed simultaneously. More precisely, let us consider M ≥ 1 and let
UM ⊂ U be the finite-dimensional subspace introduced in (7.1). Given an initial guess u = (ul)l=1,...,M ∈ UM , let

(xjl )
j=1,...,N
l=0,...,M and (λjl )

j=1,...,N
l=0,...,M be the corresponding arrays, defined as in (7.3) and (7.4), respectively. For l = 1,

the value of unew
1 (i.e., the updated value of control in the time interval [0, 1/M ]) is computed using (xj0)j=1,...,N
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and (λj0)j=1,...,N as follows:

unew
1 = arg max

v∈Rk


N∑
j=1

αj

(
−λj0 · F θj (xj0) · v

)
− β

2
|v|22 −

1

2γ
|v − u1|22

 , (7.8)

where γ > 0 plays the role of the step-size of the update, and α1, . . . , αN are the coefficients of convex combina-
tion involved in the definition of µN =

∑N
j=1 αjδθj . From the value unew

1 just obtained and the initial conditions

(xj0)j=1,...,N , we compute (xj1)j=1,...,N , i.e., the approximation of the trajectories at the time-node 1/M . At this

point, using (xj1)j=1,...,N and (λj1)j=1,...,N , we calculate unew
2 with a maximization problem analogue to (7.8).

Finally, we sequentially repeat the same procedure for every l = 2, . . . ,M . We report the scheme in Algorithm 2.

Remark 7.3. The maximization at line 17 can be solved directly at a very low computational cost. Indeed, we
have that

unew
l ← 1

1 + γβ

ul − N∑
j=1

αj

(
λj,corr
l · F θj (xj,new

l−1 )
)T
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for every l = 1, . . . ,M . This is essentially due to the fact that the systems of the ensemble (2.1) have an affine
dependence on the control.

Remark 7.4. As well as in Algorithm 1, in this case the computation of (λjl )
j=1,...,N
l=0,...,M−1 can be carried out in

parallel (see the for loop at the lines 9–12). Unfortunately, this is no more true for the update of the trajectories,
since in Algorithm 2 the computation of (xj,new

l )j=1,...,N takes place immediately after obtaining unew
l , for every

l = 1, . . . ,M (see lines 17–21).

Remark 7.5. At the line 20 of Algorithm 2 we introduce a correction for the value of the covector. This feature
is not present in the original scheme proposed in [29], where the authors considered optimal control problems
without end-point cost.

Remark 7.6. Also in Algorithm 2 the step-size is adaptively adjust, and it is reduced if, after the iteration,
the value of the functional has not decreased. In case of rejection of the update, it is not necessary to recompute
(λjl )

j=1,...,N
l=0,...,M . This is a common feature with Algorithm 1, as observed in Remark 7.2.
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8. Numerical experiments

In this section we test the algorithms described in Section 7 on an optimal control problem involving an
ensemble of linear dynamical systems in R2. Namely, given θmin < θmax ∈ R, let us set Θ := [θmin, θmax] ⊂ R,
and let us consider the ensemble of control systems{

ẋθu(t) = Aθxθu(t) + b1u1(t) + b2u2(t) a.e. in [0, 1],

xθu(0) = xθ0,
(8.1)

where θ 7→ xθ0 is a continuous function that prescribes the initial states, u = (u1, u2)T ∈ U := L2([0, 1],R2), and,
for every θ ∈ Θ, we have

Aθ :=

(
0 1
θ 0

)
, b1 :=

(
1
0

)
, b2 :=

(
0
1

)
. (8.2)

For every N ≥ 1 and for every subset of parameters {θ1, . . . , θN} ⊂ Θ, we represent the corresponding sub-
ensemble of (8.1) as an affine-control system on R2N , as done in Section 5. More precisely, we consider{

ẋu(t) = ANxu(t) + b1u1(t) + b2u2(t) a.e. in [0, 1],

xu(0) = x0,
(8.3)

where AN ∈ R2N×2N and b1,b2 ∈ R2N are defined as follows:

AN :=


Aθ1 02×2

. . .

02×2
. . . 02×2

. . . 02×2 AθN

 , b1 :=

b1...
b1

 , b2 :=

b2...
b2

 . (8.4)

Moreover, we observe that (8.1) can be interpreted as a control system in the space C0(Θ,R2). Indeed, we can
consider the control system

Xu,t = X0 +

∫ t

0

A[Xu,τ ] dτ +

∫ t

0

b1u1(τ) + b2u2(τ) dτ, t ∈ [0, 1], (8.5)

where A : C0(Θ,R2)→ C0(Θ,R2) is the bounded linear operator defined as

A[Y ](θ) := AθY (θ)

for every θ ∈ Θ and for every Y ∈ C0([0, 1],R2), and b1, b1 : Θ→ R2 are defined as

b1(θ) := b1, b2(θ) := b2

for every θ ∈ Θ, and finally X0 : Θ → R2 satisfies X0(θ) := xθ0 for every θ ∈ Θ. The integrals in (8.5) should
be understood in the Bochner sense, and, for every u ∈ U , the existence and uniqueness of a continuous curve
t 7→ Xu,t in C0(Θ,R2) solving (8.5) descends from classical results in linear inhomogeneous ODEs in Banach
spaces (see, e.g., [13], Chap. 3). In particular, from the uniqueness we deduce that

Xu,t(θ) = xθu(t) (8.6)
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for every u ∈ U , t ∈ [0, 1] and θ ∈ Θ, where xθu : [0, 1] → R2 is the solution of (8.1) corresponding to the
parameter θ and to the control u. We now prove some controllability results for the control systems (8.3) and
(8.5).

Proposition 8.1. For every N ≥ 1 and for every subset {θ1, . . . , θN} ⊂ Θ, let us consider ytar ∈ R2N . Then,
there exists a control ū ∈ U such that the corresponding solution xū : [0, 1]→ R2N of (8.3) satisfies xū(1) = ytar.
Moreover, for every Ytar ∈ C0(Θ,R2) and for every ε > 0, there exists a control uε ∈ U such that the curve
t 7→ Xuε,t that solves (8.5) satisfies

||Y −Xuε,1||C0 ≤ ε.

Proof. We observe that the first part of the thesis follows if we prove the exact controllability of the system
(8.3). An elementary result in control theorey (see, e.g., [1], Thm. 3.3) ensures that the last condition is implied
by the identity

span
{

(AN )r b1, (A
N )r b2| 0 ≤ r ≤ 2N − 1

}
= R2N .

A direct computation shows that this is actually the case.
As regards the second part of the thesis, owing to Theorem 3.1.1 of [32] we have that it is sufficient to prove

that

span {Ar[b1],Ar[b2]| r ≥ 0}C
0

= C0(Θ,R2). (8.7)

We observe that

span {Ar[b1],Ar[b2]| r ≥ 0} = span

{(
θr

0

)
,

(
0
θr

)
| r ≥ 0

}
,

therefore the identity (8.7) follows from the Weierstrass Theorem on polynomial approximation.

We now introduce the problem that we studied in the numerical simulations. We set θmin = − 1
2 , θmax = 1

2 ,
and we consider on Θ = [− 1

2 ,
1
2 ] the probability measure µ, distributed as a Beta(4, 4) centered at 0. We observe

that during the experiments we assumed to have no explicit knowledge of the probability measure µ. On the
other hand, we imagined to be able to sample observations from that distribution, and we pursued the data
driven approach described in Remark 4.4. After that the approximated optimal control had been computed, we
validated the policy just obtained on a testing sub-ensemble of newly-sampled parameters. Let us assume that
the initial data in (8.1) is not affected by the parameter θ, i.e, there exists x0 ∈ R2 such that xθ0 = x0 for every
θ ∈ Θ. We imagine that we want to steer the end-points of the trajectories of (8.1) as close as possible to a
target point ytar ∈ R2. Therefore, we consider the functional F : U → R+ defined as

F(u) :=

∫
Θ

|xθu(1)− ytar|22 dµ(θ) +
β

2
||u||2L2 (8.8)

for every u ∈ U . We observe that the second part of Proposition 8.1 implies that we are in the situation described
in Remark 3.3. Indeed, if we set Ytar(θ) := ytar for every θ ∈ Θ, we have that for every ε > 0 there exists uε ∈ U
such that ∫

Θ

|xθuε(1)− ytar|22 dµ(θ) ≤ ||Xuε,1 − Ytar||C0 ≤ ε

2
,



32 A. SCAGLIOTTI30 TITLE WILL BE SET BY THE PUBLISHER

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimally controlled finite ensemble

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test on new elements of the ensemble

Figure 1. Controlled ensemble. On the left, we reported the optimally controlled trajectories
of the sub-ensemble of Θ obtained by sampling N = 300 parameters. On the right, we tested the
controls obtained before on a new sub-ensemble of Θ, obtained by sampling 20 new parameters.
As we can see, the trajectories belonging to the testing sub-ensemble are correctly steered to
the target point ytar = (−1, 1)T .
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Figure 2. In the graph we reported the decay of the discrete cost achieved by Algorithm 1
(Projected Gradient) and Algorithm 2 (Iterative PMP). As we can see, the performances on
this problem are very similar.

that performances of the two numerical methods are very similar, as regards both the qualitative aspect of the
controlled trajectories and the decay of the cost during the execution.

Conclusions

In this paper we considered the problem of the optimal control of an ensemble of affine-control systems. We
proved the well posedness of the corresponding minimization problem, and we showed with a Γ-convergence
argument how we can reduce the original problem to an approximated one, involving ensembles with a finite
number of elements. For these ones, in the case of end-point cost, we proposed two numerical schemes for the
approximation of the optimal control. We finally tested the methods on a ensemble optimal control problem in
dimension two.

For future development, we plan to study algorithms also for more general costs, and not only for terminal-
state penalization. Moreover, we hope to extend the Γ-convergence results to some proper class of ensembles
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where we used the identity (8.6). Therefore, in correspondence of small values of β, we expect that the minimizers
of (8.8) drive the end-point of the controlled trajectories very close to ytar. In the simulations we considered
β = 10−3. Finally, we approximated the probability measure µ with the empirical distribution µN , obtained
with N independent samplings of µ, using N = 300. Moreover, we chose x0 = (0, 0)T and ytar = (−1,−1)T .
We report below the results obtained with Algorithm 1 and Algorithm 2, where we set M = 64. We observed
that performances of the two numerical methods are very similar, as regards both the qualitative aspect of the
controlled trajectories (see Fig. 1) and the decay of the cost during the execution (see Fig. 2).

9. Conclusions

In this paper we considered the problem of the optimal control of an ensemble of affine-control systems. We
proved the well posedness of the corresponding minimization problem, and we showed with a Γ-convergence
argument how we can reduce the original problem to an approximated one, involving ensembles with a finite
number of elements. For these ones, in the case of end-point cost, we proposed two numerical schemes for the
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approximation of the optimal control. We finally tested the methods on a ensemble optimal control problem in
dimension two.

For future development, we plan to study algorithms also for more general costs, and not only for terminal-
state penalization. Moreover, we hope to extend the Γ-convergence results to some proper class of ensembles
of nonlinear-control systems. As well as in the affine-control case, we expect that weak topologies on the space
of controls are required to have equi-coercivity of the functionals. On the other hand, the challenging aspect
is that, in nonlinear-control systems, weakly convergent controls do not induce, in general, locally C0-strongly
convergent flows.

Appendix A. Auxiliary results of Subsection 2.2

Here we prove some auxiliary properties of the mapping Xu : [0, 1] × Θ → Rn, which has been defined in
(2.10) for every u ∈ U . Before proceeding, we recall a version of the Grönwall-Bellman inequality.

Lemma A.1 (Grönwall-Bellman Inequality). Let f : [a, b]→ R+ be a non-negative continuous function and let
us assume that there exists a constant α > 0 and a non-negative function β ∈ L1([a, b],R+) such that

f(s) ≤ α+

∫ s

a

β(τ)f(τ) dτ

for every s ∈ [a, b]. Then, for every s ∈ [a, b] the following inequality holds:

f(s) ≤ αe||β||L1 . (A.1)

Proof. This result follows directly from Theorem 5.1 of [16].

We first prove that for every u ∈ U the mapping Xu : [0, 1]×Θ→ Rn is bounded.

Lemma A.2. For every u ∈ U , let Xu : [0, 1] × Θ → Rn be the application defined in (2.10) collecting the
trajectories of the ensemble of control systems (2.1). Then, for every R > 0 there exists CR > 0 such that, if
||u||L2 ≤ R, we have

|Xu(t, θ)|2 ≤ CR, (A.2)

for every (t, θ) ∈ [0, 1]×Θ.

Proof. Using (2.10), in virtue of the sub-linear growth inequalities (2.5)–(2.6), we observe that

|Xu(t, θ)|2 = |xθu(t)|2 ≤ |xθ0|2 +

∫ t

0

C(1 + |xθu(τ)|2)(1 + |u(τ)|1) dτ

≤ |xθ0|2 + C(1 +
√
k||u||L2) +

∫ t

0

C(1 + |u(τ)|1)|xθu(τ)|2 dτ

for every θ ∈ Θ and t ∈ [0, 1]. Using Lemma A.1, we deduce that

|X(t, θ)|2 ≤
(
|xθ0|2 + C(1 +

√
k||u||L2)

)
eC(1+

√
k||u||L2)

for every (t, θ) ∈ [0, 1]×Θ. Recalling the boundedness of θ 7→ xθ0 provided by (2.8), the thesis follows from the
last inequality.
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We shall prove that, when the control u varies in a bounded subset of U , the corresponding functions
Xu : [0, 1] × Θ → Rn that captures the evolution of the ensemble of control systems (2.1) are uniformly equi-
continuous on their domain. We first show separately the uniform equi-continuity for the variables in the time
domain [0, 1] and in the parameter domain Θ. In the next result we observe that the trajectories of the ensemble
are Hölder-continuous, uniformly with respect to the parameter θ ∈ Θ.

Lemma A.3. For every u ∈ U , let Xu : [0, 1] × Θ → Rn be the application defined in (2.10) collecting the
trajectories of the ensemble of control systems (2.1). Then, for every R > 0 there exists LR > 0 such that, if
||u||L2 ≤ R, then

|Xu(t1, θ)−Xu(t2, θ)|2 ≤ LR|t1 − t2|
1
2 (A.3)

for every t1, t2 ∈ [0, 1] and for every θ ∈ Θ.

Proof. Owing to Proposition 2.1 and recalling that Xu(t, θ) = xθu(t) for every (t, θ) ∈ [0, 1] × Θ by (2.10), we
observe that the thesis follows if we prove that there exists a bounded subset of H1 that includes the trajectories
{xθu : [0, 1]→ Rn}θ∈Θ of (2.1) for every admissible control u ∈ U satisfying ||u||L2 ≤ R.

From Lemma A.2 we obtain that for every R > 0 there exists CR > 0 such that

|xθu(t)|2 ≤ CR (A.4)

for every t ∈ [0, 1] and for every u ∈ U such that ||u||L2 ≤ R. In virtue of Lemma A.2 and the sub-linear
inequalities (2.5)–(2.6), we deduce that for every R > 0 there exists C ′R > 0 such that

sup
θ∈Θ
|F θ0 (xθu(t))|2 ≤ C ′R, sup

θ∈Θ
sup

i=1,...,k
|F θi (xθu(t))|2 ≤ C ′R

for every t ∈ [0, 1] and for every u ∈ U such that ||u||L2 ≤ R. Therefore, we have that

|ẋθu(t)|2 ≤ C ′R(1 + |u(t)|1) (A.5)

for every t ∈ [0, 1], for every θ ∈ Θ and for every u ∈ U such that ||u||L2 ≤ R. Combining (A.5) and (A.4), we
deduce that there exists C ′′R > 0 such that

||xθu||H1 ≤ C ′′R

for every θ ∈ Θ and for every u ∈ U such that ||u||L2 ≤ R. The last inequality and Proposition 2.1 imply that

|xθu(t1)− xθu(t2)|2 ≤ LR|t1 − t2|
1
2

for every t1, t2 ∈ [0, 1], for every θ ∈ Θ and for every u ∈ U such that ||u||L2 ≤ R, where we set LR :=
√
C ′′R.

This establishes (A.3).

Before proceeding, we introduce the modulus of continuity of the function x0 : Θ → Rn defined in (2.7).
Indeed, since x0 : Θ → Rn is a continuous function defined on a compact domain, it is uniformly continuous,
i.e., there exists a non-decreasing function ω : R+ → R+ satisfying 0 = ω(0) = limr→0+ ω(r) and such that

|x0(θ1)− x0(θ1)|2 ≤ ω(|θ1 − θ2|2) (A.6)

for every θ1, θ2 ∈ Θ.
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Lemma A.4. For every u ∈ U , let Xu : [0, 1] × Θ → Rn be the application defined in (2.10) collecting the
trajectories of the ensemble of control systems (2.1). Then, for every R > 0 there exists ωR : R+ → R+ such
that, if ||u||L2 ≤ R, then

|Xu(t, θ1)−Xu(t, θ2)|2 ≤ ωR(|θ1 − θ2|2) (A.7)

for every t ∈ [0, 1] and for every θ1, θ2 ∈ Θ, where ωR is a non-decreasing function that satisfies ω(0) =
limr→0+ ωR(r) = 0.

Proof. Recalling (2.10), we compute

|Xu(t, θ1)−Xu(t, θ2)|2 = |xθ1u (t)− xθ2u (t)|2

≤ |x0(θ1)− x0(θ2)|2 +

∫ t

0

|F θ10 (xθ1u (τ))− F θ20 (xθ2u (τ))|2 dτ

+

∫ t

0

k∑
i=1

(
|F θ1i (xθ1u (τ))− F θ2i (xθ2u (τ))|2|ui(τ)|

)
dτ

for every t ∈ [0, 1], for every θ1, θ2 ∈ Θ and for every u ∈ U . Using (2.2) and the Lipschitz-continuity conditions
(2.3)–(2.4), the last expression yields

|xθ1u (t)− xθ2u (t)|2 ≤ |x0(θ1)− x0(θ2)|2

+

∫ t

0

L(1 + |u(τ)|1)
(
|xθ1u (τ)− xθ2u (τ)|2 + |θ1 − θ2|2

)
dτ

≤ |x0(θ1)− x0(θ2)|2 + L(1 +
√
k||u||L2)|θ1 − θ2|2

+

∫ t

0

L(1 + |u(τ)|1)(|xθ1u (τ)− xθ2u (τ)|2) dτ

for every t ∈ [0, 1], for every θ1, θ2 ∈ Θ and for every u ∈ U . Owing to Lemma A.1, from the last inequality we
deduce that (A.7) holds for every t ∈ [0, 1], for every θ1, θ2 ∈ Θ and for every u ∈ U with ||u||L2 ≤ R, where the
function ωR : R+ → R+ is defined as follows:

ωR(r) := eL(1+
√
kR)

(
ω(r) + L(1 +

√
kR)r

)
,

and ω : R+ → R+ is a modulus of continuity for the mapping x0 : Θ→ Rn (see (A.6)).

We are now in position of stating the uniform equi-continuity result.

Lemma A.5. For every u ∈ U , let Xu : [0, 1] × Θ → Rn be the application defined in (2.10) collecting the
trajectories of the ensemble of control systems (2.1). Then, for every R > 0 there exists LR > 0 and ωR : R+ →
R+ such that, if ||u||L2 ≤ R, then

|Xu(t1, θ1)−Xu(t2, θ2)|2 ≤ LR|t1 − t2|
1
2 + ωR(|θ1 − θ2|2) (A.8)

for every (t1, θ1), (t2, θ2) ∈ [0, 1]×Θ, where ωR is a non-decreasing function satisfying ω(0) = limr→0+ ωR(r) =
0.

Proof. The thesis (A.8) follows directly from the triangular inequality and from Lemma A.3 and Lemma A.4.
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Appendix B. Auxiliary results of Subsection 2.3

Here we establish some auxiliary results concerning the mapping Λu defined in (2.19). We use the same
scheme used in Appendix A, and we first show that Λu is bounded.

Lemma B.1. Let us assume that the mappings (x, θ) 7→ ∂
∂xFi(x, θ) are continuous for every i = 0, . . . , k, as

well as the gradient (x, θ) 7→ ∇xa(x, θ). For every u ∈ U , let Λu : [0, 1]×Θ→ (Rn)∗ be the application defined
in (2.19). Then, for every R > 0 there exists CR > 0 such that, if ||u||L2 ≤ R, we have

|Λu(t, θ)|2 ≤ CR, (B.1)

for every (t, θ) ∈ [0, 1]×Θ.

Proof. We preliminarily observe that, owing to Lemma A.2 and the continuity of ∇xa, there exists C1
R > 0 such

that

sup
θ∈Θ
|∇xa(Xu(t, θ), θ)|2 ≤ C1

R.

From the definition of Λu : [0, 1]×Θ→ (Rn)∗ in (2.19), it follows that

|Λu(t, θ)|2 = |λθu(t)|2 ≤ |λθu(1)|2 +

∫ 1

t

|λθu(τ)|2
∣∣∣∣∣∂F0(xθu(τ), θ)

∂x
+

k∑
i=1

ui(τ)
∂Fi(x

θ
u(τ), θ)

∂x

∣∣∣∣∣
2

dτ

≤ |λθu(1)|2 +

∫ 1

t

|λθu(τ)|2L(1 + |u(τ)|1) dτ

for every (t, θ) ∈ [0, 1] × Θ, where we used (2.3)–(2.4) in the last passage. Finally, combining the previous
inequality with Lemma A.1 and (2.11), we deduce (B.1).

In the next lemma we show that Λu is Hölder-continuous in time.

Lemma B.2. Let us assume that the mappings (x, θ) 7→ ∂
∂xFi(x, θ) are continuous for every i = 0, . . . , k, as

well as the gradient (x, θ) 7→ ∇xa(x, θ). For every u ∈ U , let Λu : [0, 1]×Θ→ (Rn)∗ be the application defined
in (2.19). Then, for every R > 0 there exists LR > 0 such that, if ||u||L2 ≤ R, then

|Λu(t1, θ)− Λu(t2, θ)|2 ≤ LR|t1 − t2|
1
2 (B.2)

for every t1, t2 ∈ [0, 1] and for every θ ∈ Θ.

Proof. We recall that by the definition (2.19) we have Λu(·, θ) = λθu(·), for every θ ∈ Θ, where λθu : [0, 1] →
(Rn)∗ solves the linear differential equation (2.18). Therefore, we employ the same strategy as in the proof
of Lemma A.3, i.e., we show that there exists a bounded subset of H1 that includes the family of curves
{λθu : [0, 1]→ (Rn)∗}θ∈Θ for every admissible control u ∈ U satisfying ||u||L2 ≤ R. From Lemma B.1 it descends
that there exists CR > 0 such that

|λθu(t)|2 = |Λu(t, θ)|2 ≤ CR (B.3)
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for every t ∈ [0, 1] and θ ∈ Θ. On the other hand, we compute

|λ̇θu(t)|2 ≤ |λθu(t)|2
∣∣∣∣∣∂F0(xθu(t), θ)

∂x
+

k∑
i=1

ui(t)
∂Fi(x

θ
u(t), θ)

∂x

∣∣∣∣∣
2

≤ CRL(1 + |u(t)|1)

(B.4)

for a.e. t ∈ [0, 1] and for every θ ∈ Θ. Hence, combining (B.3)–(B.4) with (2.11) and Proposition 2.1, we deduce
(B.2).

In the following result we prove the uniform continuity of Λu : [0, 1]×Θ→ (Rn)∗ with respect to the second
variable.

Lemma B.3. Let us assume that the mappings (x, θ) 7→ ∂
∂xFi(x, θ) are continuous for every i = 0, . . . , k, as

well as the gradient (x, θ) 7→ ∇xa(x, θ). For every u ∈ U , let Λu : [0, 1]×Θ→ (Rn)∗ be the application defined
in (2.19). Then, for every R > 0 there exists ωR : R+ → R+ such that, if ||u||L2 ≤ R, then

|Λu(t, θ1)− Λu(t, θ2)|2 ≤ ωR(|θ1 − θ2|2) (B.5)

for every t ∈ [0, 1] and for every θ1, θ2 ∈ Θ, where ωR is a non-decreasing function that satisfies ω(0) =
limr→0+ ωR(r) = 0.

Proof. From the definition (2.19) and from (2.18), it follows that

|Λu(t, θ1)− Λu(t, θ2)|2 = |λθ1u (t)− λθ2u (t)|2
≤ |∇xa(xθ1u (1), θ1)−∇xa(xθ2u (1), θ2)|2

+

∫ 1

t

|λθ2u (τ)|2
(∣∣∣∣∂F0(xθ1u (τ), θ1)

∂x
− ∂F0(xθ2u (τ), θ2)

∂x

∣∣∣∣
2

+

k∑
i=1

|ui(τ)|
∣∣∣∣∂Fi(xθ1u (τ), θ1)

∂x
− ∂Fi(x

θ2
u (τ), θ2)

∂x

∣∣∣∣
2

)
dτ

+

∫ 1

t

|λθ1u (τ)− λθ2u (τ)|2
∣∣∣∣∣∂F0(xθ1u (τ), θ1)

∂x
+

k∑
i=1

ui(τ)
∂Fi(x

θ1
u (τ), θ1)

∂x

∣∣∣∣∣
2

dτ

(B.6)

for every t ∈ [0, 1] and for every θ1, θ2 ∈ Θ. In virtue of Lemma A.2, there exists a compact set KR ⊂ Rn such
that the image Xu([0, 1],Θ) ⊂ KR for every u ∈ U with ||u||L2 ≤ R. The continuity assumptions guarantee
that (x, θ) 7→ ∂

∂xFi(x, θ) for i = 0, . . . , k and (x, θ) 7→ ∇xa(x, θ) are uniformly continuous when restricted to

KR ×Θ. Moreover, in virtue of Lemma A.4, we deduce that the applications defined as θ 7→ ∂
∂xFi(Xu(t, θ), θ)

for i = 0, . . . , k and θ 7→ ∇xa(Xu(1, θ), θ) are uniformly equi-continuous for every choice of t ∈ [0, 1] and u ∈ U
with ||u||L2 ≤ R. Let ω′R : R+ → R+ be a modulus of continuity for all these functions. Hence, using Lemma B.1,
from (B.6) we obtain that there exists CR > 0 such that

|Λu(t, θ1)− Λu(t, θ2)|2 = |λθ1u (t)− λθ2u (t)|2
≤ ω′R(|θ1 − θ2|2) + CR(1 + ||u||L1)ω′R(|θ1 − θ2|2)

+ CR

∫ 1

t

|λθ1u (τ)− λθ2u (τ)|2
(

1 +

k∑
i=1

|ui(τ)|
)

dτ



38 A. SCAGLIOTTI

for every t ∈ [0, 1], for every θ1, θ2 ∈ Θ and for every u ∈ U with ||u||L2 ≤ R. Then, the thesis (B.5) follows
directly from Lemma A.1.

Finally, the next results proves the uniform continuity of Λu.

Lemma B.4. Let us assume that the mappings (x, θ) 7→ ∂
∂xFi(x, θ) are continuous for every i = 0, . . . , k, as

well as the gradient (x, θ) 7→ ∇xa(x, θ). For every u ∈ U , let Λu : [0, 1]×Θ→ (Rn)∗ be the application defined
in (2.19). Then, for every R > 0 there exists LR > 0 and ωR : R+ → R+ such that, if ||u||L2 ≤ R, then

|Λu(t1, θ1)− Λu(t2, θ2)|2 ≤ LR|t1 − t2|
1
2 + ωR(|θ1 − θ2|2) (B.7)

for every (t1, θ1), (t2, θ2) ∈ [0, 1]×Θ, where ωR is a non-decreasing function satisfying ω(0) = limr→0+ ωR(r) =
0.

Proof. The thesis (B.7) follows directly from the triangular inequality and from Lemma B.2 and Lemma B.3.
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