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Constraints between entropy production and its fluctuations in nonthermal engines
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We analyze a mesoscopic conductor autonomously performing a thermodynamically useful task, such as
cooling or producing electrical power, in a part of the system—the working substance—by exploiting another
terminal or set of terminals—the resource—that contains a stationary nonthermal (nonequilibrium) distribution.
Thanks to the nonthermal properties of the resource, on average no exchange of particles or energy with the
working substance is required to fulfill the task. This resembles the action of a demon, as long as only average
quantities are considered. Here, we go beyond a description based on average currents and investigate the
role of fluctuations in such a system. We show that a minimum level of entropy fluctuations in the system is
necessary, whenever one is exploiting a certain entropy production in the resource terminal to perform a useful
task in the working substance. For concrete implementations of the demonic nonthermal engine in three- and
four-terminal electronic conductors in the quantum Hall regime, we compare the resource fluctuations to the
entropy production in the resource and to the useful engine output (produced power or cooling power).
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I. INTRODUCTION

The rapidly evolving research field of quantum ther-
modynamics is constantly pushing the boundaries of our
understanding of thermodynamic processes at the nanoscale
[1,2]. In contrast to macroscopic systems, which are typically
well described by average quantities, small-scale devices are
very much influenced by fluctuations [3,4] and often possess
quantum features, requiring the standard thermodynamic laws
to be modified and complemented by additional concepts,
for example borrowed from information theory. Besides the
fundamental challenge of establishing a thermodynamically
consistent description of nanoscale systems, understanding
their behavior leads to potential practical applications. A
prominent example is that of heat management and energy
conversion in nanoelectronics [5], with an ever increasing
relevance due to the miniaturization opportunities offered by
technological developments.

Among the exciting features of small-scale systems is the
possibility to access nonconventional resources that can be
used to power nanoscale engines, in addition to heat and
work. For instance, it is interesting to understand the role
of quantum coherences [6–9], as well as that of information
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[10–12] or of active matter [13–15]. Here, we focus on an-
other option, namely to exploit a terminal that supplies a
steady-state fermionic resource that is nonthermal (nonequi-
librium) [16,17]. It hence does not possess a well-defined

FIG. 1. (a) Generic multiterminal electronic conductor fed by a
nonthermal resource (N) with distribution 0 � fN(E ) � 1. The prop-
erties of the coherent conductor are encoded in the scattering matrix
s(E ). In particular, the resource region (above the horizontal dashed
line) is connected to the working substance (below the dashed line)
by the transmission probability 1 − |sNN(E )|2. (b) Minimal setup
exploiting a nonthermal resource in a three-terminal quantum Hall
device. The resource is connected to the working substance by the
interface transmission probability τint(E ), and power production is
enabled by the energy-dependent transmission τws(E ).
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temperature or potential, as depicted in Fig. 1(a). While
this contradicts the standard notion of a bath or a reser-
voir, it is a quite common situation in nanoscale systems
that might interact with different environments and that can
have thermalization lengths exceeding the system size [5].
Also time-dependent nonequilibrium states can be available
[18–20]. Moreover, it is likely that such nonthermal resources
are present in nanoscale systems, as they may originate as
a “waste” byproduct of other processes of interest. Under-
standing how such nonthermal distributions can be harvested
is hence expected to be relevant from a practical point
of view.

In previous works [21,22], some of us have introduced the
concept of a nonequilibrium demon (N-demon). Such a sys-
tem is able to perform a useful task in a steady-state operation
by solely relying on a nonthermal (nonequilibrium) resource,
in the absence of average heat or work consumption, meaning
that neither average energy nor average particle currents flow
between the resource region and the working substance; see
Fig. 1. This resembles a Maxwell demon [23–32]—hence the
choice of the name N-demon [33]—but the working principle
is very different as it does not rely on any type of feedback and
is “demonic” only when focusing on average quantities. This
has triggered a number of related works, where various prop-
erties of systems relying on nonequilibrium resources have
been analyzed [34–37]. In particular, it has been shown that
a performance characterization of an N-demon [34,36] can be
achieved by introducing well-behaved free-energy efficiencies
[17,36,38] taking into account that a nonthermal resource is
exploited.

The absence of feedback mechanisms in an N-demon
suggests that fluctuations play a fundamental role for the
operation of engines exploiting nonthermal resources [30].
However, while noise in the absence of charge or heat currents
has recently attracted a lot of interest in systems with standard
thermal reservoirs [39–42], previous studies on nonthermal
engines have addressed average quantities only. The char-
acterization of fluctuations of nonthermal resources for the
operation of nanoscale engines in general, and for N-demons
more specifically, is the gap we aim to fill with the present
paper. More concretely, we quantify to what extent the fluc-
tuations associated with temporary exchanges of particles and
energy between the resource and the working substance relate
to the performance of this autonomous (steady-state) device.
In this paper, we identify that the entropy production in the re-
source region, and hence the entropy reduction in the working
substance, requires a minimum level of fluctuations. We find
that it is a combination of entropy and particle fluctuations
that sets the constraint. This key result reads

S�
NN,cl+

k2
B

4
SNN,cl � 2kBI�

N � −2kBI�
ws, (1)

where I�
N is the entropy production in the nonthermal re-

source, and −I�
ws is the entropy reduction in the working

substance (quantifying the useful output), where both the re-
source and working substance contain one or more fermionic
steady-state contacts. The terms on the left-hand side charac-
terize the entropy and particle fluctuations in the nonthermal
resource (see Sec. III for definitions and details of the in-
troduced quantities). We refer to this sum as the classical

part of the resource fluctuations in the following. For systems
with thermal contacts only, this results in constraints involving
heat and particle fluctuations. In this paper, we derive Eq. (1)
and illustrate its implications with specific examples. More
specifically, we apply our findings, which are valid for arbi-
trary noninteracting multiterminal conductors with possibly
nonthermal resources, to three- or four-terminal N-demon sys-
tems realized in the quantum Hall regime. In conductors in the
quantum Hall regime, the time-reversal symmetry breaking in
chiral edge states [43] allows for particularly simple imple-
mentations of quantum conductors for energy conversion [44]
and for the inspection of current-current correlations [45]. In
experimental implementations of such systems, detection of
nonthermal distributions [46], of heat flow [47], and of noise
[48] has been demonstrated, making them relevant for our pur-
pose. We identify situations in which the noise is particularly
small, approaching the discovered bound, Eq. (1). For spe-
cific experimentally relevant implementations of N-demons
in quantum Hall conductors, namely where either the non-
thermal distribution allows one to get close to the identified
bound or where the nonthermal distribution is engineered by a
coherent mixing of thermal resources, we analyze the resource
fluctuations and how they are related to the maximum power
or cooling power that can be achieved in the device.

This paper is structured as follows: We introduce the model
and the employed scattering approach for all analyzed quan-
tities, including the entropy currents and their fluctuations, in
Sec. II. We then demonstrate that they are related to each other
in a general way by constraints on entropy fluctuations com-
pared to entropy flow in Sec. III. In Sec. IV, we provide the
shape that these constraints take for a three-terminal quantum
Hall setup, and we analyze their implications. Finally, results
for resource fluctuations in a specific four-terminal setup,
where the nonthermal distribution is engineered, are presented
in Sec. V. The Appendixes contain analytical expressions in
limiting regimes as well as derivations and results for the
four-terminal setup, where the nonthermal distribution is in-
jected from a resource consisting of a set of thermal contacts,
complementing the ones in the main paper.

II. MODEL AND THERMODYNAMIC
TRANSPORT QUANTITIES

A. Multiterminal conductor

We consider a generic multiterminal coherent electronic
conductor, as sketched in Fig. 1(a). The upper terminal, de-
noted by N, is in a nonthermal state and provides the resource
exploited by the working substance—a coherent conductor
with M standard thermal reservoirs, denoted by 1, 2, . . . , M.
The task of the device is to exploit the resource provided by
the nonthermal terminal to produce in a steady-state operation
a useful output in the working substance, such as extracting
electrical power between any two contacts or cooling one
of the contacts by transporting heat into a hotter contact.
In general, the device does something useful whenever the
entropy of the working substance is reduced, at the expense
of an increase in the entropy of the resource region. (This
entropy production in the resource region also corresponds
to the minimum cost required for maintaining the state of
the resource.) In this section and in Sec. III, we will keep
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the treatment as general as possible, while a minimal model
based on a three-terminal device, sketched in Fig. 1(b), will
be presented in Sec. IV.

The theoretical framework we rely on is a scattering ma-
trix approach [49,50], valid for coherent conductors in which
many-body interactions are negligibly small. We emphasize
that, interactions being absent, we can exclude that any au-
tonomous feedback mechanisms [21,24,25,29] play a role in
our device, so that any “demonic” effects, appearing in the
absence of average charge energy flow between resource and
working substance, can safely be attributed to the presence of
the nonthermal resource.

The energy-dependent scattering matrix s(E ) describes
the conductor’s properties, where the matrix element sαβ (E )
gives the probability amplitude that an electron emitted
at energy E by terminal β is transmitted into terminal α.
The energy dependence of the scattering matrix is typically
tunable by gates in mesoscopic electronic conductors. The
terminals are characterized by distribution functions denoted
by fα (E ), with α = 1, 2, . . . M, N. For a standard equilibrium
contact, we have a Fermi function

fα (E ) = 1

1 + exp[βα (E − μα )]
, α �= N, (2)

with inverse temperature βα = 1/kBTα and electrochemical
potential μα . In contrast, fN(E ) is a generic function de-
scribing the nonthermal terminal N. It is only constrained by
0 � fN(E ) � 1, as it represents the occupation probability of
an electronic (fermionic) contact.

B. Charge, heat, and entropy currents and fluctuations

The average, steady-state currents flowing into terminal
α can be found as the expectation values of the fluctuating
current operators as provided in Appendix A, and they are
given by [49,50]

IX
α = 〈ÎX

α 〉 = 1

h

∫
dE xα

∑
β

|sαβ (E )|2[ fβ (E ) − fα (E )]. (3)

Here, we use the abbreviation X in order to indicate different
types of currents, with (X, xα ) ∈ {(∅, 1), (E, E ), (�, kBσα )}.
This includes the particle current Iα and the energy current
IE
α . The average heat current Jα , for α �= N, is consequently

given by

Jα = IE
α − μαIα. (4)

In addition to charge, energy, and heat currents, we are also
interested here in the entropy, more specifically in the entropy
production in a given terminal. In this steady-state coherent
conductor, this is given by the entropy current into contact α,
namely I�

α , with

σα (E ) ≡ − log

[
fα (E )

1 − fα (E )

]
, (5)

see Ref. [34] or Appendix A for different derivations of the
entropy current. This entropy current I�

α properly reduces to
Clausius’ relation

I�
α → I�,thermal

α = Jα

Tα

, (6)

valid for thermal contacts, when fα is a Fermi function, i.e.,
α �= N. Moreover, it is a thermodynamically consistent quan-
tity, as it satisfies the second law,

∑
α I�

α � 0, even when all
contacts have nonthermal occupation probabilities [33]. This
formulation for the entropy production, which is valid for
the coherent steady-state conductor we consider in this work,
requires the nonthermal contact to be a large, macroscopic
electronic system without any classical or quantum correla-
tions, referred to as “nonequilibrium incoherent reservoir” by
the authors of Ref. [34].

We mention that a different formulation of entropy produc-
tion has been introduced in Ref. [51], in situations possibly
involving time-dependent drivings. There, however, the au-
thors are concerned with the entropy production associated
with the scattering states in the coherent leads, as opposed
to the one referring to the macroscopic contacts that we are
considering here. The difference is that by looking at the
outgoing states in the leads only, any equilibration process
happening when the electrons enter the macroscopic contact
is not taken into account.

We refer to the multiterminal system introduced above
as an N-demon and to the resource region as “demonic,”
whenever the system obeys the strict demon conditions on the
currents,

IN = IE
N = 0. (7)

This enforces that no exchange of particles or energy between
the working substance and the resource region happens on av-
erage. In this case, any useful output generated in the working
substance is obtained without the consumption of an average
energy resource, and the resource is characterized by entropy
flows or by free energies [36]. Even though Eq. (7) rules out
any net transfer of particles and energy, these quantities can
still fluctuate. We will show in this paper that such fluctua-
tions must be present in order for the nonthermal resource to
produce a useful output under the strict demon conditions.

The zero-frequency noise related to any of the currents IX
α

considered here is defined by the correlator

SX
αβ =

∫ +∞

−∞
dt〈{δÎX

α (t ), δÎX
β (0)}〉, (8)

where δÎX
α = ÎX

α − IX
α are the fluctuations of the current with

respect to its average, steady-state value; see Appendix A for
the definitions of the relevant fluctuating current operators.
For the general case sketched in Fig. 1(a), these quantities
evaluate to SX

αβ = SX
αβ,cl + SX

αβ,qu, with [49,50,52]

SX
αβ,cl ≡ 2

h

∫
dE xαxβ

{
− Fαα|sβα|2 − Fββ |sαβ |2

+ δαβ

∑
γ

|sαγ |2[Fαγ + Fγα]

}
, (9a)

SX
αβ,qu ≡ −2

h

∫
dE xαxβRe

{[ ∑
γ

( fα − fγ )s∗
αγ sβγ

]

×
[ ∑

γ

( fβ − fγ )sαγ s∗
βγ

]}
. (9b)
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Here, the total noise has been split into classical-like and
quantum contributions. The classical-like part contains all the
linear terms in the scattering probabilities |sαβ |2 and describes
one-particle transfers across the conductor. It can be seen as
a generalization of a fully classical expression with the addi-
tion of Pauli-blocking factors Fαβ ≡ fα (1 − fβ ) implementing
the exclusion principle [53–55] (further quantum effects can
still influence the form of |sαβ |2). The quantum part, in con-
trast, involves correlated two-particle processes. Note that
the division of noise into separate meaningful contributions
is obviously not unique [49,56]; for the situation studied
here, the separation into quantum and classical contributions
turns out to be favorable. In Eq. (9), we have omitted for
convenience the energy dependence of the scattering matrix
elements sαβ (E ) and of the distribution functions fα (E ).

In what follows, a relevant role will be played by
the entropy fluctuations S�

αβ for generic, thermal, or non-
thermal occupation probabilities fα and fβ . For entropy
fluctuations between terminals α and β with thermal distribu-
tions, these fluctuations are merely the correlation functions
〈δĴαδĴβ〉/(TαTβ ) of the heat currents, divided by the corre-
sponding temperatures of terminals α and β. We stress that
a straightforward connection between the entropy and heat
can be obtained in the thermal case only. When contacts with
nonthermal occupation probabilities are involved, inferring
the entropy production necessarily relies on the knowledge of
the nonthermal distributions themselves. While this can be a
challenging task, it has been shown that such nonequilibrium
distributions can be experimentally accessed via spectroscopy
techniques [46].

III. GENERAL BOUND ON LOCAL
ENTROPY FLUCTUATIONS

We are now in a position to answer the question raised in
the Introduction: What is the minimum amount of fluctuations
of the resource currents (possibly with zero average) required
for the production of a useful output in the working substance?

We identify here the entropy production and its fluctuations
as well as the particle current fluctuations as the relevant
quantities that constrain each other. Specifically, for the auto-
correlations of the entropy currents in any terminal α, S�

αα =
S�

αα,cl + S�
αα,qu, one has for the classical and quantum parts

S�
αα,cl =2k2

B

h

∫
dE [σα]2

∑
γ �=α

|sαγ |2(Fαγ + Fγα ), (10a)

S�
αα,qu = − 2k2

B

h

∫
dE

[
σα

∑
γ �=α

|sαγ |2( fα− fγ )

]2

. (10b)

To establish bounds on the entropy production imposed
by these fluctuations, we use the following inequalities that
are valid independently of whether the distributions fα, fγ are
thermal or not:

|σα| � [σα]2 + 1
4 , (11a)

| fα − fγ | � Fαγ + Fγα. (11b)

[These inequalities are easily proven as follows. Recalling
that Fαγ = fα (1 − fγ ) and 0 � fα � 1, one has 0 � Fαγ �
1. Therefore, Fαγ + Fγα � |Fαγ − Fγα|, yielding inequality

(c)(a) (b)

FIG. 2. Illustration of the inequalities (11) for simple Fermi func-
tions. We set μα ≡ 0 as the reference energy and plot the ratios of
the left- and right-hand side of Eqs. (11) as function of energy and of
the ratio of temperatures Tα/Tγ . (a) Plot of |σα|/[σ 2

α + 1/4] demon-
strating that Eq. (11a) is saturated around E − μα = ±kBTα/2, as
highlighted by the dashed lines. (b),(c) Plots of | fα − fγ |/(Fαγ +
Fγα ) for (b) μγ = 0 and for (c) μγ /kBTγ = 3. The ratio approaches
1 at large energies, when fγ is close to 0 or 1 (being at the same time
different from fα). For comparison, the dashed lines indicate where
inequality (11a) is approached; see panel (a). Consequently, having
regions where equality is reached in both Eqs. (11) requires a shift
of the chemical potentials between fα and fγ . Note that the results in
(a) are independent of Tγ , but we plot the axes in units of Tγ to allow
one to compare that plot with the plots in (b) and (c).

(11b). For (11a), one notices that x2 − |x| + 1/4 = (2|x| −
1)2/4 � 0 ∀x ∈ R, and in particular for x = σα .] To get some
intuition about these inequalities, we illustrate in Fig. 2 un-
der which conditions they turn into equalities, for the simple
case in which the functions fα and fβ are Fermi functions.
Using (11), we find that the classical component of the noise
satisfies

S�
αα,cl+

k2
B

4
Sαα,cl �

2k2
B

h

∫
dE

∣∣∣∣∣∣σα

∑
γ

|sαγ |2( fα − fγ )

∣∣∣∣∣∣
� 2kB

∣∣I�
α

∣∣. (12)

This is the first key result of this paper; it relates the
entropy production to a combination of the classical contri-
butions to entropy and particle fluctuations, which reduces
to a combination of the classical contributions to heat
and charge fluctuations in the case of thermal contacts.
We are particularly interested in the fluctuations of the
nonthermal resource, where the relation (12) provides us
with a relevant definition of the classical part of resource
fluctuations,

Sres,cl ≡ S�
NN,cl + k2

B

4
SNN,cl, (13)

that will be used later to characterize the N-demon. We will
show in Sec. IV B under which conditions the bound set by
the generally valid inequality (12) can be approached in a
concrete device realization, even when in addition the strict
demon conditions (7) are imposed.

As a next step, we explore the implications of the
constraint (12) on the resource fluctuations of a multiterminal
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system for a useful device, namely a device associated with
negative entropy production in the working substance. If we
impose I�

ws < 0, by the second law we have that the entropy
production in the resource contact is positive and satisfies
I�
N � −I�

ws. Therefore, the inequality (12), applied to the
nonthermal demon terminal, becomes

Sres,cl = S�
NN,cl + k2

B

4
SNN,cl � 2kBI�

N � −2kBI�
ws (14)

as introduced in Eq. (1). This shows that the level of entropy
reduction in the working substance, which is an indication of
how useful the device is, sets a minimum level of classical
fluctuations in the resource terminal. Equivalently, this
means that knowing the amount of classical fluctuations
in the resource region allows one to predict the upper
bound of useful entropy reduction that can be achieved
in the working substance. In addition, we notice that the
first of the above inequalities can be used to put a lower
bound on the efficiency of the nonthermal machine. Indeed,
one can define a thermodynamically consistent efficiency as
η = −I�

ws/I�
N [36]. Then, by using the first inequality in (14),

we readily find η � −2kBI�
ws/Sres,cl.

Intriguingly, Eq. (14) bears some similarities to thermody-
namic uncertainty relations (TURs) [57–60], while actually
containing different information. In its simplest form, a TUR
states

Var(I )

〈I〉2 � 2

�̇
, (15)

where I is any given current and �̇ is the global entropy
production rate. Of course, violations of TURs are well-
known [53,61–64], particularly for quantum systems (as in
this work) described by scattering theory [65–68] or in mul-
titerminal configurations [69,70], but that is not the subject
here. Rather, we point out that if we rewrite the first inequality
in Eq. (14) as

S�
NN,cl(
I�
N

)2 � 2kB∣∣I�
N

∣∣ − k2
BSNN,cl

4
(
I�
N

)2 , (16)

then it is very reminiscent of the TUR in Eq. (15) applied
to entropy fluctuations [for which 〈I〉 in (15) is replaced
by the rate of entropy production itself]. However, this
similarity is deceptive; our relation (16) involves the local
entropy production in a given contact, when the TUR in-
volves global entropy production. Moreover, violations of
the TUR, being of quantum origin [53], cannot be asso-
ciated with the additional term in Eq. (16), which is an
inequality for the classical part of the fluctuations alone.
Therefore, despite the appealing similarity between Eqs. (15)
and (16), we underline that these two relations are different
statements.

Until now, we have only considered constraints imposed by
the classical part of the fluctuations. Indeed, the quantum com-
ponent of the noise is negligible in the tunneling regime, i.e.,
|sαγ |2 � 1, α �= γ , but it also vanishes in the case in which
α is a dephasing probe, i.e., when its distribution satisfies∑

γ |sαγ |2( fα − fγ ) = 0 at every energy E [71]. In general,
however, it is nonzero and, importantly, leads to a reduction
of the total noise.

Hence, in order to predict constraints on the full fluc-
tuations associated with the engine’s resource, a state-
ment on the sum of both the classical and the quan-
tum component is required. To do so, we first define
f̃ ≡ ∑

γ �=α |sαγ |2 fγ /
∑

γ �=α |sαγ |2 and notice that ( fα − f̃ ) ∈
[−1, 1]. Using this observation (and the unitarity of the
scattering matrix), we find the inequalities

S�
αα,qu � −2k2

B

h

∫
dE [σα]2[1 − |sαα|2]

2| fα − f̃ |
(17)

� −2k2
B

h

∫
dE [σα]2[1−|sαα|2]

∑
γ

|sαγ |2| fα − fγ |.

This means that the total entropy fluctuations in contact α

satisfy

S�
αα � 2k2

B

h

∫
dE [σα]2|sαα|2

∑
γ

|sαγ |2| fα − fγ |. (18)

Using the inequality in Eq. (11a), we therefore get

S�
αα + k2

B

4
Sαα � 2kB

∣∣I�
α

∣∣ inf
E∈A

|sαα (E )|2, (19)

where A ⊆ R is the support of the integrand function in
Eq. (18). This second key result of this section provides a
similar inequality to that on the classical noise components
in Eq. (12), but now for the full fluctuations. Note that this
inequality is less constraining. In particular, it does not pro-
vide relevant information when the infimum of |sαα (E )|2 is
zero—since the total noise always has to be non-negative—
but only when the reflection probabilities are nonzero in the
transport window. In particular, in the special case in which
|sαα (E )|2 = |s̄αα|2 is constant and considering α = N, we find

S�
NN + k2

B

4
SNN � 2kB|s̄NN|2I�

N � −2kB|s̄NN|2I�
ws, (20)

setting a minimal constraint on the total noise of the nonequi-
librium resource given a certain performance goal in the
working substance. Note that in the tunneling regime, we have
|s̄NN|2 ≈ 1 and the bound (14) on the classical noise compo-
nents is recovered, as expected. Furthermore, we see that the
quantum noise component lowers the bound, as anticipated.
In fact, |s̄NN|2 needs to be smaller than 1 to have transport
between terminal N and the working substance.

The bounds (14) and (20) become particularly appealing
for a three-terminal N-demon, where, thanks to the demon
conditions, the entropy reduction −I�

ws can be written in terms
of the output power. (Extensions to hybrid, multifunctional
engines can be done in line with Ref. [38].) Let us first con-
sider a system operating as a refrigerator, setting T2 < T1 and
μ1 = μ2 = μ0. Then, we have

−I�
ws = − J1

T1
− J2

T2
=

(
1

T1
− 1

T2

)(
IE
2 − μ0I2

)

=
(

1

T2
− 1

T1

)
Jcool, (21)

where charge- and energy-current conservation and the demon
conditions, Eq. (7), have been used. Furthermore, Jcool is the
cooling power, namely the heat current carried away from the
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cold contact 2. If the system runs instead as an engine, we
set T1 = T2 = T0 and μ1 �= μ2. Then, using again the demon
conditions, we get

−I�
ws = μ1 − μ2

T0
I1 = P

T0
, (22)

where P is the power produced by the engine (current
against a potential bias). In summary, we conclude that in a
three-terminal N-demon, the useful output quantity produced
in the working substance (electric power or cooling power)
sets the minimum amount of fluctuations (a combination of
charge and entropy fluctuations) that must go along with the
resource. In the following, we will analyze the impact of the
general bounds derived in the section on concrete N-demon
realizations.

IV. NOISE BOUNDS FOR A QUANTUM-HALL N-DEMON

While the bounds (14) and (20) are valid for any multi-
terminal coherent conductor, we now focus on the situation
in which the resource terminal is characterized by a given
nonthermal distribution as it might arise in nanoscale devices
due to the coupling to different environments while thermal-
ization is not effective. Furthermore, we now request that on
average no charge and energy currents flow between resource
contact and working substance, namely the strict conditions
(7) are fulfilled. This is of interest since it highlights the non-
thermal property of the distribution as an additional resource,
distinct from (average) heat flow. In this section, we analyze a
three-terminal configuration, as it is typical for an engine, and
we choose an implementation relying on a conductor in the
quantum Hall regime, depicted in Fig. 1(b), similar to previous
analyses [22,36].

A. Minimal three-terminal N-demon configuration

We consider the three-terminal quantum Hall setup shown
in Fig. 1(b), where the nonequilibrium distribution fN(E ) is
injected into the working substance through an interface with
transmission probability τint (E ). The minimal configuration to
extract work or to realize cooling in the two-terminal working
substance in this chiral conductor is via a scattering region
in front of one of these two terminals, with a transmission
probability τws(E ) that has to be energy-dependent [36].

The demon conditions (7) for charge current IN = 0 and
energy current IE

N = 0 in this setup take the simple form

(
IN

IE
N

)
= 1

h

∫
dE

(
1

E

)
τint( f2 − fN) = 0. (23)

These conditions are minimally affected by the properties
of the working substance, since the backflow towards the
resource region only depends on f2 and τint. Hence, T2 and
μ2 are the only parameters of the working substance that
are relevant, while the concrete realization of the working
substance encoded in τws is not. The conditions of Eq. (23)
can hence be fulfilled by adjusting the nonthermal distribution
fN, independently of τws.

In the working substance of this setup, the average energy
current reads

IE
1 = 1

h

∫
dE E τws[( f2 − f1) + τint( fN − f2)], (24a)

IE
2 = 1

h

∫
dE E [τws( f1 − f2) + τint(1 − τws)( fN − f2)].

(24b)

and equivalently for the particle currents (I1 and I2), where the
energy factor in the integral is replaced by a 1. These currents
can lead to refrigerator and engine operation of the setup
under demon conditions, provided that the entropy production
in the resource terminal

I�
N = kB

h

∫
dE σNτint( f2 − fN) (25)

is positive. However, as we saw in Sec. III, there is a minimum
amount of noise in the zero-average flow from the N-terminal
required for the system to produce a useful output. For the
setup of Fig. 1(b), we show here that the full fluctuations of
both IN and IE

N have to be nonzero even separately, meaning
that these currents (both with zero average) are necessar-
ily both noisy. We prove this by showing that requiring no
fluctuations prevents the generation of any useful output. A
straightforward calculation of the energy noise gives

SE
NN = 2

h

∫
dE E2τint[FNN + F22 + (1 − τint )( f2 − fN)2],

(26)

and equivalently for the particle current noise SNN by dropping
the factor E2 in the integrand. An obvious possibility to nullify
the noise is to set τint = 0, but this means that the working
substance and the resource region are completely decoupled.
(This is in contrast to Coulomb-coupled systems, where en-
ergy and information exchange can take place in the absence
of particle exchange [24,29,72–74].) As a result, the resource
region cannot have any effect on the working substance, where
therefore all currents flow according to the direction imposed
by the voltage and temperature biases between contacts 1
and 2. For τint �= 0, all three terms in the square brackets
in Eq. (26) have to vanish separately and for every energy
(since they can never be negative). Examining the term F22 =
f2(1 − f2) in the noise and taking into account that f2 is a
thermal distribution, we must require T2 = 0 for F22 to vanish.
We now examine what this implies for the demon conditions.
Taking μ2 as the reference energy, one sees that T2 = 0 ⇒
E τint ( f2 − fN) � 0 ⇒ IE

N � 0. Hence, the only way to sat-
isfy the demon condition, Eq. (23), is by imposing τint( f2 −
fN) = 0 for all energies. As a result, the currents in the
working substance reduce to hI2 = ∫

dE τws( f1 − f2) = −hI1
and hIE

2 = ∫
dE Eτws( f1 − f2) = −hIE

1 , so that the flows are
only determined by the temperature and voltage biases of
contacts 1 and 2. Thus, one concludes that the presence of
charge and energy fluctuations of the incoming (zero-average)
flux from the N-terminal is essential for the functioning of
the N-demon. Importantly, we have shown this for the to-
tal fluctuations—namely the sum of classical and quantum
contributions—which in the case in which τint = 1 would not
be excluded to vanish by Eq. (19).
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B. Conditions to approach the fluctuations bound

We have seen in Fig. 2 how the inequalities (11) can be
saturated by shifting Fermi functions with respect to each
other. In this section, we explore to which extent it is pos-
sible to approach the fluctuations bound (14) resulting from
these inequalities for the three-terminal system introduced in
Fig. 1(b). Hence, we exploit a nonthermal resource that can
strongly differ from a Fermi function, and we aim to carry out
a useful task under demon conditions.

We start by looking at the conditions for which one obtains
an equality in relations (11), in analogy to what was obtained
in Fig. 2. The inequality (11a) is saturated for a (piecewise)
constant distribution fα that takes either of the two optimal
values,

f± ≡ 1

1 + e∓1/2
. (27)

Instead, reaching equality in relation (11b) requires fγ ∈
{0, 1}. Specifying the setup in Fig. 1(b), we therefore see
that saturating the first part of the inequality (12) requires
f2 ∈ {0, 1} ⇒ T2 = 0 and fN ∈ { f+, f−}. However, the first of
these constraints cannot be satisfied by imposing, at the same
time, the demon conditions (7) and that the N-demon produces
a useful output, as shown in Sec. IV A. Therefore, we come
to the important conclusion that requiring a useful N-demon
does not allow one to reach any of the two bounds (14) and
(20). We analyze in the following which configurations allow
one to approach the bound and to what extent.

We now illustrate with an example that it is indeed pos-
sible that the level of fluctuations of a working N-demon
gets reasonably close to the bound. We therefore first lift the
constraint T2 = 0 in order to allow for a finite power output
under demon conditions. Next, it is natural to require the
nonthermal distribution fN to take values that are close to the
optimal ones, given in Eq. (27). While there are many ways
to fulfill this condition, we focus here on the simple case in
which fN is a function of the form

fN(E ) = ϑγ (Ea − E ) + f−ϑγ (E − Ea)

+ ( f+ − f−)ϑγ (E − Em) − f+ϑγ (E − Eb), (28)

with Ea < Em < Eb and

ϑγ (E ) = 1

1 + exp(−γ E )
; (29)

see Fig. 3 for an illustration. This function (28) transitions be-
tween the values 1, f−, f+, 0 with increasing energy, and the
parameter γ governs the sharpness of the transitions. Note that
having fN approach 0 or 1 is not beneficial for reaching the
equality in Eq. (20), but is physically relevant. Indeed, even in
conductors with nonthermal distributions, we expect states at
very high energies to be rarely filled and states at very low en-
ergies to be rarely empty. Moreover, we choose the interface
transparency, τint (E ), in such a way that all the energy inte-
grals are limited to the interval (Ea − |Ea|/�, Eb + |Eb|/�),
thus keeping energy regions where the nonthermal distribution
can deviate significantly from the optimal values f± (see the
nonshaded region in Fig. 3 for an example). Having fixed
the integration interval, one can calculate all the transport

β0Ea β0Em β0Eb

0

f−

f+

1

β0E

f N

β0γ = 5
β0γ = 20

FIG. 3. Example of the nonequilibrium distribution given in
Eq. (28), with β0Ea = −2, β0Eb = 1, Em = (Ea + Eb)/2, and two
different values of the sharpness γ . The dashed horizontal lines
indicate the values f+ ≈ 0.62 and f− = 1 − f+ ≈ 0.38; cf. Eq. (27).
The nonshaded region corresponds to the selected energy interval
with � = 5. Energies are taken with respect to a common chemical
potential μ = 0 and a reference temperature T0.

quantities. In particular, the demon conditions IN = IE
N = 0

will be used to fix the values of Ea and Eb.
Focusing on the classical part of the resource fluctuations,

for which inequality (14) holds, we now study the behavior of
the ratio

R3T
cl = S�

NN,cl+ k2
B
4 SNN,cl

2kB

∣∣I�
N

∣∣ � 1 (30)

as a function of the transition sharpness γ and the parameter �

governing how much the allowed energy interval exceeds the
boundaries Ea and Eb. [The inverse of this fraction, 1/R3T

cl ,
can be seen as a type of performance quantifier setting the
maximum amount of work that can be done given a certain
level of fluctuations; see also Eq. (14).]

The result is shown in Fig. 4. The dark blue region rep-
resents the parameter space where the ratio R3T

cl is relatively
low (the global minimum in the displayed plot is around 3.5).
The behavior in Fig. 4 can be roughly understood as follows.
Inequality (11a) tells us that the bound can be approached
when fN is close to the optimal values f±. By contrast, if fN

approaches the values 0 or 1, the inequality becomes very in-
accurate. Therefore, to achieve a small R3T

cl the contributions
where fN ≈ 0, 1 need to be suppressed while maintaining
the ones where fN ≈ f±. As depicted in Fig. 4, this can be
achieved in two ways. For large � and large γ the regions
where fN is not close to f± are filtered out: a large value of γ

makes fN transition abruptly between the values 0, f+, f−, 1
(see the blue line in Fig. 3), and a large value of � selects the
energy region where fN = f+, f− as the integration interval.
This explains the dark blue region in the upper right corners
of the plots in Fig. 4. But one can also achieve a small R3T

cl
value by decreasing the parameters � and γ , visible on the
diagonals of both panels of Fig. 4. Decreasing γ , the steps
in fN become smoother, see the red line in Fig. 3, meaning
that fN deviates only slightly from the optimal values f± in
extended energy intervals. Indeed, Fig. 2(a) shows that for
smooth distribution functions [arising from large temperatures
in Fig. 2(a)], the region where the ratio |σα|/(σ 2

α + 1/4) is
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FIG. 4. Ratio R3T
cl defined in Eq. (30), calculated for the nonequi-

librium distribution (28) with Em = (Ea + Eb)/2 and Ea, Eb fixed
by the demon conditions. The ratio is plotted as a function of the
parameters γ and �. The other parameters are chosen having in mind
a refrigerator configuration. Therefore, we set the reference tempera-
ture T1 = T0, a common electrochemical potential μ1 = μ2 ≡ 0, and
(a) T2 = 0.3T0, (b) T2 = 0.5T0. The markers in (b) indicate the points
we use to calculate the cooling power of an N-demon using such
a nonequilibrium distribution; see Fig. 5. These points are chosen
along the line (white dashed) where R3T

cl takes the minimal values as
a function of γ and �.

close to 1 is significantly increased. As a consequence, it is
possible to extend the integration interval beyond [Ea, Eb] by
decreasing � while staying in a range for which Eq. (11a) is
sufficiently accurate. Note that detailed features of Fig. 4 rely
heavily on the interconnection between the different param-
eters through the demon conditions, and hence they cannot
be explained straightforwardly by the simple reasoning above.
Overall, our analysis shows that it is possible to conceive
nonthermal distributions allowing one to approach the bounds
derived in the previous section, even when satisfying the de-
mon conditions. It remains to be shown that the N-demon can
produce a useful output in these regimes. We illustrate this
for the example of the demon acting as a refrigerator cooling
contact 2, which is set at temperature T2 < T1. The working
substance must be equipped with an energy-dependent trans-
mission probability τws(E ) to be able to exploit the incoming
nonthermal resource. For this purpose, we choose an energy
filter in the form of a boxcar function:

τws(E ) =
{

1, −εws � E � εws,

0 otherwise.
(31)

This choice is motivated by the high relevance of this type
of transmission in quantum thermoelectrics [74,75], also con-
cerning noise [[66,76,77]]. The results for the cooling power
Jcool = −J2 obtained in this situation are shown in Fig. 5 as
a function of the filter half-width εws. The cooling power is
normalized with Pendry’s bound [78]

Jqb = π2k2
B

6h
T 2

cold, (32)

which sets the maximum amount of heat that can be carried
away from a contact with a given temperature, here Tcold.
Quite remarkably, it is possible to have a finite cooling power,
approaching almost 10% of Pendry’s bound. Moreover, Fig. 5

FIG. 5. Cooling power Jcool when the three-terminal N-demon is
operated as a refrigerator, with T1 = T0, T2 = 0.5T0, and μ1 = μ2 =
0. The working substance exploits the incoming nonequilibrium dis-
tribution (28) by using a filter transmission probability τws of the
form (31). The three curves correspond to different working points,
indicated in Fig. 4(b). The associated values of the ratio R3T

cl and the
classical resource fluctuations Sres,cl (in units of S0 = 2k3

BT0/h) are
shown in the legend.

also shows that the curve displaying the largest cooling power

corresponds to the largest value of Sres,cl = S�
NN,cl + k2

B
4 SNN,cl.

This means that for the example considered here, the classical
resource fluctuations grow faster than the entropy production
of the N-terminal and the entropy reduction in the working
substance—more than imposed by the inequality (14).

V. NOISE BOUNDS FOR AN ENGINEERED
MULTITERMINAL N-DEMON

Until now, we have considered a device in which the
resource is a single terminal providing a given nonthermal
distribution fN, and we have purposefully not introduced a
specific mechanism creating this distribution. Nonthermal dis-
tributions are ubiquitous in nanoscale devices, and various
examples have been analyzed how to engineer them, such as
with squeezed states [16,79–83], quantum correlations [7], or
driven contacts [20].

To give a concrete, but simple, example, representative of a
system in contact with different environments, yet realizable
and tunable in experiment, we analyze in the following the
setup shown in Fig. 6. Here, the resource consists of a set of
two thermal contacts, which can have different temperatures
and electrochemical potentials, connected via a coherent con-
ductor characterized by an energy-dependent scatterer, with
transmission probability τres(E ). This combination of differ-
ent thermal contacts is an extremely simple way to engineer
an effective nonthermal distribution, namely

fN(E ) = τres(E ) f4(E ) + [1 − τres(E )] f3(E ). (33)

Such a configuration, as previously studied in Refs. [22,36],
is expected to be experimentally realizable while being
highly tunable. Indeed, nanofabrication techniques in two-
dimensional electron gases allow for the realization of
complex energy-filtering setups in the quantum Hall regime
[46]. In addition, the parameters of the transmission function
τres(E ) can usually be controlled by means of gate voltages,
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FIG. 6. A four-terminal configuration for the N-demon, where
the nonthermal resource is implemented by a coherent conductor
mixing the occupation probabilities of two equilibrium contacts, 3
and 4, thanks to an energy-dependent transmission function τres(E )
associated with a scatterer in the resource region.

as in the case of a quantum point contact [84] or resonant
quantum-dot-like structures [46,85,86]. The resource region
can hence be engineered such that it constitutes the “demon”
part of the setup, providing a nonthermal resource at van-
ishing average charge and energy currents out of the shaded
region in Fig. 6 and into the working substance. Note that
distributions analogous to Eq. (33) can also arise in con-
ductors coupled to different baths and subject to different
equilibration/thermalization processes, as demonstrated in
Ref. [17] for a hot-carrier solar cell.

A. General noise bounds for the multiterminal resource

We now analyze how the entropy production in the re-
source (and hence the entropy reduction in the working
substance) is bounded by the fluctuations occurring in the
resource terminals. We therefore exploit the previously pre-
sented bound (12), but now we consider the sum of the
contributions from the two thermal contacts that together con-
stitute the demon part of the device. Indeed, using Eq. (12),
we get

S�
33,cl + S�

44,cl + k2
B

4
[S33,cl + S44,cl] � 2kB

(∣∣I�
3

∣∣ + ∣∣I�
4

∣∣).
(34)

Note that in this inequality, the sum of the moduli of the
entropy productions in the resource terminals appears. If—as
desired—the two resource terminals indeed produce entropy,
this sum equals the total entropy production in the resource.
Otherwise, we have |I�

3 | + |I�
4 | � |I�

3 + I�
4 | � |I�

1 + I�
2 |, the

latter being the entropy reduction in the working substance.
As a side remark, note that the total entropy production of
a nonthermal distribution arising from a coherent mixing as
presented here is always larger than the entropy production
I�
N of a single terminal with an analogous distribution function
fN; see Ref. [17].

Recalling that terminals 3 and 4 are in a thermal state, the
entropy fluctuations reduce to the heat noise SJ

αα , such that

S4T
res,cl ≡ SJ

33,cl

T 2
3

+ SJ
44,cl

T 2
4

+ k2
B

4
(S33,cl + S44,cl )

� −2kBI�
ws. (35)

This relation provides us with a relevant definition of classical
resource fluctuations of the four-terminal setup, S4T

res,cl, that
will be used for the device characterization. This inequality
is extended to the full noise, including quantum contributions,
by exploiting Eq. (20), yielding

S4T
res ≡

[
SJ

33

T 2
3

+ k2
B

4
S33

]
+

[
SJ

44

T 2
4

+ k2
B

4
S44

]

� −2 inf{|s33(E )|2, |s44(E )|2}kBI�
ws. (36)

In the following section, we analyze how the entropy pro-
duction and its fluctuations behave in concrete realizations of
engines and refrigerators realized in quantum-Hall conductors
with a set of two terminals, together acting as a demonic non-
thermal resource (without average charge and heat currents
into the working substance).

B. Analysis of specific device realizations

Here, we characterize the performance of the device in
Fig. 6 with respect to the bounds we have previously derived.
We consider both a refrigerator and an engine configuration.
In all cases, we choose to fulfill the demon conditions (7) by
adjusting the chemical potentials μ3 and μ4 of the resource
region. The free parameters of the resource region are thus
the temperatures T3 and T4, as well as the transmission func-
tion τres. We furthermore consider here τint = 1, whereas τws

and τres are both chosen to be sharp step functions, which
can be obtained as a limiting case of a QPC transmission
[76,84,87,88],

τQPC(E ) = 1

1 + exp[−2πγQPC(E − ε)]
, (37)

with γQPC larger than all relevant energy scales (tempera-
tures, biases) in the system. We address two types of engine
operation: In Fig. 7, we analyze the system working as a
refrigerator, where the working substance is characterized by
T2 < T1 and μ1 = μ2 = 0. The nonthermal resource is ex-
ploited to obtain a finite cooling power in the resource, namely
a heat current flowing out of the cold contact 2 and into the
hotter contact 1. In Fig. 8, we analyze the system working
as an engine producing electrical power, where the working
substance is characterized by T1 = T2. Power is produced
by driving a particle current against the potential difference
μ1 − μ2.

In these figures, we plot in panels (a) the desired output,
namely the cooling power and the produced electrical power.
We also plot the classical resource fluctuations, i.e., the com-
bination of classical entropy and particle current fluctuations
as defined by Eq. (35), in panels (b). Furthermore, we show
the sum of the moduli of the entropy production in the two
resource terminals (ideally corresponding to the total entropy
production in the resource), namely |I�

3 | + |I�
4 |, in panels (c).
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FIG. 7. Results for a refrigerator configuration where both τws

and τres are sharp step functions; see Eq. (37). (a) Cooling power,
(b) classical resource fluctuations Sres,cl, and (c) entropy production
|I�

3 | + |I�
4 | as a function of �T = T1 − T2 and of the position εws of

the step function onset in the working substance. (d) Ratio between
the classical resource fluctuations, classical and quantum resource
fluctuations, and fluctuations of the effective N-terminal and the en-
tropy production 2kB(|I�

3 | + |I�
4 |). The plotted ratios are independent

of εws. In all panels, we set μ1 = μ2 = 0, T1 = T0, T3 = T4 = 1.2T0,
and β0εres = −1. The white regions in the density plots are those
where no cooling is possible under demon conditions.

Finally, in panels (d) of Figs. 7 and 8, we plot the ratios
between resource fluctuations and entropy production. We
compare the following ratios:

R4T
cl = 1

2kB

S4T
res,cl∣∣I�

3

∣∣ + ∣∣I�
4

∣∣ , (38a)

R4T = 1

2kB

S4T
res∣∣I�

3

∣∣ + ∣∣I�
4

∣∣ , (38b)

R4T
NN = 1

2kB

S4T
res,NN∣∣I�

3

∣∣ + ∣∣I�
4

∣∣ . (38c)

For the first ratio, we know from Eq. (34) that R4T
cl � 1.

By contrast, the second ratio involving the full resource
fluctuations can become smaller than 1 due to the quan-
tum noise contribution, which can be negative. Indeed, in
the considered setup, where |s33(E )|2, |s44(E )|2 can become
zero, the inequality (36) is uninformative, only requiring
the trivial fact that the total noise is positive, i.e., R4T �
0. We compare these two ratios to a third one, involving
the full fluctuations of the zero-average currents flowing
from the two-terminal resource into the working substance,
ÎN = Î3 + Î4 and ÎE

N = ÎE
3 + ÎE

4 . The fluctuations appearing

FIG. 8. Results for an engine configuration producing electrical
power where both τws and τres are sharp step functions; see Eq (37).
(a) Power, (b) classical resource fluctuations Sin,cl, and (c) entropy
production |I�

3 | + |I�
4 | as a function of �T = T1 − T2 and of the

position εws of the step function onset in the working substance.
(d) Ratio between the classical resource fluctuations, classical and
quantum resource fluctuations, and fluctuations of the effective N-
terminal and the entropy production 2kB(|I�

3 | + |I�
4 |). The plotted

ratios are independent of εws. In all panels, we set T1 = T2 = T0,
T3 = T4 = 0.7T0, and β0εres = −1. The white regions in the density
plots are those where no power is produced under demon conditions.

in Eq. (38c), given by the combination S4T
res,NN ≡ S4T,�

NN +
k2

BS4T
NN/4, hence also contain the crosscorrelations terms be-

tween currents ÎX
3 and ÎX

4 , namely S4T,X
NN ≡ SX

33 + SX
44 + SX

43 +
SX

34. This is one further possibility to quantify the fluctua-
tions related to the nonthermal resource. Note, however, that
while being an experimentally relevant quantity, it does not
unambiguously quantify the fluctuations of a generic nonther-
mal resource described by the distribution function fN, as it
might seem.

Indeed, while the average particle and energy currents IN
and IE

N flowing from the two-terminal resource considered in
this section correspond to the average currents flowing from a
single nonthermal resource with an equivalent distribution fN

in Eq. (33), see Eq. (23), the noise of the four-terminal system,

S4T,E
NN = 2

h

∫
dEE2τint[F22 + (1 − τres )F33 + τresF44

+ (1 − τint )(1 − τres)( f2 − f3)2

+ τres(1 − τint )( f2 − f4)2

+ τintτres(1 − τres)( f3 − f4)2], (39)
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is generally different from the one of the three-terminal sys-
tem SE

NN in Eq. (26) (and equivalently for the particle current
noise). The reason for this is that the noise is nonlinear.
Hence, the fluctuations of the effective N-terminal S4T

res,NN do
not generally satisfy the bound in Eq. (36), as demonstrated in
Appendix B.

In the following, we discuss the described quantities for
the realization of the N-demon for refrigeration and power
production.

1. N-demon for cooling

We start by presenting results for the N-demon operating
as a refrigerator. Here, we exploit the nonthermal resource
to cool contact 2 in the working substance. The results are
presented in Fig. 7. We first notice that it is possible to
obtain a finite cooling power even when the temperatures
of the resource contacts are higher than the temperatures in
the working substance, here for T1 = T0, 0.8T0 < T2 < T0,
and T3 = T4 = 1.2T0. In contrast to absorption refrigerators,
where refrigeration is driven by a hot contact [89–91], this,
however, does not lead to any energy exchange on average
between resource and working substance in the situation stud-
ied here. In Fig. 7(a), we find two maxima in the cooling
power Jcool as a function of εws. One of them is found at
εws = εres = −kBT0, where the filtering in the resource re-
gion and in the working substance takes place at the same
energy. The other one is situated around εws ≈ 2kBT0; which
of the two features is the global maximum depends on the
temperature difference in the working substance and changes
approximately at the place where the entropy production in
contact 3 is found to change sign; see also the discussion of
panel (d).

The classical resource fluctuations, S4T
res,cl, in panel (b), and

the entropy production, |I�
3 | + |I�

4 |, in panel (c), show similar
features: they are both increasing with the temperature bias
T1 − T2 and are independent of the working substance trans-
mission, here parametrized through εws. This independence
of the working-substance implementation is an important dif-
ference compared to standard Maxwell demons, where the
entropy production of the demon is typically directly related
to the entropy reduction in the working substance; see also
Ref. [22]. We compare the fluctuations and the entropy pro-
duction in the resource region through the ratios in Eq. (38)
in panel (d). As R4T

cl , R4T, R4T
NN each characterize the re-

source region, they are independent of εws in the considered
setup; see Fig. 6. First, we notice that the ratio R4T

cl � 1 as
required by the inequality (34). Furthermore, panel (d) shows
that R4T

cl � R4T, which is consistent with the quantum noise
contribution being negative. Moreover, we also observe that
R4T � R4T

NN. While in principle this may not be true (due to
the possibility that heat current crosscorrelations are positive
even for fermionic systems), it turns out to be the case in the
analyzed setup. Interestingly, each ratio lies above 1, indicated
by the dotted line, which is not required for the total resource
fluctuations, S4T

res, by the inequalities (36), nor for the effective
N-terminal fluctuations, S4T

res,NN, by relation (34) together with
Eq. (B2). Nonetheless, this feature can be attributed to the fact
that, while the considered setup has a resource fluctuations-to-
entropy-production ratio that is of the order of 1, it is still far

from being optimal with respect to the bound Eq. (35). The
smaller the colder temperature gets (hence with increasing
T1 − T2), the more the ratios approach 1. This is in agreement
with the results presented in Fig. 5, where the close-to-optimal
values of R are reached for small cooling powers. By contrast,
the ratios decrease with increasing absolute values of the
resource fluctuations and the entropy production, which was
not the case in the example discussed in Sec. IV B. Finally, we
find a nondifferentiable point in the three ratios as a function
of the temperature difference. This is due to a change of sign
in I�

3 (from negative to positive), and happens at a temperature
close to the temperature at which the global maximum of Jcool

changes.

2. N-demon for power production

We now analyze the N-demon operating as an engine,
with T2 = T1 and μ1 �= μ2 producing electrical power in the
working substance, by driving a current against the potential
bias. While many of the results that we find are analogous
to the results of the refrigerator setup, here we point out the
relevant differences.

First of all, we remark that the parameter regimes in which
the demon conditions are fulfilled while useful work is per-
formed in the working substance are more restricted with
respect to the refrigerator setup of the previous subsection,
leading to the different shape of the density plot in Fig. 8. This
is not a general statement—see also Ref. [36]—but is a conse-
quence of the complex interplay among the system parameters
fixed by the demon conditions, which are influenced by the
other freely chosen parameters in the specific setting. Also, the
specific implementation chosen here leads to a relatively low
output power. We again find two different operational points
where the output power has a local maximum, shown as bright
spots in Fig. 8(a). We note that the sensitivity of resource
fluctuations and entropy production, and also their ratio, on
the potential bias is less pronounced than the temperature-
bias-dependent case discussed for the refrigerator before.

An interesting observation can be made here concern-
ing the behavior of the output power as compared to the
resource fluctuations, the entropy production, and their ra-
tios. While in the case discussed in Sec. IV B both ratio
and resource fluctuations increase with the increase of the
maximum cooling power, in the four-terminal refrigerator re-
alization of Fig. 7 the ratio increases whereas the resource
fluctuation decrease with the increase of max (Jcool ). Here,
by contrast, we have both features: for positive biases the
ratio increases while the resource fluctuations decrease as the
maximum power increases, whereas at negative biases the
opposite happens. These scenarios are all in line with the
bounds on entropy production with respect to resource fluc-
tuations developed in this paper, but they clearly show that the
efficiency (namely the ratio between useful output power in
the working substance and entropy production in the resource)
of the setup does not correlate with the resource fluctuations.
The open question under which conditions the output (or the
efficiency [36]) can be optimized given a certain amount of
fluctuations is a motivation for future studies relating our find-
ings to generalized thermodynamics uncertainty relations; see
also Eq. (15).
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VI. CONCLUSIONS AND OUTLOOK

In this work, we have analyzed the role of fluctuations
in electronic mesoscopic engines powered by nonthermal re-
sources. The key result, Eq. (1), is that whenever a given
performance goal in the working substance is set, a minimum
amount of particle and local entropy fluctuations in the re-
source is required. Conversely, a given amount of resource
fluctuations sets an upper bound on the useful work that can
be done in the system. Interestingly, we find that this bound
is set by the classical part of the fluctuations only: When
quantum fluctuations are present, the noise in the resource
part of the system can be lowered, as shown by Eq. (19).
Based on the inequality (1), we have introduced a notion
of resource fluctuations that we have used to characterize
different implementations of N-demons. Considering both
the case when the resource is provided by a single contact
with a nonthermal occupation probability (Sec. IV B) and the
case of a multiterminal resource effectively implementing a
nonthermal input distribution (Secs. V A and V B), we have
shown that the bound imposed by the derived inequalities
can be closely approached even when the cooling power or
the produced electrical power are finite and the demon con-
ditions (imposing no average particle and energy exchange
between resource region and working substance) are ful-
filled. The bounds developed in this work provide a general
statement on the requirement on fluctuations of an engine
resource.

How these predictions can be more closely connected to
the currently broadly studied thermodynamic uncertainty re-
lations, as alluded to in Secs. III and V, will be an interesting
topic of future research. This is expected to give even further
insights into the operation of nonthermal machines.
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APPENDIX A: FLUCTUATING PARTICLE, ENERGY,
AND ENTROPY CURRENTS

Using the short-hand notation b̂′
α ≡ b̂α (E ′) and dropping

the energy arguments, we first define for reference the fluctu-
ating particle- and energy-current operators [49,50,92],

ÎX
α ≡

∫
dEdE ′

h
e− i(E−E ′ )t

h xα (b̂′†
α b̂α − â′†

α âα ), (A1)

where âα and b̂α are the field operators of electrons flow-
ing out of and into contact α, respectively. The operators

b̂′†
α b̂α − â′†

α âα describe the rate of change of the contact’s
occupation fα , while providing a probabilistic nature through
the random tunnelings of electrons. The factor xα , as defined
in the main text, determines the transported quantity at every
energy, namely e or E for particle and energy current.

Next, we also define here the entropy flow into
contact α as

Î�
α ≡ − kB

∫
dEdE ′

h
e− i(E−E ′ )t

h [(b̂′†
α b̂α − â′†

α âα ) log fα

+ (b̂′
α b̂†

α − â′
α â†

α ) log(1 − fα )]. (A2)

The function fα describes the occupation number in con-
tact α, i.e., 〈â′†

α âα〉 = δ(E − E ′) fα . Crucially, transport does
not affect the occupation of the contact because the latter is
considered to be a large bath or, alternatively, its distribu-
tion is kept constant by an external agent. The formulation
of Eq. (A2) relies on concepts borrowed from information
theory. In particular, the Shannon information (or surprisal)
associated with an event occurring with probability p is given
by − log p. From this, one obtains the Shannon entropy, which
is the expected value of the information. For the electronic
system we are considering here, a channel originating from
contact α can either be occupied (with probability fα) or
empty, with probability (1 − fα ). So, this defines the two
possible outcomes of the event “electron being present in the
channel,” yielding information − log( fα ) and − log(1 − fα ),
respectively. Correspondingly, one can define the informa-
tion change associated with these outcomes as in Eq. (A2),
where the information is combined with the rate of change
of the reservoir occupation, described via the operator dif-
ference b̂†

α b̂α − â†
α âα . Equipped with these definitions, one

can find the entropy change as the expectation value of the
information change, I�

α = 〈Î�
α 〉, reproducing the expression

for the average entropy in the main text, namely Eq. (3),
with the prescription (5). Similarly, one can obtain the entropy
fluctuations of Eq. (9).

Importantly, this formulation of the information flow relies
on the fact that the particles considered here are fermions.
Hence, the only considered occupations are 0 or 1.

APPENDIX B: CURRENT FLUCTUATIONS
IN AN ENGINEERED N-DEMON

We consider a nonthermal resource consisting of a set
of thermal contacts connected through a coherent conductor;
see Fig. 6. However, instead of considering the contributing
contacts separately—as done in the main text in Eq. (34)—we
consider here the total (entropy) currents flowing out of the
resource region as well as their fluctuations. We show in
this Appendix that the bound between entropy currents and
their fluctuations is modified due to crosscorrelations between
currents into the different resource contacts.

1. Generic multiterminal setup

We consider the classical fluctuations of a generic cur-
rent ÎX

N = ∑
α∈N ÎX

α , where N is a collection of contacts,
defining the resource part of the system. The fluctuations
of interest in this multiterminal resource are given by the

075405-12



CONSTRAINTS BETWEEN ENTROPY PRODUCTION AND … PHYSICAL REVIEW B 109, 075405 (2024)

combination of correlators Smulti,X
NN,cl = ∑

αβ∈N SX
αβ,cl. From Eq (9), we write it as

Smulti,X
NN,cl = 2

h

∫
dE

∑
αβ∈N

xαxβ

⎡
⎣−Fαα|sβα|2 − Fββ |sβα|2 + δαβ

∑
γ

|sαγ |2(Fαγ + Fγα )

⎤
⎦

= 2

h

∫
dE

⎡
⎢⎢⎣ ∑

αβ∈N,
α �=β

xαxβ (−Fαα|sβα|2 − Fββ |sαβ |2) +
∑
α∈N

x2
α

∑
γ �=α

|sαγ |2(Fαγ + Fγα )

⎤
⎥⎥⎦, (B1)

where, as in the main text, xα is the weight associated with the current, specifically xα = 1 for the particle current and xα = kBσα

for the entropy current. Note that the crosscorrelators SX
αβ,cl with α �= β that give rise to the first line in Eq. (B1) can be either

positive or negative depending on the sign of xαxβ . Furthermore, the last line in Eq. (B1) has the same structure as Eq. (10a).
Therefore, we can use the inequalities (11) to find the following bound:

Smulti,�
NN,cl + k2

B

4
Smulti

NN,cl �
2k2

B

h

∫
dE

{ ∑
α∈N

|σα|
∑
γ �=α

|sαγ |2| fα − fγ | +
∑

αβ∈N,
α �=β

(
σασβ + 1

4

)
(−Fαα|sβα|2 − Fββ |sαβ |2)

}

� 2kB

∑
α∈N

∣∣I�
α

∣∣ + 2k2
B

h

∫
dE

∑
αβ∈N,
α �=β

(
σασβ + 1

4

)
(−Fαα|sβα|2 − Fββ |sαβ |2). (B2)

Note that the second term on the right-hand side of this in-
equality, adding up to the sum of absolute values of entropy
productions in the separate contacts, can be negative. This
means that the bound on the fluctuations in the total current
from the engineered nonthermal resource is less restrictive
and the fluctuations can be smaller compared to the sum
in Eq. (14). Note, however, that for the example treated in
Sec. V B (see Figs. 7 and 8), the fluctuations on the left-hand
side of Eq. (B2) are larger than the entropy production on the
right-hand side of Eq. (34).

2. Linear response of a four-terminal system

We show here that, within linear response, the particle-
and energy-current fluctuations of a single nonthermal ter-
minal, see Fig. 1, and the noise of the total particle and
energy currents from an engineered nonthermal two-terminal
resource, see Fig. 6, are identical. We therefore consider the
four-terminal setup and assume that (μα − μ0)/(kBT0) � 1,
(Tα − T0)/T0 � 1, for some reference temperature T0 and
chemical potential μ0 ≡ 0. Then, we can expand all currents
up to linear order in the affinities Aμ

α = (μα − μ0)/(kBT0),
AT

α = (Tα − T0)/(kBT 2
0 ).

a. Demon conditions

With this and with the definition Aμ,T
αβ ≡ Aμ,T

α − Aμ,T
β , the

demon conditions read

g(0)
intA

μ
23 + g(1)

intA
T
23 + h(0)

resA
μ
34 + h(1)

resAT
34 = 0,

g(1)
intA

μ
23 + g(2)

intA
T
23 + h(1)

resA
μ
34 + h(2)

resAT
34 = 0,

where we have defined the integrals

g(ν)
i =

∫
dE τi(E )ξ (E )E ν, (B3)

h(ν)
i =

∫
dE τi(E )τint(E )ξ (E )E ν, (B4)

with ξ (E ) = −kBT0(∂ f0/∂E ). Using these equations to fix the
values of the chemical potentials μ3 and μ4, we find

μ3 = μ2 + β

α

T3 − T2

T0
+ γ

α

T4 − T3

T0
, (B5)

μ4 = μ2 + δ

α

T3 − T2

T0
+ ζ

α

T4 − T3

T0
, (B6)

with the coefficients

α = h(1)
res g(0)

int − h(0)
res g(1)

int , (B7)

β = h(0)
res g(2)

int − h(1)
res g(1)

int , (B8)

γ = h(2)
res h(0)

res − [
h(1)

res

]2
, (B9)

δ = g(1)
int

(
g(1)

int − h(1)
res

) + g(2)
int

(
h(0)

res − g(0)
int

)
, (B10)

ζ = h(1)
res

(
g(1)

int − h(1)
res

) + h(2)
res

(
h(0)

res − g(0)
int

)
. (B11)

b. Fluctuations

All noise contributions can be expanded up to linear order,
too. Let us start with the four-terminal setup and expand the
noise (39) at linear order in the affinities. We have

fα (1 − fα ) ≈ f0(1 − f0) + ξ
(
Aμ

α + EAT
α

)
(1 − 2 f0). (B12)

All the terms of the form ( fα − fβ )2 are at least quadratic
in the affinities. In particular, the quantum part of the noise,
Eq. (10b) (or also the shot noise in other ways of dividing
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noise contributions), vanishes at this order. We are therefore
left with

S4T
NN = 2r (0) + (Aμ

2 + Aμ
3 )p(0) + (

AT
2 + AT

3

)
p(1)

+Aμ
43q(0) + AT

43q(1), (B13a)

S4T,E
NN = 2r (2) + (Aμ

2 + Aμ
3 )p(2) + (

AT
2 + AT

3

)
p(3)

+Aμ
43q(2) + AT

43q(3), (B13b)

where

r (ν) =
∫

dE τint(E ) f0(E )[1 − f0(E )]E ν, (B14)

p(ν) =
∫

dE τint(E )ξ (E )[1 − 2 f0(E )]E ν, (B15)

q(ν) =
∫

dE τint(E )τres(E )ξ (E )[1 − 2 f0(E )]E ν . (B16)

If we now consider the result in the three-terminal setup with
an effective nonthermal distribution fN given by Eq. (33), the
noise is given by Eq. (26). It contains the term f2(1 − f2),
just as the four-terminal expression (39), and the terms fN(1 −
fN) and ( f2 − fN)2. It is easy to see that the latter does not
contribute at linear order in the affinities, while the remainder
gives

fN(1 − fN) = f3(1 − f3) + τres( f4 − f3)(1 − 2 f3)

− τ 2
res( f3 − f4)

≈ f0(1 − f0) + ξ (1 − 2 f0)
(
Aμ

3 + EAT
3

)
+ τresξ (1 − 2 f0)

(
Aμ

43 + EAT
43

)
, (B17)

which shows that the noise (26) for the three-terminal N-
demon becomes identical to the expression given in Eq. (B13)
in linear response.

APPENDIX C: ANALYTICAL EXPRESSIONS
FOR ENERGY NOISE WITH QPC TRANSMISSIONS

Useful analytical expressions for charge and energy cur-
rents in the presence of sharp step-function transmissions can
be found in Appendix A of Ref. [36]. Here we present some
analytical expressions for the noise, in the case when all termi-
nals are described by a thermal distribution, as considered in
Sec. V. The calculation of the energy noise [see, e.g., Eq. (39)]
involves integrals of the form

Jα =
∫ +∞

E0

dEE2 fα (E )[1 − fα (E )], (C1)

where fα (E ) is a thermal distribution and E0 is the onset
energy of a sharp step-function transmission τQPC = �(E −
E0). This integral can be evaluated analytically, yielding

Jα =J open
α + (kBTα )3[2xα log(1 + exα−yα )

+ 2Li2(−exα−yα ) − x2
α (1 + eyα−xα )−1], (C2)

where Li2 is the dilogarithm function, xα = E0/(kBTα ), yα =
μα/(kBTα ), and

J open
α = (kBTα )3

[
π2

3
+ y2

α

]
(C3)

is the result for an open channel with E0 → −∞. Integrals
involving factors of the form ( fα − fβ )2 do not have a closed
form when the Fermi functions have different temperatures,
and we resort to a numerical integration to evaluate them.
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