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Abstract
Post-transcriptional modifications of RNA play a crucial role in shaping RNA structure and
function, and in recent years have generated significant attention in the RNA research commu-
nity. However, computational studies aimed at unraveling the structural and dynamic aspects
of modified RNA remain relatively scarce. This is partly due to the prevalent use of the AUGC
four-letter alphabet in structural prediction models, which neglects the possible occurency of
modified nucleotides. Molecular dynamics (MD) simulations offer a powerful tool to explore
RNA structural dynamics with virtually unlimited spatial and temporal resolution. Nonetheless,
the accuracy of MD simulations is inherently tied to the quality of the employed force-fields,
which consist of a list of parameters governing interatomic interactions, and their ability to
accurately represent the complex and dynamic behavior of biomolecules at the atomic level.
RNA molecules exhibit remarkable flexibility and dynamics, which pose significant challenges
in characterizing their conformational behavior, with respect for example to double stranded
DNA and globular proteins. Moreover, molecular dynamics (MD) simulations have struggled
to accurately predict RNA structural dynamics, particularly for short and partially unstruc-
tured oligonucleotides. Consequently, the reliability of RNA force-fields has been a subject of
scrutiny over the years, motivating the scientific community to invest significant efforts in opti-
mizing and validating them, particularly with regard to the four standard nucleotides. However,
in the context of modified RNAs, where limited validation against experimental data exists, this
issue of reliability of the force-fields becomes even more pronounced. To address these chal-
lenges, our approach integrates MD simulations with experimental data, employing two distinct
strategies: (i) refining force-fields for modified RNAs through fitting against experimental data
and (ii) utilizing an ensemble refinement technique (maximum entropy) to guide simulations
and enforce agreement with experimental observations. In this study, we apply these strategies
to investigate the dynamic implications of specific post-transcriptional modifications within
RNA molecules. Specifically, in one of our studies, we focus on investigating the influence
of inosine hyper-editing on the structural dynamics of double-stranded RNAs (dsRNAs). We
achieve this by improving the precision and accuracy of our predictions through the utilization
of an enhanced sampling technique known as replica exchange collective variable tempering.
Additionally, we apply the maximum entropy principle to constrain our simulations and in-
corporate solution experimental data (NMR and SAXS). Our findings illuminate the structural
mechanisms through which inosine hyper-editing induces flexibility in dsRNAs, facilitating dy-
namic and non-canonical pairing as well as uncommon sugar puckering conformations. In our
other studies, we investigate the effects of N6-methyladenosine (m6A) on RNA structure and its
role in RNA recognition by the YHT reader protein. To achieve this, we develop an alchemical
free energy calculations procedure (AFEC), which allow us to quantitatively assess the impact
of N6-methylation on the thermodynamic stability of dsRNAs and the free energy associated
with RNA-protein complex formation. Additionally, we introduce innovative fitting strategies
to fine-tune the m6A force-field using AFEC, ensuring agreement between our simulations and
experimental data from denaturation experiments, titration calorimetry, and NMR experiments.
The AFEC calculations for the YHT-RNA complex were additionally integrated with meta-
dynamics. This step was necessary to enhance the displacement of water molecules into and
out of the protein binding pocket, aiming to improve the precision of the free energy estimates
by effectively sampling the metastable hydrated states of the complex. Furthermore, we use
m6A-containing RNA systems to test a novel enhanced sampling technique called alchemical
metadynamics (AM). This technique enables us to conduct alchemical transformations while
simultaneously enhancing the exploration of the conformational space along a degree of free-
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dom orthogonal to the alchemical variable. Our tests reveal that a single AM simulation can
replicate the results obtained from two separate AFEC simulations for two different isomers.
Additionally, it provides the capability of reconstructing the free energy profile along the biased
torsional angle.
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Chapter 1

Introduction

This thesis presents the culmination of four years of doctoral research conducted under the su-
pervision of Professor Giovanni Bussi at the Scuola Internazionale di Studi Avanzati (SISSA).
The primary objective of my work has been to explore the influence of RNA post-transcriptional
modifications on RNA structural dynamics and recognition. We accomplished this by employ-
ing a combination of computational methodologies and by making use of available experimental
data. This introductory chapter serves as an overview of general RNA biology and consolidates
existing knowledge concerning RNA post-transcriptional modifications.

Chapter 2 focuses on elucidating the computational techniques employed throughout this
study, which were integrated with experimental data obtained from solution experiments to
generate the results discussed in this thesis.

Chapter 3 reports on a collaborative project between our computational group and the ex-
perimental team led by Professor Michael Sattler (Technische Universitat Munchen). In here,
we investigate the conformational ensembles of an adeonisne-to-insoine hyper-edited dsRNA,
combining molecular simulations with solution experiments. It is worth noting that this work
has not been submitted yet.

Chapter 4 highlights the first publication arising from my doctoral research. In this chapter,
we show how we can perform molecular simulations that match denaturation experiments for
RNA systems containing N6-methyladenosine (m6A), the most prevalent RNA post-transcriptional
modification found in nature. We refine the m6A force-field by fine-tuning a torsional potential
and adjusting six partial charges of the nucleobase to accurately fit experimental free energies.
Our fitting procedure makes use of alchemical free energy calculations (AFEC) to quantify the
destabilizing effect of methylation on dsRNAs.

Chapter 5 provides an overview of our contribution to a published work that introduces an
innovative enhanced sampling methodology called alchemical metadynamics. The lead author
of this work, Wei-Tse Hsu, is a doctoral student in Michal Shirts’ laboratory at the University
of Colorado, Boulder. During my doctoral studies, I had the privilege of visiting Michal Shirts’
lab for two weeks, laying the foundation for our collaboration. In this thesis, I briefly introduce
the theory of alchemical metadynamics and exclusively report the results generated by myself,
which consist in testing the method on some of the m6A RNA systems previously investigated
in Chapter 4.

Lastly, Chapter 6 details a collaborative project resulted from a two-month visit to Jiri
Sponer’s laboratory in Brno, Czech Republic. In this study, we investigate the role of m6A
in RNA recognition by a specific reader protein. Our investigation examines the impact of hy-
dration within the protein binding pocket when assessing the influence of N6-methylation on
the free energy of binding in the protein-RNA complex. Also for this work, we employed al-
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chemical free energy calculations. Furthermore, we explore the effects of the m6A force-field
on the accuracy of these estimations. This extends the fitting procedure introduced in Chapter
4, ultimately resulting in a m6A parametrization that can accurately predict dsRNA destabi-
lizations, isomer populations, and RNA recognition simultaneously. This work has not been
published yet.

The results discussed in this Thesis are based on the following articles:

• V. Piomponi, T. Fröhlking, M. Bernetti, G. Bussi, Molecular Simulations Matching De-
naturation Experiments for N6-Methyladenosine, ACS Central Science. 2022, 8, 8, 1218-
1228 (See Chapter 4)

• Wei-Tse Hsu, V. Piomponi, P. T. Merz, G. Bussi, M. R. Shirts, Alchemical Metadynam-
ics: Adding Alchemical Variables to Metadynamics To Enhance Sampling in Free-Energy
Calculations , Journal of Chemical Theory and Computaion. 2023, 19, 1805-1817 (See
Chapter 5)

• V. Piomponi, M. Bernetti, G. Bussi, Molecular dynamics simulations of chemically mod-
ified ribonucleotides, Chapter in the Springer Book RNA Structure and Function.

• C. Muller, V. Piomponi, G. Bussi, M. Sattler Combining NMR, SAXS and MD to invesi-
gate effects of A-to-I hyper-edting on RNA double strands, not published yet (See Chapter
3)

• V. Piomponi , M. Krepl, J. Sponer, G. Bussi, Molecular simulations to investigate the
impact of N6-methyation in RNA Recognition: Improving Accuracy and Precision of free
energy of binding estimation, not published yet (See Chapter 6)

This thesis does not include a relevant portion of my research efforts, which involved super-
vising a Master’s student, Axel Dian, for a duration of five months. Axel conducted an intern-
ship in our laboratory, where he admirably advanced a project aimed at developing a method
to automatically find optimal pathway of alchemical parameters in alchemical free energy cal-
culations. Given that the outcomes of this study are predominantly the result of Axel’s diligent
work, they are not presented within this thesis.

1.1 The Ribonulceic Acid (RNA)
RNA, or ribonucleic acid, is widely considered as one of the most important and versatile chem-
ical species in molecular biology, and is present in all living cells. RNA is a single-stranded
polymer molecule chemically related to DNA [1], and is mainly ad historically known for its
primary function of acting as a key player in the transfer of genetic information from DNA to
proteins. However, it can play many other fundamental roles in the cell: Different types of
RNA, such as messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA),
can perform specific roles in several cellular process. For example, they can store genetic in-
formation and catalyze chemical reactions at the same time. In bacteria, RNA controls gene
expression in response to physiological stimuli [2]. In eukaryotic organisms, RNA is essential
for the maintenance, regulation, and processing of genetic information, such as RNA silencing
[3].

From a structural point of view, RNA is a linear polymer composed of nucleotides, which
consists of a planar aromatic base attached to a ribose unit, a 5-member sugar ring, which is
bound to a phosphate group. The 2'OH group of the sugar ring is a profound difference to DNA,
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Figure 1.1 Schematic representing some of examples of nucleotide modified in the backbone
(green) or in the nucleobase (blue). Readapted from our review [5] [6].

making RNA chemically significantly more versatile because this site can act as hydrogen bond
donor and acceptor, enhancing the structural and dynamical complexity of RNA [1].

RNA molecules must adopt complex and functionally competent structures to carry out di-
verse cellular functions. The process of RNA folding is intricate and not fully understood, but
it is evident that, similar to DNA, base-pair interactions play a crucial role in determining the
stability of RNA structures [4]. Each nucleobase can be characterized by three edges: Wat-
son–Crick (W), Hoogsteen (H), and Sugar (S). When two bases interact noncovalently, each
engaging one of the three edges, they form a base pair with a substantially planar geometry,
linked by at least two interbase hydrogen bonds (H-bonds). Canonical base pairs, G:C (3 hydro-
gen bonds) and A:U (2 hydrogen bonds), interact on the Watson-Crick edges and are primarily
found in the double helical regions where two complementary strands are united. Although the
G-U wobble base pair is often found in helical regions, it is not considered a canonical base
pair. Indeed, the G-U wobble pairing involves a slight distortion of the base pairing geome-
try, resulting in weaker hydrogen bonding compared to the canonical pairs. Despite this, G-U
wobble pairs remain significant in RNA secondary structures and play a crucial role in RNA
folding and functional processes. They allow for flexibility and adaptability in RNA structures,
contributing to the diversity of RNA’s functional capabilities. Unlike double-stranded DNA,
single-stranded RNA folds in on itself, giving rise to a wide range of noncanonical base pairs.

1.2 RNA modifications
RNA molecules are arbitrary sequences of four nucleotides that are used as building blocks:
adenine (A), uridine (U), cytidine (C), and guanosine (G). These are however just the most
commonly observed nucleotides. A large number of different (modified) nucleotides can be
incorporated as well (see Fig. 1.1).

RNA modifications are of two types: naturally occurring and artificial. The former are bio-
chemical modifications of nucleotides that are in most cases involving the nucleobase moiety.
Many of them are chemical marks on cellular RNA and are regulated by enzymes generally
referred as writers, and that can be eventually recognized by proteins referred as readers. The
transformation of standard nucleotides into their modified version occurs in the cell after the
transcription process has been completed in the nucleus, and for that reason naturally occurring
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modifications of RNA are generally called post-transcriptional modifications. The first mod-
ification was discovered more than 60 years ago [7], and nowadays, more than 100 types of
post-transcriptional modifications are known. Historically, RNA modifications were thought to
be present exclusively in noncoding RNAs (ncRNAs) and required for their regulatory function.
In particular, transfer RNAs (tRNAs) are known to be heavily modified [8], and a wide vari-
ety of modifications can be found both in the anticodon region and in the tRNA-body region
[9, 10]. The former are crucial to enhance the efficiency of the regulatory mechanism of pro-
tein synthesis, whereas the latter have in general a direct impact on structure, tuning the correct
folding of the molecule into the well-known cloverleaf structure [11]. Ribosomal RNA (rRNA)
is also extensively edited after transcription [12]. However, recent technical advances revealed
widespread modifications also on messenger RNAs (mRNAs). A general overview on location,
regulation, and function of modifications in the epitranscriptome can be found in Ref. [13]. In
general, the roles of post-transcriptional modifications are of two types: (i) they allow correct
folding of ncRNAs (e.g., tRNA and ribosomal rRNA) into their functional structure and (ii)
they affect the target specificity of RNA-RNA, and RNA-protein interactions. In addition to
naturally occurring modifications, a number of artificially modified nucleotides have been stud-
ied, usually aimed at increasing hybridization kinetics and stability [14]. Morevoer, it’s worth
remarking the implication of modified nucleotides in the development of COVID-19 mRNA
vaccines, that is primarily related to enhancing the stability, efficiency, and immunogenicity of
the mRNA molecules used in these vaccines [15]

Although the research on RNA modifications has been exponentially increasing in the past
years, computational studies on modified RNAs are still limited, even in the relatively simpler
context of secondary structure prediction [16]. This is due to two factors: first, the majority
of models handling secondary structure predictions are limited to the standard 4 letter alphabet
(AUGC), and as a consequence, to the standard Watson Crick and Wobble pairings (A-U, G-C,
G-U); second, suitable thermodynamic parameters to estimate the effect of post-transcriptional
modifications on duplex stability are lacking. Even more complex is the prediction of the im-
pact of modifications on tertiary structure. It is worth recalling that typical models for tertiary
structure predictions are trained on available structural datasets [17, 18, 19], and that the amount
of RNA systems for which a high resolution structure has been obtained is limited. Needless
to say, the statistics available on modified nucleotides is even scarcer. Furthermore, methods
trained on static structures give limited access to structural dynamics. In this respect, molecular
dynamics (MD) simulations [20, 1] are a very promising tool since (a) they give direct access
to dynamics and (b) are grounded in physics-based models, which could possibly be capable to
describe systems for which the amount of reference experimental structures is limited. Based
on these assumptions, the objective of this thesis is to use molecular dynamics simulations to
investigate how modified nucleotides impact RNA structural dynamics. This will be achieved
through the integration of computational techniques with experimental data, aimed at improv-
ing the reliability of our findings. Additionally, we aim to develop predictive models for the
tertiary structure of modified RNA, which can be utilized in future research.
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Chapter 2

Methods

In this Chapter we will introduce the main computational methods used in the works described
in this thesis. In particular, we will first describe the basic principles of molecular dynamics
(MD) simulations, including advanced methods to enhance sampling and compute mutation free
energies. Finally, we will show how MD simulations and experimental data can be integrated
to improve accuracy of the model.

2.1 Molecular dynamics
Molecular dynamics simulations are a natural tool to characterize RNA structural dynamics [1].
In brief, they consist in solving the Newton’s equations of motion for the system under inves-
tigation, propagating the coordinates of all the atoms for a number of consecutive steps [21].
Equations of motion are complemented with thermostats and barostats to control temperature
and pressure, respectively. Water molecules and ions are usually explicitly represented, greatly
increasing the number of simulated atoms. A key ingredient of any molecular dynamics simula-
tions is the employed force-field. A force-field is a function that, given the current coordinates
of all the atoms of the system, returns the forces acting on them. The force-field should be eval-
uated at each step of the MD simulation. Since evaluating the force-field is the computational
bottleneck of any MD simulation, its functional form has to be chosen with compromises, so as
to be accurate enough to describe the relevant chemistry but not too expensive. The functional
form of the commonly used AMBER [22] force-field is the following one:

E = ∑
bonds

1
2

kb(r− r0)
2 + ∑

angles

1
2

ka(a−a0)
2+

∑
torsions

∑
n

Vn

2
(1+ cos(nφ −δ ))+

∑
LJ

4εi j

((
σi j

ri j

)12

−
(

σi j

ri j

)6
)
+ ∑

electrostatics

qiq j

ri j
(2.1)

Here, kb, ka, and Vn control the so-called bonded interactions. Specifically, kb controls the
stiffness of chemical bonds, ka the stiffness of angles between consecutive chemical bonds, and
Vn can be used to provide a Fourier expansion of the energy controlling the rotation around
chemical bonds. The remaining terms control non-bonded interactions, and are composed by
Lennard-Jones potentials (σ and ε), representing both Van der Waals interactions and short
range inter-atomic repulsion, and electrostatics, controlled by charges q.
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The parameters of the force-field are heavily system dependent and are derived using a mix-
ture of accurate quantum chemical calculations and of experimental data (see [23] for a recent
review). Whereas currently available RNA force-fields are far from perfect, recent progress
has allowed to design force-fields able to reproduce correctly the native conformation of small
structured RNAs and the conformational ensembles of short disordered oligomers (see, e.g.,
Refs. [24, 25, 26] for recent works based on the AMBER force-field). The two main families
of force-fields used for nucleic acids are AMBER [22] and CHARMM [27], both of which
have evolved in multiple revised versions during the past decades. The AMBER family of
force-fields offers a well-defined recipe to construct parameters for arbitrary molecules using
quantum mechanical calculations [22]. In particular, charges are obtained by fitting the elec-
trostatic potential, and torsional parameters by fitting the energy profiles associated to bond
rotations. For the CHARMM force-field, the procedure is more complex and targets both quan-
tum mechanical data on nucleoside and experimental data on nucleosides or oligonucleosides
[27].

2.1.1 Force-fields for chemically modified nucleotides
Over the last decades, a lot of effort has been done to parametrize at best RNA force-fields.
However, this effort was mostly done just taking into account the 4 standard nucleotides AUCG.
In order to simulate RNA molecules containing modified nucleotides, it is necessary to derive
specific force-field parameters for each type of modification. Luckily, force-field parameters
for approximately 100 naturally occurring modified nucleotides were derived both in the AM-
BER [28] and in the CHARMM [29] frameworks. Aduri et al [28] published in 2007 the
modrna08 force-fields, which provides full parametrization for 107 naturally occurring modifi-
cation. Modrna08 was derived using the standard AMBER protocol, fitting torsions and charges
to reproduce quantum mechanical calculations. Parameters were validated performing standard
MD simulations of a tRNA containing a fraction of the modifications for which parameters were
reported. These force-field parameters have been used in several later MD simulations using the
AMBER force-fields. However, the parametrization has been shown not to be able to reproduce
experimental evidence for a number of modified uridines [30]. Specifically, the parametrization
was unable to reproduce conformational characteristics as expected from NMR experiments
performed on these nucleotides, revealing the necessity to re-optimize the torsion angles for
each individual modified residue and validate with larger RNA structures. The same authors
successively re-optimize this force-field for the pseudoridine (Ψ), s2U and s4U by reparametriz-
ing χ torsions (χIDRP) for all 3 nucleotides [31]. Moreover, they also proposed an alternative
parametrization of the Lennard-Jones parameters for oxygen O3 of s2U and s4U (σIDRP), sug-
gesting an increased σ for this atom so as to shift the population of the C3'-endo conformation
of the sugar toward the experimental value. A later work by Dutta et. al [32] confirmed that
the χIDRP parametrization was transferable to other modified uridines (a set of 4 methylated
Ψ) Recently, an alternative force-field parametrization was published for Ψ and three different
methylayed versions of Ψ [33]. The derivation follows the same stategy of [31], but this time
new partial charges were derived using the RESP fitting method [34]. Furthermore, the pa-
rameters fitted on the single nucleotides were validated on ssRNA oligonucleotides, obtaining
conformational and hydration characteristics in agreement with NMR experiments.

Also the parameters of m6A have been validated quantitatively against experimental data.
Hurst et al[35] computed the destabilization induced by the presence of the methyl group on
RNA duplexes and showed that it can reproduce thermal denaturation experiments [36]. How-
ever, we will show in this Thesis that the Aduri force-field fails to reproduce denaturation ex-
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periments when considering a more extensive set of systems [36, 37], resulting in a mismatch
in the duplex destabilization for sequences that were not tested previously as well as in an in-
correct estimate of the relative stability between the two possible conformations of the methyl
group. Only a simultaneous reparametrization of charges and a dihedral angle enabled to obtain
both preference for the correct conformation of the methyl group and duplex destabilization in
quantitative agreement with experiment, as we will show in Chapter 4.

Xu et al[29] adopted the CHARMM protocol to derive partial charges and bond potentials,
with special attention to the glycosidic torsions. They presented in details 13 modified nu-
cleotides but provided force-fields for 112. Automers and protonation variants have also been
included. The parameters were optimized targeting quantum mechanical data and further re-
fined against experimental data when possible. The charge fitting strategy aims at reproducing
interactions with water and correct dipole moments. Torsions were fitted computing poten-
tial energy surfaces with quantum mechanical methods. Simulations of nucleosides and trinu-
cleotides were compared with NMR data, when available. These force-field parameters have
been used in several later MD simulations using the CHARMM force-fields. In addition to these
two works, covering the majority of known modified nucleotides, it is relevant to mention that
for many of the applications discussed below the authors developed and tested new sets of force-
field parameters specific for a single or a few modifications [38, 39, 40, 41, 42, 43, 44, 45]. In
this thesis we will take as the reference parametrization for modiefied nucleotides the modrna08
force-field introduce by Aduri et al [28], and we will refer at it simply as Aduri force-field.

2.2 Enhanced sampling methods
RNA molecules are often characterized by conformational ensembles composed of multiple
partly heterogeneous structures or substates that are relevant for function [46]. Molecular dy-
namics simulations can access at most the multi-microsecond timescale with current resources.
In order to obtain statistically reliable population of substates, it is necessary to sample tran-
sitions between the important substates multiple times. Changes in tertiary interactions and
modifications of multiple base pairings cannot thus be directly simulated with MD. To circum-
vent this problem, enhanced sampling methods can be used.

Enhanced sampling methods can be roughly classified in two categories. One category
includes methods based on heating the system so as to accelerate the exploration of the con-
formational space, typically relying on replica exchange schemes to recover the original prop-
erties. Representative of these methods are parallel tempering, also called temperature replica
exchange [47], and solute tempering [48]. These methods are typically very expensive and
can thus be fruitfully applied only for sampling small oligomers. The other category includes
methods based on adding biasing forces on specifically chosen degrees of freedom, or collec-
tive variables, representing the energetic barriers that one is willing to cross. Representatives
of these methods are umbrella sampling [49], often performed combining multiple windows
[50] so as to progressively convert the system from an initial conformation to a final one, and
metadynamics [51]. These methods can be used to accelerate relevant events if sufficient prior
information about the slow processes of the system is given. Methods which can be interpreted
as a combination of the two different classes exposed above also exists, as for example the
replica exchange collective variable tempering (RECT) method, which we will introduce be-
low. A systematic review and classification of enhanced sampling methods can be found in
Ref. [52], whereas a survey of applications to RNA simulations is presented in Ref. [53]. In
the following, we will introduce the enhanced samplings methods that are used in the works
described in this thesis.
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2.2.1 Well-Tempered Metadynamics
Metadynamics [51] can be easily regarded as one of the most popular advanced sampling meth-
ods based on collective variables (CV). In metadynamics, a history-dependent bias potential is
added to the system along a predefined CV, allowing the system to overcome energy barriers
and explore different conformations more efficiently.

Although the formulation of meta dynamics can be generalized with respect to CV of any
dimensionality, in practical applications the method can only be used for a small number of
CVs at a time, due to the difficulty in reconstructing a highly dimensional bias with sufficient
statistics. The biasing potential depends on the vector of collective variables of interest, denoted
as ξ .

Throughout the simulation, biasing potentials are regularly added in the form of small Gaus-
sian potentials, allowing to gradually fill the free energy basins across the relevant reduced-
dimensional space defined by the CV, in such a way ensuring balanced sampling with respect
to the CV. Let ξ be a d-dimensional CV vector, defined as ξ = (ξ1(x),ξ2(x), ...,ξd(x)). The
biasing potential accumulated after a time period t can be expressed as follows:

V (ξ , t) =W
t ′<t

∑
t ′=kτ,k∈N

exp

(
−

d

∑
i=1

(ξi −ξi(x(kτ)))2

2σ2
i

)
(2.2)

where W is the height of the Gaussian, k is the number of Gaussian depositions, τ is the depo-
sition stride and σi is the width of the Gaussian along the i-th dimension.

Well-tempered metadynamics (WT_MetaD) [54] is a variation of the standard metadynam-
ics method. It introduces a "well-tempered" biasing factor to improve the convergence of the
simulation. This factor modifies the height of the deposited Gaussian potentials during the
simulation, effectively accelerating the convergence of the bias potential. Specifically, the time-
dependent Gaussian height W (kτ) can be written as:

W (kτ) =W0 exp

(
−V (⃗ξ (x(kτ)),kτ)

kB∆T

)
(2.3)

where W0 is the initial Gaussian height and ∆T is a temperature parameter that incorporates a
user-defined bias factor γ = (T +∆T )/T for adjusting the decay rate of the bias. In WT_MetaD,
the relation between the accumulated bias potential and underlying free energy surface as a
function of the multi-dimensional CV ξ can be estimated as follows:

V (ξ , t → ∞) =− ∆T
T +∆T

F(ξ ) =−
(

1− 1
γ

)
F(ξ ) (2.4)

In all our applications, we perform WT_MetaD by interfacing GROMACS with the PLUMED
package [55]. When setting up WT_MetaD, several considerations must be taken into account
when choosing the input parameters γ; τ; W0; and the σs. The values of these parameters may
be crucial to allow proper convergence of the bias potential, and even more importantly, a dif-
fusive behavior of the CV. These choices are system dependent and will be discussed for each
application.

When performing metadynamics, it’s sometimes considered a good practice to perform a
separate simulation using the static bias potential produced by the previous simulations, and
compute the weighting factors exclusively from the additional simulation, as it is done, for
instance, in metadynamics with umbrella-sampling refinement [56]. Notice that this option is
more expensive, as it requires a separate simulation, but in principle removes any potential
systematic error due to the history-dependent nature of the metadynamics biasing potential.
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In order to obtain reasonable estimates of the free energy difference of interest, the dimen-
sions of the chosen set of CVs must be as low as possible, while still being able to capture the
slowest degrees of freedom of the system to an extent which allows to observe multiple tran-
sitions, back and forth, along the states which compose the reduced-dimensional space defined
by the CV. In the cases in which a low number of CVs is not sufficient to capture the slow de-
grees of freedom, it becomes prohibitive to get to converge weights, as the space to be explored
increases exponentially with the number of CVs. In the next section we will describe a method
that allows to tackle the issue, by integrating an high number of independent metadynamics in
an Hamiltonian replica exchange scheme.

2.2.2 Replica Exchange Collective Variable Tempering
Replica Exchange Collective Variable Tempering (RECT) is an enhanced sampling method in-
troduced by Gil-Ley et al [57], which combines two techniques: Hamiltonian replica-exchange
(HREX)[58] [48] and the previously introduced well-tempered metadynamics (WT-MetaD)
[54]. HREX is an extension of the replica exchange method, where each replica of the system
is simulated using a different Hamiltonian, which represents a different potential energy func-
tion. If the Hamiltonian varies only in terms of temperature, the method corresponds to parallel
tempering. Alternatively replicas can differ in terms of potential energy parameters. Swaps of
coordinates between neighboring replicas are periodically attempted and accepted or rejected
with a Metropolis criterion, with the goal of allowing every continuous trajectory to go back
and forth in the replica ladder as fast as possible. By simulating replicas at different Hamiltoni-
ans, the system can explore a wider range of conformational space and access states that might
be difficult to reach using traditional molecular dynamics simulations. Well-tempered metady-
namics, as the other methods based on adding a bias along a CV, has the limitation of being
applicable only for a small set of CVs, due to the difficulties in building a history dependent
potential in a high-dimensional CV space. For many systems it is not possible to find a small
number of effective CVs that describe the slow degrees of freedom. The RECT method is based
on the idea to perform simultaneously a large number of concurrent metadynamics biasing dif-
ferent local CVs, by integrating them in an HREX scheme. The methods exploits the tunability
of WT-MetaD to scale the strength of the bias potential along the ladder of replica, by acting
on the bias factor γ . By setting γ = 1 for the bottom replica, we in practice obtain an unbiased
replica which is still able to enhance its sampling thanks to the exchange with the upper replica,
along which γ is gradually scaled to bigger values. This methodology is flexible and allows
adaptive bias potentials to be self-consistently constructed for a large number of simple collec-
tive variables, such as distances and dihedral angles.
In Chapter 2, we will show our use of this method to enhance the sampling of a 20-bp dsRNA,
in such a way as to ensure an exhaustive sampling of all the possible sugar puckering conforma-
tions of the dsRNA nucleotides. In this application, we integrate 24 concurrent metadynamics
in a 8 replica ladder.

2.2.3 Alchemical Free Energy Calculations
Alchemical methods allow to simulate trajectories where molecular species are mutated to dif-
ferent molecular species, and the free-energy associated to the transformation can be computed
[59]. These methods are commonly used to characterize the effect of a given chemical modi-
fication on the relative stability of two conformations. Most molecular dynamics code support
these methods, but setting up the simulations is usually more complex than for standard MD.
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Figure 2.1 Alchemical transformation of the standard adenosine into the N6-methyladenosine
(m6A). The transformation is performed by integrating along an alchemical path λ , by switch-
ing on/off non-bonded interaction of specifically chosen atoms.

The intermediate states might be simulated independentely of each other or with a more robust
replica exchange procedure [60].

For several works presented in this thesis, we set up an alchemical free rnergy calculation
(AFEC) protocol which allows integrating along an alchemical path describing the transfor-
mation of a standard adenosine (A) into the N6-methyladenosine (m6A) (see Fig. 2.1). The
transformation consists in substituting the hydrogen H62 with a methyl group defined by atoms
C10, H101, H102 and H103, by gradually switching on/off the non-bonded interaction of these
atoms. To this extent, we included a hybrid adenosine with double topology in the force-field
definition: the first topology corresponding to standard adenosine, and the second one corre-
sponding to m6A. We used 16 replicas in which Lennard-Jones parameters and partial charges
were simultaneously interpolated. In our AFEC protocol, we make use of Hamiltonian replica
exchange (HREX) scheme, proposing exchanges every 200 fs.

An important choice in setting up AFECs is the number of intermediate replicas and the
optimal form of the intermediate Hamiltonian functions. In order to avoid singularities due to
electrostatic interaction when the repulsive LJ potential is switched off [59], we used the GRO-
MACS implemented soft core potentials to interpolate Lennard-Jones and Coulomb potentials
as follows

Vsc,λ (r) = (1−λ )VA((ασ
6
λ + r6)

1
6 )+λVm6A((ασ

6(1−λ )6 + r6)
1
6 ) (2.5)

where α = 0.5 and σ = 0.3 nm. Here, VA and Vm6A are the Lennard-Jones and Coulomb potential
energy functions for unmodified and modified adenine, respectively, Vsc,λ is the interpolated
version of the function, and r the interatomic distance. The energy of the only torsion (η6)
scaled in the A-to-m6A transformation is instead a linear combination of the energy of the two
end points with factors 1−λ and λ , and is defined as

Vη6,λ (x) = (1−λ )Vη6,A +λVη6,m6A (2.6)

In our case, λ = 0 denotes the parameters of the unmodified adenine, whereas λ = 1 those of
the modified adenine.

We decided not to scale the bonded interactions that are present in only one of the systems
(e.g., torsional parameters associated to the methyl group), but to rather have a single H in one of
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
set1 0.0 0.01 0.03 0.05 0.10 0.2 0.35 0.45 0.55 0.65 0.8 0.9 0.95 0.97 0.99 1.0
set2 0.0 0.02 0.05 0.09 0.14 0.2 0.3 0.43 0.57 0.7 0.8 0.86 0.91 0.95 0.98 1.0

Table 2.1 Sets of lambda coefficients used in AFEC replica exchange simulations for systems
with a single methylation (set 1) or with two methylations (set 2).

the topologies and a CH3 group in the other topology. These groups are present in both systems,
though with their nonbonded interactions switched off at one of the end points. This implies
that the intermediate topologies contain both C10 and H62 (see Fig. 2.1). Also the torsional
potentials controlling the rotation of the amino group in the unmodified nucleotide and of the
carbon in the modified nucleotide are not scaled. These potentials are symmetric with respect
to syn/anti rotations (see other Chapters), and thus do not influence the syn/anti population.
We instead scaled the potential acting on η6 since this torsional potential is not symmetric and
its presence would lead to a syn/anti balance different from zero in the unmodified nucleotide.
Readers interested in reproducing this setup are encouraged to inspect the GROMACS topology
files provided in the Zenodo archive (link: https://doi.org/10.5281/zenodo.6498021).

We also notice that GROMACS allows setting separate scaling factors for electrostatic,
Lennard-Jones, and bonded interactions. We didn’t exploit this feature, and rather scaled all
interactions with the same λ factor. This still leaves the open issue of placing a sufficient num-
ber of λ factors interpolating between 0.0 and 1.0. In a replica-exchange setting, the acceptance
rate can be used as a measure of the phase-space overlap between adjacent ensembles. A mini-
mum acceptance is then required to enable mixing of ensembles. At the same time, the spacing
in λ required to reach this minimum acceptance might differ in different regions of the λ space,
thus leading to an optimal allocation of replicas that is not uniformly spaced in λ .

We decided to use a single system, that is the stand alone nucleoside in solution, to optimize
this ladder and then reused the same parameters for all systems. Specifically, we empirically
adjusted the λ values until we obtained a set of 16 intermediates (set1 in Table 2.1) leading
to an approximately uniform acceptance rate each of them greater than 20%. As it can be
understood from the table, the density of the chosen λ values is inhomogenous and, in particular,
higher close to the boundaries (λ = 0 or 1). This set of lambdas was then used for all the
AFECs presented in our works where a single adenine is methylated, and as expected lead to an
acceptance greater than 20% for most replica pairs, and greater than 10% for all replica pairs.
In cases where two methylations were included, we found that for some pairs of replicas the
acceptance was significantly lower than 20%. We notice that in principle the presence of two
simultaneous methylation should lead to a larger number of replicas required to obtain the same
acceptance. By reoptimizing the parameters, we obtained a set of 16 λ ’s (set 2 in Table 2.1)
that was able to guarantee an acceptance greater than 20% for all transitions in systems with
two methylations. We remark that we are currently working to implement an algorithm yielding
an optimized multidimensional ladder using data from a short simulation with the alchemical
parameters shown in table 2.1. The method is transferable to any type of alchemical free-energy
calculations and can be use to find a pathway of alchemical parameters that enhance replicas
mixing. Since this work was predominantly overseen by visiting Master student Axel Dianb,
the results are not presented within this thesis.

The HREX scheme allows, at the end of the production phase, to recover 16 independent
“demuxed” (i.e., continuous) trajectories, which can then be processed to recompute energies
for each of the 16 Hamiltonian functions to compute ∆G via binless weighted histogram analy-
sis method (WHAM) [61, 62, 63]. Specifically, for each trajectory, a weight w is found for each
snapshot x that allows computing statistics for the unmodified adenine as a weighted average
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over the set of concatenated replicas. We consider a set of N trajectories obtained using different
value of λ , so that λk denotes the value of λ and nk the number of snapshots in the k-th sim-
ulation. The k-th trajectory will thus contain samples from the distribution Pk(x) ∝ e−βEλk

(x),
where Eλ (x) is the energy associated conformation x for a given λ and β is the inverse of the
thermal energy. We are interested in obtaining weights w(x) that can be used to compute aver-
ages corresponding to a reference value of λ (λ = 0). In other words, for any observable O(x),
its average at λ = 0 is obtained as

⟨O⟩= ∑
x

w(x)O(x) (2.7)

where the sum runs over the concatenation of the N trajectories. By using the WHAM method
in its binless formulation [61, 62, 63], the unnormalized weights can be obtained as:

w(x) ∝
1

∑
N
k=1 nke−β (Eλk

(x)−E0(x))Z−1
k

(2.8)

and subsequently normalized scaling them by a factor ensuring that ∑x w(x) = 1. The partition
function associated with each value of k, Zk, can be obtained as

Zk = ∑
x

w(x)e−β (Eλk
(x)−E0(x)) (2.9)

These two equations should be solved self-consistently. For numerical purposes, it is convenient
to initially remove from the computed energies (Eλk

(x)) their minimum along both k and x so
as to avoid numerical overflows in the calculation of the exponential function, and then add the
corresponding contributions to the resulting free energies and to the logaritm of the weights. The
calculation was performed using the wham tool available in the bussilab python package, which
can be obtained at https://github.com/bussilab/py-bussilab, version 0.0.36, and that
can be used as a reference for the exact numerical procedure used here. Once the weights have
been obtained, they can be used to compute the free-energy difference between the two end
states using the following equation:

∆GAFEC =−kBT log

[
∑x w(x)e−β∆E(x)

∑x w(x)

]
(2.10)

where ∆E(x) = Eλ=1(x)−Eλ=0(x) is the difference between the total energy computed with
the Hamiltonian energy functions associated to m6A and adenosine, respectively.

Notably, the weights only depend on the conformation (x) and not on the specific value of
λ at which the conformation was generated. This implies that trajectories can be concatenated
in any order resulting in identical weights. This allows to concatenate “demuxed” (continuous)
trajectories, which are virtually independent of each other, being coupled only through the ex-
change step. By performing a blocked bootstrap with block size identical to the length of each
trajectory, one ensures that correlations are minimized [64]. In this case, however, one should
explicitly take into account that, for a given bootstrap sample, the number of snapshots gener-
ated at each value of λ will differ. To computed statistical error on Free Energies, we used the
bootstrapping procedure resampling the 16 continuous trajectories 200 times with replacement.
Finally, as a control, we always computed ∆Gs also using the standard Bennett-acceptance-rate
estimate implemented in GROMACS [65, 66].

The free-energy change associated to an alchemical transformation where the number or
type of atoms in the two end states is different has no physical meaning. Once the protocol for
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mutating one chemical form to another has been established, the simulation should be repeated
in different structural contexts. For instance, the conversion between (unmodified) A and (mod-
ified) m6A can be performed in a single strand and in a duplex. The difference between the
free-energy changes computed in the two simulations corresponds to the stabilization of duplex
resulting from the additional methylation (see fig 4.2a). In other words, alchemistry does not
allow the calculation of the hybridization free energy, but rather how much the hybridization
free energy is affected by the chemical modification. Similarly, the impact of the modification
on the affinity between the studied RNA and a protein can be estimated. Once the setup for the
alchemical simulation has been prepared, the simulation and analysis steps are relatively sim-
ple. However, the results should be judged with care. A particularly problematic case is when
slow degrees of freedom are coupled with the alchemical change. One should make sure that
sampling of the conformational degrees of freedom is sufficient. Typical cases would be if the
rotation around a chemical bond with a high free-energy barrier is coupled with the alchemical
change. An even more difficult situation arises when one of the alchemical states, or both, are
significantly flexible conformations whose sampling is difficult. Simulations where one of the
end states is a flexible single-stranded RNA should then be performed and analyzed with care
to rule out potential artifacts. A possible improvement that can alleviate this problem consists
in combining alchemical simulations with enhanced sampling methods, as done for instance in
alchemical metadynamics, as discussed below [67].

2.2.4 Alchemical Metadynamics
Standard alchemical methods can fail in scenarios where the most important slow degrees of
freedom in the configurational space are, for the most part, orthogonal to the alchemical vari-
able, or if the system becomes trapped in a deep basin extending in both the configurational and
alchemical space. For example, in the A-to-m6A Alchemical Free Energy Calculations (AFEC)
procedure described in the previous section, it would be impossible, within a single simula-
tion on the timescale of ns-µs, to sample the two possible m6A isomers (syn and anti), as their
transition kinetics are expected to occur on the timescale of ms [68]. Alchemical metadynam-
ics (AM), recently proposed in Ref [67], allows overcoming these limitations by performing a
2 dimensional metadynamics. In this approach, one dimension corresponds to the alchemical
transformation, while the other dimension enhances the sampling with respect to a collective
variable (CV) that describes the slow degrees of freedom of the system. With respect to the
Metadynamics formalism introduced in section 2.2.1, the alchemical variable λ is introduced in
the generalized CV vector ξ ′ = (λ ,ξ1(x),ξ2(x), ...,ξd(x)) such that the joint space of λ and ξ is
sampled with the aid of the biasing potential V (ξ ′). Identically to the AFEC describe in previous
section, the alchemical variable is not a function of atomic coordinates and it can take discrete
values which govern the interpolation between two different Hamiltonians. In AM the discrete
λ ladder is explored through Metropolized-Gibbs algorithm (Monte Carlo sampling), similarly
to expanded ensemble method [69], while the coordinate direction is sampled by molecular dy-
namics as in any other type of metadynamics. As the multi-dimensional biasing potentials can
flatten out the free energy landscape in both configurational and alchemical space, one can try
to ensure that the system would not get stuck in the phase space.

Theoretically, the free energy estimator for alchemical metadynamics is the same as the
one used in any other metadynamics, except that the CV vector is generalized with the intro-
duction of the alchemical variable. Upon the deposition of the biasing potential V (ξ ′) in al-
chemical metadynamics, the probability distribution sampled during the simulation is P̃(ξ ′) ∝

exp(−β (F(ξ ′)+V (ξ ′))). One of the possible options to recover the underlying free energy
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landscape F(ξ ′)=−kBT lnP(ξ ′), is to reweight the histogram by assigning an unbiasing weight
w(ξ ′) to each sample with the CV ξ ′. [70] Such an unbiasing weight can be expressed as

w(ξ ′) ∝ exp
(

V (ξ ′, t f )

kBT

)
(2.11)

where t f is the simulation length and V (ξ ′, t f ) is the total bias accumulated up to t f . The maxi-
mum of V (ξ ′, t f ) over ξ ′ is usually subtracted before taking the exponential to avoid overflow,
without affecting the normalized weights. More frequently, V (ξ ′, t f ) is replaced with V̄ (ξ ′, t0),
the total bias averaged over the time period from t0 = (1− fa)t f to t f [71], where fa is the
fraction over which biases are averaged. Given that t f = t0 +Nτ , V̄ (ξ ′, t0) can be written as

V̄ (ξ ′, t0) =
1

N +1

N

∑
i=0

V (ξ ′, t0 + iτ) (2.12)

where N is the number of Gaussians deposited from t0 to t f . In Chapter 5 we will show an ap-
plication of the AM on the A-to-m6A transformation, coupling the alchemical CV to a torsional
CV which allows sampling two different isomers within a single simulation.

2.3 Combining MD and experiments
The accuracy of molecular dynamics, which determines its ability to replicate and predict ex-
periments, is often constrained by the quality of the employed force-fields. Despite recent ad-
vancements [1], the quality of RNA force-fields remains a limiting factor for MD simulations.
However, substantial efforts have been dedicated over the years to parametrize standard RNA
nucleotides. Although these force-fields heavily rely on parameters developed in the 1990s,
they have been validated and compared against a significant volume of experimental data. This
validation has provided insights into the reliability of MD in various systems while identify-
ing potential artifacts in others [72] [1] [26]. Conversely, as discussed in section 2.1.1, limited
progress has been made in parameterizing and validating force-fields for modified nucleotides.
Consequently, the utilization of experimental data from literature becomes even more critical to
corroborate computational findings and ensure their reliability.

Two primary strategies exist to integrate simulations and experiments. The first, as previ-
ously mentioned, involves fitting force-fields against experiments, trying to ensure their trans-
ferability to other systems not involved in the training. Although historically applied to small
fragments, this approach can be theoretically extended to macro-molecular systems, as also
shown in this Thesis. The second strategy involves ensemble refinement, exemplified by meth-
ods like Maximum Entropy (ME) or Maximum Parsimony (MP) principles. These techniques
enable the reweighting of MD trajectories to enhance their alignment with experimental ob-
servables. These methods are not transferable, in the sense that experimental data should be
available for exactly the same system that one wishes to model.

Within this thesis, we demonstrate applications of both strategies, by combining MD sim-
ulations with solution-based experiments to investigate the impact of RNA modifications on
RNA structural dynamics and recognition.

2.3.1 Force-field Fitting
RNA force-fields, much like other force-fields for biomolecules, have traditionally been devel-
oped using a ’bottom-up’ approach. This involves fitting a combination of reference quantum

18



chemistry data and experimental information obtained from small molecular fragments. In the
specific case of the AMBER force-field, parameters governing bonded interactions are derived
from experimental data, often obtained through spectroscopy experiments. On the other hand,
parameters related to torsional interactions and Lennard-Jones (LJ) parameters, which gov-
ern non-bonded interactions, are determined using a mix of quantum mechanical calculations,
empirical fitting, and experimental data. Furthermore, the partial charges employed to describe
electrostatic interactions are exclusively derived from quantum mechanical calculations. A chal-
lenge with these conventional methodologies is ensuring that the derived parameterization are
transferable, that means they can be successfully applied to different systems. For instance,
torsional parameters and partial charges in the AMBER force-field are initially calculated using
quantum chemistry on small fragments containing only a few dozen atoms, often including just
a few amino acids. However, these parameters are subsequently used to simulate larger systems
like oligopeptides or entire protein domains.

In recent years, the proliferation of solution experimental studies, coupled with the emer-
gence of machine learning techniques capable of achieving transferable outcomes in the fitting
process, has paved the way for directly integrating a multitude of molecular dynamics simula-
tions with experimental data on macromolecules. This direct integration allows for the develop-
ment of transferable parameterizations. Several methods have been introduced to facilitate the
direct fitting of force-fields to experimental data obtained from macromolecular systems. The
general workflow employed for this fitting process follows the subsequent steps:

• Derive initial parameterization by fitting quantum chemistry data and experimental data
on small systems

• Perform MD simulations with the initial reference force-field on macromolecules systems

• Reweight trajectories optimizing force-field parameters in order to maximize the agree-
ment with a set of available data

• Re-perform MD simulations with the new optimized parameters

The process of optimizing force-field parameters involves reassigning new weights to exam-
ined conformations, then predicting results based on these slightly adjusted parameters. How-
ever, if there’s a need to enforce experimental data by exploring parameters significantly differ-
ent from the reference ones, there’s a potential risk of compromising the statistical significance
of the calculations. At a certain point, it becomes essential to iterate the procedure, by per-
forming new simulations, at least one time in order to validate the predictions obtained with
reweighting.

The advantage of fitting against solution experiments is that they often report results that
are averaged over an ensemble of copies of the same molecule, making it possible to enforce
ensemble averages rather than instantaneous values. Another crucial aspect to consider when
fitting a model to experimental data is the avoidance of overfitting. Fortunately, in recent years,
the field of machine learning has introduced several tools that can be employed to incorpo-
rate regularization terms into optimization algorithms, thereby mitigating the risk of overfitting.
Typically, fitting algorithms operate by minimizing a cost function, which can be augmented
with regularization terms guided by hyperparameters. These hyperparameters must be selected
through a cross-validation procedure. This procedure involves fitting the model to the train-
ing set data and subsequently validating the optimized model against the validation set data,
which is distinct from the training data. Alternatively, the dataset can be divided into three
subsets: in addition to the standard training and cross-validation subsets, an independent test
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set is introduced. The training set is utilized to identify the optimal parameter values at fixed
hyperparameters. Optimal hyperparameters are then determined using the cross-validation set.
Eventually, the performance of the model, defined by the optimal parameters and hyperparam-
eters, is assessed using the test set. For a collection of examples detailing the fitting of RNA
force-fields to macromolecular systems, refer to the review by Frohlking et al [23].

In Chapter 4 of this thesis, we will present our efforts to refine the force-field for a methy-
lated Adenosine. This involves reparameterizing partial charges and a torsional term to match
simulations with experimental data available in the literature, that are denaturation experiments
and NMR data pertaining to isomeric populations of both paired and unpaired nucleotides.

2.3.2 Ensemble Refinement - Maximum Entropy
Ensemble refinement methods aim to corroborate simulation with experimental data without
modifying the force-fields, but rather by adding minimal bias in order to improve quantitative
agreement with experimental values while minimizing the change in the potential energy func-
tion. One of these biasing methods build upon the maximum entropy (ME) principle, which
in its original formulation [73] states that, given a system described by a number of states, the
best probability distribution for these states compatible with a set of observed data is the one
maximizing the associated Shannon’s entropy. The entropy is computed here relative to a given
prior distribution P0(q) and, is defined as

S[P][P0] =−
∫

d(q) P(q)ln
P(q)
P0(q)

(2.13)

Given a set of M experimental observables to be enforced, the Shannon entropy should be
maximized based on the following costraints:

PME(q) = argmaxP(q)(S[P][P0])∫
dq si(q)P(q) = sexp

i ; i = 1, ..,M∫
dq P(q) = 1

. (2.14)

This system of equation can be interpreted as a search for the posterior distribution PME(q)
that is as close as possible to the prior distribution P0(q) among those which agree with the
given experimental observations.

The solution of 2.14 can be obtained using the method of Lagrangian multipliers, namely
searching for the stationary points of the Lagrange function

L = S[P][P0]−
M

∑
i=1

λi(
∫

dq si(q)P(q)− sexp
i )−λ0(

∫
dq P(q)−1) (2.15)

where the λ s values correspond to the Lagrangian multipliers. By setting δL
δP(q) = 0, we find

that the posterior which maximize the Shannon entropy can be expressed, neglecting the nor-
malization factor, as:

PME(q) ∝ e−∑
M
i=1 λisi(q)P0(q) = e−λλλ s(q)P0(q) (2.16)

where the vector of Lagrangian multipliers λλλ are those which allows to enforce the experimental
averages.

In short, the maximum relative entropy principle gives a recipe to obtain the posterior dis-
tribution that is as close as possible to the prior distribution and agrees with some experimental
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observation. In order to apply this formalism to MD trajectories, we can assume that P0(q) is the
probability distribution predicted by the used force-field through the MD simulation. Reweight-
ing the trajectory through equation 2.16 corresponds to individuate a Boltzmann distribution that
is the result of using a potential energy defines as:

VME(q) =V0(q)+ kBTλλλ s(q) (2.17)

where V0(q) is the potential energy given by the used force-fields, and the second term
correspond to the minimal biasing needed to adjust the predicted ensemble with respect to the
M experimental data considered.

In short, the choice to generate an ensemble that is as close as possible to the prior knowl-
edge (the force-field) implies that the correcting potential has a specific functional form, that it
is linear in the observables that have been measured. In recent years, the ME method has been
widely used to enforce experimental averages on MD simulations of RNA systems. Some of the
most common data used to improve the accuracy of the simulations include 3J scalar couplings
and NOE signals derived from solution Nuclear Magnetic Resonance (NMR) experiments [74],
as well as Small-Angle X-ray Scattering (SAXS) spectra [75]. More recently, Cryo-Electron
Microscopy (Cryo-EM) density maps have also been utilized [76]. In all these cases, a so called
forward model is needed to map the atomic coordinates of the system to the measured quantity,
allowing the experimental data to be back-calculated from the simulated structures. It must be
noted that the formulas used in standard forward models are often parameterized empirically
and may not be extremely accurate, introducing in such a way systematic errors in the ensem-
ble refinement. More generally, as in force-field fitting methods, in the ME refinement, some
regularization terms could be introduced in order to strike a balance between trusting the pure
MD predictions and placing trust in the forward models and/or the experimental data.

ME has also other limitations. First, only variables for which experimental data are available
can be refined. Additionally, it is not possible to modify the functional form of the force-field. In
this sense, the corrections derived using the ME principle are not transferables to other systems.

In the upcoming Chapter, we will show an application of the ME principles, used to incor-
porate both NMR and SAXS data in predicting an ensemble of structures for a double-stranded
RNA that undergoes hyper-Adenosine-to-Inosine editing.
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Chapter 3

Combining MD and solution experiments
to investigate the impact of inosine
hyper-editing in dsRNA

Inosine is a naturally modified nucleotide that has been widely studied among the RNA com-
munity. It was initially identified in 1965 during the analysis of RNA transferase [77] and plays
a crucial role in facilitating the accurate translation of the genetic code in wobble base pairs.
Inosine is synthesized through the deamination of adenine, a chemical process that involves the
removal of an amino group (-NH2). Consequently, this process converts the amino group of
adenine into a keto group, resulting in the formation of a novel nucleobase called hypoxanthine.
This transformation is referred to as adenosine-to-inosine (A-to-I) editing [78]. The distinct
aspect of inosine lies in its ability to form pairs with various nucleobases during RNA transcrip-
tion and translation processes [79]. In RNA, base pairing preferentially follows the principles
of complementary base pairing. The most stable parings, also called canonical pairings, involve
adenine (A) binding with uracil (U) and cytosine (C) pairing with guanine (G). Alternatively,
non-canonical interactions within RNA structures can involve U binding with G, and inosine
(I) pairing with both U or C. This inosine’s remarkable versatility arises from its capacity to
establish hydrogen bonds with all these nucleobases, albeit with reduced strength compared to
canonical pairings. Inosine’s capability to pair with multiple bases renders it particularly sig-
nificant in scenarios demanding flexibility in codon-anticodon recognition, such as the wobble
position of the anticodon loop in transfer RNA (tRNA) during protein synthesis. This adap-
tive feature allows tRNAs containing inosine to identify multiple codons differing in the third
position, thereby enhancing translation efficiency [80]. A-to-I editing in double-stranded RNA
(dsRNA) is also known to play a major role in regulating immune response. Indeed, intra-
cellular dsRNAs are perceived as a threat by the cell, including those originating from RNA
viruses as well as genomic and transcriptomic elements containing inverted repeat sequences
that can form dsRNA regions. This situation activates an immune response that could harm the
cell. To mitigate this response, cells employ the A-to-I editing mechanism. In cytosolic dsRNA
regions, an enzyme called ADAR1 converts a substantial number of adenosines into inosines
through a process called hyper-editing. This hyper-editing inhibits the immune response, as the
hyper-edited RNA can no longer be recognized by protein factors. Notably, studies involving
mice demonstrated the indispensability of ADAR1, as the absence of this enzyme rendered the
animals nonviable [81]. The inability of immune factors (MDA5 and RIG-I) to interact with
hyperedited dsRNA suggests the presence of an altered conformation. This is a focal point of
our investigation: deciphering the structural modifications occurring in hyperedited RNAs. Ad-
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Figure 3.1 (a)-(b) Inosines dsRNA. Inosines nucleobases are shown in blue. The red shaded
central part correspond to the 24 nucleotides for which the sampling of the sugar puckering
conformation was enhanced (see methods).Sample pairings: (c) a wobble pair between I9 and
U32 and (d) a standrd WC pair between A6 and U35.

ditionally, it has been observed that IU base pairs introduce flexibility into RNA structures [82]
[79], which is an aspect we also want to explore. A-to-I editing plays a dual role: it serves as
an essential cellular mechanism and is increasingly recognized as being deregulated in specific
diseases, including certain types of cancer and cardiovascular disease. This underscores the
importance of comprehending the molecular implications of A-to-I editing, since such under-
standing could potentially lead to therapeutic applications.

To explore the impact of hyper A-to-I editing on dsRNA, we investigate the conformational
dynamics of a 20-base pair double-stranded RNA (dsRNA) segment, featuring a central region
hosting 4 inosines. The schematic representation of the system under study is provided in Fig-
ure 3.1. Notably, this system is characterized by an hyper-edited motif (IIUI), where inosines
engage base pairing with uracils. I-U base pairs resemble wobble G-U pairs (see Fig. 3.1)
and are hence predicted to introduce considerable flexibility in dsRNA, when compared with
canonical A-U pairs. In order to quantify the extent to which inosine editing introduces flexibil-
ity to the system, we use in this study a combination of solution NMR and SAXS experiment,
corroborated with MD simulations, to generate an ensemble of structures that are compatible
with the experimental data.

The study that we are going to present is the result of a collaboration between the experimen-
tal laboratory of Michael Sattler and our group. While the experimental part was undertaken by
Sattler’s student, Christoph Mueller-Hermes, the computational work was overseen by myself.
Consequently, this thesis exclusively showcases the computational facet of our study. Here, we
harness experimental data to both restrain MD simulations via the maximum entropy principle
(see section 2.3.2) and validate the generated structural ensembles. In the following sections,
we first showcase the methods used to combine molecular simulation and solution experiments
data in order to generate structural ensembles. After that, we will show the results of our in-
vestigation by comparing features of different ensembles. One of these ensembles characterize
a dsRNA similar to the one shown in figure 3.1, but with adenosine in the place of inosine.
The other ensembles instead, aim to characterize the inosine dsRNA, and are generated by us-
ing MD with enhanced sampling, and in some cases by further restraining the simulations in
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order to match with experimental data. Our findings will show to what extent the A-to-I hyper-
editing can induce flexibility in the dsRNA, and at the same time will underscore the limits of
MD in predicting accurate ensembles, and how these limitations can be solved by combining
simulations with a relatively small amount of experimental information.

3.1 Methods
Starting structures for MD simulations were built using the proto–Nucleic Acid Builder [83].
Since inosines are not implemeted in this tool, the insosines ds-RNA was initially generated
with guanosines instead of inosines. Then atom types in the generated PDB were corrected to
convert the guanosines into inosines. Simulations were performed with GROMACS 2020 [84],
using TIP3P water [85], the AMBER force-field for nucleic acids (AMBER99 + PARMBSC0
+ χOL3 ) [22] [86] [87] plus modrna08 for inosines [28], and ion parameters from Joung and
Cheatham [88]. The systems were first energy minimized and subjected to a multi-step equi-
libration procedure: 100 ps of thermalization to 300 K in the NVT ensemble was conducted
through the stochastic dynamics integrator (i.e., Langevin dynamics) [89], and other 100 ps
were run in the NPT ensemble simulations using the Parrinello–Rahman barostat [90]. For the
productions runs, the stochastic velocity rescaling thermostat [91] was used to keep the sys-
tem at a temperature of 300 K in combination with the cell-rescale [92] barostat to keep the
pressure at 1 bar. Long-range electrostatic interactions were handled by particle-mesh Ewald
[93]. The inosines (adenosines) double-strand system had 53868 (53944) atoms, 1274 (1278) of
which constitute the solute; the rest were 72 sodium ions, 34 chloride ions and 52488 (52560)
water molecules, resulting in a neutralized system with a salt concentration of 0.1 mol/l. An
integration step of 0.002 ps was used, and trajectory frames were saved every 5000 steps with
full precision. Additionally, coordinates were also saved every 500 steps with a compressed
format and without water atoms. These latter coordinates were used for all the analysis shown
in this work. MD simulations were performed using a replica exchange with collective-variable
tempering (RECT, introduced in 2.2.2) [57]. 8 replica were used, in which well-tempred Meta-
dynamics is performed with a bias factor that is scaled along the replica ladder, in such a way
that the first replica is unbiased. Exchanges within replicas are proposed every 100 steps. We
collected 3 set of simulations:

• a: Adenosines ds-RNA: 350 ns per replica

• b: Inosines ds-RNA: 366 ns per replica

• c: Insoines ds-RNA: 350 ns per replica + restraints on 3J scalar couplings

For a total of (350+366+350 ns)x8 = 8.528 µs. The same enhanced sampling scheme was
used in the 3 simulations. In addition, in case c additive restraints were used, acting on the 9 3J
scalar couplings observables (see next sections).

3.1.1 Enhanced Sampling
Experimental observations conducted by our collaborators have revealed a relatively high occur-
rence of C2'-endo sugar puckering conformations for nucleotides located in the central region
of inosine dsRNA, as opposed to the typical expectation of C3'-endo conformations in stan-
dard RNA helices. Consequently, our interest lies in conducting molecular simulations that
can exhaustively sample all potential sugar puckering configurations. In this way, we are able
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Figure 3.2 Scheme of the Replica Exchange with Collective-Variable Tempering (RECT)
method used in this work. Different replicas correspond to scaled strength of the well-tempered
Metadynamics on the sugar puckerings. The lower replica (grey) correspond to the unbiased
Hamiltonian, but still its sampling is enhanced through the exchanges with the upper replicas
(orange and red). For simplicity of the representation, the scheme is shown with only 3 replica
instead of 8 (the lower, an intermediate, and the upper replica) and 10 enhanced sugars are
shown, where the total is 24. Inosine nucleobases are colored in blue.

to obtain ensembles which contain C2'-endo conformations, so we can subsequently reweight
these populations to match experimental 3J scalar couplings with averages back-calculated from
the simulation trajectories. To ensure this exhaustive sampling, we performed MD simulations
using the replica exchange with collective-variable Tempering (RECT) scheme [57] introduced
in 2.2.2. This scheme was applied to the sugar pseudorotation Zx variables of the 24 central
nucleotides. The Zx variables, defined in the work of Huang et al [94], are expressed as:

Zx =
ν1 +ν3

2cos
(4π

5

) (3.1)

where ν1 and ν3 are torsional angles shown in Figure 3.3c. The Zx variables are capable of
distinguishing between C3'-endo conformations (positive values) and C2'-endo conformations
(negative values) of the sugars. In our scheme, eight replicas were gradually biased to enhance
sampling of the 24 selected degrees of freedom. However, we chose not to apply the RECT
scheme to the 16 peripheral nucleotides of the RNA double-strand to avoid disruption of the
helix.

A schematic representation of the RECT scheme used here is shown in Figure 3.2. The
metadynamics simulations were performed using the PLUMED package [55] adding a Gaussian
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every 500 time steps. The 8 replicas correspond to well-tempered metadynamics with Bias
Factor values γ: 1; 1.5; 2.1; 2.7; 3.2; 3.9; 4.5; and 5.0. Other parameters for the well-tempered
MetaD are: σ=0.35 rad, τ = 5 ps.

3.1.2 Maximum Entropy Corrections
We integrate our MD simulations with experiments using the standard maximum-entropy (ME)
reweighting procedure, introduced in 2.3.2. This procedure aims to find the probability distri-
bution that closely matches the prior distribution predicted by MD, while also being consistent
with experimental averages. It involves determining the set of Lagrange multipliers λi that
minimizes the functional form:

Γ = ln(Z(λ ))+
m

∑
i

λiF
exp
i +

1
2

Kλ
2 (3.2)

Here, Z(λ ) is the partition function given by:

Z(λ ) =
N

∑
j

w j
0e−∑

m
i λiFi(x j) (3.3)

Fexp
i represents the experimental observables, while Fi(x j) denotes the observables back-

calculated from the MD trajectories. The regularization hyperparameter K can be adjusted to
prevent overfitting to the experimental data or, more in general, to strike a balance between
relying on the experiment (K = 0) and trusting the MD model (K = ∞). In this study, the term
"not regularized ensemble" refers to cases where we employed the ME refinement with K = 0.
Conversely, the term "regularized ensemble" is used for cases where K was properly chosen
to achieve a desired discrepancy (reduced χ2 ∼ 1) between the simulation-calculated averages
and the experimental averages. The value of the reduced χ2 is computed as χ2 = 1

M ∑
M
i=1(J

exp
i −

JMD
i )2, where M = 9 represents the number of experimental averages enforced with ME. These

averages correspond to 9 J-coupling signals obtained from NMR measurements. The signals
pertain to the sugar conformations (3JH1′H2′) of 9 nucleotides in the inosine dsRNA (I9-I10-
U11-I12-U29-I30-U31-U32-U23).

Another essential component of the ME procedure is the forward model, which is necessary
to back-calculate the experimental averages from the simulation trajectories. For J-coupling sig-
nals, Karplus equations are commonly used. These empirical equations establish a relationship
between the NMR signal and dihedral angles. Specifically, the 3JH1′H2′ signal is related to the
torsional angle θ defined by the sugar atoms H1'-C1'-C2'-H2' through the following empirical
equation:

3JH1′H2′ = Acos2(θ)+Bcos(θ)+C cos(θ)sin(θ)+D (3.4)

In this work, we considered two possible sets of Karplus parameters from the literature [95]
[96] [97]. The first choice was the Condon parameters (A = 9.67, B = −2.03, C = D = 0)
[95], which are the default parameters in the Barnaba package [98]. After further investigation,
we opted for a more conservative choice, namely the Davies parameters (A = 10.2, B = −0.8,
C = D = 0) [97]. The Davies parameters represent an intermediate case between the Condon
Karplus equation, where the C2'-endo state of sugar puckering corresponds to a 3JH1′H2′ signal
of approximately 12 Hz, and the Marino Karplus equation [96], where C2'-endo corresponds
to a 3JH1′H2′ signal of approximately 7 Hz. The parameterization of Marino curves relative to
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Figure 3.3 Examples of Uracils in C2'-endo(a) and C2'-endo (b) conformations. Scheme of
the sugar ring (c). Karplus curves for Condon (blue), Davies (yellow) and Haasnoot12 (green)
parameters (d). The HCCH region correspnding to C2'-endo si blue shaded, whereas the region
corresponding to C3'-endo is yellow shaded.

equation 3.4 is referred as Haasnoot12 [95]. The Karplus curves for the Condon, Davies and
Haasnoot12 parameterizations are shown in Figure 3.3d.

In this work, we generate ensembles in which only the 9 3JH1′H2′ signals are enforced, plus
an ensemble in which the 3JH1′H2′ are enforced together with the radius of gyration squared
(Rg2) as extrapolated from small angle scattering (SAXS) spectra. The average Rg2 is extrapo-
lated from SAXS spectra by out collaborator using Guinier fit procedure [99], whereas we com-
puted it from the MD ensembles directly from atom coordinates using PLUMED. It is known
that the two measures are inconsistent since solvent contributions influence the experimental
estimates, which will be systematically higher with respect to the computational counterparts
[100]. To address this issue, we decide to re-calibrate the Rg2 estimates by aligning the adeno-
sine dsRNA values, whose MD simulations can be considered reliable being the system a stable
dsRNA with a A-form helix. The SAXS data available indicated an averaged radius of gyration
of 1.83 nm for the adenosine dsRNA and 1.97 nm for inosine dsRNA. Since from our trajec-
tories we could compute an

√
⟨Rg2⟩=1.81 nm for the adenosine helix, we decide to enforce a√

⟨Rg2⟩=1.95 nm (1.95=1.81+1.97-1.83) for the inosine dsRNA through the ME.
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3.1.3 3J coupling restraint
In the second set of MD simulations for the Inosines ds-RNA, additional Bias potentials were
applied to increase the sampling of conformers compatible with the NMR 3J scalar couplings.
For this purpose, we used Lagrangian multipliers λi derived using the regularized ME on the
previous set of simulations. The restraints were scaled along with the replica index, by dividing
for the γ values. The restraint bias potential acting on the replica γ is:

Rγ(x) =
9

∑
i=1

λ 3
i Ji

H1′H2′(x)
γ

(3.5)

3.1.4 Reweighting
A crucial step in the generation of our ensemble is the evaluation of weights. We consider a
set of N trajectories obtained using different values of the bias factor (γ) in the well-tempered
metadynamics, so that nγ the number of snapshots in the γ-th simulation.

The γ-th trajectory will thus contain samples from the distribution Pγ(x) ∝ e−β [E(x)+Bγ (x)],
where E(x) is the energy associated conformation x, β is the inverse of the thermal energy, and
Bγ(x) is the bias potential which depend on the replica γ , and is given by the bias potential
constructed by the metadynamics plus (possibly) the restraint bias potential defined in eq. 3.5 .

We are interested in obtaining weights w(x) that can be used to compute averages corre-
sponding the unbiased systems , which correspond to γ=1. In other words, for any observable
O(x), its average at γ=1 is obtained as

⟨O⟩= ∑
x

w(x)O(x) (3.6)

where the sum runs over the concatenation of the N trajectories. By using the WHAM method
in its binless formulation [61, 62, 63], the unnormalized weights can be obtained as:

w(x) ∝
1

∑γ nγe−β (Bγ (x)−B1(x))Z−1
γ

(3.7)

and subsequently normalized scaling them by a factor ensuring that ∑x w(x) = 1. The partition
function associated with each value of γ , Zγ , can be obtained as

Zγ = ∑
x

w(x)e−β (Bγ (x)−B1(x)) (3.8)

The calculation was performed using the wham tool available in the bussilab python package,
which can be obtained at https://github.com/bussilab/py-bussilab, version 0.0.36,
and that can be used as a reference for the exact numerical procedure used here.

Notably, the weights only depend on the conformation (x) and not on the specific value of
γ at which the conformation was generated. This implies that trajectories can be concatenated
in any order resulting in identical weights. This allows to concatenate “demuxed” (continuous)
trajectories, which are virtually independent of each other, being coupled only through the ex-
change step. By performing a blocked bootstrap with block size identical to the length of each
trajectory, one ensures that correlations are minimized. In this case, however, one should ex-
plicitly take into account that, for a given bootstrap sample, the number of snapshots generated
at each value of γ will differ.
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Figure 3.4 Result from preliminary simulations on the inosine dsRNA. (a) Populations of sugar
in C2'-endo with respect to different reweighted ensemble. The pure MD (yellow bars) predicts
very low populations of the C2'-endo state, below 2% for each of the central nucleotides in
the IIUI motif. These populations significatively increase when enforcing the experimental
3JH1′H2′ with regularized ME (red bars) and even more with no regularized ME (blue bars). (b)
3JH1′H2′ signals measured by NMR experiments (black crosses) and back-calculated from MD
trajectories (colored diamonds)

3.2 Preliminary simulations on the Inosines ds-RNA
The first set of simulations for the inosines ds-RNA were performed using the RECT scheme
described above, but without using the restraint on the 3JH1′H2′ signals. The populations of
the C2'-endo conformations of the sugar puckerings as predicted by the pure MD are shown in
Fig. 3.4a and result to be significatively lower with respect to the populations obtained when
enforcing the NMR 3JH1′H2′ data through the ME. Indeed, the 3JH1′H2′ back-calculated (with
Condon parameters in this case) from the reweighted trajectories are significatively smaller
than those measured by NMR (see Fig. 3.4b). When enforcing the experimental data, the
populations of the C2'-endo increase by up to a couple of orders of magnitude. The regularized
ME ensemble in this case was obtained using K = 6 Hz−2 (see eq. 3.2).

Figure 3.5 shows the probability distributions of the 3JH1′H2′ signals for the I30 nucleotide
back-calculated from the trajectories considering three possible reweighted ensembles. The
first corresponds to the pure MD ensemble, where a large peak is observed for low values of
3JH1′H2′ , corresponding to C3'-endo conformations of the nucleotide. Also, a small peak (log
scale is used to better appreciate it) can be observed for high values of the signal. This small
peak more likely correspond to the few conformations of the I30 nucleotide in the C2'-endo
state that are predicted by the standard MD. When enforcing the experimental average for the
3JH1′H2′ signal with ME, the effect is a reweighting which allows a rebalance of the two peaks
populations.

3.3 Results
The results shown in this section are obtained from simulations (a) (see section 3.1) as far as
the adenosine dsRNA is concerned, whereas the ensembles of the inosine dsRNA are obtained
from simulations (c). We decide to discard (b) since (c) ensures a better sampling of the sugar
puckering, thanks to the restraints used. In particular, in (b) the populations of C2'-endo resulted
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Figure 3.5 Result from preliminary simulations on the inosine dsRNA. Distribution of the
3JH1′H2′ signals for the I30 nucleotide, back-calculated from the trajectories for the three dif-
ferent ensembles. The dotted vertical lines indicate the experimental averages signals back-
calculated from the trajectories, which in the blue case (not regularized Max. Ent.) correspond
to the experimental average.

30



to be very far from the experiments. In (c) we guide the MD in the productions phase, so it is
easier to generate ensembles which are closer to those which are compatible with experimental
observables, in this way enabling the successive reweghting to work more efficiently.

If not differently specified, the ME on 3JH1′H2′ signals were performed considering Davies
parameters and without regularization.

3.3.1 Investigating general conformational properties of the dsRNAs
Figure 3.6a displays the probabilities of formation of the 20 canonical pairings in the dsRNAs
for four different ensembles:

• A - Adenosine dsRNA as predicted by MD (grey).

• I - Inosine dsRNA as predicted by MD (red)

• I+NMR - Inosine dsRNA with enforced 3J scalar couplings (blue)

• I+NMR+SAXS - Inosine dsRNA with enforced 3J scalar couplings and radius of gyration
squared (green).

Pairing populations are counted based on Barnaba annotation [98], considering Watson-
Crick (WC and WW) and Wobble (GU) pairings both as canonical. The latter represents the
type of pairing expected for the I-U base pair (see fig 3.1). In the adenosine dsRNA, all base
pairs are almost 100% populated, except for the periferical A-U pair. In the inosine dsRNA,
the populations significantly decrease only in the central part of the helix where the inosines are
present, indicating that these modifications may induce a significant increase in the flexibility of
the dsRNA in its central part. The pairing populations further decrease when 3J scalar couplings
are enforced and even more so when the Rg2 is enforced. Interestingly, the I12-U29 base pair
is the least affected by the ensemble refinement, becoming the most populated base pair among
those in the IIUI motif for the ME-refined ensembles. This experimental result aligns with the
predictions of NMR exchange-rate experiments, not shown in this thesis, which suggest that
the I12-U29 base pair is the most stable in the IIUI motif. This result provides evidence for the
validity and transferability of the ensemble refinement performed using only nine 3JH1′H2′ .

Figure 3.6b displays the populations of C2'-endo conformations of sugar puckering in the
four distinct ensembles. As previously observed in Section 3.2, the populations of C2'-endo
conformations increase significantly, by orders of magnitude, when incorporating NMR data.
This increase is a consequence of the inaccuracies of molecular dynamics (MD) simulations
with the current force-field, which result in a substantial underestimation of these populations
for this system. However, by combining enhanced sampling and ensemble refinement tech-
niques, we can accurately reproduce the populations that align with the predictions from the 3J
scalar couplings NMR signals. These results underscore the need for a revision of the inosine
force-field, and possibly also for the other nucleotides force-fields, since also C2'-endo popula-
tions of the uracils in the central motif result highly underestimated in the I (red) ensemble.

The SAXS spectra, obtained by our collaborator, for both adenosine and inosine double-
stranded RNAs (dsRNAs) indicate a significant increase in the averaged radius of gyration
(
√

⟨Rg2⟩) in the hyper-edited dsRNA compared to its adenosine counterpart. Figure 3.7a il-
lustrates the distributions of the radius of gyration in the four ensembles we derived, while
Figure 3.7b displays the corresponding relative averages,

√
⟨Rg2⟩. For the inosine cases, we

also provide the experimental reference calibrated with respect to the adenosine measurement,
as discussed at the end of Section 3.1.2. The results depicted by these findings indicate that the
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Figure 3.6 (a) Probabilities of canonical pairings in the dsRNAs for 4 different ensembles.
Adenosines dsRNA as predicted by MD (Grey); Inosines dsRNA as predicted by MD (Red);
Inosines dsRNA where 3J scalar couplings are enforced (Blue); Inosines dsRNA where 3J scalar
couplings and radius of gyration squared are enforced (Green). Pairings are counted based on
Barnaba annotation [98], considering as canonical Watson-Cricks (WC and WW) and Wobble
(GU) pairings. For the same four ensembles, in panel (b) we refer populations of C2'-endo
conformations of the sugar puckering for the central nucleotide of the dsRNAs.

I ensemble cannot reproduce the substantial increase in
√
⟨Rg2⟩ compared to the A ensemble,

as expected from the SAXS data. Interestingly, when we incorporate NMR data,
√
⟨Rg2⟩ in-

creases in a manner that significantly reduces the discrepancy with the SAXS experiment. Full
agreement is only achieved in the I+NMR+SAXS ensemble, where the experimental ⟨Rg2⟩ was
enforced through maximum entropy. The results obtained in the I+NMR ensemble for the ra-
dius of gyration serve as validation for the ensemble refinement carried out by enforcing NMR
data. In fact, this ensemble also exhibits improved accuracy in reproducing an observable, such
as the Rg, for which information was not explicitly included in the ensemble refinement.

In order to qualitatively show how inosine editing improves the flexibility of the dsRNA, a
bouquet representation of the dsRNA ensembles is proposed in Figure 3.8. The figures were
obtained by randomly extracting 100 structures from the reweighted trajectories and aligning
them with respect to residues G20-G19-A18-G17-C21-C22-U23-C24 in the bottom part of the
helix. From the figure, it is noticeable that the adenosine dsRNA (grey) cloud appears more
regular and less chaotic compared to the inosine counterpart. However, differences between the
different inosine dsRNA ensembles are not appreciable from this representation. To assess the
rigidity of these ensembles, we calculated their root mean square deviation (RMSD) relative to
the same alignments used for the bouquet representations. For each ensemble, we identified a
centroid from a pool of 1000 structures extracted. The centroid is the structure that minimizes
the average squared RMSD

√
⟨RMSD2⟩ when compared to all the other 1000 structures. Sub-

sequently, we computed the ensemble RMSD values displayed in the table of Figure 3.8. This
was done by considering the entire reweighted trajectories and determining the

√
⟨RMSD2⟩

with respect to the previously identified centroid.
To provide deeper insights on the general conformations of the dsRNAs, we propose a

quantitative and detailed analysis of the helical parameters of the different ensembles. Figure
3.9 shows 2D density plots with kink and twist angles for 1000 structures extracted from each
ensemble. These angles correspond respectively to the total bending of the helix and to degree
of twisting of the two strands, and were computed using the Curves+ software [101]. The

32



Figure 3.7 (a) distributions of the radius of gyration (Rg) of the dsRNAs for the 4 different
ensembles. (b) Square root of averaged radius of gyration squared (

√
⟨Rg2⟩) for the 4 different

ensembles and experimental reference values extrapolated from SAXS data (black).

Figure 3.8 Bouquet representation of the structural ensembles. 100 structures randomly ex-
tracted are aligned with respect to the 8 residues at the bottom of the helix. The centroids of the
ensembles are opaque colored. In the top table the ensemble RMSDs are given, computed on
the whole reweighted trajectories and with respect to the same alignment of the bouquets, using
as a reference the centroids.
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Figure 3.9 Kink and twist angles density distributions for the 4 different ensembles. The dis-
tributions are computed out of 1000 structures extracted for each ensembles. Kink and twist
angles where computed using Curves+ package [101] and correspond respectively to the total
bending of the helix and to degree of twisting of the two strands. On the right, 4 limiting cases
of the Kink and twist angles among the extracted structures are shown.

region with an averaged twist of approximately 30◦ and a total bend (kink) of less than 40◦,
corresponds to the standard A-form helix of a dsRNA. The four structures shown on the right
represent the limiting cases for both twist and kink angles.

A comparison between the density plots interestingly shows that the I ensemble closely
resembles the adenosine case as far as the kink angle is concerned. However, when enforcing
3J scalar coupling signals, the density at higher kink angles increases. This suggests that the
higher propensity of the sugars to be in the C2'-endo conformation causes the dsRNA to bend
more, allowing for increased flexibility in the central part of the helix corresponding to the IIUI
motif. Regarding the twist angles, the densities of the three inosine ensembles are quite similar,
resulting in an averaged twist angle reduced compared to the adenosine system. This is mainly
due to the I-U wobble pairings occurring in the central motif, which cause a shift of the strands
to allow these non canonical pairings. On the other hand, enforcing higher C2'-endo populations
through the 3J scalar couplings does not significantly affect this parameter.

3.3.2 Analysis of Conformers
In the previous section, we explored the overall features of dsRNAs by examining ensemble av-
erages. To identify specific structures that may represent a significant portion of the ensembles,
we attempted clustering using Principal Component Analysis (PCA) [102]. The PCA analysis
was performed using the PyEMMA package [103], with torsional angles and G-vectors as input
data derived from 4000 structure (1000 structures from each of the four ensembles). Torsional
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angles and G-vectors were computed using Barnaba package [98], focusing on the 8 central
residues in the dsRNAs. We considered both sine and cosine values for 6 backbone torsional
angles (α , β , γ , δ , ε , ζ ), the glycosidic angle (χ), and 5 sugar angles (ν1,ν2,ν3,ν4,ν5). This
resulted in a total of 192 components from torsional angles and 256 from G-vectors, for a total
of 448 components. We remark that G-vectors and torsional angles have different units, and that
we aribitrarly choose to use a scaling factor of 1 to combine them. In Figure 3.10, we present
2D density plots based on the first and second principal components obtained through PCA for
each of the four ensembles. These plots reveal that most of the variance arises from the I+NMR
and I+NMR+SAXS ensembles, while the A and I ensembles exhibit greater homogeneity. Ad-
ditionally, we depict a scatter plot showing all the extracted structures, with colors indicating
the number of nucleotides in the C2'-endo conformation. From these plots, we can distinguish a
primary basin present in all four cases, corresponding to a standard A-form helix conformation.
In this basin, the majority of structures have no C2'-endo nucleotide populations. In contrast, the
I+NMR or I+NMR+SAXS cases display distinguishable basins with higher C2'-endo popula-
tions. Structures with the highest number of C2'-endo populations are scattered throughout the
density plots, making it challenging to associate them with a specific representative conformer.

In Figure 3.11, we present five conformers corresponding to the five primary basins iden-
tified in the PCA density plot for the I+NMR+SAXS ensemble. We represent these conform-
ers using dynamic secondary structure representations generated by Barnaba [98], obtained by
manually selecting structures from each of the basins. Conformers B1 and B2 exhibit canon-
ical pairings, while conformers B3, B4, and B5 demonstrate dynamic pairing along with the
formation of non-canonical pairings. Notably, conformer B5 exhibits a non-canonical pairing
between residues I9 and I30. This specific contact is corroborated by NOE data, as we will
discuss in the following sections.

3.3.3 Quantifying Cooperativity of the Sugar Puckerings
In the ensemble of inosine dsRNA, where the population of C2'-endo sugar puckering confor-
mations is high, it is intriguing to understand whether there is any cooperativity between sugar
conformations of different nucleotides. In particular, we seek to understand whether the sugars
switch to C2'-endo collectively, in specific combinations, or independently of each other. To in-
vestigate this, we conducted cluster analysis by extracting 1000 structures from the reweighted
ensembles and categorizing all possible combinations of sugars in the C2'-endo conformation.
As an example, Figure 3.12 displays the 15 most populated clusters for the I+NMR ensemble.
Populations for these 15 cases are indicated also for the I ensemble (red) and the I+NMR+SAXS
ensemble (green). The clusters are shown only for the 12 central nucleotides using the dynamic
secondary structure representations implemented in Barnaba [98]. Nucleotides in the C2'-endo
conformation are highlighted in orange. Figure 3.13 aims to summarize the results of the clus-
tering analysis on the I+NMR ensemble using a rectangular pie chart representation. Each
column corresponds to a cluster, with nucleotides in the C2'-endo conformation displayed in
orange. The width of each column represents the population of the clusters, with less popu-
lated clusters merged into the far-right column. From this representation, we can observe that
all possible combinations of nucleotides in the C2'-endo conformation are feasible, but their
populations may vary, ranging from significant to insignificant. This scenario is distinct from
one featuring a few large clusters with numerous nucleotides in C2'-endo conformations, as one
might have expected in the case of strong cooperativity between sugar puckering conformations.

In order to assess quantitatively if any cooperativity between C2'-endo conformations of the
sugars is present, we computed energetic cooperativities for the 28 pairs of nucleotides related
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Figure 3.10 Results of Principal Component Analysis (PCA) performed using as input back-
bone torsional angles and G-vectors [98] for the 8 central nucleotides, from 4000 structures
extracted from the ensembles (1000 each). For each ensemble, we show 2D density plots with
respect to the first and second component. Each point is colored based of number of nucleoitides
in C2'-endo conformation
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Figure 3.11 Individuation of conformers for the I+NMR+SAXS ensemble. 5 conformers were
recognized collecting by hand strctures from the 5 evident basins individuated by the PCA (left
panel) and are represented through dynamic secondary structures representations [98] (right
panel).

the IIUI motif (see figure 3.14). Cooperativities are computed as follow:

∆∆G = kBT log(
P11P00

P10P01
) (3.9)

P11 counts how many times both sugars are in C2'-endo; P00 counts how many times both
sugars are not in C2'-endo; and P01 (P10) counts when only the first (second) is in C2'-endo.
Negative (positive) values of ∆∆G indicate cooperativity (anti-cooperativity). However, since
these values may be dominated by the statistical error, we computed them over 1000 iterations of
boostrapping, counting how many times the ∆∆Gs are negative for each pair. Since we deal with
28 hypotheses simultaneously, we rely on the Benjamini-Hochberg procedure [104] to keep the
false discovery rate of our estimates at a significance level of p = 0.05, similarly to [105]. Figure
3.14b shows results concerning the I+NMR ensemble. Although negatives ∆∆Gs are observed
for the majority of neighbouring nucleotides, the Benjamini-Hochberg analysis indicates only
5 significant cooperativities, corresponding to the 5 dots below the black dotted-line in the
bottom-right plot in the figure. Surprisingly, cooperativity is observed for the I9-I30 pair, which
doesn’t correspond to neighbouring nucleotides. Interestingly, the I9-I30 pair is found to form
non canonical pairing in a representative conformer of the I+NMR+SAXS ensemble, as shown
in previous section. The same analysis is shown in Figure 3.14a for the pure MD ensemble
(I). In this case, the Benjamini-Hochberg analysis indicates 13 significantly cooperative pairs.
This result demonstrates that the cooperativity comes from the simulations and not from the
experimental data enforced. Furthermore, the ensemble refinement has the effects of reducing
the statistical significance of the cooperativities. This could simply be caused by the statistical
error introduced by the reweighting, and additionally by multi-bodies effects that the simple
model characterized by the equation 3.9 does not take into account.

3.3.4 Validation against NOEs
Nuclear Overhauser effect (NOE) NMR data were used in this work to validate the ensembles
that were refined over 3J scalar couplings and SAXS data. We used 197 NOEs signals corre-
sponding to 197 protons pairs. In order to back-calculate NOEs from the simulations ensembles
we used the standard relation:
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Figure 3.12 15 most populated clusters individuated among 1000 structures extracted from
the I+NMR ensemble (populations reported in blue). This clustering simply differentiates be-
tween possible combinations of sugars in C2'-endo coformations, which are colored in orange.
Populations for these 15 cases are shown also for the I ensemble (red) and the I+NMR+SAXS
ensemble (green). The dsRNAs are shown only for the 12 central nucleotides using the dynamic
secondary structure representation derived from the I+NMR ensemble.

Figure 3.13 Rectangular pie chart representing the clusterization of the I+NMR ensemble based
on C2'-endo conformations of the sugars. Each column correspond to a cluster for which nu-
cleotides in C2'-endo are orange colored. The width of the column reflect the population of the
clusters. Less populated clusters are merged in the far right column.
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Figure 3.14 C2'-endo Cooperativity matrix ∆∆G for the I ensemble (a) and for the I+NMR
ensemble (b). Pairs of nucleotides for which the cooperativity has a statistical significance level
greater than 0.05 are marked with an orange star. 13 Significant cooperativities are individuated
through the Benjamini-Hochberg procedure (points below the dotted line in the bottom-right
plot) for the I ensemble (c), whereas only 5 for the I+NMR ensemble (d). Significant anti-
cooperativity is not observed.
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Figure 3.15 NOEs data sorted with respect to experimental values (black). Diamonds corre-
spond to signals back-calculated from the trajectory with respect to the I ensembles (red), the
I+NMR ensemble (blue), I+NMR+SAXS ensemble (green). Averaged χ2 computed for the
three ensembles are indicated in the legend.

NOEsim = [
N

∑
i

wir
−1/6
i ]−6 (3.10)

where index i runs over all the frames of the trajecotry and wi are the weights which depend
on the ensemble considered. The statistical errors were computed using a bootstrapping proce-
dure, that is by resampling the 8 continuos trajectories generated in the RECT simulations 200
times by replacement [64]. At each iteration of the bootstrapping, the weights related to the bias
used in the simulations are recomputed using WHAM, whereas the lagrangian multipliers to the
ME restraint are kept as those individuated performing ME on the complete set of demuxed tra-
jectories, without the need to reperform ME at every iteration of the bootstrapping. The 197
NOEs values are shown in Figure 3.15 sorted with respect to the experimental value. Simulation
NOEs computed from the I ensemble (red) falls within the experimental bar 120/197 times and
led to a χ2

NOE = 1.1, which is computed as follows:

χ
2
NOE =

1
197

197

∑
m=1

(NOEexp
m −NOEsim

m )2

σ2
exp,m +σ2

sim,m
(3.11)

NOEs computed respectively from the I+NMR and I+NMR+SAXS lay in the experimental
bar 137/197 and 136/197 times, both giving χ2

NOE = 0.95. These reduced χ2
NOEs mean that

the ensemble refinement performed by enforcing the 3JH1′H2′ through ME provides ensembles
which are better in agreement also with independent observables as the NOEs signals, prov-
ing the transferability of the predicted ensemble. We remark that, although the decrease of
χ2

NOE is moderate, it originates from the inclusion of completely independent experimental data
(3JH1′H2′ and SAXS).
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Table 3.1 shows the list of protons pairs which correspond to NOE signals that are con-
sistent with experimental NOEs for the I ensemble but not for the I+NMR+SAXS ensemble,
and viceversa. Most of these pairs involve intra-nucleotide or intra-strand distances between
a sugar proton and a nucleobase proton. This observation is not surprising, as the differences
in the ensembles are characterized by discrepancies in sugar puckering conformations, induced
by inducing higher populations of the C2'-endo conformations in the I+NMR+SAXS ensemble,
through the imposition of 3JH1′H2′ data. The fact that this latter ensemble also better matches
NOE experiments suggests that the higher C2'-endo populations in the central part of the ino-
sine dsRNA are supported by the NOE data. In Table 3.1, the only inter-strand distance that
appears in the list involves atoms I30-H1’ and I12-H2. Interestingly, inosines I12 and I30 are
those for which non-canonical pairings are observed in conformer B5, as discussed in Section
3.3.2. Furthermore, statistical analysis in the previous section has shown that there is signifi-
cant cooperativity in sugar puckering conformations for these residues. These findings suggest
that the interaction between I30 and I12, predicted by our combination of MD, NMR 3JH1′H2′ ,
and SAXS data, is validated by NOE data and is correlated with both residues simultaneously
transitioning to the C2'-endo sugar puckering conformation.

3.3.5 Robustness of the results with respect to forward model and regu-
larization strength

In this section, we aim to compare the results obtained by performing ME with different for-
ward models, namely Condon and Davies, and examine the effect of ensemble refinement with
or without regularization. Figures 3.16 depict the ratio of nucleotides in the C2'-endo confor-
mation and the 3JH1′H2′ signals for nucleotides in the IIUI motif, respectively. These plots show
how in the ensembles without regularization, there is a higher tendency for nucleotides with
higher experimental 3JH1′H2′ signals to adopt the C2'-endo conformation. Additionally, it can
be observed that the predicted populations of C2'-endo conformations are generally higher in
the Davies ensembles compared to the Condon ensembles. This difference arises from the lower
values of the Davies Karplus curve, as shown in Figure 3.3, in the θ region corresponding to the
C2'-endo conformation: because of this lower values, higher C2'-endo populations are needed
to enforce experimental 3JH1′H2′s. Figure 3.17 shows the clusters already shown in Figure 3.14,
but this time also indicating the population for the other ensembles that would have been ob-
tained for the same combinations of nucleotides in C2'-endo. In general, the clusters that are
obtained with respect to different reweightings are the same but with different populations, in
spite of the fact that the structures are extracted from the same trajectory. As expected, the first
cluster corresponding to the case of no nucleotides in C2'-endo, is much more populated for the
regularized ensembles.

Furthermore, the 4 different ensembles are analyzed using NOE data, as shown in Figure
3.18a. In the legend, the χ2

NOEs are shown computed as in 3.11. Interestingly, the Davies ensem-
ble, which is the one allowing for highest f C2'-endo populations, is the ensemble that minimizes
the discrepancy with the experiments. Moreover, in Figure 3.18b the square root of the averaged
radius of gyration squared (

√
⟨Rg2⟩) is plotted for each ensemble. Although the results exhibit

comparable statistical errors computed using the bootstrapping procedure, it is notable that the
Davies ensemble without regularization yields the highest value of

√
⟨Rg2⟩, thereby enhancing

the agreement with the
√

⟨Rg2⟩ extrapolated from SAXS spectra. The regularization ensembles
were derived with the scope of avoiding overfitting on experimental 3JH1′H2′ signals. However,
the validations performed on NOEs and

√
⟨Rg2⟩ suggest to consider the Davies ensemble as

the most valuable, without the need of the regularization.
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Agreement in I and not in I+NMR+SAXS
pair type protons pair
Intra-nt I10-H8 I10-H2’2
Intra-nt I10-H2’1 I10-H2
Intra-nt U11-H6 U11-H2’1
Intra-nt U33-H6 U33-H2’1
Agreement in I+NMR+SAXS and not in I
pair type protons pair
Intra-nt IU11-H2’1 U11- H6
Intra-nt I12-H8 I12-H3’
Intra-nt I30-H8 I30-H2’1
Intra-nt I30-H8 I30-H3’
Intra-nt I30-H1’ I30-H5’2
Intra-nt U31-H1’ U31-H5’2
Intra-nt U32-H1’ U31-H5’2
Intra-nt U32-H6 U32-H4’
Intra-strand I9-H2 A8-H2
Intra-strand U11-H2’1 I12-H8
Intra-strand U11-H1’ I12-H8
Intra-strand C13-H1’ U14-H6
Intra-strand I30-H8 U29-H2’1
Intra-strand I30-H1’ U31-H6
Intra-strand U31-H1’ U32-H6
Intra-strand U33-H1’ G34-H8
Intra-strand U35-H1’ C36-H6
Intra-strand G34-H1’ U35-H6
Inter-strand I30-H1’ I12-H2

Table 3.1 List of protons pairs which correspond to NOE signals that are in agreement with
experimental NOEs for the I ensemble but not for the I+NMR+SAXS ensemble, and viceversa.
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Figure 3.16 (a) Ratio of sugar in C2'-endo with respect to different reweighted ensembles,
obtained using Davies Karplus equations and not regularizing the fit (Davies) or regularizing
the fit (Davies Reg), or by using Condon Karplus equations for in the same ways (Condon and
Condon Reg). (b) 3JH1′H2′ signals measured by NMR experiments (black crosses) and back-
calculated from the reweighted trajectories (colored rhombuses).

3.4 Discussion
This chapter focuses on the computational aspect of a collaborative study between Michael Sat-
tler’s experimental laboratory and our research group, in which I oversaw the computational
work. Within this collaborative framework, we made use of experimental data for two key pur-
poses: guiding MD simulations using the principles of maximum entropy (detailed in Section
2.3.2) and validating the resulting generated ensembles of structures. Our study centers on a
dsRNA system comprising 20 base pairs, with four inosines situated in the central portion of
the helix, each paired with uracils (refer to Figure 3.1). Since the available experimental results
were indicating interesting and unexpected sugar puckering conformations in the central part
of the helix, we conducted simulations using the replica exchange collective variable tempering
(RECT) approach to enhance sampling. This method allowed for an exhaustive exploration of
all possible configurations of the dsRNA with respect to sugar puckering conformations. Sub-
sequently, we applied the maximum entropy (ME) principle to reweight the trajectories. This
reweighting process aimed to generate ensembles of structures that align with nine NMR sig-
nals (3JH1′H2′) associated with the torsional angles of the nucleotide sugars. Additionally, we
enforced the averaged radius of gyration as predicted by SAXS experiments.

We illustrated our findings by comparing 4 different derived ensembles, corresponding to
the adenosine dsRNA (A), inosine dsRNA as predicted by MD (I), the inosine dsRNA with
enforced 3J scalar couplings (I+NMR), and finally the inosine dsRNA with enforced 3J scalar
couplings and radius of gyration squared as predicted by SAXS experiments (I+NMR+SAXS).
Our findings show to which extent A-to-I hyper-editing can induce flexibility in dsRNA. Si-
multaneously, they underscore the limitations of MD in predicting accurate ensembles . In-
deed, although all inosine ensembles are able to predict dynamic and non canonical pairings
in the central part of the dsRNA, the I ensemble is not able to reproduce the sugar puckering
populations predicted by the NMR experiments, which suggest high populations of C2'-endo
conformations. However, by combining enhanced sampling and ensemble refinement tech-
niques, we can accurately reproduce the populations that align with the predictions from the 3J
scalar couplings NMR signals. These results underscore the need for a revision of the inosine
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Figure 3.17 15 most populated clusters for the I+NMR ensemble, noted here as Davies non-
Regularized. This clustering simply differentiates between possible combinations of sugars in
C2'-endo coformation, which are colored in orange. The population of these clusters are given
also for the Davies Regularized ensemble (Blue) and Condon regularized ensemble (Red). The
dsRNAs are shown only for the 12 central nucleotides using the dynamic secondary structure
representation generated for the I+NMR ensemble.
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Figure 3.18 Comparision of ensembles obtained using Davies Karplus equations and not reg-
ularizing the fit (Davies) or regularizing the fit (Davies Reg), or by using Condon Karplus
equations for in the same ways (Condon and Condon Reg). (a) NOEs data sorted with respect
to experimental values (purple). Diamonds correspond to signals back-calculated from the tra-
jectory with respect to different reweighted ensembles. (b) Square root of averaged radius of
gyration squared (

√
⟨Rg2⟩) for the 4 different ensembles . Regularized ensembles highly under-

estimate the
√
⟨Rg2⟩ with respect to the experimental reference values extrapolated from SAXS

data (black line). Not regularized ensembles slightly increase the agreement with experiments.
Statistical errors are computed through bootstrapping.

force-field. Moreover, it would be interesting to investigate if also the force-fields of the other
standard nucleotides may overstabilize C3'-endo conformations, based on the observation that
also C2'-endo conformations of uracils result underestimated in the I ensemble. However, it is
not trivial to dissect if the incorrect populations of uracils sugar puckering in the IIUI motif are
a consequence of the overstabilization of I-U base pairing, or of the uracil AMBER force-field.

Further investigations on general structural features of the dsRNA, indicate how the ino-
sine dsRNA is much more flexible, manifesting an ensemble RMSD larger by a factor 10 with
respect to the adenosine counterpart. Moreover, the inosine dsRNA is characterized by hav-
ing uncommon helical parameters with respect to standard A-form helix, allowing for relevant
populations of conformers with the two strands being partially untwisted or having increased
tendency for bending. This latter features is not found in the I ensemble, but only in the I+NMR
and I+NMR+SAXS ensembles, suggesting that the bending is induced by the higher population
of C2'-endo conformations. Finally the ensemble generated by enforcing 3J scalar couplings
(NMR) signals and averaged radius of gyration (SAXS), were validated against alternative ex-
perimental data. In particular, we showed how 197 NOE signals back-calculated from I+NMR
and I+NMR+SAXS ensembles result to have increased agreement with the experimental values
with respect to the I ensemble. Another validation not shown in this thesis was performed by our
collaborator, and consisted in fitting of the entire SAXS spectra on a pool of structures extracted
from the MD generated ensemble. Also in this case, the I+NMR+SAXS show significant in-
creased accuracy with respect to the other ensembles. As the ensemble refinement process relied
on the averaged radius of gyration as the only information obtained from SAXS, the improved
reproduction of the entire SAXS spectra serves as further validation for the predicted ensemble.
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Chapter 4

Fitting the N6-methyladenosine force field
on denaturation experiments

N6-methyladenosine (m6A) is the most common post-transcriptional modification found in na-
ture, and is widely spread in both coding and noncoding RNAs [106, 107, 108, 109]. This
modification consists in the methylation of the standard adenosine in position N6, and as all
other modifications, it can impact RNA stability and structural dynamics. However, the most
important effect of the N6-methylation appears to be the regulation of the interaction of RNA
with specific proteins known as m6A readers [41, 110, 111, 112, 42]. An important feature
of m6A is that it can exist in two possible conformations depending on the orientation of the
methyl group with respect to the rest of the nucleobase. These two possible isomers are de-
termined by the value of the torsional angle η6 defined by the atoms N1-C6-N6-C10, and are
called syn and anti (see Fig. 4.1a). According to multiple experimental evidences [36, 68], the
syn conformation is expected to be the most stable for unpaired m6A, whereas the anti confor-
mation is the one expected for the m6A when Watson-Crick paired with uracil in an internal
position of a dsRNA. In order to use molecular dynamics simulations to investigate the impact
of N6-methylation on RNA structural dynamics and recognition, we first need to ensure a pa-
rameterization which is able to reproduce some fundamental features of the m6A nucleobase,
as for example the correct syn/anti populations as predicted by the experiments. Interestingly,
the modrna08 (Aduri) force-field [28], which is the most common AMBER parameterization
for modified nucleotides, is not able to reproduce the correct syn/anti balance for the unpaired
m6A, as we will see in the following.

In this Chapter we show the results published in our work [113], where we refined the Aduri
parameterization by fitting a subset of parameters against experimental free energies differences
available in the literature, by using alchemical free-energy calculations (AFECs) [59]. To this
end, we extend a recently-introduced force-field fitting strategy [114] to be usable in the context
of alchemical simulations. The introduced approach allows training six charges and a dihedral
potential so as to quantitatively reproduce methylation effects in denaturation experiments. The
resulting force-field can be used to properly describe paired and unpaired m6A in both syn and
anti conformation.

4.1 Methods
A preliminar simulation to estimate ∆Gsyn/anti of the m6A nucleobase was performed using
well-tempered metadynamics calculation [115], having η6 as a collective variable. Metady-
namics was performed using the PLUMED package [55], with a simulation length of 100 ns,
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Figure 4.1 (a) N6-methyladenosine (m6A) nucleobase in anti (less stable) and syn (more stable)
conformations [36, 68]. Atom names in red correspond to charges reparameterized in this work.
(b) Free energy profiles along η6 reconstructed looking at the bias potential produced through
metadynamics along the collective variable η6. The red line corresponds to the profile obtained
with the standard Aduri parameterization (Vη = 0 kJ/mol), whereas the blue line corresponds to
the one obtained using Vη = 2.5 kJ/mol.

depositing a Gaussian every 500 time steps, with initial height equal to 1.2 kJ/mol and width
σ = 0.35. The bias factor was set to 10. We then used the free energy profile computed along
η6 (see Fig. 4.1b) to estimate the ∆Gsyn/anti by integrating over the two corresponding minima.
The list of experimental free energies fitted in this work are listed in panel (a) of Figure 4.2.
To compare MD with these experiments, we had to perform the AFEC on m6A, as described
in section 2.2.3, in different contexts. We simulated the isolated m6A nucleoside, 9 m6A-
methylated duplexes for which denaturation experiments are available in literature [36, 37] (see
Table 4.2a), and the corresponding single-stranded RNAs. For the isolated m6A nucleoside, we
computed the ∆Gsyn/anti by taking the difference in the ∆Gs obtained with AFEC by methy-
lating the adenosine in syn or anti conformations, for which experimental data are reported in
Ref. 36. For systems A4 and A5, where m6A is present as a dangling end and thus unpaired,
we only performed AFEC corresponding to the syn conformation. For the other systems, we
performed AFEC in the expected anti conformation. For the A2 and A3 systems we addition-
ally performed AFEC in the unexpected syn conformation as a validation (population reported
in Ref. 68 is ≈ 1%). In addition, we chose 5 more systems from Ref. 37, with the following
criterion: they have a single methylation per strand and the methylation occurs in an internal
position of the duplexes. For all these systems, we performed AFEC in the expected anti confor-
mation. Simulation boxes consist of rhombic dodecahedrons containing RNA, water, Na+ and
Cl− ions with an excess salt concentration of 0.1 M. For a subset of the systems, further sim-
ulations were performed for a salt concentration of 1 M. The systems were energy minimized
and subjected to a multi-step equilibration procedure for each replica: 100 ps of thermalization
to 300 K in the NVT ensemble was conducted through the stochastic dynamics integrator (i.e.,
Langevin dynamics) [89], and other 100 ps were run in the NPT ensemble simulations using
the Parrinello–Rahman barostat [90]. In production runs, the stochastic dynamics integrator
was used in combination with the stochastic cell rescaling barostat [92] to keep the pressure at
1 bar. Equations of motion were integrated with a time-step of 2 fs. Long-range electrostatic
interactions were handled by particle-mesh Ewald [93]. Each replica was simulated for 10 ns,
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Figure 4.2 (a) List of experiments used for the fitting. Experiment A1 correspond m6A single
nucleotide ∆Gsyn/anti, whereas the other 9 ∆∆G correspond to destabilization induced by the
methylation on dsRNAs, as measured by denaturation experiments. A1-A5 data are taken from
[36], B1-B5 data are taken from [37]. In B2–B5 systems, the methylation occurs in both strands,
however, the ∆∆Gs reported are intended per methylation. (b) Thermodynamic cycle used
to compute m6A induced destabilization on dsRNA. The relative free-energy change due to
the modification can be estimated as the ∆∆G between AFECs performed on a duplex and on
the corresponding single strand. This quantity can be directly compared to the difference in
thermodynamic stability of duplexes with or without the modification, which can be measured
experimentally through denaturation experiments.

for a total of 16× 10 ns = 160 ns for each system. ∆∆Gs were obtained taking the difference
between ∆Gs computed by methylating the adenosine in anti or syn conformation on the du-
plex or dangling end, respectively, and the ∆G obtained methylating in syn conformation on
the relative single strand. Transitions between syn and anti states were never detected during
the alchemical simulations. In this way, the contribution to the free energy given by the syn
(anti) conformation in the duplex (single strand or dangling end) was ignored. Indeed, we ex-
pect these contributions to be negligible based on the experimental evidences [36, 68], which
show a syn/anti isomer preference when paired (≈1:100) versus unpaired (≈10:1). This was
additionally verified with supplementary simulations performed on the A2 and A3 systems (see
Table 2 in the Appendix). Moreover, we computed ∆Gsyn/anti by performing the alchemical
transformations on the isolated nucleoside in solution for the two isomers and computing their
difference (see Table 2 in the Appendix)

Starting structures for MD simulations were built using the proto–Nucleic Acid Builder
[83]. Single strands were generated by deleting one of the chains from duplex structures. All
the MD simulations were performed using a modified version of GROMACS 2020.3 [84] which
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also implements the stochastic cell rescaling barostat [92]. The AMBER force-field was used
for RNA [22, 86, 87], TIP3 model for water [85], and Joung and Cheatham parameters for
ions [88]. As a starting parameterization for m6A, we used AMBER adenosine parameters
combined with modrna08 [28] charges for the nucleobase, adjusted to preserve the total charge
of the nucleoside (as already described above). We refer to this parameterization as the Aduri
force-field.

4.1.1 List of simulations
We hereby report the list of simulations performed in this work:

• We simulated a total of 22 systems reported in Table 2. For all of them, alchemical
simulations were performed using Aduri, fit_A and fit_AB force-field parameters.

• For a subset of 7 systems, control alchemical simulations were performed at a higher salt
concentration.

• For a subset of 4 systems, control alchemical simulations were performed at a higher
temperature

This resulted in a total of 22× 3+ 7+ 4 = 77 simulations. Each simulation was run with 16
replicas for 10 ns per replica, for a total simulated time of 77×16×10ns = 12.32µs.

The size of the simulated systems depended on the number of simulated nucleotides. For
the smallest A1 system (one nucleoside), the setup included ≈ 1500 water molecules, 3 Na+

and 3 Cl− ions. Double stranded RNAs were simulated in boxes typically containing ≈ 6000
water molecules, the largest system being B4 with 7082 water molecules, 32 Na+ and 14 Cl−

ions. Single stranded RNAs were simulated using slightly smaller boxes typically containing
≈ 4500 water molecules. The smallest systems were A4 and A5, which were solvated in less
than 3000 water molecules.

4.1.2 Fitting Procedure
We employ a fitting strategy based on reweighting [114] where a subset of the partial charges
and a dihedral potential are adjusted to match experimental data. Specifically, we decided to fit
charges of the atoms that are closer to the methyl group (N6, C6, H61, C10, H101/2/3, and N1,
see Fig. 4.1). The total charge was maintained, leading to 5 free parameters associated with the
partial charges. A single cosine was added to the η6 torsional angle identified by atoms N1–C6–
N6–C10: U(x) =Vη [1+ cos(η6(x)−π)]. This angle controls the syn/anti relative populations,
leading to a total of 6 parameters, and the shift is chosen so that a positive value of Vη favors
syn configurations over anti.

To optimize the calculation of the total energy of the system at every iteration of our fitting
procedure, where up to 6 charges were possibly modified, we notice that the total energy of the
system is a quadratic function of the charge perturbations ∆Qi. Without loss of generality, one
can write the energy change associated to charges and torsion perturbation as

∆U(x) =
5

∑
i=1

Ki(x)∆Qi +
5

∑
i=1

5

∑
j=i

Ki j(x)∆Qi∆Q j +Vη [1+ cos(η6(xi)−π)] (4.1)

In total, for every analyzed snapshot (x), 20 coefficients (Ki and Ki j) can be precomputed that
allow obtaining the energy change for arbitrary choices of ∆Q with simple linear algebra opera-
tions, without the need to recompute electrostatic interactions explicitly. The coefficients were
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obtained by using GROMACS in rerun mode for 20 sets of test charge perturbation, which
were extracted from a Gaussian with zero average and standard deviation set to 1 e. The per-
turbations were constructed to maintain constant the total charge. Importantly, this approach
correctly takes into account the effect of charge perturbations on 1–4 interactions, where elec-
trostatics is scaled with a force-field-dependent fudge factor, as well as on 1–2 and 1–3 interac-
tions, for which it is discarded, and interaction with all the periodic images. The second order
expansion above is exact if one neglects roundoff errors. The magnitude of charge perturbations
was chosen to minimize such errors. Eq. 2.10 should then be suitably modified replacing ∆E
with ∆E +∆U . Its derivatives with respect to the free parameters (charge and dihedral potential
coefficient) can be computed as well.

Our fitting is based on the minimization of an L2-regularized cost function defined as fol-
lows:

C = χ
2 +α

5

∑
i=0

∆Q2
i +βV 2

η = χ
2 +α[

5

∑
i=1

∆Q2
i +(

5

∑
i=1

∆Qi)
2]+βV 2

η (4.2)

where the regularization terms on the charges and the torsional η6 are governed by the
hyperparameters α and β and are needed to avoid overfitting on the training set.

Here we assumed that ∆Q0 =−∑
5
i=1 ∆Qi, to preserve the total charge. The χ2 measures the

discrepancy between computations and experiments:

χ
2 =

1
Nexp

Nexp

∑
i=1

(∆G2i−1 −∆G2i −∆∆Gexp
i )2

σ2
i

(4.3)

Here, σi corresponds to the experimental error, and ∆G2i−1−∆G2i = ∆∆GAFEC
i is difference

in free energy differences computed respectively on the dsRNA (2i−1) and the ssRNA (2i) .
Alchemical ∆Gs are computed through a reweighting procedure via the equation:

∆GAFEC =−kBT log(
∑

N f rame
i wie−β [∆E(xi)+∆U(xi)]

∑
N f rame
i wi

) (4.4)

where wi are the weight derived by the binless WHAM on the original set of energies (see
section 2.2.3). ∆U is the perturbed potential energy (4.1) and ∆E is:

∆E(xi) = Eλ=1(xi)−Eλ=0(xi) (4.5)

This function is minimized using the L-BFGS-B method [116] as implemented in SciPy
[117], for which the derivative of the cost function with respect to the fitted parameters is
needed. This should be computed for charges as follows:

∂C
∂∆Q

=
∂C

∂∆G
∂∆G
∂L

∂L
∂∆Q

(4.6)

Here we introduced the 20-components vector

L = (∆Q1,∆Q2, ...,∆Q1∆Q1,∆Q1∆Q2, ...,∆Q5∆Q5) (4.7)

For the torsional parameter instead we have:

∂C
∂Vη

=
∂C

∂∆G
∂∆G
∂Vη

(4.8)
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The derivative of the free-energy change with respect to L components can be computed as

∂∆Gk

∂Ll
= ⟨Kl⟩k =

N f rame

∑
i

wiKi
l e

−β [∆E(xi)+∆U(xi)+Vη [1+cos(η6(xi)−π)]] (4.9)

The derivative of the free-energy change with respect to the torsional parameter can be
computed as

∂∆Gk

∂Vη

= ⟨[1+cos(η6(xi)−π)]⟩k =
N f rame

∑
i

wi[1+cos(η6(xi)−π)]e−β [∆E(xi)+∆U(xi)+Vη [1+cos(η6(xi)−π)]]

(4.10)
The result crucially depends on the choice of the hyperparameters α and β . Lower values for

the hyperparameters imply that larger corrections are allowed, with the risk of overfitting, and
thus lower transferability to new experiments. Higher values for the hyperparameters imply that
lower corrections are allowed, with the risk of underfitting, and thus lower accuracy in repro-
ducing experimental data. The sweet point could be in principle found with a cross-validation
(CV) procedure and a scan over possible values for α and β [114, 23]. For the smallest dataset
(set A1-A5 in Fig. 4.2), we used a leave-one-out CV strategy, i.e., we trained the parameters
on all systems except one. For the largest dataset (set AB in Fig. 4.2), we used a leave-3-out
strategy, iteratively training the parameters on 7 randomly chosen experiments and validating
on the 3 left-out experiments. In both cases, we then assessed the transferability of the model
by evaluating its average χ2 on the system (or the subset of systems) that was left out.

4.1.3 Statistical Significance
When recomputing energies through a reweighting procedure, particular attention must be taken
towards the statistical significance that may be lost during the computation, by reducing the
effective sample size of the data set. This is usually monitored by computing the Kish effective
sample size [118, 119]. In our case, the most affected ensemble is the one corresponding to
m6A (λ = 1). We thus monitor the Kish size computed using weights corresponding to the
λ = 1 ensemble, defined as

KSλ=1 =
[∑x w(x)e−β (∆E(x)+∆U(x))]2

∑x[w(x)e−β (∆E(x)+∆U(x))]2
(4.11)

We then compare it with the Kish size obtained with the original force-field, defined as

KS0
λ=1 =

[∑x w(x)e−β∆E(x)]2

∑x[w(x)e−β∆E(x)]2
(4.12)

To quantify how much statistical efficiency is lost due to the reweighting to a modified set of
parameters we use the Kish size ratio (KSR), that we define as

KSR =
KSλ=1

KS0
λ=1

(4.13)

4.2 Preliminary Estimation of m6A syn/anti populations with
Aduri Force-Field

Before going through the results of our fitting, we report here the results of a preliminary full-
atom biased simulation performed for the stand-alone m6A nucleoside, which we used to esti-
mate the ∆Gsyn/anti through the free energy profile reconstructed using WT-MetaD [115]. The
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torsional angle η6 was used as collective variable for the metadynamics, and its relative free
energy profile is shown in fig 4.1b. We computed the ∆Gsyn/anti by integrating over the two
corresponding minima, and it results in ∆Gsyn/anti = 1.5 kJ/mol, which is an underestimation
with respect to the experimental value 6.3 kJ/mol. In principle, the correct ∆Gsyn/anti could be
recover by simply adding the potential of a single torsional term in this form

U(xi) =Vη [1+ cos(η6(xi)−π)] (4.14)

For positive values of the parameter Vη this correction penalizes the anti conformations. We
then used a reweighting approach to tune the parameter Vη in order to enforce the experimental
value of ∆Gsyn/anti. Specifically, we assigned a weight w(x) to each frame, computed as

w(x) ∝ eβB(η6(x))e−βVη [1+cos(η6(x)−π)] (4.15)

Here B(η6) is the bias potential constructed during MetaD simulation.
The ∆Gsyn/anti was then obtained as

∆Gsyn/anti =− 1
β

log(
∑x∈syn w(x)

∑x∈anti w(x)
) (4.16)

We iteratively adjusted Vη until we found that Vη = 2.5 kJ/mol results in a ∆Gsyn/anti =
6.4± 0.3 kJ/mol, which is compatible with experiment. Statistical error was computed using
block analysis [115]. Figure 4.1b shows the free ernergy profiles reconstructed along η6 for
Vη = 0 (reference) and Vη = 2.5 kJ/mol.

Although we are able to enforce the correct ∆Gsyn/anti for the unpaired nucleotide by simply
modifying a torsional parameter, the Aduri force-field is still not capable to reproduce some
other important experimental evidences, as we will see in the following. In particular, we
will show that the torsional term needed to enforce the ∆Gsyn/anti would cause an incorrect
estimation of other observables.

4.3 Fitting Results
In this work, we fit point charges and a single torsional potential correction for an m6A RNA
residue using alchemical MD simulations and a set of experimental data, following the scheme
shown in Fig. 4.2b. In all the fittings, charges and torsional potential were subject to L2 regu-
larization with hyperparameters α and β , respectively. We initially employed only the first 5
experimental data points of Table in panel (a) of Fig. 4.2, namely (A1) ∆Gsyn/anti for a nucle-
obase and (A2–A5) ∆∆G in melting experiments [36]. Thus, we first report the results obtained
with such a set of charges, including a validation done on a more recent set of melting ex-
periments (B1–B5) [37]. We then report results obtained with charges that were fitted on the
entire dataset (A1–A5 and B1–B5). As a reference, results obtained with the Aduri et al [28]
modifications (modrna08) for the commonly used AMBER force-field are also reported, either
as is or complemented with a custom torsional correction that results in a ∆Gsyn/anti matching
experiment A1. All the calculated ∆Gs are reported in Table 2 in the Appendix.

4.3.1 Fitting on the smaller dataset
For this first fitting, we only employed data set A1–A5 (see Fig. 4.2). χ2 errors were computed
using Eq. (4.3) and setting the experimental error of each data point (σi) to be equal to each
other and to 1 kJ/mol.
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Figure 4.3 Cross validation error obtained for the fitting on the initial dataset A1–A5, with
a leave-one-out-procedure, shown as a function of the two regularization hyperparameters α ,
for charges, and β , for the torsional potential (panel a). Darker green colors correspond to
lower values of the average χ2 computed on the systems left out iteratively from the fitting. (b)
Projection of data along β = 0

Figure 4.3a reports the results of a cross-validation test performed with a leave-one-out pro-
cedure. Namely, we fit the whole experimental dataset leaving out one experimental data point
at a time, and report the average error on the left-out experiment. In this leave-one-out proce-
dure, we decided not to iterate on the ∆Gsyn/anti experiment (A1), since this is expected to be
crucial to correctly reproduce the conformation of non-Watson–Crick-paired residues (mostly
syn). From this map, we can hardly appreciate any variation of the χ2 along the vertical axis
corresponding to the β hyperparameter. This suggests that β could be set to zero, thus simpli-
fying all subsequent hyperparameter scans. Conversely, the χ2 grows significantly for low α

values. This implies that regularization of charges is required to avoid overfitting. In general,
one should expect a minimum to be observed in this type of hyperparameter scan [114, 23].
This is not the case here for the α scan, as it can be appreciated in Figure 4.3b, showing projec-
tion on α for β = 0, implying that the performance of the parameters on a given system is not
improved when excluding that system from the training set. This is likely due to the small data
set employed.

Figure 4.4a shows the optimized parameters (charge and torsional corrections) as a function
of the regularization hyperparameter α while fixing β = 0. A transition can be seen at α ≈ 10.
Namely, when α > 10, parameters have a smooth dependence on α , whereas when α < 10,
both the charges and the torsional potential change suddenly. In the limit α → ∞, it can be seen
that charge corrections tend to zero with an inverse law dependence, which is expected for L2
regularization, and the torsional correction tends to Vη ≈ 1.5 kJ/mol, which corresponds to the
amplitude of the torsional potential that optimizes the χ2 without modifying the charges of the
reference Aduri et al model. We notice that ∆Gsyn/anti obtained when using the Aduri et al.
force-field is ≈ 1.7 kJ/mol, and thus this correction results in ∆Gsyn/anti ≈ 1.7+ 2× 1.5 = 4.7
kJ/mol, which is still smaller than the experimental reference ≈ 6 kJ/mol. The obtained param-
eters indeed strike a balance between favoring the syn state in the isolated nucleoside and not
favoring it too much in the single-stranded calculations used to predict the ∆∆G from melting
experiments, which would lead to too large destabilizations associated with the methylation.
When α is decreased, the optimal torsional correction changes, since all the parameters are
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Figure 4.4 Parameters (∆Q and Vη ) obtained from the entire initial dataset as a function of α ,
with β = 0 (panel a). χ2 errors for individual experiments and Kish size ratio (KSR, see text
for definition) obtained using parameters fitted on the entire initial dataset as a function of α ,
with β = 0 (panel b). Validation on the second dataset (B1–B5) of the parameters obtained on
the first dataset (panel c). Results using Aduri parameters are shown as horizontal lines, either
as reported in the original paper (green) or including a single torsional correction to obtain the
correct syn/anti population (data point A1)

coupled. This confirms that charges and torsional parameters should be fitted simultaneously.
Figure 4.4b shows the individual χ2 associated with the same hyperparameter scan. The av-

erage χ2 error is, by construction, monotonically increasing with α , and most of the individual
errors follow the same trend. Figure 4.4b also shows the statistical efficiency of the analysis,
quantified by the relative reduction of the Kish effective sample size associated with reweight-
ing. A low number here indicates that the tested charges are so different from those employed
in the simulation to make the result statistically not significant. The Kish size displays a signif-
icant drop for α < 10, indicating that results in this regime might be not significant. This is a
likely explanation for the discontinuous behavior observed in Fig. 4.4a.

We then tested the charges obtained with this reduced training set on the newer data set
B1–B5, see Fig. 4.2a, which was not included in the training phase. This set of data involves 5
recently published melting experiments [37], 4 of which have m6A occurring in both chains of
the duplex. We notice that double methylations are expected to lead to an even lower statistical
efficiency of the reweighting procedure. We thus performed this analysis by reweighting sim-
ulations that were generated using the set of parameters derived fitting on systems A1-A5 for
α = 10 and β = 0. Since this parameterization is closer to the right solution of the fitting when
compared with the Aduri one, it obtains higher Kish size values in the relevant α range (see
Fig. 4.4c). The χ2 computed on the second data set shows that an optimal result can be obtained
by setting α ≈ 10. We also compared with results obtained using the original Aduri charges and
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optionally including a torsional correction to fix the syn/anti balance. These results are obtained
with direct simulation, that is without reweighting. It can be seen that the results with the pa-
rameters trained on systems A1–A5 largely outperform those obtained with Aduri parameters
on systems B1–B5, thus confirming the transferability of the parameters. Aduri+tors parame-
terization corresponds to setting Vη =2.35 kJ/mol in such a way to perfectly fit experiment A1
(single nucleoside) without modifying charges. The χ2 computed for Aduri+tors demonstrates
that acting exclusively on the torsional is not sufficient to reproduce both ∆Gsyn/anti and melting
experiments. It is also important to note that the improvement in reproducing experiments is
obtained by changes in the partial charges that are small when compared to differences between
charges derived with the standard restrained electrostatic potential protocol [120] in different
conformations, as we will discuss in the following sections.

4.3.2 Fitting on the full data set
Next, we perform a fitting using the full data set reported in Fig 4.2a. Since the variability of
error in this data set is larger, we here computed χ2 using the experimental errors reported in
Table 4.2a. For the ∆Gsyn/anti experiment, for which an experimental error is not reported, we
used a nominal σ = 0.5 kJ/mol to assign to this experiment a larger weight when compared to
the other data points corresponding to melting experiments.

Figure 4.5a reports the results of a cross-validation test performed with a leave-three-out
procedure. Namely, we randomly select seven systems to be used in training and we report
the average χ2 error obtained for the remaining three systems. This time also system A1 was
allowed to be left out of the training set. Results are qualitatively consistent with those obtained
with the smaller data set (see Fig. 4.3). It is difficult to appreciate any variation of the χ2

along the vertical axis corresponding to the β hyperparameter, suggesting that we can safely set
β = 0. We also do not find any clear minimum when scanning over α , as it can be appreciated by
Figure 4.5b, showing projection on α for β = 0 . Figure 4.6a shows the parameters as a function
of the regularization hyperparameter α while fixing β . A clear transition can be seen at α ≈ 20.
The average χ2 error is monotonically increasing with α , but some of the systems have a non-
trivial behavior (Fig. 4.6b). The Kish size shows a significant drop for α < 50, showing that
results in this regime might be not statistically reliable. We thus select the parameters obtained
with α = 50 as the optimal ones trained on the entire data set.

We then compare the performance of several different sets of parameters in reproducing all
the available experimental data points. Namely, we compare (a) the original Aduri parameters
(Aduri), (b) the Aduri parameters augmented with a torsional correction to enforce the correct
syn/anti balance in a nucleobase (Aduri+tors), (c) the parameters obtained fitting on the initial
dataset (A1–A5), with hyperparameter α = 10 (fit_A), and (d) the parameters obtained fitting
on the full dataset (A1–A5 and B1–B5), with hyperparameter α = 50 (fit_AB). Free energies
are computed directly from the alchemical simulations, that is without reweighting. Results are
reported in Fig. 4.7. The quality of the fit is also summarized in the reported χ2 values. The
addition of a simple torsional correction to the Aduri parameters results in a decrease in the
overall χ2 from 15.23 to 9.17. However, this decrease is dominated by the χ2 of the A1 data-
point, which is reduced from χ2 = 84.64 to zero. Conversely, the χ2 averaged on all the other
experiments increases from χ2 = 7.57 to χ2 = 10.19. This indicates that including in the fitting
the single A1 datapoint makes the agreement with denaturation experiments worse. On the other
hand, the two sets of parameters obtained in this work (fit_A and fit_AB) display a significantly
better agreement with experimental data. Note that fit_A, surprisingly, performs moderately
better than fit_AB. The reason is that fit_AB, based on systems with double methylation and

55



Figure 4.5 Cross-validation error obtained fitting on the entire data set with a leave-three-out-
procedure, shown as a function of the two regularization hyperparameters α , for charges, and
β , for the torsional potential (panel a). Darker green colors correspond to lower values of the
average χ2 computed on the systems left out iteratively from the fitting. Projection of data along
β = 0

Figure 4.6 Parameters (∆Q and Vη ) obtained from the entire dataset as a function of α , with
β = 0 (panel a). χ2 errors for individual experiments and Kish size ratio (KSR, see text for
definition) using parameters fitted on the entire initial dataset as a function of α , with β = 0
(panel b).
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Figure 4.7 ∆∆G computed for each of the ten analyzed systems with 4 different sets of param-
eters. fit_A are parameters obtained fitting on the first data set (A1–A5) with regularization
α = 10. fit_AB are derived fitting on the entire data set (A1–A5 and B1–B5) for α = 50. χ2

obtained for each force-field set of parameters are shown in the table.

C6 (e) N6 (e) H61 (e) N1 (e) C10 (e) H100 (e) Vη (kJ/mol)
fit_A 0.019 0.077 0.099 -0.046 0.004 -0.051 2.46
fit_AB 0.009 0.049 0.067 -0.053 0.033 -0.035 2.49

Table 4.1 Charge modifications (∆Qs) and torsional potential (Vη ) for the fitting performed on
the smaller dataset (fit_A, α = 10) and for the fitting performed on the larger dataset (fit_AB,
α = 50). For future simulations, we recommend using fit_A, which leads to a lower error on
the larger set of available experiments.

thus lower statistical efficiency, was performed with a higher regularization hyper parameter
and thus parameterization closer to the reference one. The fitted parameters are summarized in
Table 4.1.

4.3.3 Sets of charges
As observed in the previous subsections, we note that the improvement in reproducing experi-
ments through the fitting is obtained by relatively small changes in the partial charges, as it can
be understood comparing different sets of charges derived for m6A in different ways.

Table 1 in the Appendix shows all the sets of charges considered for the m6A nucleobase.
The first column corresponds to the charges from Aduri et al. [28], adjusted to be compatible
with the current AMBER force-field [22, 86, 87]. The following columns represent the charges
obtained in our fittings, using: the regularized fitting (with α = 10) on set A, fit_A; the regu-
larized fitting (with α = 50) on set AB, fit_AB. In addition, we show charges that we derived
following the standard procedure on a nucleobase. We here considered the geometry of both
isomers (syn and anti), computed the electrostatic potentials of the N6-methylated adenine base
by Gaussian 09 [121] using the HF/6-31G* level of theory, subsequently deriving the partial
charges via the RESP method [120]. For these calculations we replaced the sugar with a closing
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Figure 4.8 PCA performed giving as input all the charges of the nucleobase.

methyl group, as done by Aduri et al. We notice however that Aduri et al. does not report
the chosen isomer, which is likely a syn, the most populated one for an isolated nucleobase.
The last set of parameters (Krepl) have been used in Ref. [112] and were kindly shared by
Miroslav Krepl. In order to visualize these sets of charges in a space of reduced dimensional-
ity, we perform principle components analysis (PCA) on the charges data sets, considering the
entire nucleobase (Fig. 4.8). As it can be appreciated in the PCA analysis, the difference by the
charges resulting from our fitting procedures and those reported by Aduri is very small, and sig-
nificantly lower than the typical variability between different sets of charges obtained with the
same standard QM methods, but with slightly different procedure. Based on these qualitative
observations, we can consider our fitting a delicate refinement of a reference force-field (Aduri
in this case), which despite this small modification on partial charges, is still able to have a sig-
nificant impact on experimental observables, adjusting the correct chemistry and physics of the
nucleobase and recovering agreement between very sensible experimental and computational
free energy measurements.

4.3.4 Relative stability of syn and anti conformations
One piece of the experimental information that we implicitly used in our fitting procedure is
the relative stability of syn and anti conformations in a nucleotide. We indeed assumed a pre-
dominant population of syn conformation for the unpaired nucleotides used in the reference
single-stranded systems. We also assumed that m6A adopts exclusively its anti conformation
when paired, in agreement with experiments [36, 68]. In particular, Ref. 68 reports that, for the
most common G6C sequence, m6A forms a Watson–Crick base pair with uridine that transiently

58



Aduri Aduri+tors fit_A fit_AB Exp
A1. ∆Gsyn/anti 1.71 ± 0.25 6.33 ± 0.25 6.07 ± 0.21 6.04 ± 0.26 6.3
A2. ∆Gdup

syn/anti - 7.7 ± 0.5 - 3.1 ± 0.4 - 10.4 ± 0.6 - 7.8 ± 0.4 ∼ -11

A3. ∆Gdup
syn/anti - 5.4 ± 0.5 - 0.8 ± 0.4 - 4.9 ± 0.6 - 5.8 ± 0.5 –

Table 4.2 Free-energy differences between syn and anti isomer states in systems A1–A3. The
last column corresponds to experimental estimates, whereas the other columns correspond to
computed ∆∆G for different parameterization. Energies are given in kJ/mol units.

exchanges on the millisecond time-scale between the main substate (anti) and a low populated
(1%), singly hydrogen-bonded and mismatch-like conformation through isomerization of the
methylamino group to the syn conformation. This population corresponds to a ∆Gduplex

syn/anti ≈−11
kJ/mol. We a posteriori validated this population by performing alchemical transformations on
the duplex systems enforcing the syn conformation. The predicted ∆Gsyn/anti for a nucleotide
and two of the tested duplexes are reported in Table 4.2, where the corresponding experimental
values are also included. For the A1 experiment, as expected, the proposed sets of parameters
closely match the experimental value that was used during training. The Aduri et al. force-field
underestimates the ∆Gsyn/anti, resulting in a relatively high population of the unexpected anti
conformation in a nucleoside. This difference can be directly corrected with a torsional poten-
tial applied on the η torsion (Aduri+tors). However, when analyzing duplexes A2 and A3 with
the Aduri+tors parameters, we found that the predicted ∆Gsyn/anti would be close to zero, in fact
resulting in the assumption of neglecting the syn conformation in duplexes in our alchemical
calculations to be difficult to justify, and in disagreement with experimental findings. In other
words, the original Aduri charges allow reproduction of the relative stability of syn and anti
conformations either in the paired state (Aduri parameters) or the unpaired state (with torsional
correction), but not in both simultaneously. Remarkably, the sets of parameters proposed here,
which also contain a torsional term penalizing the anti conformation, result in a significantly
higher value for ∆Gdup

syn/anti, much closer to a qualitative agreement with the experiment. This

suggests that the proposed parameters better describe the interactions of the m6A nucleobase
with the surrounding environment and are thus more transferable. We notice that the relative
stability of syn and anti conformations is predicted to be sequence dependent, being different
for system A3 (sequence U6G).

To gain insight into how the m6A–U pairings occur in the duplexes, we analyzed snapshots
of system A2, both for m6A in syn and anti, together with histograms of distances between
atoms belonging to the two nucleobases (Fig. 4.9). The reported histograms are unimodal and
with an increased average associated with the distortion of the A-U Watson–Crick pairings due
to the steric clash induced by the methylation. However, the hydrogen bond between A-N1 and
U-H3 is present, in agreement with what has been suggested previously [68].

4.3.5 Interpretation of the fitted parameters
To provide an interpretation for the obtained parameters, we performed a few additional fittings.
In particular, we investigated which charges have a major impact on enforcing agreement with
experiments. First, we notice that Aduri charges for N1 and H61, which are involved in Watson
Crick parings with the paired uridine, have partial charge absolute value significatively lower
compared to the standard adenine parameters (0.28948 vs 0.41150 for H61, −0.675968 vs.
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Figure 4.9 Interfacing atom distances for m6A-U pairing in system A2 in Fig. 4.2a, for anti
conformation (left) and syn (right). Histograms show unimodal distributions, and the averaged
values are indicated in the box. Distances are sampled from the alchemical trajectories consid-
ering only the λ = 1 replica. In the syn conformation, m6A-H10 correspond to the hydrogen of
the methyl group closest to the uracil oxygen O4.

∆Q (e) Vη (kJ/mol) χ2 KSR
H61-N1 0.0652 2.37 4.42 0.18
N6-N1 0.0802 1.98 4.52 0.31
H61-H100 0.04932 1.72 5.92 0.54
N6-H100 0.0648 1.49 5.93 0.74

Table 4.3 Result for fitting 2 charges plus the torsional with hyperparameters set to 0. Only the
∆Q associated to the first atom is shown (H61 or N6). The ∆Q associated to N1 has the same
absolute value and opposite sign. The H100 charge is equally distributed on the 3 hydrogens of
the methyl group, so that the charge on each hydrogen has 1/3 absolute value and opposite sign
when compared with the reported ∆Q.

−0.76150 for N1). This may lead to a weakening of hydrogen bonds which may cause an
overestimation of the destabilization induced on duplexes, as we observed in Aduri+tors cases
(see Fig. 4.7c). The results of our fitting systematically increase the absolute value of H61
ad N1 partial charges, hence resulting in a stronger Watson Crick pairing. At the same time,
the torsional term allows to reproduce the correct anti isomer penalty. Parameters are coupled,
so that it is necessary to fit them simultaneously so as to avoid double counting effects. To
demonstrate that N1 and H61 are the most important charges to tune in order to reproduce
experiments by strengthening hydrogen bonds, we performed 4 further fittings on the entire
data set (AB) by tuning only the torsional plus 2 charges at time, respectively for the pairs
N1-H61; N1-N6; H61-H101/2/3; N6-H101/2/3, which are taking into account atoms that have
systematic positive and negative ∆Q both in fit_A and fit_AB. Results are summarized in Figure
4.10.

Interestingly, when fitting only 2 charges, the results are converging for α going to zero.
Furthermore, the Kish Size Ratio obtained for α = 0 is always greater than 0.18, demonstrating
that statistical significance is always maintained when fitting only two charges. For α and β set
to zero, results of the fitting are summarized in Table 4.3.

The lowest χ2 is obtained in H61-N1 case with a value of 4.42 (for comparsion, the fitted χ2

obtained in fit_AB is 3.61), confirming the hypothesis that tuning these two charges is crucial
to reproduce experiments. A slightly larger χ2 is obtained in N6-N1 case. Figure 4.10 also
shows that the correction on the torsional angle is highly coupled with modifications of N1
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Figure 4.10 Fitted charges and torsional term Vη as a function of α (β = 0). Horizontal axes
are in log scale except for 0–0.1 sections which are linear.

charge. In the two tested cases where N1 was not fitted, the torsional parameter Vη has a
smaller dependence on the charges.

Overall, the results suggest that the main contribution of the fitted correction is to increase
the stability of Watson–Crick hydrogen bonds by making N1 and H61 more polar and at the
same time using the η torsional potential to control the syn/anti relative population.

4.3.6 Dependence on ionic strength and temperature
In this work, the simulations used in the fitting procedure were performed at a ionic concen-
tration of 0.1 M NaCl, which is a value commonly used in MD simulations. However, the
standard condition in which denaturation experiments, including those analyzed in this work,
were performed is 1 M NaCl. In order to quantify the dependence of the computed ∆∆Gs on
the ion concentration, we performed further control simulations for a subset of systems at 1 M
NaCl. Systems A1, A2 and A4 were chosen in order involve in this checking all possible envi-
ronments for the methyl group: a nucleoside, where the methyl group is isolated; a duplex with
internal m6A, where the methyl group is partly hidden from interactions with ions; a duplex
with m6A as a dangling end, where the methyl group is more exposed to interactions with ions;
and the corresponding single stranded RNAs, so as to be able to obtain the ∆∆Gs. For the nu-
cleoside, the methylation was added in both syn and anti conformations. For the other systems,
the methylation was added in the expected conformation, as we did for all other systems (see
main text).

Results are summarized in Tables 4.4 and 4.5. The A1 system, that is the single nucletoide in
solution, reports a shift in the ∆Gs of about 1.2 kJ/mol with respect to 0.1 M cases, for both syn
and anti. As a result, the relative ∆∆G is not affected. For all other system, the ∆Gs for the two
ionic concentration are in agreement within their statistical error. These results indicate that the
fitting is not affected by the discrepancy between the ionic concentration used in computations
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fit_AB Aduri
[NaCl] A1 syn A1 anti A2 dup A2 ss A4 dup A4 ss A2 ss
0.1 M 211.23 ± 0.18 217.27 ± 0.19 214.01 ± 0.35 210.40 ± 0.22 208.07 ± 0.17 210.62 ± 0.19 257.54 ± 0.27
1 M 212.33 ± 0.36 218.46 ± 0.25 213.99 ± 0.25 210.53 ± 0.42 208.30 ± 0.33 210.91 ± 0.26 257.56 ± 0.26

Table 4.4 ∆Gs computed through alchemical computations and binless WHAM method. Each
row corresponds to a different NaCl ionic concentrations used in the simulation. Each column
correspond so a different system. In the last column, results obtained with the original Aduri
parameters are shown as well for one of the systems, confirming that the mild dependence on
ion parameters is independent of the precise partial charges used in the simulation.

[NaCl] A1 A2 A4
0.1 M 6.04 ± 0.26 3.6 ± 0.4 -2.55 ± 0.25
1 M 6.1 ± 0.4 3.5 ± 0.5 -2.6 ± 0.4
Exp 6.3 1.7 ± 0.9 -2.5 ± 1.2

Table 4.5 ∆∆Gs computed through alchemical computations and binless WHAM method. The
first two rows correspond to different NaCl ionic concentrations used in the simulation, and last
row corresponds to the reference experimental values.

and experiments.
In addition, the simulations used in the fitting were performed at a temperature of 300 K,

which is a value commonly used in molecular dynamics simulations. However, the experimental
free energy differences used in the fitting refer to a temperature of 310 K. In order to quantify the
dependence of the computed ∆∆Gs on temperature, we performed further control simulations
for systems A1 and A2 at 310 K. Table 4.6 compares ∆Gs computed at 300 K or 310 K, whereas
Table 4.7 compares the ∆∆Gs. Differences are compatible within their statistical error. These
results suggest that the fitting is not affected by the choice of performing the simulations at 300
K rather than 310 K.

It is also possible to extrapolate experimental and computational ∆Gs from 300 K to 310 K
by making use of following thermodynamics relationship:

∆G310 = ∆G300 − (310−300)∆S (4.17)

which can be applied to the calculation of ∆∆Gs, resulting in:

∆∆G310 = ∆∆G300 − (310−300)∆∆S (4.18)

or
∆∆∆G =−∆T ∆∆S (4.19)

T A1 syn A1 anti A2 dup A2 ss
300 K 211.23 ± 0.18 217.27 ± 0.19 214.01 ± 0.35 210.40 ± 0.22
310 K 211.87 ± 0.18 217.65 ± 0.15 214.05 ± 0.24 210.87 ± 0.36

Table 4.6 ∆Gs computed through alchemical computations and binless WHAM method, using
the fit_AB parametrization. The rows correspond to different temperatures used in the simula-
tions.
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T A1 A2
300 K 6.04 ± 0.26 3.6 ± 0.4
310 K 5.78 ± 0.23 3.18 ± 0.4
Exp 6.3 1.7 ± 0.9

Table 4.7 ∆∆Gs computed through alchemical computations and binless WHAM method, using
fit_AB parametrization. The first two rows correspond to different temperatures used in the
simulation, and last row corresponds to the reference experimental values.

B1 B2 B3 B4 B5
−∆T ∆∆S (kJ/mol) 0.6 ± 0.9 -1.0 ± 0.5 -0.5 ± 0.4 0.33 ± 0.20 0.3 ± 0.5

Table 4.8 ∆∆∆Gs for ∆T =10 K computed from experimental entropies

By making use of this relation, we can investigate how ∆∆G would be affected for a change
in temperature of 10 K, both for experimental and computational values. As far as the experi-
mental values are concerned, we compute ∆T ∆∆S for systems B1-B5 by taking the difference
between the ∆S measured for the methyated systems [37] and those for the unmethylated sys-
tems [122] [123]. Results are reported in Table 4.8. Since we didn’t find the experimental
errors for the unmethylated systems, we assumed them to be identical to those obtained in the
methylated systems. The changes in ∆∆G are small and dominated by their experimental error.

We then computed ∆Ss from our simulations by making use of the relationship:

∆S =−∆G−∆U
T

=−∆G− (⟨U⟩λ=1 −⟨U⟩λ=0)

300
(4.20)

∆∆∆Gs for ∆T =10 K are shown in Table 4.9. Statistical errors were computed with blocked
bootstrap. Also in this case, changes in ∆∆G are small and dominated by their statistical errors.
A recalculation of the χ2 using ∆∆G extrapolated at 310K returns a value χ2 = 6.03, which
is equivalent to the value reported in Fig. 4d using 300K results (χ2 = 5.71), confirming that
changing temperature does not affect the comparison between simulation and experiment.

4.4 Discussion
In this work, we proposed a protocol to parametrize charges in modified nucleobases using
available melting experiments. The approach is applied to m6A and leads to a set of charges
that can reproduce a set of 10 independent experimental values. The approach is based on the
force-field fitting strategies introduced in earlier works [124, 125, 114], which are here extended
with several technical improvements.

A1 A2 A3 A4 A5
−∆T ∆∆S (kJ/mol) 0.1 ± 1.3 -0.57 ± 0.33 0.37 ± 0.36 -0.19 ± 0.36 -0.36 ± 0.22

B1 B2 B3 B4 B5
−∆T ∆∆S (kJ/mol) -0.75 ± 0.33 0.5 ± 0.4 -0.1 ± 0.6 0.0 ± 0.4 0.38 ± 0.39

Table 4.9 ∆∆∆Gs for ∆T =10 K estimated from computations
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A first methodological contribution is a formalism that allows alchemical calculations to be
used as a reference. Previous works were only using observables computed with a single set
of force-field parameters [124, 125, 114, 26]. The method introduced here allows free-energy
differences between different sets of parameters to be evaluated and compared with the experi-
ment. This opens the way to the optimization of parameters based on experimentally measured
∆∆Gs. We based our analysis on optical melting experiments, which are commonly employed
in the nucleic acids community [126], but other types of experiments might be considered. In
our specific application, only the parameters of one of the two end states were refined, but one
could similarly fit parameters for both adenosine and m6A, at the price of increasing the number
of parameters and thus the risk of overfitting. A second improvement is that we developed a
way to efficiently recompute the total energy of the system using test charges. This is achieved
by precomputing the total electrostatic energy of the system with a set of randomly perturbed
charges. Given the high cost of electrostatic calculations, this makes the cost of each of the iter-
ations performed during force-field fitting significantly faster and implicitly takes into account
combination rules, non-bonded exclusions, and periodicity. These two improvements can be
readily integrated into other MD-based force-field optimization strategies.

A limitation of optimizing charges with the introduced procedure is that the statistical ef-
ficiency of reweighting is significantly decreased even by small charge perturbations. This
implies that simultaneously parametrizing many copies of the same nucleotide, or parametriz-
ing a larger number of charges for the same nucleotide, would be more difficult. In our case,
we had to include at most two m6A residues in the same simulation. If more copies of the same
reparametrized nucleotide are present in the same system, one might have to design strategies
where only a few copies at a time are reparametrized, or follow an iterative procedure where
modifications are included in consecutive steps [114]. In this application, this was not necessary.

Overfitting was avoided by using a standard L2 regularization term on the charge incre-
ments. This penalty does not depend on the charge location. Importantly, the regularization
hyperparameters tune the relative weight of the experimental data and of the reference charges,
here taken from Ref. 28, thus allowing to achieve a meaningful set of parameters also in regimes
where the number of data points is very limited. It is worth noting that the standard restrained
ESP fitting is performed including a restraint that acts as a hyperbolic regularization term [120],
which is introduced to keep the absolute values of the obtained charges as small as possible.
Our regularization, instead, keeps the resulting charges as close as possible to the initial guess
obtained with the restrained ESP procedure [28]. This allows to implicitly include in the fitting
the result of the corresponding quantum-mechanical calculation. More effective regularization
strategies might be designed based on the molecular dipole, as done in Ref. 127, to minimize the
perturbation of the electrostatic potential at a large distance from the molecule. Alternatively,
one might directly use as a regularization term the deviation from the quantum-mechanical
electrostatic potential at a short distance. In the limit of a large regularization hyperparameter,
this would lead to ESP charges [128]. Finally, other regularization criteria might be used [26].
When comparing our procedure with standard ESP charge fitting, it is important to realize that
we are aiming to reproduce experimentally observed ∆∆G, which are non-linear functions of
the energy of each configuration, which in turn is a quadratic function of the charges. These
non-linearities make it possible for multiple local minima of the cost function to exist, and could
thus make the minimization not reproducible. However, when sufficiently regularized, the fit-
ting procedure results in reproducible charges that depend smoothly on the control parameters.
In standard ESP fitting, instead, the electrostatic potential is fitted, thus resulting in a linear fit
with a unique solution.

We notice that the parameters of the unmethylated force-field were not modified. This was

64



based on the assumption that the employed set of force-field parameters is already capable to re-
produce ∆∆G experiments associated with mutations between non-modified nucleobases [129].
The m6A charge optimization could be easily repeated using another set of initial parameters,
and the parameters of non-modified nucleobases might be adjusted as well, although with the
caveat discussed above.

Another possible limitation of the employed alchemical simulations is the sufficient sam-
pling of the end states. The duplex is expected to be stable and well structured, so sampling
multiple structures should not be necessary. For selected cases, we also explored the possibility
to include the unlikely syn paired state, which, as expected, gives a negligible contribution to
the stability of the duplex. For single strands, instead, we only sampled the syn state. More
importantly, our simulations were short enough to avoid any significant reconformation of the
single strand. Sampling the conformations of flexible, single-stranded RNAs is notoriously dif-
ficult [1]. In addition, the generated ensemble might contain artificially stabilized intercalated
structures, whose population is known to be overestimated by the RNA and water force-fields
adopted here [95, 130]. This would make the correct sampling of the single-stranded state
unfeasible. We also notice that the experimental results that we aimed to reproduce were per-
formed on systems designed to have the isolated strands unstructured, to capture the effect of
methylation on hybridization. Putting everything together, we conclude that the approximation
of a single strand ensemble that does not depart too much from the initial A-form helix is a
sensible choice for this specific application.

An important finding of this work is that the parameters of Aduri et al. cannot reproduce
the syn/anti balance expected for m6A residues. This balance is extremely important and is re-
lated to the mechanism by which m6A modifications modulate duplex stability [36]. This could
not be rectified with a straightforward correction of the single torsion involved. The optimized
charges, instead, allow the correct syn/anti balance to be recovered both in paired and unpaired
nucleobases, as well as a heterogeneous set of optical melting experiments to be reproduced. In-
terestingly, the Aduri et al. parameters were tested in a recent work [35], with results for system
A2 in Table 4.2 consistent with ours and with experiments. However, systems A1 and A3 were
not tested, and thus the problem that we observed here could not be identified. Another interest-
ing finding is that the ∆∆G associated with N6 methylation are here predicted to be independent
of ion concentration. We are not aware of any experimental validation of this finding, which
could be obtained by comparing melting experiments at different ion concentrations. Finally,
our results suggest that the relative population of the syn excited state in duplexes [68] might
significantly depend on the identity of the neighboring nucleotides. The precise hybridization
kinetics could thus be quantitatively different for RNAs with different sequences.

A convenient property of our approach is that it does not require changing the functional
form of the interaction potential so that new parameters can be readily incorporated into exist-
ing MD software. This is not the case if ad hoc corrections are employed [25, 26]. In addition,
it is worth noting that the charge modifications obtained are very small, and in particular they
are smaller than the typical difference between sets of charges derived with slightly different
procedures or using different reference conformations. Despite this small difference, the effect
on experimental observables is significant. These observations imply that there is still signif-
icant space to improve the performance of current force-fields without necessarily modifying
the functional form if experimental information is used during training [23].

Using our approach it is possible to dissect the individual contribution of the modified force-
field parameters. The main factors playing a role in the change of duplex stability induced by
m6A methylation are (a) the penalty for switching to the unfavored anti isomer [36], (b) the
stabilization induced by hydrophobic shielding of the methyl group against surrounding bases
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[131, 132], (c) the impact of partial charges on stacking interactions [131], and (d) the impact
on the strength of Watson–Crick hydrogen bonds. Since, on average, experimental ∆∆G for
denaturation experiments performed on duplexes are smaller than the anti isomer penalty, we
could expect that the sum of the other factors has a stabilizing effect on the majority of the
considered duplexes. We notice that Aduri charges for N1 and H61, which are involved in
Watson–Crick pairings with the complementary uridine, have partial charge absolute values
significantly lower compared to the standard adenine parameters (0.28948 vs 0.41150 for H61,
−0.675968 vs. −0.76150 for N1). This may lead to a weakening of hydrogen bonds which may
cause an overestimation of destabilization induced on duplexes, as we observed in Aduri+tors
cases (see Fig. 4.7). The results of our fitting systematically increase the absolute value of H61
and N1 partial charges, hence resulting in a stronger Watson–Crick pairing. At the same time,
the torsional term allows reproducing the correct anti isomer penalty. Parameters are coupled
so that it is necessary to fit them simultaneously to avoid double counting effects.

To the best of our knowledge, this is the first attempt to tune partial charges of a biomolecular
force-field based on experiments performed on macromolecular complexes. We expect that this
approach could be used in the future to improve the capability of biomolecular force-fields
to match experimental observations by exploiting a part of the functional form that has been
traditionally derived in a bottom-up fashion. Remarkably, the parameters derived here for m6A
allow to properly describe paired and unpaired m6A in both syn and anti conformation, and thus
open the way to the use of molecular simulations to quantitatively investigate the effects of N6
methylations on RNA structural dynamics.
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Chapter 5

Alchemical Metadynamics for the
N6-methyladenosine

As discussed in the previous Chapter, N6-methyladenosine (m6A) can exist in two different
conformations: syn and anti. These conformations can be easily distinguished by examining
the torsional angle η6, which is defined by the atoms N1-C6-N6-C10. The barriers associated
with the η6 angle have a significant impact on the kinetics of hybridization [68], and they are
expected to be so high that observing a switching between the two m6A isomers in an unbiased
molecular dynamics (MD) simulation within the time scale of nanoseconds to microseconds
would be nearly impossible. Therefore, in our previous work described in Chapter 4, we stud-
ied this system by separately simulating the syn and anti conformations, using the alchemical
free energy calculation (AFEC) approach with standard Hamiltonian replica exchange (HREX)
simulations. Recently, a new method called alchemical metadynamics (AM) was introduced by
Hsu et al. [67], and its theory is discussed in Section 2.2.4. This method provides an oppor-
tunity to obtain the same information as HREX but in a single simulation. Additionally, AM
allows us to gather additional information about the isomerization barrier of m6A, enabling the
reconstruction of the free energy profile along the torsional angle η6.

In this Chapter, we validate the implementation of alchemical metadynamics by Hsu et al
on the systems A1 and A2 introduced in Chapter 4. These systems involve the alchemical trans-
formation of a standard adenosine (A) into N6-methyladenosine (m6A) for a single nucleoside
in solution and an 8-bp double-stranded RNA, as illustrated in Figure 5.1.

5.1 Methods
All the setups have been described extensively in Chapter 4 and are available on Zenodo
(https://zenodo.org/record/6498021). The GROMACS input files are identical to those used
in our previous work, except that here the λ ladder is sampled with the Metropolized-Gibbs al-
gorithm with attempted moves spaced with 100 integration steps. For the simulations reported
in this work, we used the fit_A parametrization for m6A discussed in previous Chapter.

We used alchemical metadynamics to flatten the sampling along both the alchemical λ state
and along a physical collective variable. For this system, we tested a modified setup where we
apply two concurrent metadynamics [57]. The first metadynamics process is one-dimensional
and acts only along the alchemical variable. Since the free energy differences along this non-
physical variable can be huge, we use a large bias factor (γ = 100). The second, concurrent,
metadynamics process is two-dimensional and acts both on the alchemical variable and on ηavg,
an averaged torsional angle elaborated in the next section. Since the barriers along ηavg are
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Figure 5.1 (A) The 4 considered states of the alchemical transformation of A into m6A. Isomers
are characterized by the value of the torsional angle defined by atoms N1-C6-N6-H62 or N1-
C6-N6-C10. The isomers are indistinguishable in the adenine case, so ∆Gsys,A

syn/anti = 0. On the

other hand, in m6A the position of the methyl group defines the states anti and syn. The former
is the most favored for the paired m6A in a duplex, while the latter is the most favored for the
isolated nucleoside. (B) The 8 base-pairs duplex considered in this work, shown in the case of
methylated adenosine in anti state.
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smaller, this second metadynamics is performed with a lower bias factor (γ = 10). The overall
bias potential acting on the system can thus be written as

Vtot(ηavg,λ ) =V1(λ )+V2(ηavg,λ ) (5.1)

where V1 and V2 are the Gaussian biases added during the one-dimensional metadynamics and
the two-dimensional metadynamics, respectively. This combined bias potential can be directly
used for reweighting, as discussed above. Notably, by using only two collective variables, a
direct reweighting is sufficient in our case. In other words, it is not necessary to include multiple
replicas to generate unbiased results, as done in [57] and in Chapter 3.

Metadynamics simulations were run for 60 ns, with Gaussians of initial height 12 kJ/mol,
for V1, and 1.2 kJ/mol, for V2, deposited every 500 steps. The Gaussian width along the ηavg
variable was chosen to be 0.35 rad. The 2D free energy surface was computed directly from
the bias potentials, while the 1D profile along η was reconstructed using reweighting. Free
energy differences and their statistical errors were computed by reweighting a second 160 ns-
long simulation where the bias potentials were kept constant. In the case of this calculation, as
has also been observed anecdotally in other cases [133], using a static bias resulted in slightly
more statistically robust free energy differences.

5.1.0.1 Free energy calculations

For this system, we are interested in calculating the following three relative free energy differ-
ences: ∆∆Gns

syn/anti, ∆∆Gdup
syn/anti, and ∆∆Gdup/ns

syn+anti, where the first two denote the difference in

the methylation free energy between the transformation processes that lead to a syn or anti m6A,
in the isolated nucleoside (ns) and in the duplex (dup), respectively. They can be calculated by
taking the difference between the free energy differences of interest, namely,

∆∆Gns
syn/anti = ∆Gns

anti −∆Gns
syn (5.2)

∆∆Gdup
syn/anti = ∆Gdup

anti −∆Gdup
syn (5.3)

The same set of free energy differences (∆G’s in Equation 5.2 and 5.3) can be used to calculate
∆∆Gdup/ns

syn+anti, the relative methylation free energy between the nucleoside and the duplex systems
considering both syn and anti conformations:

∆∆Gdup/ns
syn+anti = ∆Gdup

syn+anti −∆Gns
syn+anti (5.4)

with
∆Gns

syn+anti =− 1
β

ln(exp(−∆Gns
syn)+ exp(−∆Gns

anti)) (5.5)

∆Gdup
syn+anti =− 1

β
ln(exp(−∆Gdup

syn )+ exp(−∆Gdup
anti)) (5.6)

In Equations 5.2, 5.3, 5.5 and 5.6, ∆Gns
syn, ∆Gns

anti, ∆Gduplex
syn , and ∆Gduplex

anti are the free energy
differences of converting adenosine into a syn m6A or anti m6A in either the isolated form
or the duplex, each of which can be calculated from a separate alchemical simulation at fixed
rotameric state. For example, in our previous work shown in Chapter 4, four independent
Hamiltonian replica exchange simulations were performed, each estimating one of these four
values, which combined to give estimates of the three relative free energy differences of interest
(∆∆Gns

syn/anti, ∆∆Gdup
syn/anti, and ∆∆Gdup/ns

syn+anti).
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However, using alchemical metadynamics, we can sample both rotamers in a single sim-
ulation methylating the adenosine. Thus, ∆Gsys

syn, ∆Gsys
anti, with sys being either ns or dup, can

be directly obtained from a single alchemical metadynamics simulation. Given the access to
all metastable states in the alchemical and configurational space, we can calculate free energy
differences with more flexibility by considering ratios of partition functions corresponding to
different states. For example, with alchemical metadynamics, we can calculate ∆∆Gns

syn/anti and

∆∆Gdup
syn/anti as follows, instead of using Equations 5.2 and 5.3:

∆∆Gns
syn/anti = ∆Gns, m6A

syn/anti =− 1
β

ln

(
∑i∈anti eβV ns

tot(ηi,λ=1)

∑i∈syn eβV ns
tot(ηi,λ=1)

)
(5.7)

∆∆Gdup
syn/anti = ∆Gdup, m6A

syn/anti =− 1
β

ln

(
∑i∈anti eβV dup

tot (ηi,λ=1)

∑i∈syn eβV dup
tot (ηi,λ=1)

)
(5.8)

∆Gns, m6A
syn/anti and ∆Gdup, m6A

syn/anti , which are the free energy differences between the two rotamers in
the nucleoside and in the duplex, respectively, are not available in Hamiltonian replica exchange
but in alchemical metadynamics. Similarly, ∆Gns

syn+anti and ∆Gns
syn+anti can be calculated as

follows:

∆Gns
syn+anti =− 1

β
ln

(
∑i∈syn+anti eβV ns

tot(ηi,λ=1)

∑i∈syn+anti eβV ns
tot(ηi,λ=0)

)
(5.9)

∆Gdup
syn+anti =− 1

β
ln

(
∑i∈syn+anti eβV dup

tot (ηi,λ=1)

∑i∈syn+anti eβV dup
tot (ηi,λ=0)

)
(5.10)

so that ∆∆Gdup/ns
syn+anti can be calculated using Equation 5.4. The goal of our application of the

alchemical metadynamics, is to compare the three obtained relative free energy differences
(∆∆Gns

syn/anti, ∆∆Gdup
syn/anti, and ∆∆Gdup/ns

syn+anti) with the values recovered from Hamiltonian replica
exchange reported in Chapter 4.

5.2 Results

5.2.1 Individuating the Optimal Collective Variable
One critical issue in this system is the proper choice of the configurational collective variable.
In the first attempt, we used the torsional angle defined as the torsion identified by atoms N1-
C6-N6-C10 (see Figure 5.1). This choice was found to be suboptimal. In the production runs,
we used as a biased variable a mean torsion obtained by averaging the three torsions identified
by atoms N1-C6-N6-C10, N1-C6-N6-H61, and N1-C6-N6-H62. We remind that atoms C10
and H62 may have non-bonded interaction turned on or off depending on the λ state, but their
bonded interactions are always turned on. The average was computed as the arctangent of the
sine and cosine averages. These three torsions are coupled by an improper torsion present in the
original force-field parametrization, which maintains the group C10, N6, H61, and H62 planar,
but this torsion is insufficiently stiff to maintain the consistency between the three torsions when
enforcing the barrier crossing. When biasing the average, a diffusive behavior of the biased CV
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was obtained (Figure 5.2). Specifically, with the torsions N1-C6-N6-C10 (η6 or ηC10), N1-C6-
N6-H61 (ηH61), and N1-C6-N6-H62 (ηH62), the average is computed as

ηavg = atan2
(

sin(ηC10)+ sin(ηH61 +π)+ sin(ηH62)

3
,
cos(ηC10)+ cos(ηH61 +π)+ cos(ηH62)

3

)
(5.11)

Where atan2 is the two-argument arctan function, defined as the angle between the positive
x-axis and the vector (x,y); it is equal to arctan(y/x) when x > 0, but involves corrections of
±π when x ≤ 0. We also note that ηH61 must be shifted by π rad when taking the average.
Fig. 5.2 aims to summarize the issues encountered when using N1-C6-N6-C10 as a CV and
how they can be solved by switching to the averaged torsional ηavg. In panel (a) it is shown the
value of torsional angle N1-C6-N6-C10 as a function of time, when the same torsion was used
as CV, in a simulation performed at dynamic bias potential. In the 160 ns of simulations, the
system only switched once from syn to the anti state after about 8 ns and then back to syn after
about 60 ns. When using the averaged torsion as a CV instead Fig. 5.2b), the system became
diffusive on N1-C6-N6-C10 after a few ns. Fig. 5.2c shows N1-C6-N6-C10 versus N1-C6-N6-
H62 when N1-C6-N6-C10 was used as CV, while Fig. 5.2d shows the same but in the case of
averaged torsion used as CV. The results shown here demonstrate that the improper torsion is
not sufficiently stiff to maintain the consistency between the three torsions when enforcing the
barrier crossing. As a consequence, the single N1-C6-N6-C10 torsion is not an optimal CV to
allow a proper sampling of the torsional space.

5.2.2 Free Energy Estimates
The free energy profile along the λ state index is computed using reweighting and reported in
Figure 5.3a. The significant difference observed is non-physical and depends on the relative
definitions of the A and m6A force-field parameters. Figure 5.3b shows the 2D surface as a
function of the λ state index and the averaged torsional angle ηavg, which is computed using
the usual relationship between bias and free energy [54], and then subtracting the Boltzmann-
averaged free energy along the λ state index. We notice that the residual dependence of the
free energy on λ depends on the fact that barriers on ηavg change when λ is changed. The
profiles along ηavg were computed using the relationship between the bias and the free energy
and are shown in Figure 5.3c. Notably, this approach allows free energy profiles along the
biased variable to be obtained simultaneously with alchemical differences. These profiles show
that the syn conformation (central basin) is favored in the m6A nucleoside, whereas the anti
conformation (lateral basins) is favored in the duplex. The final ∆∆G’s, which represent the
amount by which the methylation disfavors the duplex, are consistent with those reported in
Chapter 3 within the respective statistical errors (Figure 5.3d). Importantly, even though the
exploration of λ is guaranteed by the one-dimensional metadynamics, the inclusion of λ in the
two-dimensional metadynamics allows to effectively reconstruct free energies along ηavg that
are depending on λ .

5.2.3 Comparison of methylation free energy calculations with dynamic
and static biases

In order to shed lights on the possible limitations of metadynamics, we show in this section
the free energy calculations with a dynamic bias for the nucleoside and duplex systems. These
calculations are compared to the free energy differences computed with static bias presented in
the previous section. Specifically, simulations at dynamic bias were elongated up to 160 ns. For
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Figure 5.2 (a) The torsional angle N1-C6-N6-C10 as a function of time when the same torsion
was used as CV. (b) The torsional angle N1-C6-N6-C10 as a function of time when an averaged
torsion between N1-C6-N6-C10, N1-C6-N6-H62, and N1-C6-N6-H61 (+π) was used as bias-
ing collective variable. (c) N1-C6-N6-C10 versus N1-C6-N6-H62 when N1-C6-N6-C10 was
used as CV (d) N1-C6-N6-C10 versus N1-C6-N6-H62 when the averaged torsion was used as
CV
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Figure 5.3 (a) The free energy profile along the state index for the RNA duplex and for the
isolated nucleoside. (b) Residual free energy surface along the state index and the averaged
torsional angle for the RNA duplex (c) The free energy computed as a function of ηavg at fixed
λ = 1, both for the RNA duplex (red) and for the m6A nucleoside (blue) (d) Comparison of ∆∆G
obtained with alchemical metadynamics (AM) and with Hamiltonian replica exchange (HREX)
from Piomponi et al., 2022 [113], with their respective statistical errors.
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Figure 5.4 Comparison of free energy differences computed in Chapter 3 with Hamiltonian
replica exchange (HREX) and ∆∆G computed with alchemical metadynamics (AM) in this
work, for two cases: (1) static bias and (2) dynamic bias.

analysis, the first 60 ns were discarded, and the bias averaged over the remaining 100 ns was
used to compute weights [71] [70] . Different numbers of blocks ranging from 2 to 1000 were
used to construct histograms in block bootstrapping (200 iterations) and the largest uncertainty
is reported.

Fig. 5.4 shows that with dynamic bias, the free energy estimates are more precise (lower
statistical errors). This is most likely attributable to the fact that the sampling in the CV space is
more diffusive in these systems with dynamically updated weights. However, free energy esti-
mates computed with dynamic bias are less accurate, i.e., they differ more from those obtained
with Hamiltonian replica exchange (HREX).

To further demonstrate the lower accuracy of the dynamic bias computation, the free energy
difference (∆Gdup, A

syn/anti) between the two conformations of adenosine shown in Figure 5.1a is
calculated. In our previous work [113] this value was assumed to be 0 because of the symmetry
of the hydrogen atoms H61 and H62. Also, the HREX used does not have access to the free
energy landscape along the biased torsion, so the relative error for ∆Gdup, A

syn/anti is not given for the

HREX case in fig 5.4. In alchemical metadynamics, ∆Gdup, A
anti/syn is calculated as follows:

∆Gdup, A
syn/anti =− 1

β
ln

(
∑i∈anti eβV dup

tot (ηi,λ=0)

∑i∈syn eβV dup
tot (ηi,λ=0)

)
(5.12)

For most systems, the general understanding is that using plain metadynamics, i.e., analyz-
ing the dynamically biased simulation, is better than doing the two step procedure used here
[115]. The result is likely system-dependent and related to the fact that even without a dynamic
bias we can see many transitions, thus a reasonable statistical error. In this way, we are clearly
in a regime where fewer transitions at equilibrium are a safer estimate.
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5.3 Conclusion
The alchemical metadynamics methods expands the configurationally-defined sampling space
allowed in traditional metadynamics with an additional alchemical sampling direction. With the
configurational bias, alchemical metadynamics encourages the system to escape from configura-
tional metastable subspaces that could have easily trapped the system. It retains the advantages
of traditional alchemical free energy methods, but also enables higher flexibility in sampling
rough free energy surfaces. Applying the methods on our m6A systems, we demonstrated that
2D alchemical metadynamics eliminated the need to perform multiple Hamiltonian replica ex-
change simulations to estimate the relative methylation free energy, and simultaneously allow
to reconstruct the free energy profile along the biased torsional angle. The alchemical simu-
lation of conversion from A to m6A is an interesting physical example because it shows that
alchemical metadynamics gives simultaneous access to free energy barriers for both the two
end systems. While this result could have been obtained by performing two separate metady-
namics simulations, being able to use a single simulation has substantial advantages. First, it
ensures that other possibly slow degrees of freedom are sampled consistently in the two end
states, making differential results more reliable. For instance, if the isomerization barrier were
affected by binding with another molecule present in the simulation box, the dynamics of λ

would have ensured binding to be equally represented in the A and m6A states. Second, in
cases where the conformational transitions are better described by the physical CVs in one of
the states with respect to the other state, thus resulting in more transitions in one of the end
states when compared to the other, having a single simulation would enable the ensemble of
the slower state to benefit from the enhanced ergodicity in the faster state. These benefits could
also be obtained by combining metadynamics with Hamiltonian replica exchange along the
alchemical variable, however, at the price of higher computational cost and less flexibility in
the setup. The combination of one-dimensional and two-dimensional bias potentials allows for
simultaneous (a) flattening of the large artificial free energy difference along the alchemical
variable and (b) effective compensation of the torsional barriers, considering the fact that the
precise profiles depend on the alchemical variable. The two potentials can be constructed using
different bias factor coefficients so as to optimize their capability to explore the two profiles.
This idea might also be exploited in different contexts, whenever one wants to simultaneously
facilitate transitions over a large free energy barrier (e.g., a chemical reaction) and, at the same
time, smooth residual barriers on softer degrees of freedom. This is at variance with the RECT
method by Gil-Ley et al, [57] discussed in section 2.2.2 , where a large number of collective
variables were concurrently biased, thus requiring a replica ladder to obtain unbiased popula-
tions. A similar issue occurs when simultaneously biasing the total energy of a solvated system
and solute-dependent CVs. In this case, indeed, two separate metadynamics, possibly with
different bias factors, can be applied fruitfully. This was done, for instance, in the work by
Deighan et al. [134], though in a sequential rather than self-consistent procedure. The protocol
is also related to the one proposed by Chipot and Lelièvre [135], although it is here applied
in (a) metadynamics context and (b) combining potentials in 1D and 2D with the alchemical
CV shared among the two biases. This problem might also be tackled using global tempering
methods, where a flat histogram is reached on all the biased CV [136].
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Chapter 6

Molecular simulations to investigate the
impact of N6-methyation in RNA
Recognition: Improving Accuracy and
Precision of free energy of binding
estimation

In the preceding Chapters, our investigation revolved around understanding the influence of
N6-methylation of adenosine on RNA structure, with particular focus on the destabilization of
double strands. We refined the m6A force-fields to enhance the capability of MD simulations
in replicating denaturation experiments and accurately representing the populations of syn/anti
isomers. Such a force-field can be considered much more reliable than alternative parametriza-
tions that have not been validated against experiments yet, at least for reproducing impact of
N6-methylation on RNA structural dynamics. Indeed, even if the destabilization induced on
duplexes is generally low, it has been proven that m6A can have significant impact on the struc-
tural dynamic of specific systems. For example, Jones et al showed how the N6-methylation
of adenosine favors rearrangement of nucleotides of an RNA hairpin tetraloop [137]. Despite
this, a substantial body of literature suggests that the primary role of m6A in nature does not
seem to be centered on its impact on RNA structural dynamics, but rather on augmenting RNA
recognition by proteins known as reader proteins. As a consequence, it is crucial to validate,
and if necessary to further refine, the m6A parametrization against experiments which report
the impact of N6-methylation on the free energy of bindings (FEB) between RNA and reader
proteins. Among these m6A readers, the YT521-B (YTH) family of proteins stands out as the
most prominent and extensively examined [138] [139] [140]. In this Chapter, we will initially
demonstrate that alchemical free energy calculations, in conjunction with the fit_A force-field
developed in Chapter 4, are incapable of replicating the stabilization induced by N6-methylation
on the FEB between RNA and a YHT m6A reader protein, as predicted by titration calorimetry
experiments [141]. Subsequently, we will illustrate how we can achieve better agreement with
experimental results by further refining the m6A force-field. This refinement involves expanding
the dataset considered in Chapter 4 and improving the precision of the alchemical calculations
by enhancing the exploration of various hydration states within the YHT-RNA binding pocket.

76



6.1 Effects of N6-methylation on RNA recognition in the YHT
domain - A background overview

The role of m6A in recognition has been extensively examined in recent years for the YTH
domain of the YTHDC1 protein, for which several structures have been solved and deposited in
the PDB, for different types of oligonucleotides [141] [110] [41]. All these structures show how
m6A is recognized by being captured in an aromatic cage, with the flanking nucleotides laying
in the RNA-protein surface. In recent years, Molecular Dynamics have been used in several
works to investigate the binding mechanism by which m6A is recruited by the protein [112]
[41] [110] [111] [42]. All these works show how m6A and the amino acids residues forming
the aromatic cage favor the formation of a stable hydrogen-bond networks which is maintained
all over the simulations. The first attempt to perform MD on a RNA-protein complex with m6A
is the work of Li et al [41], where simulations were performed using the CHARMM force-field
including the m6A parameters developed by Xu et al [29]. In this work, unbiased MD starting
from crystal structures was perfomed on the complex for a 5 nucleotides RNA singe strand (5′-
GGm6ACU-3′). Results show the importance of two tryptophan residues in the binding pocket,
one displaying stacking interaction with m6A and the other stabilizing the m6A methyl group.
Unbiased simulations also demonstrated high flexibility of the guanosine residues located at
the 5′ direction of m6A, when compared with the more rigid residues in the 3′ direction, in
accordance with experiments. The role of the flanking nucleotides in binding was investigated
by performing simulations and experiment for the variants 5′-Gm6AUC-3′ and 5′-GGm6AC-
3′. Simulations for the single strands in bulk water demonstrate as the presence of the first
guanosine and the methylation of the adenosine increases the probability to switch the strand
conformation to the bound-like conformation in which m6A is solvent-exposed. A continuation
of this work is reported in Ref. [110]. Here, alchemical transformations were performed in order
to compute the difference in free energy of binding for methylated and unmethylated cases. To
this purpose, a unidirectional thermodynamic integration was performed, starting from m6A and
transforming it into standard A. The comparison of results obtained in the complex with those
in an isolated nucleoside resulted in the prediction of a stabilization of the complex induced by
the methylation slightly overestimated with respect to reference experimental data [141]. This
work also addressed the role of water molecules in the binding site, reporting alchemical anni-
hilation of a molecule involved in a water-bridge interaction that stabilizes the bound complex.
A similar work was published by Krepl et al [112] for a complex with a 6 nucleotides strand (5′-
CGm6ACAC-3′). Here, the AMBER force-field was used, and parameters for m6A were de-
rived specifically for this work using the standard protocol. In this work the authors accurately
investigated the role of hydration in the binding mechanism. They first noticed that in the unbi-
ased simulation of the complex with unmethylated adenosine, a water molecule was sometimes
entering and leaving the binding pocket, occupying a position that would be occupied by the
methyl group in the methylated simulation. The stabilization of the complex associated with N6
methylation was attributed not only to the hydrophobic interactions but also to the capability of
m6A to displace this water molecule. Thermodynamic calculations were performed similarly to
the previously discussed work [110], and showed that the slightly different results are obtained
depending on the details of the simulation protocol. Similarly to Ref. [110], the stabilization
of the complex was overestimated when compared to experiment. In their interpretation, the
binding in the unmethylated case is disfavored not only because the bound state is energetically
disfavored with respect to the methylated case, but also because for the unmethylated adenosine
it is more difficult to displace water molecules from the binding pocket and allow binding. This
interpretation was corroborated by free energy of solvation estimation which gave higher ab-
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solute value for adenine compared to m6A. Based on these assumptions, the authors also tried
to performed more accurate thermodynamic integration to compute ∆∆Gs in the free energy of
binding, with respect to the previous work by Li et al [110]. In here, they performed both a for-
ward transformation starting from m6A bound in the complex, and a backward transformation
starting from the unmethylated state with a water molecule present in the pocket.

The work presented in this chapter aims to build upon the research conducted by Krepl et
al. [112]. Our first objective is to further investigate the influence of water displacement in/out
of the aromatic cage on the estimation of the binding free energies. Furthermore, we propose a
combination of our alchemical free energy calculation protocol for m6A (refer to Section 2.2.3)
with metadynamics, which aims to give more accurate estimations of free energies difference
by sampling a variety of possible conformations of the binding pocket with respect to hydration.
This metadynamics approach will enhance the displacement of water molecules both into and
out of the YHT binding pocket. In addition, we explore the effects of the m6A force-field on
FEB estimation. This involves expanding upon the fitting procedure discussed in Chapter 4
by incorporating an updated training dataset. This dataset comprehensively accounts for the
stabilization induced by m6A on the YHT-RNA binding free energy.

6.2 Methods
Starting structures for MD simulations were taken from [141] (PDB ID: 2MTV) and equili-
brated using the pmemd.MPI implementation of AMBER, following the identical procedure
used in [112]. To be consistent with [112], we used their same parametrization including the
SPC\E water model [142], with the only difference being the m6A force-field. Indeed, we de-
cided to use the fit_A force-field derived in Chapter 4, being the only available parametrization
for m6A that have been validated against a large experimental data set. As in [112], we also
made use of HBfix potentials to increase the stability of the native A5(OP1)/LYS18(NZ) and
C6(OP1)/LYS129(NZ) interactions in all YHT-RNA complex simulations.

For the production runs, we used a modified version GROMACS 2020.3 [84] which also
implements the stochastic cell rescaling barostat [92]. We prepared a total of 11 systems:

• YHT-RNA (5′- CGACAC-3′) - Used to test metadynamics

• YHT-RNA (5′- CGm6ACAC-3′) - Used for HREX on charges

• YHT-hybridRNA (5′- CG(A-to-m6A)CAC-3′) - Used for AFEC

• ssRNA (5′- CGm6ACAC-3′) - Used for HREX on charges

• ss-hybridRNA (5′- CG(A-to-m6A)CAC-3′) - Used for AFEC

• 3xYHT-RNA (5′- CGACAC-3′) + alchemical water (SPC\E, TIP3P and OPC)

• 3xBulk water + alchemical water (SPC\E, TIP3P and OPC)

For the A-to-m6A alchemical transformations, the procedure explained in 2.2.3 was used.
For each replica, the systems were once again energy minimized and subjected to a multi-step
equilibration procedure: 100 ps of thermalization to 300 K in the NVT ensemble was conducted
through the stochastic dynamics integrator (i.e., Langevin dynamics) [89], and other 100 ps
were run in the NPT ensemble simulations using the Parrinello–Rahman barostat [90].
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Figure 6.1 Thermodynamic cycle used to compute impact of m6A methylation on the FEB
of the YHT-RNA complex. The relative free-energy change due to the modification can be
estimated as the ∆∆G between AFECs performed on the complex and on the single strand RNA
in solution. This quantity can be directly compared to the difference in FEB (∆∆Gbind), which
was measured experimentally by Theler et al [141].
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(a) (b)

Figure 6.2 Snapshots from AFEC+WT-metaD simulation representing the unmethylated adeno-
sine coordinated with a water molecule (a), or the methylated adenosine in the de-hydrated
binding pocket (b).

6.3 Results
Alchemical free energy computation (AFEC) for the A-to-m6A transformation (see 2.2.3) were
performed for the YHT-RNA system in order to compute ∆∆Gbind , that is the impact of N6-
methylation on the YHT-RNA free energy of binding (see fig 6.1). For the protein-RNA com-
plex, we performed simulations of 10 ns per replica. For the ssRNA double strands, we per-
formed instead simulations of 20 ns per replica. Interestingly, in the HREX scheme we could
observe transition probabilities on average significatively higher in the YHT-RNA complex with
respect the ssRNA case. This is probably due to the fact that in this transformation the methyl
group is appearing/disappearing in the binding pocket where there is no water molecules caus-
ing steric clashes. Figures 6.3a shows exploration of the λ ladder for each of the 16 independent
demuxed trajectories. All of them can explore the whole ladder, with only the fifth trajectory
remaining stuck in the intermediate λ region for most of the time. The ∆Gs obtained are shown
in table 6.1. The ∆∆Gbind result to be 22.1 ± 0.8 kJ/mol (5.3 ± 0.2 kcal/mol), correspond-
ing to significant overestimation of the experimental value (9.9 kJ/mol or 2.3 kcal/mol), even
larger than the estimation reported in [112] (18.0 kJ/mol or 4.3 kcal/mol), where a different
parametrization for m6A was used. Based on our knowledge, we expect that the overestima-
tion of ∆∆Gbind is mainly caused by two factors: inaccuracy of the force-fields and limited
sampling. In Krepl parametrization, the negative partial charges of nitrogens N1 and N3 have
smaller absolute values with respect to the fit_A counterparts (see Table 1 in Appendix). Both
N1 and N3 forms hydrogen bonds in the binding pocket (see Figure 6.2), which is stronger in
the fit_A case, possibly explaining why we observe a larger stabilization of the FEB induced
by the N6-methylation. As for the limited sampling issue, as suggested previously by [112],
a factor which could impact the precision of ∆∆Gbind calculation is the role of hydration in
the binding pocket. In our AFEC computation we never observe water molecules entering the
binding pocket, but a variety of different hydrated state of the binding pocket may exist. In
the following we investigate how the role of hydration in the binding pocket could affect the
∆∆Gbind .
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(a)

(b)

Figure 6.3 Each plot correspond to different continuos demuxed trajectories for the AFEC (a),
and for the AFEC+WT-MetaD (b) simulations of the YHT-RNA complex. The Y axis reports
the λ state at any exchange step in the HREX scheme. Simulations in (b) are 10 times longer
than in (a).
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fit_A fit5_AC
∆G ∆∆G ∆G ∆∆G

ssRNA 205.2 ± 0.7 0 237.0 ± 0.6 0
YHT-RNA 183.1 ± 0.4 22.1 ± 0.8 - -
YHT-RNA + dynamic bias 186.6 ± 0.8 18.6 ± 1.1 221.0 ± 1.1 16.0 ± 1.3
YHT-RNA + static bias 185.4 ± 1.3 19.7 ± 1.5 224.6 ± 1.0 12.4 ± 1.2

Table 6.1 ∆Gs and ∆∆Gs (∆Gss −∆Gi) computed through alchemical computations, with dif-
ferent parametrizations, reported in kJ/mol.

6.3.1 Alchemical free energies for water insertion
As suggested by Krepl et al al [112], one of the factors contributing to the overestimation of
∆∆Gbind could be the omission of scenarios where a water molecule is situated inside the bind-
ing pocket and coordinates with atom H62. Such a configuration is plausible at λ = 0 but
becomes improbable at λ = 1 due to steric hindrance with the methyl group occupying that
space. However, in the plain MD simulations conducted by Krepl et al, it was observed that a
water molecule stays inside the binding pocket only 10% of the time in the absence of methy-
lation. The fact that this hydrated state of the unmethylated complex is energetically disfavored
compared to the reference state, suggests that hydration plays a minor role in ∆∆Gbind . To
investigate this further, we conducted AFEC simulations involving the annihilation of a water
molecule within the binding pocket. This computation aims to assess:

∆∆Galc−H2O = ∆Galc−H2O
bulk −∆Galc−H2O

Y HT−RNA (6.1)

where ∆Galc−H2O
bulk is associated to the annihilation of a water molecule (alc-H2O) in the bulk

and ∆Galc−H2O
Y HT−RNA to the annihilation of alc-H2O in the binding pocket, more precisely in the

H62-coordinated position. ∆∆Galc−H2O correspond to the free energy difference between the
hydrated and non-hydrated unmethylated YHT-RNA complex, and its impact on ∆Gcom can be
written as follows:

∆Gcom =−kBT ln(e−β∆Gno−H2O
com + e−β∆GH2O

com ) = ∆Gno−H2O
com − kBT ln(1+ e−β∆∆Galc−H2O

) (6.2)

assuming that
∆GH2O

com = ∆Gno−H2O
com +∆∆Galc−H2O (6.3)

This assumption is based on the fact that the hydrated state is not negligible only for the λ = 0
state. In these calculations we also estimated the impact of the water model in the result.

6.3.1.1 Methods

We computed ∆∆Galc−H2O for three different water models: SPC\E [142], TIP3P [85], and
OPC [143]. As a consequence, we performed a total of 6 AFEC simulations involving the an-
nihilation of a single water molecule, which we will refer to as alc-H2O. For three different
water parametrizations we performed the alchemical computation both in the YHT-RNA com-
plex and in bulk. In the bulk simulations, all water molecules were parametrized based on the
chosen model. In the YHT-RNA instead, we reparametrized only the alc-H2O, whereas the rest
of the solvent was maintained with the SPC\E model used in the rest of the work. This choice
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∆Galc−H2O
bulk ∆Galc−H2O

com ∆∆Galc−H2O ∆∆∆Gbind
SPC\E 29.51 ± 0.08 21.5 ± 0.7 8.0 ± 0.8 -0.10
TIP3P 25.48 ± 0.07 15.1 ± 1.2 10.4 ± 1.2 -0.038
OPC 33.7 ± 0.5 22.8 ± 1.0 10.9 ± 1.2 -0.031

Table 6.2 Free energies differences computed through alchemical computations, for different
water models, reported in kJ/mol.

was done in order to avoid re-preparation and re-equilibration of the YHT-RNA system. Since
the alc-H2O interacts exclusively with the RNA and the YHT protein, the parametrization of
the solvent is not expected to impact these calculations. The simulations are 10 ns per replica
long. We used 16 replica with λ spacing: [0.00 0.01 0.03 0.05 0.10 0.20 0.35 0.45 0.55 0.65
0.80 0.90 0.95 0.97 0.99 1.00], except for ∆Gcom with OPC and TIP3P water models where we
used 8 replica, with λ spacing [0.00 0.03 0.06 0.13 0.30 0.50 0.75 1.00]. In λ = 0, alc-H2O
interactions are switched on, viceversa switched off for λ = 1. The potential interpolation is the
same described in 2.2.3.

During the alc-H2O AFEC in the binding pocket, a restraint was used to avoid the alc-H2O
leaves the coordination spot, in the form:

R(x) = Kθ(x−0.2)(x−0.2)2 (6.4)

where K = 400 kJ/mol and θ is the step function. This restraint was applied on a RMSD
computed on the coordinates of alc-H2O and A3 nucleobase with respect to a structure extracted
from MD simulations (the frame was taken from biased simulations we will introduce in next
section). Free energies were computed using WHAM, including in the energies the bias due to
the restraint on the alchemical water.

6.3.1.2 Results

All computed free energies for the alchemical transformation of water are detailed in Table
6.2. Notably, all ∆Galc−H2Os values are positive, indicating a disfavoring of the hydrated state,
which aligns with our expectations. Intriguingly, when using the TIP3P and OPC water models,
the hydrated state becomes even more disfavored, resulting in a further marginal impact on
∆∆Gbind . We can quantify the correction to ∆∆Gbind , in relation to the estimates obtained in
the previous section that did not account for hydration effects, as ∆∆∆Gbind = −kBT ln(1+
e−β∆∆Galc−H2O

). These corrections are presented in the fourth column of Table 6.2, and they
are found to be very small in comparison to the differences between the experimental values
and those estimated in computational studies. We conclude that this hydrated configuration has
a minor impact on the FEB and cannot explain for the mismatch between experimental and
computational ∆∆Gbind estimations.

6.3.2 Enhancing binding pocket water exchange in alchemical simulation
The hydrated state considered in previous section is only one possible metastable state, indi-
viduated from plain MD simulations performed in [112], but in principle different hydrated
state of the binding pocket may occur, giving their contribution the free energy differences be-
tween methylated and unmethylated state of YHT-RNA complex. Although the hydrated state
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investigated previously seems to have a minor impact on these free energies, we still aim to im-
prove the precision of our AFEC in the binding pocket, by allowing more exhaustive sampling
with respect to water displacement in and out of the aromatic cage, all along the alchemical
integration. In order to accelerate this process, we implemented the A-to-m6A AFEC with a
WT-MetaD (2.2.1) acting on a collective variable (CV) which is able to quantify the amount
of water molecules approaching the binding pocket. To address this task, we made use of the
coordination switching function implemented in PLUMED [55], which is able to calculate the
coordination number of two groups of atoms (A and B), and is defined as:

CN = ∑
i∈A

∑
j∈B

1
1+(

ri j
r0
)6

(6.5)

In our implementation, we define group A as a single point at the center of the atoms N6;
H61; and C10, whereas B is all water oxygens in the system. r0 was set to 0.45 nm. A WT-
MetaD on CN without any restraints could cause multiple water molecules entering the binding
pocket in the same time, likely causing the RNA to detach from the binding. To avoid this, we
implemented this AFEC setting up an upper harmonic wall potential, defined as follows:{

Vwalls(xi) = K(CN(xi)−UW )2 ; CN(xi)>UW
Vwalls(xi) = 0 ; CN(xi)≤UW

(6.6)

where we set K = 200 kJ/mol and UW = 2.5.
The metadynamics was performed using the PLUMED package [55], depositing a Gaussian

every 500 time steps, with initial height equal to 5 kJ/mol and width σ = 0.05. The bias factor
was set to 3. The calculation of CN was accelerated making use of a neighbor list, which makes
it that only a relevant subset of the pairwise distance are calculated at every step. We used a
neighbor list cut-off of 0.8 nm, updating the lists every 10 steps.

We first performed the AFEC computation with WT-MetaD on CN running for 20 ns per
replica. We then performed another AFEC with 100 ns per replica with a static bias, by restart-
ing the previous AFEC with WT-Metad without further updating the bias.

Figure 6.4 shows the values of CN and a control variable d along the demuxed continuous
trajectories. d is defined as a distance between the center of mass of m6A nucleobase and the
center of the residues forming the binding pocket. This variable can be monitored in order to
check that the RNA does not displace from is binding pose.

During the static bias simulations, the hydrated state described in previous section, that is
a water molecule coordinated with atom H62 of the hybrid adenosine, appears only in two cir-
cumstances: In the first demuxed trajectory it is always present, as a consequence this trajectory
is not able to explore the full λ ladder (see top left corner of Figure 6.3), because of the steric
clash occuring between the water molecule and the appearing methyl group. The second case
corresponds to trajectory 13, where initially no water is present inside a binding pocket. How-
ever, after more than 80 ns, a water molecule enters in the aromatic cage and coordinates with
H62. Also in this case, once the hydrated state forms, the trajectory is not able anymore to get
to high λ values. All other cases in which CN goes to high values correspond to multiple water
molecules approaching the binding pocket, but remaining stuck on the other side of the amino
group, coordinating with atom H61 and residue SER35.

Another limit of the Metadynamics performed is that transition in the CV are here observed
only in one direction. Although this enhanced sampling attempt shows many limitations, the
obtained sampling is certainly more exhaustive of the one obtained previously without biasing
CN.
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Figure 6.4 CN and d values along the demuxed trajectories, where each independent trajectory
is represented with a different color. Plots on the left correspond to simulations performed with
a dynamic bias. Plots on the right correspond to longer simulations performed with a static bias.

The ∆G computed with WHAM from the static bias simulation results in 185.4 ± 1.3 kJ/mol
(see Table 6.1), resulting in a ∆∆G of 19.7 ± 1.5 kJ/mol (4.7 ± 0.4 kcal/mol, which is slightly
reduced compared to the estimation done without enhancing the water displacement (5.3±0.2
kcal/mol), but still highly overestimated compared to the experimental reference (2.3 kcal/mol).

6.3.3 Exploring m6A force-fields perturbation effects on FEB
Since the influence of hydration appears to have a limited impact on the accuracy and precision
of free energy estimations, we tested the hypothesis that the primary reasons for the discrep-
ancies between experimental and computational results can result from the inaccuracies in the
force-field parameters. We have used here the fit_A force-fields for m6A, that we derived in
our previous work (see Chapter 4) to better match syn/anti populations and denaturation exper-
iments. This refinement involved adjusting a subset of partial charges that play a significant
role in the stability of duplexes, particularly with respect to hydrogen bond strength involving
atoms in the WC edges of the nucleobase. As far as the m6A recognition by the YHT protein
is concerned, there are other parameters which may play significant role in the stabilization.
For instance, in the YHT complex m6A performs hydrogen bonding with the protein residues
also on its sugar edge, so it could be useful to refine the partial charge of nitrogen atom N3,
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Figure 6.5 ∆∆Gbind computed through reweighting scanning over LJ parameters of the m6A
methyl hydrogens.

which was not considered in the fit_A fitting. Moreover, we would like to investigate if per-
turbations in the LJ parameters of the methyl group may have significant impact on the FEB.
In the following, we investigate further into which parameters of the m6A force-field have the
most significant impact on fine-tuning the estimation of ∆∆Gbind .

6.3.3.1 Lennard-Jones perturbations

As a first step, we intend to explore a range of reasonable values for the Lennard-Jones (LJ)
parameters associated with the hydrogen atoms in the methyl group. In the Amber force-field,
methyl group hydrogen atoms are characterized by LJ parameters ε and σ values of 0.0657
kJ/mol and 0.2471 nm, respectively. However, for other types of hydrogen atoms, these param-
eters can fall within the intervals of 0.05-0.13 kJ/mol and 0.2-0.3 nm. We computed ∆∆Gbind
for parameter values within these defined intervals using a reweighting procedure. The results
are summarized in Figure 6.5. It’s worth noting that all the computed free energies presented
in this study exhibit a Kish Size Ratio (KSR, refer to Section 4.1.3) greater than 0.1, indicating
their statistical significance. We observe lower values of ∆∆Gbind when both ε and σ are set
to low values. However, these perturbations are still insufficient to approach the experimental
∆∆Gbind , which is 9.9 kJ/mol.

6.3.3.2 Alternative Charges Parametrizations

In Chapter 4 we have demonstrated how small variations in the partial charges can have sig-
nificant impact when one aim to achieve good accuracy on computing free energy differences
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∆G∆Q
ss ∆G∆Q

com ∆∆G∆Q
bind ∆∆Gmetad

bind ∆∆Gnometad
bind

fit_A-to-Aduri 50.71 ± 0.10 62.37 ± 0.25 -11.7 ± 0.4 8.8 ± 1.6 10.2 ± 1.0
fit_A-to-Krepl -19.78 ± 0.13 -11.12 ± 0.28 -8.7 ± 0.3 11.8 ± 1.6 13.2 ± 0.9

Table 6.3 First two columns report computed ∆Gs with respect to different m6A partial charges
parametrization. Third column (∆∆G∆Q

bind) report difference in ∆∆Gbind with respect to per-
formed simulation with fit_A force-field. Fourth and fifth columns report ∆∆Gbind estimated
with respect to AFEC with or without WT-MetaD on water displacement. All free energies are
reported in kJ/mol.

induced by small modifications as the methylation of a nucleotide. Based on that knowledge,
we can expect that variation in the m6A partial charges can have a major impact on the ∆∆Gbind
with respect to modification on LJ parameters. To investigate this, we first compute ∆∆Gbind
for m6A force-fields alternative to fit_A, as the Aduri force-field [28] and the parametrization
used by Krepl et al [112]. Instead of performing new AFEC or used reweighting, we imple-
mented simulations using an Hamiltonian Replica Exchange (HREX) scheme similar to the one
used in AFEC (see 2.2.3), but where initial and final state in the integration correspond to dif-
ferent parametrization of the m6A charges. λ = 0 would correspond to methylated state with
fit_A charges, whereas λ = 1 would correspond to the methylated state with Aduri or Krepl
parametrization. By performing this transformation on the YHT-RNA complex and on the rel-
ative ssRNA, and computing respectively ∆G∆Q

com and ∆G∆Q
ss , we can compute the ∆∆G f f

bind for
the two different force-fields as:

∆∆G f f
bind = ∆∆G f it_A

bind +∆∆G∆Q
bind (6.7)

where
∆∆G∆Q

bind = ∆G∆Q
ss −∆G∆Q

com (6.8)

We performed simulations starting from the YHT-RNA and the ssRNA (5′- CGm6ACAC-
3′) , using the HREX scheme with only 2 replica for the fit_A-to-Aduri integration, and 4
replica for the fit_A-to-Krepl integration. This choice of number of replica allows ensuring
averaged transition probabilities over 20%. Simulations were 10 ns per replica long. Free
energies difference were computed with BAR method implemented in GROMACS and are
listed in Table 6.3.

Not surprisingly, Krepl and Aduri force-field destabilize the YHT-RNA complex with re-
spect to Fit_A. Indeed, the latter parametrization is characterized by atom H61, N3 and N1
being more polar than in the other cases. All these atoms form hydrogen bonds in the aromatic
cage, respectively with SER35, ASN20 and ASN24 residues, as shown in Fig.6.2. Based on
our estimations of ∆∆Gbinds, the Aduri force-field seems to be the most compatible with the
experimental values, as it can be seen in the plot in fig 6.7a. However, Aduri force-field is not
able to reproduce denaturation experiments, as shown in Chapter 4. As a consequence, none
of the so far explored m6A force-fields are able to reproduce all together isomers populations;
denaturation experiments of duplexes, calorimetry experiments on the YHT-RNA complex.

6.3.4 Force-field refinement
As previously demonstrated, the m6A fit_A force-field fails to accurately reproduce the results
of ITC experiments concerning the stabilization induced by N6-methylation on the YHT-RNA
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Training Set Validation Set
System ∆∆G (kJ/mol) Exp System ∆∆G (kJ/mol) Exp
A1syn/anti 6.3 ± 0.5 NMR [36] A2syn/anti -11 ± 2 NMR [68]
A2 1.7 ± 0.9 DE [36] B1 2.5 ± 2.1 DE [37]
A3 7.1 ± 0.9 DE [36] B2 2.1 ± 1.3 DE [37]
A4 -2.5 ± 1.2 DE [36] B3 5.4 ± 1.3 DE [37]
A5 -1.7 ± 0.9 DE [36] B4 8.6 ± 0.8 DE [37]
C1 9.9 ± 0.5 ITC [141] B5 1.7 ± 1.0 DE [37]

Table 6.4 List of Systems and relative Experimental ∆∆G considered in the fitting. These values
and relative error are derived from Nuclear Magneti Resonance (NMR) experiments, optical
melting Denaturation Experiments (DE) and Isothermal titration calorimetry (ITC) measure-
ments.

complex. Although Aduri m6A parametrizations provide a better match for this experimental
observation, it has been proven to be inadequate in reproducing denaturation experiments and
the syn/anti populations, as detailed in Chapter 4.

Consequently, we recognize the need to refine the m6A parametrization further by extending
the fitting procedure outlined in Chapter 4. This extension involves incorporating an expanded
experimental dataset, which includes the YHT-RNA ∆∆Gbind . The list of experiments consid-
ered for this fitting is provided in Table 6.4 and is divided into a training dataset and a validation
dataset.

The fitting procedure described in 4.1.2 was re-adapted to work over the simulations per-
formed with fit_A parametrization on systems A1-A2-A3-A4-A5, along with the YHT-RNA
∆∆Gbind , which we will refer to as the C1 system. Systems B1-B2-B3-B4-B5, in addition to the
∆Gsyn/anti for system A2 (A2syn/anti), will be used to validate the parametrization derived from
the fitting process.

We have chosen to refine once again the torsional parameter Vη and, in conjunction with it,
we aim to optimize two distinct subsets of partial charges independently, resulting in finding
two separate parametrizations, namely:

• fit6_AC: fitting 6 partial charges (C6-N6-H61-N1-C10-H101)

• fit5_AC: fitting 5 partial charges (N6-H61-N1-N3-C4)

While fit6_AC aims to explore the same charges space explored by the fittings illustrated
in Chapter 4, fit5_AC is designed to investigate a smaller multidimensional space that includes
atoms N3 and C4. In particular, the polarity of N3 may play a significant role in stabilizing
the binding pocket in C1, as this atom forms hydrogen bonds with the ASN20 residue within
the aromatic cage. Additionally, we have retained the charges of N1 and H61 atoms, which are
involved in hydrogen bonding both in the dsRNA (A2–A4 and B1–B5) and in the YHT binding
pocket (C1). Therefore, we expect that the fitting process will be highly sensitive to these
charges. On the other hand, atoms N6 and C4 are primarily intended to absorb the perturbations
introduced by the fitting process to the other three charges.

We remind that our fitting strategy, more deeply explained in 4.1.2, consists in the mini-
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C6 (e) N6 (e) H61 (e) N1 (e) C10 (e) H100 (e) N3 (e) C4 (e) Vη (kJ/mol)
fit5_AC 0 -0.0363 -0.0595 0.0086 0 0 0.0657 0.0215 2.18
fit6_AC 0.0644 -0.0550 -0.0720 0.0687 -0.0272 0.0211 0 0 2.35

Table 6.5 Charge modifications (∆Qs) and torsional potential (Vη ) for the fitting performed on
the training data set AC.

mization of a Cost function defined as:

C = χ
2 +α

N

∑
i=0

∆Q2
i +βV 2

η = χ
2 +α[

N

∑
i=1

∆Q2
i +(

N

∑
i=1

∆Qi)
2]+βV 2

η (6.9)

Here, in the context of fit6_AC, we have N=5, while in fit5_AC, N=4. The results of the two
fittings are shown in Figure 6.6. Based on the insights learned in Chapter 4, we discarded
regularization on Vη setting β = 0. Panels 6.6a and 6.6b display the optimized parameters at
different α values, while panels 6.6c and 6.6d depict the corresponding χ2 values and KSR
values for each parameter set obtained at different α values. In both cases, at lower α values,
the fitting effectively enforces experiment C1, but at the expense of yielding very low KSR
values, making the free energy estimation statistically insignificant. As α values increase, the
χ2 values for C1 rise significantly, while the χ2 values for other experiments remain relatively
stable and sometimes even improve. This outcome is not unexpected, as higher values of α

constrain the parametrization to the fit_A force-field, which was designed to match the A1–A5
experimental data and is intended to perform well for them. The minimum α values that ensure
a KSR above 0.1 are respectively α = 1000 e−2 and α = 2000 e−2 for fit6_AC and fit5_AC.
The charge values obtained by minimizing the cost function for these α values were selected
as the results of the two fittings. This choice is further validated by the estimation of the χ2

on the validation dataset, as shown in panels 6.6e and 6.6f. ∆Qs values with respect to fit_A
parametrizations are shown in Table 6.5, along with the Vη values. It’s worth noting that both
fittings result in a decrease in the polarity of atoms N1, H61, and also N3 in the fit5_AC case,
as expected.

Table 6.6 provides the averaged χ2 values computed separately for the training and valida-
tion datasets, as well as the overall average. The columns labeled fit6_AC (rew) and fit5_AC
(rew) represent the results obtained through reweighting. While fit6_AC demonstrates better
performance in the training dataset compared to fit5_AC, it exhibits poor performance in the
validation dataset, resulting in a total χ2 score that is even worse than the initial state of the fit-
ting (fit_A). On the other hand, Fit5_AC performs quite well on the validation dataset, making
it the better candidate to serve as the best parametrization to align with the entire dataset. Based
on this observation, we conducted new simulations of the complete dataset shown in Table
6.4 using the fit5_AC m6A force-field. This also included a new simulation of the YHT-RNA
complex employing the same AFEC+WT-MetaD procedure as previously utilized.

Panel 6.7a presents a summary of all the ∆∆Gbind values computed in this study for different
parametrizations, alongside the experimental value. It is evident that the newly fitted parameters
do not replicate ∆∆Gbind as effectively as fit_A does. Instead, they represent a balanced compro-
mise between matching C1 ∆∆G and denaturation experiments, as demonstrated in panel 6.7b.
Specifically, while A2-A3 and B1–B5 demand an enhancement in the polarity of N1 and H61
atoms to strengthen hydrogen bonds and stabilize the duplexes, the C1 experiment necessitates
the opposite effect to reduce the overestimation of ∆∆Gbind . In comparison to fit6_AC, fit5_AC
exhibits greater flexibility by allowing adjustments to the partial charge of atom N3, which is

89



Figure 6.6 Parameters (∆Q and Vη ) obtained fitting on the traning dataset as a function of α ,
with β = 0, for fit5_AC (panel a) and fit6_AC (panel b). χ2 errors for individual experiments
of the training dataset and Kish size ratio (KSR) as a function of α , with β = 0, for fit5_AC
(panel c) and fit6_AC (panel d). Averaged χ2 obtained for the total dataset (black line) and
on the validation dataset (yellow line), for fit5_AC (panel e) and fit6_AC (panel f). The KSR
computed on the validation dataset is also shown (blue dots).
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χ2 Aduri Aduri+tors fit_A fit6_AC (rew) fit5_AC (rew) fit5_AC
Training Set 16 3.8 4.5 0.33 0.9 2.2

Validation Set 9.7 14 6.5 18 7.5 6.7
Total 12.9 8.9 5.5 9 4.2 4.5

Table 6.6 χ2 computed for the training data set AC (second row) the validation data set
B+A2syn/anti (third row), and the total average (fourth row) for different m6A force-fields.
fit6_AC (rew) and fit5_AC (rew) are χ2 values obtained trough the fitting by reweighting.

Figure 6.7 (a) ∆∆Gbind values and relative experimental or statistical error (b) ∆∆G computed
for each of the 12 analyzed systems with 4 different sets of parameters. ∆∆G for system C1 is
shown as the inverse of ∆∆Gbind . χ2 obtained for each force-field set of parameters are shown
in the table.

believed to be more sensitive to experiment C1 than in the duplex systems, where N3 does not
form hydrogen bonds.

6.4 Conclusions
In this chapter we investigated the role of m6A in RNA recognition, in the context of the YTH
domain of the YTHDC1 protein. Firstly, we gave a general picture of what is known about
this RNA-protein complex, going through several structural and computational studies which
revealed how m6A is recognized within an aromatic cage. MD simulations have already been
used to investigate the binding mechanism in this system [41] [110] [112], but they failed to
reproduce the m6A-induced stabilization (∆∆Gbind) in YHT-RNA binding as expected from
experiments. In our work, we aimed to repeat the alchemical calculation needed to estimate
∆∆Gbind , by using our A-to-m6A AFEC procedure described in 2.2.3 and by making use of the
m6A force-field derived in Chapter 4 (fit_A). Since our estimation resulted in a large overes-
timation of ∆∆Gbind , we started investigating the possible factors causing this inaccuracy, and
in general, affecting the computational estimation of ∆∆Gbind . We attributed it to two main
factors: inaccuracies in the force-fields and limited sampling. Specifically, the role of hydra-
tion in the binding pocket is considered a potential source of limited sampling, impacting the
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precision of ∆∆Gbind calculations. In particular, we investigated the impact on ∆∆Gbind of a
specific hydrated state already observed by Krepl et al [112], consisting in a water molecule
coordinating with hydrogen H62 in the unmethylated state. We first conducted alchemical cal-
culation on this water molecule, and our results suggest that this metastable state of the binding
pocket has a minor impact on the free energy of binding and cannot explain the discrepancies
between experimental and computational ∆∆Gbind estimations. After that, we implemented a
WT-MetaD in the A-to-m6A AFEC, in order to improve the precision of our calculations by
enhancing the water displacement in the binding pocket. This biasing acted on a collective
variable (CV) that quantified the approach of water molecules to the binding pocket. With this
method we could compute a ∆∆Gbind which is slightly reduced with respect to the one estimated
through unbiased AFEC, and as a consequence still highly overestimated with respect to the ex-
perimental reference, confirming the fact that alternative hydrated states of the binding pocket
have minor impact on ∆∆Gbind . In Chapter 4 we demonstrated how small variations in partial
charges can impact the accuracy of computing free energy differences in the case of adenine
N6-methylation. This knowledge led to the expectation that variations in m6A partial charges
could substantially affect ∆∆Gbind compared, for example, to modifications in LJ parameters.
However, we also decided to investigate the perturbation on ∆∆Gbind induced by variations on
the LJ parameters of the methyl hydrogens. Our results demonstrated that this perturbation can
be significant, but still inferior to the correction obtainable with alternative parametrizations for
the charges, especially if considering perturbations in LJ parameters for the methyl hydrogens
that are compatible with alternative hydrogens LJ parameters in the Amber force-field. To in-
vestigate the impact of partial charges on binding, we computed ∆∆Gbind for alternative m6A
force-fields, including the Aduri force-field and the parametrization used by Krepl et al. The
results showed that the Krepl and Aduri force-fields destabilized the YHT-RNA complex com-
pared to Fit_A. We attributed this to Fit_A having more polar H61, N3 and N1 atoms, which
formed hydrogen bonds in the aromatic cage. Although Aduri force-field can reproduce exper-
imental ∆∆Gbind , none of the so far considered m6A force-fields could fully replicate isomer
populations, duplex denaturation experiments, and calorimetry experiments on the YHT-RNA
complex simultaneously. To address these issues, we extended the fitting procedure used in
our previous work [113], using an expanded experimental dataset, that includes the YHT-RNA
∆∆Gbind . The newly fitted parameters (fit5_AC) do not replicate ∆∆Gbind as effectively as fit_A
but offer a balanced compromise between matching ∆∆Gbind and denaturation experiments.
This is due to the adjustments made to the polarity of N1, H61, and N3 atoms, which impact
hydrogen bonding and stability in stability in different systems.
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Chapter 7

Conclusions

This thesis presents our research into the influence of post-transcriptional modifications on RNA
structural dynamics. To achieve this, we employed molecular dynamics simulations (MD) in
conjunction with advanced enhanced sampling techniques. Recognizing the inherent limitations
of MD in accurately predicting RNA dynamics, particularly for modified nucleotides for which
MD force-fields have not yet been extensively validated, we consistently incorporated data from
solution experiments into our computational methodologies.

In chapter 3, we discuss about a collaborative research project focusing on the study of a
20 base pairs double-stranded RNA (dsRNA) containing four inosines in the central part of the
helix, each paired with uracils. In this project we use experimental data generated by our col-
laborator for two main purposes: guiding MD simulations using maximum entropy principles
and validating the resulting ensembles of structures. In our simulations we employed the replica
exchange collective variable tempering (RECT) method to enhance sampling and explore dif-
ferent configurations of the dsRNA, specifically focusing on sugar puckering conformations.
The maximum entropy (ME) principle was then applied to reweight the simulation trajectories,
aiming to generate ensembles of structures that match NMR 3J coupling signals and enforce
averaged radius of gyration as predicted by SAXS experiments. In this work we highlighted
the limitations of MD in predicting accurate ensembles, particularly regarding sugar puckering
populations. However, we also show how the combination of enhanced sampling and ensem-
ble refinement techniques which integrate experimental data can be used to generate accurate
ensembles. Indeed, the accuracy of our refined ensembles was further validated against vari-
ous experimental data not included in refinement, as NOE signals and the full SAXS spectra.
Our results revealed the impact of A-to-I hyper-editing on the dsRNA conformational ensemble,
which with respect to the unmodified counterpart shows increased flexibility, uncommon helical
parameters, and increased populations of unexpected C2'-endo sugar puckering conformations.

In Chapter 4 we show our attempt to refine the force-field of the N6-methyladenosine (m6A)
in order to produce molecular simulations that match denaturation experiments. Our approach
resulted in a novel formalims, building upon previous force-field fitting strategies, allowing
alchemical free energy calculations (AFEC) to serve as a reference for reparametrizing par-
tial charges and a torsional potential. Within this context, we also proposed a novel efficient
method for recomputing the total energy of the system using test charges, making force-field
fitting iterations significantly faster. This work represents, to our knowledge, the first attempt
to tune partial charges of a biomolecular force-field based on experiments performed on macro-
molecular complexes. Our fitting procedure enables the use of MD to accurately reproduce
nine denaturation experiments and to correctly capture the syn/anti populations for both paired
and unpaired m6A, as predicted by NMR experiments. It’s noteworthy that no data regard-
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ing the syn/anti populations of paired m6A was utilized in the fitting process. Consequently, the
improved performance in reproducing these features by the refined force-field serves as a valida-
tion, affirming that the new parameterization is indeed more adept at describing the interaction
of m6A with its surrounding environment. This advancement opens the door to the use of MD
for investigating the impact of m6A on the structural dynamics of other RNA systems. Addi-
tionally, it’s worth emphasizing that we achieved a significant improvement in agreement with
experimental free energies with relatively minor adjustments to a subset of partial charges in
the m6A nucleobase. For example, these adjustments are notably smaller than the variations in
charges obtained through standard methods, such as quantum mechanical calculations followed
by restrained electrostatic potential (RESP) fitting, but with slightly different procedures. This
highlights two key points: (i) Utilizing MD to robustly predict free energy differences on the
order of a few kJ/mol is a challenging endeavor, as even slight variations in force-field parame-
ters can have a substantial impact on the estimations. (ii) Fitting partial charges to macroscopic
experiments is a powerful approach for improving the quality of force-fields.

In Chapter 5 we discussed the application of alchemical metadynamics [67], which extends
the traditional metadynamics approach by introducing an additional alchemical dimension for
sampling. We applied the method to a couple of m6A systems already investigated in Chapter
4, showing how the methods can be used to efficiently reproduced the same results already
obtained with our AFEC procedure, which makes use of an Hamiltionian replica exchange
mechanism. The advantage of using alchemical metadynamics in our applications, arises from
the fact that both the syn and anti m6A isomers can be sampled within a single alchemical
simulation. Additionally, alchemical metadynamics also enables the reconstruction of the free
energy profile along the biased torsional angle, giving an estimation of the free energy barriers,
and as a consequence, deeper insights into the m6A isomers kinetics.

Finally, in Chapter 6 we investigate the role of m6A in RNA recognition, particularly in
the context of the YTH domain of the YTHDC1 protein. Previous MD simulations had at-
tempted to investigate the binding mechanism in this system but struggled to reproduce the
m6A-induced stabilization (∆∆Gbind) observed in experimental findings. To address this, we
aimed to reevaluate the alchemical calculations needed to estimate ∆∆Gbind using our A-to-m6A
AFEC procedure, and by using the refined m6A force-field derived in Chapter 4. However, our
initial estimations significantly overestimated ∆∆Gbind , prompting us to investigate the factors
contributing to this inaccuracy and, more broadly, influencing the computational estimation of
∆∆Gbind . We identified two main factors: inaccuracies in the force-fields and limitations in
sampling. One potential source of limited sampling precision was the role of hydration in the
binding pocket, which could impact ∆∆Gbind calculations. We specifically examined the im-
pact of a particular hydrated state previously observed by our collaborator, but our alchemical
calculations suggested that this hydrated state had a minor impact on binding free energy. In
an effort to enhance the precision of our calculations, we implemented a WT-MetaD approach
in the A-to-m6A AFEC, focusing on improving water displacement within the binding pocket.
This method acted on a collective variable (CV) measuring the approach of water molecules to
the binding pocket, and led to a slightly reduced estimation of ∆∆Gbind compared to unbiased
AFEC. However, this implementation was still not able to account for the discrepancy between
simulation of experiments. This further confirmed that alternative hydrated states of the binding
pocket had minimal impact on ∆∆Gbind . Lastly, we expanded the fitting procedure introduced
in Chapter 4 by incorporating experimental data for the YHT-RNA ∆∆Gbind into our dataset.
The newly fitted parameters significantly increase the accuracy of ∆∆Gbind , by strucking a bal-
anced compromise between matching ∆∆Gbind and denaturation experiments. This equilibrium
was mostly guided through adjustments to the polarity of N1, H61, and N3 atoms, influencing
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hydrogen bonding and stability in dsRNAs and in the aromatic cage of the YHT-RNA com-
plex. This new m6A parametrization, referred to as fit5_AC, emerges as the most suitable
force-field among those explored in our investigations. It minimizes the discrepancy between
simulations and experiments across a diverse dataset, which includes: denaturation experiments
(optical melting) reflecting m6A-induced destabilization in dsRNAs; NMR experiments report-
ing syn/anti population ratios in both paired and unpaired m6A; isothermal titration calorimetry
experiments quantifying the stabilization induced by m6A on the free energy of binding for the
YHT-RNA complex. Consequently, we recommend employing this parametrization for future
applications.

I would like to conclude this Thesis saying that working on these projects has been an en-
lightening journey. Above all, it has unveiled to me the fascinating and intricate world of RNA,
and molecular biology more broadly. Furthermore, it has allowed me to gain a profound aware-
ness of the advantages, as well as the limitations, that computational methods like molecular
dynamics simulations can have when studying complex molecules such as RNA sysyems. In
particular, one of the most important awareness gained relates to the significance of combining
molecular dynamics with solution experiments, and therefore, of creating strong collabora-
tions between experimental and computational laboratories. Such collaborations bring together
highly complementary expertises, providing both the high-resolution insights afforded by sim-
ulations and the accuracy and reliability of solution experiments. I hope that in the future, I will
have the chance again to collaborate in broad projects combining my computational skills with
other orthoganal expertises, with the goal of tackling the fascinating challenges that structural
biology can offer.
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Aduri fit_A fit_AB fit5_AC RESP_anti RESP_syn Krepl
N9 -0.07829 -0.07829 -0.07829 -0.07829 -0.0564 -0.1834 -0.1719
C8 0.13844 0.13844 0.13844 0.13844 0.0815 0.2573 0.0631
H8 0.16681 0.16681 0.16681 0.16681 0.1726 0.1329 0.1973
N7 -0.59080 -0.59080 -0.59080 -0.59080 -0.5250 -0.5854 -0.5652
C5 0.03544 0.03544 0.03544 0.03544 0.0226 -0.2346 0.0152
C6 0.44911 0.46801 0.45811 0.46801 0.5880 0.7140 0.5597
N6 -0.30623 -0.22923 -0.25723 -0.26603 -0.3756 -0.4189 -0.4756
H61 0.28948 0.38888 0.35648 0.32888 0.3306 0.3392 0.3232
C10 -0.28897 -0.28467 -0.25597 -0.28467 -0.3009 -0.3239 -0.0774
H101 0.12596 0.07536 0.09096 0.07536 0.1299 0.1400 0.0774
H102 0.12596 0.07536 0.09096 0.07536 0.1299 0.1400 0.0774
H103 0.12596 0.07536 0.09096 0.07536 0.1299 0.1400 0.0774
N1 -0.67597 -0.72167 -0.72897 -0.71357 -0.8746 -0.7617 -0.6604
C2 0.55132 0.55132 0.55132 0.55132 0.6898 0.5688 0.4636
H2 0.05539 0.05539 0.05539 0.05539 0.0485 0.0692 0.0865
N3 -0.73497 -0.73497 -0.73497 -0.66927 -0.8037 -0.7900 -0.7027
C4 0.48723 0.48723 0.48723 0.508732 0.4807 0.6559 0.4589

Table 1 Charges for all atoms of the m6A nucleobase for different parametrizations.

Figure 1 (a)m6A nucleobase scheme. Atoms are colored based on partial charges tendency. (b)
Partial charges for ifferent parametrization examined in this thesis.
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Aduri Aduri+tors fit_A fit_AB fit5_AC
method BAR WHAM WHAM+tors BAR WHAM BAR WHAM BAR WHAM
A1 syn 258.24 ± 0.22 258.24 ± 0.21 258.28 ± 0.21 207.19 ± 0.16 207.22 ± 0.16 211.42 ± 0.21 211.23 ± 0.18 237.10 ± 0.20 237.00 ± 0.19
A1 anti 260.12 ± 0.12 259.95 ± 0.15 264.61 ± 0.15 213.12 ± 0.20 213.29 ± 0.14 217.03 ± 0.13 217.27 ± 0.19 242.58 ± 0.12 242.57 ± 0.23
A2 dup anti 258.85 ± 0.70 258.63 ± 0.33 263.29 ± 0.33 208.32 ± 0.17 208.3 ± 0.5 214.3 ± 0.7 214.01 ± 0.35 241.0 ± 0.6 240.93 ± 0.27
A2 dup syn 266.44 ± 0.42 266.4 ± 0.4 266.4 ± 0.4 218.69 ± 0.29 218.74 ± 0.31 223.0 ± 0.5 222.98 ± 0.34 249.2 ± 0.4 249.2 ± 0.3
A2 ss syn 257.52 ± 0.31 257.54 ± 0.27 257.58 ± 0.27 206.45 ± 0.28 206.50 ± 0.29 210.34 ± 0.34 210.40 ± 0.22 236.6 ± 0.3 236.6 ± 0.4
A3 dup anti 261.56 ± 0.35 261.39 ± 0.32 266.15 ± 0.32 213.10 ± 0.44 213.0 ± 0.6 216.38 ± 0.43 216.21 ± 0.38 244.0 ± 0.3 244.1 ± 0.4
A3 dup syn 267.77 ± 0.35 267.75 ± 0.30 267.79 ± 0.30 217.78 ± 0.26 217.93 ± 0.24 221.96 ± 0.23 222.11 ± 0.27
A3 ss syn 257.75 ± 0.24 257.80 ± 0.32 257.84 ± 0.32 206.37 ± 0.29 206.31 ± 0.35 211.9 ± 0.5 211.17 ± 0.29 236.81 ± 0.21 236.6 ± 0.4
A4 dup syn 255.06 ± 0.19 255.07 ± 0.17 255.11 ± 0.17 203.76 ± 0.14 203.64 ± 0.19 208.11 ± 0.15 208.07 ± 0.17 234.2 ± 0.5 234.19 ± 0.19
A4 ss syn 257.40 ± 0.19 257.42 ± 0.18 257.46 ± 0.18 206.76 ± 0.18 206.70 ± 0.17 210.56 ± 0.13 210.62 ± 0.19 237.30 ± 0.23 237.29 ± 0.25
A5 dup syn 256.89 ± 0.11 256.80 ± 0.19 261.76 ± 0.19 206.06 ± 0.25 205.89 ± 0.16 209.88 ± 0.16 209.93 ± 0.16 235.43 ± 0.28 235.64 ± 0.23
A5 ss syn 257.56 ± 0.15 257.70 ± 0.23 257.74 ± 0.23 206.65 ± 0.15 206.68 ± 0.19 211.01 ± 0.18 210.96 ± 0.16 236.69 ± 0.15 236.6 ± 0.4
B1 dup anti 259.09 ± 0.30 259.18 ± 0.21 263.94 ± 0.21 209.67 ± 0.30 209.62 ± 0.38 213.79 ± 0.35 213.81 ± 0.22 241.5 ± 0.4 241.5 ± 0.4
B1 ss syn 257.73 ± 0.25 257.60 ± 0.36 257.64 ± 0.36 205.46 ± 0.14 205.37 ± 0.34 210.27 ± 0.39 210.3 ± 0.6 236.21 ± 0.29 236.14 ± 0.28
B2 dup anti 521.6 ± 0.9 521.6 ± 0.9 530.9 ± 0.9 425.24 ± 1.9 425.26 ± 1.3 434.2 ± 1.0 434.1 ± 1.2 486.5 ± 0.9 487.0 ± 1.0
B2 ss syn 258.34 ± 0.31 258.20 ± 0.35 258.24 ± 0.35 207.3 ± 0.5 206.3 ± 0.5 211.13 ± 0.40 211.19 ± 0.29 237.6 ± 0.5 237.58 ± 0.19
B3 dup anti 518.5 ± 1.0 518.6 ± 0.9 527.9 ± 0.9 420.7 ± 1.0 420.7 ± 0.9 430.6 ± 1.4 430.5 ± 0.5 484.34 ± 0.8 484.5 ± 0.9
B3 ss syn 257.74 ± 0.16 257.72 ± 0.27 257.76 ± 0.27 206.77 ± 0.23 206.75 ± 0.39 210.38 ± 0.35 210.45 ± 0.22 236.83 ± 0.10 236.85 ± 0.25
B4 dup anti 523.2 ± 1.2 523.1 ± 0.5 532.4 ± 0.5 428.8 ± 1.2 428.9 ± 0.9 433.6 ± 0.9 434.8 ± 1.1 489.7 ± 0.4 489.4 ± 1.1
B4 ss syn 257.84 ± 0.45 257.85 ± 0.41 257.89 ± 0.41 206.53 ± 0.29 206.72 ± 0.35 210.87 ± 0.35 210.7 ± 0.5 236.90 ± 0.21 236.9 ± 0.4
B5 dup anti 521.9 ± 0.8 522.5 ± 0.7 531.8 ± 0.7 424.0 ± 0.7 424.0 ± 1.1 434.4 ± 0.9 434.4 ± 1.1 487.1 ± 1.0 487.0 ± 1.0
B5 ss syn 257.04 ± 0.34 257.10 ± 0.43 257.14 ± 0.43 205.42 ± 0.25 205.37 ± 0.23 209.82 ± 0.35 209.85 ± 0.19 236.63 ± 0.18 236.63 ± 0.17

Table 2 ∆Gs computed through alchemical computations, with different parametrizations and
Free Energy methods, reported in kJ/mol. We note that, in addition to the systems required to
compute the syn/anti balance in the nucleoside (A1) and the effect of methylation in hybridiza-
tion energies (A2–A5 and B1–B5), this table also reports control results for systems A2 and A3
where the duplex simulation was performed in the unexpected syn conformation.
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