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We provide a general classification of flavour symmetries according to their interplay

with the proper Poincaré and gauge groups and to their linear or nonlinear action in

field space. We focus on the lepton sector and we review the different types of symmetries

describing neutrino masses and the lepton mixing matrix. For each type of symmetry we

present several illustrative examples and we discuss specific strengths and limitations.
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I. INTRODUCTION

The replica of fermion families, their masses and intergenerational properties constitute one of the most fascinating

mysteries of particle physics. While gauge symmetry strongly restricts matter interactions mediated by spin one

particles, it leaves essentially unconstrained scalar-fermion interactions, responsible for fermion masses and mixing

angles. In the flavour sector of the Standard Model (SM) there are as many independent parameters as the number

of charged fermion masses and quark mixing parameters. The toll raises to 22 if we include, in a general low-energy

description, neutrino masses and lepton mixing parameters. We are facing a puzzle with many known pieces, that

we are still unable to put together in a coherent picture. The discovery of neutrino oscillations has brought great

hopes for the solution of this puzzle. Neutrinos are extremely light, calling for a different origin of their masses,

potentially related to new undiscovered properties of particle interactions. Moreover atmospheric and solar neutrino

oscillations require large lepton mixing angles, a completely unexpected feature, clashing against the properties of the

quark sector. As we briefly review here, many of these properties have been determined to a good precision and there

are excellent prospects for future improvements aimed to pin down the few unknown aspects. Nevertheless, while

neutrino data stimulated a great deal of theoretical activity, they also heightened the mystery of fermion masses,

in that no compelling underlying principle to describe this aspect of elementary particles has uniquely emerged so

far. Neutrinos and charged leptons possess special features, that are the focus of the present review, although any

description applicable to this sector alone should only be viewed as a partial answer to the general problem of fermion

masses.

The observation and study of neutrino oscillations have established that neutrinos are massive. Two independent

squared mass differences and three lepton mixing angles have been determined with an accuracy approaching the

percent level, moving the whole field into a precision era. Most of the experimental results can be coherently interpreted

in the context of three light active neutrinos and CPT invariance. Experiments sensitive to solar, atmospheric, reactor

and accelerator neutrinos provide a consistent picture supported by many redundant tests. In table I we report the

results of recent fits to the oscillation parameters. Notation and conventions are those of the Review of Particle

Physics by the Particle Data Group (PDG) (Tanabashi et al., 2018), unless otherwise stated. Most remarkably, the

mixing pattern in the lepton sector appears to be totally different from that in the quark sector, with two large mixing

angles and a third one similar in size to the Cabibbo angle.

Very interestingly, global analysis start to be sensitive both to the mass ordering and to the Dirac CP violating

phase δ. A preference for the normal mass ordering (NO) over the inverted one (IO) is emerging from the data, at the

level of about 3 σ. The best fit value for the Dirac CP violating phase is δ ≈ (1.2÷ 1.3)π (for NO), but uncertainties

are large and CP conservation is still allowed within 2σ.

Normal Ordering Inverted Ordering

sin2 θ12 0.310+0.013
−0.012 0.310+0.013

−0.012

sin2 θ23 0.563+0.018
−0.024 0.565+0.017

−0.022

sin2 θ13 0.02237+0.00066
−0.00065 0.02259+0.00065

−0.00065

δ/π 1.23+0.22
−0.16 1.57+0.13

−0.14

∆m2
21/10−5eV2 7.39+0.21

−0.20 7.39+0.21
−0.20

∆m2
3`/10−3eV2 2.528+0.029

−0.031 −2.510+0.030
−0.031

TABLE I Best fit values and 1σ errors of the three-flavour oscillation parameters in the global analysis of ref. (Esteban

et al., 2019). The results include data on atmospheric neutrinos provided by the Super-Kamiokande collaboration. There is a

difference of ∆χ2(IO − NO) = 10.4 between inverted ordering (IO) and normal ordering (NO). Note that ∆m2
3` = ∆m2

31 > 0

for NO and ∆m2
3` = ∆m2

32 < 0 for IO. For other recent global analysis, see refs. (Capozzi et al., 2019; De Salas et al., 2018;

Gariazzo et al., 2018).

Dedicated experiments have been planned to determine the mass ordering and δ. Mass ordering measurements with

an individual significance of more than 3σ could be realized with several different technologies and methods, exploiting
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atmospheric (KM3NeT/ORCA, PINGU, INO), reactor (JUNO) and accelerator (DUNE, Hyper-K) neutrinos. DUNE

and Hyper-K have planned sensitivities to CP-violation higher than 5σ for most of the allowed range, even though a

precise determination of δ around the maximal value will be very challenging.

The absolute neutrino mass scale is still unknown, though well constrained by both laboratory and cosmological

observations. The current laboratory limit mν =
√∑

i |Uei|2m2
i < 1.1 eV (90% CL), recently set by the KATRIN

experiment (Aker et al., 2019), is expected to be further improved in the future. At present cosmology provides

the most stringent bound on the sum of neutrino masses,
∑
imi < 0.12 ÷ 0.68 eV, though subject to uncertainties

inherent to the adopted cosmological model, the number of free parameters used to fit observations and the actual

set of data included in the analysis (Tanabashi et al., 2018). Upper bounds on neutrino masses become weaker when

the data are analyzed in the context of extended cosmological models, or when a conservative set of data is used, but

not considerably weaker. These bounds are expected to improve significantly over the next years, thanks to the new

planned experiments. If the ΛCDM model of the universe is confirmed, and if neutrinos have standard properties,

non-vanishing neutrino masses should be detected at the level of at least 3σ (Tanabashi et al., 2018).

The impressive suppression of neutrino masses is quite peculiar, even compared to that of the lightest charged

fermions. Not only the electron mass is suppressed by “only” a factor O
(
105
)

but, more important, the latter

suppression follows from the inter-family hierarchy displayed by charged fermion masses, with subsequent families

separated by only about two orders of magnitudes. Conversely, all the three neutrino families are separated from

the electroweak scale by at least 11 orders of magnitude. The striking size of neutrino masses might be related to

the possibility that the total lepton number L is violated, though this is certainly not the only possible explanation.

The violation of the individual lepton numbers have been established, but we still do not know whether L is violated

or not in Nature. The experimental clarification of this central aspect might shed light on the possible origin of

flavour. Indeed from the theory viewpoint the simplest explanation of the smallness of neutrino masses is in term of

the violation of L at a very large scale, possibly not far from the grand unified scale.

Experimentally, the most promising L-violating transition is the neutrinoless double beta (0νββ) decay. If inter-

preted in the context of three light Majorana neutrinos, the present experiments allow to set an upper bound on

|mee| = |
∑
i U

2
eimi|, a combination of neutrino masses, mixing angles and Majorana phases. Despite the uncertainties

due to the lack of knowledge of absolute masses and Majorana phases, |mee| can be constrained by neutrino oscillation

data alone and, at least for the case of IO, the allowed region is getting closer and closer to the range explored by

the present 0νββ decay experiments. In table II we report some of the most recent experimental results. We refer

the interested reader to the recent reviews (Dell’Oro et al., 2016; Dolinski et al., 2019; Päs and Rodejohann, 2015;

Vergados et al., 2016).

Isotope Lower Bound on T 0ν
1/2 (yr) Upper Bound on |mee| (meV) Collaboration

76Ge 8.0 · 1025 120÷ 260 GERDA

130Te 1.5 · 1025 110÷ 520 CUORE

136Xe 1.07 · 1026 61÷ 165 KAMLAND Zen

136Xe 3.5 · 1025 93÷ 286 EXO 200

TABLE II Lower bound on T 0ν
1/2 (90% CL) and upper bound on |mee| from GERDA (Agostini et al., 2018), CUORE (Alduino

et al., 2018), KAMLAND Zen (Gando et al., 2016), EXO 200 (Anton et al., 2019). The quoted range reflects the uncertainty

in the nuclear matrix elements required to translate the half-life T 0ν
1/2 into |mee|.

Few experimental anomalies are still looking for more observational support or a coherent theoretical interpretation.

These include: i) the so-called reactor anomaly (Mention et al., 2011), i.e. the evidence for disappearance of electron

antineutrinos in short baseline experiments; ii) the Gallium anomaly (Abdurashitov et al., 1999, 2006; Kaether et al.,

2010), i.e. the observed deficit in the Gallium radioactive source experiments; iii) the indications for νµ → νe conversion

from the LSND (Aguilar-Arevalo et al., 2001) and MiniBoone (Aguilar-Arevalo et al., 2018) experiments. Taken at

face value, these effects do not fit the standard framework with three light neutrinos and explanations invoking a

fourth sterile neutrino have been adopted. Even in such an extended scheme the anomalies do not find a coherent
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interpretation, due to the tensions between appearance and disappearance data (Dentler et al., 2018), indicating

either the need for a less minimal framework or the invalidation of some of the experiments. While the discovery of a

sterile neutrino would represent a major result of the current experimental activity and a non-trivial challenge for its

interpretation in the context of the flavour puzzle, here we will assume a low-energy framework with three light active

neutrinos and CPT invariance. New states are not excluded, but are assumed to be heavy, allowing for an effective

description of the current experiments where only the light degrees of freedom take action.

There are few theoretical tools allowing a quantitative and predictive description of neutrino mass and mixing

parameters. The focus of this review is on flavour symmetries, one of the most appealing options, given the role that

symmetries have played in accounting for the properties of fundamental interactions. The idea that relations among

mass parameters can be enforced by symmetries is an old one. The most predictive case is represented by exact

symmetries, a prototype of which is gauge invariance in quantum electrodynamics, guaranteed only if the photon

is massless. Regrettably, exact symmetries do not apply to fermion masses and mixing angles. For example, the

SM Yukawa couplings break the large non-abelian global symmetry of the quark gauge interactions, down to the

baryon number and to the global hypercharge transformations, which provide no restrictions to mass parameters.

The lepton sector follows a similar fate and a realistic description of fermion masses should necessarily rely on

approximate symmetries. As a consequence, breaking terms are crucial to determine the correct pattern of masses

and mixing angles. Moreover, in interesting cases, flavour symmetries are realized far from the exact phase, with

symmetry breaking effects playing a leading role. This feature makes difficult to single out a baseline model or a

unique candidate for the flavour group.

For these reasons a large part of this review is devoted to a general discussion of symmetries and symmetry

breaking, independently from their specific realization in model building. We provide a general classification of

flavour symmetries compatible with a local, gauge invariant and relativistic quantum field theory. We distinguish

symmetries acting linearly or nonlinearly in field space. In particular, dealing with the non-linear case, we go beyond

the well-established Callan-Coleman-Wess-Zumino formalism (Callan et al., 1969; Coleman et al., 1969), which does

not cover the relevant case of discrete symmetries. We offer to the reader a more general description, suitable to

accommodate all cases of interest. We also distinguish symmetries commuting with the Poincaré and gauge groups,

from those that do not. The latter choice includes CP-like flavour symmetries, that got lot of attention in the recent

years, especially in connection with discrete symmetry groups. This classification, meant to cover not only the lepton

sector but the whole fermion area, is particularly relevant to clearly identify the uncharted directions from the already

explored ones. Moreover, in our view, it should not be viewed as a formal mathematical exercise since it reflects

important physical aspects of the symmetries in question. For example, CP-like flavour symmetries are especially

efficient in constraining physical phases. Symmetries whose action is non-linear can potentially enhance the predictive

power of the model, being able to relate operators of different dimensionality.

We also examine how symmetry breaking can be efficiently described through the use of spurions, allowing to

capture both the case of explicit and spontaneous breaking. We discuss how predictions about the mixing matrix

can be viewed as solution to a problem of vacuum alignment. When the vacuum arises from the minimization of an

energy density functional, general results are encoded in the space of invariants of the theory and in the structure of

its boundaries. We provide, for the first time in the context of flavour symmetries, a concise review of this important

topic, where the problem of symmetry breaking finds its most natural mathematical formulation. The rest of our

review is devoted to summarize the state of the art in model building, organized according to our general classification

of flavour symmetries. Aware that this part can be easily become obsolete in a short time, we have emphasized more

the general features of model building, limiting the discussion of specific models to few examples per each category.

We also comment on the possibility of extending each type of symmetries from the lepton sector to the quark one. The

number of possibilities offered to model building is huge and many of them have already been surveyed in excellent

reviews (Altarelli and Feruglio, 2010; Ishimori et al., 2010; King, 2017; King and Luhn, 2013; King et al., 2014; Petcov,

2018; Smirnov, 2011; Xing, 2019).

Of course flavour symmetries do not exhaust all possible quantitative approaches to the flavour puzzle. For example,

mass and mixing low-energy parameters can satisfy fixed-point relations, originating from the renormalisation group

flow of generic input parameters defined at a very high energy scale. Infrared stable fixed points of the renormalization

group equations for Yukawa couplings and fermion masses have been studied long ago. In the lepton sector, no

acceptable relations among the mixing angles have been found in the CP-conserving regime (Chankowski and Pokorski,
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2002), while in the CP-violating regime the only viable constraint (Casas et al., 2000) requires a strong degeneracy

between the closest neutrino masses.

Another possibility is offered by the mechanism of radiative mass generation, when a combination of mass parameters

that accidentally vanishes at the classical level, gets a non-vanishing calculable contribution at higher orders of

perturbation theory. In particular, it has been suggested that the lightness of neutrinos might arise in this context

from loop suppression factors. States running in the internal lines of the loop can be sufficiently light to be probed at

existing facilities, at variance with the typically heavy states of the see-saw mechanism. The new states can also lead

to lepton flavour violation, potentially observable at present or future high-intensity facilities. We briefly comment

on such possibility when discussing the mechanism for neutrino masses.

This review consists of seven sections. After recalling the possible origin of neutrino masses in section II, in section

III we present a general classification of flavour symmetries and discuss general aspects of symmetry breaking. The

following sections, IV, V and VI provide a more specific description and several illustrative examples of the type of

symmetries classified in section III. Finally in section VII we summarize our personal thoughts on the subject. There

are many related topics that we have only briefly mentioned or deliberately left out of this work. This list is long

and includes extension to the quark sector within grand unified theories or string theory, realization in the context of

extra dimensions, relation to lepton flavour violation searches and leptogenesis, mathematical aspects such as group

theory. We refer the reader to the mentioned literature.

II. ORIGIN OF NEUTRINO MASSES

A. Neutrino masses and the Standard Model

Neutrinos are massless in the Standard Model, according to its usual definition as a renormalizable theory involving

left-handed neutrinos only. While such a prediction is certainly at odds with everything we have learned about

neutrinos in the past decades, and it represents an incontrovertible reason to extend the SM, it can at the same time

be considered as a success of the SM, to the extent to which it offers a basis for the understanding of the peculiar

smallness of neutrino masses.

The SM gauge structure is indeed crucial in forbidding neutrinos from getting a mass. In the effective theory below

the electroweak scale, with SU(3)c×U(1)em as gauge group, both the charged fermions and the neutrinos are allowed

to get a mass. Therefore, the peculiar size of neutrino masses is not addressed by the gauge structure in this case.

The neutrino mass term allowed in the SU(3)c × U(1)em theory is of Majorana type and, as such, it violates

the total lepton number. The fact that such a mass term is not generated by the SM completion can therefore be

seen as a consequence of the accidental conservation of lepton number in the SM (or from direct inspection: no

renormalizable interaction gives rise to neutrino masses after electroweak symmetry breaking, due to the absence, so

far, of right-handed neutrinos).

Accidental symmetries are not imposed by hand, they just happen to be global symmetries of the most general

renormalizable Lagrangian invariant under the given gauge transformations. The SM turns out to have four indepen-

dent accidental symmetries, associated to the conservation of baryon number B and of the three individual lepton

numbers Li. The total lepton number L =
∑
i Li is therefore also accidentally conserved. As we will see, the SM

accidental symmetries are a residual subgroup of the U(3)
5 ×U(1)H global symmetry that the SM acquires when its

Yukawa couplings are set to zero, which in turn underlies the very idea of flavour symmetries.

The emergence of lepton number as an accidental symmetry is one of the notable features of the SM. On the one

hand, it predicts the suppression of lepton number violating processes in Nature (thus providing a nice zeroth order

approximation for the smallness of Majorana neutrino masses: mν = 0). On the other hand, since lepton number

is not postulated to be a fundamental symmetry, small lepton number violating effects are not forbidden. This is

welcome, as a tiny (but conceptually and practically important) breaking of lepton (and baryon) number takes place

even within the SM, because of non-perturbative effects (’t Hooft, 1976a,b). Moreover, it is welcome because it

leaves room for a small breaking of lepton number, and in particular for small Majorana neutrino masses, originating

from possible UV completions of the SM. Grand Unified Theories (GUTs), for example, explicitly break lepton (and

baryon) number and are therefore not compatible with enforcing the conservation of lepton number by hand.
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B. Origin of neutrino masses: standard framework

The previous subsection lays the ground for the standard understanding of the origin and size of neutrino masses.

Such an understanding is based on the sole hypothesis that the new ingredients needed to be added to the SM in

order to account for neutrino masses, whatever they are, lie at a scale significantly larger than the electroweak scale.

If that is the case, effective field theory (EFT) ensures that it is possible to account for the effect (including neutrino

masses) of such new ingredients at lower scales by adding to the SM Lagrangian additional non-renormalizable, or

“effective”, operators. The non-renormalizable Lagrangian one obtains is called the “SM effective field theory”

(SMEFT).

The effective operators are suppressed by powers of the scale of the new physics generating them, the “cutoff” Λ.

The perturbative validity of the theory is limited to energies well below the cutoff. There, the impact of an effective

operators is suppressed by a factor (E/Λ)D−4, where D is the dimension of the operator in energy. Therefore the most

relevant operators are in principle the lowest dimensional ones. In the E � Λ regime, the theory can be renormalized

with a finite number of counterterms order by order in an expansion in the operators dimension.

The effective operators contain SM fields only and only need to obey the SM gauge invariance, so that no actual

knowledge of the physics originating them is required in order to account for its low energy effect .

Interestingly, the single lowest dimensional operator allowed in the SMEFT, the D = 5 Weinberg operator (Wein-

berg, 1979)

cij
2Λ

(liH)(ljH) , (2.1)

is precisely what is needed to account for neutrino masses. In the above expression, li, i = 1, 2, 3, are the lepton

doublets and H is the Higgs doublet. There, and below, SU(2)L-invariant contractions of the doublet indices are

understood (by the 2 × 2 antisymmetric tensor in eq. (2.1)). The splitting of the coefficient into a dimensionless

numerator cij and a dimensionful denominator Λ is of course arbitrary. Λ is supposed to represent the scale of the

new degrees of freedom whose virtual exchange gives rise to the operator and cij is supposed to group the coupling,

mixings, loop factors involved, which are supposed not be larger than O (1) in a perturbative regime and O (4π) in a

non-perturbative one.

The origin of the operator in eq. (2.1) must be associated to lepton number violating physics, as the operator itself

breaks lepton number by two units. It also breaks B−L, an important ingredient for high scale baryogenesis (Kuzmin

et al., 1985). After electroweak symmetry breaking, the operator gives rise to a neutrino Majorana mass term in the

form

mij

2
νiνj , (2.2)

with

mij = cij
v2

Λ
, (2.3)

where v is the electroweak scale, v = | 〈H〉 | ≈ 174 GeV.

The peculiarity of neutrino masses is now elegantly accounted for by their different dependence on the electroweak

scale. While charged fermion masses are linear in v, neutrino masses turn out to be quadratic in v and thus suppressed

by a factor v/Λ with respect to the former. Their suppression is attributed to the heaviness of the scale Λ at which

lepton number is violated. If mh is the heaviest neutrino mass and ch the heaviest eigenvalue of the matrix cij , we

have

Λ ≈ 0.5× 1015 GeV ch

(
0.05 eV

mh

)
. (2.4)

The scale Λ of the new physics associated to neutrino masses can be as large as 1015 GeV, hence hinting a possible

connection with GUT physics, or much smaller, if the couplings λUV on which ch depends are small. As usually ch
depends quadratically on λUV , UV couplings of order 10−2 are sufficient to bring Λ down to 1011 GeV.

While the Weinberg operator is the lowest dimensional, and therefore in principle most relevant, effective operator

giving rise to neutrino masses, higher order operators may become relevant if the former turns out to be suppressed.
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On the other hand, higher order operators contributing to neutrino masses just contain additional pairs of conjugated

Higgs fields. Therefore, any symmetry suppressing the Weinberg operator would also suppress those higher order

operators. Barring an accidental suppression of the former, the latter have hardly a chance to dominate. The

situation changes in extensions of the SM Higgs sector by a singlet and/or a second doublet. Then it is possible to

define symmetries forbidding the D = 5 operator, but not higher order ones (Babu et al., 2009; Bonnet et al., 2009;

Gogoladze et al., 2009). In such cases, neutrino masses turn out to be suppressed by higher powers of v/Λ, which

lowers the needed scale of Λ. Higher order operators can also involve new fields that do not get a VEV and still

contribute to neutrino masses, if the new field lines close into a loop. If the new fields are heavy, and integrated out,

this possibility can still be accounted for in terms of the D = 5 Weinberg operator (see the paragraph below on its

radiative origin).

The case for right-handed neutrinos

While the above framework offers a simple and compelling understanding of the size of neutrino masses, it relies

on the absence of a “right-handed” counterpart of the SM neutrinos. All the left-handed charged fermions contained

in the quark and lepton doublets qi = (ui, di)
T , li = (νi, li)

T have SU(2)L singlet partners uci , d
c
i , e

c
i
1 leading to Dirac

masses through the Yukawa interactions λUiju
c
iqjH + λDijd

c
iqjH

∗ + λEije
c
i ljH

∗ + h.c., so why should not the neutrinos

νi also be accompanied by a SU(2)L singlet partner νci , leading to a neutrino Dirac mass term through the Yukawa

interaction

λNijν
c
i ljH + h.c. . (2.5)

And, if so, what would make neutrino masses peculiar?

Note that the existence of the singlet neutrinos νci is predicted in a number of extensions of the SM providing an

understanding for the SM gauge quantum numbers, and thus further motivated. This is the case of extensions based

on the left-right symmetric gauge group GLR = SU(3)c × SU(2)L × SU(2)R × U(1)B−L, on the Pati-Salam group

GPS = SU(4)c × SU(2)L × SU(2)R, or on the grand unification group SO(10).

The special size of neutrino masses can be accounted for even in the presence of singlet partners for the neutrinos

as well, as such singlet neutrinos carry their own peculiarity. In order for them to give rise to a neutrino mass term

through gauge invariant Yukawa interactions, the fields νci should be singlets under the whole SM group.2 The SM

extensions mentioned above also predict them to be SM singlets. Therefore, the neutrino singlets would be the only

fermions allowed to have an explicit, gauge invariant (and lepton number violating) mass term

Mij

2
νci ν

c
j + h.c. . (2.6)

Such a mass term has no ties with the electroweak scale, as it survives in the limit in which the electroweak scale

vanishes. Hence, there is no reason why it could not be much heavier than the electroweak scale. If that is the case,

the singlet neutrinos represent nothing but a specific (and prototypical) realisation of the very framework discussed

above: new degrees of freedom lying at a scale significantly larger than the electroweak scale. It must therefore

be possible to account for their effect at the electroweak scale (and below) in terms of effective operators. Indeed,

integrating them out (as reviewed e.g. in (Altarelli and Feruglio, 2004)) precisely generates the Weinberg operator,

with, in a matrix notation,

c

Λ
= −λTN M−1λN , (2.7)

where λN and M are the parameters in eqs. (2.5) and (2.6) respectively. The light neutrino masses end up being

given by the celebrated seesaw formula (Gell-Mann et al., 1979; Glashow, 1980; Minkowski, 1977; Mohapatra and

1 The index c in fc denotes the charge conjugated of the right-handed component of f in the Dirac spinor formalism, or a left-handed

field independent of f in the Weyl spinor formalism.
2 If the field νc is allowed to have more than one component, it could alternatively be a SU(2)L triplet. The argument that follows would

still go through, as it is only based on νc being the only fermion in a real representation of the SM group, with all the others belonging

to a fully chiral representation.
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Senjanovic, 1980; Yanagida, 1979)

mν = −mT
DM

−1mD , (2.8)

where mD = λNv is a Dirac-like neutrino mass term. The advantage of the EFT derivation, compared to the

diagonalisation of the 6× 6 matrix of the νi + νci system, is that it allows to organise the computation of potentially

large, log-enhanced radiative corrections to the seesaw formula by means of the renormalization group equations. The

coefficient of the Weinberg operator is calculated from eq. (2.7) at the singlet neutrino scale and subsequently the

Weinberg operator is run down to the electroweak scale. Within the SM, gauge interactions and quark Yukawas only

affect (at one loop) the overall neutrino mass scale, while flavour dependent effects from lepton Yukawas are negligible.

Sizeable flavour corrections can arise in two Higgs doublet schemes in the large tanβ regime, in the presence of an

“unstable” (Domcke and Romanino, 2016) neutrino mass approximate degeneracy, see for example (Chankowski and

Pokorski, 2002). If the heavy neutrinos are hierarchical, threshold effects associated to their sequential decoupling

may also be important.

Tree-level origin of the Weinberg operator

We have seen that neutrino singlets, unless unexpectedly light, represent a specific realisation of the general situation

in which the new physics needed to account for neutrino masses lies at a scale significantly higher than the electroweak

scale. We can then wonder what is the most general form of the heavy new physics giving rise to the Weinberg operator.

A simple and complete answer is found in the assumption that the Weinberg operator is generated at the tree level.

In such a case, the virtual heavy states can only have three types of SM quantum numbers, corresponding to type

I, type II (Lazarides et al., 1981; Magg and Wetterich, 1980; Mohapatra and Senjanovic, 1981)3, and type III (Foot

et al., 1989) seesaw. We list them below, using the notation (r3, r2, y) for the SM gauge quantum numbers, where r3
is the SU(3)c representation, r2 is the SU(2)L representation, and y is the values of the hypercharge (in units in whih

the SM Higgs has y = 1/2).

Type I: The virtual messengers are fermions νc with SM quantum numbers (1, 1, 0), i.e. they are SM singlets. This

is essentially the case discussed above, with the only variation that the number n of singlet neutrinos is not

bound to be three. In order to reproduce both the atmospheric and solar squared mass differences, n ≥ 2 is

needed. The relevant high scale Lagrangian is given by eqs. (2.5) and (2.6),

− LI = λNkjν
c
kljH +

Mkh

2
νckν

c
h + h.c. , (2.9)

where the number of singlet neutrinos is now n, the Yukawa λN is a n × 3 matrix, and the mass term M is a

n× n symmetric matrix. The effective Weinberg operator and the neutrino masses are again given by
c

Λ
= −λTN M−1λN and mν = −mT

DM
−1mD . (2.10)

Type II: The virtual messengers are complex scalars ∆k, k = 1 . . . n, with SM quantum numbers (1, 3, 1), i.e. they

are SU(2)L triplets with hypercharge Y = 1. The relevant high scale Lagrangian is

− LII =
1

2
(yijkliσalj∆

a
k + µkHσaH∆a∗

k + h.c.) +M2
kh∆a∗

k ∆ a
h . (2.11)

where the mass matrix M2 is now hermitian and ∆a, a = 1, 2, 3, are the components of the triplets ∆. Integrating

them out gives rise to the Weinberg operator and neutrino masses, with
cij
Λ

= −yijh(M2)−1hkµk and (mν)ij = −v2yijh(M2)−1hkµk . (2.12)

The role of the cutoff Λ is now played by the combination M2/µ, where µ2 can be expected to be of the same

order as M2. Unlike in the type I (and type III) case, one triplet is in principle sufficient to reproduce both the

atmospheric and solar squared mass differences.

3 In (Schechter and Valle, 1980, 1982), a scalar triplet VEV directly contributes to neutrino masses, with no see-saw suppression by the

triplet mass.
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FIG. 1 Diagrammatic representation of the three types of seesaw mechanisms. They all give rise to the Weinberg effective

operator in eq. (2.1) once the intermediate states are integrated out. The crosses denote lepton number violating mass insertions.

Type III: This case is similar to type I, but the messengers are now SU(2)L triplets. I.e. they are fermions Tk,

k = 1 . . . n, with SM quantum numbers (1, 3, 0), and again n ≥ 2. The relevant high scale Lagrangian is

− LIII = λTijT
a
i lj σaH +

Mij

2
T ai T

a
j + h.c. , (2.13)

where T a, a = 1, 2, 3, are the components of the triplets T . Integrating them out generates the Weinberg

operator and neutrino masses, with

c

Λ
= −λTT M−1λT and mν = −mT

T M
−1mT , (2.14)

where mT = vλT .

A simple analysis based on gauge invariance shows that the tree level diagrams in Fig. 1, corresponding to the three

seesaw Lagrangians above, are the only possible ones (Ma, 1998). A complex scalar with quantum numbers (1, 1, 1),

for example, cannot play a role at the tree level, as it does couple to the antisymmetric combination of lilj , but not

to hh.

Radiative origin of the Weinberg operator

While a tree-level origin of the Weinberg operator is undoubtedly the most appealing option (and the only one with

unbroken supersymmetry (Megrelidze and Tavartkiladze, 2017)), the possibility of a radiative origin is not excluded

(see (Cai et al., 2017) for a recent review). Depending on the specific field content of the UV theory, a tree-level

origin may not be available, while the Weinberg operator can arise through quantum corrections at the loop level.

The topologies of the corresponding Feynman diagrams have been classified up to 2-loop order (Angel et al., 2013;

Aristizabal Sierra et al., 2015; Babu and Leung, 2001; Bonnet et al., 2012; de Gouvea and Jenkins, 2008) and require

at least two new multiplets to play the role of intermediate states (Law and McDonald, 2014). Once those states

are ingrated out, within an effective theory approach, the Weiberg operator is not generated at the tree level. Other

lepton number violating operators are, though, and they give rise the the Weinberg one through loops involving SM

interactions and fields. The new states can not be far from the EW scale, and the suppression of the neutrino masses

compared to the latter is at least partially accounted for by the loop factor (1/(16π2))`, where ` is the loop order at

which the diagram arises, if ` is sufficiently large.

Such models may be characterized by a possibly interesting phenomenology at colliders and in charged-lepton flavour

violation (CLFV) experiments, although their aesthetic appeal does not match the tree-level see-saw one. On the one

hand, the suppression of neutrino masses is better accounted for when ` is relatively large. On the other hand, the

increase of ` leads to a rapid increase of the number of diagrams. The structure and field content of the model is not

as constrained as in the tree-level case. On the contrary, a plethora of possibilities are available. Finally, the model

parameters often need to be fine-tuned, in order to cope with the present bounds on CLFV and reproduce neutrino



11

masses and mixings. For further information on such class of models, we refer to dedicated reviews (Boucenna et al.,

2014; Sugiyama, 2015).

C. Lower scale origin of neutrino masses

As we have seen, effective field theory provides a simple and compelling understanding of the origin and peculiar

smallness of neutrino masses, under the sole hypothesis that the new degrees of freedom needed to account for non-

vanishing neutrino masses lie significantly above the electroweak scale. Neutrino masses, on the other hand, can

also originate well below the electroweak scale. Dirac neutrinos are the prototypical example. The SM neutrinos

get in such a case a purely Dirac mass from Yukawa couplings to otherwise massless singlet neutrinos (M = 0 in

eq. (2.6)). While the standard framework unavoidably leads to lepton number violating Majorana neutrino masses,

Dirac neutrinos conserve lepton number, which offers an opportunity to probe experimentally the origin of neutrino

masses.

Before ending up with M = 0 and purely Dirac neutrinos, we shortly consider the intermediate possibility that M

does not vanish but it is not significantly larger than the EW scale, so that the SMEFT approach used in Sec. II.B

does not apply.

If the singlet neutrino masses are not far from the electroweak scale, they can play a role in present of future collider

phenomenology (Antusch and Fischer, 2015; Deppisch et al., 2015). As those masses can in principle be as large as

the Planck scale, their proximity to the electroweak scale, about 15 orders of magnitudes smaller, would represent a

non-trivial accident.

In the presence of a single family, a singlet neutrino mass M ∼ TeV requires a neutrino Yukawa coupling as small

as

λN ∼ 1.3× 10−6
(

mν

0.05 eV

M

TeV

)1/2

. (2.15)

The smallness of neutrino masses is accounted for by the smallness of λ, and such a small coupling would make collider

effects hardly observable.

With three families, though, larger Yukawa couplings are allowed if cancellations take place in the seesaw formula.

Non-accidental cancellations can be forced by appropriate symmetries, such as lepton number itself, allowing the large

Yukawa couplings while forbidding the neutrino masses (Kersten and Smirnov, 2007; Xing, 2009) and can involve

additional singlets (Akhmedov et al., 1996a,b; Barr, 2004; Barr and Dorsner, 2006; Ibarra et al., 2010; Malinsky et al.,

2005; Mohapatra, 1986; Mohapatra and Valle, 1986). The larger Yukawa couplings have then a chance to be probed

at colliders. Such symmetric couplings are not anymore directly related to the origin of neutrino masses (and their

size), which in this case is instead associated to the symmetry breaking parameters (and their smallness).

The collider prospects are richer when additional interactions, besides those directly related to neutrino masses,

provide additional production or detection channels. This is the case when the heavy states feel gauge interactions. For

example, the SM singlet neutrinos can be charged under extensions of the SM group containing an SU(2)R factor (Das

et al., 2012; Keung and Senjanovic, 1983; Nemevsek et al., 2011). Even sticking to the SM group, the components of

∆ and T (in type II and III seesaw respectively) charged under the SM can enrich the collider phenomenology (del

Aguila and Aguilar-Saavedra, 2009; Akeroyd and Aoki, 2005; Han et al., 2007).

The collider bounds on the charged component of ∆ and T prevent the type II and type III seesaw from being

extrapolated below the electroweak scale (barring an unnatural splitting among neutral and charged components).

On the other hand, the singlet neutrino mass in type I seesaw can be arbitrarily small, or zero, as argued above.

In the intermediate regime in which the singlet neutrino masses are lighter than the electroweak scale, but signifi-

cantly larger than the energy of the relevant neutrino processes, it is still possible to integrate out the singlet neutrinos.

As the SM group is badly broken in such a regime, it is appropriate in this case to start from the SU(3)c × U(1)em
invariant Lagrangian (Altarelli and Feruglio, 1999b)

mD
ijν

c
i νj +

Mij

2
νci ν

c
j + h.c. , (2.16)

which still leads of course to the seesaw formula in eq. (2.8).



12

Otherwise, if the singlet neutrinos are light enough to be produced, or not too far from that, a full treatment of the

neutrino sector, including the sterile states and their mixing with the active ones, is necessary. In such a regime, the

size of neutrino masses requires the relevant parameters to be particularly small. For example, singlet neutrinos in

the eV range (a motivated possibility, see e.g. (Giunti and Lasserre, 2019) for a review) require the Yukawa couplings

λN and the singlet masses M in eqs. (2.5) and (2.6) to be as small as

λN . 10−11 , M . 10−18MPl (2.17)

(and imply a mild fine-tuning, keeping Dirac and Majorana neutrino masses within one or two orders of magnitude).

Finally, if the Majorana mass term M is even smaller than the Dirac mass term, solar neutrino experiments force

M to be well below the heavier active neutrinos mass range (de Gouvea et al., 2009), and we approach the Dirac

neutrino limit, in which M = 0. In such a limit, lepton number is conserved in the neutrino sector, and the only role

of the sterile fields is to pair to the active ones in the Dirac mass term. The corresponding degrees of freedom can

hardly be observed, as their production and detection with an energy E is suppressed by a factor mν/E.

In the cases considered in this subsection, the size of neutrino masses is accounted for by the smallness, often

striking, of Lagrangian parameters. While such a smallness may seem quite ad hoc, ideas are available to account

for it. The suppression of the Majorana mass term can be associated to the approximate or exact conservation of

lepton number. This comes at the price of giving up one of the successes of the SM, as the approximate conservation

of lepton number observed in Nature would not be accounted for by accidental symmetries anymore. Lepton number

needs to be enforced as a symmetry by hand, with the drawbacks discussed in Sec. II.A. The smallness of the Yukawa

couplings can instead be given a dynamical origin. Small, non-zero couplings can arise through the spontaneous

breaking of a symmetry forbidding them (Chacko et al., 2004; Chen et al., 2007; Chikashige et al., 1981; Gelmini

and Roncadelli, 1981; Georgi et al., 1981; Gu et al., 2009), or from a more fundamental theory living in more than

four dimensions (Arkani-Hamed et al., 2001; Barbieri et al., 2000; Dienes et al., 1999; Dvali and Smirnov, 1999;

Gonzalez-Garcia and Nir, 2003; Grossman and Neubert, 2000; Lukas et al., 2000, 2001; Mohapatra et al., 1999).

III. SYMMETRIES: GENERAL CONSIDERATIONS

A. The flavour puzzle

Having reviewed possible origins of the neutrino masses and their overall scale, we now come to the main subject of

this review: the origin, if any, of the pattern of lepton masses and mixings, i.e. of the flavour structure of the lepton

mass matrices, which is part of the so called SM flavour puzzle.

The flavour puzzle in the SM, here extended to include a source of neutrino masses, has two aspects. The first

one is the existence of three fermion families replicating the same set of gauge quantum numbers. Or, equivalently,

the invariance of the SM gauge Lagrangian under a global U(3)
5

global symmetry, where each U(3) factor mixes the

three families of fermions with identical gauge quantum numbers: qi, u
c
i , d

c
i , li, e

c
i , i = 1, 2, 3. The Higgs Lagrangian

is invariant under a further U(1)H rephasing of the Higgs doublet field. Thus Gmax ≡ U(3)
5 ×U(1)H is the maximal

group of global SM field transformations commuting with the actions of the Poincaré and gauge groups. It includes

the hypercharge global transformations. In SM extensions, Gmax can be larger, if the matter field content is extended

(singlet neutrinos for example, or additional Higgs fields); or smaller, if the gauge group is extended.

If the source of neutrino masses is neglected, U(3)
5 ×U(1)H is explicitly broken by the SM Yukawa interactions to

the four SM accidental symmetries — the U(1) transformations associated to the individual lepton numbers Le, Lµ,

Lτ and the total Baryon number B — and to the hypercharge global transformations. The accidental symmetries are

anomalous, unless they are combinations of B − Le/3, B − Lµ/3, B − Lτ/3. If neutrino masses are accounted for at

the weak scale by the Weinberg operator, the three individual lepton numbers are also broken and only B survives at

the perturbative level, though it is anomalous. If neutrino masses are of Dirac type, i.e. they are accounted for at the

weak scale by Yukawa couplings to otherwise massless right-handed neutrinos, both B and L survive from an initial

Gmax = U(3)
6 ×U(1)H , and only the B − L combination is non-anomalous.

The second aspect of the flavour puzzle is the peculiar pattern of fermion masses and mixings originating from

the explicit breaking of U(3)
5 × U(1)H . The masses of the three families of charged fermion masses turn out to be
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hierarchical and the quark mixing is small. Lepton mixing is instead large and at least two neutrino masses are

separated by less than an order of magnitude.

The two aspects of the flavour puzzle may be related. The fact that the flavour Lagrangian breaks an underlying

U(3)
5 × U(1)H symmetry, manifest in the gauge Lagrangian, may suggest that it originates from the spontaneous

breaking of the above group, or of one of its subgroups G ⊆ U(3)
5 × U(1)H . This is the idea underlying theories

based on flavour symmetries (Froggatt and Nielsen, 1979), where G is called the flavour group. The action of G is

traditionally assumed, as above, to be linear and to commute with gauge and Poincaré transformations. On the other

hand, new avenues evading such an assumption have been recently considered. Correspondingly, denoting by ψi a

generic set of matter fields, in the following we will consider three types of symmetries.

1. The action of G is linear (thus unitary, in order to preserve canonically normalised kinetic terms) and commutes

with gauge and proper Poincaré transformations:

g ∈ G : ψi(x)→ Uψ(g)ijψj(x) . (3.1)

In such a case, G is a subgroup of Gmax and Uψ(g) is a unitary representation of G. Such a standard framework

will be reviewed below and in section IV.

2. The action of G is linear, but it does not commute with proper Poincaré and/or gauge transformations. The case

in which flavour and Poincaré transformations do not commute leads to symmetries in the form G = Gf o CP,

where Gf is a subgroup of Gmax as in the previous case:

g ∈ Gf : ψi(x)→ Uψ(g)ijψj(x) ψi(x)
CP−−→ Xijψ

∗
j (x) . (3.2)

Here Uψ(g)ij and Xij are unitary representations of Gf and CP, respectively. This scenario will be reviewed

below and in section V. The case in which G commutes with Poincaré, but not with gauge transformations has

received less attention so far (Reig et al., 2017).

3. The action of G is nonlinear, it commutes with the gauge group and with proper Poincaré transformations. G

is not necessarily a subgroup of Gmax. In the realization we will consider, the framework includes an additional

scalar sector, typically consisting of fields τ singlet under the gauge group.

g ∈ G : τ → fg(τ) ψi(x)→ Uψ(g; τ)ijψj(x) , (3.3)

where fg(τ) and Uψ(g; τ)ij describe the nonlinear realization of G on τ and ψi(x), respectively. This case will

be reviewed below and in section VI.

A fourth possibility, also discussed in in section VI, arises by combining cases 2. and 3. above.

B. Flavour symmetry group and representation

We first consider flavour models based on a flavour group G whose action on fields is linear and commutes with

Poincaré and gauge transformations. G then acts on the flavour indices of each set of fields ψi sharing the same

Lorentz and gauge quantum numbers:

g ∈ G : ψi(x)→ Uψ(g)ijψj(x) . (3.4)

The representation Uψ(g) is unitary, as the kinetic terms are assumed to be canonically normalised. Moreover, gauge

fields must be invariant under G, and the action of G on the full set of matter fields can (and will) be assumed

to be faithful without loss of generality. Therefore, G can be identified with a subgroup of the unitary internal

transformations. More precisely, Gmax ⊆
∏
r U(nr), where nr is the number of identical copies of each irreducible

representations r of the Poincaré and gauge groups on matter fields. The Lagrangian is assumed to be invariant under

the action of G, and this constrains its flavour structure. The symmetry may be spontaneously broken by a set of

scalar fields φ called “flavons”, or explicitly broken.
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Different types of flavour groups can be considered: G can be a Lie group or a discrete group; abelian or non-abelian;

simple or non-simple; it can be assumed to be a symmetry or arise accidentally (Ferretti et al., 2006); it can act rigidly

on the fields or it can be gauged. In the case of gauge groups, proper care should be taken of anomalies, possibly

cancelling them by adding an appropriate heavy field content. Most often, the scale at which G is spontaneously

broken is taken to be significantly higher than the weak scale. As a consequence, the flavons are bound to be SM

singlets (they can however transform non-trivially under extensions of the SM group).

Flavour symmetry breaking at the EW scale or below faces a number of challenges. If G is gauged, constraints from

flavour-changing neutral current (FCNC) processes set a lower bound on the mass of the corresponding gauge bosons,

and therefore on the breaking scale. If G is a non-anomalous global Lie group, its spontaneous breaking gives rise to

massless Goldstone bosons, which must be then sufficiently weakly coupled to SM fields. This is the case for example

if the coupling is mediated by sufficiently heavy degrees of freedom. Or, in the effective-theory description, if they

couple through non-renormalisable interactions suppressed by a sufficiently heavy scale. The heavy fields mediating

flavour breaking can themselves be a source of FCNC. The scale at which G is broken is then again also bound to

be correspondingly large. The same argument applies if G is anomalous, unless would-be Goldstone bosons (and

therefore the flavour breaking scale) are heavy enough. In the case of the spontaneous breaking of finite groups, a

further constraint comes from the need to avoid domain walls (Antusch and Nolde, 2013; Chigusa and Nakayama, 2019;

Riva, 2010). Still, relatively low scales of flavour breaking can be achieved even in the case of gauged models (Grinstein

et al., 2010). The possibility that the flavour symmetry is broken together with the EW symmetry by means of Higgs

doublets has also been considered (Grimus and Lavoura, 2003; Ma, 2007a; Morisi and Peinado, 2009; Morisi et al.,

2011b). Here we will consider the safest case in which the breaking of the flavour symmetry is due to SM singlets

above the EW scale.

C. Exact flavour symmetries

We first dismiss the possibility that the flavour symmetry be exact. This is important also because it shows that no

(overall) exact unbroken subgroup can survive the breaking of the flavour symmetry. To begin with, we consider the

effective description of neutrino masses through the Weinberg operator. The flavour group acts in the lepton sector

through two unitary representations of g ∈ G, one on the leptons doublets li and one on the lepton singlets eci

li → Ul(g)ij lj

eci → Ue(g)ije
c
j .

(3.5)

The Higgs field could in principle also transform under G, but its transformation can, without loss of generality, be

reabsorbed in those of li and eci , and we will therefore neglect it.4

If the flavour symmetry was not broken, the invariance of the lepton flavour Lagrangian,

λE0ije
c
i ljH

∗ +
c0ij
2Λ

(liH)(ljH) , (3.6)

would constrain the couplings λE0ij and c0ij , or equivalently the charged fermion and neutrino mass matrices M0
E and

m0
ν , as follows:

M0
E = Ue(g)TM0

E Ul(g)

m0
ν = Ul(g)Tm0

ν Ul(g)
(3.7)

for any g ∈ G. The index “0” stresses that the lepton couplings and mass matrices are assumed here to be exactly

symmetric under G. It turns out that the above constraints can lead to fully viable mass matrices (i.e. associated to

three non-vanishing charged lepton masses, three non-degenerate neutrinos, and three non-vanishing mixing angles)

only if the representation on the lepton doublets is trivial, Ul(g) = ±1. The representation on the eci fields must

also be trivial and identical to the one on the lepton doublets. In other words, the only accidental symmetry of the

4 This is not necessarily true in extensions of the SM Higgs sector with two or more Higgs fields.
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SM lagrangian augmented by the Weinberg operator is a Z2. The argument is simple, and is best formulated in

the charged lepton mass basis, in which M0
E is diagonal and positive. The charged lepton masses relegate G to be

a subgroup of U(1)e × U(1)µ × U(1)τ , the three lepton number U(1)’s: as Ul and Uec must commute with (M0
E)2,

which is non-degenerate, Ul and Uec must both be diagonal matrices of phases; as M0
E is non-singular, eq. (3.7)

forces Uec = U∗l . The PMNS matrix further reduces G to be a subgroup of the total lepton number U(1): inserting

m0
ν = U∗(m0

ν)diagU
†, where U is the PMNS matrix, in eq. (3.7), we see that the combination U†UlU commutes with

((m0
ν)diag)2 and must also be a diagonal matrix of phases. Since all elements of the PMNS matrix are non-vanishing,

this means that Ul is just an overall phase, i.e. G acts as a subgroup of the total lepton number. Finally, the Majorana

nature of the neutrino operator only allows the Z2 subgroup, as it can be shown by substituting Ul = eiφ1 in eq. (3.7).

Needless to say, a trivial representation such as Ul(g) = Uec(g) = ±1 does not constrain at all lepton masses and

mixings, as any ME and mν would satisfy eq. (3.7). An accurate non-trivial description of lepton flavour thus requires

a (spontaneously) broken flavour symmetry. Moreover, the flavour symmetry should be fully broken. No residual

non-trivial subgroup should survive the breaking, except possibly the trivial Z2 above. The same conclusion holds

if the flavour symmetry constrains the renormalizable theory from which the Weinberg operator originates, provided

that the heavy fields stay heavy in the exactly symmetric limit (see below). This is because eq. (3.7) still holds, as a

consequence of the invariance of the full theory.

The above assumes a high-scale origin of neutrino masses. In the paradigmatic caveat of Dirac neutrinos masses

originating from Yukawa couplings to three right-handed neutrinos, the analysis is different but the conclusion is the

same. The only possible exact flavour symmetry in the lepton sector is in this case the total lepton number U(1), or

one of its subgroups. As above, such a flavour group would not constrain at all lepton masses and mixings, as any

form of the lepton mass matrices would be allowed.

Finally, the above considerations extend to the quark sector. The only allowed exact symmetry is in that case the

total Baryon number. The latter however does not provide any constraint on the quark mass matrices.

D. Symmetry Breaking

Having to abandon the idea that lepton masses and mixing angles can be inferred from an exact flavour symmetry,

the usefulness of the whole approach relies very much on the knowledge of breaking effects. In general we can

distinguish between an explicit breaking, where the nature of the breaking terms is unrelated to the dynamics of

the system, and a spontaneous breaking originating from the non-invariance of the vacuum state. Typically the

spontaneous breaking offers better chances in terms of predictability, especially if some dynamical requirement, like

the minimization of the energy density of the system, is invoked to select the vacuum of the theory. There are however

exceptions to this general trend. Also the case of explicit breaking can retain some predictability, if breaking terms

are not completely arbitrary. Actually, to some extent, the two cases can be described within the same formalism.

Consider, for example, the charged lepton Yukawa coupling λEije
c
i ljH

∗ + h.c. and assume that the singlets ec and the

doublets l transform according to unitary representations rec and rl of the flavour group G. It is useful to write the

Yukawa coupling in the form:

λEije
c
i ljH

∗ =
∑
Iα

SIα(ΓIijαe
c
i lj)H

∗ (3.8)

where the combinations (ΓIijαe
c
i lj) (α = 1, . . . , dI) transform in the irreducible representations rI (of dimension dI)

of the group G occurring in the decomposition of the tensor product rec ⊗ rl. In case of Nf fermion generations

we have the obvious constraint
∑
I dI = N2

f and ΓIijα are Clebsch-Gordan coefficients. The Yukawa interaction can

be seen as an invariant of the flavour group, provided SIα are interpreted as spurions transforming in the conjugate

representation r̄I . Arbitrary Yukawa couplings λEij are traded by arbitrary spurions SIα and at this stage we have no

benefit. However, in model building we can complement the above decomposition by some additional assumptions

about the set of allowed spurion representation, their size and relative orientation in flavour space and thus gather

information on the pattern of λEij , through the relation λEij =
∑
Iα S

I
αΓIijα.

In general the model is specified by the gauge group Gg and the flavour group G, together with the field content

which includes matter fields, spurions and their representations under Gg and G. To cover the general case where the
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fields SIα in eq. (3.8) are functions of some fundamental G-multiplet, SIα = SIα(ϕ), we will denote the set of allowed

spurions by ϕ. In the context of flavour symmetries such spurions are nothing but the flavons. They transform under

some (possibly reducible) representation rϕ of the group G. A common, but not mandatory, choice is to assume that

spurions ϕ are singlets under the gauge group. The Yukawa couplings λEij(ϕ) become functions of the spurions ϕ,

constrained by the flavour symmetry. If they can be expanded in powers of ϕ, they assume the form:

λEij(ϕ) = λE0ij + λEα1ijϕα + λEαβ2ij ϕαϕβ + . . . (3.9)

and the corresponding interactions are given by:

ecλE(ϕ)lH∗ = (ecl)1H
∗ + (eclϕ)1H

∗ + (eclϕϕ)1H
∗ + . . . (3.10)

where flavour indices are understood and (·)1 stands for a G-invariant combination: (ecl)1 = eciλ
E
0ij lj , (eclϕ)1 =

eciλ
Eα
1ijϕαlj and so on. This type of description is equally good for both non-dynamical spurions and for new dynamical

degrees of freedom described by the fields ϕ. In the first case we reproduce an explicit breaking ofG, while in the second

case the breaking is spontaneous, being related to the VEV of ϕ. In the above description ϕ are dimensionless. Fields

with canonical dimensions are easily recovered by the replacement ϕ → ϕCD/Λ, where Λ stands for a new physical

scale related to flavour dynamics. Then the expansion of eq. (3.10) contains operators of growing dimensionality

providing, in the spirit of an EFT, a low-energy description of the flavour sector valid at energy scales much lower

than Λ. The scale Λ controlling the spurion expansion does not necessarily coincide with that introduced in eq. (2.1),

which breaks the lepton number L. Operators of high dimensions can be helpful to describe light fermions, if the

expansion parameter 〈ϕ〉 is sufficiently small.

As an example (Linster and Ziegler, 2018) we take G = U(2) ∼ SU(2)⊗U(1) and let the lepton fields transform as

in table III. The product rec⊗rl decomposes as (1, 1)⊕ (2, 1)⊕ (2, 2)⊕ (1, 2)⊕ (3, 2). The corresponding combinations

G ec3 eca l3 la H ϕ1 ϕ2

SU(2)×U(1) (1, 0) (2, 1) (1, 1) (2, 1) (1, 0) (1,−1) (2,−1)

TABLE III Representation of leptons, Higgs and spurions under G=SU(2)×U(1), (a = 1, 2).

(ΓIijαe
c
i lj) are given in table IV. The elements of a generic Yukawa coupling λEij are classified as λE33 ∼ (1,−1),

G ec3l3 ec3la ecal3 (ec1l2 − ec2l1)/
√

2 (ec1l1, (e
c
1l2 + ec2l1)/

√
2, ec2l2)

SU(2)×U(1) (1, 1) (2, 1) (2, 2) (1, 2) (3, 2)

TABLE IV Combinations (ΓIijαe
c
i lj) and their transformation properties under G=SU(2)×U(1), (a = 1, 2).

λE3a ∼ (2,−1), λEa3 ∼ (2,−2), (λE12−λE21)/
√

2 ∼ (1,−2) and (λE11, (λ
E
12 +λE21)/

√
2, λE22) ∼ (3,−2). In the absence of any

indication about the type, size and orientation of the spurions, this decomposition brings no useful information. We

now assume that the only allowed spurions are, for example, ϕ1 and ϕ2, transforming as ϕ1 ∼ (1,−1) and ϕ2 ∼ (2,−1)

under SU(2)×U(1) and with the VEV orientation 〈ϕ2〉T = (〈ϕ21〉 , 0), both invariant under the gauge group. The

choice of this direction in flavour space is not restrictive if the spurions describe vacuum configurations of dynamical

fields, since options related by G transformations lead to equivalent physical systems. In this case, if we only consider

terms linear in spurions, the only non-vanishing entries of λEij are λE33 = 〈ϕ1〉 and λE32 = 〈ϕ21〉. To fill the matrix λEij
we need terms of higher order. To second order we get:

λE =

 0 a 〈ϕ1〉2 0

−a 〈ϕ1〉2 b 〈ϕ21〉2 c 〈ϕ1〉 〈ϕ21〉
0 〈ϕ21〉 〈ϕ1〉

 (3.11)

where the coefficients a, b and c are parameters related to independent invariant combinations. The vanishing entries

of λE can be filled by invariants of higher order. An assumption about the relative size of 〈ϕ1〉 and 〈ϕ21〉 can further

shape the pattern of λE .
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The set up we illustrated is based on an effective description of the flavon interactions with the SM fields, and is

sufficient for most of our purposes. We now briefly discuss the possible UV origin of such a setup. This parallels the

discussion of the UV origin of the Weinberg operator in Sec. II.B.

Consider for simplicity a D = 5 operator involving a single flavon, in the form

cij
Λ
ϕf ci fjH . (3.12)

The latter contributes to the Yukawa interaction λijf
c
i fjH for the charged leptons and neutrinos, f = l, f c = ec, νc

(or for the quarks, f = q, f c = dc, uc). As for the Weinberg one, there are only three possible UV renormalisable

origins of the operator in eq. (3.12). They correspond to the exchange of heavy vectorlike messengers with the same

SM quantum numbers as f , f c, or H. We consider for example the exchange of n vectorlike messengers with the

quantum numbers of f : Fα + F̄α, α = 1 . . . n. The renormalisable lagrangian contains

− LF = ηαiF̄αfiϕ+ yiαf
c
i FαH +MαβF̄αFβ + h.c. , (3.13)

where the couplings are constrained by the flavour symmetry. Integrating out the F , F̄ fields generates the operator

in eq. (3.12), with (cfr. eq. (2.7))

c

Λ
= −yM−1η . (3.14)

Note that in the presence of a single family of messengers the Yukawa couplings generated by eq. (3.13) have rank

one: λij = −yiηj(〈ϕ〉 /M). The first two charged fermion families vanish in this limit, and can be generated by

sub-leading effects involving heavier messengers. This way, hierarchical charged fermion masses (and a viable mixing

pattern for quarks and leptons) can be accounted for without imposing any flavour symmetries (Ferretti et al., 2006).

At the same time, a U(2)fc ×U(2)f symmetry arises accidentally in the limit in which additional contributions to the

Yukawas from heavier messengers are neglected.

1. Vacuum Alignment

Lepton mixing angles and phases can only be determined once both the neutrino and the charged lepton sectors

are specified. For instance, when the lepton number L is violated, at low energy the relevant Lagrangian is

ecλE(ϕ)lH∗ +
1

2Λ
(lH)c(ϕ)(lH) + h.c. (3.15)

where now the matrices λE and c are functions of the fields ϕ 5 and the Lagrangian is invariant under the group G.

The mixing matrix is given by

U = U†eUν , (3.16)

where Ue and Uν are the unitary matrices that diagonalize the combination λE†λE and c, respectively:

U†eλ
E†λEUe = (λ̂E)2 , UTν cUν = ĉ . (3.17)

Here λ̂E and ĉ are non-negative diagonal matrices and their eigenvalues have been properly ordered, also accounting

for the type of neutrino mass spectrum. After suitable rephasing of the combination U†eUν , we can put the mixing

matrix in a conventional form, for instance the one used by the PDG, and read the physical parameters. The latter

follow necessarily from the interplay of both neutrinos and charged leptons.

Such a trivial observation has important implications on model building. Since both λE(ϕ) and c(ϕ) depend on ϕ,

a realistic pattern of lepton masses and mixing angles can only be achieved if the VEVs of the fields ϕ have the right

5 If c(ϕ) originate from the exchange of heavy degrees of freedom whose mass depends on ϕ, it might be singular as ϕ vanish and a series

expansion like the one in eq. (3.9) might not be possible.
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size and orientation in flavour space. If these fields are dynamical, the problem of deriving the desired VEV from the

minimization of the energy density is called vacuum alignment problem. Though the group G is completely broken

in the low-energy regime, it might be that separately the charged lepton sector and the neutrino sector possess an

exact or approximate residual symmetry under subgroups Ge and Gν , respectively. Actually this scenario has been

extensively studied in the context of discrete flavour symmetries to predict or constrain the lepton mixing angles.

This special case of vacuum alignment can be implemented by separating ϕ into two sets, ϕ = (ϕe, ϕν), such that λE

and c mainly depend on ϕe and ϕν , respectively. The desired residual symmetries are obtained if the VEV of ϕe is

invariant under Ge and that of ϕν under Gν . This possibility will be discussed in greater detail in Sec. IV.B.1.

The above discussion already shows advantages and limitations of the considered setup. The perspective that

fermion masses and mixing angles are determined by some dynamical principle is certainly very fascinating and makes

contact with more fundamental theories like string theory, where in principle Yukawa couplings are calculable functions

of a set of fields describing the vacuum configuration. A drawback of the approach is exhibited by eqs. (3.9,3.10). If a

realistic description of fermion masses and mixing angles requires the presence of several terms in the expansion, a large

number of free parameters might be required, to the detriment of predictability. The predictions can also be affected

by the uncertainty related to the whole tower of higher-dimensional operators, unless the expansion parameters 〈ϕ〉 are

very small. Moreover, if we insist in deriving the appropriate pattern of VEV for the fields ϕ from the minimization of

the energy density, the solution of the vacuum alignment problem might require very complicated constructions, with

many auxiliary fields that do not play any role in shaping λE and c and additional symmetries to forbid unwanted

terms in the scalar potential. To avoid or reduce the complexity of the vacuum alignment problem, we can give up

the possibility that symmetry breaking is dynamically determined. This is a frequent option in models realized in the

presence of extra dimensions, where the symmetry breaking can be achieved through an appropriate set of boundary

conditions. Examples of this type of breaking for models of neutrino masses can be found in refs. (Csaki et al., 2008;

Hagedorn and Serone, 2011, 2012; Kobayashi et al., 2008).

It is worth noticing that the above formalism is covariant under a general change of basis in the field space, provided

both charged lepton and neutrino sectors are consistently addressed. Let the group G act, in the original basis, as

ψ → Uψ(g)ψ ψ = (ec, l, ϕ) , (3.18)

Uψ(g) being unitary matrices depending on the generic element g of the group. If we perform an arbitrary change of

basis described by a set of unitary matrices Ωψ:

ψ → ψ′ = Ωψψ , (3.19)

we end up with new matrices (λE)′ = ΩTecλ
EΩl and c′ = ΩTl cΩl in our Lagrangian. The matrices that diagonalize

(λE†λE)′ and c′ are now U ′ec = Ω†lUec and U ′ν = Ω†lUν . All the physical parameters are unchanged. In the new basis

the group G acts as

ψ′ → U ′ψ(g)ψ′ , U ′ψ(g) = ΩψUψ(g)Ω†ψ . (3.20)

A feature which is not captured by the previous formalism is the possibility that the flavour symmetry is non-linearly

realized. In this case the various terms of the expansion in eq. (3.10) are not expected to be individually invariant

under G-transformation, as occurs above as a result of assuming linear unitary representations. This means that the

coefficients λE0ij ,λ
Eα
1ij , λEαβ2ij , . . ., might all be related to provide a Yukawa interaction invariant under the group G.

This case might present the advantage of requiring less free parameters and thus being more predictive.

2. Kinetic terms

In general the breaking of the flavour symmetry affects not only the Yukawa interactions as in eqs. (3.10,3.15), but

also the kinetic terms, leading to additional contributions to mass/mixing parameters. The kinetic terms read:

iēcσ̄µKec(ϕ)∂µe
c + il̄σ̄µKl(ϕ)∂µl + . . . (3.21)

where the dots stand for terms including ∂µK
f (ϕ) (f = ec, l), required by a hermitian Lagrangian and Kf (ϕ) are

positive-definite hermitian matrices in flavour space, depending on the flavon fields, here assumed to be real. In the
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spirit of effective field theories and in linearly realized flavour symmetries, Kf (ϕ) can be expanded in powers of ϕ.

Assuming a choice of basis where Kf (0) = 1, we have:

Kf (ϕ) = 1 +Kfα
1 ϕα +Kfαβ

2 ϕαϕβ + . . . (3.22)

where K
fα1...αp
p are numerical matrices constrained by the requirement of G invariance. When flavons acquire a VEV,

canonical kinetic terms are recovered through the transformations:

f → (1− 1

2
Kfα

1 ϕα + . . .) f (f = ec, l) , (3.23)

and Yukawa interactions are modified accordingly. For instance the charged lepton Yukawa couplings become:

λE(ϕ)→ λE(ϕ)− 1

2
Kecα

1 ϕαλ
E(ϕ)− 1

2
λE(ϕ)Klα

1 ϕα + . . . (3.24)

The consequences of such a change are different whether we are dealing with a supersymmetric or a non-supersymmetric

theory. In a non-supersymmetric theory, the transformation (3.24) merely results in a redefinition of the parameters

of the Yukawa matrix λE(ϕ), since λE(ϕ) exhausts all the polynomial invariants depending on the flavons ϕ and

describing charged lepton Yukawa couplings. In the supersymmetric case, λE(Φ) are holomorphic functions of chiral

multiplets Φ, while in the kinetic terms we should distinguish holomorphic and anti-holomorphic variables. The

function Kf (Φ,Φ†) depends on both of them:

Kf (Φ,Φ†) = 1 +Kfα
1 Φα +Kfα†

1 Φ†α + . . . (3.25)

The transformation (3.24) becomes:

λE(Φ)→ λE(Φ)− 1

2

[
Kecα

1 Φα +Kecα†
1 Φ†α

]
λE(Φ)− 1

2
λE(Φ)

[
Klα

1 Φα +Klα†
1 Φ†α

]
. . . (3.26)

which induces a non-holomorphic dependence of the physical Yukawa couplings on the flavons. In general this entails

additional parameters to the description of masses, mixing angles and phases. Such effects have been analyzed in

ref. (Binetruy et al., 1996; Dreiner et al., 2005; Dreiner and Thormeier, 2004; Dudas et al., 1995, 1996; Jack et al., 2004)

for abelian flavour symmetries, in ref. (King and Peddie, 2004; Ross et al., 2004) for nonabelian continuous flavour

symmetries, in ref. (Chen et al., 2013, 2012; Hamaguchi et al., 2003) for nonabelian discrete flavour symmetries,

in ref. (Chen et al., 2019a) for modular flavour symmetries. Ref. (Kakizaki and Yamaguchi, 2003) exploits such

contribution to explain the hierarchy between the top and the other quark masses. Ref. (Kawamura, 2019) explores

a scenario where the flavour group G remains unbroken in Yukawa interactions and the breaking is entirely due to

kinetic terms. A model-independent discussion for linearly realized flavour symmetries and in the supersymmetric

case can be found in ref. (Espinosa and Ibarra, 2004). For degenerate neutrinos, the impact of the kinetic term is

especially relevant, due to strong dependence of the mixing angles on new contributions. For hierarchical neutrinos

the Kähler potential is expected to provide a contribution to the mixing of the same order of the contribution from

the superpotential. Such effect could be important, for instance to explain the deviations from maximality, possibly

enforced by the superpotential, of the solar and atmospheric mixings. In either case the kinetic terms bring additional

free parameters, to the detriment of predictability.

3. The Space of Invariants

There are general features of the vacuum alignment problem that can be discussed in terms of the symmetry G and

the representation assigned to the fields ϕ, without reference to the explicit form of the energy density functional.

Consider a Lagrangian L(ϕ) invariant under the action of a group G, depending on a set of scalar fields ϕ, transforming

in a representation rϕ of the group. The fields ϕ live in a vector space M, the field space, whose dimension is dϕ,

the dimension of rϕ. In non-linear theories, M can be a manifold. If the theory is G-invariant, two distinct points

in M related by a G-transformation lead to the same predictions for any physical observable. In particular, in any

of two such points the system has the same residual symmetry, or little group, up to a conjugation. Thus the field
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space offers a redundant description of the physical system, that can be simplified by studying the orbits of the group,

i.e. the set of points in the field space M that are related by group transformations. The union of orbits having

isomorphic little groups forms a stratum. The full field space M is partitioned into several strata. For instance the

origin of M belongs the stratum of type G, since for ϕ = 0 the symmetry is unbroken. Most of the field space M is

made of orbits having minimal little group, i.e. the symmetry G is broken down to its minimum possible subgroup,

which is unique, up to conjugation. This subset of M is called principal stratum.

A useful tool is the orbit space, MI . MI can be parametrized by the values of invariants, which are constant on

the orbits. It is sufficient to consider invariants I(ϕ) that are polynomials in the components of the multiplet ϕ. The

ring of invariant polynomials is infinite, but it is generated by a finite number of invariants γα(ϕ), which means that

any invariant polynomial can be written as a polynomial in γα. The invariants γα might be related by a number of

algebraic relations, or syzygies, ZS(γ) = 0. The spaceMI is spanned by the values of the invariants γα of the theory.

A whole orbit of M is mapped into a single point of MI , which completely characterizes the physical properties of

the system, including its symmetry breaking pattern. The crucial property ofMI is that whileM has no boundaries,

MI has boundaries that describe the possible breaking chains of the group. The tools that allow to characterise the

orbit space MI are the Jacobian matrix (Cabibbo and Maiani, 1970)

J ≡ ∂γ

∂ϕ
, (3.27)

and the so-called P-matrix

P = JJT . (3.28)

The space MI is identified by the requirements that i) γ belongs to the surface ZS(γ) = 0 and ii) the matrix P
is positive semidefinite, resulting in a set of inequalities involving the invariants γα (Abud and Sartori, 1981, 1983;

Procesi and Schwarz, 1985; Talamini, 2006).

As an example, consider the group G =SU(3) and the real scalar fields ϕ = ϕaλ
a, transforming in the adjoint

representation of the group, where λa (a = 1, . . . , 8) are the Gell-Mann matrices. As independent invariants in

MI(SU(3)) we can take γ1 = tr(ϕ2) and γ2 = det(ϕ). The P matrix is

P =

(
8γ1 12γ2

12γ2
γ2
1

3

)
, (3.29)

and it is positive semidefinite under the conditions γ1 ≥ 0 and det(P) =
8γ3

1

3 −144γ22 ≥ 0. These inequalities define the

space of invariantsMI(SU(3)), spanned by γ1,2. The spaceMI(SU(3)) is bi-dimensional and its interior corresponds

to the point satisfying γ31 − 54γ22 > 0 and γ1 > 0. In any point of the interior the matrices J and P have rank 2 and

the group SU(3) is broken down to a subgroup isomorphic to U(1)×U(1). The one-dimensional boundary is defined

by γ31 − 54γ22 = 0 and γ1 > 0, and consists of the two branches γ2 = ±
√
γ31/54. Here the matrices J and P have

rank 1 and the group SU(3) is broken down to its subgroup SU(2)×U(1). Finally the two branches meet in γ1 = 0, a

zero-dimensional boundary where J and P have rank 0 and the group SU(3) is unbroken.

It can be shown that such decomposition of MI is completely general. The boundaries of MI can be found by

studying the rank of J . In the interior ofMI the matrix J has maximum rank rmax. In this region G is broken down

to the smallest residual symmetry group Gmin. On the boundaries P has some vanishing eigenvalue and the rank of J

is reduced. If the dimension ofMI is d, in general we have (d−1)-dimensional boundaries where rank(J) = rmax−1.

Along these boundaries G is broken down to groups containing Gmin. These boundaries meet along (d−2)-dimensional

spaces, where rank(J) = rmax − 2. Here the residual symmetry further increases. And so on, until the 1-dimensional

boundaries meet in a point where the entire group G is preserved.

The above consideration can be useful when looking for the extrema of a generic smooth function V (ϕ), invariant

under G. Such a function depends on ϕ through the invariants γα(ϕ) and the extrema lay on orbits of the group.

The extrema of V (ϕ) are defined by the equations:

∂V

∂ϕi
=

∂V

∂γα

∂γα
∂ϕi

=
∂V

∂γα
Jαi = 0 (3.30)
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FIG. 2 Space of invariants for G=SU(3) and ϕ in the real adjoint representation. The green region is the interior, defined by

γ3
1 −54γ2

2 > 0 and γ1 > 0. The red point, where the full SU(3) symmetry is unbroken, is the intersection of the one-dimensional

boundaries.

Consider the previous example with G =SU(3) (Michel and Radicati, 1973). Along the orbits of the principal stratum,

mapped in the interior of MI , J has rank 2 and the derivatives (∂V/∂γ1, ∂V/∂γ2) should satisfy:

∂V

∂γ1
=
∂V

∂γ2
= 0 (γ31 − 54γ22 > 0, γ1 > 0) . (3.31)

Here SU(3) is broken down to the smallest residual symmetry, U(1)×U(1). Along the orbits satisfying γ31 − 54γ22 = 0

and γ1 > 0, providing the one-dimensional boundary of MI , J has rank 1 and eq. (3.30) is solved by requiring

(∂V/∂γ1, ∂V/∂γ2) to be one eigenvector of JT corresponding to the vanishing eigenvalue. This condition reads:

J11
∂V

∂γ1
+ J21

∂V

∂γ2
= 0 (γ31 − 54γ22 = 0, γ1 > 0) . (3.32)

Here the group SU(3) is broken down to its maximal subgroup SU(2)×U(1). Finally, the orbit γ1 = 0 corresponds to

a vanishing J . There are no further conditions on the derivatives (∂V/∂γ1, ∂V/∂γ2) and the symmetry is unbroken.

From this example we see that the extrema along the boundaries of MI are more natural than the extrema in the

interior, since they require less conditions on the scalar potential V . The extremum where G is unbroken is always

present, independently on the specific form of the G-invariant function V . The corresponding orbit is isolated, that

is in a sufficiently small neighborhood we find no other orbits with the same little group. Any such orbit is always an

extremum, irrespectively of the form of V (Michel, 1971; Michel and Radicati, 1971).

Moreover, if the extremum is subject to the condition that ϕ is non-vanishing and bound to a compact manifold,

V has always extrema having a maximal little group (Michel, 1971; Michel and Radicati, 1971). In order to reduce

the vector space V where the flavons ϕ live to a compact space, we need to minimize first with respect to the overall

normalisation of the flavon fields. An assumption is then needed on the scalar potential: given any direction in the

flavon space, the overall normalisation has a non-zero, symmetry breaking, local minumum; such minima form at least

one smooth submanifold M (hence compact, and invariant) in V . Michel’s theorem can now be applied. The little

groups found on M are the same as the ones in V , except for G itself, which is found in V (ϕ = 0) but not in M

(flavour singlets can be neglected without loss of generality). This is welcome, as the trivial minimum ϕ = 0 is not

relevant here. The extrema of V guaranteed by the theorem are then those corresponding to the maximal little groups

of M , i.e. to the little groups in V not contained in any larger little group but G itself. As an example, consider the

SU(3) example above. The renormalisable scalar potential is given by

V = µ2
1γ1 + µ2γ2 + λγ21 . (3.33)
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The condition for the flavour group to be broken in any direction in flavour space is, not surprisingly, µ2
1 < 0. Under

such condition, a critical point corresponding to the breaking of SU(3) to the maximal little group SU(2) × U(1) is

guaranteed to exist. Clearly, this is not the case if µ2
1 > 0.

Extrema on orbits of the principal stratum might be compatible only with specific forms of V . For instance, in

the example of eq. (3.33), extrema with little group U(1)×U(1) are allowed only if µ2 = 0. For a non-vanishing µ2,

the only allowed little groups of the extrema are SU(3) or SU(2)×U(1). A clear limitation of this approach is that,

without further inputs, we do not know whether the extrema are maxima or minima or saddle points of V .

E. The role of CP

In the previous Section, we have considered flavour groups commuting with the proper Poincaré group and with

gauge transformations. We now relax this hypothesis. We want to argue that, under mild hypotheses, parity-like

transformations are the only possible alternative. Indeed, by the Coleman-Mandula theorem (Coleman and Mandula,

1967), any symmetry of the scattering matrix should provide an automorphism of the Poincaré algebra. Up to

Poincaré transformations, i.e. changes of reference frame, and dilatations, which require the theory to be conformally

invariant in the symmetric limit, there are only two independent non-trivial automorphisms: parity and time-reversal.

The action of both on the Poincaré algebra is involutive: it squares to the identity. Dilatations are only allowed if

the theory is scale-invariant to begin with, which is not a case we are interested in. Because of the CPT theorem, it

suffices to consider parity-like automorphisms.

Consider now the action of such symmetry on the whole collection of matter fields, bosonic and fermionic, including

conjugates, denoted by Φi:

Φi(x)→ XijΦ
†
j(xP ) , (3.34)

where (xP )µ = xµ. It follows that left-handed Weyl spinors fa transform into right-handed ones: fa → Xabf̄b.
6 While

the action of this symmetry on the Poincaré algebra is involutive, it does not have to be involutive on the fields Φi(x)

and, in generalXX∗ corresponds to a standard flavour transformation, not necessarily equal to the identity. Additional

conditions hold in a gauge theory, where a gauge group Gg acts on the fields Φi through its unitary representation

ρij(g). In order for the parity-like transformation to be consistent, equivalent field configurations (related by gauge

transformations) should be transformed by the parity-like action into equivalent field transformations. Moreover,

the gauge interactions should be invariant. The two previous requirements leads to the following two consistency

conditions (Grimus and Rebelo, 1997).

• There must exist an automorphism g ∈ Gg → g′ ∈ Gg such that

Xρ(g)∗X−1 = ρ(g′) . (3.35)

• The parity-like transformation must transform the gauge fields Aµ(x) = Aµa(x)ta, where ta are the gauge group

generators as

Aµ(x)→ A′µ(xP ) , (3.36)

where ta → t′a is the generator automorphism induced by g → g′.

The existence of a parity-like transformation inverting the sign of commuting gauge charges is guaranteed (Grimus

and Rebelo, 1997) in any gauge theory. This is, by definition, a CP transformation. On the other hand, a parity

transformation commuting with gauge transformations can only exist if the fermions are not chiral, as well known.

Other types of interplay with gauge invariance, other that the ones defining P and CP , are in principle also possible.

Under a CP transformation gauge interactions are automatically invariant, which is not necessarily the case for

Yukawa interactions. Indeed when we turn off the Yukawa couplings of the SM, the theory becomes also invariant

6 More precisely, the full CP transformation on Weyl spinors reads: fa → Xab(εf
†
b ).



23

under CP transformations, whose action in flavour space is usually assumed to be trivial and thus irrelevant as flavour

symmetry. However, generalizations of this action are possible (Ecker et al., 1987; Neufeld et al., 1988). We consider

a theory with a “conventional” (commuting with Poincaré and gauge) global flavour symmetry group Gf
7. If Gf

includes all flavour transformation leaving the theory invariant, a meaningful action of CP is guaranteed only for

special choices of the flavour group and/or its representations. Indeed, in the presence of a global symmetry Gf , CP

transformations should satisfy a set of consistency conditions (Feruglio et al., 2013; Holthausen et al., 2013b) similar

to the one in eq. (3.35). In such a theory the transformations of the fermion fields f read:

f → U(g) f f → XCP f̄ , (3.37)

where U(g) is a unitary representation of Gf , g is a generic element of Gf and XCP a unitary matrix representing the

action of CP in flavour space. Under the combination of a CP transformation, followed by a Gf transformation and

an inverse CP transformation, the theory remains invariant. This implies that for each g ∈ Gf an element g′ ∈ Gf
should exist such that:

XCPU
∗(g)X−1CP = U(g′) . (3.38)

The map g′ = u(g), implicitly defined by the previous relation, is an automorphism of the group Gf , since it reshuffles

the elements of Gf while preserving the composition law. Moreover, since CP relates particles and antiparticles, the

function g′ = u(g) should map each representation r of the group Gf into its conjugate r̄. We will call such an

automorphism a complex conjugation. In general, a given group Gf can possess automorphisms other than complex

conjugations. When Gf is a continuous semisimple group, with an appropriate choice of basis in field space, the

constraint (3.38) can always be solved by XCP = 1 (Grimus and Rebelo, 1997). Moreover, up to compositions with

a transformation of the group Gf , XCP = 1 is essentially the most general solution of (3.38). A single exception is

provided by the groups SO(2N) (N 6= 4), admitting independent solutions.

The major difference with respect to the case of continuous gauge symmetries is that, if Gf is a discrete group,

complex conjugations are not guaranteed to exist. It is useful to distinguish between inner automorphisms of Gf that

can be cast in the form u(g) = hgh−1 (h ∈ Gf ) and outer automorphisms, that do not allow such a description. The

inner automorphisms map each representation of Gf into an equivalent one, while outer automorphisms can permute

the representations. Thus inner automorphism can describe solutions of (3.38) only if the flavour group representation

is vectorlike. If it is chiral, the automorphism solving eq. (3.38) should necessarily be a complex conjugation of outer

type (Holthausen et al., 2013b). It follows that discrete groups Gf can be divided into two classes (Chen et al.,

2014). Those not possessing outer complex conjugations are called type I groups. Theories having this type of flavour

symmetry in general do not allow a consistent definition of CP, at least for a generic field content. An example of type

I group is ∆(27). To define CP in such theories, we should restrict the field content to a suitable subset of the available

representations, on which an automorphism of the group acts as a complex conjugation. Type II groups possess outer

complex conjugation. Theories invariant under such groups admit a consistent definition of CP. Examples of type II

groups are S3,4, A4,5 and T ′. Depending on the choice of the input parameters, these theories can be CP invariant or

not, exactly as happens for the SM, that admits a consistent action of CP but is CP invariant only for special values

of the parameters.

A CP transformation is involutive, up to inner automorphisms (Nishi, 2013). This can be seen by applying eq. (3.38)

twice, which gives

XCPX
∗
CPU(g)X−1∗CP X−1CP = U(u2(g)) , u2(g) ≡ u(u(g)) . (3.39)

Since XCPX
∗
CP represents the action of some element s of Gf , we have:

U(s)U(g)U(s)−1 = U(u2(g)) , (3.40)

implying that u2(g) = sgs−1 is an inner automorphism. The relation u(s) = s also follows. If sn is the identity for

some integer n, which is always true for finite groups, it follows that (XCPX
∗
CP)n = 1.

7 Recent reviews on the combination of global and CP symmetries are (Chen and Ratz, 2019; Trautner, 2016, 2017).
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Finally, if XCP is a complex conjugation solving the constraint (3.38), so is also X ′CP = U(h)XCP, for any fixed

element h of the group Gf . The action of X ′CP differs from that of XCP. For example, we might have a canonical

XCP = 1 and a generalized X ′CP acting in a nontrivial way. It is important to stress that X ′CP and XCP set the same

constraint on the theory, since X ′CP is the combination of XCP with a symmetry transformation. Nevertheless, when

considering the breaking of the full flavour symmetry group, it can be useful to exploit generalized CP transformation,

to classify the available breaking chains and their features. Combining a flavour group Gf with CP results in the group

G = Gf o CP, if CP2 = 1. In general, requiring invariance under G sets additional restrictions among parameters

with respect to only enforcing Gf . Physical phases can be constrained or predicted, as discussed in section V.

F. Non-linear flavour symmetries

The action of the flavour group G on the matter multiplets can also be non-linear. A natural realization of this

scenario involves the introduction of a set of real scalar fields ϕα, neutral under the SM gauge group, living in a

manifold M equipped with the metric gαβ(ϕ). Many SM extensions predict the existence of new scalar degrees of

freedom. For instance in string theory components of the metric tensor describing size and shape of the compactified

space are scalar in four dimensions. In the present context ϕα play the role of flavons. Terms with two derivatives

read:

Lϕ =
1

2
gαβ(ϕ)∂µϕ

α∂µϕ
β . (3.41)

Under a reparametrization of M, ϕα → fα(ϕ), the metric transforms as

gαβ(ϕ)→ g̃αβ(ϕ) =
∂fγ

∂ϕα
gγδ(f(ϕ))

∂fδ

∂ϕβ
, (3.42)

and the Lagrangian becomes

Lϕ → L̃ϕ =
1

2
g̃αβ(ϕ)∂µϕ

α∂µϕ
β . (3.43)

The isometries are reparametrizations leaving invariant the metric and hence the Lagrangian:

g̃αβ(ϕ) = gαβ(ϕ) , L̃ϕ = Lϕ . (3.44)

They form the isometry group GI of M. The flavour group G is identified with a subgroup of GI . This framework

defines a non-linear σ-model invariant under GI , to which matter fields of the SM are coupled. For simplicity we

consider the SM fermions, collectively denoted by ψi, in the limit where gauge interactions are turned off. A minimal

coupling comprises

Lψ = i hij(ϕ)ψ̄iσ̄µ∂µψ
j + kijα(ϕ)ψ̄iσ̄µψj∂µϕ

α + h.c. (3.45)

Under a reparametrization of M, the fermions transform as ψi → χi(ϕ,ψ) = ξij(ϕ)ψj + . . ., where dots stand for

possible contributions of higher order in ψ. Here we will consider fermion transformations nonlinear in ϕ, but linear

in ψ, the easiest way to guarantee that the transformed fields have the same gauge quantum numbers as the original

ones. Hence a generic reparametrization reads:

ϕα → fα(ϕ) , ψi → ξij(ϕ)ψj . (3.46)

Group properties are guaranteed by the relations

ϕ
g1−→ fg1(ϕ)

g2−→ fg1(fg2(ϕ)) = fg1g2(ϕ)

ψ
g1−→ ξg1(ϕ)ψ

g2−→ ξg1(fg2(ϕ))ξg2(ϕ)ψ = ξg1g2(ϕ)ψ , (3.47)

and

fe(ϕ) = ϕ , ξe(ϕ) = 1 . (3.48)
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Under (3.46) the metric hij(ϕ) and the connection kijα(ϕ) ≡ hil(ϕ)kljα(ϕ) transform as 8:

hij(ϕ)→ ξk∗i hkl(f(ϕ)) ξlj

kijα(ϕ)→ (ξ−1)im k
m
lβ(f(ϕ)) ξlj

∂fβ

∂ϕα
+ i (ξ−1)il

∂ξlj
∂ϕα

. (3.49)

If the transformation of eq. (3.46) is an isometry, the metric and connection are required to be invariant. From

eq. (3.49) we understand the role of the connection kijα(ϕ): even when the isometry of the scalar manifold M is

realized by global transformations on ϕα, the fermion transformations are always local due to the explicit space-time

dependence of the functions ξij(ϕ). The two terms in eq. (3.45) can be combined into a covariant derivative:

(Dµψ)i ≡
(
δij∂µ − i kijα(ϕ)∂µϕ

α
)
ψj , (3.50)

which under an isometry transforms as the fermions ψi:

(Dµψ)i → ξij(ϕ)(Dµψ)j . (3.51)

In the case treated in Section VI the isometries act on the fermion fields in the following way:

ψi →
[
det

(
∂f

∂ϕ

)]−k/2
ρij ψ

j . (3.52)

where k is a real number called weight and ρ is a ϕ-independent unitary representation of a compact coset G/H,

where G ⊆ GI and H is a normal subgroup of G. A nice property of the transformation (3.52) is that it manifestly

provides a non-linear realization of G. Indeed, considering two subsequent isometries we have:

ψi
g1−→
[
det

(
∂fg1
∂ϕ

)]−k/2
(ρg1)ij ψ

j

g2−→
[
det

(
∂fg1
∂ϕ

)]−k/2
ϕ→fg2 (ϕ)

·
[
det

(
∂fg2
∂ϕ

)]−k/2
(ρg1)ik(ρg2)kj ψ

j

=

[
det

(
∂fg1g2
∂ϕ

)]−k/2
(ρg1g2)ij ψ

j . (3.53)

and the group composition property is guaranteed. Invariance of the metric hij(ϕ) under the isometry (3.52) requires:

hij(f(ϕ)) =

[
det

(
∂f

∂ϕ

)]k
ρmi hmn(ϕ) (ρ†)nj . (3.54)

The law (3.52) can be generalized by allowing different pairs (k, ρ) for distinct irreducible representations ψ(I) of the

gauge group:

ψi(I) →
[
det

(
∂f

∂ϕ

)]−kI/2
ρ(I)

i
j
ψj(I) . (3.55)

Invariance of a fermion bilinear 9

LY = λ(ϕ)ijψ
i
(I1)

ψj(I2) + h.c. (3.56)

requires a Yukawa coupling λ(ϕ)ij satisfying:

λ(f(ϕ))ij =

[
det

(
∂f

∂ϕ

)](kI1+kI2 )/2
[ρ(I1)]

k∗
i λ(ϕ)kl [ρ

†
(I2)

]lj . (3.57)

8 Indices are lowered and raised by the metric hij(ϕ) and the inverse metric hij(ϕ), respectively.
9 For notational convenience we set to 1 the Higgs multiplet H, that can be easily reintroduced in our expressions. Also H can undergo

a transformation of the type (3.55).
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The overall Lagrangian

L =
1

2
gαβ(ϕ)∂µϕ

α∂µϕ
β + hij(ϕ)ψ̄iσ̄µDµψ

j + λ(ϕ)ijψ
i
(I1)

ψj(I2) + h.c. , (3.58)

is invariant under the non-linearly realized flavour symmetry:

ϕα → fα(ϕ) , ψi(I) →
[
det

(
∂f

∂ϕ

)]−kI/2
ρ(I)

i
j
ψj(I) . (3.59)

Notice that this formalism, at variance with the Callan-Coleman-Wess-Zumino construction (Callan et al., 1969;

Coleman et al., 1969), covers both the case of a global flavour symmetry and that of a discrete one. The purpose of

this approach is to select G, G/H, ρ(I) and k(I) so as to constrain as much as possible the function λ(ϕ). In an ideal

case, the functional dependence of λ(ϕ) on ϕ is completely determined up to an overall constant and all dimensionless

parameters such as mass ratios, mixing angles and physical phases are all fixed functions of ϕ, providing a highly

constrained system of predictions. So far this program has been explored in the context of a supersymmetric σ-model

where the flavour group G is the modular group SL(2, Z), contained in GI = SL(2, R) and G/H is a finite modular

group.

IV. STANDARD FLAVOUR SYMMETRIES

We will now consider specific flavour symmetry models. We will begin in this section from the “standard” case in

which the flavour symmetry commutes with the gauge and Poincaré transformations, in the context of the standard

framework discussed in Sec. II.B, in which the origin of neutrino masses lies at scales higher than the electroweak

scale. We will consider flavour symmetries constraining the effective EW scale Lagrangian containing the Weinberg

operator in eq. (2.1) and also consider flavour symmetries constraining its possible renormalizable high scale origins

(and comment on the equivalence of the two approaches). We will also classify models according to whether the

symmetry breaking affects mildly or prominently the flavour observables.

We have seen in section III.D that a viable flavour symmetry must be broken by a set of flavon/spurion fields φ,

transforming under a representation Uφ of G. The lepton couplings and mass matrices then acquire a dependence on

φ, ME = ME(φ), mν = mν(φ). Because the full Lagrangian is assumed to be invariant under G, the mass matrices

satisfy

ME(φ) = Ue(g)TME(Uφ(g)φ)Ul(g)

mν(φ) = Ul(g)Tmν(Uφ(g)φ)Ul(g)
(4.1)

for any g ∈ G.

It is often (but not always) the case that the functions ME(φ) and mν = mν(φ) are continuous for φ → 0 and

they admit an expansion in the flavons and their conjugates around their symmetric forms M0
E = M(0), m0

ν = mν(0)

(which satisfy eq. (3.7)). Flavour symmetry models can either be in the “perturbative” regime in which the symmetry

breaking terms provide a moderate correction to the flavour observables; or in the “leading order breaking” regime in

which symmetry breaking is necessary even for a leading order understanding of the flavour observables. The latter is

the case, for example, when the neutrino or the charged lepton mass matrix vanishes in the symmetric limit. In the

next section, we will consider the first possibility. The “leading order breaking” case will be discussed in section IV.B.

A. Perturbative breaking: mild corrections to flavour observables

We have seen in Sec. III.C that the symmetric forms M0
E , m0

ν of the lepton mass matrices cannot provide a (non-

trivial) accurate description of lepton masses and mixings. It is however possible that they provide an approximate

description. This is how non-exact symmetries of Nature have often emerged. Pions, for example, are close to an

isospin symmetric limit in which the charged and neutral pion masses and couplings are equal. Analogously, one can

wonder if lepton flavour observables are close to the symmetric predictions of a flavour theory. If this is the case, we
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Ul Uec (mτmµme) (m3m2m1) ν hierarchy PMNS zeros

1 1 1 1 r + 1 (A00) (abc) NH or IH none

1 1 1 1 r + 1,1 (A00) (0aa) IH none (13)

1 1 1 1 1 r 6= 1 (AB0) (abc) NH or IH none

1 1 1 1 1 r 6= 1 (AB0) (0aa) IH 13

1 1 1 1 1 1 (ABC) (abc) NH or IH none

1 1 1 1 1 1 (ABC) (0aa) IH 13, 23, 33

TABLE V Classification of flavour groups and representations leading to an approximately viable prediction in the symmetric

limit. The Weinberg operator is assumed to describe neutrino masses. The decompositions of the representation on the charged

lepton doublets and singlets li and eci into irreducible components is shown in the first two columns. The notation shows the

dimension and type (boldface = complex, roman = real) of the representation. Identical symbols are associated to equivalent

representations, while 1 is the complex conjugate of 1. “r” denotes a generic, possibly reducible, representation. The predicted

charged lepton and neutrino mass patterns are shown in the third and fourth column. The fifth column shows the type of

neutrino mass hierarchy (normal or inverted hierarchical). The last column specifies whether the PMNS matrix contains a zero

and in which position. In the second line the 13 entry can vanish or not, depending on an unknown “12” rotation determined

by symmetry breaking effect. In the last line, the position of the zero depends on the relative size of A, B, and C. In the

cases corresponding to the last four rows, the hierarchy of charged lepton masses is not explained by the flavour model and is

accounted for by a hierarchy among the free parameters A, B, C.

can say that the understanding of the (leading order) pattern of lepton flavour lies in the flavour symmetry itself,

and symmetry breaking effects only provide the moderate correction to the observables needed for their accurate

description.

1. Flavour symmetries at low scales

We first consider the case in which neutrino masses are fully described by the Weinberg operator and the flavour

symmetry operates on the Lagrangian in eq. (3.6). In such a case, the flavour symmetry constrains the lepton mass

matrices as in eqs. (3.7) and a complete study of the perturbative option is possible. In fact, given a mass and mixing

pattern considered to be a viable leading order approximation, the full set of flavour groups and representations leading

to that pattern in the symmetric limit can be characterised in terms of the structure of the decomposition of Ul, Uec

into irreducible components; namely in terms of the type (real, complex, pseudoreal), dimension, and equivalence of

the irreducible components. To be conservative, we consider viable symmetric predictions all those in which

i) the PMNS matrix is not fully undetermined;

ii) both the θ23 and θ12 angles are allowed to be non-vanishing;

iii) the non-vanishing charged lepton masses are not forced to be degenerate.

The flavour symmetry models compatible with the above requirements are then those whose representations on the

SM leptons have one of the six decompositions listed in table V (Reyimuaji and Romanino, 2018).

Note that only abelian representations are allowed (with the only possible exception of a non-abelian two dimen-

sional representation on ec1, ec2 when me = mµ = 0). More important, either neutrinos are inverted hierarchical,

or the neutrino mass matrix is completely unconstrained. This is because there are only two possibilities for the

representation on lepton doublets. When Ul ∼ 1+1+1, the three lepton doublets can at most transform by an overall

sign under G. The neutrino mass matrix is then completely unconstrained, and any neutrino masses and mixings

are possible. The flavour symmetry is useless in the neutrino sector, where it leads to anarchy (Altarelli et al., 2003;

de Gouvea and Murayama, 2003; Haba and Murayama, 2001; Hall et al., 2000; Hirsch and King, 2001) (it may still

be useful to explain the charged lepton mass hierarchy). When Ul ∼ 1 + 1 + 1, the neutrino masses are in the form

(0aa) in the symmetric limit, which is close to the inverted hierarchical spectrum. Therefore, if the present hint for
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normal hierarchy transformed into an evidence, we would conclude that no flavour symmetry can provide a non-trivial

approximate understanding of lepton flavour in the symmetric limit. Symmetry breaking effects would then play a

leading role in determining (at least some of) the flavour observables.

In all cases, no precise prediction on any of the lepton observables can be obtained (except possibly θ13 = 0, which

however is not precise on the experimental side), as the representation Ul on lepton doublets is alway found to be

abelian and because of the unknown O (1) factors involved in each matrix elements. Note that the 1-dimensional

representations are always abelian and abelian groups only have 1-dimensional irreducible representations. On the

other hand, the 1-dimensional representations in table V can also belong to non-abelian groups. In the case G = U(1),

the 1-dimensional representations are specified by their charges under the U(1).

Examples of flavour models corresponding to the non-trivial examples in table V have long been known. As

mentioned, the three cases corresponding to the trivial representation Ul ∼ 1 + 1 + 1 correspond to anarchical

neutrinos. No special prediction is obtained, but the mixing angles and neutrino mass ratios are expected to be

all O (1). Indeed, the neutrino spectrum does not need mass ratios smaller than a factor 1/5–6 and the smallest

mixing element is |Ue3| ∼ 1/7. Moreover, they can arise from moderately small Yukawa couplings in the context

of the see-saw, as the neutrino Yukawas are squared in the see-saw formula. The size of |Ue3| only had an upper

bound when anarchy was first considered. The measurement of a value not far from that bound corroborated the

proposal (Altarelli et al., 2012; de Gouvea and Murayama, 2015). The three cases have different Uec . The use of a

non-trivial representation on the ec fields can forbid the electron and the muon masses in the symmetric limit and can

therefore be used to account for the hierarchy of charged lepton masses even in the presence of anarchical neutrinos.

As for the three non-anarchical cases, they require continuous or discrete groups with a complex 1-dimensional

representation, “1”, and a representation on the lepton doublets decomposing as 1 + 1 + 1. A simple choice is

G = U(1) with charges (ql1, q
l
2, q

l
3) = (−1, 1, 1) on the three lepton doublets. In all cases, the neutrino mass matrix is

in the form

mν =

0 a b

a 0 0

b 0 0

+ corrections, (4.2)

where the corrections are provided by symmetry breaking effects. Depending on whether Uec matches or not Ul, the

lighter charged lepton masses may or may not vanish in the symmetric limit, thus providing a rationale for their

hierarchy. One obtains in fact

M0
E =

0 0 0

0 0 0

0 B A

 ,

0 0 0

0 D C

0 B A

 ,

E 0 0

0 D C

0 B A

 . (4.3)

in the three cases of table V, before switching on symmetry breaking effects.

In the U(1) example, the last pattern of eq. (4.3) can be reproduced by choosing opposite charges (qe
c

1 , q
ec

2 , q
ec

3 ) =

(1,−1,−1) for the three ec fields. This corresponds to a U(1) symmetry with charge Lτ + Lµ − Le (Barbieri et al.,

1998) (similar symmetries were considered in (Konopinski and Mahmoud, 1953; Petcov, 1982; Zeldovich, 1952)). None

of the charged lepton hierarchies me � mµ � mτ is accounted for. Moreover, the PMNS matrix contains a zero in

the symmetric limit that should be identified with the U13, but it can appear in the 12 or 33 position, depending on

which charged lepton family ends up being lighter. In order to get rid of both such drawbacks, one can depart from

Lτ + Lµ − Le by using different representations Uec 6= U∗l , forcing me = 0 and possibly mµ = 0 in the symmetric

limit. In all cases, the solar mixing angle is maximal in the symmetric limit and requires significant corrections from

symmetry breaking (see Sect. IV.B.3).

Normal hierarchy can be obtained in an important class of models that does not appear in table V, in which the

neutrino mass matrix is in the form (Barbieri et al., 1998; Grossman et al., 1998; Irges et al., 1998)

mν =

0 0 0

0 c b

0 b a

+ corrections. (4.4)
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Such a texture is obtained if Ul = 1+1+1. We use roman and boldface fonts to denote real and complex representations

respectively (see table V). This texture is sometimes called “semi-anarchy”, as the “23” block of the neutrino mass

matrix (corresponding to the trivial representation 1 + 1), but not the whole one, is now unconstrained. In the

symmetric limit, the solar angle is predicted to vanish, θ12 = 0, a prediction that is far from the observation. In order

for the above texture to be phenomenologically viable, the correction to θ12 from symmetry breaking effects cannot

be mild. On the contrary, it must be fully responsible for the observed value of θ12. Therefore, such models belong to

the class considered in Sec. IV.B. On the other hand, the O (1) correction to θ12 does not need the symmetry breaking

effects to be large in size. This is because of another drawback of the texture in eq. (4.4): it does not account for

the observed suppression ∆m2
12 � |∆m2

23|. The latter needs an accidental cancellation in the determinant ac − b2,

which should vanish up to O (m2/m3) corrections. Once such a (mild) accident is accepted, subleading O (m2/m3)

symmetry breaking effects are sufficient to generate a O (1) solar angle.

Note that predictions based on accidental relations may be unstable with respect to RGE (Chankowski and Pokorski,

2002) or generic corrections (Domcke and Romanino, 2016; Marzocca and Romanino, 2014). An apparently accidental

suppression can be accounted for in the see-saw context, see below.

The results in table V can be extended to the quark sector. The constraints one obtains there are independent

of those discussed above. However, in the context of grand unified theories, unified quarks and leptons cannot be

treated separately, as they must be subject to the same flavour representation. This leads to additional constraints.

For example, in minimal SU(5) unification, only the anarchical cases in table V turn out to be allowed.

2. Flavour symmetries at high scales

The previous conclusions were based on the assumption that the flavour symmetry constrains the effective EW scale

Lagrangian containing the Weinberg operator. The latter however presumably represents the low-scale remnant of a

more fundamental higher scale renormalizable Lagrangian. One can then wonder whether the conclusions summarized

in table V would still hold if the flavour symmetry was assumed to constrain the higher scale Lagrangian. In particular,

one can wonder whether the choice between anarchy and inverse hierarchy is still necessary, if the symmetric predictions

are required to be viable. This is part of a more general issue concerning the results obtained in the symmetric limit.

Are the predictions obtained when the flavour symmetry acts on a high-scale Lagrangian equivalent to those obtained

when the same symmetry constrains the corresponding effective Lagrangian? The answer is no. On the other hand,

the converse is true: given a flavour symmetry constraining the effective Lagrangian, it is always possible to extend

its action to a high-scale Lagrangian providing the same predictions. Therefore, while the low-scale effective flavour

theory does not capture all the features of the high-scale one, an appropriate high-scale realization always captures

the features of the low-scale effective one.

There are two reasons why the high-scale predictions might not coincide with the low-scale ones (Reyimuaji and

Romanino, 2020). The most obvious is that the mass of some of the high-scale fields vanishes when the symmetry

is exact. This happens if the flavour group representation on the high-scale fields is not vectorlike. In such a case,

the heavy fields cannot be integrated out (as some of them are massless) before symmetry breaking effects have been

switched on. Once the breaking effects are added, all the high-scale fields acquire a mass, including those whose mass

vanished in the symmetric limit. The latter get a mass from sub-leading symmetry breaking effects. Therefore, their

mass is expected to be lighter, and as a consequence their exchange dominates the effective Lagrangian and neutrino

masses. In the standard see-saw language, this corresponds to the so-called single or sequential right-handed neutrino

dominance (Altarelli and Feruglio, 1999a; Antusch and King, 2004b; Barbieri et al., 1998; King, 1998, 1999, 2000),

arising also in the context of non-abelian models (King, 2005).

Even in the cases in which all the relevant heavy fields stay heavy when the symmetry is exact, the high- and

low-scale predictions can differ. Consider for definiteness a type-I see-saw Lagrangian (with an arbitrary number of

singlet neutrinos) and assume that the singlet neutrinos are non-singular in the limit in which the flavour symmetry

is exact. It turns out that there is a precise condition under which the high- and low-scale predictions of the flavour

symmetry are equivalent: this is the case if and only if the vectorlike part10 of the representation on the lepton

10 By vectorlike part, we mean the maximal subrepresentation that is vectorlike, i.e. made of real representations, pairs of complex
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doublets is contained in the representation on the neutrino singlets.

We consider the two above possibilities in turn. We start from the case in which the mass of some of the high-scale

fields vanishes when the symmetry is exact, in the context of type-I see-saw. The possible equivalence of the high-

and low-scale approaches in the symmetric limit can still be investigated when the limit mν(φ) for φ→ 0 exists and

is finite.11 In some cases, the two descriptions can still be equivalent. Consider for example U(1) see-saw models in

which the flavons have charges with definite sign, negative, for example, and the leptons have non-negative charges.

We also invoke supersymmetry to prevent a positively charged flavon to be mimicked by a conjugated flavon. In such

a case, the high- and low-scale descriptions are equivalent in the symmetric limit, independent of whether some of

the right-handed neutrinos are massless or not in that limit. Consider for example the case of a single flavon with

VEV θ (in terms of the cut-off scale) with charge -1 and let qli ≥ 0, qν
c

i ≥ 0 be the lepton doublet and singlet neutrino

charges, i = 1, 2, 3. Then in the broken phase, the low-scale flavour theory predicts

(mLS
ν )ij = cLSij θ

qli+q
l
j , (4.5)

where c is a generic, unknown 3 × 3 (dimensionful) matrix. In the high scale theory, we have instead (mD)ij =

(cD)ijθ
qν
c

i +qlj , Mij = Cijθ
qν
c

i +qν
c

j for the Dirac and singlet Majorana mass matrices respectively. Therefore, the light

neutrino mass matrix is

(mHS
ν )ij = cHS

ij θq
l
i+q

l
j , (4.6)

where cHS = −cTDC−1cD is also a generic, unknown 3× 3 matrix. Therefore, the high- and low-scale definitions of the

flavour theories are equivalent.

On the other hand, the two descriptions can be inequivalent. Suppose for example that the lepton doublets and

singlet neutrinos have charges (ql1, q
l
2, q

l
3) = (0, 1, 1) and (qν

c

1 , qν
c

2 , qν
c

3 ) = (0, 0,−1) under a U(1). Then, in the unbroken

limit, the low- and high-scale versions of the same U(1) model provide quite different results:

mLS
ν =

a 0 0

0 0 0

0 0 0

 , mHS
ν =

0 0 0

0 c b

0 b a

 , with ac− b2 = 0. (4.7)

The high-scale result follows from the following forms of the unbroken Dirac and Majorana matrices

mD =

0 0 0

0 0 0

0 B A

 , M =

α β 0

β γ 0

0 0 0

 . (4.8)

In the “almost unbroken” limit, the see-saw is dominated by the exchange of νc3, the only one taken into account in

eq. (4.7). This is the single right-handed dominance mechanism mentioned above in its most classical realization,

which now accounts for the apparently accidental suppression of the determinant ab− c2 needed in eq. (4.4).

As mentioned above, there is a second case in which the high- and low-scale formulations of the same flavour

model are certainly inequivalent, even when all the right-handed neutrinos are allowed to be massive in the unbroken

limit (i.e. even when the representation of G on them is vectorlike). This is the case if the vectorlike part of the

representation on the lepton doublets is not contained in the representation on the neutrino singlets (Reyimuaji and

Romanino, 2020). We illustrate the latter possibility with an example (Altarelli and Feruglio, 1999a). Suppose that

the lepton doublets and singlet neutrinos have charges (ql1, q
l
2, q

l
3) = (n, 0, 0) and (qν

c

1 , qν
c

2 , qν
c

3 ) = (1,−1, 0) under a

U(1), with n 6= ±1, 0. Then the unbroken Dirac, singlet, and light neutrino matrices are

mD =

0 0 0

0 0 0

0 B A

 , M =

0 β 0

β 0 0

0 0 α

 , mHS
ν =

0 0 0

0 c b

0 b a

 , with ac− b2 = 0, (4.9)

conjugated representations, or pairs of equivalent pseudoreal representations.
11 In some cases, the analysis can be extended to the cases in which the limit diverges, by normalising the neutrino mass matrix to the

largest entry when taking the limit.
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as a = A2/α, b = AB/α, c = B2/α. Note that the vanishing of the determinant is obtained as a consequence of the

see-saw mechanism without the need to invoke the presence of a lighter singlet neutrino. In the symmetric limit, the

model predicts large θ23, m1 = m2 = 0, θ12 undefined. Enforcing the same flavour symmetry in the low-scale effective

theory gives on the other hand eq. (4.4) with no condition on the determinant. Therefore the unbroken predictions

are different: m2 now does not vanish and θ12 = 0.

As discussed, most instances of the “perturbative” breaking of flavour symmetries discussed in this subsection are

associated to models with abelian symmetries. The latter have been widely studied in the first wave of model-building

following the measurement of a large atmospheric angle. Additional examples and further details can be found in

earlier reviews.

B. Non-abelian models and leading order breaking

In the case of leading order (LO) breaking of the flavour symmetry, the symmetry breaking effects cannot be

disregarded even for a leading order understanding of lepton flavour. This happens when the unbroken limit is not

a good approximation. According to the conservative definition used in the previous section, this is the case when i)

the PMNS matrix is fully undetermined or ii) either the θ23 or θ12 angle is forced to vanish or iii) two of the charged

lepton masses are forced to be degenerate and not vanishing in the unbroken limit. Correspondingly, there are three

possible way outs from the results in table V.

Violating condition iii) is not very appealing. Charged lepton masses are hierarchical. Therefore, models with

degenerate charged leptons in the unbroken limit require quite a fine-tuned symmetry breaking contribution. We will

disregard such a possibility.

If θ23 or θ12 vanishes in the unbroken limit (case ii)), the symmetry breaking corrections must be sizeable enough

to strongly modify the symmetric prediction. This is a concrete possibility, whose realisation does not even require

large symmetry breaking corrections. As discussed above, subleading corrections may be sufficient, in the presence

of the mild accident necessary to account for the m2/m3 hierarchy (which can arise naturally in the see-saw context,

see eqs. (4.7) and (4.9)). Such a possibility has been widely considered and discussed in Sec. IV.A.

We are left with the possibility that the PMNS is fully undetermined in the symmetric limit (case i)). This Section

mainly deals with such a possibility, which arises when either m0
ν = 0 or m0

E = 0 (the suffix “0” denotes the symmetric

limit).

Predictivity is an independent motivation to consider models leading to m0
E = 0, as we now discuss. This may

seem paradoxical, as the PMNS matrix is completely undetermined in such a case, the poorest possible prediction.

In fact, the predictions one gets in such cases have little to do with the symmetry itself and all to do with the details

of symmetry breaking.

In order to see how predictive model may lead to m0
E = 0, we first remind that non-abelian flavour groups are

welcome in order to provide precise predictions. The predictive power of abelian models is limited by the fact that they

only admit d = 1 irreducible representations (here and below d denotes the dimension of the representation). As a

consequence, each flavour matrix entry corresponds to an independent invariant Lagrangian operator (see Sec. III.D),

with an independent, unknown dimensionless coupling. In the spirit of flavour models, aiming at providing a dynamical

explanation of hierarchies, such couplings can be assumed to be O (1). This means however that predictions are

typically plagued by O (1) uncertainties (barring predictions associated to texture zeros (Björkeroth et al., 2019)). In

the charged fermion sector, characterized by significant hierarchies, a prediction up to an O (1) factor is significant.

But in the neutrino sector, where most flavour parameters turn out to be themselves O (1), a prediction up to an

O (1) factor is less exciting. In order to avoid systematic O (1) uncertainties and attempt at significant predictions in

the neutrino sector, d > 1 irreducible representations are then needed. The latter allow to correlate different matrix

entries through symmetry transformations. From this point of view, the highest predictive power is achieved, in

principle, when all the 3 neutrinos, i.e. the three lepton doublets, belong to a single d = 3 irreducible representation.

We can now appreciate the connection with m0
E = 0: the matrix m0

E is forced to vanish if the lepton doublets

belong to a d = 3 irreducible representation Ul of the flavour group, in order to avoid to have three degenerate,

massive charged leptons in the unbroken limit. In order to prove the latter statement, we note that eq. (3.7) implies

Ul(m
0
E
†
m0
E) = (m0

E
†
m0
E)Ul. Since Ul is assumed to be irreducible, (m0

E
†
m0
E) = α1 by Schur’s Lemma. In order for
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the charged leptons not to be massive and degenerate, we need α = 0, i.e. we need the mE to be forced to vanish

in the unbroken limit. As a corollary, non-abelian models with m0
E 6= 0 require the lepton doublets to transform as

doublet + singlet under the flavour group.

Non-abelian symmetries can be continuous or discrete. Before reviewing in the next sections the case of finite

non-abelian groups, we discuss some examples of continuous ones. Continuous (Lie) group models share some of

the features of the discrete ones, which will be discussed in greater details in the following sections. In particular,

they can lead to precise predictions for some mixing parameters, with a substantial help from the scalar potential,

arranging proper VEV alignments. In practice, this is most often the case in models in which the three families of

lepton doublets belong to a single irreducible d = 3 representation of the flavour group.

Simple Lie groups with irreducible representations of dimension d ≤ 3 are SU(2) ∼ SO(3), SU(3). The simple factors

can be combined, with U(1) factors as well, in larger groups. First, consider the simplest possibilities, with the only

possible addition of a U(1) factor. The group SU(2) is indeed often combined with a U(1) suppressing the light charged

fermion families into U(2) = SU(2)×U(1) (Barbieri et al., 1996, 1997a,b). Neutrino masses and mixings can also be

accounted for (Linster and Ziegler, 2018; Raby, 2003), see also Sec. III.D. The SO(3) case can lead to tribimaximal

mixing (see below) within what was called “constrained sequential dominance” (King, 2005; King and Malinsky, 2006),

can originate from gauge-family unification in a SO(18) grand unified theory (Reig et al., 2018) and can underlie A4

models (Bazzocchi et al., 2008c; Berger and Grossman, 2010; Grossman and Ng, 2015). The SU(3) group is more

“democratic” than SO(3). The action of SO(3) in terms of real matrices singles out a real vector subspace in the

three family (complex) flavour space. Moreover, SU(3) is, up to a U(1) factor, the maximal flavour group for fermions

with given quantum numbers. In fact, in the case of grand unified SO(10) models, Gmax = SU(3)× U(1). As SU(3)

(U(3)) typically forces the Yukawas to vanish in the symmetric limit, it must be strongly broken by the top Yukawa

coupling to a weakly broken SU(2) (U(2)). Maximal atmospheric and large solar mixing can be obtained together with

hierarchical charged fermions (Antusch et al., 2008; Bazzocchi et al., 2009c; King and Ross, 2003; Ross et al., 2004).

Tribimaximal mixing can also be achieved consistently with SO(10) (de Anda and King, 2018; de Medeiros Varzielas

and Ross, 2006). This is not as easy as with finite group models, where the flavour quantum numbers are often

different within a single family.

An example of a less minimal, and in fact almost maximal, flavour group is provided by G = SU(3)
5 × SO(3).

The SU(3)
5

term is, neglecting U(1) factors, the maximal SM flavour group (see Sec. III.A). If the SM field content

is supplemented by three singlet neutrinos νci , i = 1, 2, 3, and G is required to allow a flavour-universal Majorana

mass term in the form Mνci ν
c
i /2, the maximal flavour group also contains a SO(3) factor acting on the νci fields. The

Yukawa couplings are assumed to arise as VEVs of flavons transforming as YU ∼ 3uc×3q, YD ∼ 3dc×3q, YN ∼ 3νc×3l,

YE ∼ 3ec ×3l under G, in the spirit of Minimal Flavour Violation (D’Ambrosio et al., 2002), extended to the neutrino

sector (Alonso et al., 2012, 2013; Cirigliano et al., 2005). The structure of the Yukawa couplings then depends on the

scalar potential they minimise. The techniques introduced in Sec. III.D.3 can be used to study which values of Y can

arise as critical points (Alonso et al., 2011; Espinosa et al., 2013).

1. Discrete non-abelian symmetries and the sequestering assumption

Discrete non-abelian groups can provide precise predictions for lepton mixing.12 Their study gained considerable

momentum when the measured value of the solar angle was found in agreement with the prediction of the tribimaximal

(TB) mixing pattern (Harrison et al., 2002; Harrison and Scott, 2002b, 2003), sin2 θ12 = 1/3. Such a pattern also

corresponds to a maximal atmospheric angle, sin2 θ23 = 1/2 and to θ13 = 0. The TB pattern, in turn, is predicted

by flavour models based on relatively simple discrete groups. Unfortunately, the θ13 angle ended up to be larger than

predicted by most of the early models. However, the tools and ideas developed in this context are still useful and

widely used.

We have seen in Sec. III.C that G must be completely broken (up to an irrelevant Z2) by the full (including

breaking effects) lepton mass matrices ME , mν . On the other hand, ME and mν might separately be invariant under

12 For a “physicist-oriented” review of discrete group theory see (Altarelli and Feruglio, 2010; Grimus and Ludl, 2012; Ishimori et al., 2010;

Ramond, 2010).
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non-trivial subgroups Ge, Gν ⊆ G. A popular model building strategy relies on the following non-trivial assumption:

the subgroups Ge, Gν are non-trivial and rigidly fix, up to phases, the charged lepton and neutrino mass bases. As

the PMNS matrix is nothing but a measure of the misalignment between the two mass bases, the above requirement

unambiguously determines the PMNS matrix in terms of Ge, Gν . Since G must eventually be completely broken (up

to an overall sign change of the lepton fields), their intersection must be trivial, Ge ∩Gν ⊆ Z2, where Z2 acts as an

overall sign change.

The assumption is non-trivial because Ge and Gν could well be trivial. In other words, both ME and mν could

individually break G completely so that Ge, Gν would not carry any information on the PMNS matrix. Another

possibility, illustrated in Sec. IV.B.4, is that Ge and Gν are non-trivial but they do not fully determine the mass

eigenstates. Therefore, while most easily handled and interpreted, the results obtained within the “rigid PMNS”

assumption do not exhaust all model building possibilities associated to discrete groups.

As a consequence of Ge and Gν rigidly fixing the mass bases, it is possible to choose a basis in flavour space for the

li and eci fields in which the invariance of ME and mν forces them to be in the form

ME =

A 0 0

0 B 0

0 0 C

 , mν = U∗0

a 0 0

0 b 0

0 0 c

U†0 , (4.10)

with unconstrained complex diagonal entries and fixed U0. The PMNS matrix is then determined up to phases and

permutations: U = PeU0PνΨ, where Ψ is a diagonal matrix of Majorana phases and Pe, Pν are permutation matrices

arising because the definition of the PMNS matrix assumes lepton masses to have a specific ordering.

Eq. (4.10) illustrates three general features of models relying on the above assumption: Majorana phases are not

constrained; the PMNS matrix is predicted up to permutations of its rows and columns (and only one of the possible

forms is usually suitable); neutrino and charged lepton masses are unconstrained. In particular the charged lepton mass

hierarchies are not accounted for. As a remedy to the latter drawback, the present approach can be complemented by

adding an additional, possibly abelian, group factor GFN, taking care of the charged lepton hierarchy. The breaking

of GFN is perturbative, and it is arranged in such a way that the first two charged lepton families get suppressed,

through a standard Froggatt-Nielsen (FN) mechanism (Froggatt and Nielsen, 1979).

The spontaneous breaking of G is achieved as usual through the VEV of flavon fields φ, breaking G completely.

The above set-up can be implemented if i) there exist subsets φe, φν (not necessarily disjoint) of the full set of flavons

breaking G to Ge, Gν respectively, and ii) only φe (φν) enters ME (mν). We will therefore refer to such an assumption

as the “sequestering” approximation.

The sequestering can hardly be exact: no ordinary flavour symmetry can prevent φe and φν from contaminating

both parts of the Lagrangian. It can however happen to hold at some order in a perturbative expansion in the

number of flavons. In other words, sequestering is “accidental”, in the same sense in which lepton and baryon number

are accidental in the SM. In order to see that the flavour symmetry cannot prevent contamination, we consider for

simplicity the case in which neutrino masses are accounted for by the Weinberg operator. Suppose that only φe (φν)

enters ME (mν), so that neutrino and charged fermion masses follow from the invariant Lagrangian

Lseq = f(φν)ij (liH)(ljH) + g(φe)ij e
c
i ljH

∗ , (4.11)

when φν,e → 〈φν,e〉. The dependence on the flavons is often simple, but in order to be general, we consider generic

(say polynomial) functions f and g. The invariance of the Lagrangian requires

f(φν) = UTl f(Uφνφν)Ul , g(φe) = UTecg(Uφeφe)Ul , (4.12)

where Uφν and Uφe are the representations of G on the flavons φν and φe respectively. It is then easy to see that

terms breaking the sequestering assumption are allowed. As an example, terms such as

L′ = (f(φν)g†(φe)g(φe))ij (liH)(ljH) + (g(φe)f
†(φν)f(φν)))ij e

c
i ljH

∗ (4.13)

are allowed and can spoil the invariance of mν , ME under Gν , Ge. Therefore, no symmetry argument can prevent the
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sequestering to be spoiled at higher orders in the flavon expansion.13 In particular, if the typical size of symmetry

breaking corrections in the neutrino sector is ε, the sequestering-breaking corrections in the charged lepton sector can

be expected to be at least O
(
ε2
)

and viceversa.

Even if generically present, mixed φν-φe corrections to eq. (4.11) can be negligible. In such a case, it must be

possible to account for the exact values of lepton flavour observables in the limit of exact sequestering. In the next

Sec. IV.B.2 below we review this class of models,14 assuming Ge and Gν rigidly determine the mass bases, while models

in which non-negligible corrections are needed in order to fit data will be considered in Sec. IV.B.3. In Sec. IV.B.4,

we will consider the case in which Ge and Gν loosely determine the lepton mass bases.

2. Exact sequestering, rigid PMNS

We consider the possibility that the corrections to sequestering are negligible, so that lepton flavour is accounted

for, within the present experimental accuracy, by the Lagrangian in eq. (4.11). The VEVs of the flavons φν and φe
break G to the Gν and Ge subgroup respectively, under which the full mν and ME are invariant. The subgroups

Gν and Ge are assumed to unambiguously (up to phases) identify the neutrino and charged lepton mass eigenstate

directions in flavour space. In this context, a non-vanishing θ13 must be obtained directly from the misalignment of

Gν and Ge. Simple groups such as A4 and S4, leading to θ13 = 0, will be considered in Sec. IV.B.3.

The form of ME and mν is subject to general constraints. By using a flavour basis in which ME or mν is diagonal,

and assuming that all neutrinos are massive, we see that Ge ⊆ U(1)e×U(1)µ×U(1)τ and Gν ⊆ Z3
2, where one of the

Z2 in an overall sign change and is therefore irrelevant. On the other hand, in order for the mass basis to be rigidly

identified by the residual groups, and assuming that the residual groups are finite, we need Ge to contain either Zn,

with n a prime number and n ≥ 3, or Z2
2.15 On the neutrino side, we need Gν ⊇ Z2

2. Therefore we conclude that

Zn (n ≥ 3 prime) or Z2
2 ⊆ Ge ⊆ U(1)e ×U(1)µ ×U(1)τ Z2

2 ⊆ Gν ⊆ Z3
2 (non-zero neutrino masses) . (4.14)

Neutrino data is compatible with one vanishing neutrino mass. If one neutrino is massless, the constraint on Gν
becomes

Zn × Z2 (n ≥ 3 prime) ⊆ Gν ⊆ U(1)× Z2
2 (one vanishing neutrino mass) . (4.15)

If one neutrino is massless, there is then more freedom in the choice of Gν , which is otherwise constrained to be the

Klein group Z2 × Z2 (up to a third, irrelevant Z2).16

A systematic analysis of the phenomenologically viable PMNS matrices that can be obtained in this context has

been carried out in the assumption that all neutrinos are massive and that the group G is finite (Fonseca and

Grimus, 2016). The only possible viable PMNS matrices are in a “trimaximal” form (TM2, see Sec. IV.B.3), with

|Ue2|2 = |Uµ2|2 = |Uτ2|2 = 1/3, which predicts sin2 θ12 ≥ 1/3. More precisely ((|U |2)ij ≡ |Uij |2),

|U |2 =
1

3

 1 + Re (σ) 1 1− Re (σ)

1 + Re (ωσ) 1 1− Re (ωσ)

1 + Re
(
ω2σ

)
1 1− Re

(
ω2σ

)
 , (4.16)

where σ = exp(2iπp/n) is a root of unity and ω = exp(2πi/3). The integers p and n can be taken to be coprime, in

which case the minimal discrete group leading to a PMNS matrix in the above form is

• ∆(6m2), where 3m is the least common multiple of 6 and n, if 9 does not divide n;

13 Needless to say, any further symmetry added to take care of the sequestering can be included in G, so that the argument would still

hold. In the case of supersymmetric models, the holomorphicity of the superpotential prevents the corrections in eq. (4.13) from arising

within the superpotential. On the other hand, they can still arise in the Kähler potential and propagate to the flavour lagrangian once

the Kähler is brought into its canonical form, see Sec. III.D.
14 Such models are also called “direct” (King and Luhn, 2009b).
15 In order to prove this result, we first observe that Ge must contain at least three elements, otherwise the charged lepton mass basis

would not be fully determined. Given a z ∈ Ge, z 6= 1, there exists a minimum n ∈ N such that zn = 1. If n ≥ 3, the result is proven (if

n = p× q is not prime, one uses recursively that Zp×q contains both Zp and Zq). If n ≤ 2, then z2 = 1. We call w 6= 1, z a third element

of G. Again we must have wn = 1 for a minimum n ∈ N. If n ≥ 3, the statement is proven. Otherwise, w2 = 1, and Ge contains two

Z2. Moroever, since w and z belong to a (abelian) subgroup of U(1)e × U(1)µ × U(1)τ , w and z must commute, and so the two Z2.

Therefore, in the case G ⊇ Z2 × Z2, and the statement is proven. Analogously one shows that Gν must contain Z2 × Z2.
16 Another opportunity to enlarge Gν arises with Dirac neutrinos (Esmaili and Smirnov, 2015).
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•
(
Zm × Zm/3

)
o S3, where m is the least common multiple of 2 and n, if 9 divides n.

The definition of these groups can be found for example in (Ishimori et al., 2010). Eq. (4.16) determines the

absolute values of the PMNS entries. The Majorana phases are not constrained, as discussed above. The Dirac phase

is instead fixed and predicted to be trivial (sin δ = 0) in all viable cases, which also predict a non-negligible deviation

from maximal θ23. For a given choice of σ (hence of the group), eq. (4.16) corresponds to one of the 36 possible

permutations of rows and columns that can in principle arise.

One of the first attempts at achieving θ13 6= 0 directly from the interplay of Gν and Ge used the ∆(96) group (m = 4,

n = 12, σ = exp(iπ/6)) (de Adelhart Toorop et al., 2011; Ding, 2012; King et al., 2013a; de Medeiros Varzielas

and Ross, 2012) but overshot the experimental value of θ13. Experimentally viable possibilities were considered

in (Hagedorn et al., 2014; Holthausen et al., 2013a; King et al., 2013c; Talbert, 2014). The smallest viable ∆(6m2)

group corresponds to m = 22 (n = 11, 22, 33, 66) and has order 2904, while the smallest viable
(
Zm × Zm/3

)
o S3

corresponds to m = 18 (n = 9, 18) and has order 648. Needless to say, such groups are more cumbersome than the ones

originally proposed to account for the neutrino mixing pattern. Note that a dynamical mechanism to spontaneously

break G, and preserve an accurate sequestering, also needs to be exhibited.

As mentioned, neutrino data is compatible with a single neutrino being massless. If that is the case, the rules of

the game allow Gν to be larger than the Klein group Z2 × Z2, and the structure of the flavour group to be different.

In all models studied so far, non-negligible corrections to the leading order (exact sequestering) results are needed in

order to obtain a phenomenologically viable model (Joshipura and Patel, 2013, 2014a; King and Ludl, 2016).

3. Approximate sequestering, rigid PMNS

In this Subsection, we still assume that Gν and Ge rigidly determine the lepton mass eigenvectors up to phases,

and therefore the PMNS matrix. However, we allow the PMNS matrix thus obtained to be only a leading order

approximation of the measured one, and we rely on sub-leading corrections for an accurate agreement.

Before discussing their origin, we illustrate some possible leading order forms of the PMNS matrix and the size of

the needed corrections. Before the measurement of θ13, the model building efforts were mainly based on three forms

of the PMNS matrix, all associated to simple discrete flavour symmetries. They all correspond to maximal θ23 and

vanishing θ13, and only differ by the value of the solar angle θ12:

Tribimaximal (TB): sin2 θ12 = 1/3, sin2 θ23 = 1/2, sin2 θ13 = 0.

(Harrison et al., 2002; Harrison and Scott, 2002b, 2003)

Bimaximal (BM): sin2 θ12 = 1/2, sin2 θ23 = 1/2, sin2 θ13 = 0.

(Barger et al., 1998; Fukugita et al., 1998)

Golden ratio (GR): tan2 θ12 = 1/φ or cos θ12 = φ/2, φ = (1 +
√

5)/2 (golden ratio), sin2 θ23 = 1/2, sin2 θ13 = 0.

(Datta et al., 2003; Kajiyama et al., 2007; Rodejohann, 2009)

In all the three cases, the PMNS matrix, up to external phases, is in the form

U =


c12 s12 0

−s12√
2

c12√
2
− 1√

2

−s12√
2

c12√
2

1√
2

 , (4.17)

with different values of θ12, as specified above.

We compare the predictions with the experimental values. The present 1σ ranges of the neutrino mixing angles,

as obtained from global fits (see table I) are sin θ12 = 0.56± 0.01, sin θ23 = 0.75± 0.02, sin θ13 = 0.150± 0.002, while

the predictions obtained in the above schemes are (sin θ12)TB = 0.58, (sin θ12)BM = 0.71, (sin θ12)GR = 0.59 or 0.62,

(sin θ23)all = 0.71, (sin2 θ13)all = 0.

Most encouraging is the TB prediction for θ12, in close agreement with the precise experimental determination.

Parametrising the corrections to eq. (4.17) in a power series in λC = 0.22 (the Cabibbo angle, an expansion parameter
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borrowed from the quark sector), we see that the agreement is so precise that only corrections O
(
λ2÷3C

)
or less are

allowed. This provided a considerable boost to models accounting for TB mixing, at a time when the θ13 angle was

still unknown. Unfortunately, the experiment now shows that θ13 departs from zero by O (λC). If that is the expected

size of corrections to eq. (4.17), the success of the TB prediction for θ12 should be considered accidental. Within

the same O (λC) accuracy, the measured value of θ12 is as well compatible with the BM prediction θ12 = π/4. It

has in fact been observed that the empirical relation θ12 + λC ≈ π/4 (“quark-lepton complementarity” (Datta et al.,

2005; Everett, 2006; Minakata and Smirnov, 2004; Raidal, 2004; Schmidt and Smirnov, 2006)) approximately holds.

Needless to say, the size of the corrections hinted by the value of θ13 in this class of models partly jeopardizes the

predictivity motivation.

We now focus on the TB scheme and illustrate the model building logic underlying it. This will also serve as an

illustration of the ideas and techniques underlying more involved models. The tribimaximal form of the PMNS matrix

is, up to external phases,

UTB =



√
2

3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2

 . (4.18)

The form of the PMNS matrix determines the relative orientation of Ge and Gν in G, the commutation relations of

the corresponding elements in G, and consequently the minimal structure of G. The procedure to find the minimal G

(when it exists — only specific forms of the PMNS originate from finite groups) is simple. First, we need to specify Gν
and Ge. For Gν the choice is essentially unique, as we assume here that all three neutrinos are massive: Gν = Z2×Z2.

We call u and s the non trivial elements of the two Z2. In a neutrino mass basis, their representation on the lepton

doublets is

Uνl =

−1 0 0

0 −1 0

0 0 1

 , Sνl =

−1 0 0

0 1 0

0 0 −1

 . (4.19)

The choice of Ge is not unique, see eq. (4.14). The smallest (in terms of number of elements) option is Z3. We call t

one of its non-trivial elements. Without loss of generality, its representation on the l and ec fields, in a charged lepton

mass basis, is

T el =

1 0 0

0 ω 0

0 0 ω2

 , T eec =

1 0 0

0 ω2 0

0 0 ω

 , (4.20)

where ω = exp(2πi/3). Therefore, with the present choice of Gν , Ge, the full group G must contain the identity, the

three elements u, s, t, and all of their products. In the assumption that the representation on the leptons is faithful,

the group elements can be identified with their representations on the lepton doublets, Ul, Sl, Tl. We need however to

write them in the same basis. Choose for example a charged lepton mass basis. Then Tl is given by eq. (4.20), while

Ul and Sl must be rotated from the neutrino basis used in eq. (4.19). The rotation is of course given by the PMNS

matrix U (beware of the abuse of the notation “U”): Uel = UUνl U
†, Sel = USνl U

†. Here is where the chosen form of

U enters. In the TB case, U = ΨUTBΦ, where Ψ and Φ are diagonal matrices of phases. With a proper choice of the

phases of the charged leptons, Ψ = 1, while Φ cancels in the products, so that Uel = UTBU
ν
l U
†
TB, Sel = UTBS

ν
l U
†
TB.

All in all,

Uel = −

1 0 0

0 0 1

0 1 0

 , Sel =
1

3

−1 2 2

2 −1 2

2 2 −1

 , T el =

1 0 0

0 ω 0

0 0 ω2

 . (4.21)

By taking all possible products of the three matrices above, it is easy to show that the group G generated by them is

finite, contains 24 distinct elements, and is isomorphic to S4, the permutation group of 4 elements.
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The S4 group has two d = 3, one d = 2 and two d = 1 irreducible representations, denoted by 31, 32, 2, 11, 12. The

31 representation is defined by S, T , U in eq. (4.21) and the 32 has opposite U . The 2 representation has

S =

(
1 0

0 1

)
, T =

(
ω 0

0 ω2

)
, U =

(
0 1

1 0

)
, (4.22)

and the 11, 12 representations have S = T = 1 and U = ±1 respectively.

The S4 option for TB mixing is motivated and has been widely studied (Bazzocchi et al., 2009a,b; Bazzocchi and

Morisi, 2009; Bhupal Dev et al., 2012, 2011; Cai and Yu, 2006; Ding, 2010; Dutta et al., 2009, 2010; Hagedorn et al.,

2010, 2006; Ishimori and Kobayashi, 2011; Ishimori et al., 2009; Ma, 2006; Meloni, 2010; Mohapatra et al., 2004;

Morisi et al., 2011a; Smirnov and Xu, 2018; Zhang, 2007) however its simplest implementation requires a non-trivial

fine-tuning to reproduce hierarchical charged leptons, as we now show.17 In order to implement the S4 symmetry,

we first need to assign the lepton fields li and eci to S4 representations. Eq. (4.21) assigns the li fields to a 31. The

representation on the eci fields should be such that T eec is given by eq. (4.20), which in turn requires them to form one

of the following four representations: 31, 32, 2 + 11, 2 + 12. The l and ec fields must then couple to a combination of

flavon fields, with T -preserving VEV, in a S4 invariant Yukawa interaction. All possible such combinations lead to a

diagonal charged lepton mass matrix with at least two diagonal elements of equal size (and possibly different sign).

In order to obtain hierarchical and non-vanishing charged lepton masses, a fine-tuning of independent contributions

to those diagonal entries must then be invoked. The argument is based on the assumption that T in not broken in the

charged lepton sector (so that its mass basis is rigidly determined) at leading order. The possibility that T is broken

is considered in Sec. IV.B.4.

The above fine-tuning can be avoided if S4 arises accidentally in models based on A4 (Adhikary et al., 2006;

Adhikary and Ghosal, 2008; del Aguila et al., 2010; Altarelli and Feruglio, 2005, 2006; Altarelli et al., 2008, 2007;

Altarelli and Meloni, 2009; Antusch et al., 2011; Babu et al., 2003; Bazzocchi et al., 2008a,b; BenTov et al., 2012;

Chen et al., 2005; Chu and Smirnov, 2016; Ciafaloni et al., 2009; Grimus and Kuhbock, 2008; Gupta et al., 2012; He

et al., 2006; Hirsch et al., 2007, 2005, 2008, 2004; Holthausen et al., 2013c; Honda and Tanimoto, 2008; Kadosh and

Pallante, 2010; Lavoura and Kuhbock, 2007; Lin, 2009a,b; Ma, 2004a,b, 2005a,b, 2007b; Ma and Rajasekaran, 2001;

Ma et al., 2006; Morisi, 2009; Morisi et al., 2013a,b, 2007; Yin, 2007; Zee, 2005), its subgroup of even permutations.

The latter has 12 elements and is generated by S and T only. The flavour symmetry extends to S4 if the Lagrangian

(at some order in the flavon expansion) turns out to be accidentally invariant under the U generator. Such an option

is appealing for a number of reasons: the A4 group is even more minimal than S4; the invariance of the Lagrangian

under the U transformation is accidental, which allows welcome corrections to TB mixing; and, as mentioned, no

fine-tuning is required in order to obtain hierarchical, non-vanishing charged leptons. Both A4 and S4 can arise from

continuous non-abelian groups (Bazzocchi et al., 2008c, 2009c; Berger and Grossman, 2010; Grossman and Ng, 2015),

can be related to compactification in models with two extra-dimensions (Altarelli et al., 2007; Kobayashi et al., 2008)

and to the modular group (Altarelli and Feruglio, 2006), see also Sec. VI.

We see how to implement the above ideas in a concrete model based on A4 (Altarelli and Feruglio, 2005, 2006). We

first need to specify the A4 representation on the lepton fields li and eci . The A4 group has one d = 3 and three d = 1

irreducible representations, denoted by 3, 1, 1′, 1′′. The 3 representation is defined by S, T in eq. (4.21) and the 1,

1′, 1′′ representations are defined by S = 1 and T = 1, ω, ω2 respectively. Eq. (4.21) assigns the li fields to a 3. The

representation on the eci fields should be such that T eec is given by eq. (4.20). Hence, either ec ∼ 3 or ec ∼ 1 + 1′+ 1′′.

The first option is not welcome, as it allows the charged lepton to get degenerate, non-vanishing, leading order masses.

In order to avoid it, one chooses ec ∼ 1 + 1′ + 1′′.

We now need to couple the leptons to flavons in such a way that Ge and Gν are preserved (at leading order) by

ME and mν . In the A4 case, Gν is generated by S and Ge by T . Gν = Z2 alone is not sufficient to determine the

neutrino mass basis up to phases, but it gets help from the U transformation, under which mν will turn out to be

accidentally invariant. In order to break G to Ge, S must be broken, but T must not. This can only be achieved by

17 The fine-tuning is associated to the underlying µ-τ symmetry (Balaji et al., 2001; Fukuyama and Nishiura, 1997; Grimus and Lavoura,

2013; Lam, 2001; Ma, 2002; Ma and Raidal, 2001; Mohapatra and Nussinov, 1999; Xing and Zhao, 2016), corresponding to the U generator

of S4. While the need of fine-tuning in the context of the µ-τ symmetry has been pointed out long ago (Kitabayashi and Yasue, 2003),

the general argument provided here holds in S4 independently of the (viable) choice of the lepton and flavon representations.
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using a flavon triplet ϕT , as 1, 1′, 1′′ are all invariant under S. The index T refers to the invariance under T , which

forces 〈ϕT 〉 = εT (1, 0, 0)T . Nicely, A4 invariance allows ϕT to couple to ecl, at the linear level. The most general

charged lepton Yukawa Lagrangian, at leading order in the flavon expansion, is then

L(1)
e = λ1e

c
1(ϕT l)1H

∗ + λ2e
c
2(ϕT l)1′H

∗ + λ3e
c
3(ϕT l)1′′H

∗ , (4.23)

where ϕT is dimensionless, i.e. normalised to some cutoff scale Λ, and ()1,1′,1′′ denote the triplet contractions transform-

ing as 1, 1′, 1′′ under A4. More precisely, if a and b transform as 3, (ab)1 = a1b1+a2b3+a3b2, (ab)1′ = a3b3+a1b2+a2b1,

(ab)1′′ = a2b2 + a1b3 + a3b1, in the basis specified by eq. (4.21).

Before switching to the neutrino sector, we comment on the above result. The Lagrangian in eq. (4.23) generates a

diagonal charged lepton mass matrix as desired, with (ME)ii = λiεT v, where v is the Higgs VEV. The identification

of the three families with the e, µ, τ mass eigenstates depends on the relative size of the diagonal entries, and might

require field permutations. The mass hierarchy can be reproduced, without fine-tuning, by an appropriate choice of

the λi’s, but it is not explained. In order to account for it (and get rid of the permutation ambiguity), an additional

U(1)FN factor can be added to the flavour group. The latter is assumed to broken by a flavon VEV 〈ϕFN〉 = ε � 1.

By a proper choice of their charge under U(1)FN, the individual monomials in eq. (4.23) can be forced to contain

different powers of ϕFN. The corresponding diagonal masses will then get suppressed by different powers of ε.

Alternatively, the role of ϕFN can be played by the A4 flavons themselves (Altarelli and Meloni, 2009; Lin, 2009b).

Suppose that 〈ϕT 〉 = εT (0, 1, 0)T . Such a VEV breaks T , and in fact the whole A4 and S4. Moreover,
〈
(ϕ2
T )3
〉

=

ε2T (0, 0, 1)T , and
〈
(ϕ3
T )3
〉

= ε3T (1, 0, 0)T , where the index “3” denotes the component transforming as the 3 of A4.

Therefore multiple insertions of 〈ϕT 〉 are associated to different families, and are more and more suppressed by higher

powers of εT : the A4 flavon ϕ effectively plays the role of a FN flavon.

We now come to the neutrino mass matrix and consider for simplicity its description in terms of the Weinberg

operator. We first note that A4 allows an invariant term (lHlH)1/ΛL, corresponding to three degenerate neutrinos.

Such an invariant term needs to be of similar size as the symmetry breaking terms, which may be expected to

be suppressed, if a perturbative flavon expansion is to be meaningful. The invariant term can be correspondingly

suppressed by forcing it to break ad hoc symmetries. With this in mind, we will allow the “invariant” and the

symmetry breaking contributions to the neutrino mass matrix to be comparable.

In order to break G to Gν , T must be broken, but S must not. T can in principle be broken by a 3, 1′, or 1′′

representation. In order to have accidental invariance under U (for generic values of the Lagrangian parameters), G

should be broken by a flavon triplet ϕS , where the index S refers to the invariance under S, which forces 〈ϕS〉 =

εS(1, 1, 1)T . Nicely, A4 invariance allows ϕS to couple to the Weinberg operator, at the linear level. The most general

neutrino Lagrangian, at the linear order in the flavon expansion, is then

L(1)
ν = ε

(lHlH)1
2ΛL

+ ϕS
(lHlH)3S

2ΛL
, (4.24)

where, in the notations used above, the symmetric contraction of the lepton indices into a triplet is (ab)3S = (2a1b1−
a2b3 − a3b2, 2a2b2 − a3b1 − a1b3, 2a3b3 − a1b2 − a2b1). The corresponding neutrino mass matrix is

m(1)
ν =

a+ 2b −b −b
−b 2b a− b
−b a− b 2b

 , a = ε
v2

ΛL
, b = εS

v2

ΛL
. (4.25)

The matrix m
(1)
ν is accidentally invariant under U , as desired. Moreover, together with ME , it leads to TB mixing.

As m
(1)
ν is not the most general matrix invariant under S and U , the relation m3 e

iα31 = m1− 2m2 e
iα21 holds among

the neutrino masses and the Majorana phases α21, α31 (defined as in eq. (4.37)).18 In the context of see-saw models,

an analogous relation holds for the inverse masses.

18 Which of the three eigenvalues |3b+a|, |a|, |3b−a| are identified with m1, m2, m3, in their standard ordering, depends on their relative

size. In order for the TB form of the PMNS matrix not to be spoiled by permutations of its columns, the identification should give

m1 = |3b+ a|, m2 = |a|, m3 = |3b− a|. The relation among masses and phases is an example of mass sum rules (Gehrlein et al., 2015a;

King et al., 2013b).
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We have seen that TB mixing can be obtained from the Lagrangian L(1)
e + L(1)

ν . Crucial to this result is the fact

that the Lagrangian is in the form in eq. (4.11), with φe = ϕT only entering the charged lepton mass matrix and

φν = ϕS only entering the neutrino mass matrix. In order to enforce such a sequestering, ϕT and ϕS must be given

different quantum numbers, under an additional group factor. For example, one can add a Z3 factor, under which

ϕT and ecl are invariant, while ϕS and lHlH transform non-trivially (in conjugated representations). This way, the

Lagrangian is forced to be in the form L(1)
e + L(1)

ν at the leading order in the flavon expansion.

A complete model must also account for the specific alignment of the VEVs, ϕT ∝ (1, 0, 0), ϕS ∝ (1, 1, 1), assumed

above. Indeed, the TB prediction crucially depends on such an alignment, more than from the flavour group itself

or the choice of the flavon fields. In other words, what actually underlies the TB prediction is the flavon potential

determining the flavon VEVs. It can be shown (Altarelli and Feruglio, 2006) that the needed alignment can be

naturally obtained in supersymmetric models.

We have illustrated above how TB mixing can be obtained from an A4 flavour group (supplemented with additional

symmetry factors and a proper flavon potential), at the leading order in a flavon expansion. Besides A4 and S4, other

finite groups can lead to TB mixing, for example PSL2(7) (Chen et al., 2015a; Ferreira et al., 2012; King and Luhn,

2009a, 2010; Luhn et al., 2007a), ∆(27) (Björkeroth et al., 2016, 2017; Grimus and Lavoura, 2008; Luhn et al., 2007b;

Ma, 2008; de Medeiros Varzielas et al., 2007), Z7 o Z3 (Bonilla et al., 2015; Cao et al., 2011; Cárcamo Hernández

and Martinez, 2016; Hagedorn et al., 2009b; Luhn et al., 2007c; Vien and Long, 2014), Z13 o Z3 (Hartmann, 2012;

Hartmann and Zee, 2011; Kajiyama and Okada, 2011; Pérez et al., 2019). Other mixing schemes can be obtained

closely following the model-building lines outlined above for S4 and A4. For example, BM mixing can be obtained

from S4 (Altarelli et al., 2009; Meloni, 2011) and GR schemes can be obtained from A5 (Everett and Stuart, 2009;

Feruglio and Paris, 2011; Gehrlein et al., 2014, 2015b; Hernandez and Smirnov, 2012; Kajiyama et al., 2007).

Origin of the corrections to approximate sequestering.

The simplest non-abelian finite group models lead to TB, BM, or GR forms of the PMNS matrix and therefore need

to be corrected in order to account for θ13 6= 0. Such corrections are also needed in models based on higher order

finite groups leading to a θ13 6= 0, but still not in agreement with the experimental value. The above predictions

are obtained at the LO in the flavon expansion, at which the lagrangian has the form in eq. (4.11), supplemented

by a flavon potential providing the necessary alignment of φe and φν . The corrections are associated to higher

order terms, and can affect the LO predictions by either i) spoiling the sequestering or ii) spoiling the alignment

mechanism provided by the leading order potential. Such corrections are usually G-invariant, but they can also be

non-invariant because i) part of G arises at the LO as an accidental symmetry, or ii) the group G is not gauged and

the corrections are of gravitational nature. In order for the latter case to be phenomenologically relevant, the cutoff

scale Λ characterising the operator expansion should be sufficiently close to the gravity cutoff. While the form of the

corrections is model-dependent, a few model-independent considerations can be made.

Size of the corrections.

The range of the corrections is important to assess whether they can lead to viable predictions and how much they

spoil the predictivity of the model.

The corrections to the LO predictions are associated to higher orders in the flavon expansion. There are two

expansion parameters, associated to the typical size of the VEVs of the φe and φν flavons: εe ∼ 〈φe〉, εν ∼ 〈φν〉 (we

remind that the flavons are dimensionless here, i.e. normalised to some cutoff scale Λ). We expect corrections to the

neutrino and charged lepton mass matrices to be at least as large as O
(
ε2e
)

and O
(
ε2ν
)

respectively, as discussed in

Sec. IV.B.1.

The ranges of εe, εν are often loosely constrained at LO. We first focus on εe and consider for example the form

of L(1)
e in eq. (4.23), where φe ≡ ϕT and εe ≡ εT . At LO, the tau lepton mass is given by mτ = λτ εev, where λτ is

the largest among the three couplings in eq. (4.23). The product λτ εe is fixed by the tau mass, but εe is allowed to

vary in quite a broad range, 10−2 ≈ (mτ/v) . εe . 1. The upper bound is required for the perturbative expansion

to be meaningful, and the lower bound corresponds to a coupling λτ in the perturbative regime λτ . 1. The result
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still holds if the charged lepton mass hierarchy is accounted for by an independent suppression factor εFN associated

to an abelian U(1) factor. In the latter case, mei = λi ε
ni
FN εev, where ni is an abelian charge.

The size of εν may be even less constrained. We consider for example the lagrangian in eq. (4.24), where φν ≡ ϕS
and εν ≡ εS . Eq. (4.25) shows that b is bound to be of the order of the light neutrino masses, but a small εν is allowed

provided that ΛL (and ε) is correspondingly small. For ΛL & TeV and normal hierarchy, one gets 10−12 . εν . 1.

The above ranges for εe and εν are broad enough to allow the NLO corrections to be negligible or substantial, in

either Me, or mν , or in both, and in general to allow the expansion parameters and LO corrections to have different

sizes in the charged lepton and neutrino sectors. Such qualitative considerations can be refined or modified in a number

of ways. For example, the mass matrices can be non-homogeneous in εe, εν . This is the case for example if the A4

flavons play the role of FN flavons, and εFN = εe (Altarelli and Meloni, 2009; Lin, 2009b). In such a case, the size

of εe is determined by the charged lepton mass ratios. Moreover, additional constraints on the expansion parameters

can arise in models accounting for leptogenesis (Aristizabal Sierra et al., 2012; Bertuzzo et al., 2009; Branco et al.,

2009; Gehrlein et al., 2015b; Hagedorn et al., 2009a; Jenkins and Manohar, 2008; Lin, 2009a; Mohapatra and Nasri,

2005; Mohapatra et al., 2005; Riva, 2010).

Structure of the corrections.

The PMNS matrix gets contributions from both the neutrino and charged lepton sectors, U = U†eUν , as in eq. (3.16).

Corrections to the LO form of the PMNS matrix can be due to corrections to ME (affecting Ue) and to mν (affecting

Uν). A special case arises when only one of the two corrections is significant.

First consider the case in which the corrections come from the charged lepton sector (Altarelli et al., 2004; Antusch

and King, 2004a, 2005; Frampton et al., 2004; Giunti and Tanimoto, 2002a,b; King, 2005; Masina, 2006; Romanino,

2004). This can happen, for example, if εe is on the lower side of its range, so that the O
(
ε2e
)

corrections to mν are

negligible.

The charged lepton mass matrix is diagonal at LO, due to Ge invariance. Therefore, the leading order form of

the PMNS matrix (TB, BM, GR, or else) is U0 = U0
ν , where U0

ν diagonalises the LO form of mν . At higher orders,

ME is non-diagonal and mν is unaffected. Thus, the PMNS matrix gets a correction from the charged lepton sector,

U = U†eU
0.

The above observation, per se, is not very constraining: any PMNS matrix U can now be obtained by choosing

an appropriate Ue = U0
νU
†. The study of charged lepton corrections is useful when Ue has a non-generic, motivated

pattern. This is indeed often the case, as Ue is in turn constrained by the hierarchy of charged lepton masses, if the

latter is to be stable under small perturbations (Marzocca and Romanino, 2014). If ME
31 is not unexpectedly large,

|ME
31|/mτ � sin θ13, Ue is approximately in the form

Ue = RT23(θe23)RT12(θe12) , (4.26)

up to external phases, where Rij(θ) is a 2×2 rotation by an angle θ in the ij block and the transpose is conventional.

In all cases illustrated in Sec. IV.B.3, θ13 = 0 in U0, hence U0
ν is in the same form

U0
ν = R23(θν23)R12(θν12) , (4.27)

up to external phases. The θ13 angle then originates purely from the interplay of 23 and 12 rotations, and the PMNS

matrix is given by

U = R12(θe12)ΦR23(θ′23)R12(θν12) , (4.28)

up to external phases, where Φ = Diag(1, exp(−iδ′), 1). In eq. (4.28), θν12 corresponds to the LO prediction for θ12
and is fixed by the model (sin θν12 = 1/

√
3, 1/

√
2 in TB, BM schemes respectively). The precise relations between the

parameterisation in eq. (4.28) and the standard one can be found in (Marzocca et al., 2013). In first approximation,

θ23 = θ′23 and δ = δ′, up to O
(
s213
)

and O (s13) corrections respectively. Moreover, sin θ13 = sin θe12 sin θ23 and

sin θ12 = sin θν12(1 + sin θe12 cot θν12 cos θ23 cos δ) up to O
(
s213
)

and O (s13) corrections respectively.

The relation sin θ13 = sin θe12 sin θ23 allows to determine the size of the charged lepton angle θ12, which turns out to

be close to the Cabibbo angle, for θ23 = π/4 (Datta et al., 2005; Everett, 2006; Minakata and Smirnov, 2004; Raidal,
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2004)). Motivating such an empirical relation within GUT models, while at the same time accounting for the mµ/ms

and me/md ratios, is not straightforward (Antusch et al., 2013; Antusch and Maurer, 2011; King, 2012; Marzocca

et al., 2011). Both the deviation of θ13 from zero and the deviation of θ12 from the LO prediction θν12 are determined

by θe12, and are therefore expected to be of the same size. Indeed, one gets

θ12 = θν12 + θ13 cot θ23 cos δ +O
(
θ213
)
. (4.29)

The above relation is sometimes called “solar sum rule”. It allows to predict the CP-violating phase δ for a given

LO prediction θν12. A solution for δ can be found for TB, GR, and other LO θ12 predictions not too far from the

measured values.

Actually, as the measured value of θ13 is not so small, θ12 is expected to deviate quite significantly from its

LO prediction, δ sin θ12/ sin θ12 ∼ 0.15 cos δ. In this context, the success of the TB prediction, corresponding to

δ sin θ12/ sin θ12 . 0.03 looks somewhat accidental. Indeed, sizeable CP violation, i.e. small cos δ, is predicted to

be necessary in order to accommodate TB mixing in this context (Marzocca et al., 2013). On the other hand, a

measurement of a small cos δ would restore the success of the θ12 prediction.

One can wonder whether the charged leptons effect on θ12 is large enough to account for the observed significant

deviation from the BM prediction θ12 = π/4. Unfortunately, the correction in eq. (4.29) falls short from providing

the necessary deviation (Ballett et al., 2014; Girardi et al., 2015a,b). Further corrections, pushing θ12 in the desired

range, can be obtained if Ue is not in the form in eq. (4.28). This can be the case if ME
31 is relatively large. A

sizeable ME
31 may however generate sizeable contributions to the electron and muon masses that need fine-tuned

cancellations, unless the charged lepton mass matrix has special structures (Marzocca and Romanino, 2014). Such a

sizeable ME
31 can also be used within asymmetric textures to correct the TB prediction, while leading to a prediction

for the CP-phase δ in agreement with the present hints (Pérez et al., 2019; Rahat et al., 2018).

Sizeable corrections to θ12 from the neutrino sector are more constrained if the neutrino masses are inverted

hierarchical. In such a case, a maximal θ12 can be easily obtained from pseudo-Dirac structures in the neutrino mass

matrix, which in turn naturally arise within both non-abelian groups (as in the BM case, Sec. IV.B.3) and abelian

groups (as in eq. (4.2)). In this context, the needed correction to θ12, if arising in the neutrino sector, tends to

destabilise the |∆m2
12/∆m

2
23| � 1 hierarchy, thus leading to fine-tuning (Domcke and Romanino, 2016). In order to

avoid that, the bulk of the corrections to θ12 = π/4 should come from the charged lepton sector.

4. Non-rigid determination of the PMNS matrix

The discussion in this Section has been based so far on the assumption that Ge and Gν , the subgroups of G

preserved by ME and mν are non-trivial and they rigidly determine the charged lepton and neutrino mass bases up to

phases. Such an assumption allows to unambiguously determine the PMNS matrix directly from Ge and Gν . While

such an approach is powerful and predictive, the assumption on which it relies is non-trivial. The subgroups Ge and

Gν can well be trivial, in which case they would not lead to the identification of any mass eigenstate. An intermediate

possibility is that Ge and Gν are non-trivial, but they identify the mass basis only partially. In this subsection, we

review such a possibility.19 In order to realise it, sequestering is still needed, as Gν and Ge still need to be different,

with a trivial intersection.

The case in which Gν does not fully determine the neutrino mass basis, while Ge does, has been widely con-

sidered (Ge et al., 2011, 2012; Hernandez and Smirnov, 2013a). In such a case, the only potentially interesting

possibility is Gν = Z2. The residual symmetries now determine the PMNS matrix up to a 2× 2 rotation and a phase

(and Majorana phases and permutations, as before): U = U0 Uij(θ, φ), where

U23(θ, φ) =

1 0 0

0 cos θ sin θe−iφ

0 − sin θeiφ cos θ

 ,
θ ∈ [0, π/2]

φ ∈ [0, 2π]
. (4.30)

19 Such models are sometimes called “semi-direct”.
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Analogously, U12(θ, φ) and U13(θ, φ) have the 2× 2 rotation embedded in the 12 and 13 blocks respectively.

If Gν is a subgroup of a Z2 ×Z2 rigidly determining the neutrino mass basis, as in Sec. IV.B.2 and IV.B.3, and U0

is the PMNS matrix obtained when Z2×Z2 is unbroken, the block on which the 2× 2 rotation Uij(θ, φ) acts depends

on which of the three Z2 subgroups of Z2 × Z2 survives. If U , S are defined as in eq. (4.19), the three subgroups are

generated by U , S, US. Correspondingly, the PMNS matrix is given by

U = U0Uij(θ, φ), where


ij = 12 if Z2 is generated by U

ij = 13 if Z2 is generated by S

ij = 23 if Z2 is generated by US

. (4.31)

Taking into account the diagonal Majorana phases Ψ and the possible permutations Pe, Pν of the lepton mass bases,

one obtains U → PeUPνΨ in the previous expression.

In practice, eq. (4.31) means that it is possible to loosen the rigid predictions illustrated in Sec. IV.B.2 and IV.B.3

by breaking G to a Z2 subgroup of Z2 × Z2 in the neutrino sector. Such a possibility is welcome in the models

discussed in Sec. IV.B.3, where the θ13 prediction obtained in the rigid case needs to be corrected. The correction is

provided by the Uij rotation. In order for the rotation to affect θ13, it should act either in the 13 or in the 23 block.

In the 13 case (S-preserving), the second column of U0 appears identical in U . In the 23 case (US-preserving), the

first column of U0 appears identical in U .

We apply the above ideas to models leading, in the rigid limit, to TB mixing. We focus on the simple option

reviewed in Sec. IV.B.3, with G = S4 arising accidentally at LO from an A4-symmetric sequestered lagrangian. We

remind that the accidental S4 invariance arises because no flavon in the 1′, 1′′ representations is used to break A4,

in which case Ge is generated by T , Gν is generated by U and S in eq. (4.21), and U = UTB at LO (up to external

phases and assuming lepton masses are correctly ordered).

In order to reduce Gν to Z2 and preserve S, it is then sufficient to introduce flavons ϕ′, ϕ′′ in 1′, 1′′ representations

of A4 (Cooper et al., 2012; King and Luhn, 2011; Ma and Wegman, 2011; Shimizu et al., 2011). Since we still want T

to be preserved by ME , ϕ′, ϕ′′ should be sequestered in the neutrino part of the LO lagrangian. Another possibility

is that the role of ϕ′, ϕ′′ is played by the 1′, 1′′ components of ϕ2
S . In such a case, the accidental symmetry breaking,

i.e. the corrections to TBM mixing, is suppressed by (only) one power of 〈ϕS〉 ∼ εS (Lin, 2010) (compare with the

case in which U is not accidental and the corrections are expected to be at O
(
ε2T
)
). In both cases (breaking by ϕ′,

ϕ′′ or by (ϕ2
S)1′ , (ϕ2

S)1′′), the lagrangian is no longer accidentally invariant under U , and Gν is generated by S. The

PMNS matrix is then in the form in eq. (4.31), with ij = 13,

UTM2
= UTBU13(θ, φ) Ψ =



√
2

3
cθ

1√
3

√
2

3
sθe
−iφ

− cθ√
6

+
sθ√

2
eiφ

1√
3

− cθ√
2
− sθ√

6
e−iφ

− cθ√
6

+
sθ√

2
eiφ

1√
3

cθ√
2
− sθ√

6
e−iφ

Ψ , (4.32)

where we have now explicitly included the diagonal matrix of Majorana phases Ψ. The above form of the PMNS

matrix deserves a few comments. A non-vanishing θ13 has been induced by the rotation θ. Being θ a free parameter,

any value of sin θ13 ≤ (2/3)1/2 can be obtained. The size of sin θ13 is controlled by 〈ϕ′〉, 〈ϕ′′〉 and its relative smallness

can be accounted for in terms of a mild suppression of 〈ϕ′〉, 〈ϕ′′〉 (or by the extra εS insertion, if ϕ′ ∼ (ϕ2
S)1′ ,

ϕ′′ ∼ (ϕ2
S)1′′). A CP-violating phase is also generated δ ≈ φ. The solar angle is larger than its TB prediction,

sin θ12 ≥ 1/
√

3, but only by a O
(
sin2 θ13

)
amount. The maximal θ23 prediction is also modified, at the O (sin θ13)

order. The precise expression of the PMNS parameters in terms of θ, φ is given in table VI. With four parameters

expressed in terms of two, eqs. (4.32) lead to two predictions (“sum rules”) (Grimus and Lavoura, 2008):

1 = 3 cos2 θ13 sin2 θ12 , cos δ =
cos 2θ13 cot 2θ23

sin θ13
√

2− 3 sin2 θ13
. (4.33)

The first relation is in relatively good agreement with present data, with the central value of the RHS ≈ 0.91 and

a tension at the 2σ level. In the second relation the absence of CP-violation (cos δ = ±1) would require θ23 to be

significantly non-maximal, at the boundary of its 3σ range. As θ23 approaches π/4, δ approaches ±π/2.
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The second column of UTM2
coincides with that of UTB, and corresponds to a neutrino ν2 = (νe + νµ + ντ )/

√
3

with equal components in νe, νµ, ντ . Such a pattern is called “trimaximal” mixing (Albright et al., 2010; Albright

and Rodejohann, 2009; Grimus and Lavoura, 2008; Haba et al., 2006; He and Zee, 2007, 2011; Ishimori et al., 2011).

We will adhere to a common convention by denoting the form of the PMNS matrix in eq. (4.32) as “TM2”, in order

to distinguish it from the form “TM1” obtained by combining UTB with a U23 rotation. The index 1, 2 refers to the

UTB column unaffected by the rotation. Strictly speaking, only when the second column is unchanged (TM2), we

actually have trimaximal mixing.

The form TM1 of the PMNS matrix is obtained from rigid TB models when the residual Z2 is generated by

US (Grimus, 2013; Luhn, 2013; de Medeiros Varzielas and Lavoura, 2013). As US is not part of A4, such a possibility

requires larger flavour groups. The S4 group is viable from this point of view. The PMNS matrix is in the form in

eq. (4.31), with ij = 23,

UTM1
= UTBU23(θ, φ) Ψ =



√
2

3

cθ√
3

sθ√
3
e−iφ

− 1√
6

cθ√
3

+
sθ√

2
eiφ − cθ√

2
+

sθ√
3
e−iφ

− 1√
6

cθ√
3
− sθ√

2
eiφ

cθ√
2

+
sθ√

3
e−iφ

Ψ. (4.34)

The solar angle is smaller than the successful TB prediction this time, sin θ12 ≤ 1/
√

3, but only by a O
(
sin2 θ13

)
amount. The first column of UTM1

coincides with that of UTB. The expression of the PMNS parameters in terms of

θ, φ is given in table VI, and lead to two predictions (“sum rules”) (Albright and Rodejohann, 2009):

2 = 3 cos2 θ13 cos2 θ12 , cos δ = − (1− 5 sin2 θ13) cot 2θ23

2
√

2 sin θ13
√

1− 3 sin2 θ13
. (4.35)

The first relation is in good agreement with present data, well within 1σ, with the central value of the RHS being

≈ 2.0. The second relation shows that CP-invariance (cos δ = ±1) is not compatible with the present 3σ range for

θ23. As θ23 approaches π/4, δ approaches ±π/2.

Up to external phases, UTM1 (UTM2) is the most general unitary matrix with the first (second) column as in UTB.

As discussed, the Majorana phases in Ψ are unconstrained in this setup. On the other hand, we will see in Sec. V

that flavour symmetries not commuting with the Poincaré group may constrain them. A general parameterisation of

Ψ that will be useful in Sec. V is

Ψ =

1 0 0

0 eiα/2 0

0 0 ei(β/2+φ)

 . (4.36)

Note that the Majorana phases are sometimes defined through the following parameterisation of the PMNS matrix

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13siδ −c12s23 − s12c23s13siδ c23c13


1 0 0

0 eiα21/2 0

0 0 eiα31/2

 . (4.37)

The relation between their parameterisations in terms of α, β and in terms of α21, α31 is shown in table VI.

We have illustrated the possibility of loosening the predictions of rigid models by reducing Gν in such a way that

the neutrino mass basis is only partially determined by Gν . Analogously, one can consider the possibility that the

charged lepton mass basis is only partially determined by Ge. In such a case, Ge does not necessarily need to contain

Z3 or Z2 × Z2, cfr. eq. (4.14); it is sufficient that it contains Z2. The possibility Ge = 1 may also be viable. While

in the latter case Ge would not constrain the charged lepton mass matrix at all, a (hierarchical) structure may be

enforced by an additional group factor, playing the role of a FN symmetry, or organising the couplings of the flavons

in a specific way.

If Ge is loosened, a rigid prediction U0 is modified by a unitary transformation appearing on the left side of U0,

mixing its rows. We are thus in the presence of charged lepton corrections to the PMNS matrix, as in Sec. IV.B.3. A
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Pattern sin2 θ23 sin2 θ13 sin2 θ12 δ α21 α31

TM1
1

2

(
1− cosφ

2
√

6 sin 2θ

5 + cos 2θ

)
sin2 θ

3

cos2 θ

2 + cos2 θ
arg

(
2e−iφ − 3eiφ

cos2 θ

sin2 θ

)
α β + 2δ

TM2
1

2

(
1 + cosφ

√
3 sin 2θ

2 + cos 2θ

)
2

3
sin2 θ

1

2 + cos 2θ
arg

(
e−iφ − 3eiφ

cos2 θ

sin2 θ

)
α β + 2δ

TABLE VI Predictions of the TM1 and TM2 mixing patterns as a function of the parameters θ ∈ [0, π/2] and φ, α, β ∈ [0, 2π].

contribution to θ13 can again be induced. If the charged leptons end up having a hierarchical structure, as they should,

such corrections are typically too small to fully account for θ13. Note that the charged lepton mass hierarchy can be

now achieved in S4 without fine-tuning, since the T generator can be broken (see discussion in Sec. IV.B.3). Even if

the charged lepton contribution to θ13 is subleading, it can still be useful when U0 corresponds to a non-vanishing θ13
not too far from its experimental range. The small corrections from the charged lepton sector can then be sufficient to

bring θ13 in the experimental range. An example is ∆(96) (de Adelhart Toorop et al., 2011; Ding, 2012; King et al.,

2013a). The PMNS matrix is in the latter case in the so called “bitrimaximal” form, a special case of TM2 mixing

corresponding to
√

2/3 sin θ = (1− 1/
√

3)/2. Another possibility if G = PSL(2, 7) (Hernandez and Smirnov, 2013a),

in which a good fit of the mixing angles can be obtained for near-maximal CP-violation, δ ∼ π/2 or δ ∼ 3π/2.

5. Extension to quarks

The approach followed so far aims at understanding lepton flavour observables. On the other hand, a complete

theory of flavour should account for the quark sector as well. The extension of the ideas discussed in this section to

the quark sector is not straightforward.

One of the main features of the lepton models considered is that all the charged lepton masses vanish in the

symmetric limit, because a d = 3 irreducible representation is used for the lepton doublets. Such a setting is not

suitable for the up quark sector, characterised by a top Yukawa coupling λt = O (1). The size of λt suggests that the

latter is invariant, at least under the flavour group G considered in the lepton sector.20 Hence, the up quark mass

matrix does not vanish in the G-symmetric limit. An invariant λt requires both the third family quark doublet q3
and up quark singlet tc to be in conjugated d = 1 representations of the whole G. This requirement naturally leads to

models in which both the lighter Yukawa couplings are forced to be small because they are not invariant, in contrast

to models based on sequestering that, per se, do not constrain the values of the Yukawa couplings.

The different strategies needed in the quark and lepton sector are not necessarily in conflict. Quarks and leptons

can be constrained by different, independent factors of the flavour group, broken by two independent sets of flavons,

effectively leading to separate models in the two sectors. It is however worthy to combine those strategies. As

mentioned in section IV.B.3, a FN-type continuous symmetry suppressing light Yukawa couplings can operate in the

charged lepton sector, in combination with a discrete one. Moreover, the two strategies can be combined even more

effectively within the discrete groups setup, for example by using discrete groups such as the double tetrahedral group

T ′ (Frampton and Kephart, 1995). Being a subgroup of SU(2) with doublet representations, T ′ contains the necessary

ingredients to account for the (2+1) quark structure along the lines of U(2) models (Aranda et al., 2000a,b). On

the other hand, as T ′ contains the representations of A4, it also contains the ingredients necessary to reproduce the

lepton observables along the lines of A4 models (Aranda, 2007; Aranda et al., 2010; Carone et al., 2017; Carone and

Merchand, 2019; Chen and Mahanthappa, 2007; Ding, 2008; Everett and Stuart, 2011; Feruglio et al., 2007; Frampton

and Kephart, 2007; Frampton and Matsuzaki, 2009). In the previous example, the quark mixing is correlated to the

quark mass hierarchy. One can wonder whether the same residual subgroup techniques introduced to predict the

lepton mixing matrix could be extended to the quark sector. This is possible, but not straightforward. The residual

20 A large λt = O (1) might arise from the breaking of a larger group G̃. In such a case, the corresponding flavon VEV needs to be close to

the cutoff scale, 〈φt〉 ∼ Λ, and G should be identified with a subgroup of G̃ unbroken by 〈φt〉. What follows still holds, if referred to G.
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subgroups should determine the relative orientations of the up and down quark mass bases. The small quark mixing

angles then require a flavour group large enough to contain, among the many, closely aligned subgroups (Araki et al.,

2013; Blum et al., 2008; Holthausen and Lim, 2013; Lam, 2007; Li et al., 2018; de Medeiros Varzielas et al., 2017b;

Yao and Ding, 2015).

Once the flavour symmetry is extended to the quark sector, one can aim at a model compatible with gauge

unification. In such a case, the flavour structures of the quark and lepton sectors are necessarily coupled, in a way

dictated by the unified group. In grand unified theories such as SU(5), for example, one family of SM fermions is

unified into a 5i + 10i of SU(5): 5i ∼ (li, d
c
i ), 10i ∼ (eci , qi, u

c
i ). As the flavour group is assumed here to commute with

the gauge group, the flavour quantum numbers of SM fields belonging to the same irreducible SU(5) representation

should be the same. Since q3 and tc both belong to 103, q3 and tc should be in a real d = 1 representation of G (i.e.

they should be invariant up to a sign change). As τ c is also unified with q3 and tc, it should also be in a real d = 1

representation. This is not compatible for example with the A4 and S4 settings in the form illustrated in Sec. IV.B.3,

which require τ c to belong to a complex representation. A non-standard A4 realisation can however be achieved with

one extra dimension (Altarelli et al., 2008). Unified flavour models have been reviewed in (King, 2017).

6. Outlook

The model building avenues explored in this section are based on the interplay of two distinct subgroups Gν and

Ge of G. The group-theoretical construction and the very structure of G crucially depend on the choice of Gν and Ge
and of their relative orientation. We considered both the cases in which the subgroups fully or partially determine the

flavour directions corresponding to the lepton mass eigenstates. In all cases, though, mν and ME are, by definition,

invariant under Gν and Ge.

The model building options are far from being exhausted, even within finite non-abelian group models. For example,

there is no reason why Gν and Ge should be non-trivial and fully, or partially, determine the lepton mass bases.

Another non-trivial, and non-indispensable, assumption has to do with the forms of mν and ME , the matrices

invariant under Gν and Ge. The constraints on Gν and Ge in eq. (4.14) and (4.15) assume that mν and ME provide

non-vanishing, non-degenerate masses for all the leptons, with the only possible exception of the lightest neutrino.

This is not really necessary. In early models, mν and ME could be identified with the exact mass matrices (the PMNS

matrix was still compatible with being exactly in TB form). On the other hand, this is not in line either with the

generic theoretical expectation of higher order corrections to sequestering, or with the experimental determination

of the mixing parameters (except in the cases discussed in Sec. IV.B.2). Thus, the matrices mν and ME allowed

by Gν and Ge should not be identified with the exact mass matrices, in this context. They are approximations,

expected to be corrected by higher order effects, in some cases as large as O (λC). The mass eigenvalues are then also

expected to be corrected, as the mixing angles are, and there is no reason to demand that mν and ME provide non-

vanishing, non-degenerate masses for all leptons. In fact, they could equally well correspond, for example, to me = 0

or me = mµ = 0, or mν1 = mν2 . The corrections to such patterns necessary to obtain viable lepton masses are smaller

than those commonly assumed to affect the mixing angles. Such a possibility has been considered in connection to

partially degenerate neutrinos (Hernandez and Smirnov, 2013b; Joshipura and Patel, 2014b). In principle, any mass

pattern that can be considered sufficiently close to the observed one could be considered as well, in the spirit of the

discussion in Sec. IV.A.

The above shows that the programme based on (linear, Lorentz-scalar) discrete non-abelian flavour groups has not

been fully explored. Still, it is fair to say that such a programme has partially fulfilled, so far, the initial expectations.

The approach focuses on mixing angles. The predictivity potential of the simplest models, one of their stronger

motivations, has been frustrated by the experimental determination of the θ13 angle that, once again, challenged

theoretical prejudice. Two opposite strategies can be pursued to accommodate the value of θ13, both leading to a

certain loss of predictivity. On the one side, one can stick to relatively simple models, at the price of accepting

relatively large corrections, which reduce predictivity. On the other side, one can aim at more involved models with

predictions close to the experiment, at the price of scanning a dense landscape of models. The significance of the

prediction is then reduced by the correspondingly dense number of alternatives available. On the model building

side, the predictions are not really associated to the flavour group, but rather to the symmetry breaking effects —
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ultimately to the detailed structure of the potential determining the VEV alignments — and to a set of auxiliary

symmetries and quantum numbers needed to arrange the proper set of couplings in the lagrangian. On the other

hand, the theoretical landscape is still broad, as argued, and its exploration will hopefully provide new insights.

V. CP-LIKE FLAVOUR SYMMETRIES

The main purpose of including CP transformations in the flavour symmetry group is to constrain Majorana phases.

There are several dedicated reviews on this topic, such as for example (Coloma and Pascoli, 2018; Hagedorn, 2017;

King, 2015, 2017; King et al., 2014; Neder, 2015; Petcov, 2018). In a theory invariant under both a flavour symmetry

group Gf and CP, besides eq. (4.1), the following constraint holds for the lepton mass matrices:21

M∗E(φ) = XT
ecME(Xφφ

∗)Xl

m∗ν(φ) = XT
l mν(Xφφ

∗)Xl , (5.1)

where we have denoted with Xf (f = ec, l, φ) unitary matrices describing the action of CP on the field f and we have

assumed Majorana neutrinos. In such a theory CP can only be broken spontaneously and the conditions that realize

the breaking are

i) Xφφ
∗ 6= φ on the vacuum.

ii) No other consistent CP transformation leaving invariant both the theory and the vacuum exists.

A. Sequestering and residual symmetries

As in the case of a flavour symmetry commuting with the proper Poincaré group, to some extent it is possible to

analyze the predictions of the theory without referring to an explicit realization, relying on the residual symmetries

enjoyed by the charged lepton sector and by the neutrino sector, if any. Provided ME and mν depend on two separate

sets of flavons, φE and φν , we can contemplate independent residual symmetries for the two sectors:

Uφ(gE)φE = φE Uφ(gν)φν = φν , (5.2)

where gE and gν run in different subgroups of Gf and these relations hold in the vacuum. To constrain Majorana

phases we should further assume that CP is conserved in the neutrino sector:

Xφφ
∗
ν = φν . (5.3)

By combining eqs. (4.1) and (5.1), we end up with the relations:

(M†EME) = Ul(gE)†(M†EME)Ul(gE) , mν = Ul(gν)Tmν Ul(gν) , m∗ν = XT
l mνXl , (5.4)

which constrain at the same time the lepton mixing angles and both Dirac and Majorana phases.

This program has been carried out in the context of discrete flavour symmetry groups Gf . A variety of cases

arises from the different possible assignments of the residual symmetries. Assuming three generations, in the neutrino

sector the most general group leaving neutrino masses unconstrained is the Klein group Z2 × Z2. To avoid mass

degeneracies 22, the matrix Xl is required to be symmetric: XT
l = Xl (Feruglio et al., 2013). Since Xl is also unitary,

this automatically implies CP2 = 1 23. To guarantee that the action of CP on lepton electroweak doublets is always

represented by a symmetric matrix, Xl is required to commute with the four elements of the Klein group. Given the

antilinear action of CP, commutation is expressed through relations of the type:

Xl U(gK)∗ = U(gK)Xl , (5.5)

21 In the presence of a single Higgs, a possible phase in its CP transformation can be reabsorbed in the transformation of the lepton fields.
22 Degeneracies in the neutrino mass spectrum in this context have been anayzed in ref. (Joshipura and Patel, 2018).
23 In Section III.E we have seen that (X∗l Xl )n = 1 holds for a finite group.
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Ge Gν #parameters

Zm1 × . . .× Zmp Z2 × Z2 × CP 0

Zm1 × . . .× Zmp Z2 × CP 1

Z2 × CP Z2 × Z2 × CP 1

Z2 × CP′ Z2 × CP 2

Zm1 × . . .× Zmp CP 3

Z2 Z2 × CP 3

TABLE VII Number of continuous free parameters describing the lepton mixing matrix U(θij , δ, α21, α31) (Chen et al., 2015b;

Lu and Ding, 2017). In the first and second column, the residual symmetries Ge and Gν of the charged lepton sector and the

neutrino sector, respectively. The cyclic symmetry Zm1 × . . .×Zmp is assumed to fully distinguish the charged leptons by their

different transformation properties. The residual symmetry Z2 × Z2 × CP is also equivalent to the one generated by the four

allowed CP transformations of the neutrino sector, see the text. In the fourth line, CP and CP′ are in general independent CP

transformations.

where gK stands for an element of the Klein group. Indeed X ′l = U(gK)Xl represents just another CP transformation

and eq. (5.5) implies that the matrix X ′l is symmetric. It also follows that four CP transformations can be selected

as residual symmetries of the neutrino sector. Conversely, given these four allowed CP transformations, the Klein

group can be fully reconstructed (Chen et al., 2015b; Everett and Stuart, 2017). Usually the group Ge consists of

a direct product of cyclic symmetries, Zm1
× . . . × Zmp , such that all the charged leptons are distinguished by their

different transformation properties. Among the residual symmetries of the charged lepton sector there can also be an

accidental CP symmetry, independent from the one acting in the neutrino sector.

B. Parameter counting

The freedom in the definition of the model gives rise to many cases and, depending on the specific set of assumptions,

the PMNS matrix is determined up to a number of continuous free parameters, listed in table VII. These parameters

arise as follows. The invariance under CP provides, in a suitable basis, a reality condition on the neutrino mass matrix,

which can be parametrized in terms of three masses and three angles. An additional Z2×Z2 symmetry fully determines

these angles, while a single parity Z2 leaves one angle unconstrained. The three angles remain free parameters if the

only residual symmetry of the neutrino sector is CP. In the charged lepton sector the choice Ge = Zm1
× . . .× Zmp ,

when all leptons have different transformation properties, leaves no free parameters beyond masses. One free angle

originates from Ge = Z2×CP and one angle and one phase from Ge = Z2. Adding the parameters of the two sectors

reproduces table VII. This approach leaves lepton masses unconstrained, and the PMNS matrix is always determined

up to permutations of rows and columns. Moreover the intrinsic parity of neutrinos, that is the relative sign of their

masses, cannot be established. As a result the physical phases are fixed modulo π.

C. Examples

1. µ− τ reflection symmetry

A simple example is provided by the so called µ− τ reflection symmetry (Grimus and Lavoura, 2004; Harrison and

Scott, 2002a,b, 2004)24. In the basis where the charged lepton mass matrix is diagonal and ordered from smaller to

24 See (Joshipura and Patel, 2015; Mohapatra and Nishi, 2015; Nishi et al., 2018; Rodejohann and Xu, 2017; Sinha et al., 2019; Zhao,

2017; Zhou, 2014) for more recent applications related to the topic of this section.



48

bigger masses, the CP transformation acting on neutrinos is specified by:

Xl =

 1 0 0

0 0 1

0 1 0

 , (5.6)

and the constraint m∗ν = XT
l mνXl implies the relations sin θ23 = 1/

√
2, sin θ12 cos θ12 sin θ13 cos δ = 0 and sinα21 =

sinα31 = 0. Data requires sin θ12 cos θ12 sin θ13 6= 0 and this scheme predicts a maximal Dirac CP phase, | sin δ| = 1.

2. G = S4 o CP

If we assume Ge = Zm1
× . . . × Zmp and Gν = Z2 × CP in the neutrino sector, see the second row of table VII,

the PMNS matrix depends on a continuous parameter. An example is provided by G = S4 o CP, Ge = Z3 (Feruglio

et al., 2013). Due to the different embedding of the Z2 subgroup in S4, there are five inequivalent choices of Z2 ×CP

transformations leaving the neutrino sector invariant. Four of them, labelled I, II, IV and V, reproduce particular

cases of the so-called trimaximal mixing pattern.

Models I and II reproduce UTM2
, while Models IV and V give rise to UTM1

, with φ, α, β (see Sec. IV.B.4) quantized

and assuming only the values shown in table VIII. Models I and IV predict maximal atmospheric mixing angle, maximal

Dirac CP violation, trivial CP Majorana phases and provide two realizations of the µ−τ reflection symmetry enjoying

an additional prediction. Model II and V predict no lepton CP violation of Dirac or Majorana type. The relations

(4.33) apply to model I(II) with | cos δ| = 0(1). A general property of TM2 is sin2 θ12 > 1/3. By letting sin2 θ13 vary in

Model Pattern | sinφ| sinα sinβ sin2 θ23 sin2 θ13 sin2 θ12 | sin δ| sinα21 sinα31

I TM2 1 0 0
1

2

2

3
sin2 θ

1

2 + cos 2θ
1 0 0

II TM2 0 0 0
1

2

(
1±

√
3 sin 2θ

2 + cos 2θ

)
2

3
sin2 θ

1

2 + cos 2θ
0 0 0

IV TM1 1 0 0
1

2

sin2 θ

3

cos2 θ

2 + cos2 θ
1 0 0

V TM1 0 0 0
1

2
(1∓ 2

√
6 sin 2θ

5 + cos 2θ
)

sin2 θ

3

cos2 θ

2 + cos2 θ
0 0 0

TABLE VIII Specific mixing pattern arising in four out of the five independent cases arising from S4 and CP invariance, broken

down to Z3 in the charged lepton sector and to Z2×CP in the neutrino sector G = S4oCP (Feruglio et al., 2013) as a function

of the parameters θ ∈ [0, π/2].

its 3σ allowed range, the first relation predicts sin2 θ12 = 0.340÷0.342, presently allowed within 3σ, but out of the 2σ

range. In model II, tan2 δ = 0 and the 3σ allowed range of sin2 θ13 results in sin2 θ23 = {0.388÷0.398}∪{0.602÷0.611}.
The prediction falling in the first octant is excluded at 3σ, whereas the one falling in the second octant is allowed at

2σ. A vanishing sin δ is disfavored by the current data, but it is not excluded at 3σ. The relations (4.35) for model

IV(V) require | cos δ| = 0(1). In TM1 we always have sin2 θ12 < 1/3. By letting sin2 θ13 vary in its 3σ allowed range,

the first relation predicts sin2 θ12 = 0.316 ÷ 0.319, in very good agreement with present data. Model V is ruled out

since the second relation with tan2 δ = 0 leads to values of sin2 θ23 excluded by data. The quoted ranges have been

derived from the results of the global fit in (Esteban et al., 2019). The group G = A4 o CP leads to the TM2 mixing

pattern shown in table VI, with | sinφ| = 0 or | sinφ| = 1 and sinα = sinβ = 0 as for models I and II (Ding et al.,

2013b; Feruglio et al., 2013; Li et al., 2016a; Nishi, 2016). Explicit models have been constructed for this case in

ref. (Ding et al., 2013b; Li et al., 2016a). Starting from G = S4 o CP, the models of ref. (Ding et al., 2013a; Feruglio

et al., 2014) reproduce a nearly TM2 mixing pattern while those of ref. (Li and Ding, 2014) come close to the TM1

scheme. Other examples of models within G = S4 o CP are those of ref. (Ding et al., 2019a; Li and Ding, 2015a;

Luhn, 2013; Penedo et al., 2017).
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3. ∆(3n2) and ∆(6n2)

The groups A4 and S4 are particular cases of the series ∆(3n2) and ∆(6n2), respectively, realized with the choice

n = 2. General results for the whole series have been given in ref. (Ding and King, 2016; Ding et al., 2014; Hagedorn

et al., 2015; Joshipura, 2018; de Medeiros Varzielas et al., 2017a). For G = ∆(3n2) o CP broken into Ge = Z3 and

Gν = Z2×CP the mixing pattern is still of TM2 type and depends on a continuous parameter. When G = ∆(6n2)oCP

breaks into Ge = Z3 and Gν = Z2 × CP, also more complex mixing patterns arise, beyond the trimaximal one. The

particular cases G = ∆(48)oCP and G = ∆(96)oCP have also been comprehensively studied in ref. (Ding and Zhou,

2014, 2015) and (Ding and King, 2014), respectively. As an example of an interesting mixing pattern, we show in table

IX the predictions of a particular case arising in G = ∆(384) o CP when choosing Ge = Z3 and Gν = Z2 × CP. On

top of one real continuous parameter θ, they depend on two discrete parameters m and s, specifying the embedding

of the Z2 and CP transformations, respectively, within ∆(384). Good agreement with the mixing angles is obtained if

s sin2 θ13 sin2 θ12 sin2 θ23 sin δ | sinα| = | sinβ|
s = 1 0.0220 0.318 0.579 0.936 1/

√
2

0.0220 0.318 0.421 −0.936 1/
√

2

s = 2 0.0216 0.319 0.645 −0.739 1

s = 4 0.0220 0.318 0.5 ∓1 0

TABLE IX Results for lepton mixing parameters from Gf = ∆(384), m = 4 and different CP transformations X(s) (Hagedorn

et al., 2015). The continuous parameter θ has been optimized to reproduce sin2 θ13.

| sin δ| is large and m = 4. In this case the bound | sin δ| > 0.71 holds. This mixing pattern is of TM1 type. For s = 1

and s = 2 the parameter |mee| relevant for neutrinoless double beta decay has a non-trivial lower bound, whereas for

s = 4 both Majorana phases are trivial and a cancellation cannot be avoided for normal ordering of neutrino masses.

Apart from the constraints on CP phases also the lepton mixing angles are strongly restricted, which further sharpen

the prediction of |mee|.

4. Other examples

A remnant CP symmetry in combination with texture zeros has been examined in ref. (Barreiros et al., 2019). In

the case of G = A5 o CP, one-parameter families of PMNS matrices have been studied (Ballett et al., 2015; Di Iura

et al., 2015, 2018; Li and Ding, 2015b; López-Ibáñez et al., 2019), typically having trivial or maximal Dirac CP phase

and trivial Majorana phases. This study has been generalized in ref. (Turner, 2015) to include lepton mixing matrices

depending on three parameters. Other groups that have been combined with CP invariance include T ′ (Girardi

et al., 2014), ∆(27) (Nishi, 2013), the series D
(1)
9n,3n (Li et al., 2016b), Σ(36× 3) (Rong, 2017), PSL2(7) (Rong, 2019).

Variants of the above setup exploiting a generalized CP symmetry have been considered in refs. (Chen et al., 2018;

Ding et al., 2018; Girardi et al., 2016). In ref. (Yao and Ding, 2016) a scan of all groups of order less than 2000 has

been performed, assuming either (Ge, Gν) = (Zm1
× . . .×Zmp , Z2×CP) or (Ge, Gν) = (Z2×CP′, Z2×Z2×CP ), with

physical quantities depending on one continuous real parameter. The lepton mixing matrices in good agreement with

data fall into eight different categories up to possible row and column permutations. These viable mixing patterns

can be reproduced starting from the discrete flavour groups ∆(6n2), D
(1)
9n,3n, A5 and PSL2(7) combined with CP

symmetry. Most of them are of TM2 type or deformation thereof. Exceptions are those related to the survival

symmetries (Ge, Gν) = (Z2 × CP ′, Z2 × Z2 × CP) or those derivable from A5 o CP.

If we assume Ge = Zm1 × . . .×Zmp and Gν = Z2×Z2×CP in the neutrino sector, we potentially end up with the

most predictive scenario, as shown in the first row of table VII. In this case, after specifying the embedding of the

residual groups Zm1
× . . .×Zmp and Z2×Z2 in the full flavour group G, the PMNS matrix is fully determined, up to

permutations of rows and columns. However, as shown in ref. (Chen et al., 2015c; King and Neder, 2014), in this case

the only viable PMNS matrix can only be of trimaximal TM2 type with trivial δ, α31 = 0 and α21 a rational multiple

of π. The relations (4.33) with tan δ = 0 and the relative comments apply. The inverse problem of determining

the most general residual CP symmetry of the neutrino sector compatible with the present data has been studied in
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ref. (Everett et al., 2015; Everett and Stuart, 2017) and, assuming tribimaximal mixing, in refs. (Chen et al., 2019b,c).

For a generic PMNS matrix, it is however not guaranteed that the residual symmetries of the neutrino and charged

lepton sectors fit into a finite group.

The possibility of exploiting invariance under CP to predict or constrain physical phases find a natural application

in the context of leptogenesis. This aspect has been analyzed in refs. (Chen et al., 2016; Hagedorn et al., 2018;

Hagedorn and Molinaro, 2017; Li and Ding, 2017; Samanta et al., 2018).

5. Extension to quarks

Flavour symmetries embedding CP have been also applied to the more general problem of simultaneously describing

quarks and lepton masses. Indeed, taking quarks into account is unavoidable. Whereas the latter could in principle be

invariant under the action of a standard flavour group operating on the lepton sector, a CP-symmetry must transform

all fermion fields. Its spontaneous breaking in the quark sector must also be assured, in order to reproduce the

observed CP-violation in the CKM matrix.

Several difficulties arise when trying to extend flavour symmetries embedding CP to the quark sector. Most of them

are common to the general framework of discrete symmetries and not due to the specific inclusion of CP. As we have

seen, the approach based on selective residual symmetries does not make predictions about masses, but only about

angles. In this context the correlation between quark masses and mixing angles suggested by data and supported

by abelian symmetries is lost. Quark mass hierarchies are typically reproduced with the help of parameters poorly

related to the mixing and CP properties. Moreover, to simultaneously describe both lepton and quark mixing angles,

flavour groups of large order are generally required. Indeed the small misalignment between up and down quarks

calls for sufficiently close residual symmetries in the two sectors, which usually occurs if the group Gf has a large

number of densely distributed subgroups. For example, when quark and lepton electroweak doublets are assigned to

irreducible triplets of Gf , groups as large as ∆(294) (Li et al., 2018; Lu and Ding, 2018) or ∆(384) (Hagedorn and

König, 2018a,b) are needed.

Apart from aesthetic considerations, implementing the desired symmetry breaking pattern in a concrete model

requires a large number of flavon representations. This in turn generates a serious alignment problem implying that

additional cyclic symmetries or selection rules have to be invoked in order to get only the desired interaction terms.

Explicit examples of these constructions have been realized via a stepwise breaking of Gf = ∆(384) combined with CP,

where charged fermion mass hierarchies are reproduced through operators with different numbers of flavons (Hagedorn

and König, 2018a). These examples also show that a direct embedding in GUT is problematic, since matter and flavon

representations do not fit GUT multiplets.

To reduce the order of the group, while preserving predictability about phases of the mixing matrices, the use of

dihedral groups in combination with CP has been suggested. This approach takes up the old observation that dihedral

groups are suitable to accomodate quark mixing angles (Blum et al., 2008; Lam, 2007). Dihedral groups do not possess

three-dimensional irreducible representations and quarks and lepton electroweak doublets are assigned to singlets and

doublets of the flavour group. By choosing Gf = D14, and by including CP, quark and lepton mixing angles and

phases can both be accommodated by adjusting two continuous free parameters in each sector (Lu and Ding, 2019).

It would be desirable to show that the symmetry breaking pattern invoked in this analysis can be effectively realized

within a concrete model.

D. Outlook

The embedding of CP into the flavour symmetry provides a valuable complement to the setup dealing with ordinary

flavour groups, fully commuting with the proper Poincaré transformations. In such more restricted framework lepton

mixing angles, Dirac and Majorana phases can all be predicted simultaneously, in terms of a single continuous real

parameter in the most realistic and predictive cases. Many explicit models support the viability of such approach,

with similar disadvantages affecting models dealing with ordinary flavour groups: a complicated symmetry breaking

sector, additional auxiliary symmetries and fields to trigger the desired pattern of symmetry breaking and a limited

accuracy of the predictions due to higher dimensional operators.
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VI. NON-LINEARLY REALIZED FLAVOUR SYMMETRIES

A. The modular group Γ

Non-linearly realized flavour symmetries have been considered in the context of N = 1 supersymmetric theories

by adopting as flavour group the modular group Γ. The idea that modular invariance can play a central role in

describing Yukawa couplings is an old one, and has been naturally realized in the context of string theory (Dixon

et al., 1987; Erler et al., 1992; Hamidi and Vafa, 1987; Lauer et al., 1989, 1991), in D-brane compactification (Abel

and Goodsell, 2007; Antoniadis et al., 2009; Blumenhagen et al., 2005, 2007; Cremades et al., 2003; Kobayashi et al.,

2017; Marchesano, 2007), in magnetized extra dimensions (Abe et al., 2009; Cremades et al., 2004; Kobayashi et al.,

2018a), and in orbifold compactification (Casas et al., 1993; Ibanez, 1986; Kobayashi and Lebedev, 2003; Lebedev,

2001). Modular invariance has also been incorporated in early flavour models (Binetruy and Dudas, 1995; Brax and

Chemtob, 1995; Dudas, 1996; Dudas et al., 1996; Leontaris and Tracas, 1998). A step forward has been taken by

observing that it can be implemented in a bottom-up perspective, relying on the group transformation properties of

the building blocks of the theory (Feruglio, 2019).

InN = 1 supersymmetric theories, the field τ , called the modulus, is a chiral supermultiplet, whose scalar component

is restricted to H, the upper half of the complex plane. Under Γ it transforms as:

τ → γτ =
aτ + b

cτ + d
, (6.1)

with a, b, c, d integers and ad − bc = 1. The group Γ is discrete, infinite and non-compact. It has a presentation in

terms of two generators S and T :

τ
S−→ −1

τ
τ

T−→ τ + 1 , (6.2)

satisfying:

S2 = (ST )3 = 1 . (6.3)

The modular group is ubiquitous in string theory. It is the invariance group of a lattice Λ defined in the complex

plane C. Two lattices Λ and Λ′ with basis (e1, e2) and (e′1, e
′
2), such that Im(e1/e2) and Im(e′1/e

′
2) are both positive,

coincide if and only if (
e′1
e′2

)
=

(
a b

c d

)(
e1

e2

)
, (6.4)

with a, b, c, d integers and ad− bc = 1. A frequently considered compactification of two extra dimensions gives rise to

a torus, defined by the quotient C/Λ modulo rotations and scale transformations, which allow to chose the basis of Λ

in the form (τ, 1) (Im(τ) > 0). It follows that two tori defined by τ and γτ coincide, see fig. 3. From this viewpoint Γ

can be thought as a gauge symmetry. With a gauge choice it is always possible to restrict τ to a fundamental region,

a representative of which is shown in fig 4.

B. Modular invariant supersymmetric theories

We can define the action of Γ on a set of matter chiral multiplets φ(I) by specifying a compact quotient of Γ. A

series of compact groups can be constructed by taking the quotient of Γ by a principal congruence subgroup Γ(N)

with elements obeying a, d = 1 (mod N), b, c = 0 (mod N), N being a natural number called the level. Γ(N) are normal

subgroup of Γ of finite index, so that the quotients ΓN = Γ/Γ(N) are finite groups admitting finite-dimensional

unitary representations. For the first few levels, they are isomorphic to permutation groups: Γ2 = S3, Γ3 = A4,

Γ4 = S4, Γ5 = A5. We have ∂(γτ)/∂τ = (cτ +d)−2 and under the modular group the the matter fields φ(I) transform

as (Ferrara et al., 1989a,b)

φ(I) → (cτ + d)kI ρ(I)(γ)φ(I) . (6.5)



52

FIG. 3 Two equivalent lattices with basis (τ, 1) and (τ + 2, 1).

FIG. 4 Fundamental region F : a connected region of H such that each point of H can be mapped into F by a Γ transformation,

but no two points in the interior of F are related under Γ.

The above transformation is completely defined by the weight kI , the level N and the unitary representation ρ(I)(γ)

of ΓN . We also recall that modular forms of level N and weight k are holomorphic functions Y (τ) of the modulus

satisfying:

Y (γτ) = (cτ + d)kY (τ) (6.6)

for any γ ∈ Γ(N). They form a linear spaceMk(Γ(N)) of finite dimension dk(Γ(N)) (Gunning, 1962). Under the full

modular group Γ a basis Y (τ) ofMk(Γ(N)) transforms as Y (γτ) = (cτ + d)kρ(γ)Y (τ), ρ(γ) being a unitary, possibly

reducible representation of ΓN .

Turning off gauge interactions, the action S of an N = 1 global supersymmetric theory depending on the modulus

τ and a set of supermultiplets φ, comprising matter fields φ(I) of the same level N and possibly different weights kI ,

reads

S =

∫
d4x d2θ d2θ̄ K(τ, φ, τ̄ , φ̄) +

∫
d4x d2θ w(τ, φ) +

∫
d4x d2θ̄ w̄(τ̄ , φ̄) , (6.7)

where K and w are the Kähler potential and the superpotential, respectively. Invariance under the transformations

of eqs. (6.1) and (6.5) requires a modular invariant superpotential and a Kähler potential modular invariant up to

Kähler transformations

K(τ, φ, τ̄ , φ̄)→ K(τ, φ, τ̄ , φ̄) + f(τ, φ) + f̄(τ̄ , φ̄)

w(τ, φ)→ w(τ, φ) . (6.8)

Eq. (6.8) is easily satisfied by minimal forms of the Kähler potential, an example being

K(τ, φ, τ̄ , φ̄) = −h log(−iτ + iτ̄) +
∑
I

(−iτ + iτ̄)kI |φ(I)|2 , (6.9)
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where h is a positive constant. On the contrary the requirement of modular invariance severely restricts the superpo-

tential w(τ, φ). Consider the expansion of w(τ, φ) in power series of the supermultiplets φ(I):

w(τ, φ) =
∑
n

YI1...In(τ)φ(I1) . . . φ(In) . (6.10)

For the n-th order term to be modular invariant, the functions YI1...In(τ) should be holomorphic functions of τ

transforming as

YI1...In(γτ) = (cτ + d)kY (n)ρ(γ)YI1...In(τ) , (6.11)

with the weight kY (n) and the unitary representation ρ such that:

1. The weight kY (n) should compensate the overall weight of the product φ(I1) . . . φ(In):

kY (n) + kI1 + . . .+ kIn = 0 . (6.12)

2. The product ρ× ρI1 × . . .× ρIn contains an invariant singlet.

The holomorphic functions YI1...In(τ) of eq. (6.11) are modular forms of level N and weight k = kY (n). This

property sharply constrains the allowed Yukawa couplings, to the point of completely determining in some case the

corresponding mass matrix as a function of τ , up to an single overall constant.

As an example, choose N = 3 and consider 3 copies of lepton doublets l and one Higgs supermultiplet Hu transform-

ing, respectively, as irreducible triplets of Γ3 = A4 with weight -1 and as a singlet of Γ3 with zero weight. Assuming

neutrino masses described entirely by the Weinberg operator, the relevant superpotential reads:

wν =
1

2Λ
(liH)Yij(τ)(ljH) , (6.13)

where the holomorphic functions Yij(τ) should be modular forms of level 3, weight +2 transforming as one of the

multiplet in the decomposition (3 × 3)SYM = 1 + 1′ + 1′′ + 3. The space M2(Γ(3)) is spanned by three linearly

independent modular forms Yi(τ) (i = 1, 2, 3), transforming as a 3 under Γ3:

Y1(τ) =
i

2π

[
η′
(
τ
3

)
η
(
τ
3

) +
η′
(
τ+1
3

)
η
(
τ+1
3

) +
η′
(
τ+2
3

)
η
(
τ+2
3

) − 27η′(3τ)

η(3τ)

]

Y2(τ) =
−i
π

[
η′
(
τ
3

)
η
(
τ
3

) + ω2 η
′ ( τ+1

3

)
η
(
τ+1
3

) + ω
η′
(
τ+2
3

)
η
(
τ+2
3

) ] (6.14)

Y3(τ) =
−i
π

[
η′
(
τ
3

)
η
(
τ
3

) + ω
η′
(
τ+1
3

)
η
(
τ+1
3

) + ω2 η
′ ( τ+2

3

)
η
(
τ+2
3

) ] ,

where η(τ) is the Dedekind eta-function, defined in the upper complex plane:

η(τ) = q1/24
∞∏
n=1

(1− qn) q ≡ ei2πτ . (6.15)

It follows that wν consists of a unique modular invariant combination and is fully determined up to an overall constant.

In a suitable basis the neutrino mass matrix reads:

mν = m0

 2Y1(τ) −Y3(τ) −Y2(τ)

−Y3(τ) 2Y2(τ) −Y1(τ)

−Y2(τ) −Y1(τ) 2Y3(τ)

 . (6.16)

As long as supersymmetry is unbroken there are no corrections coming from higher dimensional holomorphic operators.

The matrix mν in eq. (6.16) is exact and all the terms in the expansion in powers of τ are completely determined.

Non-vanishing modular forms transforming under ΓN require even integer non-negative weights (Gunning, 1962).

Modular forms of vanishing weight are constant, that is τ -independent. Modular forms for the first few levels N
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have been explicitly constructed and the combinations transforming as irreducible representations of ΓN have been

identified for the first few weights. The results for Γ2 ≈ S3(Kobayashi et al., 2018c), Γ3 ≈ A4(Feruglio, 2019),

Γ4 ≈ S4(Penedo and Petcov, 2019), Γ5 ≈ A5(Ding et al., 2019c; Novichkov et al., 2019b), Γ7 ≈ Σ(168) (Ding et al.,

2020) are summarized in table X. Modular forms of generic integer weights have been discussed in ref. (Liu and Ding,

2019), together with their application to neutrino mass models. They have been shown to form representations of the

homogeneous finite modular groups Γ′N , double covering of ΓN .

dk(Γ(N)) k = 2 k = 4 k ≥ 6

Γ2 ≈ S3 k/2 + 1 2 1 + 2 . . .

Γ3 ≈ A4 k + 1 3 1 + 1′ + 3 . . .

Γ4 ≈ S4 2k + 1 2 + 3′ 1 + 2 + 3 + 3′ . . .

Γ5 ≈ A5 5k + 1 3 + 3′ + 5 1 + 3 + 3′ + 4 + 5 + 5 . . .

Γ7 ≈ Σ(168) 14k − 2 3 + 7 + 8 + 8′ 1 + 3 + 6 + 6′ + 7 + 7′ + 8 + 8′ + 8′′ . . .

TABLE X Dimension ofMk(Γ(N)) and decomposition of multiplets of modular forms in representations of the finite modular

group ΓN , for the first few levels and weights. Modular forms of higher weight can be obtained from polynomials of modular

forms of lower weight. Partial knowledge is available for modular forms of weight 2 for levels 8 and 16 (Kobayashi and Tamba,

2019).

C. Modular invariance and CP

The action of CP on τ is uniquely determined, up to modular transformations (Baur et al., 2019a,b; Dent, 2001a,b;

Novichkov et al., 2019a):

τ
CP−−→ −τ∗ . (6.17)

Such a law corresponds to the outer automorphism of Γ:

S
CP−−→ S T

CP−−→ T−1. (6.18)

By choosing a suitable basis for the generators S and T , where both are described by symmetric matrices in any

representation of ΓN , the action of CP on matter multiplets φ reduces to the canonical one:

φ
CP−−→ XCP φ

∗ , XCP = 1 . (6.19)

In this basis the requirement of CP invariance amounts to restricting all the Lagrangian parameters to real values. In

such a theory CP invariance can only be spontaneously broken. The values of τ preserving CP lie along the imaginary

τ axis or along the border of the fundamental region shown in fig. 4, where −τ∗ = τ , up to a modular transformation.

D. Modular invariance and standard flavour symmetries

It is worth to mention that in the low-energy theory arising from string theory compactification, the flavour group

generally comprises both modular transformations and ordinary transformations, acting linearly on matter fields.

The consistent combination of the two types of transformations have been analyzed in (Nilles et al., 2020a,b). The

ordinary linear transformations belong to a group G, leave the modulus τ invariant and act on the fields φ(I) through

a unitary matrix U (I)(g):

τ → τ φ(I) → U (I)(g)φ(I) . (6.20)
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The two sets of transformations (6.1,6.5) and (6.20) should obey the consistency condition:

ρ(I)(γ) U (I)(g) ρ(I)(γ−1) = U (I)(g′) , (6.21)

for some element g′ ∈ G. It follows that G is a normal subgroup of the overall flavour group Gecl, called eclectic by the

authors, generated by both ordinary and modular transformations. At the same time the modular transformations

define an automorphism of G which, in the non-trivial cases, is of outer type. This construction allows for a unified

description of standard, non-linear and CP-like transformations. Not all groups G can be embedded in such a

framework, which may open new possibilities in model building.

E. Modular invariance and local supersymmetry

This setup can be easily extended to the case of N = 1 local supersymmetry where Kähler potential and superpo-

tential are not independent functions since the theory depends on the combination

G(τ, φ, τ̄ , φ̄) = K(τ, φ, τ̄ , φ̄) + logw(τ, φ) + log w̄(τ̄ , φ̄) . (6.22)

The modular invariance of the theory can be realized in two ways (Ferrara et al., 1989a). Either K(τ, φ, τ̄ , φ̄) and

w(τ, φ) are separately modular invariant or the transformation ofK(τ, φ, τ̄ , φ̄) under the modular group is compensated

by that of w(τ, φ). An example of this second possibility is given by the Kahler potential of eq. (6.9), with the

superpotential w(τ, φ) transforming as

w(τ, φ)→ eiα(γ)(cτ + d)−hw(τ, φ) (6.23)

In the expansion (6.10) the Yukawa couplings YI1...In(τ) should have weight kY (n) such that kY (n)+kI1+. . .+kIn = −h
and the representation ρ(γ) subject to the requirement 2 in eq. (6.12). When we have kI1 + . . . + kIn = −h, we get

kY (n) = 0 and the functions YI1...In(τ) are τ -independent constants. This occurs for supermultiplets belonging to the

untwisted sector in the orbifold compactification of the heterotic string.

F. Models

Models of lepton masses and mixing angles have been constructed for levels 2, 3, 4, 5, following two different

approaches, depending on whether the charged lepton mass matrix only depends on τ , as the neutrino one, or it

depends on a separate set of flavons. In either case the VEV of τ is usually treated as an additional parameter

and scanned in order to maximize the agreement with data. We show here an example for each possibilities. In

both examples neutrino masses arise from the type I seesaw mechanism and, after integrating out the right-handed

neutrinos N c, the low-energy superpotential reads:

w = −EcTYeHdL−
1

2Λ
(HuL)T

(
YTν C−1Yν

)
(HuL) . (6.24)

An example of the first possibility is the model of ref. (Novichkov et al., 2019a,c) realized at level 4, with the particle

content displayed in table XI.

(Ec1, E
c
2, E

c
3) Nc L Hd Hu

SU(2)L ×U(1)Y (1,+1) (1, 0) (2,−1/2) (2,−1/2) (2,+1/2)

Γ4 ≈ S4 (1′, 1, 1′) 3′ 3 1 1

kI (0,−2,−2) 0 −2 0 0

TABLE XI Chiral supermultiplets, transformation properties and weights of the model of ref. (Novichkov et al., 2019a,c).
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The matrices Ye, Yν and C are given by:

Ye =

 αY3 αY5 αY4

β (Y1Y4 − Y2Y5) β (Y1Y3 − Y2Y4) β (Y1Y5 − Y2Y3)

γ (Y1Y4 + Y2Y5) γ (Y1Y3 + Y2Y4) γ (Y1Y5 + Y2Y3)

 , (6.25)

Yν = g


 0 −Y1 Y2

−Y1 Y2 0

Y2 0 −Y1

+
g′

g

2Y3 −Y5 −Y4
−Y5 2Y4 −Y3
−Y4 −Y3 2Y5


 , C =

 1 0 0

0 0 1

0 1 0

 , (6.26)

where Y1,2 and Y3,4,5 are the five independent modular forms of weight 2 and level 4. They transform as 2 and 3′

under Γ4 ≈ S4, respectively. Invariance under CP implies that g/g′ is real. Charged lepton masses can be correctly

reproduced by adjusting α, β and γ. The remaining Lagrangian parameters are an overall scale and g/g′. The VEV

of τ is treated as an additional free parameter.

An example of the second possibility is the model of ref. (Criado and Feruglio, 2018) realized at level 3, with the

particle content displayed in table XII.

(Ec1, E
c
2, E

c
3) Nc L Hd Hu ϕ

SU(2)L ×U(1)Y (1,+1) (1, 0) (2,−1/2) (2,−1/2) (2,+1/2) (1, 0)

Γ3 ≈ A4 (1, 1′′, 1′) 3 3 1 1 3

kI −4 −1 +1 0 0 +3

TABLE XII Chiral supermultiplets, transformation properties and weights of the model of ref. (Criado and Feruglio, 2018).

The matrices Ye, Yν and C are given by:

Ye =

 aϕ1 aϕ3 aϕ2

b ϕ2 b ϕ1 b ϕ3

c ϕ3 c ϕ2 c ϕ1

 , Yν = y0

 1 0 0

0 0 1

0 1 0

 , C =

 2Y1(τ) −Y3(τ) −Y2(τ)

−Y3(τ) 2Y2(τ) −Y1(τ)

−Y2(τ) −Y1(τ) 2Y3(τ)

 . (6.27)

Beyond the parameters a, b and c, which control charged lepton masses, the low energy Lagrangian depends on a

single parameter, the overall scale y20/Λ. Additional parameters are provided by the VEVs of τ and of the flavon ϕ,

assumed to be aligned along the (1, 0, Re(ϕ3)) direction. The results of the two models are collected in table XIII.

N r ≡ |∆m2
sol/∆m

2
atm| sin2 θ12 sin2 θ13 sin2 θ23 δ/π

4 0.0298 0.305 0.0214 0.486 1.641

3 0.0299 0.306 0.0211 0.459 1.438

N α21/π α31/π m1 (meV) m2 (meV) m3 (meV) |mee| (meV)

4 0.346 1.254 12.1 14.8 51.4 12.0

3 1.704 1.201 10.9 13.9 51.1 10.4

TABLE XIII Results of the model of ref. (Novichkov et al., 2019a,c), N = 4, for τ = 0.09922 + i 1.0578 and g/g′ = −0.02093

and of the model of ref. (Criado and Feruglio, 2018), N = 3, for τ = −0.2005 + i 1.0578 and ϕ = (1, 0, 0.117).

In both models the mass ordering is normal. The atmospheric mixing angle is close to maximal, but predicted to lie

in the first octant. CP is broken spontaneously by the VEV of τ and both Dirac and Majorana phases are predicted.
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Also the absolute value of neutrino masses and the combination relevant to 0νββ are predicted. Quite interestingly,

the lightest neutrino has a mass close to 0.01 eV, resulting in a relatively large |mee| ≈ 10 meV for a normally ordered

mass spectrum.

Several other models of lepton masses and mixing angles have been built at level 2 (Kobayashi et al., 2019d, 2018c),

level 3 (Criado and Feruglio, 2018; Ding et al., 2019b,d; Feruglio, 2019; Kobayashi et al., 2018b; Nomura and Okada,

2019; Novichkov et al., 2019d), level 4 (Criado et al., 2019; King and Zhou, 2019; Liu et al., 2020; Novichkov et al.,

2020, 2019c; Penedo and Petcov, 2019) and level 5 (Criado et al., 2019; Ding et al., 2019c; Novichkov et al., 2019b).

The higher the level N , the more solutions are found in H, corresponding to physically distinct sets of predictions in

good agreement with data. Most of the solutions predicting NO prefer a nearly degenerate spectrum with m1 > 10

meV and |mee| on the high side of allowed range. This is shown in figure 5.

FIG. 5 Regions allowed in the (mlightest, |mee|) plane for normal ordering (red) and inverted ordering (green) and predictions

of modular invariant models at level 3, 4 and 5.

A common feature of all the proposed models is the minimal form of the Kähler potential, eq. (6.9). While this is

the simplest choice, it is not the most general one compatible with modular invariance. The symmetry of the Kähler

potential K of eq. (6.9) is bigger than the modular one. Indeed K is invariant under transformation of SL(2,R) and the

modulus τ parametrizes the coset SL(2,R)/SO(2). Such a continuous symmetry is broken by the superpotential down

to the modular group. In a bottom up approach there is no reason to exclude from the Kähler potential K terms that

are invariant only under the discrete modular group. In particular a candidate modification of the Kähler potential

(6.9) is an additive contribution depending explicitly on both the matter supermultiplets and on the modular forms

Y (τ) (Feruglio, 2019). The power counting controlling the size of these contributions is unknown, but examples in

the string theory context suggest that, in the parameter region Im(τ) = O (1) which is the one of interest to neutrino

physics, they might be of similar importance as K in eq. (6.9). Indeed these type of corrections have been analyzed

in ref. (Chen et al., 2019a), showing that the new parameters appearing in the Kähler potential considerably reduce

the predictability of the approach. At the moment the problem of better controlling the Kähler potential remains an

open one.

An interesting question concerns the dynamical determination of the VEV of τ . It has been conjectured (Cvetic

et al., 1991; Kobayashi et al., 2019c) that extrema of modular invariant scalar potentials of N = 1 supergravity

theories lie on the imaginary τ axis or along the border of the fundamental region F of figure 4. This is precisely the

region where CP is unbroken if the theory is CP invariant. Interestingly, in concrete models it suffices a small deviation

from the border of F to allow for sizable CP violating effects. For instance in the model of ref. (Novichkov et al.,

2019a,c), the value of τ that maximizes the agreement with data is 0.09922 + i 1.0578. An attempt to dynamically
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determine the VEV of τ can be found in ref. (Kobayashi et al., 2019a), where modular invariance is realized in

supergravity. At the minima of the scalar potential the energy density is negative, and some ad hoc mechanism

should be invoked to reproduce the correct cosmological constant. This is confirmed by the analysis of ref. (Gonzalo

et al., 2019) where no minima with positive energy density have been found. Corrections from SUSY breaking have

been shown to be negligible (Criado and Feruglio, 2018), provided there is a sufficient gap between the sparticle masses

and the messenger scale. The modulus-electron interactions can be directly tested in neutrino oscillations, provided

the modulus is extremely light (Ding and Feruglio, 2020). In such a case scalar non-standard neutrino interactions can

affect lepton mass matrices and produce deviations in oscillation patterns in media with a sufficiently large electron

number density.

G. Extension to quarks

The possibility of extending modular invariance to the quark sector has also been investigated in (Kobayashi et al.,

2019d; Okada and Tanimoto, 2019a,b, 2020) and, in a GUT context, in (de Anda et al., 2018; Kobayashi et al., 2019b).

Description of the quark sector alone seems to require a large number of parameters, often larger than the number

of observables. Having many parameters at disposal, it is not surprising that a unified description of leptons and

quarks, adopting the same value of τ to simultaneously describe the two sectors, can be achieved. One of the major

obstacle towards the realization of a more economical model is the fact that each charged fermion mass requires an

independent parameter. In its present realization, modular invariance seems unable to provide predictions concerning

the charged fermion masses, which should be described by an ad-hoc set of parameters. To improve this aspect, two

suggestions have been recently put forward. If quark and charged lepton masses cannot be precisely predicted, at least

their order of magnitude can be captured by letting the modular weights play the role of Froggatt-Nielsen charges

(Criado et al., 2019; King and King, 2020). Assigning different weights to electroweak singlet fermions, we can achieve

a natural relative suppression of charged fermion masses, similarly to what happens in ordinary abelian symmetries.

As a consequence, dimensionless free parameters are not reduced in number, but their values have the same order of

magnitude. A second observation is that modular invariance can naturally enforce texture zeros, which are known

to increase the predictive power of flavour models. Along these lines, the authors of ref. (Lu et al., 2019) have built

several models at level 3. They make use of odd weight modular forms and assign quarks to both singlet and doublet

representations of Γ′3 ≈ T ′, the double covering of Γ3. In a specific model all 22 fermion mass/mixing observables are

reproduced using 17 independent parameters and the best fit value of τ is intriguingly close to −1/2 + i
√

3/2, a fixed

point under the action of ST .

For moderately large values of Im(τ), modular forms have a nearly exponential dependence on τ , which, at first

sight, seems ideal to describe the hierarchical mass spectrum we observe in quarks and in charged leptons. This

suggests that we might have not fully exploited all the possibilities offered by this approach.

H. Outlook

Modular invariance is an interesting candidate for a realistic flavour symmetry. Compared to the traditional linear

realization of discrete symmetries, it allows to predict not only mixing angles and phases but also neutrino masses.

It requires less flavons: in minimal realizations no flavon beyond τ is needed. In the most favorable cases, as long as

supersymmetry is exact, the superpotential is completely determined by symmetry requirements, to any order in the

τ power expansion, up to an overall constant. In the exact supersymmetry limit the superpotential does not receive

any perturbative or nonperturbative corrections, a unique feature compared to the models based on linearly realized

symmetries. A lesson that we can learn from the proposed models is that a low level N and modular forms of low

weights minimize the number of free parameters. So far the approach allows no prediction for the charged lepton

masses. The charged lepton sector might require a substantially different description, perhaps in terms of additional

moduli (De Medeiros Varzielas et al., 2019; Ferrara et al., 1989b) or some conventional flavon. The models proposed so

far rely on a minimal form of the Kähler potential, which however is not justified in a bottom-up approach. Modular

invariance allows for additional terms in the Kähler potential, and their impact in the parameter region of interest to

neutrinos has been shown to be important.
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VII. WHAT HAVE WE LEARNED?

The discovery of neutrino oscillations has led to a major advance in our knowledge of the flavour sector. On the

one side, there is still a considerable room for improvement of the data. The uncertainty on the absolute neutrino

masses is very large, since only mass-squared differences have been measured. CP-odd phases (in particular the

Majorana ones, if present) will not really be known with good precision for a very long time. On the other end,

the impressive experimental outcomes of the recent years have brought neutrino physics into a precision era, with

several combinations of mass/mixing parameters known with a precision approaching the percent level. Tracing those

parameters back to some fundamental organizing principle is part of a very ambitious program, the solution of the

flavour puzzle. In this wider context, we cannot avoid considering both leptons and quarks, most probably within

some kind of unified framework emerging when physics is probed at a very high energy scale. Actually, the need

of reconciling the very different features of the quark and lepton sectors might provide important clues to correctly

address and solve the puzzle. Quark intergenerational hierarchy is much pronounced, especially in the up sector.

Mixing angles are small, with the third generation very feebly coupled to the first two. On the contrary neutrino

masses are of the same order of magnitude, with the possible exception of the lightest state, still compatible with

being massless. The lepton mixing pattern is completely different from the quark one, the smallest mixing angle being

similar in size to the Cabibbo angle. Nevertheless, the description of the lepton sector has borrowed many ideas and

techniques originally developed in the context of the quark sector.

An appealing approach that has pervaded the whole field for decades is the one based on flavour symmetries,

supported by the success that symmetry considerations have collected during last century in the description of particle

interactions. Flavour symmetries of the leptonic sector have been realized in a vast amount of ways, as shown by

the extensive literature of the field. Maybe one of the most striking things that captures the attention is the fact

that, despite all past efforts, a baseline model interpreting neutrino masses and mixings in the context of a flavour

symmetry is still missing. Many early models have been discarded by gathering more and more precise data, but the

range of remaining possibilities is still very large, even taking into account the constraints from the quark sector. This

is closely related to the fact that in any realistic model of lepton masses relying on flavour symmetries and retaining

some degree of predictability, the underlying symmetry is cleverly hidden and breaking effects are a decisive factor in

constraining the relevant observables.

Actually, one of the few firm points is the fact that there cannot be exact flavour symmetries, neither for quarks

nor for leptons alone. The observed masses and mixing angles break any initial flavour symmetry, except possibly

for the total baryon and lepton numbers. Once excluded that exact flavour symmetries are allowed by data, we

could wonder whether they can provide at least some reasonable first order approximation to the observed lepton

mass/mixing pattern. It turns out that, under mild assumptions, symmetries compatible with this requirement are

not very powerful. In the normal mass ordering case, the neutrino mass matrix is completely unconstrained and any

neutrino masses and mixings are possible. The flavour symmetry is useless in the neutrino sector, where it leads

to anarchy. Therefore, if the present hint for normal hierarchy were confirmed, we would conclude that symmetry

breaking effects would play a leading role in a realistic non-trivial model of lepton masses.

Indeed, the common denominator of most predictive models is the breaking of the flavour symmetry induced by a

set of spurions. The prototype of these models makes use of a spontaneously broken abelian continuous group. While

abelian symmetries have played a pivotal role in the development of the field, they can lead to predictions matching the

present experimental accuracy only in the presence of texture zeros, as each entry of the mass matrices is predicted

order-of-magnitude wise, with intrinsic uncertainties of order one. Any successful model of neutrino masses and

mixings based on flavour symmetries should rely on a sizable departure of the predictions from the symmetric limit,

most often of a non-abelian group.

If so well hidden, flavour symmetries can be difficult to identify from the data. Moreover in model building

sizable breaking effects analyzed to the desired level of accuracy typically involve a non-negligible set of parameters,

which weakens the aimed-for predictive power of the construction. In the absence of a symmetric limit reasonably

close to observation, the whole symmetry approach seems undermined. So, why not to abandon it? We believe

there are several counterexamples to this negative conclusion. Perhaps the most impressive one is provided by the

modular symmetry that, being non-linearly realized, does not allow any limit where the full modular group remains

unbroken. The geometrical interpretation of this feature is particularly transparent. The modular transformations
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can be seen as gauge transformations describing all possible equivalent parametrizations of the same torus in terms

of a modular parameter. For the modular group to be unbroken, we would need a torus not admitting distinct

equivalent parametrizations, which is impossible by construction. Thus in modular invariant flavour models there is

no notion of a symmetric limit, and this does not prevent predictability and precision, at least in principle. In the

most favorable cases, the neutrino mass matrix is completely determined by symmetry requirements as a function

of the modular parameter up to an overall constant. In the exact supersymmetry limit, the superpotential does not

receive any perturbative or non-perturbative corrections, a unique feature compared to the models based on linearly

realized symmetyries.

The requirement of being far from the symmetric limit does not forbid that, separately, the neutrino and the

charged lepton sectors can be approximately invariant under independent symmetries, arising as subgroups of the full

symmetry group. This occurs when spurions with different breaking properties are accidentally sequestered. Since

the most general symmetry leaving the neutrino mass matrix invariant and its eigenvalues unconstrained is the Klein

symmetry, the more economical realizations of such sequestering adopts discrete flavour groups. Due to unavoidable

corrections, exact sequestering can hardly occur, and should be rather viewed as an ideal limit useful to identify

approximate mixing patterns. It is remarkable that, even considering the smallest discrete groups allowing three-

dimensional irreducible representations, semi-realistic mixing patterns such as the tribimaximal one can be easily

obtained. Tribimaximal mixing is ruled out by data and, to identify realistic mixing patterns in the framework of

exact sequestering, we should move to larger discrete groups. Otherwise, working with small discrete groups, we can

relax sequestering by allowing sizable corrections or by reducing the residual symmetries.

A weak point of this approach is that sequestering requires a specific vacuum alignment, that in turns is often realized

at the price of a complicated scalar sector and of additional ad-hoc symmetries. Additional ingredients are needed

in order to constrain masses and Majorana phases. The phases can be dealt with by exploiting flavour symmetries

incorporating CP. The hierarchical nature of charged lepton masses can be accounted for with traditional suppression

mechanisms, but order-of-magnitude uncertainties cannot be evaded. Also modular invariant models have limitations.

The models proposed so far rely on a minimal form of the Kähler potential. Modular invariance alone allows for more

general Kähler potentials, which introduces more parameters reducing the predictability of the approach. Such

freedom and the related impact on predictability are common to all supersymmetric models independently from the

specific flavour group, but they are particularly relevant in the modular case, where the superpotential can be almost

uniquely determined and where realistic values of the modular parameter are non-perturbative.

Even considering these limitations, flavour symmetries remain one of the few tools we have to address the flavour

puzzle with the desired level of predictability and precision. In spite of the large number of relevant contributions

to the field, that we have tried to highlight in this review, we believe there are still many directions to be examined.

We do not know if this approach will eventually succeed, but we feel certainly encouraged by the present results to

proceed and further explore the new territory.

ACKNOWLEDGMENTS

We are grateful to Claudia Hagedorn for useful discussions and comments on a part of this manuscript. The

authors acknowledge partial support by INFN, the MIUR-PRIN project 2015P5SBHT “Search for the Fundamental

Laws and Constituents” and by the European Union’s Horizon 2020 research and innovation programme under the

Marie Sklodowska-Curie grant agreements N◦ 674896 and 690575.

REFERENCES

Abdurashitov, J. N., et al. (SAGE) (1999), Phys. Rev. C59, 2246, arXiv:hep-ph/9803418 [hep-ph].

Abdurashitov, J. N., et al. (2006), Phys. Rev. C73, 045805, arXiv:nucl-ex/0512041 [nucl-ex].

Abe, H., K.-S. Choi, T. Kobayashi, and H. Ohki (2009), Nucl. Phys. B820, 317, arXiv:0904.2631 [hep-ph].

Abel, S. A., and M. D. Goodsell (2007), JHEP 10, 034, arXiv:hep-th/0612110 [hep-th].

Abud, M., and G. Sartori (1981), Phys. Lett. 104B, 147.

Abud, M., and G. Sartori (1983), Annals Phys. 150, 307.

de Adelhart Toorop, R., F. Feruglio, and C. Hagedorn (2011), Phys. Lett. B703, 447, arXiv:1107.3486 [hep-ph].

http://dx.doi.org/10.1103/PhysRevC.59.2246
http://arxiv.org/abs/hep-ph/9803418
http://dx.doi.org/10.1103/PhysRevC.73.045805
http://arxiv.org/abs/nucl-ex/0512041
http://dx.doi.org/10.1016/j.nuclphysb.2009.05.024
http://arxiv.org/abs/0904.2631
http://dx.doi.org/ 10.1088/1126-6708/2007/10/034
http://arxiv.org/abs/hep-th/0612110
http://dx.doi.org/10.1016/0370-2693(81)90578-5
http://dx.doi.org/10.1016/0003-4916(83)90017-9
http://dx.doi.org/ 10.1016/j.physletb.2011.08.013
http://arxiv.org/abs/1107.3486


61

Adhikary, B., B. Brahmachari, A. Ghosal, E. Ma, and M. K. Parida (2006), Phys. Lett. B638, 345, arXiv:hep-ph/0603059

[hep-ph].

Adhikary, B., and A. Ghosal (2008), Phys. Rev. D78, 073007, arXiv:0803.3582 [hep-ph].

Agostini, M., et al. (GERDA) (2018), Phys. Rev. Lett. 120 (13), 132503, arXiv:1803.11100 [nucl-ex].

del Aguila, F., and J. A. Aguilar-Saavedra (2009), Nucl. Phys. B813, 22, arXiv:0808.2468 [hep-ph].

del Aguila, F., A. Carmona, and J. Santiago (2010), JHEP 08, 127, arXiv:1001.5151 [hep-ph].

Aguilar-Arevalo, A., et al. (LSND) (2001), Phys. Rev. D64, 112007, arXiv:hep-ex/0104049 [hep-ex].

Aguilar-Arevalo, A. A., et al. (MiniBooNE) (2018), Phys. Rev. Lett. 121 (22), 221801, arXiv:1805.12028 [hep-ex].

Aker, M., et al. (KATRIN) (2019), arXiv:1909.06048 [hep-ex].

Akeroyd, A. G., and M. Aoki (2005), Phys. Rev. D72, 035011, arXiv:hep-ph/0506176 [hep-ph].

Akhmedov, E. K., M. Lindner, E. Schnapka, and J. W. F. Valle (1996a), Phys. Rev. D53, 2752, arXiv:hep-ph/9509255 [hep-ph].

Akhmedov, E. K., M. Lindner, E. Schnapka, and J. W. F. Valle (1996b), Phys. Lett. B368, 270, arXiv:hep-ph/9507275

[hep-ph].

Albright, C. H., A. Dueck, and W. Rodejohann (2010), Eur. Phys. J. C70, 1099, arXiv:1004.2798 [hep-ph].

Albright, C. H., and W. Rodejohann (2009), Eur. Phys. J. C62, 599, arXiv:0812.0436 [hep-ph].

Alduino, C., et al. (CUORE) (2018), Phys. Rev. Lett. 120 (13), 132501, arXiv:1710.07988 [nucl-ex].

Alonso, R., M. B. Gavela, D. Hernandez, and L. Merlo (2012), Phys. Lett. B715, 194, arXiv:1206.3167 [hep-ph].
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Pérez, M. J., M. H. Rahat, P. Ramond, A. J. Stuart, and B. Xu (2019), Phys. Rev. D100, 075008, arXiv:1907.10698 [hep-ph].

Petcov, S. T. (1982), Phys. Lett. 110B, 245.

Petcov, S. T. (2018), Eur. Phys. J. C78 (9), 709, arXiv:1711.10806 [hep-ph].

Procesi, C., and G. W. Schwarz (1985), Phys. Lett. 161B, 117.

Raby, S. (2003), Phys. Lett. B561, 119, arXiv:hep-ph/0302027 [hep-ph].

Rahat, M. H., P. Ramond, and B. Xu (2018), Phys. Rev. D98 (5), 055030, arXiv:1805.10684 [hep-ph].

Raidal, M. (2004), Phys. Rev. Lett. 93, 161801, arXiv:hep-ph/0404046 [hep-ph].

Ramond, P. (2010), Group theory: A physicist’s survey .

Reig, M., J. W. F. Valle, C. A. Vaquera-Araujo, and F. Wilczek (2017), Phys. Lett. B774, 667, arXiv:1706.03116 [hep-ph].

Reig, M., J. W. F. Valle, and F. Wilczek (2018), Phys. Rev. D98 (9), 095008, arXiv:1805.08048 [hep-ph].

Reyimuaji, Y., and A. Romanino (2018), JHEP 03, 067, arXiv:1801.10530 [hep-ph].

Reyimuaji, Y., and A. Romanino (2020), In preparation.

Riva, F. (2010), Phys. Lett. B690, 443, arXiv:1004.1177 [hep-ph].

Rodejohann, W. (2009), Phys. Lett. B671, 267, arXiv:0810.5239 [hep-ph].

Rodejohann, W., and X.-J. Xu (2017), Phys. Rev. D96 (5), 055039, arXiv:1705.02027 [hep-ph].

Romanino, A. (2004), Phys. Rev. D70, 013003, arXiv:hep-ph/0402258 [hep-ph].

Rong, S.-j. (2017), Phys. Rev. D95 (7), 076014, arXiv:1604.08482 [hep-ph].

Rong, S.-J. (2019), arXiv:1907.04203 [hep-ph].

Ross, G. G., L. Velasco-Sevilla, and O. Vives (2004), Nucl. Phys. B692, 50, arXiv:hep-ph/0401064 [hep-ph].

Samanta, R., R. Sinha, and A. Ghosal (2018), arXiv:1805.10031 [hep-ph].

Schechter, J., and J. W. F. Valle (1980), Phys. Rev. D22, 2227.

Schechter, J., and J. W. F. Valle (1982), Phys. Rev. D25, 774.

Schmidt, M. A., and A. Yu. Smirnov (2006), Phys. Rev. D74, 113003, arXiv:hep-ph/0607232 [hep-ph].

Shimizu, Y., M. Tanimoto, and A. Watanabe (2011), Prog. Theor. Phys. 126, 81, arXiv:1105.2929 [hep-ph].

http://dx.doi.org/ 10.1103/PhysRevD.60.013002
http://arxiv.org/abs/hep-ph/9809415
http://dx.doi.org/ 10.1103/PhysRevD.69.053007
http://arxiv.org/abs/hep-ph/0301234
http://dx.doi.org/ 10.1103/PhysRevLett.44.912
http://dx.doi.org/ 10.1103/PhysRevD.23.165
http://dx.doi.org/ 10.1103/PhysRevD.34.1642
http://dx.doi.org/10.1103/PhysRevD.79.033008
http://arxiv.org/abs/0901.1080
http://dx.doi.org/10.1103/PhysRevD.88.016003
http://arxiv.org/abs/1305.6774
http://dx.doi.org/10.1103/PhysRevD.88.036001
http://arxiv.org/abs/1303.4394
http://dx.doi.org/10.1103/PhysRevD.84.053002
http://arxiv.org/abs/1107.0696
http://dx.doi.org/10.1103/PhysRevD.80.113011
http://arxiv.org/abs/0910.4389
http://dx.doi.org/10.1103/PhysRevD.84.036003
http://arxiv.org/abs/1104.1633
http://dx.doi.org/10.1103/PhysRevD.75.075015
http://arxiv.org/abs/hep-ph/0702034
http://dx.doi.org/10.1088/1742-6596/631/1/012019
http://arxiv.org/abs/1503.09041
http://dx.doi.org/10.1103/PhysRevD.83.115014
http://arxiv.org/abs/1103.1627
http://dx.doi.org/10.1142/S0217751X88000254
http://arxiv.org/abs/2004.05200
http://dx.doi.org/10.1007/JHEP02(2020)045
http://arxiv.org/abs/2001.01736
http://dx.doi.org/ 10.1103/PhysRevD.88.033010
http://arxiv.org/abs/1306.0877
http://dx.doi.org/ 10.1103/PhysRevD.93.093009
http://arxiv.org/abs/1601.00977
http://dx.doi.org/ 10.1007/JHEP09(2018)042
http://arxiv.org/abs/1806.07412
http://arxiv.org/abs/1906.03927
http://arxiv.org/abs/2006.03058
http://arxiv.org/abs/1905.11970
http://dx.doi.org/10.1007/JHEP04(2019)174
http://arxiv.org/abs/1812.02158
http://dx.doi.org/10.1007/JHEP04(2019)005
http://arxiv.org/abs/1811.04933
http://dx.doi.org/10.1016/j.physletb.2019.04.043
http://arxiv.org/abs/1812.11289
http://dx.doi.org/ 10.1016/j.physletb.2019.02.028
http://arxiv.org/abs/1812.09677
http://arxiv.org/abs/1905.13421
http://arxiv.org/abs/2005.00775
http://dx.doi.org/ 10.1088/1367-2630/17/11/115010
http://arxiv.org/abs/1507.00170
http://dx.doi.org/ 10.1016/j.nuclphysb.2018.12.016
http://arxiv.org/abs/1806.11040
http://dx.doi.org/10.1007/JHEP12(2017)022
http://arxiv.org/abs/1705.00309
http://dx.doi.org/10.1103/PhysRevD.100.075008
http://arxiv.org/abs/1907.10698
http://dx.doi.org/ 10.1016/0370-2693(82)91246-1
http://dx.doi.org/ 10.1140/epjc/s10052-018-6158-5
http://arxiv.org/abs/1711.10806
http://dx.doi.org/ 10.1016/0370-2693(85)90620-3
http://dx.doi.org/ 10.1016/S0370-2693(03)00421-0
http://arxiv.org/abs/hep-ph/0302027
http://dx.doi.org/10.1103/PhysRevD.98.055030
http://arxiv.org/abs/1805.10684
http://dx.doi.org/ 10.1103/PhysRevLett.93.161801
http://arxiv.org/abs/hep-ph/0404046
http://www.cambridge.org/de/knowledge/isbn/item2710157
http://dx.doi.org/10.1016/j.physletb.2017.10.038
http://arxiv.org/abs/1706.03116
http://dx.doi.org/10.1103/PhysRevD.98.095008
http://arxiv.org/abs/1805.08048
http://dx.doi.org/ 10.1007/JHEP03(2018)067
http://arxiv.org/abs/1801.10530
http://dx.doi.org/ 10.1016/j.physletb.2010.05.073
http://arxiv.org/abs/1004.1177
http://dx.doi.org/ 10.1016/j.physletb.2008.12.010
http://arxiv.org/abs/0810.5239
http://dx.doi.org/ 10.1103/PhysRevD.96.055039
http://arxiv.org/abs/1705.02027
http://dx.doi.org/ 10.1103/PhysRevD.70.013003
http://arxiv.org/abs/hep-ph/0402258
http://dx.doi.org/ 10.1103/PhysRevD.95.076014
http://arxiv.org/abs/1604.08482
http://arxiv.org/abs/1907.04203
http://dx.doi.org/ 10.1016/j.nuclphysb.2004.05.020
http://arxiv.org/abs/hep-ph/0401064
http://arxiv.org/abs/1805.10031
http://dx.doi.org/ 10.1103/PhysRevD.22.2227
http://dx.doi.org/ 10.1103/PhysRevD.25.774
http://dx.doi.org/ 10.1103/PhysRevD.74.113003
http://arxiv.org/abs/hep-ph/0607232
http://dx.doi.org/10.1143/PTP.126.81
http://arxiv.org/abs/1105.2929


70

Sinha, R., P. Roy, and A. Ghosal (2019), Phys. Rev. D99 (3), 033009, arXiv:1809.06615 [hep-ph].

Smirnov, A. Y., and X.-J. Xu (2018), Phys. Rev. D97 (9), 095030, arXiv:1803.07933 [hep-ph].

Smirnov, A. Yu. (2011), Proceedings, 2nd Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2010):

Rome, Italy, December 6-11, 2010, J. Phys. Conf. Ser. 335, 012006, arXiv:1103.3461 [hep-ph].

Sugiyama, H. (2015), in 2nd Toyama International Workshop on Higgs as a Probe of New Physics (HPNP2015) Toyama, Japan,

February 11-15, 2015, arXiv:1505.01738 [hep-ph].

Talamini, V. (2006), 8th International School on Theoretical Physics: Symmetry and Structural Properties of Condensed Matter

(SSPCM 2005): Dedicated to Memory of Prof. Brian G. Wybourne Myczkowce, Poland, August 31-September 7, 2005,

10.1088/1742-6596/30/1/005, [J. Phys. Conf. Ser.30,30(2006)], arXiv:hep-th/0607165 [hep-th].

Talbert, J. (2014), JHEP 12, 058, arXiv:1409.7310 [hep-ph].

Tanabashi, M., et al. (Particle Data Group) (2018), Phys. Rev. D 98, 030001.

Trautner, A. (2016), CP and other Symmetries of Symmetries, Ph.D. thesis (Munich, Tech. U., Universe), arXiv:1608.05240

[hep-ph].

Trautner, A. (2017), Proceedings, 5th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2016):

Warsaw, Poland, November 28 - December 3, 2016, J. Phys. Conf. Ser. 873 (1), 012037, arXiv:1703.03692 [hep-ph].

Turner, J. (2015), Phys. Rev. D92 (11), 116007, arXiv:1507.06224 [hep-ph].
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