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Phase diagram of a distorted kagome antiferromagnet and
application to Y-kapellasite
Max Hering 1,2✉, Francesco Ferrari 3✉, Aleksandar Razpopov3, Igor I. Mazin 4, Roser Valentí3, Harald O. Jeschke 5 and
Johannes Reuther1,2

We investigate the magnetism of a previously unexplored distorted spin-1/2 kagome model consisting of three symmetry-
inequivalent nearest-neighbor antiferromagnetic Heisenberg couplings J⬡, J, and J0, and uncover a rich ground state phase diagram
even at the classical level. Using analytical arguments and numerical techniques we identify a collinear Q

!¼ 0 magnetic phase, two
unusual non-collinear coplanar Q

!¼ ð1=3; 1=3Þ phases and a classical spin liquid phase with a degenerate manifold of non-
coplanar ground states, resembling the jammed spin liquid phase found in the context of a bond-disordered kagome
antiferromagnet. We further show with density functional theory calculations that the recently synthesized Y-kapellasite
Y3Cu9(OH)19Cl8 is a realization of this model and predict its ground state to lie in the region of Q

!¼ ð1=3; 1=3Þ order, which remains
stable even after the inclusion of quantum fluctuation effects within variational Monte Carlo and pseudofermion functional
renormalization group. The presented model opens a new direction in the study of kagome antiferromagnets.
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INTRODUCTION
The kagome lattice is arguably one of the most important two-
dimensional (2D) lattices for the study of magnetic frustration. It is
characterized by a complex phase diagram including magnetically
ordered regimes and proposed quantum spin liquid phases1, has
rich magnetization dynamics2, and supports some of the best-
studied quantum spin liquid candidates like herbertsmithite
ZnCu3(OH)6Cl23–6. In a more technical context, the study of the
antiferromagnetic Heisenberg model on the kagome lattice has
been a fertile ground for the development and benchmarking of
theoretical methods. Notably, the competition between density
matrix renormalization group7–9, variational Monte Carlo
(VMC)10,11, and tensor networks12 type methods, with the aim of
resolving the nature of the spin liquids supported by the kagome
lattice, has been a fervent area of research for many years.
All these intense research activities have mainly focused on the

ideal kagome structure. In contrast, distortions of this lattice have
been studied much less, even though they are realized in some
magnetic compounds, and their physical phenomenology may be
even richer than for the standard kagome lattice. In some cases,
like volborthite Cu3V2O7(OH)2·2H2O13,14, the distortion leads to a
new 2D lattice which is still highly frustrated and possibly has a
spin liquid ground state15. In Rb2Cu3SnF12, the deformed kagome
lattice leads to a pinwheel valence bond solid16. Other kinds of
distortions lower the rotational symmetry of the lattice and lead to
kagome strips17,18. Even the low-temperature structure of
herbertsmithite bears some signatures of distortion19–21.
The focus of the present work lies on an unusual and previously

unexplored distortion of the kagome lattice which is realized in
the recently synthesized variant of herbertsmithite, namely
Y3Cu9(OH)19Cl8. The distorted lattice structure consists of three
symmetry-inequivalent nearest-neighbor kagome bonds forming
a nine-site unit cell. Analyzing the corresponding Heisenberg

model as a function of its two coupling ratios, using analytical
arguments and numerical techniques, we find a surprisingly rich
ground state phase diagram, even at the classical level. A first
notable observation is that large parts of the phase diagram
represent an unusual coplanar spin state with a commensurate
magnetic wave vector Q

!¼ ð1=3; 1=3Þ. This type of ordered state
requires a 27 atom magnetic unit cell. Furthermore, in an
extended regime around the standard undistorted kagome lattice,
an even more complex classical spin liquid phase is identified,
which cannot be characterized by any specific wave vector. It
bears similarities with the well-known classical spin liquid on the
undistorted kagome lattice in the sense that its low energy states
follow from a set of spin constraints for each triangle22. In contrast,
however, the ground state in the distorted case is found to be
generally non-coplanar and, hence, resembles the jammed spin
liquid investigated in ref. 23.
After discussing in detail the general magnetic phenomena of

this distorted kagome lattice, the second focus of this paper is on
the specific case of Y3Cu9(OH)19Cl8 where this model is likely
realized. This material was discovered in an attempt of electron
doping the Cu 3d states in herbertsmithite with the aim of placing
the Fermi level at the symmetry-protected Dirac crossing of the Cu
d-bands in the kagome lattice24–26. In herbertsmithite-type copper
hydroxy-halides, however, the larger charge provided by Y3+

compared to Zn2+ is always compensated by the incorporation of
additional hydroxide or halide ions, preserving the antiferromag-
netic insulator nature of the Cu2+ layers. Even if charge doping
remains elusive in these systems, the newly discovered by-product
in form of Y3Cu9(OH)19Cl8 appears to be of great interest in and of
itself.
In Y3Cu9(OH)19Cl8, the Y3+ ions are placed in the center of the

hexagon of the kagome lattice, making it a material that is
structurally similar to kapellasite27–29, haydeeite30, or
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centennialite31,32. We, therefore, name the system Y-kapellasite.
Note that there is a closely related compound YCu3(OH)6Cl3 with
an ideal kagome lattice but disordered Y positions33. The latter
orders at TN= 15 K in a Q

!¼ 0 structure with negative spin
chirality34,35 which has been attributed to a strong
Dzyaloshinskii–Moriya (DM) interaction36. In contrast,
Y-kapellasite remains dynamical down to much lower tempera-
tures than YCu3(OH)6Cl337; it has a broad feature at T= 2 K in the
specific heat but muon spin resonance (μSR) on powder samples
seems to indicate the absence of any static magnetic order,
although disorder effects may play a role. Recently, the
coexistence of magnetic order and persistent spin dynamics has
been suggested for different samples of Y-kapellasite38.
By extracting the Heisenberg Hamiltonian of Y-kapellasite using

total energy mapping from density functional theory (DFT)
calculations, we find that the three couplings on the symmetry-
inequivalent nearest-neighbor kagome bonds dominate, with
negligible longer range interactions. We may, hence, place
Y-kapellasite in the region of Q

!¼ ð1=3; 1=3Þ order in the classical
ground state phase diagram obtained here. Investigating the
corresponding spin-1/2 model within VMC and pseudofermion
functional renormalization group (PFFRG) we argue that quantum
fluctuations are not sufficiently strong to suppress the long-range
magnetic order. Accordingly, our semiclassical spin-wave analysis
provides a realistic approximation of the system’s excitation
spectrum which will be useful for comparison with future
experimental data.

RESULTS
Spin Hamiltonian
The model investigated in this work is a variant of the standard
nearest-neighbor kagome Heisenberg model, but with three
distinct nearest-neighbor couplings, which we call J, J⬡, and J0
[see Fig. 1a]. We will later argue that this model approximates well
the microscopic interactions in Y-kapellasite. The Heisenberg
Hamiltonian can be written as

H ¼
X
hi;ji

Jij S
!

i � S!j ; (1)

where S
!

i are the spin degrees of freedom (which, below, are
either chosen as spin-1/2 operators or as classical normalized
vectors) and Jij is given by J, J⬡, or J0, depending on the bond. All
these couplings are assumed to be positive (antiferromagnetic). It
is clear that J ¼ J⬡ ¼ J0 leads back to the standard undistorted
nearest-neighbor kagome model. As a consequence of the broken
translational symmetry of the kagome lattice, the system’s
periodic structure is described by a decorated triangular lattice
with a unit cell of nine sites [see Fig. 1a]. We can distinguish two
inequivalent sets of sites inside the unit cell, which are not
connected by point group symmetries and form two distinct
sublattices: sublattice A is made of the six sites connected by J⬡
[the vertices of the red hexagons of Fig. 1a]; sublattice B is made of
the remaining three sites. Also, note that the model is invariant
under exchanging J and J0 followed by a reflection with respect to
the a!1 axis.

Fig. 1 Distorted kagome lattice and classical Q
!¼ ð1=3;1=3Þ magnetic order. a Schematic illustration of the three exchange couplings

characterizing the effective Heisenberg Hamiltonian for Y-kapellasite (J⬡, J, and J0) shown in red, blue, and green, respectively. The presence of
three different couplings breaks the translational symmetry of the kagome lattice and leads to a decorated triangular lattice with an enlarged
unit cell of nine sites, here represented by the black hexagon (Wigner–Seitz cell). The Hamiltonian of the system is periodic under translations
along the Bravais vectors a!1 and a!2 and the sites within the unit cell are divided into sublattices A (hollow symbols) and B (solid symbols).
Due to the different values of the three exchange terms, the D6 point group symmetry of the kagome lattice is broken down to C6.

b Pictorial view of the reciprocal space. The blue arrows represent the unit vectors of the reciprocal space ( b
!

1 and b
!

2). The gray hexagons
tiling the reciprocal space depict the first Brillouin zone of the lattice, while the black dashed hexagon delimits the so-called extended
Brillouin zone. Some of the high symmetry points are marked with black dots. Finally, red lines represent the path along which the magnon

dispersion is plotted in Fig. 3. c Classical Q
!¼ ð1=3; 1=3Þ magnetic order for J > J0 (red region of Fig. 2). The orientations of the spins are fully

specified by the angle ϕ between neighboring spins in the J⬡-hexagons, as outlined in the main text (here we take the value of ϕ for the case
J0 ¼ 0 and J⬡= J). In this figure, the spins are arranged in the xy-plane and their orientation is represented by the angle with respect to the

Sx axis. The red, blue, and green colors of the spins of sublattice A help visualizing the Q
!¼ ð1=3; 1=3Þ pattern. d The classical Q

!¼ ð1=3; 1=3Þ
magnetic order of Fig. 1c in the J≫ J⬡ limit (J0 ¼ 0). The spins form antiferromagnetic trimers along the J-bonds (depicted in black). The
trimers are arranged in an effective kagome lattice structure and their orientations, highlighted by the three different colors, follow theffiffiffi
3

p
´

ffiffiffi
3

p
pattern69.
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Classical phase diagram
In Fig. 2, we summarize the classical ground-state phase diagram
of the Heisenberg model on the distorted kagome lattice [Eq. (1)]
as a function of the ratios J/J⬡ and J0=J⬡ , which has been obtained
by combining analytical arguments, iterative minimization and
classical Monte Carlo calculations (see Methods). At the classical
level, we observe (i) a collinear Q

!¼ 0 magnetic phase, (ii) two
non-collinear coplanar magnetic phases, both labeled as Q

!¼
ð1=3; 1=3Þ order, separated by (iii) a classical spin-liquid phase
with a degenerate manifold of non-coplanar ground states, which
in the context of a bond-disordered kagome antiferromagnet was
dubbed a “jammed spin liquid” phase23.
Even without any prior knowledge of the precise nature of the

different phases, there exists a simple argument that determines
the location of the phase boundaries. To this end, we employ the
analytical procedure of ref. 23 where a bond disordered Heisen-
berg model on the kagome lattice was studied. In the first step, we
rewrite the Hamiltonian of Eq. (1) as

H ¼ 1
2

X
4

L
!

4
� �2

þ const. (2)

where the sum runs over all triangles formed by nearest-neighbor
bonds of the kagome lattice (both up and down triangles are
considered). We define

L
!

4 ¼
ffiffiffiffiffiffiffiffiffi
JijJik
Jjk

s
S
!

i þ
ffiffiffiffiffiffiffiffiffi
JjiJjk
Jik

r
S
!

j þ
ffiffiffiffiffiffiffiffiffi
JkiJkj
Jij

s
S
!

k ; (3)

where i, j, k∈ Δ are the three sites forming a triangle. In our
distorted model, all triangles of the lattice are formed by one J⬡,
one J, and one J0 coupling [see Fig. 1a]. Thus, by an appropriate
choice of the i, j, k labels of Eq. (3), we can write

L
!

4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
JJ0=J⬡

q
S
!

i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
JJ⬡=J0

q
S
!

j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J0J⬡=J

q
S
!

k (4)

for all triangles. From Eq. (2) it immediately follows that any
spin configuration that fulfills the condition L

!
4 ¼ 0 84 is a

ground state of the system. However, depending on the values of
the couplings J, J⬡, and J0, it may occur that L

!
4 ¼ 0 is impossible

for any triangle when one term on the right-hand side of Eq. (4)
dominates so strongly that it cannot be compensated by the other
two terms.
Restricting to an isolated triangle, it is easy to show that L

!
4 ¼

0 can only be fulfilled if

J=J⬡ � J0=ðJ⬡ � J0Þ ; J0 � minðJ; J⬡Þ ; (5a)

J=J⬡ � J0=ðJ⬡ þ J0Þ ; J � minðJ0; J⬡Þ ; (5b)

J=J⬡ � J0=ðJ0 � J⬡Þ ; J⬡ � minðJ; J0Þ : (5c)

These conditions define the phase boundaries in Fig. 2. In

the regions where an isolated triangle cannot satisfy L
!

4 ¼ 0,
the system realizes one of the aforementioned coplanar phases

[Q
!¼ ð1=3; 1=3Þ order and Q

!¼ 0 order]. On the other hand, in
the region where an isolated triangle can fulfill Eq. (5), we observe
a classical spin-liquid phase. We note that analogous phase
boundaries characterize the classical phase diagram of the square-
kagome antiferromagnet39.

Coplanar orders
We start our discussion of the classical ground states with the
coplanar phases where L

!
4 ¼ 0 is necessarily violated. The

rewritten Hamiltonian in Eq. (2) still implies that these phases
form in a way that minimizes ð L!4Þ

2
. To simplify the investigation,

we first restrict ourselves to the case J0 ¼ 0 where the Q
!¼

ð1=3; 1=3Þ phase is realized. In the phase diagram of Fig. 2, this
corresponds to the leftmost vertical axis and it will turn out to
provide a good approximation of the exchange couplings of
Y-kapellasite determined by the ab initio DFT calculations (marked
with squares in the figure).
In the limit J0 ¼ 0, the model consists of a lattice of hexagons,

made of sublattice A sites, which are connected to each other
through the J-trimers involving sublattice B sites [Fig. 1a]. Note
that the middle spin of each trimer is fixed in the direction
opposite to the sum of the edge spins. The magnetic order
realized along the J0 ¼ 0 line is depicted schematically in Fig. 1c.
The spins are coplanar and form a periodic configuration with
momentum Q

!¼ ð1=3; 1=3Þ (in units of the reciprocal lattice
vectors b

!
1 and b

!
2). This momentum corresponds to the K point

of the Brillouin zone of the lattice (and the symmetry-related
points), see Fig. 1b. Within a given unit cell, the spins of sublattice
A form an alternating pattern around the J⬡-hexagons: the spins
on even and odd sites are ferromagnetically aligned along two
different directions, which are rotated with respect to each other
by an angle ϕ. The orientations of the spins on the remaining sites
(i.e., sublattice B), which are only two-coordinated, are uniquely
determined by the value of the angle ϕ. Thus, in the limit J0 ¼ 0,
we can express the classical energy per site of the Q

!¼ ð1=3; 1=3Þ
order as a simple function of ϕ

E=N ¼ 2
3

J⬡ cosðϕÞ þ J cos
ϕ

2
þ π

3

� �� �
(6)

Minimization yields optimal angles ϕ that go from ϕ= π in the
strong hexagon limit J≪ J⬡ to ϕ ¼ 4π

3 in the trimer limit J≫ J⬡
(see Fig. 1d and Supplementary Note 2).
Going away from the J0 ¼ 0 limit, the Q

!¼ ð1=3; 1=3Þ order
extends for a finite region along the J0=J⬡ axis (red area in Fig. 2),
which is bounded by the onset of the classical spin-liquid phase.
Within this region, the numerical minimization of the classical
energy shows that the spin pattern is unchanged with respect to
the one shown in Fig. 1c and the orientation of the spins is still

Fig. 2 Classical phase diagram of the distorted kagome model.
We note that the phase diagram is symmetric under the exchange
of the axes (i.e., J $ J0), as a consequence of the symmetry of the

Hamiltonian. The Q
!¼ ð1=3; 1=3Þmagnetic order of the red region is

depicted in Fig. 1c, and related to the Q
!¼ ð1=3; 1=3Þ order of the

blue region by a mirror reflection with respect to a!1 . Inside the gray
area, the system features a classical spin-liquid phase with
degenerate non-coplanar ground states, as discussed in the main

text. The Q
!¼ 0 magnetic order can be viewed as parallel spins on

the same sublattice, while on different sublattices the spins are anti-
aligned. We note that the axes change between the four quadrants
of this plot. The empty and filled squares indicate two possible sets
of couplings for Y-kapellasite.
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determined only by the angle ϕ between the spins of sublattice A.
As already mentioned, the phase diagram is invariant under the

exchange of J and J0, and a corresponding Q
!¼ ð1=3; 1=3Þ order is

observed also in the proximity of the J= 0 limit (blue area in

Fig. 2). The two Q
!¼ ð1=3; 1=3Þ ordered phases, one for J > J0 and

the other for J < J0, are transformed into each other by a mirror
reflection with respect to a!1. In the numerical calculations, the
two phases can be distinguished by their spin susceptibility in
momentum space, defined as

χ~k ¼
1
N

X
i;j

ei
~k�ð~ri�~rjÞ S

!
i � S!j

D E
; (7)

where~ri is the position of site i in the kagome lattice, N is the total
number of sites and the brackets 〈…〉 denote an appropriate

average. In the Q
!¼ ð1=3; 1=3Þ phase at J > J0, χ~k displays high

intensity peaks at the K 0
2 points, while in the ordered phase at

J < J0, its maxima are located at the K 0
3 points [see Fig. 1b]. In the

limit where J⬡ � J; J0 the system is no longer frustrated since
each coupled neighbor of an A site is a B site and vice versa. The

ground state order is, hence, given by a simple collinear Q
!¼ 0

state where the two sublattices have opposite spin orientations.
This regime is marked green in Fig. 2.
As it represents a previously unexplored magnetic state, it is

interesting to study the classical spin wave dispersion of the
Q
!¼ ð1=3; 1=3Þ order. In Fig. 3, we show the spin wave spectra for
the Q

!¼ ð1=3; 1=3Þ magnetic order in three paradigmatic regimes
(with J0 ¼ 0 in each case): J≪ J⬡ (strong hexagon limit) [Fig. 3a],
J= J⬡ [Fig. 3b], and J≫ J⬡ (strong trimer limit) [Fig. 3c]. In all
three cases, the spin-wave spectrum has gapless modes at Γ and K
points. For J≪ J⬡, J= J⬡, we observe a finite gap between the
low-lying magnon band (which gives rise to three branches when
folded) and the higher bands. In the strong hexagon limit, where
the system is made of weakly coupled hexagons forming a
triangular pattern, the excitation spectrum at low energies
resembles that of the triangular lattice antiferromagnet (see
Supplementary Note 2 and Supplementary Fig. 3). The gap
between the low-lying branches and the higher ones closes when
the ratio J/J⬡ is sufficiently large, as shown by the J≫ J⬡ case
[Fig. 3c]. In this limit (strong trimer limit), the system is described
by trimers of spins forming an effective kagome lattice, and the
spin wave spectrum resembles that of the kagome

ffiffiffi
3

p
´

ffiffiffi
3

p

magnetic order (see Supplementary Note 2 and Supplementary
Fig. 3).

Classical spin liquid phase
Finally, we consider the regime where the three couplings
generally enable the fulfillment of L

!
4 ¼ 0 in Eq. (4) and we

unveil the ground state nature of this intriguing phase. Even
though satisfying L

!
4 ¼ 0 in an isolated triangle is possible, this

does not immediately imply that achieving L
!

4 ¼ 0 in each
individual triangle of the full system is a trivial task. In ref. 23 a
generic bond disordered kagome system was investigated for
which it was shown that L

!
4 ¼ 0 can be satisfied in each triangle.

Furthermore, the authors constructed global ground states where
each triangle may realize up to two possible spin configurations
that locally obey L

!
4 ¼ 0 resulting in an extensive, but discretely

degenerate classical spin liquid forming a set of the ground states
with the cardinality , which was named “jammed spin liquid”.
We performed iterative minimization of the classical energy to

confirm the presence of a degenerate manifold of non-coplanar

ground states with L
!

4 ¼ 0 within the gray region of Fig. 2 (see
Methods). The main results of the minimization are summarized in

Fig. 4 a, where we plot the value of hj L!4ji (averaged over
triangles) as a function of the exchange couplings, for a finite-size
cluster with N= 27 sites (see Supplementary Fig. 1, and
Supplementary Fig. 3 for analogous results on a N= 36 site
cluster). The optimal solutions are actually found to be identical
for all triangles. Its square value yields the residual energy per

triangle with respect to the ideal ground state with L
!

4 ¼ 0. We
observe that in most of the regions delimited by the boundaries of

Eq. (5), we obtain a degenerate set of ground states with j L!4j2 ¼
0 for each triangle (within machine precision). Indeed, starting the
iterative minimization with different initial points, we find several
independent minima which cannot be connected to each other by
lattice symmetries and global spin rotations, thus confirming the
large degeneracy of the classical ground state, as predicted in

ref. 23. We also note that the L
!

4 ¼ 0 solutions found by the
minimization are, in general, non-coplanar, and can be exploited

to construct L
!

4 ¼ 0 ground states for larger systems, by simply
using the N= 27 sites cluster as effective unit cells for type-II
clusters (see Supplementary Note 1). However, close to the
boundaries of the non-coplanar region, we find a number of

Fig. 3 Spin wave theory results. Calculated spin-wave dispersion within linear spin-wave theory along the (ξ, ξ)-direction [from Γ to Γ″, in
Fig. 1b] for three different cases: a J/J⬡= 1/5, b J/J⬡= 1, cJ/J⬡= 25, where we set J0 ¼ 0 in each case. For all the choices of couplings

considered here, the system is in the Q
!¼ ð1=3; 1=3Þ ordered phase. The energy scale is set by J⬡ in panel (a), and by J in panels (b) and (c). We

note that in the J≪ J⬡ (a) and J= J⬡ (b) cases the lowest band (three-times folded) is separated from the higher bands by an energy gap. This
gap closes upon increasing the ratio J/J⬡. d Calculated spin-wave dispersion and intensity within linear spin wave theory along the path Γ–K–
K 0
1–Γ

″–K 0
2–K

0
3–Γ″ [see Fig. 1b] for the ab initio estimated Heisenberg couplings J= 154.4 K, J⬡= 134.2 K and J0 ¼ 8:7 K (SXRD structure). The

spectral intensity is given by the perpendicular component of the spin dynamical structure factor, which is related to the cross section of
unpolarized neutron scattering experiments70 (the overall color scale is in arbitrary units). The low-energy spectral intensity at the K 0

1 (K 0
3)

point is approximately 40% (20%) of the maximal intensity, located at the K 0
2 point. We apply a Gaussian broadening with a standard deviation

of 0.2 meV.
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points in the phase diagram where achieving L
!

4 ¼ 0 by
numerical minimization was not possible. We are not able to

provide a final statement whether the hj L!4ji> 0 points close to
the boundaries are an artifact of the finite-size calculations (and
boundary conditions23), or whether they belong to the neighbor-

ing Q
!¼ ð1=3; 1=3Þ ordered region, which may extend slightly

beyond the ideal boundaries of Eq. (5). Indeed, it is worth noting

that the best Q
!¼ ð1=3; 1=3Þ solution at the analytical phase

boundary with the spin-liquid phase [i.e., when the equality of Eq.

(5a) or (5b) holds] always has finite residual energy, i.e., hj L!4ji> 0
(except for the extreme cases where one coupling is zero). Thus, a

continuous deformation of the Q
!¼ ð1=3; 1=3Þ order to the

j L!4j ¼ 0 spin-liquid phase cannot take place at the precise
location of the analytical boundaries. Therefore, either the
transition is not continuous, or the position of the phase
boundaries is slightly shifted with respect to the analytical
conditions of Eq. (5a) and (5b). Nevertheless, except for the
precise location of the transition, our numerical minimization
confirms the presence of an extended classical spin-liquid phase,
characterized by degenerate non-coplanar ground states.
In addition to energy minimization, we performed classical

Monte Carlo simulations in the low-temperature limit (see
Methods), computing the value of hj L!4ji in the full phase
diagram, as shown in Fig. 4b. The Monte Carlo results confirm the
presence of a region of non-coplanar ground states within the
boundaries of Eq. (5). In this region, the value of hj L!4ji is found to
be clearly smaller than in the rest of the phase diagram, where the
Q
!¼ ð1=3; 1=3Þ and Q

!¼ 0 orders are observed. The
finite value of hj L!4ji within the non-coplanar region can be
ascribed to the effect of finite temperature. To further characterize
the properties of this phase, we compute the spin susceptibility
[Eq. (7)]. As shown in Fig. 5f, the spin–spin correlations in the non-
coplanar phase cannot be described by any particular wave
vector, but rather by a distribution of wave vectors.

Magnetic Hamiltonian of Y-kapellasite
We now concentrate on the specific case of Y-kapellasite and
investigate the magnetic properties of its spin Hamiltonian in
more detail, also including the effects of quantum fluctuations. We
start by performing ab initio DFT calculations to confirm that
Y-kapellasite supports the spin model of Fig. 1a and determine the
precise values of the coupling constants. We used both published
crystal structures, the one determined by X-ray diffraction of single
crystals26, and the structure of Y3Cu9(OD)19Cl8 determined by
neutron diffraction on powder samples37. We consider the former
structure more reliable than the latter (we follow the privately
communicated assessment of P. Puphal that the single crystal
samples of ref. 26 are purer and less strained than the deuterated
powders of ref. 37), and we will refer to the single crystal
structure26 as SXRD structure and to the powder structure37 as SND
structure (see Methods for more details). Note that our analysis
below is valid for both structures.
The three largest couplings J, J⬡, and J0 (all antiferromagnetic)

are shown in Fig. 6b, as obtained by energy mapping for the
SXRD structure of Y-kapellasite. The couplings are tabulated in
Supplementary Table 1. These three couplings form the
distorted kagome lattice illustrated in the inset of Fig. 6b. Our
reasoning that the relevant exchange couplings for Y-kapellasite
are just the three nearest neighbors of the distorted kagome
lattice is based on extensive energy mapping for seven and, for
additional confidence, 24 neighbors up to Cr-Cr distances of
8.14 Å. The determination of 24 couplings for a larger supercell
as listed in Supplementary Table 3 fully confirms the three
largest couplings, shown as empty symbols in Fig. 6b. It also
shows that Y-kapellasite is a very two-dimensional material, and
in the following, we neglect all interlayer couplings. Among the
three second and six third nearest neighbor couplings of the
distorted kagome lattice, the largest is J7 with a value of 2% of J,
which is rather small. This means that it is justified to focus the
study of Y-kapellasite on the nearest-neighbor Hamiltonian. The
couplings for the SND structure of Y-kapellasite are given in
Supplementary Fig. 8 and Supplementary Table 2, respectively.

Fig. 4 Local ground state constraint within the classical spin liquid phase. a Value of hj L!4ji (averaged over triangles) in the optimal
classical ground state found by iterative minimization. The results are obtained in the classical spin liquid phase on an N= 27 sites cluster (see

Supplementary Fig. 1). Most of the points fulfill the L
!

4 ¼ 0 constraint for the ground state. The small number of points with hj L!4ji> 0 are

found to have a coplanar non-degenerate ground state which corresponds to the nearby Q
!¼ ð1=3; 1=3Þ order. b Phase diagram from

classical Monte Carlo simulations. We depict the average of j L!4j for 10 simulated systems with N= 675 sites (type-II cluster, L= 5, cf.

Supplementary Note 1) at the temperature T ¼ 0:001 Jmax, where Jmax ¼ maxðJ⬡; J; J0Þ. The Q
!¼ ð1=3; 1=3Þ (Q

!¼ 0) ordered phase, with

maximal spin susceptibility at the K 0
2 or K

0
3 (Γ) points in the Brillouin zone, lies outside the region defined by Eqs. (5) where L

!
4 can never be

zero. Inside the region where L
!

4 can potentially vanish, we still find finite but small values. The maximum value in the plot, hj L!4jimax ’ 2:83,
is found at the points of maximal distortion, i.e., J0 ðJÞ ¼ 10 J⬡ ¼ 100 J ðJ0Þ. The logarithmic color function scales as

ln ð100hj L!4ji þ 1Þ=ln ð100hj L!4jimax þ 1Þ. The empty and filled squares indicate two possible sets of couplings for Y-kapellasite.
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There is one clear difference between SXRD and SND: J⬡ is 13%
smaller than J for the SXRD structure but 3% larger for the SND
structure. We will discuss the implications for the Hamiltonian in
the next section. We emphasize that, according to the ab initio
calculations above, the value of the exchange coupling J0 is
considerably smaller than those of J⬡ and J, which are of
comparable size. In conclusion, by calculating and inspecting a
large number of exchange couplings, we verified that the J, J⬡,
J0 Hamiltonian is not a simplifying assumption but a defining
feature of the material Y-kapellasite.
In what follows, we concentrate on the magnetic properties of

Y-kapellasite as described by the structure SXRD and the coupling
constants J, J⬡, J0 of Supplementary Table 1 which place the
material in the Q

!¼ ð1=3; 1=3Þ ordered regime of the classical
phase diagram (see Fig. 2). This placement puts our calculations in
agreement with the very recent experimental observation of
(partial) magnetic order in Y-kapellasite38.

Classical Monte Carlo simulations
We start our investigation of the Heisenberg Hamiltonian of
Y-kapellasite (for the SXRD structure) using the classical Monte-
Carlo technique. Despite neglecting quantum fluctuations, this
analysis allows us to study how thermal fluctuations impact the
Q
!¼ ð1=3; 1=3Þ order (see Methods for technical details). In Fig. 5,
we present results on the spin susceptibility in momentum space
[see Eq. (7)] for different temperatures. At high temperatures
[Fig. 5e], the response is almost homogeneous along the edges of
the extended Brillouin zone. This response resembles the one of
the standard undistorted nearest-neighbor kagome models,
indicating that at these high temperatures details of the precise
detuning between J, J⬡, and J0 do not yet affect the susceptibility.
When T is lowered [going from panel e to panel a in Fig. 5],
additional features become discernible such as three maxima
around each corner of the extended Brillouin zone (

ffiffiffi
3

p
´

ffiffiffi
3

p
positions). Each such triad forms an equilateral triangle and with

Fig. 5 Classical Monte Carlo results. a–e Spin susceptibility in momentum space at different temperatures from classical Monte Carlo
simulations for the SXRD structure on a cluster with N= 7803 spins (type-II cluster with L= 17, see Supplementary Note 1), with γ= 0.001 (see
Methods for details). We only consider finite real-space correlations within a circle with a radius of 50 nearest-neighbor distances around each
spin. The extended Brillouin zone is depicted as a black hexagon, cf. Fig. 1b. f Spin susceptibility for J/J⬡= 0.5 and J0=J⬡ ¼ 0:45, within the
non-coplanar phase. The susceptibility has been computed by classical Monte Carlo calculations for ten N= 7803 sites clusters (type-II, L= 17,
see Supplementary Note 1) at T= 0.001 J⬡.

J

b

JO

ClY

Cu1

Cu2

a
b

’

J’

Cu1

Cu2

a

H

a

b

Fig. 6 Structure and exchange couplings of Y3Cu9(OH)19Cl8. a Crystal structure of Y-kapellasite26 (space group 148, R3) with DFT relaxed
hydrogen positions. b Exchange couplings of Y3Cu9(OH)19Cl8 as a function of interaction strength U, determined by energy mapping using
GGA+U at JH= 1 eV . Solid symbols: P1 cell, 7 couplings extracted. Empty symbols:

ffiffiffi
2

p
´

ffiffiffi
2

p
´ 1 supercell, 24 couplings extracted. The inset

shows the nearest-neighbor exchange paths of the perfect kagome lattice which differentiate into J⬡, J, and J0 in Y-kapellasite.
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decreasing temperature the peaks become sharper. Simulta-
neously, the triangles show a slight rotation around their center
points (

ffiffiffi
3

p
´

ffiffiffi
3

p
positions) until in the low-temperature limit the

peaks reach the Q
!¼ ð1=3; 1=3Þ order positions [K 0

2 points in
Fig. 1b]. This shift of peaks roughly occurs along a line connecting
the K 0

2 and Γ″ points. Please see Fig. 8 c for a trace of the peak
positions at different temperatures. Note that as a result of the
Mermin–Wagner theorem, real long-range magnetic order is
possible only at strictly T= 0. However, the fact that the short-
range correlations in the intermediate temperature regime
manifest themselves in susceptibility peaks at incommensurate
wave vectors away from Q

!¼ ð1=3; 1=3Þ indicates that thermal
fluctuations act in a non-trivial and unexpected way. At T= 0,
where the Q

!¼ ð1=3; 1=3Þ sets in, the maxima of the susceptibility
are located at the K 0

2 points, with smaller peaks appearing at the
K 0
1 and K 0

3 points. The relative heights of the latter peaks are
χK 0

1
=χK 0

2
� 40% and χK 0

3
=χK 0

2
� 20%, respectively.

Variational Monte Carlo results
We now analyze the ground-state properties of the spin model in
the quantum regime with VMC calculations. As in the previous
section, we focus on the set of exchange couplings obtained for

the SXRD structure of Y-kapellasite, which lies in the Q
!¼

ð1=3; 1=3Þ ordered region of the classical phase diagram (see
Fig. 2). Our variational method is based on Gutzwiller-projected
fermionic states (see Methods and Supplementary Note 5 for
details). Optimizing the variational state, we obtain a finite value
of the magnetic field variational parameter, which indicates the

resilience of the classical Q
!¼ ð1=3; 1=3Þ magnetic order against

quantum fluctuations. To corroborate this finding, we compute
the spin susceptibility, Eq. (7), with 〈⋯〉= 〈Ψ0∣⋯∣Ψ0〉 representing
the expectation value over the optimal variational wave function.
The results for a finite cluster of N= 972 sites (type-II, L= 6, cf.
Supplementary Note 1) are shown in Fig. 7: the susceptibility is
clearly dominated by sharp Bragg peaks at the K 0

2 points of the
extended Brillouin zone, thus confirming the presence

of Q
!¼ ð1=3; 1=3Þ magnetic order. We note that χ~k is not

significantly different from the classical result at zero temperature
(i.e., no specific features are detected except for the Bragg peaks),
despite the important contributions of the fermionic hoppings
and the Jastrow factor to the variational energy. An almost
identical susceptibility is obtained when considering the exchange

couplings of the SND structure. Thus, according to our VMC results,

the minimal Heisenberg model for Y-kapellasite has a Q
!¼

ð1=3; 1=3Þ magnetically ordered ground state.

Pseudofermion functional renormalization group calculations
Next, we employ the PFFRG approach40–44 to investigate ground
state quantum effects in our distorted kagome Heisenberg model
from a complementary methodological perspective. Within PFFRG,
we compute the static spin susceptibility in momentum space χΛ~k as a
function of the RG parameter Λ (which acts as a low-energy
frequency cutoff). We employ two variants of this technique, the one-
loop and two-loop schemes, where the latter can be considered
more accurate (but computationally more demanding) as it includes
additional diagrammatic contributions to better account for the
system’s fluctuations beyond mean-field (see Methods for details).
Most importantly, an onset of magnetic order can be observed as an
instability during the RG flow of the maximal~k-space component of
χΛ~k . Such instability is indeed evident in the RG flows for both
schemes (one-loop, two-loop) and for both structures of Y-kapellasite
(see Fig. 8 a) confirming the findings from VMC. However, the fact
that these instability features are quite weak and only detectable as
small kinks rather than sharp peaks indicates the significance of
quantum fluctuations, possibly associated with a small ordered
moment. Note that the instability is observed at much smaller Λ in
the two-loop scheme as compared to the one-loop approach, which
is a known property resulting from the better fulfillment of the
Mermin-Wagner theorem in the former method41. The momentum

resolved susceptibility χ
Λcrit
~k

at the critical RG scale Λcrit from two-
loop PFFRG for the SXRD structure is shown in Fig. 8b. The maxima are
rather broad, again indicating strong effects of quantum fluctuations.

Furthermore, the peaks do not exactly coincide with the Q
!¼

ð1=3; 1=3Þ positions, as in VMC results, but show a small shift along
the K 0

2 � Γ00-line, resembling our above findings from classical Monte
Carlo. This indicates that quantum fluctuations may have similar
effects as thermal fluctuations. We emphasize that this behavior is
rather unusual, since, typically, quantum fluctuations tend to lock
magnetic orders at commensurate positions. In Fig. 8c, we
summarize the peak positions from one-loop and two-loop PFFRG
as well as from classical Monte Carlo at intermediate temperatures.
As can be seen, all results show a shift along similar momentum-

space directions, however, the displacement away from the Q
!¼

ð1=3; 1=3Þ point becomes smaller as we advance the approach from
one-loop to two-loop. It is hence conceivable that the shift would
completely disappear upon further improving the method toward
multi-loop schemes45,46. We leave this as an open question for future
investigations. We remark, however, that VMC and PFFRG both find
magnetic long-range order for Y-kapellasite.

Linear spin-wave theory
We conclude the analysis of the magnetic properties of Y-kapellasite
by showing in Fig. 3d the spin-wave spectrum and intensities for the
Heisenberg Hamiltonian corresponding to the SXRD structure. We
observe that the spectrum is very similar to the simpler case of J= J⬡
and J0 ¼ 0 (Fig. 3), which can then be regarded as a reliable minimal
approximation for the full model. The intensity is largest at the K 0

2
point [see Fig. 1b] corresponding to the Q

!¼ ð1=3; 1=3Þ order, as
also observed in the spin susceptibility results above.

DISCUSSION
Summarizing, by a combination of DFT, effective spin models,
classical (iterative minimization, classical Monte Carlo), and
quantum approaches (VMC, PFFRG) we investigated the magnetic
properties of a distorted kagome lattice as realized in the recently

Fig. 7 Variational Monte Carlo result. Spin susceptibility in
momentum space [Eq. (7)] computed by VMC. The results refer to
the optimal variational state for the Hamiltonian of Eq. (1) with the
exchange couplings of the SXRD structure of Y-kapellasite (see
Supplementary Table 1). The calculation is performed on a finite
cluster of N= 972 sites (type-II, L= 6, cf. Supplementary Note 1).

M. Hering et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)    10 



synthesized Y-kapellasite. We found an unexpectedly rich phase
diagram already at the classical level which includes a collinear
Q
!¼ 0 magnetic phase, two unusual non-collinear coplanar Q

!¼
ð1=3; 1=3Þ magnetic phases, and a classical spin liquid phase that
resembles the jammed spin liquid phase found in the context of a
bond-disordered kagome antiferromagnet. Our analysis of the
spin model for Y-kapellasite places this system in the region of
Q
!¼ ð1=3; 1=3Þ magnetic order with an excitation spectrum that
lies halfway between that of an underlying triangular lattice of
hexagons and a kagome lattice of trimers.
While it is not experimentally settled whether Y-kapellasite orders

magnetically, our theoretical results provide strong evidence in favor
of a magnetic Q

!¼ ð1=3; 1=3Þ ground state. The presence of an
extended classical spin liquid phase in the vicinity of our DFT
couplings sheds additional interesting light on this compound.
Possibly, through external perturbations such as pressure or strain
one might be able to shift the couplings towards the classical spin
liquid phase, which, due to the large extent of this regime, may not
require any fine-tuning. This opens the question about the fate of
the classical spin liquid upon adding quantum fluctuations, which
we did not tackle in this work. Given the complexity of this phase
already on the classical level, one may expect even richer
phenomena in the quantum case, including a quantum spin liquid.
The numerical investigation of this regime in the quantum limit will
certainly be a challenging future task but also gives hope for
rewarding insights. In total, this work demonstrates that a relatively
simple but realistic distortion of the kagome lattice gives rise to a
multitude of interesting and unexpected magnetic phenomena
whose full investigation goes far beyond the scope of the present
work. In the future, our investigation may inspire and guide both a
deeper experimentally motivated investigation of Y-kapellasite, as
well as a closer numerical analysis of the underlying spin model.

METHODS
DFT-based energy mapping
We calculate the electronic structure of Y-kapellasite with DFT using the
full potential local orbital basis set47 and the generalized gradient
approximation (GGA) to the exchange-correlation functional48. We apply
the GGA+U approximation49 to correct for strong electronic correlations of
the Cu 3d electrons. We set the Hund’s rule coupling to a typical value
value50,51JH= 1 eV for Cu2+ and vary only the onsite interaction U. Even
though the SND structure37 nominally has 8/9 filling, there is no evidence
that Y-kapellasite is charge doped, and therefore we treat the O1 position

as occupied with a hydroxy group (or a chloride ion which leads to the
same results). In this position, the SXRD structure26 has an orientationally
disordered OH− ion between two Y3+ ions, and therefore a 1/6 occupation
of the six symmetry equivalent H positions is consistent with the R3 space
group. We model the orientationally disordered OH− ion using the virtual
crystal approximation52, setting the nuclear charge of H in this position to
1/6. The hydrogen positions H2 to H4 are relaxed within GGA in both
structures. We shift the partially occupied H1 hydrogen position to the
equilibrium O–H distance. The resulting structure is shown in Fig. 6a.
We use total energy mapping53,54 to determine the Heisenberg

Hamiltonian parameters of Y-kapellasite. For that, we calculate with DFT
(GGA+U) the total energy for 24 out of the 47 unique spin configurations
which are possible with the 9 inequivalent Cu2+ ions in the P 1 unit cell of
Y3Cu9(OH)19Cl8. Considering that third-neighbor couplings are important
for some kapellasite type compounds50, we also perform calculations for affiffiffi
2

p
´

ffiffiffi
2

p
´ 1 supercell with 18 independent Cu sites; we calculate 44 out of

nearly 30,000 spin configurations with distinct energies.

Iterative minimization
To numerically determine the classical ground state of the spin model of
Eq. (1), we employ the iterative minimization method55,56. We initialize our
system in a random configuration and we iteratively perform local moves
to update the spins. In each move, we pick up a random spin, S

!
i , and we

orient it antiparallel to the local field created by the neighboring spins, i.e.,

S
!

i 7! � B
!

i

j B!i j
; with B

!
i ¼

X
j

Jij S
!

j : (8)

The procedure is repeated for a sufficient number of steps until the energy
converges. In order to reduce the risk of ending up in local minima, we
repeat the calculations several times starting from different spin
configurations and we keep the solution with the best energy. The
calculations are performed on the small finite-size clusters shown in
Supplementary Fig. 1 with N= 27 and N= 36 sites, and periodic boundary
conditions. It is important to emphasize that finding a classical ground
state with L

!
4 ¼ 0 on one of these small clusters (with periodic boundary

conditions) implies that one can immediately define a L
!

4 ¼ 0 ground
state for any larger cluster of the same type (see Supplementary Note 1).

Classical Monte Carlo simulations
We perform a Monte Carlo analysis using the Metropolis algorithm with
the over-relaxation protocol for better thermal convergence57–60. For the
investigations of the SXRD structure, the system that we simulate is a cluster
of N= 7803 spins with periodic boundary conditions (type-II cluster with
L= 17 (Supplementary Fig. 1). It is seeded at T0 ¼ 2 Jmax with random
spins and cooled down via T= T0e−γn where n= 0, 1, 2,… is the number of
Metropolis steps. During each step, every spin is updated once on average

ca b

Fig. 8 Pseudofermion functional renormalization group results. a One- and two-loop spin susceptibility flows from PFFRG for SXRD and SND
structures. The arrows mark a kink or peak during the flow indicating the onset of magnetic order. b Spin susceptibility in~k space [Eq. (7)] from
two-loop S= 1/2 PFFRG for SXRD structure at the critical cutoff (marked by the red arrow in (a)). The extended Brillouin zone is indicated by the

black hexagon. Maxima of χ
Λcrit
~k

appear at incommensurate positions. c Momentum-space position of the maximal susceptibility at the
breakdown of the PFFRG flow together with the corresponding values obtained from classical Monte Carlo at finite temperature T. We show a
section of the first Brillouin zone (gray lines) close to one edge of the extended Brillouin zone (black line), confer Fig. 1b. The PFFRG results for
the SXRD parameters are shown as triangles (the peak positions for the SND structure are similar). Red and green triangles represent one-loop
and two-loop results, respectively. Dots represent the susceptibility maxima from classical Monte Carlo for the system with SXRD couplings and
the color represents temperature.
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by a new random spin. The update takes place either with certainty if the
acquired energy ΔE ≤ 0 or with a probability p= e−ΔE/T. For the different
coupling regimes, we set γ= 0.001 and cooled 100 (10) random systems
down to T ¼ 0:1 Jmax (T ¼ 0:001 Jmax), where Jmax ¼ maxðJ⬡; J; J0Þ. For the
investigation of the classical phase diagram, we restrict ourselves to type-II
clusters with L= 5 (N= 675 spins), for a numerical speedup.

Linear spin-wave theory
We performed linear spin-wave calculations with the SPINW package61,
computing the classical ground state by energy minimization.

Variational Monte Carlo
We employ Gutzwiller-projected fermionic states as variational ansätze62. This
class of wave functions has been shown to provide an accurate description of
the ground state of several spin models63, including state-of-the-art results
for kagome lattice antiferromagnets10,29,64–66. The optimal variational ansatz
for the Hamiltonian of Y-kapellasite is a Gutzwiller-projected Jastrow–Slater

wave function possessing Q
!¼ ð1=3; 1=3Þ magnetic order (see Supplemen-

tary Note 5 for the definition). For the optimization of the variational
parameters, we use the stochastic reconfiguration method67.

Pseudofermion functional renormalization group
The PFFRG method is based on the one-loop plus Katanin truncation
PFFRG scheme first introduced in ref. 40 and extended to the two-loop plus
Katanin variant in ref. 41. It utilizes the Abrikosov pseudofermion
representation of spin operators. This spin representation enlarges the
Hilbert space by adding two unphysical S= 0 states per site (unoccupied,
doubly occupied) which, however, leave the ground state properties
largely unaffected42. Within PFFRG the bare propagator of the fermions is
regularized by a sharp cutoff function

G0ðωÞ ¼ 1
iω

�! GΛ
0 ðωÞ ¼

θðjωj � ΛÞ
iω

: (9)

Here, ω is a continuous Matsubara frequency at T= 0 and the cutoff Λ
prohibits fermionic propagation if ∣ω∣ ≤ Λ. This insertion causes a cutoff
dependence of the generating functional for the fermionic one-particle-
irreducible vertex functions. Flow equations that describe the Λ derivatives of
all n-particle vertex functions can be derived. These equations couple the n-
particle vertex to all m-particle vertices with m ≤ n+ 1 leading to an infinite
hierarchy of equations. In principle, physical results in the cutoff-free limit
Λ→ 0 can be obtained by solving the integrodifferential flow equations
starting from the limit Λ→∞ where the initial conditions are set by the bare
interactions from our spin Hamiltonian. For numerical solvability, this
hierarchy of equations needs to be truncated. In the one-loop scheme, the
truncation occurs on the level of the three-particle vertex which is replaced
by contributions from the Katanin scheme68, particularly, the single-scale
propagator is upgraded to SΛðωÞ ¼ � d

dΛG
ΛðωÞ where the full Green’s

function is GΛðωÞ ¼ GΛ
0 ðωÞ

	 
�1 � ΣΛðωÞ
h i�1

. The one-loop flow equations

for the self-energy ΣΛ and the two-particle vertex ΓΛ are depicted
diagrammatically in Supplementary Fig. 7. In the two-loop approach, further
contributions of the three-particle vertex are included, which have the form
of nested one-loop diagrams41. We solve the flow equations numerically with
an Euler scheme in real space taking into account finite spin correlations on
hexagonal clusters with an edge length of N ≥ 7 nearest-neighbor distances
around reference sites from each sublattice. The Matsubara frequencies are
discretized using a linear plus logarithmic mesh with Mω ≥ 60 points. We
carefully analyzed that the qualitative PFFRG results are converged with
respect to the number of frequency points and the finite correlation length.
From the resulting two-particle vertex, we are able to compute the Λ
dependent static spin susceptibility χΛ~k in momentum space. For more details,
we refer the reader to refs. 40–42.
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