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ABSTRACT
The analysis of photometric large-scale structure data is often complicated by the need to account for many

observational and astrophysical systematics. The elaborate models needed to describe them often introduce
many “nuisance parameters”, which can be a major inhibitor of an efficient parameter inference. In this paper,
we introduce an approximate method to analytically marginalise over a large number of nuisance parameters
based on the Laplace approximation. We discuss the mathematics of the method, its relation to concepts such
as volume effects and profile likelihood, and show that it can be further simplified for calibratable systematics
by linearising the dependence of the theory on the associated parameters. We quantify the accuracy of this
approach by comparing it with traditional sampling methods in the context of existing data from the Dark
Energy Survey, as well as futuristic Stage-IV photometric data. The linearised version of the method is able to
obtain parameter constraints that are virtually equivalent to those found by exploring the full parameter space
for a large number of calibratable nuisance parameters, while reducing the computation time by a factor 3-10.
Furthermore, the non-linearised approach is able to analytically marginalise over a large number of parameters,
returning constraints that are virtually indistinguishable from the brute-force method in most cases, accurately
reproducing both the marginalised uncertainty on cosmological parameters, and the impact of volume effects
associated with this marginalisation. We provide simple recipes to diagnose when the approximations made by
the method fail, and one should thus resort to traditional methods. The gains in sampling efficiency associated
with this method enable the joint analysis of multiple surveys, typically hindered by the large number of nuisance
parameters needed to describe them.

1. INTRODUCTION
The Λ Cold Dark Matter (ΛCDM) model of cosmology

offers a compelling explanation for a wide variety of obser-
vations despite the fact that the nature of its dominant com-
ponents, dark matter and dark energy, remains unknown. As
the statistical power of cosmological experiments grows in the
next decade, our ability to stress test the ΛCDM model of
the Universe will improve immensely and provide powerful
constraints on its dark ingredients. In addition, these new ex-
periments may shed light over discrepancies between early-
and late-Universe-derived cosmological constraints that have
recently emerged.

Of highest relevance to this study is the tension affect-
ing the measurement of the amplitude of matter fluctuations,
𝑆8 ≡ 𝜎8 (Ω𝑚/0.3)0.5, where 𝜎8 is the root mean square of
matter fluctuations on an 8 Mpc/ℎ scale, and Ω𝑚 is the frac-
tional energy density in non-relativistic matter. In particular,
the latest prediction from Planck CMB data finds its value
(Planck Collaboration et al. 2020) to be ∼2-3𝜎 higher than
the analogous measurement from photometric surveys such as

∗boryanah@berkeley.edu

KiDS-1000 (KiDS), the Dark Energy Survey (DES) and Hyper
Suprime-Cam (HSC) (Heymans et al. 2021; DES Collabora-
tion 2022, 2018; MacCrann et al. 2015; Hamana et al. 2020).
As data from current and future cosmological surveys such
as the Legacy Survey of Space and Time (LSST), at the Vera
Rubin Observatory (LSST Dark Energy Science Collabora-
tion 2012), the Nancy Grace Roman Space Telescope (Spergel
et al. 2015), or the Euclid satellite (Amendola et al. 2018)
starts to trickle in, it is of paramount importance for cosmol-
ogists to devise robust tests of their analysis pipelines, and to
construct rigorous theoretical frameworks to better understand
these tensions and extract maximal cosmological information.

Photometric surveys offer a pathway to resolving many is-
sues of the standard paradigm by providing measurements of
the clustering and weak gravitational lensing of millions and
soon billions of galaxies on the sky. In particular, the so-
called “3×2pt” analysis (the joint analysis of galaxy cluster-
ing and cosmic shear in tomographic bins) offers a powerful
tool to cosmologists with the potential to break degenera-
cies between cosmological and astrophysical parameters and
yields stringent constraints (Heymans et al. 2021). Such tomo-
graphic analyses have a leverage on the 𝑆8 andΩ𝑚 tensions and
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can yield ∼1-10%-level constraints (e.g., Nicola et al. 2020;
Hadzhiyska et al. 2021; Garcı́a-Garcı́a et al. 2021). Nonethe-
less, it is still unclear whether this tension is driven by system-
atic and modeling errors in the analysis or by new physics.

Large-scale structure surveys in general are affected by a
large number of observational systematic uncertainties, as well
as uncertainties in the physical relation between the astrophys-
ical systems that form the basis of their observables, and the
underlying cosmological quantities we wish to constrain (com-
monly labelled “astrophysical systematics”). With increasing
statistical power, new sources of systematic uncertainty be-
come more relevant, and previously known systematics require
more detailed models. This inevitably leads to an inflation in
the number of nuisance parameters relative to the number of
the physically meaningful cosmological parameters. Exam-
ples of these systematics are: uncertainties in the redshift dis-
tribution of the samples, errors in the measured galaxy shapes
(relevant for weak lensing studies), the link between the abun-
dance of galaxies and the underlying matter overdensities, and
the intrinsic alignments between galaxy orientations and the
local structures. Moreover, since the future of cosmology lies
in the combination of multiple observational probes, the simul-
taneous modeling of these effects across different datasets, and
the efficient sampling of the resulting (typically large) param-
eter space is bound to become a top priority in the next few
years.

To illustrate this, the latest analysis of galaxy clustering and
weak gravitational lensing carried out by the Dark Energy
Survey (DES) (DES Collaboration 2022) included 6 cosmo-
logical parameters (ΛCDM and the total neutrino mass) and
25 nuisance parameters. Due to the curse of dimensionality,
this increase in the number of parameters leads to strong ineffi-
ciencies in the standard rejection sampling algorithms used to
explore the parameter space. The resulting parameter chains
take long times to converge (e.g. days or weeks for state-of-
the-art datasets), even though we are ultimately only interested
in the marginal posterior distribution of a much smaller pa-
rameter space.

This problem can be addressed through various approaches.
On one hand, the use of gradient-based sampling algorithms,
such as Hamiltonian Monte-Carlo approaches (MacKay 2002;
Hoffman & Gelman 2011), or other methods that are well-
suited to multiple-parameter problems, can significantly speed
up the sampler convergence time and provide constraints in a
reasonable amount of time. Recently, Ruiz-Zapatero et al.
(2023) validated the analytical marginalisation of redshift cal-
ibration models with up to ∼ 100 parameters using self-tuning
Hamiltonian Monte-Carlo (a problem that has also been ad-
dressed by e.g. Stölzner et al. (2021); Zhang et al. (2023) using
other methods). However, the performance of the marginali-
sation method depends on the choice of nuisance parameters,
on one hand through their effect on the theory prediction, and
on the other hand through their priors.

For Gaussian data with parameters affecting the theory pre-
dictions to linear order, this can be effectively done by modify-
ing the covariance matrix and fixing the marginalised param-
eters (Rybicki & Press 1992). For more complex parameters
that appear as higher-order terms in the model such as the
galaxy bias parameters, exact analytic marginalisation is not
generally possible. One may resort to Gibbs sampling-like
schemes (Geman & Geman 1984), where this marginalisa-
tion is done numerically on the fly, and which can potentially
lead to significant speed-ups in the sampling process. How-
ever, the efficiency of this approach depends on the effective

acceptance rate of the marginalisation step, and on the degen-
eracy between nuisance and cosmological parameters. Here,
we propose a general technique that allows for approximate
analytical marginalisation over both linear and non-linear nui-
sance parameters in an efficient manner. Similar methods
have been put forward in the past (e.g., Taylor & Kitching
2010), with a variety of applications in mind (Bridle et al.
2002; Stölzner et al. 2021). Here, we will quantify the validity
of this method in the context of photometric 3×2pt analyses
with current data from DES, and futuristic Stage-IV-like data
mimicking experiments such as LSST.

This paper is organised as follows. In Section 2, we pro-
vide a general introduction to our analytical marginalisation
method and discuss the interpretation of the various terms
we define and their relevance to volume effects and param-
eter priors. In Section 3, we introduce relevant aspects of
the analysis of cosmological photometric surveys and explore
possible ways in which our method can be used to marginalise
over linearisable and non-linearisable nuisance parameters in
the model. In Section 4, we showcase the effect of employing
our method both in terms of deriving unbiased constraints on
the cosmological parameters and also in terms of the conver-
gence time and performance. We summarise our findings and
comment on their implications for the future of photometric
survey analysis in Section 5.

2. LIKELIHOODS AND NUISANCE PARAMETERS
Our aim is to explore the posterior distribution 𝑝( ®𝜃 |d),

where ®𝜃 is a set of model parameters, and d is the data. Using
Bayes’ theorem, the posterior can be written in terms of the
likelihood 𝑝(d| ®𝜃) and prior 𝑝( ®𝜃) as

𝑝( ®𝜃 |d) ∝ 𝑝(d| ®𝜃)𝑝( ®𝜃). (1)

We will decompose the model parameters as ®𝜃 = { ®Ω, ®𝑛},
where ®Ω is a set of parameters we care about (e.g. fundamen-
tal cosmological parameters), and ®𝑛 is a vector of nuisance
parameters, describing various observational or theoretical
uncertainties, which are largely irrelevant to the fundamen-
tal question being explored. In other words, the distribution
we aim to obtain is the marginalised posterior

𝑝( ®Ω|d) =
∫

𝑑®𝑛 𝑝( ®Ω, ®𝑛|d). (2)

For simplicity, in what follows, for any probability distribu-
tion 𝑝( ®𝜃), we will define the “chi-squared”, 𝜒2, as

𝜒2 ( ®𝜃) ≡ −2 log 𝑝( ®𝜃) + 𝐾, (3)

where 𝐾 is an arbitrary constant that does not depend on the
random variables ®𝜃. Note that it is more common to define
𝜒2 in terms of the likelihood, but in this paper, we will always
apply it to the posterior, generalising to the presence of priors.

2.1. Profiling and analytical marginalisation
In order to approximate the marginal distribution in Eq. (2),

let us start by considering the best-fit value of the nuisance
parameters having fixed ®Ω. That is, we define ®𝑛∗ ( ®Ω) as

®𝑛∗ ( ®Ω) ≡ arg max®𝑛𝑝( ®Ω, ®𝑛|d). (4)
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Fig. 1.— Joint posterior distribution on two parameters, Ω and 𝑛, with an approximate degeneracy of the form 𝑛Ω1.2 ∼ const. The large bottom left panel shows
the joint distribution as red contours, with the position of the best-fit value of 𝑛 as a function of Ω in solid black. The central panel shows the 𝜒2 for a fixed value
of Ω = Ω0 (shown as the dotted line in the first panel). The red line shows the true 𝜒2, while the dashed black line shows the Laplace approximation. The top
panel shows the probability distribution along Ω = Ω0 (given by 𝑝 ∝ exp(−𝜒2/2)), with the exact distribution and its Laplace approximation in red and dashed
black respectively. The bottom right panel shows the distribution of Ω marginalised over 𝑛. The exact result is shown in red, with its Laplace approximation
shown in dashed black. The blue line shows the marginalised profile likelihood obtained by simply maximising the joint likelihood over 𝑛 for each Ω. The Laplace
approximation provides an excellent description of the marginalised distribution, while the profile likelihood returns a distribution with very similar width but
centered, by construction, on the best-fit value of Ω, avoiding volume effects.

Assuming that the distribution is differentiable at all points,
®𝑛∗ then satisfies

𝜕𝜒2

𝜕®𝑛

����
®𝑛∗
= 0. (5)

Following Taylor & Kitching (2010), we can then approx-
imate the distribution at each value of ®Ω by expanding 𝜒2 to
second order in ®𝑛 around ®𝑛∗, i.e.:

𝜒2 ( ®Ω, ®𝑛) ≃ 𝜒2
∗ ( ®Ω) + Δ®𝑛𝑇F∗Δ®𝑛, (6)

where 𝜒2
∗ ( ®Ω) ≡ 𝜒2 ( ®Ω, ®𝑛∗), Δ®𝑛 ≡ ®𝑛 − ®𝑛∗, and we have defined

the matrix
F∗,𝑖 𝑗 =

1
2
𝜕2𝜒2

𝜕𝑛𝑖𝜕𝑛 𝑗

����
®𝑛∗
. (7)

This is the so-called Laplace approximation (Kass et al. 1990).
In this limit, the distribution is locally (i.e. at each ®Ω) a
multivariate normal distribution in ®𝑛, and thus the integral in
Eq. (2) can be solved analytically. The resulting marginalised
likelihood has a 𝜒2

𝑚 ( ®Ω) ≡ −2 log 𝑝( ®Ω|d) given by

𝜒2
𝑚 ( ®Ω) ≃ 𝜒2

∗ ( ®Ω) + log
{
det

[
F∗ ( ®Ω)

]}
+ const.. (8)

In what follows, we will label the two contributions in
Eq. (8), 𝜒2

∗ and log det F∗, as the profile and Laplace terms
respectively:

1. The profile term is related to the “profile likelihood”
(Cole et al. 2013), defined as

𝑝prof ( ®Ω|d) ∝ 𝑝( ®Ω, ®𝑛∗ |d). (9)
The profile likelihood is a tool commonly used in fre-
quentist parameter inference (Cousins 1995). The ad-
vantage of the profile likelihood is that its maximum is,
by definition, the global maximum of the joint distri-
bution. Understanding this maximum as an estimator
for ®Ω given the data, constraints on ®Ω can be obtained
by calculating this maximum for random simulated re-
alisations of the data. Alternatively, if the distribution
is sufficiently close to a Gaussian, these constraints can
be simply obtained in terms of thresholds of the associ-
ated residual 𝜒2, Δ𝜒2 ( ®Ω) = 𝜒2 ( ®Ω) − 𝜒2

min (Feldman &
Cousins 1998). Additionally, the posterior profile likeli-
hood is, by construction, centered on the best-fit param-
eters, and is thus free from volume effects associated
with the choice of the nuisance parameters (Hamann
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et al. 2007; Herold et al. 2022; Campeti & Komatsu
2022) (see Section 2.3).

2. The Laplace term, sometimes referred to as Occam’s
razor term, is associated with the quadratic contribution
to the Laplace approximation (Eq. (8)), and accounts,
to first order, for the volume in the space of nuisance
parameters ®𝑛 that has been integrated over for fixed ®Ω
(i.e. the local curvature of the joint distribution at each
®Ω)1. As we will see in Section 2.3, the Laplace term is
associated with volume effects, and is subdominant with
respect to the profile term for sufficiently constraining
data.

The role of the profile and Laplace terms is illustrated in Fig. 1.
The figure shows a bivariate distribution for two parameters
with an approximate degeneracy of the form 𝑛Ω1.2 ∼ const..
The contour levels of the true distribution are shown in red
in the bottom left panel, while the black solid line shows the
best-fit value of 𝑛 as a function of Ω. The middle panel shows
the exact 𝜒2 of the distribution as a function of 𝑛 for a fixed
Ω = Ω0 (for convenience, we chose Ω0 to be the maximum
of the distribution, also shown as a dotted line in the bottom
panel). The black dashed line shows the quadratic Laplace
approximation to the red curve, with the position of the best-
fit 𝑛 (for Ω = Ω0) marked by the blue line. The top panel
shows the distribution along the Ω = Ω0 line. The exact distri-
bution is again shown in red, and the Laplace approximation
to it is shown in dashed black. The “profile likelihood” ap-
proximation, which fixes 𝑛 to its best-fit value, is shown in
blue. Finally, the bottom right panel shows the distribution
marginalised over 𝑛, 𝑝(Ω). The true marginal is shown in
red. The result of analytically marginalising over 𝑛 using the
Laplace approximation is shown in dashed black, and recov-
ers the true marginal almost exactly. Finally, the conditionally
maximised distribution accounting only for the profile term in
Eq. (8) is shown in blue. As mentioned above, the profile-only
approximation recovers a distribution that is centered at the
best-fit value of Ω (marked by the dotted line). The shift in
the peak of the true marginal observed is caused by volume
effects, which we discuss in more detail in Section 2.3.

Two qualitative results should be borne in mind in what
follows. First, the Laplace approximation provides a reason-
ably accurate prediction for the marginal for sufficiently well-
behaved distributions. Secondly, keeping only the profile term,
𝑝( ®Ω, ®𝑛∗ |d), recovers a distribution that has approximately the
same width but is, by construction, centered on the maximum
of the full (un-marginalised) distribution, 𝑝( ®Ω, ®𝑛|d).

It is worth noting that including the Laplace term in Eq. (8)
should come at virtually no additional computational cost.
Finding ®𝑛∗ ( ®Ω) requires solving for 𝜕®𝑛𝜒2 = 0, which can be
done efficiently using gradient descent methods. Finding the
optimal step size in these algorithms often requires evaluating
the Hessian of the function being minimised, and therefore the
matrix F∗ entering the Laplace term, is already a product of
the minimisation algorithm. For instance, the iteration in the
case of the Newton-Raphson algorithm is given by

®𝑛∗,𝑖+1 = ®𝑛∗,𝑖 −
(
[∇𝑛∇𝑇𝑛 𝜒2]−1 · ∇𝑛𝜒2

)
𝑖
, (10)

1 In the frequentist context, Barndorff-Nielsen (1983) introduced the for-
mula in Eq. (8) under the name of “modified profile likelihood”.

where ∇𝑛𝜒2 is the gradient of 𝜒2 with respect to ®𝑛, and
∇𝑛∇𝑇𝑛 𝜒2 ≡ 2F is its Hessian matrix. In the applications we
will explore here, when Eq. (5) cannot be solved analytically,
we will make use of a modified version of the Newton-Raphson
algorithm, which we describe in the next section.

2.2. Gaussian likelihoods
Let us now apply the method described in the previous

section to the case of Gaussian likelihoods. In this case we
assume that the posterior distribution takes the form:

−2 log 𝑝( ®Ω, ®𝑛|d) = (d − t)𝑇C−1 (d − t) + 𝜒2
𝑝,Ω ( ®Ω) + 𝜒

2
𝑝,𝑛 (®𝑛).

(11)
Here t( ®Ω, ®𝑛) is the theory vector, which depends on the model
parameters, C is the covariance matrix of the data, which we
assume to be model-independent, and 𝜒2

𝑝,Ω
and 𝜒2

𝑝,𝑛 are the
parameter priors. Although the methodology described below
is straightforward to generalise to the case of arbitrary priors,
for simplicity we will assume that the nuisance parameters
have Gaussian priors, and therefore

𝜒2
𝑝,𝑛 (®𝑛) = (®𝑛 − ®𝑛𝑝)𝑇C−1

𝑛 (®𝑛 − ®𝑛𝑝), (12)

where C𝑛 is the prior covariance. In the case of non-Gaussian
priors, it is often possible to apply a transformation to the
nuisance parameters that Gaussianizes (e.g. via normaliz-
ing flows) without introducing any pathologies (singularities,
etc.).

In order to find ®𝑛∗ and F , we need the first and second
derivatives of the 𝜒2 with respect to ®𝑛. In this case, these are
given by:

𝜕𝜒2

𝜕𝑛𝑖
= −2𝜕𝑖t𝑇C−1 (d − t) + 2

∑︁
𝑗

[
C−1
𝑛

]
𝑖 𝑗
(𝑛 𝑗 − 𝑛𝑝, 𝑗 ), (13)

F𝑖 𝑗 = 𝐹𝑖 𝑗 + ΔF𝑖 𝑗 , (14)
where we have used the shorthand 𝜕𝑖 ≡ 𝜕/𝜕𝑛𝑖 , and we have
defined

𝐹𝑖 𝑗 ≡ 𝜕𝑖t𝑇C−1 𝜕 𝑗 t +
[
C−1
𝑛

]
𝑖 𝑗
, (15)

ΔF𝑖 𝑗 ≡ 𝜕𝑖𝜕 𝑗 t𝑇 C−1 (t − d). (16)
On the one hand, the first contribution to F , 𝐹, has three

interesting properties:
• It is positive-definite, and therefore invertible.

• It is independent of the data d.

• It coincides with the Fisher matrix of the Gaussian like-
lihood of Eq. (11) with respect to the nuisance parame-
ters.

On the other hand, when evaluated on the hypersurface ®𝑛 =

®𝑛∗ ( ®Ω), t is close to d, and therefore the contribution from ΔF
is usually smaller than 𝐹. These properties will be important
when discussing volume effects in the next section. For now,
we will use the positive-definiteness of 𝐹 to define a modified
Newton-Raphson iteration, by swapping the Hessian matrix
2F with 2𝐹:

®𝑛∗,𝑖+1 = ®𝑛∗,𝑖 −
(

1
2
𝐹−1 ∇𝑛𝜒2

)
𝑖

. (17)

This results in the Gauss-Newton method, which improves
on the Newton-Raphson iteration in two aspects: first, 𝐹 is
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invertible and likely more stable than the Hessian matrix,
which need not be positive-definite. Secondly, 𝐹 does not
require calculating second derivatives of the theory vector
(although this is not a computationally challenging problem
for the cases considered here). Note that replacing Hes-
sian matrix with Fisher matrix in Newton-Raphson iteration
often appears in various problem, most notably in optimal
quadratic estimators (Tegmark 1997), see Madhavacheril et al.
(2015) for further discussion. Other approaches, such as the
Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt
1963), build on this method by improving the numerical sta-
bility of 𝐹−1 through regularisation. The problems addressed
here do not require us to resort to these.

2.3. Volume effects and priors
Consider now the case of a data vector with a Gaussian like-

lihood and poor constraining power (e.g. noise-dominated).
In this limit, we would naı̈vely expect the marginalised poste-
rior distribution to return largely unconstrained ®Ω. To verify if
this is the case, consider first the profile contribution in Eq. (8),
averaged over realisations of the data:

⟨𝜒2
∗ ⟩( ®Ω) = Tr

(〈
(d − t( ®Ω, ®𝑛∗)) (d − t( ®Ω, ®𝑛∗))𝑇

〉
C−1

)
. (18)

If the data are noise-dominated, the fluctuations in d−t( ®Ω, ®𝑛∗)
are dominated by noise, rather than the changes in ®Ω. In that
case ⟨(d − t)𝑇 (d − t)⟩ ≃ C, and therefore

⟨𝜒2
∗ ⟩(Ω) ≃ 𝑁𝑑 , (19)

where 𝑁𝑑 is the number of data points. Thus, as we expected,
this contribution tends to a constant that does not favour any
region of parameter space.

Consider now the Laplace contribution. As we argued,
the contribution ΔF∗ is normally small compared to 𝐹∗ (both
evaluated at ®𝑛∗), and therefore

log det F∗ = log det(𝐹∗ + ΔF∗) ≃ log det 𝐹∗ (20)

which, as we discussed before, is independent of the data.
The Laplace contribution to the marginal distribution is thus
a parameter-dependent function that does not depend on the
data, and which would favour particular regions of parameter
space even in the absence of data!

This is an example of a “volume effect”: the process of
marginalisation favours regions of parameter space that cover
a larger volume of the probability density in the direction of in-
tegration, causing a shift in the maximum of the marginalised
distribution with respect to the maximum of the full distribu-
tion. Volume effects depend on the definition of the nuisance
parameters and, if informative, the associated priors. A classi-
cal example is trying to fit noisy data to a power-law model of
the form 𝑛 𝑥Ω, where 𝑥 is an independent variable taking values
𝑥 > 1, and (𝑛,Ω) are free parameters. If the data are noise-
dominated, scattering around zero, a very negative value of the
power law index Ω is able to obtain a reasonable fit to the data
for a wider range of amplitudes 𝑛, and thus the marginalised
distribution will favour values of Ω that are significantly dif-
ferent from the best-fit. This often happens for non-linear
parameters like Ω when marginalising over amplitude-like pa-
rameters such as 𝑛. The most pernicious aspect of volume
effects is that their impact on the marginalised distribution
depends on the specific parametrisation used to define the nui-
sance parameters. In the example above, redefining the model

to 𝑛 (𝑥/𝑥0)Ω, where 𝑥0 is a fixed quantity, larger than any value
of 𝑥, would result in marginalised posteriors that favour large
and positive values of Ω for noisy data (instead of negative).

A common choice to eliminate the dependence on model
parametrisation, and thus to partially mitigate the impact of
volume effects is to use the well-known Jeffreys prior:

𝑝J ( ®𝜃) =
√

det 𝐹, (21)

where 𝐹 is the Fisher information matrix, which we introduced
in the previous section (Eq. (15) for Gaussian distributions).
Comparing this with Eq. (8), we can see that the inclusion
of a Jeffreys prior for the nuisance parameters has the effect
of partially cancelling the contribution from the Laplace term
(since, as we argued, ΔF is generally smaller than 𝐹 2). This
may not be entirely surprising since, as we saw, the Laplace
term is in essence the type of volume effect that the Jeffreys
prior is meant to address. However, this detour leads us to
an interesting result: for Gaussian data with negligible pa-
rameter dependence in the covariance matrix, the profile like-
lihood will in general be a reasonable approximation to the
true marginalised posterior in the presence of a Jeffreys prior.
In this sense, maximisation and marginalisation are approxi-
mately equivalent as long as we avoid volume effects. We note
that the strictly correct way of applying Jeffreys prior would be
to compute the full Fisher matrix (i.e., for both cosmological
and nuisance parameters), as our approach ignores the inter-
dependence between the ®Ω parameters, but we argue that this
has but a small effect.

2.4. Linear parameters
Let us now consider the case of linear parameters. I.e.

consider a Gaussian likelihood in the form of Eq. (11) where
all parameters live in the theory prediction, which has the form

t = t0 + T®𝑛, (22)

where t0 and T are a vector and a matrix independent of ®𝑛, but
potentially dependent on ®Ω. For simplicity, we will assume
that the prior on ®𝑛 is centered at zero (®𝑛𝑝 = 0). This can always
be achieved by simply redefining ®𝑛′ ≡ ®𝑛 − ®𝑛𝑝 , and adding the
contribution T®𝑛𝑝 to t0.

The case of linear parameters is particularly interesting,
because the 𝜒2 is quadratic in ®𝑛 by construction, and the
Laplace approximation is exact. Since the second derivatives
of the theory vector are zero, ΔF = 0, and the Fisher matrix
is independent of ®𝑛 and given by

F = 𝐹 = T𝑇C−1T + C−1
𝑛 . (23)

Furthermore, the best-fit parameters can be found analytically:

®𝑛∗ = 𝐹−1 T𝑇C−1r, (24)

where r ≡ d − t0 is the data rescaled by the ®𝑛-independent
component of the theory. Using ®𝑛∗ to compute the 𝜒2, and
using Eq. (23), we obtain the marginalised 𝜒2

𝑚 of Eq. (8) which,
as we said, is exact in this case.

The first thing worth noting is that, if the matrix T is indepen-
dent of ®Ω, then 𝐹 is constant, and so is the Laplace term. Up
to an irrelevant overall constant, the marginalised 𝜒2 is then

2 In addition to this, whereas 𝐹 is evaluated along ®𝑛∗ in the Laplace
approximation, the Jeffreys prior is evaluated at every point in parameter
space.
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equivalent to 𝜒2
∗ , obtained by substituting the best-fit value

of ®𝑛. Thus, the approximate relation between marginalisation
and maximisation we outlined in the previous section becomes
an equivalence when the data is Gaussian with a linear model
in ®𝑛 since, in this case, there are no volume effects. All volume
effects resulting from a dependence of T on ®Ω are otherwise
incorporated exactly in the Laplace term. If the priors on ®𝑛
are sufficiently tight, the second term in Eq. (23) dominates,
and these volume effects become negligible.

Let us now focus on the profile term. Substituting ®𝑛∗ from
Eq. (24), we obtain

𝜒2
∗ = (Wr)𝑇C−1 (Wr) + r𝑇C−1T𝐹−1C−1

𝑛 𝐹
−1T𝑇C−1r, (25)

where the second term comes from the prior on ®𝑛, and we have
defined the matrix

W ≡ I − T𝐹−1T𝑇C−1, (26)

with I the identity.
First, consider the limit of no external prior (i.e. C−1

𝑛 = 0).
In this case, we can ignore the second term in Eq. (25), and
the Fisher matrix is 𝐹 = T𝑇C−1T. We can then see that the
matrix W projects r onto the subspace that is orthogonal to all
the columns of T (with orthogonality defined using the inverse
covariance of the data C−1 as a dot product). Marginalising
over linear parameters is therefore equivalent in this limit to
deprojecting all modes of the data that live in the subspace
spanned by the columns of T (Rybicki & Press 1992).

Secondly, Eq. (25) can be simplified significantly into

𝜒2
∗ = r𝑇 C̃−1r, (27)

where C̃ is a modified covariance given by

C̃ = C + TC𝑛T𝑇 . (28)

To obtain this beautifully simple result, one only needs to ex-
pand first term in Eq. (25), simplify the result, and make use of
the Woodbury matrix identity (Woodbury 1950). It is worth
stressing again that this result is an exact expression for both
the marginal posterior (using a Jeffreys prior) and the con-
ditionally maximised posterior, as explained in the previous
section. Maximising and marginalising over ®𝑛 therefore result
in the same Gaussian likelihood with the theory vector evalu-
ated at ®𝑛 = 0 (or at its prior mean if non-zero), and a modified
covariance C̃, obtained by simply assigning additional vari-
ance in quadrature to the modes of the data that align with the
columns of T (with this extra variance given by the associated
®𝑛 parameter priors).

Note that while this approach is algorithmically the fastest, it
does not produce a best-fit value of a given nuisance parameter.
This is occasionally useful even for nuisance parameters. A
canonical example is the shot noise contribution to the galaxy
power spectrum, the value of which can tell us about the halos
in which the given tracer galaxies reside.

To summarise: in the case of Gaussian data, negligible pa-
rameter dependence of the covariance matrix, and a theory
model that is linear in the nuisance parameters, the Laplace
approximation is exact. In this case, there is a mathematical
equivalence between marginalisation (using a Jeffreys prior),
𝜒2 minimisation, deprojection, and simply adding in quadra-
ture the prior uncertainty on the marginalised parameters at
the data level. If the modes associated with ®𝑛 (i.e. the columns
of T) depend on the other parameters of the model, the associ-
ated volume effects are captured exactly by the Laplace term,

which is simply given by the log-determinant of Eq. (23). Im-
portantly, in this scenario, volume effects become negligible
if the constraints on nuisance parameters are either dominated
by data, or by the priors.

3. COSMOLOGY FROM TOMOGRAPHIC
LARGE-SCALE STRUCTURE DATA

To explore the validity of the Laplace approximation in-
troduced in the previous section to marginalise over nuisance
parameters in the context of cosmology, we will study the case
of 3×2pt analyses, combining photometric galaxy clustering
and weak lensing.

3.1. Galaxy clustering and weak lensing
Photometric redshift surveys make use of two main cosmo-

logical probes: cosmic shear (i.e. the distortion in the shape
of galaxies caused by weak gravitational lensing) and galaxy
clustering. In both cases, the data are typically split into pho-
tometric redshift bins, and the data vector is constructed by
combining various angular auto- and cross-correlations be-
tween pairs of such bins. The galaxy overdensity 𝛿𝛼𝑔 (n̂) and
the weak lensing shear 𝛾𝛼

𝐺
(n̂) for galaxies in redshift bin 𝛼

can be related to the three-dimensional fluctuations in the
galaxy number density Δ𝑔 (x) and the matter density Δ𝑚 (x)
via (Bartelmann & Schneider 2001; Krause et al. 2017)

𝛿𝛼𝑔 (n̂) =
∫ 𝜒𝐻

0
𝑑𝜒 𝑞𝛼𝑔 (𝜒) Δ𝑔 (𝜒(𝑧)n̂, 𝑧),

𝛾𝛼𝐺 (n̂) =
∫ 𝜒𝐻

0
𝑑𝜒 𝑞𝛼𝐺 (𝜒)

[
−𝜒−2ð2∇−2Δ𝑚 (𝜒n̂, 𝑧)

]
, (29)

where n̂ is the sky direction, 𝜒 is the comoving radial distance
at redshift 𝑧, 𝜒𝐻 is the distance to the horizon, 𝑞𝛼𝑔 and 𝑞𝛼𝛾
are the radial kernels for galaxy clustering and cosmic shear,
respectively, and ð is the spin-raising differential operator,
acting on a spin-𝑠 quantity as:

ð 𝑠 𝑓 (𝜃, 𝜑) = −(sin 𝜃)𝑠
(
𝜕

𝜕𝜃
+ 𝑖

sin 𝜃
𝜕

𝜕𝜑

)
(sin 𝜃)−𝑠 𝑠 𝑓 (30)

and turning it into a spin-(𝑠 + 1) quantity.
The radial kernels in both cases are given by

𝑞𝛼𝑔 (𝜒) ≡
𝐻 (𝑧)
𝑐

𝑝𝛼 (𝑧),

𝑞𝛼𝐺 (𝜒) ≡
3
2
𝐻2

0Ω𝑚
𝜒

𝑎(𝜒)

∫ ∞

𝑧 (𝜒)
𝑑𝑧′𝑝𝛼 (𝑧′)

𝜒(𝑧′) − 𝜒
𝜒(𝑧′) , (31)

where 𝑐 is the speed of light, 𝐻 (𝑧) is the Hubble expansion
rate, 𝐻0 ≡ 𝐻 (𝑧 = 0), Ω𝑚 is the matter density parameter
today, and 𝑝𝛼 (𝑧) is the redshift distribution in bin 𝛼,

Cosmic shear observations are sensitive not only to the weak
lensing distortion of galaxy shapes, but also to the intrinsic
alignments (IAs) in the orientation of galaxies due to local
interactions. The total observed cosmic shear signal is thus

𝛾𝛼 = 𝛾𝛼𝐺 + 𝐴IA𝛾
𝛼
𝐼 , (32)

where 𝛾𝛼
𝐺

is the lensing signal, given by Eq. (29), and 𝐴IA𝛾
𝛼
𝐼

is
the intrinsic alignment component. Using the linear non-linear
alignment model, the latter is given by

𝛾𝛼𝐼 (n̂) = −
∫ 𝜒𝐻

0
𝑑𝜒 𝑞𝛼𝐼 (𝜒) [−𝜒−2ð2∇−2Δ𝑚 (𝜒n̂, 𝑧)], (33)
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and 𝐴IA is an unknown amplitude parameter describing the
strength of the local alignment signal. The IA radial kernel is
the same as the galaxy clustering kernel

𝑞𝛼𝐼 (𝜒) =
𝐻 (𝑧)
𝑐

𝑝𝛼 (𝑧). (34)

The relation between the galaxy overdensityΔ𝑔 and the mat-
ter overdensity Δ𝑚 is complex in detail (non-linear, non-local
and stochastic). Over mildly non-linear scales, one can how-
ever use a perturbative approach, relating Δ𝑔 with scalar com-
binations of the Hessian of the gravitational potential 𝜕𝑖𝜕 𝑗Φ
(where Φ is normalised so that ∇2Φ ≡ Δ𝑚). Following Mc-
Donald & Roy (2009); Abidi & Baldauf (2018), here we will
expand this bias relation to second order, including non-local
contributions, so that:

Δ𝑔 = 𝑏1Δ𝑚+
𝑏2
2!

(Δ2
𝑚−⟨Δ2

𝑚⟩)+
𝑏𝑠

2!
(𝑠2−⟨𝑠2⟩)+𝑏∇∇2Δ𝑚. (35)

Here 𝑠2 ≡ 𝑠𝑖 𝑗 𝑠𝑖 𝑗 is the trace of the squared tidal tensor, where
𝑠𝑖 𝑗 ≡ 𝜕𝑖𝜕 𝑗Φ − ∇2Φ/3. The quantities 𝑏1, 𝑏2, 𝑏𝑠 , and 𝑏∇ are
the so-called “linear”, “quadratic”, “tidal”, and “non-local”
bias parameters, which characterise the response of the galaxy
overdensity to the corresponding terms in perturbation theory,
including the impact of non-local effects on scales compara-
ble with the Lagrangian halo size. Within this formalism, and
assuming that the bias parameters are constant within each
redshift bin, the projected galaxy overdensity can then be ex-
pressed as a sum over the projected version of the different
operators in tishe previous equation:

𝛿𝛼𝑔 (n̂) =
∑︁
𝑘

𝑏𝛼,𝑘 , 𝛿
𝛼
𝑘 (n̂), (36)

where 𝑘 runs over the set {1, 2, 𝑠,∇}, corresponding to the
various operators, dependent only on the matter overdensity
and tidal tensor, that contribute to the total galaxy overdensity.
𝑏𝛼,𝑘 is the value of each associated bias parameter in bin 𝛼,
and

𝛿𝛼𝑘 (n̂) ≡
∫ 𝜒𝐻

0
𝑑𝜒 𝑞𝛼𝑔 (𝜒)Δ𝑘 (n̂), (37)

with
Δ1 ≡ Δ𝑚, Δ2 ≡ Δ2

𝑚 − ⟨Δ2
𝑚⟩,

Δ𝑠 ≡ 𝑠2 − ⟨𝑠2⟩, Δ∇ ≡ ∇2Δ𝑚. (38)
For some of the results shown in Section 4 we will consider
only linear bias, setting 𝑏2 = 𝑏𝑠 = 𝑏∇ = 0. Either of these
bias schemes is only valid on sufficiently large scales, and
therefore we will limit our analysis to multipoles ℓ < 𝑘max �̄�,
where �̄� is the comoving distance to the mean redshift of
the galaxy tracer under analysis. The maximum wavenumber
used will be 𝑘max = 0.15 Mpc−1 when using linear bias, and
𝑘max = 0.3 Mpc−1 when using the perturbative approach above
(Pandey et al. 2020).

Comparing Eq. (32) and Eq. (36), we see that we can de-
scribe both tomographic galaxy clustering and cosmic shear
as a projected tracer 𝑢𝛼 (n̂) with the generic form

𝑢𝛼 (n̂) = 𝜖𝑢 𝑢𝛼𝑀 (n̂) +
∑︁
𝑘

𝑏𝑢𝛼,𝑘 𝑢
𝛼
𝑘 (n̂) , (39)

where 𝑏𝑢
𝛼,𝑘

are bias parameters (specifying the tracer type 𝑢),
𝑢𝛼
𝑀

and 𝑢𝛼
𝑘

are projected quantities that depend only on cosmo-
logical observables (matter overdensities, comoving distances

etc.) and the radial kernels, and 𝜖𝑢 is a Boolean variable that is
either 1 if the tracer contains an unbiased contribution (as is the
case of cosmic shear), and 0 otherwise (as is the case of galaxy
clustering). The index 𝛼 in Eq. (39) runs over the redshift bins,
which allows for the general case of having redshift-dependent
bias functions. If this is not the case, 𝑏𝑢

𝛼,𝑘
≡ 𝑏𝑢

𝑘
can optionally

be assumed to not vary across redshift bins.
We can relate the power spectrum, 𝑃𝑋𝑌 (𝑘, 𝑧), of two three-

dimensional quantities 𝑋 and𝑌 (e.g., Δ𝑘) to the angular cross-
power spectrum of their associated projected tracers in redshift
bins 𝛼 and 𝛽 (e.g. 𝛿𝛼

𝑘
) via:

𝐶
(𝑋,𝛼) , (𝑌,𝛽)
ℓ

=

∫
𝑑𝜒

𝜒2 𝑞
𝛼
𝑋 (𝜒) 𝑞

𝛽

𝑌
(𝜒) 𝑃𝑋𝑌

(
𝑘 =

ℓ + 1/2
𝜒

, 𝑧(𝜒)
)
,

(40)
where we have assumed the Limber approximation (Limber
1953; Afshordi et al. 2004), appropriate for the wide radial ker-
nels considered in this work. Note that in principle the lensing
kernel should be multiplied by an ℓ-dependent prefactor

𝐺ℓ ≡

√︄
(ℓ + 2)!
(ℓ − 2)!

1
(ℓ + 1/2)2 (41)

to account for the difference between angular and three-
dimensional derivatives in Eq. (29) (i.e. 𝜒2ð2∇−2 . 1).

To calculate the matter power spectrum we will use the
Halofit fitting function Smith et al. (2003) with revisions
from Takahashi et al. (2012a). To calculate the power spectra
between the different perturbative matter fields involved in the
bias expansion (Eq. (38)) we will make use of Fast-PT 3. The
procedure is described in McEwen et al. (2016) and we refer
readers to that paper for further details.

The cosmological analysis of tomographic weak lensing and
galaxy clustering two-point functions requires accounting for,
and propagating uncertainties in some of the ingredients of the
corresponding theoretical predictions. This is usually done by
defining a model that describes the impact of the associated
effects, and marginalising over the nuisance parameters of that
model. The nature of these parameters can be classified into
two main types:

• Calibratable parameters: these are parameters on which
relatively tight priors can be placed using external data
(i.e. they can be calibrated). These are normally associ-
ated with observational effects, such as shape measure-
ment or photometric redshift errors.

• Non-calibratable parameters: these are parameters for
which no reliable prior information exists, and which
must therefore be measured with our own data. These
are normally associated with astrophysical uncertainties
specific to the sample under study, such as galaxy bias
or intrinsic alignment parameters.

The next two sections describe the strategies we will use to
marginalise over both types of nuisance parameters.

3.2. Calibratable systematics: linearisation
In the presence of tight priors, which we will further assume

to be Gaussian, the nuisance parameters may not stray far from
their prior mean. In that case, we can Taylor-expand the theory

3 https://github.com/JoeMcEwen/FAST-PT

https://github.com/JoeMcEwen/FAST-PT
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prediction as in Eq. (22)

t( ®Ω, ®𝑛) = t0 ( ®Ω) + T (®𝑛 − ®𝑛𝑝), (42)

where ®𝑛𝑝 is the prior mean, and

t0 ≡ t( ®Ω, ®𝑛𝑝), T ≡ 𝜕t
𝜕®𝑛

����
®𝑛𝑝
. (43)

Since now the theory is linear with respect to ®𝑛 − ®𝑛𝑝 , we
can then follow the procedure in Section 2.4 to analytically
marginalise over those parameters. As we discussed, we sim-
ply modify the covariance of the data vector (in this case, a
collection of power spectra) as in Eq. (28), and then sample the
resulting Gaussian likelihood evaluating t at the prior mean
of ®𝑛. Two important things should be noted. First, in doing
this, we have neglected the parameter dependence on ®Ω of the
Laplace term, given by

log
[
det

(
T𝑇C−1T + C−1

𝑛

)]
(44)

and therefore omit it from the calculation, as it only adds a
multiplicative constant in this approximation. If the prior is
sufficiently tight, this term is dominated by the constant C−1

𝑛

contribution, so the approximation is reasonable. Secondly,
since the modified covariance matrix (Eq. (28)) now involves a
term of the form TC𝑛T𝑇 , in principle it depends on ®Ω through
T. Calculating the covariance at each point in the likelihood
may be computationally costly, depending on the size of T.
Instead, we will simply evaluate T at the best-fit value of ®Ω, and
ignore all parameter dependence on ®Ω of the covariance. It was
shown in Kodwani et al. (2019) that the parameter dependence
of the covariance can generally be neglected and, furthermore,
for a sufficiently tight prior the TC𝑛T𝑇 contribution should be
subdominant. Hadzhiyska et al. (2020) also showed that the
choice of fiducial ®Ω does not affect the final results as long
as they are close to the center of the posterior distribution.
Adopting these two approximations (in addition to the Taylor
expansion of t) is therefore well justified and, as we will show
in Section 4.1, leads to accurate results.

One of the most important calibratable systematics in pho-
tometric surveys comes from the uncertainties in the redshift
distribution of the source and lens samples. To account for
these, it is common to parametrise the potential deviations
from a fiducial redshift distribution, and to calibrate those
parameters through external data and simulations. In a sim-
plified model, errors in photo-𝑧’s cause shifts in the means and
changes in the width of the derived redshift distribution for a
population of galaxies (Bonnett et al. 2016). The resulting
model for the redshift distribution is

𝑝𝛼 (𝑧) ∝ 𝑝𝛼 (𝑧𝛼𝑐 + 𝑤𝛼𝑧 (𝑧 − 𝑧𝛼𝑐 ) + Δ𝑧𝛼), (45)

where Δ𝑧𝛼 and 𝑤𝛼𝑧 parametrise deviations in the mean and
width of the fiducial distribution 𝑝𝛼, and 𝑧𝛼𝑐 is the redshift at
which this fiducial distribution attains its maximum. We will
label these the “shift” and “width” parameters respectively in
what follows. Note that the normalisation of the distribution
changes with both of these parameters, and it must be renor-
malised to unit area before using it to compute any power
spectra.

In the rest of this paper, we will add one shift and one
width parameter for each galaxy clustering bin, and one shift
parameter for each cosmic shear bin, fixing their width. On the

one hand, mean shifts have a strong impact on the weak lensing
kernel, since it depends on a cumulative integral of the redshift
distribution, and may also affect galaxy clustering by changing
the growth factor. On the other hand, mild (∼ 10%) changes
to the width have a very strong impact on the amplitude of the
clustering auto-correlations, but leave the weak lensing kernel
almost unchanged (Ruiz-Zapatero et al. 2023).

Including these free parameters amounts to burdening the
MCMC sampler with tens of extra parameters, which in-
evitably leads to a substantial slowdown of its convergence.
Moreover, there is no guarantee that all the uncertainty in
the 𝑝(𝑧)s can be captured by these parameters, and several
alternative procedures have been developed to ensure this. Al-
though we will focus here on the shift-width parametrisation,
Hadzhiyska et al. (2020) and Ruiz-Zapatero et al. (2023) ex-
plore the most general case of treating the 𝑝(𝑧) as a step-wise
function, with the function values at each step treated as free
parameters, and show that the approximate marginalisation
described here leads to accurate results for both clustering
and shear. We will therefore focus here only on the simpler
shift-width parametrisation, to exemplify the performance of
the Laplace approximation in the case of calibratable nuisance
parameters.

We stress that we can apply the same procedure to any other
parameter that appears to behave linearly in the theoretical
model. This is the case for any other nuisance parameter
with a sufficiently tight prior, and in fact this procedure is
routinely used for multiplicative bias parameters in cosmic
shear analyses (Hildebrandt et al. 2020). We note that the
general procedure of using the Laplace approximation is exact
in the case of truly linear parameters, regardless of their priors.
A good example of this is the amplitude of shot noise or
stochastic contributions to galaxy clustering auto-correlations
(Garcı́a-Garcı́a et al. 2021).

3.3. Non-calibratable systematics: bias parameters
Most sources of astrophysical uncertainty cannot be well-

constrained from external data, and thus must be con-
strained at the same time as the cosmological parameters, and
marginalised over. In this case, the linearisation described in
the previous section is not appropriate, and we must resort to
numerical methods in order to obtain ®𝑛∗ and the Laplace con-
tribution in Eq. (8). In the model introduced in Section 3.1,
these astrophysical uncertainties are described by the bias and
intrinsic alignment parameters. In this formalism, all tracers
can be expressed generically as in Eq. (39), where 𝑢𝛼

𝑀
and 𝑢𝛼

𝑘
are projected maps depending purely cosmological fields (i.e.
depending only on the matter overdensity and the tidal field),
and all astrophysical uncertainties are incorporated in the 𝑏𝑢

𝛼,𝑘
parameters.

Although the bias/IA description used here covers a wide
range of state-of-the-art physical models used in current 3×2pt
analyses, it is mathematically exceptionally simple. From
Eq. (39) we see that the cross-correlation between any two
such tracers (𝑢𝛼, 𝑤𝛽) is a simple quadratic function of the bias
parameters:

𝐶
𝑢𝛼 ,𝑤𝛽

ℓ
= 𝜖𝑢𝜖𝑤𝐶

𝑢𝛼
𝑀
,𝑤

𝛽

𝑀

ℓ
+
∑︁
𝑖

𝑏𝑢𝛼,𝑖𝜖𝑤𝐶
𝑢𝛼
𝑖
,𝑤

𝛽

𝑀

ℓ

+
∑︁
𝑗

𝜖𝑢𝑏
𝑤
𝛽, 𝑗𝐶

𝑢𝛼
𝑀
,𝑤

𝛽

𝑗

ℓ
+
∑︁
𝑖, 𝑗

𝑏𝑢𝛼,𝑖𝑏
𝑤
𝛽, 𝑗𝐶

𝑢𝛼
𝑖
,𝑤

𝛽

𝑗

ℓ
. (46)



9

Here, 𝐶
𝑢𝛼
𝑀/𝑖 ,𝑤

𝛽

𝑀/ 𝑗
ℓ

are the power spectra between the cosmo-
logical projected fields 𝑢𝛼

𝑀/𝑖 and 𝑤𝛽
𝑀/ 𝑗 , defined in Eq. (39),

and the sums run over the associated bias terms as introduced
in Eq. (36). Since these only involve radial projections of
purely cosmological quantities, they can be treated as tem-
plates that only depend on the cosmological parameters. Note
that, in principle, these templates also depend on the calibrat-
able nuisance parameters described in the previous section
(e.g. through the modification in the radial kernels due to
𝑝(𝑧) uncertainties). However, we assume that we have been
able to marginalise over these analytically as we described
above, and therefore they can be treated as fixed for all intents
and purposes.

The first derivative of the power spectrum with respect to
the bias parameters is thus a linear polynomial:

𝜕𝐶
𝑢𝛼 ,𝑤𝛽

ℓ

𝜕𝑏𝑟
𝛾,𝑘

= 𝛿𝐾𝛼,𝛾𝛿
𝐾
𝑢,𝑟

[
𝜖𝑤𝐶

𝑢𝛼
𝑘
,𝑤

𝛽

𝑀

ℓ
+
∑︁
𝑗

𝑏𝑤𝛽, 𝑗𝐶
𝑢𝛼
𝑘
,𝑤

𝛽

𝑗

ℓ

]
+ 𝛿𝐾𝛽,𝛾𝛿𝐾𝑤,𝑟

[
𝜖𝑢𝐶

𝑢𝛼
𝑀
,𝑤

𝛽

𝑘

ℓ
+
∑︁
𝑖

𝑏𝑢𝛼,𝑖𝐶
𝑢𝛼
𝑖
,𝑤

𝛽

𝑘

ℓ

]
,

(47)

where 𝛿𝐾 is the Kronecker delta, and 𝑏𝑟
𝛾,𝑘

denotes the 𝑘th
bias term of tracer type 𝑟 (i.e., galaxy overdensity or shear) in
redshift bin 𝛾. Finally, the Hessian is constant with respect to
the bias parameters

𝜕2𝐶𝑢
𝛼 ,𝑤𝛽

ℓ

𝜕𝑏𝑟
𝛾,𝑘
𝜕𝑏𝑠𝜎,𝑚

= (48)[
𝛿𝐾𝛾,𝛼𝛿

𝐾
𝜎,𝛽𝛿

𝐾
𝑟,𝑢𝛿

𝐾
𝑠,𝑤 + 𝛿𝐾𝛾,𝛽𝛿𝐾𝜎,𝛼𝛿𝐾𝑟,𝑤𝛿𝐾𝑠,𝑢

]
𝐶
𝑟
𝛾

𝑘
,𝑠𝜎𝑚

ℓ
.

These expressions are remarkably simple and fast to evalu-
ate, and thus computing the 𝜒2 and its derivatives (needed for
minimisation, and to calculate the Laplace contribution) can
be done extremely efficiently. As we will see, in practice we
find that finding the minimum of the 𝜒2 takes 𝑂 (10 − 100)
Gauss-Newton iterations, each of which is orders of magnitude
faster than recomputing the power spectrum templates when
changing cosmological parameters. Computing the Laplace
approximation to the marginalised posterior at each sample
of the cosmological parameters is therefore virtually equiva-
lent to evaluating the joint posterior for new cosmological +
nuisance parameters if using brute-force marginalisation.

3.4. Example Stage-III and Stage-IV datasets
To test the validity of the methodology described above in

practice, we will apply it to two different datasets:

• Real data from the Dark Energy Survey Year-1 (DES-
Y1) data release (DES Collaboration 2018).

• A simulated 3×2-point data vector mimicking the char-
acteristic of a Stage-IV survey such as LSST.

These datasets are representative of both the current and future
generation and thus span the plausible accuracy range for the
foreseable future. We describe them next.

3.4.1. The DES-Y1 data

We use the galaxy-galaxy, galaxy-shear, and shear-shear
power spectra and covariance matrix provided in Garcı́a-
Garcı́a et al. (2021), constructed from the DES-Y1 data. DES
is a five-year photometric survey which has observed 5000
deg2 of the sky using five different filter bands (grizY) from
the 4m Blanco Telescope at the Cerro Tololo Inter-American
Observatory (CTIO), in Chile. Garcı́a-Garcı́a et al. (2021)
employed the publicly available key Y1KP catalogs4, covering
1786 deg2 before masking (DES Collaboration 2018; Drlica-
Wagner et al. 2018).

The galaxy clustering sample consists of luminous red
galaxies (LRGs) selected with the redMaGiC algorithm, di-
vided into 5 redshift bins, defined in Elvin-Poole et al. (2018).
In this analysis, we will make use of the fiducial redshift distri-
butions released by DES to model the angular power spectra.
We will also adopt the same galaxy weights to correct for sky
systematics (see Elvin-Poole et al. 2018, for more details).

The shear sample is the official source sample used in the
DES-Y1 analysis (Zuntz et al. 2018), including all cuts and
tomographic bin definitions. Galaxy shapes were determined
using the Metacalibration algorithm (Huff & Mandelbaum
2017; Sheldon & Huff 2017). The sample is divided into four
tomographic bins, for which we use the official redshift distri-
butions provided with the Y1 release (Hoyle et al. 2018). See
Nicola et al. (2021) for further details regarding the estimation
of the shear power spectra and covariance.

Following the official DES-Y1 analysis, we use all cross-
correlations between different shear bins and between shear
and clustering bins, but only the auto-correlations between
clustering bins.

3.4.2. Synthetic Stage-IV data

We consider a futuristic, idealised data set that resembles the
characteristics of LSST. It is important to test our method in the
low-noise regime, where the inferred posterior is even more
sensitive to redshift distribution uncertainties or, in general,
degeneracies between cosmological and nuisance parameters,
and where the final error budget is more dominated by these
effects.

To define the clustering and shear samples we follow the
same procedure outlined in Nicola et al. (2023). The shear
sample is defined following the LSST Science Requirements
Document (The LSST Dark Energy Science Collaboration
et al. 2018) (see Appendices D1 and D2). We divide this
redshift distribution into 5 bins in photometric redshift space,
each containing the same number of sources. We assume a
Gaussian photometric redshift uncertainty with standard de-
viation 𝜎𝑧 = 0.05(1 + 𝑧), which thus defines the true-redshift
tails of the distribution in each tomographic bin. The sample
has an overall angular number density of 27 gals. arcmin−2.
For galaxy clustering, we define a sample extending out to
𝑧 ∼ 1.5 with a total density of 4 gals. arcmin−2 (as would
be expected of an LRG-like sample for LSST). This number
density and the associated redshift distribution were estimated
using measurements of the luminosity function for red galax-
ies as described in Alonso et al. (2015). The sample was
divided into 6 redshift bins equi-spaced in photometric red-
shift space, and assuming a photometric redshift uncertainty
of 𝜎𝑧 = 0.02(1 + 𝑧). To simplify the analysis, we assume a

4 https://des.ncsa.illinois.edu/releases/y1a1/
key-catalogs

https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs
https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs
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Parameter priors
Parameter Prior Parameter Prior

Cosmology Redshift calibration
Ωm 𝑈 (0.07, 0.8) Δ𝑧1

s N(Δ𝑧1
𝑠,∗, 0.016)

Ωb 𝑈 (0.03, 0.07) Δ𝑧2
s N(Δ𝑧2

𝑠,∗, 0.013)
ℎ 𝑈 (0.55, 0.91) Δ𝑧3

s N(Δ𝑧3
𝑠,∗, 0.011)

𝑛s 𝑈 (0.87, 1.07) Δ𝑧
4,5
s N(Δ𝑧4,5

𝑠,∗ , 0.022)
𝜎8 𝑈 (0.5, 1.1) Δ𝑧1

g N(Δ𝑧1
𝑔,∗, 0.007)

Bias parameters Δ𝑧2
g N(Δ𝑧2

𝑔,∗, 0.007)
𝑏𝑖1 N(1.5, 100) Δ𝑧3

g N(Δ𝑧3
𝑔,∗, 0.006)

𝑏𝑖2,𝑠,∇ N(0, 100) Δ𝑧
4,5,6
g N(Δ𝑧4,5,6

𝑔,∗ , 0.01)
𝐴IA,0 N(0, 100) 𝑤𝑖

𝑧,g N(1.00, 0.08)

TABLE 1
Prior distributions for the nuisance parameters entering our

“3×2pt” analysis for each tracer. 𝑈 (𝑎, 𝑏) and N(𝜇, 𝜎) describe a
uniform distribution with boundaries (𝑎, 𝑏) and a Gaussian

distribution with mean 𝜇 and variance 𝜎, respectively. The index 𝑖
in 𝑏𝑖g and 𝑚𝑖 runs over the different redshift bins. Δ𝑧∗ denotes the
deviation from zero of the central/best-fit value of each redshift

uncertainty parameter.

constant linear galaxy bias 𝑏1 = 1, and set all higher-order bias
coefficients to zero. The results obtained in the next section
should be largely insensitive to this choice.

For simplicity, we use a Gaussian covariance to describe the
uncertainties of the resulting data vector, calculated assuming
a sky fraction 𝑓sky = 0.4. The LSST data vector was generated
assuming a true cosmology with parameters

(Ω𝑚,Ω𝑏, ℎ, 𝑛𝑠 , 𝜎8) = (0.3, 0.05, 0.7, 0.96, 0.8), (49)

whereΩ𝑚 andΩ𝑏 are the total matter and baryon fractions, ℎ is
the reduced Hubble parameter, 𝑛𝑠 is the scalar spectral index,
and 𝜎8 is the standard deviation of linear density perturbations
smoothed on spheres of radius 8 Mpc ℎ−1 at redshift 𝑧 = 0.

3.5. Likelihood
To obtain constraints on cosmological parameters from the

real and synthetic data described in the previous section, we
will assume that the data vector (i.e. the clustering and shear
power spectra), follows a Gaussian likelihood as in Eq. (11),
with a parameter-independent covariance. The model will be
described by 5 cosmological parameters, listed in Eq. (49),
one or four linear parameters for each clustering redshift bins
(for linear and PT bias respectively), one intrinsic alignment
amplitude, one redshift shift parameter for each clustering and
cosmic shear bin, and one redshift distribution width parame-
ter for each clustering bin. The priors used for all parameters
are provided in Table 1. The priors on cosmological param-
eters are roughly based on the choices made for the DES-Y1
analysis, except we sample over 𝜎8 instead of the scalar spec-
trum amplitude 𝐴𝑠 . The priors on the redshift shift parameters
are based on the calibration of the DES-Y1 data (Hoyle et al.
2018), and thus represent achievable calibration levels. The
priors on the redshift width parameters are commensurate with
those used in the DES Year-3 analysis (DES Collaboration
2022) (the DES-Y1 analysis did not introduce width param-
eters). Finally, we place an uninformative Gaussian prior on
all the bias parameters, centered at zero and with a standard
deviation of 100. The choice of using a very broad Gaussian
prior as opposed to simply a flat prior is intended to enforce
a smooth distribution as a function of these parameters, and
to potentially aid the Gauss-Newton iterator when minimising
the 𝜒2.

0.75 0.80

S8

0.3

0.4

Ω
m

0.3 0.4

Ωm

DES-Y1, p(z) marg. (x14 params.)

Brute-force
Analytical
Fixed p(z)

Fig. 2.— Contours comparing brute-force (silver) with analytic marginalisa-
tion over photo-𝑧 uncertainties (red; see Section 3.2). Results are shown for
the DES-Y1 data. We find that the contours are virtually unchanged, demon-
strating the benefit of using an efficient analytic marginalisation scheme. We
also show for posterity the result of assuming negligible error on the photo-𝑧
distributions (blue). In reality, this assumption does not hold and potentially
leads to a bias in the inferred cosmology.

We employ the cobayaMCMC sampler (Torrado & Lewis
2019, 2021) with a convergence condition that the Gelman-
Rubin diagnostic, 𝑅, ought to satisfy 𝑅 − 1 < 0.01. When
using the Laplace approximation, we minimise the 𝜒2 over
the nuisance parameters using a Gauss-Newton iterator, using
the analytical derivatives with respect to bias parameters as
described in Section 3.3, and modify the log-probability to
be sampled by cobaya to be that of Eq. (8). We find that, in
order to reduce the number of steps taken by the Gauss-Newton
iterator, it is useful to determine a well educated global best-fit
for the full parameter space before taking any samples, and to
start the iterator from the corresponding best-fit value of the
nuisance parameters.

Throughout, we made use of the fitting formula of Eisenstein
& Hu (1998) to calculate the linear matter power spectrum. We
do this to speed up the calculations, and we have verified that
the results obtained on the DES-Y1 data are insensitive to this
choice compared to using a Boltzmann solver such as CLASS
(Blas et al. 2011). The non-linear matter power spectrum is
then computed using HALOFIT (Takahashi et al. 2012b).

4. RESULTS
4.1. Calibratable nuisance parameters

We begin by focusing on calibratable systematics, for which
we will follow the procedure described in Section 3.2: we will
linearise the dependence of the theoretical prediction with re-
spect to these parameters, for which a relatively tight prior can
be obtained, and simply modify the covariance matrix as in
Eq. (28), with T evaluated at a fixed set of parameters (fix-
ing all cosmological parameters to the best-fit values found
by Planck (Planck Collaboration et al. 2020) and all bias pa-
rameters to their best-fit values). At this stage, we will thus
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Fig. 3.— Same as Fig. 2, but results are shown for a futuristic data vector with minimal noise meant to mimic the expected precision of LSST. The redshift
distribution is less noisy compared with DES-Y1 and is split into 6 tomographic bins. We find that our analytic marginalisation recipe yields virtually equivalent
results to the standard method for marginalising over redshift uncertainties by sampling directly the shift and width redshift parameters.
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Fig. 4.— Same as Fig. 3 except for the mean redshift distribution is the same
as that of DES-Y1, but the errors on the nuisance parameters are quadrupled.
As before, we find that our method of analytic marginalisation works well
despite the larger errors on the 𝑝 (𝑧) measurements. Thus, we assert that the
approximations in Section 3.2 hold even in the conservative scenario of large
photometric uncertainties in futuristic data.

only consider the nuisance parameters describing the uncer-
tainty in the redshift distributions of the tracers under study,
described in the right column of Table 1. All other parameters
(cosmological, bias, and intrinsic alignment parameters) will
for now be marginalised “brute-force” (i.e. treating them as
free parameters in the MCMC chains). For simplicity, we will
consider only linear bias, using scales 𝑘 < 0.15 Mpc−1, as
described in Section 3.5.

We first compare the performance of the method when ap-
plied to the 3×2pt analysis of DES-Y1 data (Section 3.4.1).
The results are shown in Fig. 2 and summarised in Table 2,
with the exact results shown as black contour lines, and the
results of the analytical marginalisation shown in red. We
find that using the analytic marginalisation technique not only
yields contours that are almost indistinguishable from those
obtained by the traditional approach, but also does so signif-
icantly faster (by a factor ∼ 10) with many fewer parameters.
The blue contours in the figure show the constraints found by
fixing the nuisance parameters to their prior means, instead of
marginalising over them. In this case, we observe that the red-
shift distribution uncertainties cause only a mild broadening
of the marginalised contours, which is not very challenging
for the analytical approximate marginalisation to reproduce.

In order to explore a more challenging scenario, we now
move on to the case of an LSST-like 3×2pt dataset, as defined
in Section 3.4.2. We will assume the same prior uncertainties
used in the analysis of the DES-Y1 data. This will allow us to
quantify the validity of the analytical marginalisation approach
in a conservative scenario, in which, in spite of the much
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higher sensitivity of Stage-IV data, the precision with which
we are able to calibrate redshift distributions has not improved
with respect to the performance achieved with current data.
Furthermore, we will explore an additional case in which the
prior uncertainties are 4 times larger than the DES-Y1 ones.
The reasoning behind this second test is two-fold: on one hand,
our marginalisation method is an approximation that works in
the regime where photometric uncertainties are linearisable
and testing when that assumption breaks is essential; on the
other hand, it is likely that, at the highest redshifts, and for
the faintest samples, the 𝑝(𝑧) uncertainties will be somewhat
larger for LSST than those of current surveys, especially at
high redshifts. Hence, quadrupling the errors is an important
worst-case scenario to consider.

It is important to note that the results in this section are not
meant to be interpreted as forecasts on the constraining power
of LSST on cosmological parameters, but only as a quantifica-
tion of our ability to analytically marginalise over photometric
uncertainties when inferring the underlying cosmology. A
more thorough analysis would include a realistic treatment of
the LSST true redshift distribution and noise, and a more care-
ful treatment of galaxy bias and intrinsic alignments. As such,
the results presented here give us a conservative estimate of the
effect of analytic marginalisation on cosmology constraints.

We present the results of the first scenario (i.e., 𝑝(𝑧) errors
matching DES) in Fig. 3. The marginalised constraints on
all cosmological parameters are virtually unchanged when we
switch from the brute-force to the analytical marginalisation.
This latter method is therefore successful at recovering ac-
curate marginalised constraints on cosmological parameters.
The figure shows the constraints on all cosmological param-
eters, to highlight that the result extends even to the param-
eters that 3×2pt datasets are less sensitive to: Ω𝑏, 𝑛𝑠 and ℎ.
Also shown in blue are the constraints found assuming perfect
knowledge of the redshift distributions (i.e. fixing all 𝑝(𝑧)
parameters). In this case, the uncertainties on the redshift dis-
tributions have a much larger effects than for the DES-Y1 data,
inflating the uncertainties on 𝑆8 by a factor ∼ 2.6. Thus, even
though marginalising over the redshift distribution parameters
has an outsized effect on the final constraints, the analytical
approximation approach is able to capture it almost exactly.

Similarly reassuring is our result of quadrupling the uncer-
tainty in the redshift nuisance parameters, shown in Fig. 4 in
the (Ω𝑚, 𝑆8) plane. In this case, the increased redshift distribu-
tion uncertainties broaden the final constraints on 𝑆8 by up to a
factor ∼10. In spite of this, we find that the analytic marginal-
isation method not only yields virtually the same constraints
on the cosmological parameters, but does so 3-10 times faster
than the traditional approach (see Table 2). This implicitly
validates the approximation that a first-order expansion of the
theory data vector with respect to a change in redshift distribu-
tion is sufficient, even for prior uncertainties on 𝑝(𝑧) that are
substantially worse than those achieved by current datasets.

4.2. Bias parameters: tight posteriors
Let us now focus on the bias parameters. In this case, the

absence of an informative prior prevents us from linearising
the dependence of the theory on these parameters, and we must
therefore calculate the profile and Laplace terms numerically.
Moreover, since the dependence of the 𝜒2 on these parameters
is not quadratic, marginalising over them may lead to signifi-
cant volume effects (in the form of biases) in the marginalised
posterior for the cosmological parameters. As a reminder,

in the case of quadratic dependence of the 𝜒2 on the parame-
ters, the approximation would be exact, and our approximation
would automatically take care of the volume effects. We will
start by exploring two situations in which the data is sensitive
enough to measure these bias parameters accurately, in which
case, as we saw in Section 2, the Laplace term and volume
effects are small.

In the first case, we make use of the DES-Y1 data, marginal-
ising only over a single linear galaxy bias parameter per clus-
tering bin, as well as an intrinsic alignment amplitude (i.e.
a total of 6 nuisance bias parameters). This roughly coin-
cides with the analysis choices made for the official DES-Y1
analysis. The results are shown in the left panel of Fig. 5.
The exact marginalised constrains (solid black contours) are
accurately recovered by the Laplace approximation (red con-
tours). While the former are obtained by running an MCMC
with 11 free parameters (5 cosmological, 6 nuisance parame-
ters), the latter involve only a 5-dimensional parameter space,
which is therefore significantly simpler to explore. Concretely,
the 5-parameter chain converged 3 times faster than the 11-
parameter chain (see Table 2). The blue contours in the same
figure shows the constraints obtained after fixing the bias pa-
rameters to the best-fit values found by DES (Elvin-Poole
et al. 2018). Fixing the galaxy bias shifts the cosmological
constraining power from the cosmic shear data to the higher
signal-to-noise clustering data, thus significantly reducing the
uncertainties. Note that, although the red contours show the
result of the full Laplace approximation (i.e. profile + Laplace
contributions), the Laplace contribution is negligible, and the
profile term is enough to recover the marginalised posterior.

In order to explore the performance of the method with a
significantly larger number of nuisance parameters, while still
remaining in the regime where these parameters can be well
constrained by the data, we now move to the LSST-like syn-
thetic dataset, making use of the second-order perturbative
expansion of Eq. (35) to describe galaxy bias. In this case,
we include 4 free bias parameter in each of the 6 clustering
redshift bins, adding up to a total of 25 nuisance parameters
when combined with the intrinsic alignment amplitude. The
results are shown in the right panel of Fig. 5, again as black
lines for the brute-force marginalisation, i.e. considering all
30 free parameters, and as red contours for the 5-parameter
Laplace approximation. As before, we find that the approxi-
mation is able to recover the marginalised constraints almost
exactly. The impact of volume effects is also heavily sup-
pressed, shifting the marginalised contours by less than 0.3𝜎
(not shown in the figure).

Note that, in both of these cases, besides the bias param-
eters, we have also marginalised over a number of redshift
distribution uncertainty parameters (14 for DES-Y1, 17 for
LSST), thus reducing the model dimensionality from 47 and
28 for LSST and DES-Y1, respectively, to only 5 cosmological
parameters. Obtaining converged MCMC chains for these 5
cosmological parameters takes approximately 2 hours for the
LSST-like dataset, a factor ∼ 6 faster than the chains with only
the 𝑝(𝑧) parameters analytically marginalised over, and a fac-
tor∼ 30 times faster than the full brute-force chains. The mag-
nitude of these speed gains, however impressive, must be taken
with a pinch of salt. The performance of MCMC sampling
may depend significantly upon the design of the likelihood
code, and whether it allows the sampler to decompose the
space between “fast” and “slow” parameters, over-sampling
the former, and making use of “dragging” techniques (Lewis
2013; Neal 2005). The fast-slow split allows one to effectively
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Fig. 5.— On the left, same as Fig. 2, but here we marginalise over the bias parameters using the Laplace approximation. This reduces the parameter space to
only the cosmological parameters without degrading the accuracy of the constraints. On the right, as Fig. 3, but here we marginalise over the perturbation theory
bias parameters via the Laplace approximation. The agreement with the full numerical marginalisation (black) is almost perfect.
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Fig. 6.— Demonstration of volume effects in the case of using less constraining data. In order to recover the best-fit parameter values (denoted with a star), when
applying brute-force marginalisation, one needs to make use of Jeffreys prior (compare solid with dashed black line). Similarly, when analytically marginalising
over the PT biases, one needs to remove the Laplace term to avoid biasing the constraints (compare blue and red contours). The plot on the left shows the
constraints for a 2x2pt analysis with a LSST-like dataset, while on the right we show constraints using the DES-Y1 data. In the latter case, the volume effects
become more pronounced, as the data has less constraining power.
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marginalise over the fast subspace, and becomes particularly
powerful in the presence of a large number of nuisance pa-
rameters on which the likelihood has a computationally sim-
ple dependence (as is the case of the bias parameters in our
model). To provide a fairer assessment of the computational
gains obtained using the Laplace approximation, we wrote
an optimised version of the 3×2-point likelihood that allows
cobaya to exploit the fast nature of the bias parameters as ef-
ficiently as possible (assuming all 𝑝(𝑧) parameters are fixed).
In this case, the speed-up factor for the cases explored here
ranged between ∼ 1.5 and ∼ 11, with the highest performance
improvement achieved for the LSST 2×2pt data discussed in
the next section. Ultimately the performance difference de-
pends on the design of the likelihood code, the complexity
in the parameter dependence of the likelihood, and the effi-
ciency of the 𝜒2 minimisation method used to calculate ®𝑛∗.
On this latter point, we find that the Gauss-Newton method
used here typically achieves convergence after only 10-20 it-
erations. Thus finding the best-fit bias parameters is signifi-
cantly faster than calculating the cosmology-dependent power
spectrum templates of Eq. (46).

4.3. Bias parameters: loose posteriors and volume effects
In the cases explored in the previous sections, the data was

able to constrain the nuisance parameters sufficiently well, and
all volume effects associated with the choice of parametrisa-
tion were subdominant. Let us now study the ability of the
Laplace approximation to capture these volume effects when
they become more prominent.

First, let us consider the case of a “2×2pt” combination
of the LSST data, consisting only of the galaxy-galaxy and
galaxy-shear power spectra, excluding the shear-shear auto-
correlation, and analysed under the perturbative bias expan-
sion of Eq. (35). The logic for focusing on this scenario is that,
in this case, the model relies completely on galaxy clustering
to constrain cosmological parameters, and is therefore more
sensitive to the complexity of the galaxy bias parametrisation
(which dominates the dimensionality of the nuisance parame-
ter space). The resulting constraints on Ω𝑚 and 𝑆8 are shown
in the left panel of Fig. 6. The solid and dashed black contours
show the results using brute-force marginalisation, assuming
no prior and a Jeffreys prior respectively. The red contours
then show the same constraints using the Laplace approxima-
tion (including both profile and Laplace terms), while the blue
contour shows the result of including only the profile like-
lihood contribution. The position of the best-fit parameters
is indicated by the orange star. We find that the profile-only
approximation is able to recover well the exact marginalised
constraints assuming a Jeffreys prior, and the full Laplace ap-
proximation recovers the constraints found in the absence of
this prior. In this case we see a clear∼ 0.8𝜎 shift in the cosmo-
logical constraints due to volume effects associated with the
large number of bias parameters, although the Laplace term is
able to capture this with high accuracy.

As a second example, we explore the possibility of using
the second-order perturbative bias expansion of Eq. (35) to
analyse the DES-Y1 data. The lower sensitivity of this data
compared to LSST should reduce its ability to constrain the
higher-order bias parameters, and increase the impact of vol-
ume effects. The results are shown in the right panel of Fig.
6, using the same color scheme as the last figure. In this case
we can see that volume effects are a lot more significant, and
can shift the confidence contours of the cosmological param-
eters by almost 3𝜎 with respect to their global best-fit value,

marked by the orange star. We can also see that, in this more
extreme case, the Laplace approximation starts to fail, mani-
festing mild shifts of ∼ 0.3 − 0.5𝜎 with respect to the exact
marginalised constraints. This provides us with a useful “rule
of thumb” to determine the reliability of the Laplace approx-
imation: if a significant (> 1𝜎) shift is found between the
marginalised contours obtained using the profile likelihood
and those obtained accounting also for the Laplace term, the
approximation may start to fail, and a brute-force marginali-
sation over the nuisance parameters using a Jeffreys prior is
needed to obtain accurate results. This test can be done without
running the MCMC twice: one can run MCMC chain using
Laplace approximation while also saving the profile likelihood
values at each MCMC step and employing importance sam-
pling to derive the profile likelihood posteriors. Nevertheless,
even in these cases, we find that the Laplace approximation
is able to recover the region of parameter space preferred by
the data reasonably well, and can thus be used as a fast way
to characterise this region that can then be refined (e.g. via
importance sampling). Another good criterion for testing the
accuracy of the Laplace approximation in the case of linear
parameters is to explore the difference between the Laplace
approximation treatment, computed with F , and the Jeffreys
prior treatment, computed with 𝐹 (defined in Eq. 15), since
this difference should be non-zero only when the parameters
are non-linear and would otherwise demarcate the breakdown
of our approximation.

In an extreme case, such as the one we just discussed, it
is worth asking which of the constraints in Fig. 6 are the
“correct” ones. The presence of such large volume effects,
combined with the arbitrariness of using flat priors for the nui-
sance parameters, would imply that the use of a Jeffreys prior
should produce the most correct results. However, as we noted
in Section 2.3, the Jeffreys prior is not guaranteed to cancel
out all volume effects. One might thus argue that the profile
of the full likelihood, since it is by construction centered on
the best-fit parameters, could provide an equally reasonable
representation of the favoured confidence region. One might,
however, view this choice critically, as it neglects the volume
effects associated with the physical (in our case, cosmological)
parameters. Finally, we could adopt a completely frequentist
approach, determining the confidence intervals of all param-
eters by extracting the maximum-likelihood estimate for the
data and for a suite of simulated datasets compatible with it.

5. CONCLUSIONS
Forecasts of the next decade in cosmology predict that mean-

ingful constraints on fundamental unknowns such as the mass
of neutrinos and the nature of dark matter and dark energy
will come from multi-scale, multi-tracer efforts, encompass-
ing a wide range of probes and redshifts. It is for this reason
that the efficient analysis of joint data sets combining low-
and high-redshift probes in an accurate manner is of great
importance to the field of large-scale structure analysis. How-
ever, this comes at the cost of adding a colossal number of
nuisance parameters characterising the observational and the-
oretical systematic uncertainties of all probes involved, which
can noticeably slow down the sampling of the parameter space.
In galaxy clustering and weak lensing joint studies, the most
significant obstacles to overcome are the accurate modeling of
the redshift distribution, the galaxy bias relation, and intrin-
sic alignments. Not doing so correctly can bias the inferred
cosmological parameters, but also accounting for these effects
via more elaborate models is a major inhibitor of efficient



15

sampling.
In this paper, we introduce a formal approach for speeding up

the sampling process in the presence of a large number of nui-
sance parameters, and investigate the accuracy of our method
when applying it to photometric survey data. In particular, we
study the current DES-Y1 data set as well as a synthetic data
vector from an LSST-like survey to validate whether the fast
analytic method proposed in this work is capable of reproduc-
ing the posterior contours and constraints one arrives at when
adopting the traditional method of diligently varying tens of
nuisance parameters.

In Section 2, we describe the general methodology behind
analytically marginalising over any nuisance parameter by ap-
proximating the marginal distribution, Eq. (8), as consisting
of a “profile” term, centered on the best-fit nuisance param-
eters, and a “Laplace” term, associated with the quadratic
contribution. We then consider the special case of a Gaussian
likelihood, showing that the Laplace term can be associated
with volume effects, which the profile term alone is free from,
being approximately equivalent to imposing a Jeffreys prior.
This argument becomes exact when studying the case of nui-
sance parameters that contribute linearly to the theory vector.
In Section 3, we introduce the cosmological analysis of pho-
tometric survey analysis and the specific problems associated
with it. In particular, we introduce the relevant summary
statistics utilised when performing “3×2pt” analysis and the
two dominant sets of nuisance parameters associated with that
analysis: redshift distribution (𝑝(𝑧)) calibration parameters
and bias/IA model parameters. We then provide details of
how our model enables a fast marginalisation over these and
how it can be applied to current and future data sets.

We summarise our results in Section 4. The first half of that
section deals with the 𝑝(𝑧) parameters. Since these parame-
ters have external priors, the dependence of the theory vector
on them can be linearised around the center of that prior, and
the Laplace term can be ignored. Their impact can then be
incorporated in a pre-sampling step by simply modifying the
covariance matrix (see Eq. (28)). We showed (Figs. 2 and
3), that this method is able to obtain constraints on cosmo-
logical parameters that are indistinguishable from those found
via brute-force marginalisation, while performing 5-10 times
better in terms of computational time, even when considering
calibration priors that are significantly worse than those that
can be achieved with current data.

We next focused on the marginalisation over bias parame-
ters, using the full Laplace approximation, finding the maxi-
mum of the conditional posterior distribution on the fly. We
find that, when the data is able to place significant constraints
on all model parameters, the Laplace approximation is an ex-
cellent representation of the marginal distribution, and that the
Laplace term becomes subdominant with respect to the profile
likelihood. In the presence of less constraining data, volume
effects associated with the choice of nuisance parametrisation
become relevant and, when mild, can be accurately captured
by the Laplace term. In these cases, we also find that the profile
likelihood is almost indistinguishable from the marginal distri-
bution when adopting a Jeffreys prior, cancelling these volume
effects. When volume effects become more relevant, signifi-
cantly shifting the parameter region favoured by the marginal
distribution (e.g. by more than ∼ 1𝜎), the Laplace approxi-
mation begins to fail, although the position and extent of the
favoured region of parameter space are still qualitatively well
described by it (both with or without a Jeffreys prior). Thus,
even in this case, the method can be used to identify this region

and then refine it with a standard MCMC.
Through this paper we have assumed that the likelihood in

the nuisance parameters is unimodal. Obviously, for multi-
modal likelihoods with comparable posterior volumes in each
mode, the approximations we use will fail. Since the likeli-
hood is in general quartic in bias parameters, the likelihood
can in principle have up to three local maxima in each bias
direction making multimodal likelihoods a possibility. This
has been observed “in the wild” in fits to galaxy auto-power
spectrum using higher order bias parameters (e.g., Goldstein
et al. 2022), but typically disappears with sufficiently aggres-
sive scale cuts and when employing the full 3×2pt data vector.
These problems can be detected by initialising the Newton-
Raphson optimiser at different starting points and noting exis-
tence of multiple maxima.

The elimination of nuisance parameters is a nontrivial task.
Caution must be taken when departing from our assumption of
Gaussian data with a model-independent covariance matrix.
While in this specific application, we find the profile likeli-
hood to give unbiased parameter constraints and the marginal
distribution to be biased, this does not hold in general. Com-
mon tasks in data analysis (such as the estimation of the vari-
ance from Gaussian data) have an opposite outcome, with the
marginal distribution peaking at the unbiased parameter esti-
mate, while in other cases neither method seems to perform
optimally (Berger et al. 1999). It is therefore crucial to con-
sider the role of volume effects in every specific likelihood
model.

The reduction in the dimensionality of the parameter space
afforded by the Laplace approximation is accompanied by a
boost in the speed with which convergence in the associated
MCMC chains is achieved, and we find improvements by a
factor ∼ 2 − 15. Achieving this performance improvement is
greatly aided by the simplicity with which the theory predic-
tion depends on the bias and IA nuisance parameters, which
allows us to write down its derivatives analytically (see Sec-
tion 3.3), and to evaluate them quickly (in 𝑂 (10−3 s)). There
may be more sophisticated astrophysical models that do not
conform to this simple structure (e.g. physically motivated
models for the redshift dependence of bias terms, halo-based
models, etc.), and for which computing derivatives analyti-
cally is impractical or unfeasible. A more general application
of this method in these situations would thus require the use of
automatic differentiation techniques (Margossian 2018), able
to efficiently calculate these gradients regardless of how the
model depends on the nuisance parameters. The Laplace ap-
proximation is by far not the only application that benefits
from having efficient access to derivatives of the likelihood
with respect to some parameters. More general sampling
methods including HMC (MacKay 2002) or variational in-
ference (Blei et al. 2016) often require the use of likelihood
gradients, as do efficient minimisation methods, or the calcu-
lation of Jeffreys priors. Additionally, although here we have
focused on the volume effects associated with the marginali-
sation over nuisance parameters, the non-linear way in which
all cosmological parameters enter the likelihood implies that
degeneracies between them can also give rise to biasing vol-
ume effects within the subspace of cosmological parameters.
A Jeffreys prior (or any other form of correction for volume
effects) should therefore be used routinely in cosmological pa-
rameter inference, although this is normally prevented by the
need to estimate derivatives efficiently. The development of
fully automatically-differentiable cosmological theory predic-
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tions is therefore of paramount importance in the context of
current and future experiments.

In conclusion, our method produces satisfactory results in
virtually all of the explored regimes. Thanks to the huge gain
in sampling efficiency this approach offers, it can be used to
enable the joint analysis of multiple galaxy surveys, which is
typically hindered by the gigantic number of nuisance param-
eters that need to be sampled. Fast marginalisation methods
such as the one proposed in this work can help us address some
of the inconsistencies in the present analysis of cosmological
data. For example, current constraints find that both the ampli-
tude of clustering (𝑆8) and the energy density of matter (Ω𝑚)
inferred from the low-redshift analysis of galaxy and weak
lensing surveys are systemically lower than those obtained
from high-redshift probes such as the CMB (for a review, see
Perivolaropoulos & Skara 2022). In the near term, we plan
to adopt the method proposed in this paper to speed up the
sampling process and analyze jointly the currently (publicly)

available photometric survey data in an effort to tackle some
of the obstacles standing in the way of gaining a fundamental
understanding of our Universe.
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APPENDIX
A. SUMMARY OF RESULTS

Table 2 lists the constraints on cosmological parameters,
and the time needed for the corresponding MCMC chains to

converge for the different cases explored in Section 4.1, where
we marginalise over calibratable redshift distribution system-
atics using the linearisation technique described in Section 3.2.
Table 3 shows the same information for the cases explored in
Sections 4.2 and 4.3, in which we make use of the full Laplace
approximation to marginalise over galaxy bias and intrinsic
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Method 𝑆8 Ω𝑚 Ω𝑏 𝑛𝑠 ℎ Converge time
DES 3×2pt: brute-force 0.784 ± 0.017 0.304+0.029

−0.041 – – – 338.34 Hrs
DES 3×2pt: analytic 0.783 ± 0.017 0.305+0.030

−0.042 – – – 31.74 Hrs
DES 3×2pt: fixed 𝑧 0.780 ± 0.015 0.306+0.029

−0.040 – – – 30.22 Hrs
LSST 3×2pt: brute-force 0.7999 ± 0.0021 0.3001 ± 0.0057 0.0501 ± 0.0036 0.9600 ± 0.0090 0.672+0.024

−0.029 58.24 Hrs
LSST 3×2pt: analytic 0.8000 ± 0.0021 0.3001 ± 0.0057 0.0502 ± 0.0037 0.9597 ± 0.0089 0.673+0.026

−0.028 13.00 Hrs
LSST 3×2pt (4x): brute-force 0.7996 ± 0.0056 0.300 ± 0.010 0.0501 ± 0.0038 0.9599 ± 0.0097 0.673+0.028

−0.035 23.19 Hrs
LSST 3×2pt (4x): analytic 0.7999 ± 0.0054 0.300 ± 0.010 0.0503 ± 0.0037 0.9598 ± 0.0099 0.673+0.029

−0.035 8.36 Hrs
LSST 3×2pt: fixed 𝑧 0.79998 ± 0.00078 0.3000 ± 0.0026 0.0501 ± 0.0036 0.9599 ± 0.0068 0.672+0.020

−0.023 12.39 Hrs

TABLE 2
Constraints on the cosmological parameters from our 3×2pt analysis applied to a current (DES-Y1) and future (LSST-like) data set, comparing
the performance of two marginalisation approaches: analytic and brute-force (described in Section 3.2). “Analytic” refers to the new method

proposed in this work, in which one accounts for photometric uncertainties prior to sampling the parameter space, whereas “brute-force”
refers to the standard method of introducing ∼10 “shift” and “width” redshift calibration parameters (see Table 1). “Fixed 𝑧” considers the

unrealistic scenario of completely ignoring photometric uncertainties.

Method 𝑆8 Ω𝑚 Ω𝑏 𝑛𝑠 ℎ Converge time
DES-Y1 linear bias: brute-force 0.785 ± 0.013 0.303+0.030

−0.043 – – – 7.1 Hrs
DES-Y1 linear bias: analytic 0.785 ± 0.012 0.302+0.030

−0.041 – – – 2.5 Hrs
DES-Y1 linear bias: fixed 𝑏 0.7810 ± 0.0090 0.2691 ± 0.0094 – – – 2.1 Hrs

DES-Y1 PT bias: brute-force, no J.P. 0.780 ± 0.012 0.347 ± 0.031 – – – 16.5 Hrs
DES-Y1 PT bias: analytic, full Laplace 0.775 ± 0.011 0.362 ± 0.030 – – – 6.5 Hrs
DES-Y1 PT bias: brute-force, with J.P. 0.795 ± 0.011 0.256+0.022

−0.027 – – – 45.5 Hrs
DES-Y1 PT bias: analytic, profile only 0.792 ± 0.012 0.273+0.027

−0.034 – – – 8.1 Hrs
LSST 3×2pt: brute-force 0.7999 ± 0.0020 0.2996 ± 0.0055 0.0505 ± 0.0036 0.9580 ± 0.0089 0.676+0.025

−0.030 5.1 Hrs
LSST 3×2pt: analytic 0.8000 ± 0.0020 0.3001 ± 0.0057 0.0501 ± 0.0037 0.9595 ± 0.0089 0.672+0.025

−0.030 2.2 Hrs
LSST 2×2pt: brute-force, no J.P. 0.7946 ± 0.0086 0.3055 ± 0.0081 0.0482 ± 0.0044 0.955 ± 0.037 0.655+0.035

−0.044 35.1 Hrs
LSST 2×2pt: analytic, full Laplace 0.7949 ± 0.0088 0.3059 ± 0.0081 0.0483 ± 0.0043 0.955 ± 0.038 0.654+0.037

−0.042 2.1 Hrs
LSST 2×2pt: brute-force, with J.P. 0.7997 ± 0.0086 0.2997+0.0072

−0.0081 0.0504 ± 0.0044 0.954 ± 0.039 0.680+0.040
−0.049 17.2 Hrs

LSST 2×2pt: analytic, profile only 0.7993 ± 0.0083 0.2998+0.0075
−0.0087 0.0506 ± 0.0043 0.953 ± 0.040 0.682+0.041

−0.049 6.4 Hrs

TABLE 3
As in Table 2, but here we show the results from our bias marginalization approach (described in Section 3.3). “Analytic” refers to the new

method proposed in this work, in which one analytically incorporates the uncertainty associated with the bias parameters on-the-fly by
adopting the Laplace approximation, whereas “brute-force” refers to the standard method of directly sampling and marginalizing over the

bias parameters (see Table 1). “Fixed 𝑏” considers the unrealistic scenario of setting the bias parameters to a constant value.
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