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Let C be a smooth curve over an algebraically closed field 
k, and let E be a locally free sheaf of rank r. We compute, 
for every d > 0, the generating function of the motives 
[QuotC(E, n)] ∈ K0(Vark), varying n = (0 ≤ n1 ≤ · · · ≤ nd), 
where QuotC(E, n) is the nested Quot scheme of points, 
parametrising 0-dimensional subsequent quotients E � Td �
· · · � T1 of fixed length ni = χ(Ti). The resulting series, 
obtained by exploiting the Białynicki-Birula decomposition, 
factors into a product of shifted motivic zeta functions of C. 
In particular, it is a rational function.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

0. Introduction

Let K0(Vark) be the Grothendieck ring of varieties over an algebraically closed field 
k. If Y is a k-variety, its motivic zeta function

ζY (q) = 1 +
∑
n>0

[
Symn Y

]
qn ∈ K0(Vark)�q�
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is a generating series introduced by Kapranov in [23], where he proved that for smooth 
curves it is a rational function in q.

In this paper we compute the motive of the nested Quot scheme of points QuotC(E, n)
on a smooth curve C, entirely in terms of ζC(q). Here, E is a locally free sheaf on C, and 
n = (0 ≤ n1 ≤ · · · ≤ nd) is a non-decreasing tuple of integers, for some fixed d > 0. The 
scheme QuotC(E, n) generalises the classical Quot scheme of Grothendieck (recovered 
when d = 1): it parametrises flags of quotients E � Td � · · · � T1 where Ti is a 
0-dimensional sheaf of length ni.

Our main result, proved in Theorem 4.2 in the main body, is the following.

Theorem A. Let C be a smooth curve over k, let E be a locally free sheaf of rank r on 
C. Then

∑
0≤n1≤···≤nd

[
QuotC(E,n)

]
qn1
1 · · · qnd

d =
r∏

α=1

d∏
i=1

ζC
(
Lα−1qiqi+1 · · · qd

)
∈ K0(Vark)�q1, . . . , qd�,

where L = [A1
k] is the Lefschetz motive. In particular, this generating function is rational 

in q1, . . . , qd.

The statement taken with d = 1, thus regarding the motive [QuotC(E, n)] of the usual 
Quot scheme of points, was proved in [1]. Our result is a natural generalisation, which 
was inspired by Mochizuki’s paper on “Filt schemes” [24].

Our formula fits nicely in the philosophical path according to which

“rank r theories factorise in r rank 1 theories”.

There are to date a number of examples of this phenomenon in Donaldson–Thomas 
theory, exhibiting a generating series of rank r invariants as a product of r (suitably 
shifted) generating series of rank 1 invariants: see for instance [2,28] for enumerative DT 
invariants, [15] for K-theoretic DT invariants, [6,7] for motivic DT invariants and [26,14]
for the parallel pictures in string theory.

The paper is organised as follows. In Section 1 we introduce the nested Quot scheme
and prove its connectedness. In Section 2 we describe its tangent space and prove that, for 
a smooth quasiprojective curve, the nested Quot scheme is smooth. Under the assumption 
that the locally free sheaf is split, in Section 3 we describe a torus framing action and 
its associated Białynicki-Birula decomposition. In Section 4 we prove that the motive 
of the nested Quot scheme is independent of the locally free sheaf, and exploit the 
Białynicki-Birula decomposition to prove Theorem A. Our result readily implies closed 
formulae for the generating series of Hodge–Deligne polynomials, χy-genera, Poincaré 
polynomials, Euler characteristics, since these are all motivic measures; we provide some 
explicit formulae in Section 4.4.
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After our paper was written, we were informed that our formula for the motive of 
the nested Quot scheme on a projective curve can be alternatively obtained, after some 
manipulations, from general results on the stack of iterated Hecke correspondences [17, 
Corollary 4.10] (see also [20, Section 3] for a related computation of the Voevodsky motive 
with rational coefficients). Our paper provides a direct and self-contained argument for 
this formula, exploiting the geometry of the nested Quot scheme.

Acknowledgments. We thank Alina Marian for spotting a mistake in the first draft of this 
paper. We also wish to thank Joachim Jelisiejew for stimulating conversations around 
the Białynicki-Birula decomposition. We are grateful to Takuro Mochizuki for helpful 
discussions about nested Quot schemes. We thank Jochen Heinloth, Victoria Hoskins 
and Simon Pepin Lehalleur for carefully explaining the relation to their previous work. 
The first author is grateful to Martijn Kool for useful discussions. We finally thank the 
anonymous referee for several helpful comments, which improved the exposition of the 
paper.

S.M. is supported by NWO grant TOP2.17.004. A.R. is funded by Dipartimenti di 
Eccellenza.

Conventions. All schemes are of finite type over an algebraically closed field k. A variety
is a reduced separated k-scheme. If Y is a scheme and Y1, . . . , Ys are locally closed 
subschemes of Y , we say that they form a (locally closed) stratification, denoted ‘Y =
Y1 � · · · � Ys’ with a slight abuse of notation, if the natural morphism of schemes Y1 �
· · · � Ys → Y is bijective. This is crucial in our calculations since this condition implies 
the identity [Y ] = [Y1] + · · · + [Ys] in K0(Vark).

1. Nested Quot schemes of points

1.1. The moduli space

Let X be a quasiprojective k-variety and E a coherent sheaf on X. Fix an integer 
d > 0 and a non-decreasing d-tuple n = (n1 ≤ · · · ≤ nd) of non-negative integers 
ni ∈ Z≥0. We define the nested Quot functor associated to (X, E, n) to be the functor 
QuotX(E, n) : Schop

k → Sets sending a k-scheme B to the set of isomorphism classes of 
subsequent quotients

EB � Td � · · · � T1,

where EB is the pullback of E along X ×k B → X and Ti ∈ Coh(X ×k B) is a B-flat 
family of 0-dimensional sheaves of length ni over X for all i = 1, . . . , d. Two ‘nested 
quotients’

EB � Td � · · · � T1, EB � T ′
d � · · · � T ′

1
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are considered isomorphic when ker(EB � Ti) = ker(EB � T ′
i ) for all i = 1, . . . , d.

The representability of the functor QuotX(E, n) can be proved adapting the proof of 
[29, Theorem 4.5.1] or by an explicit induction on d as in [21, Section 2.A.1]. We define 
QuotX(E, n) to be the moduli scheme representing the above functor. Its closed points 
are then in bijection with the set of isomorphism classes of nested quotients

E � Td � · · · � T1,

where each Ti ∈ Coh(X) is a 0-dimensional quotient of E of length ni. The nested Quot 
scheme comes with a closed immersion

QuotX(E,n) ↪→
d∏

i=1
QuotX(E, ni) (1.1)

cut out by the nesting condition ker(E � Td) ↪→ ker(E � Td−1) ↪→ · · · ↪→ ker(E � T1). 
In particular, it is projective as soon as X is projective. If C is a smooth proper curve 
over C and E ∈ Coh(C) is a locally free sheaf, the cohomology of QuotC(E, n) was 
studied by Mochizuki [24].

Example 1.1. The classical Quot scheme QuotX(E, n) of length n quotients of E is ob-
tained by setting n = (n), i.e. taking d = 1 and nd = n. If we set n = (1 ≤ 2 ≤ · · · ≤ d), 
we obtain Mochizuki’s complete Filt scheme Filt(E, d), which for d = 1 reduce to 
Filt(E, 1) = P (E) [24]. When E = OX , we use the notation Hilbn(X) to denote 
QuotX(OX , n). This space is the nested Hilbert scheme of points, studied extensively 
by Cheah [9,8,10].

1.2. Support map and nested punctual Quot scheme

Fix a variety X, a coherent sheaf E and a d-tuple of non-negative integers n = (n1 ≤
· · · ≤ nd) for some d > 0. Composing the embedding (1.1) with the usual Quot-to-Chow 
morphisms yields the support map

hE,n : QuotX(E,n) ↪→
d∏

i=1
QuotX(E, ni) →

d∏
i=1

Symni(X) (1.2)

recording the 0-cycles ([SuppTi] ∈ Symni(X))1≤i≤d attached to a d-tuple (E �
Ti)1≤i≤d. Here, Symm X = Xm/Sm is the m-th symmetric power of X.

We make the following definition.

Definition 1.2 (Nested punctual Quot scheme). Let X be a variety, x ∈ X a point, 
E ∈ Coh(X) a coherent sheaf, n = (n1 ≤ · · · ≤ nd) a tuple of non-negative integers. The 
nested punctual Quot scheme attached to (X, E, n, x) is the closed subscheme
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QuotX(E,n)x ⊂ QuotX(E,n),

defined as the preimage of the cycle (n1x, . . . , ndx) along the support map hE,n.

The name ‘punctual’ refers, as for the classical Quot schemes, to the fact that all 
quotients are entirely supported at a single point. We will not need the following result.

Lemma 1.3. Let X be a smooth quasiprojective variety of dimension m, and let E be a 
locally free sheaf of rank r on X. For every d-tuple n = (n1 ≤ · · · ≤ nd), and for every 
x ∈ X, one has a non-canonical isomorphism

QuotX(E,n)x ∼= QuotAm(O⊕r,n)0.

Proof. The result follows from the isomorphism QuotX(E, k)x →̃ QuotAm(O⊕r, k)0 re-
lating the classical punctual Quot schemes, which is proved in full detail in [27, Section 
2.1] exploiting a choice of étale coordinates around x (which exist by the smoothness 
assumption, and which explain the non-canonical nature of the isomorphism). It remains 
to observe that the induced isomorphism

d∏
i=1

QuotX(E, ni)x
d∏

i=1
QuotAm(O⊕r, ni)0←→∼

maps the subscheme QuotX(E, n)x isomorphically onto QuotAm(O⊕r, n)0. �
1.3. Connectedness

We prove the following connectedness result for the nested Quot scheme. A proof in 
the case (r, d, n) = (1, 1, n) of the classical Hilbert scheme was first given by Hartshorne 
[19], and by Fogarty in the surface case [16]. We shall also exploit Cheah’s connectedness 
result for Hilbn(X), see [9, Sec. 0.4].

Theorem 1.4. If X is an irreducible quasiprojective k-variety and E is a locally free sheaf 
on X, then QuotX(E, n) is connected for every n = (n1 ≤ · · · ≤ nd). In particular, the 
classical Quot scheme QuotX(E, n) is connected for every n ≥ 0.

Proof. The proof consists of several steps.
Step 1: We reduce to proving the statement when E = O⊕r

X is trivial. Let x =
[E � Td � · · · � T1] ∈ QuotX(E, n) be a point, where E is arbitrary. Since Td is 
0-dimensional we can find an open neighbourhood U ⊂ X of the set-theoretic support 
of Td such that E|U = O⊕r

U is trivial. The point x then lies in the image of the open 
immersion QuotU (O⊕r

U , n) ↪→ QuotX(E, n). By assumption, the space QuotU (O⊕r
U , n)

is connected. Now if x′ = [E � T ′
d � · · · � T ′

1] ∈ QuotX(E, n) is another point, we 
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can find another open subset U ′ ⊂ X surrounding the support of T ′
d and trivialising E. 

Since X is irreducible, U ∩U ′ �= ∅, which implies QuotU (O⊕r
U , n) ∩QuotU ′(O⊕r

U ′ , n) �= ∅, 
so x and x′ are connected in QuotX(E, n) by any point in this intersection.

Step 2: The scheme QuotX(O⊕r
X , n) has a framing T-action with non-empty fixed 

locus, where T = Gr
m (see Proposition 3.1 for an explicit description of this fixed locus: 

we shall exploit it in the next step). Let x ∈ QuotX(O⊕r
X , n) be an arbitrary point. Then 

the closure of its orbit contains a T-fixed point — this will be explained in Section 3. 
Therefore it is enough to prove that any two T-fixed points x, x′ ∈ QuotX(O⊕r

X , n)T are 
connected in QuotX(O⊕r

X , n).
Step 3: In principle, we should check connectedness for an arbitrary pair (x, x′) of 

T-fixed points

x = [O⊕r
X � Td � · · · � T1] ∈

r∏
α=1

Hilbnα(X) ⊂ QuotX(O⊕r
X ,n)T,

x′ = [O⊕r
X � T ′

d � · · · � T ′
1] ∈

r∏
α=1

Hilbn′
α(X) ⊂ QuotX(O⊕r

X ,n)T,

where 
∑

1≤α≤r nα = n =
∑

1≤α≤r n
′
α. But since each nested Hilbert scheme Hilbm(X)

is connected (cf. [9, Sec. 0.4]), we can in fact choose a pair of convenient x and x′. We 
fix them satisfying the condition that Supp(Td), Supp(T ′

d) consist of nd distinct points. 
When viewed in the full space QuotX(O⊕r

X , n), the points x and x′ both belong to the 
open subset

U ⊂ QuotX(O⊕r
X ,n),

defined by the cartesian diagram

U
∏d

i=1(Symni X \ Δbig)

QuotX(O⊕r
X ,n)

∏d
i=1 Symni X

�

← →
←
↩

→

←
↩

→ open

← →
h

O⊕r
X ,n

(1.3)

where Δbig ⊂ Symni X is the big diagonal and the bottom map is the support map 
(1.2). In other words, U ⊂ QuotX(O⊕r

X , n) is the open subscheme consisting of the flags 
of quotients [O⊕r

X � Td � · · · � T1] where each Ti is supported on ni distinct points. 
This yields an open immersion

U ↪→
d∏

Vi,

i=1
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where Vi ⊂ QuotX(O⊕r
X , ni−ni−1) is the open subscheme consisting of points [O⊕r

X � T ′
i ]

where the quotients T ′
i are supported on ni − ni−1 distinct points (and we set n0 = 0). 

The scheme Vi is the image of the étale map (cf. [2, Proposition A.3])

Ai QuotX(O⊕r
X , ni − ni−1)←→⊕

defined on the open subscheme

Ai ⊂ QuotX(O⊕r
X , 1)ni−ni−1

parametrising quotients (O⊕r
X � Oxk

)k with xk �= xl for every k �= l. On the other hand,

QuotX(O⊕r
X , 1)ni−ni−1 ∼= P (O⊕r

X )ni−ni−1 ∼= (X ×k P r−1)ni−ni−1

is irreducible, hence Ai is irreducible, and in particular Vi is irreducible, being the image 
of an irreducible space along a continuous map. Therefore U ↪→

∏
i Vi is also irreducible, 

in particular connected, which completes the proof. �
2. Tangent space and smoothness in the case of curves

Fix (X, E, n) as in the previous section. For any point x ∈ QuotX(E, n) representing 
a d-tuple of nested quotients

E Td Td−1 · · · T2 T1

←� ←�pd−1 ←�pd−2 ←�p2 ←�p1

we set Ki = ker(E � Ti). We have a flag of subsheaves

Kd Kd−1 · · · K2 K1 E←↩ →ιd−1 ←↩ →ιd−2 ←↩ →ι2 ←↩ →ι1 ←↩ →

and, for any i = 1, . . . , d − 1, maps

φi : HomX(Ki, Ti) → HomX(Ki+1, Ti), g → g ◦ ιi
ψi : HomX(Ki+1, Ti+1) → HomX(Ki+1, Ti), h → pi ◦ h

which we assemble in a matrix

Δx =

⎛⎜⎜⎝
−φ1 ψ1 0 0 · · · 0
0 −φ2 ψ2 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · −φd−1 ψd−1

⎞⎟⎟⎠
defining a map
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Δx :
d⊕

i=1
HomX(Ki, Ti)

d−1⊕
i=1

HomX(Ki+1, Ti).←→

The embedding (1.1) induces a k-linear inclusion of tangent spaces

Tx QuotX(E,n) ↪→
d⊕

i=1
HomX(Ki, Ti),

which can be described as follows: a d-tuple of maps (δ1, . . . , δd) ∈
⊕d

i=1 HomX(Ki, Ti)
belongs to the tangent space of QuotX(E, n) at x precisely when the diagram

Kd Kd−1 · · · K2 K1

Td Td−1 · · · T2 T1

←↩ →ιd−1

←

→ δd

←↩ →ιd−2

←

→ δd−1

←↩ →ι2 ←↩ →ι1

←

→ δ2

←

→ δ1

← �pd−1 ← �pd−2 ← �p2 ← �p1

(2.1)

commutes. This is formalised in terms of the map Δx in the next proposition.

Proposition 2.1. Set n = (n1 ≤ · · · ≤ nd). The tangent space of QuotX(E, n) at a point 
x = [E � Td � · · · � T1] is

Tx QuotX(E,n) = ker
(

d⊕
i=1

Hom(Ki, Ti)
Δx−−→

d−1⊕
i=1

Hom(Ki+1, Ti)
)
.

In particular, if E is locally free of rank r on a smooth curve C, we have that QuotC(E, n)
is smooth of dimension r · nd.

Proof. Along the same lines of [29, Prop. 4.5.3(i)] it is easy to see that the tangent space 
is given by the maps making Diagram (2.1) commute, which is equivalent to belonging 
to the kernel of Δx.

Let Qi be the 0-dimensional sheaf fitting in the exact sequences

0 → Ki → Ki−1 → Qi → 0

0 → Qi → Ti → Ti−1 → 0

for every i = 1, . . . , d. If X = C is a smooth curve, we have that each Ki is a locally 
free sheaf of rank r (because torsion free is equivalent to locally free on smooth curves); 
since Qi is a 0-dimensional sheaf, we obtain the vanishings

ExtjC(Ki, Ti) = ExtjC(Ki+1, Ti) = ExtjC(Ki, Qi) = 0, j > 0. (2.2)



S. Monavari, A.T. Ricolfi / Journal of Algebra 610 (2022) 99–118 107
Therefore each ψi is a surjective map, which implies that Δx is surjective and that the 
dimension of the tangent space is computed as

dimk Tx QuotC(E,n) = dimk

(
d⊕

i=1
HomC(Ki, Ti)

)
− dimk

(
d−1⊕
i=1

HomC(Ki+1, Ti)
)

=
d∑

i=1
rni −

d−1∑
i=1

rni

= rnd.

Since the tangent space dimension is constant and QuotC(E, n) is connected by The-
orem 1.4, it is enough to find a smooth open subset U ⊂ QuotC(E, n) of dimension 
rnd. We shall exploit the fact that the classical Quot scheme QuotC(E, m) is smooth 
of dimension rm, which follows from standard deformation theory and the vanishing 
Ext1C(K, T ) = H1(C, K∨ ⊗T ) = 0 for an arbitrary point [K ↪→ E � T ] ∈ QuotC(E, m).

Let U ⊂ QuotC(E, n) be the open subscheme as in Diagram (1.3) (which of course 
exists for arbitrary E), and write U ↪→

∏d
i=1 Vi as in the proof of Theorem 1.4. We know 

that each Vi ⊂ QuotC(E, ni − ni−1) is smooth of dimension r · (ni − ni−1), therefore U
is smooth of dimension rnd as required. �
Remark 2.2. The smoothness of QuotC(E, n) was already proved by Mochizuki [24, 
Prop. 2.1], via a tangent-obstruction theory argument. See also [25] for the classification 
of smoothness of QuotX(E, n) when X has arbitrary dimension.

3. Białynicki-Birula decomposition

Let E be a locally free sheaf of rank r on a variety X. Assume that E =
⊕r

α=1 Lα splits 
into a sum of line bundles on X. Then QuotX(E, n) admits the action of the algebraic 
torus T = Gr

m as in [4]. Indeed, T acts diagonally on the product 
∏d

i=1 QuotX(E, ni)
and the closed subscheme QuotX(E, n) is T-invariant. Its fixed locus is determined by 
a straightforward generalisation of the main result of [4].

Proposition 3.1. If E =
⊕r

α=1 Lα, there is a scheme-theoretic identity

QuotX (E,n)T =
∐

n1+···+nr=n

r∏
α=1

QuotX(Lα,nα).

Proof. We construct a bijection on k-valued points, which is straightforward to verify in 
families.

Fix tuples nα = (nα,1 ≤ · · · ≤ nα,d) such that ni =
∑

1≤α≤r nα,i for every i = 1, . . . , d. 
An element of the connected component corresponding to (n1, . . . , nr) in the right hand 
side is a tuple of nested quotients
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(
[Lα � T

(α)
d � · · · � T

(α)
1 ]

)
1≤α≤r

,

where each T (α)
i is the structure sheaf of a finite subscheme of X of length nα,i. By 

Bifet’s theorem on the T-fixed locus of ordinary Quot schemes [4], we have that

⊕
1≤α≤r

(
Lα � T

(α)
i

)
∈ QuotX(E, ni)T (3.1)

for each i = 1, . . . , d, and since each of the original tuples of quotients was nested 
according to n, it follows that also the tuples (3.1) are nested according to n, and this 
proves that (3.1) defines a point in QuotX(E, n)T.

The reverse inclusion follows by an analogous reasoning relying once more on Bifet’s 
result [4]. �
Remark 3.2. For a locally free sheaf L of rank 1, we naturally have the isomorphism

QuotX(L,n) ∼= Hilbn(X),

where Hilbn(X) is the nested Hilbert scheme of points, see for example [9]. Moreover, if 
X = C is a smooth quasiprojective curve, we have (see [9, Sec. 0.2])

Hilbn(C) ∼= Symn1(C) × Symn2−n1(C) × · · · × Symnd−nd−1(C). (3.2)

Assume now X = C is a smooth quasiprojective curve and let x ∈ QuotC(E, n)T be 
a T-fixed point, corresponding to the tuple

([
Lα � T

(α)
d � · · · � T

(α)
1

])
α
∈

r∏
α=1

QuotC(Lα,nα). (3.3)

Set K(α)
i = ker(Lα � T

(α)
i ). The tangent space at x can be written as

Tx QuotC(E,n)

= ker

⎛⎝ ⊕
1≤α,β≤r

d⊕
i=1

HomC

(
K

(α)
i , T

(β)
i

) Δx−−→
⊕

1≤α,β≤r

d−1⊕
i=1

HomC

(
K

(α)
i+1, T

(β)
i

)⎞⎠ .
(3.4)

Denote by w1, . . . , wr the coordinates of the algebraic torus T, which we see as irre-
ducible T-characters. As a T-representation, the tangent space admits the following 
weight decomposition
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Tx QuotC(E,n) = ker

⎛⎝ ⊕
1≤α,β≤r

d⊕
i=1

HomC

(
K

(α)
i ⊗ wα, T

(β)
i ⊗ wβ

)
Δx−−→

⊕
1≤α,β≤r

d−1⊕
i=1

HomC

(
K

(α)
i+1 ⊗ wα, T

(β)
i ⊗ wβ

)⎞⎠ .

We recall the classical result of Białynicki-Birula (see [3, Section 4]), by which we obtain 
a decomposition of QuotX(E, n) in the case when E is completely decomposable.

Theorem 3.3 (Białynicki-Birula). Let X be a smooth projective scheme with a Gm-action 
and let {Xi }i be the connected components of the Gm-fixed locus XGm ⊂ X. Then there 
exists a locally closed stratification X =

∐
i X

+
i , such that each X+

i → Xi is an affine 
fibre bundle. Moreover, for every closed point x ∈ Xi, the tangent space is given by 
Tx(X+

i ) = Tx(X)fix ⊕ Tx(X)+, where Tx(X)fix (resp. Tx(X)+) denotes the Gm-fixed 
(resp. positive) part of Tx(X). In particular, the relative dimension of X+

i → Xi is equal 
to dimTx(X)+ for x ∈ Xi.

The Białynicki-Birula “strata” are constructed as follows. If t denotes the coordinate 
of Gm, we have

X+
i =

{
x ∈ X

∣∣∣ lim
t→0

t · x ∈ Xi

}
.

In particular, the properness assumption assures that the closure of each Gm-orbit in X
contains the Gm-fixed point limt→0 t ·x. Recently Jelisiejew–Sienkiewicz [22] generalised 
Theorem 3.3, proving the X+

i always exists even when X is not projective (or even 
not smooth). However, in the smooth case they cover X as long as the closure of every 
Gm-orbit contains a fixed point.

We now determine a Białynicki-Birula decomposition for QuotC(E, n), where C is a 
smooth quasiprojective curve. See Mochizuki’s paper [24, Section 2.3.4] for an equiva-
lent construction and tangent space calculation (in the projective case), using a slightly 
different, but technically equivalent, tangent complex.1

Let Gm ↪→ T be the generic 1-parameter subtorus given by w → (w, w2, . . . , wr); it 
is clear that QuotC(E, n)T = QuotC(E, n)Gm . Let

Qn =
r∏

α=1
QuotC(Lα,nα) ⊂ QuotC(E,n)Gm

be the connected component of the fixed locus corresponding to the r-tuple n =
(nα)1≤α≤r decomposing n1 + · · · + nr = n.

1 We thank Takuro Mochizuki for kindly sharing with us a note proving that the tangent complex used 
in [24] is quasi-isomorphic to the one encoded by the map Δx.
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Proposition 3.4. Let C be a smooth quasiprojective curve and E =
⊕r

α=1 Lα. Then the 
nested Quot scheme admits a locally closed stratification

QuotC(E,n) =
∐
n

Q+
n ,

where n = (nα)1≤α≤r are such that n1 + · · · + nr = n and Q+
n → Qn is an affine fibre 

bundle of relative dimension 
∑

1≤α≤r(α− 1)nα,d.

Proof. The strata Q+
n are induced by Theorem 3.3 — we just need to show that the 

closure of every orbit contains a fixed point. Choose a compactification C ↪→ C, an 
extension Lα of each line bundle Lα and consider the induced open immersion

QuotC

(
r⊕

α=1
Lα,n

)
↪→ QuotC

(
r⊕

α=1
Lα,n

)
.

The closure of every orbit must contain a fixed point in QuotC
(⊕r

α=1 Lα,n
)
, but the 

Gm-action does not move the support of a nested quotient, by which we conclude that 
such a fixed point had to be already contained in QuotC (

⊕r
α=1 Lα,n).

Let x ∈ Qn be a fixed point as in (3.3). The positive part of the tangent space (3.4)
is

T+
x QuotC(E,n) = ker

⎛⎝⊕
α<β

d⊕
i=1

HomC

(
K

(α)
i , T

(β)
i

) Δ+
x−−→

⊕
α<β

d−1⊕
i=1

HomC

(
K

(α)
i+1, T

(β)
i

)⎞⎠ ,

where Δ+
x is the restriction of the map Δx. Thanks to the vanishings (2.2), Δ+

x is 
surjective, therefore the relative dimension is computed as

dimk T
+
x QuotC(E,n) = dimk

⎛⎝⊕
α<β

d⊕
i=1

HomC

(
K

(α)
i , T

(β)
i

)⎞⎠
− dimk

⎛⎝⊕
α<β

d−1⊕
i=1

HomC

(
K

(α)
i+1, T

(β)
i

)⎞⎠
=

∑
α<β

(
d∑

i=1
nβ,i −

d−1∑
i=1

nβ,i

)

=
r∑

β=1

(β − 1)nβ,d

where we used nβ,i = dimk HomC(K(α)
i , T (β)

i ) since K(α)
i = ker(Lα � T

(α)
i ) has rank 1. 

The proof is complete. �
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4. The motive of the nested Quot scheme on a curve

4.1. Grothendieck ring of varieties

Let B be a scheme locally of finite type over k. The Grothendieck group of B-varieties, 
denoted K0(VarB), is defined to be the free abelian group generated by isomorphism 
classes [X → B] of finite type B-varieties, modulo the scissor relations, namely the 
identities [h : X → B] = [h|Z : Z → B] + [h|X\Z : X \ Z → B] whenever Z ↪→ X is a 
closed B-subvariety of X. The neutral element for the addition operation is the class of 
the empty variety. The operation

[X → B] · [X ′ → B] = [X ×B X ′ → B]

defines a ring structure on K0(VarB), with identity 1B = [id: B → B]. Therefore 
K0(VarB) is called the Grothendieck ring of B-varieties. If B = Speck, we write 
K0(Vark) instead of K0(VarSpeck), and we shorten [X] = [X → Speck] for every k-
variety X.

The main rules for calculations in K0(Vark) are the following:

(1) If X → Y is a geometric bijection, i.e. a bijective morphism, then [X] = [Y ].
(2) If X → Y is Zariski locally trivial with fibre F , then [X] = [Y ] · [F ].

These are, indeed, the only properties that we will use.
The Lefschetz motive is the class L = [A1

k] ∈ K0(Vark). It can be used to express, for 
instance, the class of the projective space, namely [Pn

k ] = 1 + L + · · · + Ln ∈ K0(Vark).

4.2. Independence of the vector bundle

The following result generalises [27, Corollary 2.5], which in turn generalises the main 
theorem of [1] extending it from proper smooth curves to arbitrary smooth varieties.

Proposition 4.1. Let E be a locally free sheaf of rank r on a k-variety X. For every n, 
the motivic class of QuotX(E, n) is independent of E, that is

[
QuotX(E,n)

]
=

[
QuotX(O⊕r

X ,n)
]
∈ K0(Vark).

Proof. Let (Uk)1≤k≤e be a Zariski open cover trivialising E. We can refine it to a locally 
closed stratification X = W1 � · · · � We such that Wk ⊂ Uk, so that in particular 
E|Wk

= O⊕r
Wk

for every k. Each Wk is taken with the reduced induced scheme structure.
Let QuotX,Wk

(E, n) ⊂ QuotX(E, n) be the preimage of Symnd(Wk) ⊂ Symnd(X)
along the projection
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prd ◦ hE,n : QuotX(E,n) →
d∏

i=1
Symni(X) → Symnd(X),

where hE,n is the support map (1.2). We endow QuotX,Wk
(E, n) with the reduced scheme 

structure. We have a geometric bijection

∐
n1+···+ne=n

e∏
k=1

QuotX,Wk
(E,nk) → QuotX(E,n),

therefore the motive [QuotX(E, n)] is computed entirely in terms of the motives 
[QuotX,Wk

(E, nk)]. It is enough to prove that these are independent of E. In the carte-
sian diagram

QuotUk,Wk
(E|Uk

,nk) QuotX,Wk
(E,nk)

QuotUk
(E|Uk

,nk) QuotX(E,nk)

�

←↩ →j

←
↩

→ ←
↩

→

←↩ →open

the open immersion j is in fact surjective, hence an isomorphism. But we can repeat this 
process with O⊕r

X in the place of E. It follows that

QuotX,Wk
(E,nk) ∼= QuotUk,Wk

(O⊕r
Uk

,nk) ∼= QuotX,Wk
(O⊕r

X ,nk),

which yields the result. �
4.3. Proof of the main theorem

Let X be a smooth quasiprojective variety and E a locally free sheaf of rank r. Define

ZX,r,d(q) =
∑
n

[
QuotX(E,n)

]
qn ∈ K0(Vark)�q1, . . . , qd�,

where n = (n1 ≤ · · · ≤ nd) and we use the multivariable notation q = (q1, . . . , qd)
and qn =

∏d
i=1 q

ni . The notation ZX,r,d reflects the independence on E that we proved 
in Proposition 4.1. If X = C is a smooth quasiprojective curve and r = d = 1, then 
ZC,1,1(q) is simply the Kapranov motivic zeta function

ZC,1,1(q) = ζC(q) =
∑
n≥0

[
Symn(C)

]
qn. (4.1)

We can now prove our main theorem, first stated in Theorem A in the Introduction.
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Theorem 4.2. Let C be a smooth quasiprojective curve. The generating series ZC,r,d(q)
is a product of shifted motivic zeta functions: there is an identity

ZC,r,d(q) =
r∏

α=1

d∏
i=1

ζC
(
Lα−1qiqi+1 · · · qd

)
.

In particular, ZC,r,d(q) is a rational function in q1, . . . , qd.

Proof. By Proposition 4.1 the motive [QuotC(E, n)] is independent on the vector bundle 
E, so we may assume E = O⊕r

C . In this case, we may compute the motive exploiting the 
decomposition of QuotC(O⊕r

C , n) given by Proposition 3.4. Every stratum is a Zariski 
locally trivial fibration over a connected component of the fixed locus, with fibre an affine 
space whose dimension we computed in Proposition 3.4.

In what follows, we denote by nα = (nα,1 ≤ · · · ≤ nα,d) a nested tuple of non-
negative integers and by lα = (lα,1, . . . , lα,d) a tuple of non-negative integers. Clearly the 
two collections of tuples are in bijection, by means of the correspondence

(nα,1 ≤ · · · ≤ nα,d) ←→ (nα,1, nα,2 − nα,1, . . . , nα,d − nα,d−1). (4.2)

We compute∑
n

[
QuotC(O⊕r

C ,n)
]
qn

=
∑
n

qn
∑

n1+···+nr=n

r∏
α=1

[
QuotC(OC ,nα)

]
· L(α−1)nα,d by Proposition 3.4

=
∑

n1,...,nr

r∏
α=1

qnα
[
Hilbnα(C)

]
· L(α−1)nα,d

=
∑

l1,...,lr

r∏
α=1

(
d∏

i=1
q
∑i

j=1 lα,j

i

)
·
[
Hilbnα(C)

]
· L(α−1)

∑d
i=1 lα,i by (4.2)

=
∑

l1,...,lr

r∏
α=1

d∏
i=1

q
∑i

j=1 lα,j

i ·
[
Symlα,i(C)

]
· L(α−1)lα,i by (3.2)

=
∑

l1,...,lr

r∏
α=1

d∏
i=1

(qiqi+1 · · · qd)lα,i ·
[
Symlα,i(C)

]
· L(α−1)lα,i

=
r∏

α=1

d∏
i=1

ζC
(
Lα−1qiqi+1 · · · qd

)
by (4.1).

The rationality follows by the rationality of the Kapranov zeta function, proved in [23, 
Theorem 1.1.9]. �
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Remark 4.3. We can reformulate our main theorem in terms of the motivic exponential, 
for which a minimal background is provided in Appendix A. The case r = d = 1 yields 
the classical expression

ζC(q) = Exp+([C]q).

The general case becomes

ZC,r,d(q) = Exp+

([
C
] r∑
α=1

Lα−1
d∑

i=1
qiqi+1 · · · qd

)

= Exp+

([
C ×k P r−1

k
] d∑
i=1

qiqi+1 · · · qd

)
.

Setting d = 1 we recover the calculations of [1,27].

4.4. Hodge–Deligne polynomial

In this subsection we work over k = C. Ring homomorphisms K0(VarC) → R are 
called motivic measures. A typical example of a motivic measure is the Hodge–Deligne 
polynomial

E : K0(VarC) → Z[u, v],

defined by sending the class [Y ] of a smooth projective variety2 Y to

E(Y ;u, v) =
∑
p,q≥0

dimC Hq(Y,Ωp
Y )(−u)p(−v)q.

Notation 4.4. If f(u, v) =
∑

i,j piju
ivj ∈ Z[u, v], we set

(1 − q)−f(u,v) =
∏
i,j

(
1 − uivjq

)−pij
.

This is actually the formula defining the power structure on Z[u, v]. The motivic measure 
E can be proved to be a morphism of rings with power structure, see [18] for full details.

2 By a beautiful result of Bittner [5], the classes of smooth projective varieties generate K0(Vark) as soon 
as chark = 0. But of course E can be defined on arbitrary varieties via mixed Hodge structures.
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Let C be a smooth projective curve of genus g. We have

E(ζC(q)) =
∑
n≥0

E(Symn(C);u, v)qn = (1 − q)−E(C;u,v)

= (1 − q)−(1−gu−gv+uv)

= (1 − uq)g(1 − vq)g

(1 − q)(1 − uvq) .

(4.3)

For E a locally free sheaf of rank r over C, define

EC,r,d(q) =
∑
n

E(QuotC(E,n);u, v)qn.

As a direct consequence of Theorem 4.2, we obtain the following corollary.

Corollary 4.5. There is an identity

EC,r,d(q) =
r∏

α=1

d∏
i=1

(
1 − uαvα−1qiqi+1 · · · qd

)g (1 − uα−1vαqiqi+1 · · · qd
)g

(1 − uα−1vα−1qiqi+1 · · · qd) (1 − uαvαqiqi+1 · · · qd)
.

Proof. This follows by combining Theorem 4.2 and Equation (4.3) with one another, 
after observing that E is multiplicative (being a ring homomorphism) and sends L to 
uv. �

The generating function of the signed Poincaré polynomials is obtained from EC,r,d(q)
by setting u = v. The result confirms a result of L. Chen [11] obtained in the case C = P 1. 
The generating series of topological Euler characteristics is obtained from EC,r,d(q) by 
setting u = v = 1, also in the quasiprojective case. So we obtain

∑
n

etop(QuotC(E,n))qn =
d∏

i=1
(1 − qiqi+1 · · · qd)−r·etop(C)

.

Appendix A. Motivic exponentials

If (Λ, μ, ε) is a commutative monoid in the category of k-schemes, where μ : Λ ×Λ →
Λ is the multiplication map and ε : Speck → Λ is the identity element, then by [12, 
Example 3.5 (4)], one has a λ-ring structure σμ on the Grothendieck ring

K0(VarΛ),

determined by the operations

σn
μ

[
Y

f−→ Λ
]

=
[
Symn Y

Symn f−−−−−→ Symn Λ μ−→ Λ
]
.
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Assume Λ+ ⊂ Λ is a sub-monoid such that 
∐

n>0 Λ×n
+ → Λ is of finite type. Then we 

can define the motivic exponential

Expμ : K0(VarΛ+) → K0(VarΛ)×

by setting

Expμ(A) =
∑
n≥0

σn
μ(A)

for an effective class A, and extending via

Expμ(A−B) = Expμ(A) · Expμ(B)−1

whenever A and B are effective. The map Expμ is injective. See [13, Section 1] for more 
details.

We use this construction in the case (Λ, μ, ε) = (Nd, +, 0), and setting Λ+ = Nd\0. Of 
course here we are seeing Nd as the k-scheme 

∐
n∈Nd Speck. There is an isomorphism

K0(Vark)�q1, . . . , qd� K0(VarNd)←→∼

defined by sending

∑
n∈Nd

Yn · qn1
1 · · · qnd

d →

⎡⎣ ∐
n∈Nd

Yn → Speck(n)

⎤⎦
for varieties Yn, and extending by linearity. Under this identification, if we let m be 
the ideal generated by (q1, . . . , qd) in K0(Vark)�q1, . . . , qd�, we can see Exp+ as a group 
isomorphism

Exp+ : m ·K0(Vark)�q1, . . . , qd� 1 + m ·K0(Vark)�q1, . . . , qd�

⊂ (K0(Vark)�q1, . . . , qd�)×

←→∼

between an additive group (on the left) and a multiplicative group (on the right). In 
particular, one has the identity

Exp+

(
s∑

�=1

f�(q1, . . . , qd)
)

=
s∏

�=1

Exp+(f�(q1, . . . , qd))

for f�(q1, . . . , qd) ∈ m ·K0(Vark)�q1, . . . , qd�.
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