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1 Introduction

Global symmetries in quantum field theory (QFT) are an indispensable tool, especially at
strong coupling. As such, symmetry considerations oftentimes have inspired far-reaching
insights into non-perturbative physics.

The modern understanding of p-form global symmetries, pioneered in [1], begins with the
notion of topological operators Da(γ) supported on codimension-(p+ 1) submanifolds that
act on p-dimensional operators. From this topological perspective, it is natural to consider
symmetries that do not obey the standard multiplication rules of a group, but that instead
exhibit a more general categorical fusion algebra:

Da ×Db =
∑

c
N c

ab Dc. (1.1)

The expression on the right-hand-side offers two important points of departure from the
standard discussion of symmetry groups. First, it allows for the presence of multiple operators
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Dc. Second, the coefficients N c
ab are topological quantum field theories (TQFTs) instead of

ordinary c-numbers. This type of symmetries are commonly referred to as non-invertible.
Their existence has been appreciated for a long time in the context of both d = 2 conformal
field theories (CFTs) [2, 3] and d = 3 TQFTs [4, 5], where many new insights have appeared
recently [6–13]. The generalization of these concepts to d ≥ 3 QFTs has been the subject
of intense research over the past few years, see for instance [14–36].

The starting point of this work is the recent discovery that N = 4 super-Yang-Mills
(SYM) theory exhibits a particular class of non-invertible symmetries implemented by the so
called self-duality defects [14, 15, 19, 20]. The basic idea behind the construction of these
defects is as follows. An N = 4 SYM theory Tρ(τYM) with gauge algebra g is labelled by
a choice ρ of gauge group and by its complexified gauge coupling τYM. The theory enjoys
SL(2,Z) Montonen-Olive duality [37]. The S generator identifies theories with τ ′YM = − 1

τYM
and Langlands dual gauge group ρ′ = ρL, while T identifies τ ′YM with τYM + 1 which means
a shift of the theta angle for ρ [38]. Besides, the theory admits topological manipulations
φg : Tρ(τYM)→ Tρg(τYM) which correspond to a generalized gauging of the 1-form symmetry.
We will discuss them in depth in section 2. These act only on the global form ρ and
generically give rise to an interface between two inequivalent gauge theories. For special
values τ∗YM of τYM it might happen that Tρg(τ∗YM) is dual to Tρ(τ∗YM) by some element g
of SL(2,Z). Denoting the duality interface by Ig : Tρ(τYM) → Tρg(g · τYM) we see that
τ∗YM needs to be invariant under a discrete subgroup of SL(2,Z). We can then define a
defect Dg : Tρ(τ∗YM) → Tρ(τ∗YM) by

Dg = φ† ◦ Ig, pictorially:

φ†
g

Ig

Tρ(τ∗YM) Tρ(τ∗YM)Tρg−1 (τ∗YM) =

Dg

(1.2)

This defect is non-invertible since:

Dg ×Dg = C , (1.3)

with C a 3d condensation defect of the 1-form symmetry [39]. At τ∗YM = i, Dg implements
a non-invertible S duality symmetry while at τ∗YM = e

2πi
3 it implements a non-invertible

ST triality symmetry.
The main goal in this paper is to explore how the non-invertible symmetry implemented

by Dg behaves under RG flows triggered by mass deformations. Our primary focus is on
N = 1 preserving deformations: decomposing the N = 4 vector multiplet into one vector
and three chiral N = 1 multiplets, we study what happens when some or all of the chiral
multiplets get a mass. Since the SL(2,Z) modular group has a non-trivial action on the
supercharges of N = 4 SYM [40, 41], the only way to preserve the duality/triality symmetry
is to combine Dg with a suitable R-symmetry rotation inside the maximal torus of the SU(4)R

R-symmetry group that is also explicitly broken by the massive deformation. In practice
this amounts to a discrete rotation inside the superconformal U(1)R. The fact that N = 1
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mass deformations can preserve a duality symmetry was already appreciated long ago [42]. A
similar idea was also exploited in the construction of 4d S-folds [43–45].

When all three chiral multiplets get a mass, one ends up with the so called N = 1∗
SYM theory [46–49]. The structure of vacua of this theory is quite rich, and comprises
both gapped and gapless vacua. In this work we present a detailed description of how the
non-invertible self-duality defects are realized in these vacua. An important point is that all
gapped vacua are organized into orbits of the spontaneously broken duality/triality symmetry.
A spontaneously broken non-invertible symmetry can relate ground states featuring different
physical properties. More precisely, we find that the domain walls associated with such a
spontaneously broken symmetry can interpolate between different realizations of the 1-form
symmetry, e.g., between a Higgs and a confining phase. Similar examples of this kind have
already appeared in the literature [6, 7], remarkably in the tricritical Ising model in two
dimensions.1 Our work provides an explicit example in four dimensions.2

We exhaustively classify the TQFTs describing the gapped vacua and establish a bijective
correspondence between gapped phases, global forms of the gauge group, and TQFTs with ZN

1-form symmetry. We provide detailed examples of these features for theories based on the Lie
algebra su(N) with N = 2, 3, and 4. For gapless vacua in su(N) N = 1∗ SYM with N ≥ 3,
we describe how to realize non-invertible symmetries in a Coulomb vacuum using a single
U(1) gauge field, while more general cases remain to be explored in future work. As a final
consistency check, we compute the anomalies associated to duality and triality symmetries
following [50, 51].3 We conclude that, for all values of N with a self-duality symmetric ground
state, the anomaly vanishes. This follows from a nontrivial cancellation between the pure
self-duality anomaly and the cubic anomaly associated with the superconformal U(1)R.

Our analysis can be readily adapted to other interesting classes of RG flows that we
explore. It is known that the self-duality defects are not limited to N = 4 SYM and exist
also in more general N = 2 SCFTs [53–56]. As shown in [54, 55], for those theories it is more
convenient to consider the class S formulation. We generalize previous analysis by considering
theories whose UV curve is a torus with regular punctures associated to fundamental matter.
As discussed above, giving mass to the adjoint scalars in the N = 2 vector multiplets allows
one to define N = 1 preserving RG flows which also preserve the non-invertible self-duality
symmetry defects. In this context, we discuss the RG flow whose IR fixed point is the N = 1
conifold theory (also known as Klebanov-Witten theory) [57].4 Thanks to our construction,
we can demonstrate that the conifold theory inherits a self-duality symmetry defect. To
strengthen this perspective, we study the holographic realization of the model in type IIB
string theory and show how it matches the expectations from field theory. In the special
case of the conifold theory with su(2) × su(2) gauge algebra, one can derive the action of

1The tricritical Ising model admits a relevant duality-preserving deformation by the ϵ′ operator. With
a certain sign of the deformation, the theory flows to a gapped phase with three vacua. These should be
interpreted as a direct sum Z2 ⊕ trivial, representing the spontaneous symmetry breaking (SSB) of the duality
symmetry. We thank Yifan Wang for pointing this out to us.

2See also [15] for a related analysis in the context of pure N = 1 SO(3) SYM.
3See also [52] for similar computations.
4Self-duality symmetry defects in the conifold theory, as well as general N = 1 SCFTs from D3-branes at

conical singularities, have also been studied in [36].
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S-duality on the global forms from Seiberg duality of so(4) super-QCD. Our construction
can be generalized to class S theories without a Lagrangian description since many details of
their symmetry structure have already been studied [58–60]. This opens up the possibility to
discover non-invertible duality defects in a wide variety of strongly coupled N = 1 SCFTs.

We point out that our strategy to construct novel examples of non-invertible self-duality
defects is in principle stable under the effect of mass deformations that break supersymmetry
completely. An interesting example is the deformation by the bottom component of the
N = 4 Konishi supermultiplet. This point certainly deserves further study, in particular it
would be interesting to understand its relevance for the IR physics of Nf = 4 adjoint QCD.

The paper is organized as follows. In section 2 we review the construction of non-invertible
self-duality defects in N = 4 SYM and their action on global variants. We then introduce
the duality action on massive deformations and describe the construction of non-invertible
symmetries preserved along the RG flow. In section 3 we discuss the realization of self-duality
symmetries on massive vacua of N = 1∗ SYM and formulate a simple criterion to establish
when these symmetries are spontaneously broken, including a description of the physical
consequences of such spontaneous symmetry breaking (SSB) process. We then comment
on some applications to gapless (Coulomb) vacua and the cubic anomalies of self-duality
symmetries. In section 4 we study generalizations of our construction in which the starting
point is an N = 2 SCFT. We give an explicit derivation of the self-duality defects for the Zr

orbifolds of N = 4 SYM using its class S description, and discuss their fate under massive
RG flows. Our main example is the flow to the N = 1 conifold theory. We discuss the
holographic description of such a duality and its relation to N = 1 Seiberg duality. Technical
details, mainly involving formal manipulations of TQFTs with Z[1]

N 1-form symmetry, are
included in appendices.

2 Duality-preserving flows in 4d N = 4 SYM

We begin with a review of several aspects of N = 4 theories which are instrumental to our
work. We start reviewing the classifications of global variants for a pure gauge theory based
on the g = su(N) gauge algebra, following [38]. We then combine this with Montonen-Olive
duality to describe in detail the non-invertible duality and triality defects of N = 4 SYM.
Finally, we outline the general strategy to introduce duality-preserving RG flows and give
several key examples.

2.1 Global variants and line operators

Consider a four-dimensional gauge theory based on the simple Lie algebra g and with
connected gauge group G. We denote the universal cover of G by G̃ and the center of the
latter by Γ. Then the gauge group is G = G̃/Π and its center is Γ/Π, where Π ⊂ Γ is a
subgroup. Different choices of Π define different global variants of the gauge group based
on the same Lie algebra. However, in order to completely characterize the gauge theory, in
general one should also specify the set of allowed line operators [38]. Each line falls in a
conjugacy class specified by a pair (ae, bm) ∈ Γ̂×Γ, where Γ̂ = {homomorphisms : Γ→ R/Z}
is the Pontryagin dual to Γ (and is isomorphic to it). The set L of allowed conjugacy classes
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of lines is subject to a version of Dirac quantization (ensuring that correlation functions of
line operators are local) which is expressed in terms of the natural pairing:

0 =
〈
(ae, bm), (ce, dm)

〉
= ae(dm)− ce(bm). (2.1)

For example, if Γ = ZN then (ae, bm) = (n,m) mod N and the quantization condition
requires that for each pair of line operators (n,m) and (n′,m′):

nm′ −mn′ = 0 mod N. (2.2)

The set of allowed classes should also be maximal. Satisfaction of the two conditions
corresponds to the choice of a Lagrangian subgroup L of Γ̂ × Γ. The set of Wilson lines,
namely of elements in L of the form (γ̂, 0), is fixed by the global variant G: γ̂ ∈ Γ̂ are such
that Π ⊂ ker(γ̂) (they form a subgroup isomorphic to the center Γ/Π of G). Even after
imposing this condition, for a given global variant there can be physically different choices
of allowed line operators (i.e., different choices of L ). From the Lagrangian point of view,
the different theories are distinguished by various types of theta terms [38].

In this section we will mostly focus on four-dimensional N = 4 supersymmetric5 Yang-
Mills theory with Lie algebra su(N). In this case the maximal center is Γ = ZN and the
gauge group is SU(N)/Π with Π = Zk and k is a divisor of N . When Π is trivial, the gauge
group is SU(N) and the set of allowed line operators corresponds to the Lagrangian subgroup

L1,0 =
{
(ae, bm) = (n, 0) mod N

∣∣ n ∈ Z
}
. (2.3)

These are the standard Wilson line operators in representations of N -ality n, and in this
paper we denote them by D(n,0). When Π = ZN , the possible sets of allowed classes of line
operators (i.e., the possible Lagrangian subgroups) are given by

LN,ℓ =
{
(ae, bm) = (ℓm,m) mod N

∣∣ m ∈ Z
}
, (2.4)

where for each value of ℓ ∈ ZN we have a different possible choice. Indeed there are distinct
theories, that we dub

(
PSU(N) = SU(N)/ZN

)
ℓ, whose line operators have charges as in (2.4).

We denote such line operators by D(ℓm,m). Importantly, the N distinct theories are related
to each other by the Witten effect [61]. A shift θ → θ + 2π of the theta parameter induces
a shift (ae, bm)→ (ae + bm, bm) of the labels, implying the following identification between
different PSU(N)ℓ theories:

PSU(N)θ+2π
ℓ = PSU(N)θ

ℓ+1. (2.5)

In the general case, one has Π = Zk with k a divisor of N , and we write N = kk′. The
possible Lagrangian subgroups are

Lk,ℓ =
{
(ae, bm) = n (k, 0) +m (ℓ, k′) mod N

∣∣ n,m ∈ Z
}
, (2.6)

5Supersymmetry will play a role only when discussing dualities. Everything that pertains to the choice of
global variant and line operators applies to generic gauge theories. However one should remember that, in the
presence of matter fields, only those global variants such that the matter representation is invariant under Π
are allowed. Here we will have in mind the case that the matter representation is invariant under the full Γ.
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with ℓ ∈ Zk. They correspond to the possible classes of line operators in the theories(
SU(N)/Zk

)
ℓ. A shift θ → θ + 2π relates different theories according to:

(
SU(N)/Zk

)θ+2π

ℓ
=
(
SU(N)/Zk

)θ
ℓ+k′ . (2.7)

Note that when gcd(k, k′) = p > 1, there exist p sets of theories with the same gauge group
that are not related by shifts of θ. For instance, when N = 4 the two theories

(
SU(4)/Z2

)
0

and
(
SU(4)/Z2

)
1 are not related by a shift of θ. The total number of distinct theories (for

fixed θ) is given by the sum of the divisors of N :

number of theories = σ1(N) =
∑
d |N

d. (2.8)

This number will come up again in later discussions.
For 4d N = 4 SYM with gauge algebra su(N), theories with different global form are

related by SL(2,Z) S-duality. The duality group is generated by the operations T =
( 1 1

0 1
)

and
S =

( 0 −1
1 0

)
. They act by fractional linear transformations on the complexified gauge coupling

τYM = θ

2π + 4πi
g2

YM
(2.9)

as follows, T : τYM 7→ τYM +1 and S : τYM 7→ − 1
τYM

. They also act on the labels
( ae

bm

)
of lines

as described by their matrix form, and consequently on the Lagrangian subgroup L as [38, 62]6

T : Lk,ℓ 7→ Lk,ℓ+k′ , S : Lk,ℓ 7→ LN/p, −k′(ℓ/p)−1
mod k/p

with p = gcd(k, ℓ). (2.10)

The notation (a)−1
mod b indicates the inverse of a in Zb, which exists if gcd(a, b) = 1. The

group that acts faithfully on the set of global forms is PSL(2,ZN ).7 We will come back
to it in section 2.2.

Another way to connect gauge theories with different global form, and that applies to
more general 4d gauge theories than N = 4 SYM because it does not rely on duality, is the
following [1]. We note that the gauge theories are characterized by a 1-form symmetry. For
simplicity we restrict to gauge algebra su(N) and to matter whose representation is invariant
under the maximal center Γ. Then the 1-form symmetry is ZN for the global variants SU(N)
and PSU(N), while more generally it is the Pontryagin dual to

Lk,ℓ =
(
Zk′ × ZN/ gcd(k′,ℓ)

)
/Zk′/ gcd(k′,ℓ) ∼= ZN/ gcd(k,k′,ℓ) × Zgcd(k,k′,ℓ) (2.11)

and it has order N in all cases. The first equality is apparent from (2.6) where the quotient
comes from the relation k(ℓ, k′) ∼ (ℓk, 0) mod N , while the second isomorphism is shown
in [62].8 We can then associate to each theory its partition function in the presence of a
background 2-form discrete gauge field B for the 1-form symmetry. Different global variants

6Note that S : Lk,0 7→ Lk′,0 because p = k and then 0−1 = 0 in Z1.
7The theories form orbits under PSL(2,ZN ), one orbit for each square divisor d2 of N . Each orbit contains

a number of theories equal to ψ
(
N/d2), where ψ(n) = n

∏
p|n

(
1 + 1/p

)
is the Dedekind psi function and the

product is over all primes p that divide n. The orbit of Lk,ℓ is identified by d = gcd(k, k′, ℓ).
8For N = 4 SYM, as it should, the 1-form symmetry is invariant (up to isomorphisms) under S-duality.
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are related by partially or completely gauging the 1-form symmetry. It also turns out that
there is an anomaly in the space of couplings [63] that involves the θ angle and the 1-form
symmetry. For instance, for gauge group SU(N) we have that under θ → θ+2π the partition
function on X changes as

Z(B) → exp
(2πi(N − 1)

2N

∫
X
P(B)

)
Z(B), (2.12)

where B ∈ H2(X,ZN ), P : H2(X,ZN ) → H4(X,ZN gcd(N,2)
)

is the Pontryagin square
operation, and P(B) is an even integer class on spin manifolds, which we will assume for the
rest of the paper. Indeed, we can always add to the theory the following local counterterm in
the background field B (that we can think of as an invertible TQFT on X):

SPTk(B) = exp
(2πik

2N

∫
X
P(B)

)
. (2.13)

This produces a background-dependent phase.
We can thus refine the classification of global forms by keeping track of the coupling to

the background field, in terms of the partition functions Z(B). For simplicity9 we restrict to
the case that the 1-form symmetry is ZN . We then introduce two topological manipulations
σ and τ [1, 64, 65] that transform the partition function as follows:

σ : [σZ](B) = 1√∣∣H2(X,ZN )
∣∣ ∑

b∈H2(X,ZN )
exp

(2πi
N

∫
X
b ∪B

)
Z(b),

τ : [τZ](B) = exp
(2πi
2N

∫
X
P(B)

)
Z(B).

(2.14)

The operation σ corresponds to gauging the 1-form symmetry, while τ acts by adding the
local counterterm SPT1(B). Together, they generate the group SL(2,ZN ).10

The topological operations σ and τ affect the spectrum of line operators, and this fact
can be used to understand how they act on global variants. We use the notations SU(N)p

and PSU(N)k,p where the extra label p indicates the counterterm (2.13). We also define
the following combined action:

Φk ≡ σ τk. (2.15)

9We either assume that N does not have square divisors and thus the 1-form symmetry is ZN in all global
forms of su(N), or we restrict to the orbit of SU(N). When N is not prime, one can also partially gauge the
1-form symmetry, i.e., restrict the sum in (2.14) to b ∈ H2(X,Zk) for a divisor k of N . We will discuss some
additional details of a non-prime N in an example below.

10Studying the operations σ, τ on generic (not necessarily spin) oriented 4-manifolds, one obtains a central
extension of SL(2,Z) in which the extension is by stacking with the invertible TQFTs

[
Z(2)

N

]
k

[55, 65].
Here

[
Z(2)

N

]
k

indicates the ZN 2-form Dijkgraaf-Witten theory whose partition function reads Yk =
|H2|−1/2∑

b∈H2 exp
(

2πik
2N

∫
X
P(b)

)
for k ∈ Z∗

N . For instance, one finds that (στ)3 = Y1. On simply-connected
spin manifolds all Yk reduce to 1 [19], and the faithful action of σ, τ reduces to SL(2,ZN ). In any case, one
can consider the action of σ, τ on theories coupled to B modulo stacking with invertible TQFTs, which is
SL(2,ZN ).

– 7 –



J
H
E
P
0
2
(
2
0
2
4
)
0
8
4

The SU(N)0 theory has genuine Wilson line operators D(n,0) supported on a curve γ which
we can always couple to the ZN background field as follows:

D(n,0)(B) = D(n,0)[γ] exp
(2πin

N

∫
Σ
B

)
, ∂Σ = γ. (2.16)

This gives D(n,0) the correct charge under ZN gauge transformations. One can also consider
non-genuine ’t Hooft operators DU

(0,m)[γ] which need to live at the boundary of the surface
operators Ue[Σ] that generate the electric 1-form symmetry [1], in other words, the lines
DU

(0,m) are in twisted sectors. If we act with Φ0 on SU(N)0, the correlation functions of Ue[Σ]
become trivial and the roles of D(n,0) and DU

(0,m) get exchanged, namely the ’t Hooft operators
D(0,m) become genuine line operators while the Wilson lines DU

(n,0) become non-genuine. To
understand what is the effect of Φk>0 on SU(N)0 we first need to consider a ZN background
gauge transformation B → B + δλ. From (2.16) we have

D(n,0)(B) → exp
(2πin

N

∫
γ
λ

)
D(n,0)(B), (2.17)

expressing the ZN charge. On the other hand, the insertion of an ’t Hooft line operator
DU

(0,m) supported on γ corresponds to a variation of the background field by a ∆B such that
δ(∆B) = mPD[γ], where PD[γ] is a delta-3-form localized on γ (its Poincaré dual). As a
consequence, the counterterm SPTk(B) ceases to be gauge invariant and instead:

SPTk(B) → exp
(
−2πikm

N

∫
X
PD[γ] ∪ λ

)
SPTk(B). (2.18)

This shows that acting with Φk on SU(N)0 gives a global form in which the line operators
D(km,m) ≡ D(km,0)D(0,m) are gauge invariant and thus genuine. This fact characterizes the
global variant PSU(N)k with Lagrangian subgroup LN,k.

As an example, the set of actions for su(2) N = 4 SYM is:

SU(2)0 PSU(2)0,0 PSU(2)1,0

SU(2)1 PSU(2)0,1 PSU(2)1,1

τ

σ

τ
τσ

σ

(2.19)

2.2 Non-invertible self-duality defects

For N = 4 SYM, one can discuss the interplay between the topological action described
above and the action of SL(2,Z) S-duality discussed around (2.9). We will do that for Lie
algebra su(N). As explained in [41] and reviewed above, the action of SL(2,Z) generates
duality orbits connecting theories with different global structure. The action on lines is

S : (n,m) 7→ (−m,n), T : (n,m) 7→ (n+m,m). (2.20)

For instance, the duality orbits for N = 2, 3, 4 are the following.
su(2):

SU(2) PSU(2)0 PSU(2)1T
S T

S (2.21)
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The theories PSU(2)0 and PSU(2)1 are usually denoted as SO(3)+ and SO(3)−.
su(3): PSU(3)1

SU(3) PSU(3)0

PSU(3)2

T ST
S

T

T

(2.22)

su(4):
(SU(4)/Z2)0 S,T

PSU(4)1

SU(4) PSU(4)0 PSU(4)2 (SU(4)/Z2)1

PSU(4)3

T

S

T

S

T

T

S

T
T

(2.23)

As described in [20], one can refine the description by taking into account the coupling
to a ZN background field B and combine the actions of S, T with those of σ, τ . For instance,
in the case of su(2) N = 4 SYM one obtains:

SU(2)0 PSU(2)0,0 PSU(2)1,0

SU(2)1 PSU(2)0,1 PSU(2)1,1

T,τ

S,σ

τ

T

S,τσ

S

T,σ

(2.24)

Similar tables, of increasing complexity, can be drawn for groups of higher rank (see [20]).
We describe a simple way to do that for N prime in section 3.3.

The topological and duality operations can be used to construct self-duality defects. As
an example, consider the theory SU(2)0. From (2.24) we see that

[σS ZSU(2)0 ](τYM, B) = ZSU(2)0

(
− 1

τYM
, B
)
. (2.25)

In particular, for τYM = i the operation σS maps the theory to itself and therefore it becomes
a symmetry, implemented by a topological defect in the theory. The construction generalizes
to any value of N . Let us denote by Tρ(τYM) the set of global forms of N = 4 SYM with Lie
algebra su(N), where ρ labels the global form. The family of theories is acted upon by duality
transformations implemented by topological interfaces Ig : Tρ(τYM)→ Tρg(g · τYM), where
g ∈ SL(2,Z) acts both on the global form and the coupling. Meanwhile, the global form ρg

can also be reached by a sequence of σ and τ operations, implemented by another topological
interface φg : Tρ(τYM) → Tρg(τYM). The action of the modular group on the conformal
manifold of N = 4 SYM has fixed points at orbifold singularities on the fundamental domain
F = H+/SL(2,Z), located at

τ∗YM = i, e2πi/3, i∞. (2.26)

At these points the stabilizer group H =
{
g ∈ SL(2,Z)

∣∣ g · τ∗YM = τ∗YM
}

is11

H = Z4, Z6, Z, (2.27)
11We have also included the action of charge conjugation C which acts trivially on F .
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and is generated by S, ST , T , respectively. At the special points, H becomes a symmetry
and for each of its elements we can construct a defect Dg = φ†

g ◦ Ig : Tρ(τ∗YM) 7→ Tρ(τ∗YM).
The defect Dg satisfies the following relations [20]:

Dg ×Dh = Ng,h Dgh

Dg ×Dg = C,
(2.28)

where Ng,h are some 3d TQFTs, and Dg is the orientation reversal of Dg. The topological
operator C is known as a 3d condensate, or higher gauging [39], of the 1-form symmetry
on a 3d submanifold.

2.3 Duality-preserving RG flows

After reviewing the self-duality symmetries of N = 4 SYM, we address the question of
constructing relevant deformations that trigger an RG flow while preserving those symmetries.

In the language of N = 1 supersymmetry, the field content of N = 4 SYM is given by a
vector multiplet V = (Aµ, λα) and three chiral multiplets Φi=1,2,3 = (ϕi, ψiα) transforming in
the adjoint representation of the gauge group. The theory has a superpotential

W =
√
2 TrΦ1[Φ2,Φ3]. (2.29)

The R-symmetry group is SU(4)R, although only U(1) × SU(3) is manifest in the N = 1
description. The SL(2,Z) duality group also acts on the supercharges QA

α , where A is an
index in the fundamental representation of SU(4)R [40, 41]. Given M =

(
a b
c d

)
in SL(2,Z)

that acts as τYM 7→ aτYM+b
cτYM+d on the coupling, its action on the supercharges is

M ·QA
α =

( |c τYM + d|
c τYM + d

)1/2
QA

α . (2.30)

This action was chosen so as to commute with SU(4)R. The square root signifies that the
group that acts on the supersymmetries is a double cover of SL(2,Z), centrally extended
by S4 = C2 = (−1)F which changes the sign of all fermions. The extension is called the
metaplectic group Mp(2,Z). Notice that (−1)F is also a central element of SU(4)R. The
one in (2.30) is a U(1) action, and the one on Q is its conjugate. Indeed, an operator O is
said to have charge q under modular transformations if it transforms as

M · O =
( |c τYM + d|
c τYM + d

)q/2
O, (2.31)

and thus QA
α has charge 1. For a Zk subgroup of SL(2,Z) occurring at an invariant value

of τYM, its action on the supercharges is

M ·QA
α = e−

iπ
k QA

α . (2.32)

The action of the modular group on the field strength F and its dual F̃ is the standard
one described by the matrix representation:

(
F̃
F

)
7→M

(
F̃
F

)
. This implies that the operator

1√
Im τ

(F̃ − τF ) has charge 2. For the choice we made of the modular action, the real scalars
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ϕI (with I an index in the rank-2 antisymmetric representation of SU(4)R) are invariant,
while the fermions transform as the Q’s.

A simple class of superpotential deformations that we will analyze in this paper is:

δW =
3∑

i=1
mi TrΦ2

i . (2.33)

These superpotentials partially break supersymmetry. If all the masses mi ̸= 0, the resulting
theory only retains N = 1 supersymmetry and it is typically referred to as the N = 1∗
theory. When m1 = m2 ̸= 0 and m3 = 0, the theory has N = 2 supersymmetry. If instead
m1 = m2 = 0 but m3 ̸= 0, the theory flows to a N = 1 superconformal fixed point with
a conformal manifold [66].

We ask whether the superpotential deformations (2.33) are also invariant under the
action of the duality defects Dg introduced above. We notice that the superspace coordinates
θ are also charged under S-duality, in particular they transform in the opposite way with
respect to the supercharges (2.32), and therefore

M · d2θ = e−
2πi

k d2θ. (2.34)

Here d2θ is the (holomorphic) differential for the N = 1 superspace coordinate. It follows
that the superpotential should transform as M ·W = e

2πi
k W in order to lead to an invariant

Lagrangian, however the chiral superfields Φi are neutral. To remedy, we combine Dg with a
suitable R-symmetry rotation Rφ inside the maximal torus of SU(4)R such that

Dφ = Rφ ×Dg (2.35)

is a symmetry of the deformed theory. The complex scalar fields ϕi, the fermions ψiα and the
gaugino λα have the following charges under the Cartan subalgebra U(1)1,2,3 of SU(4)R:

ϕ1 ϕ2 ϕ3 ψ1 ψ2 ψ3 λ d2θ

U(1)1 1 0 0 1
2 −

1
2 −

1
2

1
2 −1

U(1)2 0 1 0 −1
2

1
2 −

1
2

1
2 −1

U(1)3 0 0 1 −1
2 −

1
2

1
2

1
2 −1

U(1)R
2
3

2
3

2
3 −

1
3 −

1
3 −

1
3 1 −2

(2.36)

In the last column we indicated the charges of the differential d2θ, while in the last row
we indicated the charges under the N = 1 superconformal R-symmetry U(1)R which is
a diagonal combination of the previous three. Using these charges, we can discuss which
non-invertible duality symmetries of the form (2.35) are preserved by the superpotential
deformations (2.33) and along the resulting RG flows. For the class of examples we consider,
we can always choose Rφ to lie within U(1)R.

Example I. Let us first consider the case m1 = m2 = 0 and m3 ≡ m ̸= 0:

δW = mTrΦ2
3. (2.37)

– 11 –



J
H
E
P
0
2
(
2
0
2
4
)
0
8
4

This example preserves N = 1 supersymmetry. Under an S-duality transformation the
integrated superpotential deformation

∫
d2θ δW picks up a phase e− 2πi

k because of (2.34).
From (2.36), its charge under U(1)R is[ ∫

d2θ δW
]

R
= −2

3 . (2.38)

We can thus compensate the effect of the duality transformation by a superconformal U(1)R

rotation R− 3π
k

, that applies a rotation by an angle −3π
k and thus it gives a phase e 2πi

k to
the integrated superpotential. We conclude that

D 2π
k
= R− 3π

k
×Dg (2.39)

is a symmetry of the deformed theory.

Example II. Let us now consider the case m1 = m2 ≡ m ̸= 0 and m3 = 0:

δW = m
(
TrΦ2

1 +TrΦ2
2
)
, (2.40)

which preserves N = 2 supesymmetry. The argument is the same as before, because all
scalars are neutral under S-duality and have the same charge under U(1)R. It follows that
the operator D 2π

k
= R− 3π

k
×Dg is a symmetry of the deformed theory.

Example III. In our last example we study the generic case m1,m2,m3 ̸= 0. This
deformation leads to the N = 1∗ theory. For special non-vanishing values of the masses
one can have extra preserved symmetries, which however decouple in the IR. For instance,
without loss of generality, one can consider the case m1 = m2 = m3 ≡ m ̸= 0,

δW = m
(
TrΦ2

1 +TrΦ2
2 +TrΦ2

3
)
, (2.41)

that preserves an SO(3) flavor symmetry rotating the chiral multiplets Φi as a triplet. As
before,

∫
d2θ δW has charge −2

3 under U(1)R and so the operator

D 2π
k
= R− 3π

k
×Dg (2.42)

is a symmetry of the N = 1∗ theory.

Example IV. One could also consider a non-supersymmetric deformation triggered by
the Konishi operator:12

δS =
∫
d4xµOKonishi, (2.43)

which at weak coupling is given by OKonishi =
∑3

i=1 Tr
(
ϕiϕ

†
i

)
. This deformation at τYM = i

preserves both the non-invertible duality symmetry D, which satisfies D4 ∼ (−1)F C (here C
is the condensate operator), as well as the full SU(4)R R-symmetry. The Konishi operator
is relevant at τYM = i for small enough values of N (for instance for N ≤ 4 [67]). The
flow is intrinsically strongly coupled and the theory in the IR cannot be gapped due to the

12The possible interest of such a deformation was pointed out to us by Justin Kaidi and Kantaro Ohmori.
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cubic ’t Hooft anomaly of SU(4)R. The correct description is either given by spontaneous
symmetry breaking (SSB) of the chiral symmetry due to gaugino condensation, or by a
strongly coupled CFT. If the deformation happens to interpolate smoothly between weak
and strong coupling τYM, the CFT should be the same as the one conjectured for the pure
SU(N) gauge theory with Nf = 4 adjoint Weyl fermions.

Let us conclude this section with a brief remark about the case k = 4, namely about
the element S ∈ SL(2,Z). Notice that, even though both S and R− 3π

4
are of order 8 —

indeed S4 = R4
− 3π

4
= (−1)F — the preserved combined action D 2π

k
defines a Z4 symmetry.

In the IR of the deformed N = 4 SYM theory at τYM = i, the preserved symmetry is a
non-invertible Z4 times ZF

2 fermion parity (as opposed to a ZF
8 ). This will have consequences

for the cancellation of cubic anomalies, which we examine in section 3.6.

3 Gapped flows: N = 1∗

In this section we will focus on mass deformations of the form (2.41) leading to the N = 1∗
SYM theory. When the three masses m1,2,3 in (2.33) are generic, the deformation completely
breaks the (continuous part of the) SU(4)R symmetry of the UV theory but preserves both
the non-invertible duality and triality symmetries D for τYM = i or τYM = e

2πi
3 , respectively.

Recall that the preserved defects are combined with a discrete R− 3π
k

R-symmetry rotation.
The N = 1∗ SYM theory has been intensively studied in the past [46–49, 68]. It has a

discrete set of vacua, some of which are completely gapped while others include Coulomb
phases. Let us briefly review them here. By a suitable rescaling of the chiral fields (or by
choosing equal masses), the F-term equations read:

[Φi,Φj ] = ϵijk Φk. (3.1)

Since the Φi are N × N traceless matrices, solutions to the above equations are given in
terms of N -dimensional (possibly reducible) representations of the Lie algebra su(2). For
any positive integer N , the algebra su(2) has a unique (up to isomorphisms) irreducible
representation of that dimension. Therefore each classical vacuum corresponds to a partition
of N into positive integers. For a generic partition N = ∑N

d=1 nd d with k non-vanishing
terms, the gauge algebra is Higgsed to⊕

d

su(nd) ⊕ (k − 1) u(1). (3.2)

The two extreme cases with k = 1 are: {d} = {N}, nN = 1 where the gauge group is fully
Higgsed, and {d} = {1}, n1 = N where the su(N) gauge symmetry is unbroken.

Quantum mechanically, the dynamics is that of a pure N = 1 gauge theory with gauge
group (3.2). Each su(nd) factor flows to a confining phase with nd degenerate gapped vacua,
while each Abelian factor hosts a Coulomb phase. The latter are always present unless
k = 1, and thus the fully gapped vacua are in correspondence with the divisors d of N . In
this case, the gauge group is Higgsed to su(N/d) leading to N/d confining vacua. Then
the total number of gapped vacua is

number of gapped vacua =
∑
d|N

N/d =
∑
d|N

d. (3.3)
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This is equal to the number σ1(N) of global variants of the gauge group, that we defined
in (2.8). We will see that there is indeed a natural one-to-one correspondence between gapped
vacua and global variants, as they are both labeled by a choice of line operators.

According to ’t Hooft’s classification of gapped phases in gauge theories, vacua are
characterized by the condensation of dyons. For N prime, there are exactly N + 1 gapped
vacua because of (3.3). These consist of a perturbative Higgs vacuum, where D(1,0) condenses,
and N confining vacua where D(s,1) condense, with s = 0 corresponding to confinement of
purely electric charges and s = 1, . . . , N−1 describing different patterns of oblique confinement.
We will denote these vacua by H and C(s) respectively. Using a modern terminology, whenever
a genuine line operator condenses, the 1-form symmetry is spontaneously broken and the
corresponding phase hosts a non-invertible TQFT. On the other hand, condensation of
non-genuine line operators leads to vacua described by an SPT.

When N has non trivial divisors, the structure is more involved due to the occurrence of
combined Higgs/confining phases. More precisely, take a divisor d of N and consider vacua
in which the gauge symmetry is Higgsed to su(N/d). Then, quantum mechanically, there
are N/d confining vacua characterized by patterns of condensation of su(N/d) dyons. These
vacua will be denoted by HC(s)

d,N/d, with s = 0, . . . , N/d− 1. They exhibit a partially broken
1-form symmetry and host a non-trivial TQFT on top of an SPT.

One of the main purposes of this work is to show that the vacua discussed above, which
are characterized by different physical properties, are nevertheless related by non-invertible
duality and triality symmetries. The latter are hence generically spontaneously broken along
the RG flow triggered by the mass deformation. For the sake of clarity, we will first describe
the vacua of the N = 1∗ theories based on the Lie algebra su(2). Then we will present a general
discussion, and carry out an explicit analysis of the su(3) and su(4) N = 1∗ gauge theories.

3.1 su(2) gauge algebra

The N = 1∗ SYM theory with gauge algebra su(2) possesses three degenerate gapped
vacua, {H, C(0), C(1)} where the corresponding line operators {D(1,0), D(0,1), D(1,1)} con-
dense. These vacua are in one-to-one correspondence with the global variants SU(2), PSU(2)0
and PSU(2)1 respectively. In the SU(2) global structure, the fundamental Wilson line D(1,0)
is the unique genuine line. In the Higgs vacuum H , the Z2 1-form symmetry is spontaneously
broken and it is realized by a Z2 gauge theory. In the remaining two vacua, the Z2 1-form
symmetry is unbroken and the low energy dynamics is described by a Z2 SPT. This analysis
can be easily repeated for other choices of global structure. We will now focus on two special
values of the UV modular parameter τYM, namely τYM = i and τYM = e

2πi
3 where the duality

element S and the triality element ST become non-invertible global symmetries, respectively.
The action of S and ST on the spectrum of line operators is summarized by the following

diagrams:

D(1,0) D(0,1)

D(1,1)

S

S

D(1,0) D(0,1)

D(1,1)

ST

STST
(3.4)
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We thus find that, at τYM = i and under the action of the non-invertible global symmetry
defect associated to S duality, the three degenerate vacua form a doublet {H,C(0)} and
a singlet {C(1)}. On the other hand, at τYM = e

2πi
3 , these vacua form a triplet, with its

elements permuted under the action of ST triality.
In this example we found two or more degenerate vacua with different physical prop-

erties that are permuted under the action of a non-invertible symmetry. We interpret this
phenomenon as a spontaneous breaking of non-invertible symmetry. On the other hand,
if a vacuum happens to be a singlet (such as {C(1)} for τY M = i), the corresponding
non-invertible symmetry is unbroken in such a vacuum.

Whenever a symmetry, even if non-invertible, is spontaneously broken, it is important to
identify a corresponding local order parameter. In fact, these symmetries have an invertible
action on local operators and we expect to characterize a spontaneously-broken phase in
a standard way.

Let us recall that, in order for the symmetry to be preserved by a massive deformation,
the topological defect is constructed by composing a modular transformation (either S or
ST ) with a discrete R-symmetry rotation acting on the matter fields. From the discussion
in section 2.3, we find this rotation to be by a k-th root of unity, with k = 4 for S duality
at τYM = i and k = 6 for ST triality at τYM = e

2πi
3 . The simplest chiral operator which

is non-trivially charged under this action is

O = TrΦ2
i , (3.5)

for some value of i = 1, 2, 3. Using the charges in (2.36), one finds

D− 2π
4
O = eiπ O D− 2π

4
, (τYM = i) (3.6)

D− 2π
6
O = e

2πi
3 O D− 2π

6
, (τYM = e

2πi
3 )

Expectation values of the order parameter (3.5) need to comply with the above selection rules
when evaluated on the different vacua. Furthermore, ⟨O⟩ = ∂mW , with W the superpotential
for which an exact expression in any of the gapped vacua has been derived in [47, 49]:

W p,q,s(τYM) ≡
〈
HC(s)

p,q

∣∣W ∣∣HC(s)
p,q

〉
= N3

24 m
3 Im(τYM)

[
E2(τYM)− p

q
E2

(
pτYM + s

q

)]
. (3.7)

Here the relevant values of {p, q, s} are H = {2, 1, 0}, C(0) = {1, 2, 0} and C(1) = {1, 2, 1}
and E2(x) denotes the quasi-modular second Eisenstein series. By exploiting the modular
properties of these functions, one can easily show (for details see appendix B) that

O1,2,0(τYM = i) = eiπ O2,1,0(τYM = i), O1,2,1(τYM = i) = 0,

O1,2,1(τYM = e
2πi

3
)
= e

2πi
3 O1,2,0(τYM = e

2πi
3
)
= e

4πi
3 O2,1,0(τYM = e

2πi
3
)
,

(3.8)

hence in perfect agreement with (3.6). The remarkable fact that these functions satisfy
the required properties only at τYM = i and τYM = e

2πi
3 should be regarded as a direct

consequence of the presence of non-invertible symmetry defects at these specific points in
the UV conformal manifold.
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Action on lines and TQFTs. We now give a detailed description of gapped phases in
su(2) N = 1∗ SYM theory. Vacua with different physical properties are mapped into each
other by broken duality/triality symmetries. This is due to the non-invertibility of such global
symmetries which act non-trivially on the line operators. In the following we focus on the
case of S duality. The analysis can be repeated for the ST triality symmetry.

If we choose the global variant SU(2), the symmetry defect acts implementing both S

and σ. It follows that a genuine line is necessarily mapped to a non-genuine line, attached to
a topological surface in order to be gauge invariant, as depicted in the following figure:13

D(1,0)

Z2 SPT

⇝
D

Z2 SPT

D(0,1)D

(3.9)
This implies that vacua related by the action of the non-invertible duality symmetry D can
be physically inequivalent. For instance, in the Higgs vacuum |H⟩ the (genuine) fundamental
Wilson line condenses, ⟨H|D(1,0)|H⟩ ̸= 0, so as to play the role of an order parameter for
the spontaneously broken 1-form symmetry Z[1]

2 . This topological order is described by a
Z2 gauge theory. The duality defect maps the genuine line D(1,0) to the non-genuine line
D(0,1) corresponding to a vacuum S |H⟩ = |C(0)⟩. Of course, the fact that ⟨H|D(1,0)|H⟩ ̸= 0
implies that ⟨C(0)|D(0,1)|C(0)⟩ ̸= 0. However, since the ’t Hooft line is not genuine in the
SU(2) global variant, D(0,1) cannot serve as an order parameter for the 1-form symmetry.
Hence Z[1]

2 is preserved in |C(0)⟩ and confinement takes place. There is no topological order
and the effective topological theory is accounted by a Z[1]

2 SPT phase. The fact that the
duality symmetry defect D maps a genuine order parameter to a non-genuine (twisted) order
parameter gives strong evidence for the spontaneous breaking of a non-invertible symmetry.

We now explicitly construct the topological theories describing each gapped vacuum.
As explained above, the Higgs vacuum hosts a Z2 gauge theory, as it should be for a phase
with spontaneously broken Z[1]

2 1-form symmetry. Including the conventional normalization,
the partition function for this theory is

Z[Z2](B) = 1√
|H2(X,Z2)|

∑
b∈H2(X,Z2)

e
2πi

2

∫
b∪B =

√
|H2(X,Z2)| δH2(X,Z2)(B). (3.10)

Because of the delta function in cohomology, this theory does not suffer from any ambiguity
in the form of an SPT factor. On the other hand, the vacua C(0) and C(1) are characterized
by a Z2 SPT phase. There are two possibilities for such a topological phase, namely

SPT(B)−k : −2πik
4

∫
P(B), k = 0, 1. (3.11)

13Indeed, S takes the Wilson line (the genuine line of SU(2)) to the ’t Hooft line (the genuine line of
PSU(2)0), while σ brings back to the global variant SU(2), thus making the ’t Hooft line no longer genuine.
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The question of which value of k in (3.11) corresponds to C(0) depends on a choice of local
counterterm in the UV and, as such, is not universal. We choose this counterterm in such
a way that to C(0) is assigned SPT0, i.e., the trivially gapped vacuum.

In fact, since S duality maps |H⟩ to |C(0)⟩, and the symmetry defect involves the action
of σ (given by gauging the Z[1]

2 1-form symmetry), then the choice is fixed by the following
computation:

[σZ](B) = 1√
|H2|

∑
b∈H2(X,Z2)

Z[Z2](b) e
2πi

2

∫
b∪B = 1 = SPT0. (3.12)

We can similarly determine which topological phase corresponds to C(1). This state is
a singlet under S duality and it turns out that this condition is enough to fix its low
energy description. The only Z[1]

2 SPT phase that is left invariant by σ is precisely SPT1:[
σZ[SPT1]

]
(B) = Z[SPT1](B). Alternatively, we can use the property that C(0) and C(1)

are mapped to each other by the action of the modular transformation T . In the UV, this is
accounted for by a shift θ → θ + 2π, under which the partition function gets a background
dependent phase exp

(
2πi
4
∫
P(B)

)
. We then conclude that, having assigned SPT0 to C(0),

there is no other choice but assigning SPT1 to C(1). We can finally summarize the analysis
with the following formal expression for the topological field theory assigned to each vacuum:

TQFT =

Z2
⊕ SPT0 for {H, C(0)},

SPT1 for C(1).
(3.13)

The duality symmetry S is spontanously broken in the vacua {H,C(0)}, while it is preserved
in the vacuum C(1). Note that the ones in (3.13) are the only topological field theories with
Z2 1-form symmetry. Each gapped vacuum of SU(2) N = 1∗ SYM theory realizes one of
them. We will see that this is a general feature also for theories with gauge group SU(N).

The story is similar for the triality symmetry at τYM = e
2πi

3 . It is clear that the TQFT
assignment to the three vacua must be the same as the one for τYM = i. The triality symmetry
in the SU(2) theory is implemented by composing the UV duality ST with a topological
manipulation στ . A quick computation shows that the three Z[1]

2 TQFTs form a unique
orbit under the action of triality:

Z2 SPT0

SPT1

στ

στστ
(3.14)

signalling the spontaneous breaking of the non-invertible triality symmetry.

Comments on the other global variants. Let us discuss the other global variants
associated with the su(2) algebra, namely PSU(2)0 and PSU(2)1 (also commonly referred to
as SO(3)+ and SO(3)−, respectively). Notice that the condensation of dyons is a dynamical
process, not affected by the choice of global variant. On the other hand, the realization of
the 1-form global symmetry in each phase, either being preserved or broken, does depend
on the global aspects of the theory. Consequently, the effective low-energy description of
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SU(2)
Vacuum H C(0) C(1)

Cond. line D(1,0) D
U
(0,1) D

U
(1,1)

TQFT Z2 SPT0 SPT1
SSB D ✓ ✓ ×

P SU(2)0

Vacuum H C(0) C(1)

Cond. line DU
(1,0) D(0,1) D

U
(1,1)

TQFT SPT0 Z2 SPT1
SSB D ✓ ✓ ×

P SU(2)1

Vacuum H C(0) C(1)

Cond. line DU
(1,0) D

U
(0,1) D(1,1)

TQFT SPT0 SPT1 Z2
SSB D ✓ ✓ ×

SU(2) – triality
Vacuum H C(0) C(1)

Cond. line D(1,0) D
U
(0,1) D

U
(1,1)

TQFT Z2 SPT0 SPT1
SSB D ✓ ✓ ✓

Table 1. The first three tables summarize the gapped vacua and the patterns of non-invertible S
duality symmetry breaking in the three global variants of su(2). The last table — with the same
vacua as in the first one — shows the pattern of ST triality symmetry breaking. Condensed lines
which are non-genuine are indicated by a superscript U , reflecting the fact that they are attached to a
U surface for the ZN 1-form symmetry. Vacua that are connected by spontaneous symmetry breaking
(SSB) of the duality symmetry are indicated by ✓ and with the same background color, while vacua
with no SSB are indicated by ×.

each vacuum changes when discussing PSU(2)0 or PSU(2)1. The descriptions will actually
be reshuffled, as we still expect a one-to-one correspondence between the three vacua and
the three possible topological field theories with Z[1]

2 1-form symmetry. For instance, in each
global variant there will always be a vacuum where the condensing dyon corresponds to the
genuine line, leading to a Z2 topological order.

Global variants are simply related by the topological manipulations σ and τ : starting from
SU(2), PSU(2)0 is obtained by acting with σ, while PSU(2)1 by acting with στ . Note that
here we are not combining these operations with an S duality, so that we do not change the
behavior of local operators in each vacuum, only the TQFT describing them. In practice, we
perform the corresponding topological manipulations on the effective topological field theories.

Let us begin with G = PSU(2)0. We act with σ on the topological theories describing
the three vacua of SU(2). We get SPT0 for H, the Z2 gauge theory for C(0), and SPT1 for
C(1). The ’t Hooft line D(0,1) becomes a genuine operator, and in the vacuum C(0) where it
condenses, the Z2 1-form symmetry is spontaneously broken and described by a Z2 gauge
theory. Since H = S ·C(0), we conclude that this phase is now realized by a trivial SPT phase.
Finally, since D(1,1) is invariant under S duality, the vacuum C(1) is accounted for by SPT1.

Consider finally G = PSU(2)1. This variant is interesting because it is invariant under S
duality, and thus the S duality defect becomes invertible. The effective description in each
of the three vacua is obtained by acting with στ on the phases of G = SU(2), leading to
SPT0 for H, SPT1 for C(0), and the Z2 gauge theory for C(1). Alternatively, one can assign
the Z2 gauge theory to C(1) by the argument based on the condensation of the genuine line
D(1,1), and the SPT phases to H and C(0) by the argument below.
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In PSU(2)1 there is a mixed anomaly between the invertible duality symmetry and the
Z2 1-form symmetry. From the perspective of the UV theory, this stems from the fact that
PSU(2)1 is not exactly invariant in the presence of a 1-form symmetry background. Indeed
the action on the Lagrangian subgroup is S

( 1
1
)
=
(−1

1
) ∼= ( 1

1
)
. The equivalence

(−1
1
) ∼= ( 1

1
)

is implemented by a shift of the θ angle, and this corresponds to an ’t Hooft anomaly

Ianom = 2πi
4

∫
AS ∪P(B), (3.15)

where AS ∈ H1(X,Z4) is the S duality gauge field. Indeed, this reproduces the phase factor
arising when acting with S on SPT0 (vacuum H) to get SPT1 (vacuum C(0)).14 On the other
hand, this is also the anomaly of the Z2 gauge theory in the vacuum C(1).

We can summarize the content of this section in table 1. We also include a table for
the triality symmetry at τYM = e

2πi
3 in the SU(2) variant. Note that all three vacua form

a single orbit under the symmetry action, though the effective topological field theories
remain the same as in the previous case.

3.2 su(N) gauge algebra

Here we generalize the previous analysis to higher-rank gauge algebras su(N). We exploit
some interesting patterns that were already encountered in the simple case of su(2), in
particular the correspondence between gapped vacua and topological field theories with a
given 1-form symmetry, and, more importantly, the realization of the duality action in terms
of simple topological manipulations performed over such topological field theories.

TQFTs with ZN 1-form symmetry. For global variants with Γ = ZN 1-form symmetry,
such as SU(N), the TQFTs describing the gapped vacua are completely characterized by
the symmetry-breaking pattern ZN → H = Zm. Not all global variants fall in this category:
the 1-form symmetry may take the form Γ = Zm1 × Zm2 as it may happen in SU(N)/Zk,
see (2.11). In the following we will focus on the case Γ = ZN , and then make some comments
about more complicated examples at the end.

A TQFT with ZN 1-form symmetry can be specified by the symmetry-breaking pattern
ZN → Zm. The broken symmetry is described by a ZN/Zm gauge theory, while an SPT
phase αm is assigned to the preserved subgroup Zm.15 The latter is determined by a class

αm ∈ H4(B2Zm, U(1)
)
= Zgcd(2,m) m. (3.16)

As generator we take the Pontryagin square operation P :H2(X,Zm)→ H4(X,Zgcd(2,m) m

)
:

αm(b) = 2πi
2m P(b) with b ∈ H2(X,Zm). (3.17)

14As reviewed in appendix A, vacua related by a broken invertible symmetry display different SPT phases if
the broken symmetry participates in a mixed anomaly.

15More precisely, one should also specify the coupling to the ZN background field. The choice of coupling
can be absorbed by a rescaling B → rB, with gcd(r,N) = 1.
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On spin manifolds, P(b) is an even class and thus there are only m SPTs given by ℓ αm,
regardless of whether m is even or odd.16 For H = ZN we have the SPTs

SPTℓ(B) = exp
(2πiℓ

2N

∫
P(B)

)
with ℓ ∈ ZN . (3.18)

On the other hand, for H = {0} the TQFT is a ZN gauge theory with partition function17

Z[ZN ](B) = 1√
|H2(X,ZN )|

∑
b∈H2(X,ZN )

exp
(2πi
N

∫
b ∪B

)
=
√
|H2(X,ZN )| δH2(B). (3.19)

For N prime, the cases above exhaust all realizations of the 1-form symmetry, and are in
correspondence with the N + 1 gapped vacua (3.3).

More generaly, for N = kk′ but still considering a global variant with Γ = ZN , partially
broken phases with H = Zk and SPT given by ℓαk are described by theories that we dub
Zℓ

N |k with ℓ ∈ Zk, whose partition function is

Z
[
Zℓ

N |k
]
(B) = exp

( 2πiℓ
2Nk′

∫
P(B)

)
Z[Zk′ ](B)

=
√
|H2(X,Zk′)| exp

( 2πiℓ
2Nk′

∫
P(B)

)
δH2(X,Zk′ )(B).

(3.20)

The partition function of the Zk′ gauge theory vanishes unless B = k′B̃ with B̃ ∈ H2(X,Zk),
and in that case the SPT phase takes the well-defined form exp

(2πiℓ
2k

∫
P(B̃)

)
. In particular

Z0
N |1 ≡ ZN and Zℓ

N |N ≡ SPTℓ. (3.21)

Some more details concerning these topological field theories are presented in appendix C.
There is a correspondence between the TQFTs we described and global variants of the

su(N) gauge theory with 1-form symmetry ZN . Both are classified by doublets (H,α) where
H ⊂ ZN and α ∈ H4(B2H,U(1)

)
. Indeed the data (H,α) determines how to reach a given

global variant starting from the electric SU(N) via discrete gauging, but also specifies the
possible patterns of spontaneous symmetry breaking. As the set of global variants is also
isomorphic to the gapped vacua of the N = 1∗ theory, one might expect that each ZN gauge
theory is realized exactly once in a certain massive vacuum of N = 1∗ with gauge group
G = SU(N). This expectation is indeed correct, as we will see.

As mentioned at the beginning, there are some global variants of the kind
(
SU(N)/Zk

)
s

in which the 1-form symmetry takes a factorized form, see (2.11). The correspondence
between TQFTs and gapped vacua breaks down in this case, and it turns out to be simpler
to fix this data through discrete gauging starting from the SU(N) variant.

16More precisely, for spin theories these classes should be read from Ωspin
4 (B2ZN ) = Z⊕ ZN , where the first

generator is the signature σ(X). See, e.g., [18] for a derivation.
17In order to fix the normalization of the various TQFTs, we work under the assumption that the spacetime

manifold is closed, orientable, connected and simply connected.
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Assigning TQFTs to vacua. Let us list the TQFTs that describe the massive vacua of
the SU(N) N = 1∗ theory. As already explained in section 3.1, in the Higgs vacuum H the
Wilson line D(1,0) — which is a genuine line operator — condenses and the 1-form symmetry
is completely broken. This is matched in the IR by a ZN gauge theory. We summarize the
properties of this vacuum by the triplet(

H, ⟨D(1,0)⟩ ̸= 0, ZN

)
. (3.22)

In each of the confining vacua C(p) (p = 0, . . . , N − 1) the non-genuine dyon D(p,1) condenses.
Since this is not a genuine line, the 1-form symmetry is preserved. The IR physics is reproduced
by a ZN SPT phase. The standard choice is to assign to C(p) the theory SPT−p(B). This is in
accordance with pure N = 1 SYM, which can be approached from N = 1∗ by sending m→∞
and gYM → 0 while keeping the dynamical scale Λ = m3e2πiτ fixed. We stress that this choice
is affected by UV counterterms of the form P(B), which do not affect the physics in the Higgs
vacuum because they become trivial in the ZN gauge theory. We summarize these vacua by(

C(p), ⟨D(p,1)⟩ ̸= 0, SPT−p
)
. (3.23)

In the mixed vacua — that we indicate as HCℓ
k′,k — the condensation pattern is more

involved. The Zk subgroup of the 1-form symmetry is confined, and only the genuine lines
D(rk,0) which are uncharged under it may get an expectation value. As reviewed in section 2,
the generic lattice describing such a process is generated by

D(ℓ,k′) ⊕D(k,0) (3.24)

with ℓ ∈ Zk. To this lattice we associate the partially broken TQFT Z−ℓ
N |k, and thus the

vacua are summarized by(
HCℓ

k′,k, ⟨D(ℓ,k′)⟩ ⊕ ⟨D(k,0)⟩ ̸= 0, Z−ℓ
N |k

)
. (3.25)

For instance, for ℓ = 0 the lattice of condensed lines is generated by D(0,k′) ⊕ D(k,0) and
the TQFT in the IR is a pure Zk′ gauge theory.

Having understood the case G = SU(N), we can study other global variants by discrete
gauging. We can reach the theory

(
SU(N)/Zq

)
s from SU(N) by gauging a Zq subgroup of

the electric 1-form symmetry after stacking with an SPTZq
s = exp

(2πis
2q

∫
P(BZq)

)
phase:

Z(SU(N)/Zq)s
(BZp , BZq) =

1√
|H2(X, Zq)|

∑
bZq∈H2(X,Zq)

ZSU(N)
(
BZp + p bZq

)
×

× exp
(2πis

2q

∫
P
(
bZq

)
+ 2πi

q

∫
bZq ∪BZq

)
,

(3.26)

where N = pq.

SSB of duality symmetries. As in section 3.1, the gapped vacua form orbits under the
action of the duality/triality symmetries. Here we will mostly focus on the action of S duality,
while similar statements for ST triality can also be obtained.
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The condensation patterns of dyons — hence gapped vacua — are associated to Lagragian
sublattices Lk,ℓ of line operators spanned by D(ℓ,k′) ⊕D(k,0) (N = kk′). In addition, there
is a natural action (2.10) of S-duality on these lattices. The relation (2.10) determines the
duality orbits comprising several subsets of vacua, together with the occurrence of singlets
labelled by duality invariant sublattices, which chracterize the spontaneous breaking of S
duality symmetry at τYM = i (or of ST triality at τYM = e

2πi
3 ) in the SU(N) N = 1∗ theory.

The local order parameter O = TrΦ2
i was described in (3.5), and is charged under the action

of D. The non-trivial relations between expectation values taken by this operator in different
vacua can be obtained using the modular properties of the IR superpotential (3.7) listed
in appendix B, as we did in (3.8) for su(2).

We can also study the realization of the duality symmetry in the IR by inspecting
its action on the low-energy TQFTs. For instance, in the SU(N) Higgs vacuum the low
energy TQFT is a ZN gauge theory that describes the SSB of the 1-form symmetry by the
condensation of the Wilson line D(1,0). This is mapped by the duality defect to a non-genuine
’t Hooft line and the dual vacuum is in a ZN SPT phase. Below we characterize such action
on vacua completely and find that it matches with the UV duality action (2.10) on the lines.

Symmetry action on TQFTs. The non-invertible duality symmetry acts in the IR on
the SU(N) variant by a discrete gauging σ of the ZN 1-form symmetry. For consistency,
this should mimic the UV action of S duality on the dyons:

L L ′

TQFT(B) TQFT′(B)

S

IR IR

σ

(3.27)

It is simple to show the following actions of σ:[
σZ[ZN ]

]
(B) = SPT0(B)

[σ SPTℓ](B) =


Z[ZN ](B) , if ℓ = 0 mod N

SPT−ℓ−1(B) , if ℓ ̸= 0 mod N and gcd(ℓ,N) = 1
Z
[
Zℓ̃

N |N/p

]
(B) , if gcd(ℓ,N) = p , with ℓ̃ = −(ℓ/p)−1

mod N/p

(3.28)

where Zℓ
N |k was defined in (3.20) and (a)−1

mod b is the inverse of a modulo b. When N is
prime, the action of σ on the TQFTs is compatible with the action of S on the condensed
dyons, since SD(ℓ,1) = D(−1,ℓ) and the latter generates the same lattice as D(−ℓ−1,1) (where
ℓ−1 is taken in ZN ).

The action (3.28) implies that, in a vacuum described by a ZN SPT, the non-invertible S
duality symmetry is spontaneously broken unless the equation ℓ2 = −1 mod N has a solution,
and in that case SPTℓ is invariant.18 This is related to the existence of a global variant
G = PSU(N)ℓ in which the duality symmetry becomes invertible. Indeed, symmetry defects
of this kind have been dubbed “non-intrinsic” in [69] (see also [70]).

18One can compare with the discussion in section 3.1.
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A similar story applies to mixed vacua in which the ZN 1-form symmetry is spontaneously
broken to Zk. As detailed in appendix C, one finds

[
σ Z[Zℓ

N |k]
]
(B) = Z[Zℓ̃

N |N/p](B) with k′ = N

k
, p = gcd(ℓ, k), ℓ̃ = −k′

(
ℓ
p

)−1

mod k/p

(3.29)
with the proviso of footnote 6. This formula includes (3.28), and is consistent with the duality
action (2.10) on dyonic lattices. As a byproduct, for N = k2 one finds[

σ Z[Z0
k2|k]

]
(B) = Z[Z0

k2|k](B). (3.30)

This shows that Z0
k2|k, which is a Zk gauge theory coupled to a Zk2 1-form symmetry, is

invariant under the full modular group.19 In turn, this implies that the vacuum HC0
k,k —

described by the Z0
k2|k gauge theory — is invariant under the full modular group and in

particular it preserves the S duality symmetry.
More generally, the presence of S duality-invariant vacua is in correspondence with the

existence of TQFTs which are self-dual under discrete gauging of the ZN 1-form symmetry.
A thorough study of this problem was initiated in [14] and completed in [71], finding the
following condition:

∃ k′, s, ℓ̃ such that N = (k′)2s and ℓ̃2 + 1 = 0 mod s. (3.31)

Indeed, identifying k = k′s and ℓ = k′ℓ̃, one can prove that (3.31) is equivalent to

∃ k, ℓ such that k = N

p
, ℓ = −p (ℓ/p)−1

mod k/p mod k, with p = gcd(ℓ, k), (3.32)

i.e., to the condition that there exists a phase Zℓ
N |k invariant under σ according to (3.29).

Note that for N prime one necessarily has to set k′ = 1 and s = N , thus reproducing the
analysis above. On the other hand, for N = k2 there is the solution s = 1 that leads to (3.30).
Another instance where these TQFTs appear is in su(8), for which k′ = 2, s = 2 and ℓ = ±2
provide solutions. Indeed, the global variant G =

(
SU(8)/Z4

)
2 has a duality-invariant lattice

of genuine line operators generated by the dyons D(4,0) ⊕ D(2,2).20

3.3 Duality symmetries on generic global variants

In section 3.2 we showed that the action of S duality on dyons is reproduced by a discrete
gauging in the low-energy TQFTs assigned to the vacua of G = SU(N) N = 1∗ SYM. For
different choices of global variants, such as G = PSU(N)k, the technique becomes slightly
more involved. In this section we refine our approach from section 2 in order to construct
non-invertible defects associated with generic modular transformations over different global
variants. This procedure allows one to detect the occurrence of global variants for which
the defects become invertible, and to diagnose the presence of mixed anomalies between the
latter and the 1-form symmetry. Unfortunately, a systematic approach comprising all possible
gauge-group ranks is out of the scope of this paper, so we will restrict to N prime.

19Indeed using (2.14) and (3.20), in general τ maps Zℓ
N|k to Zℓ+k′

N|k , and thus Z0
k2|k is also τ -invariant.

20The same problem can be studied for a generic 1-form symmetry group Γ and one is led to similar
conclusions. These results will appear in [72].
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First, recall that in theories with a ZN 1-form symmetry there is a natural topological
action of SL(2,ZN ) [14].21 For N prime, this group has two generators σ, τ that we already
defined in (2.14). Notice that we can also define elements ν(u) as

ν(u) : [ν(u)Z] (B) = Z(uB) for u ∈ Z×
N , (3.33)

where Z×
N is the multiplicative group of integers modulo N coprime with N . The global

variants G of su(N) (N prime) are classified by the quotient SL(2, ZN )/Γ∞ [54, 55], where

Γ∞ =
{
M ∈ SL(2, ZN )

∣∣∣∣M =
(
u k

0 u−1

)}
(3.34)

is the parabolic subgroup of SL(2,ZN ). In this matrix representation, the first column is a
generator of the sublattice of genuine line operators, while the second column is a generator
of the sublattice of symmetry defects. We can choose the following representatives:

SU(N) →
(1 0
0 1

)
, PSU(N)r →

(
r −1
1 0

)
. (3.35)

As we discussed in section 2.1 after (2.14), one can refine the classification of global forms
by keeping track of the coupling to the background field B and of possible contact terms.
This is classified (for N prime) by SL(2,ZN )/Z×

N where we quotient by the matrices
(

u 0
0 u−1

)
with u ∈ Z×

N . We can choose as representatives:

SU(N)p →
(1 p
0 1

)
, PSU(N)r,p →

(
r pr − 1
1 p

)
. (3.36)

In this representation, the topological SL(2, ZN ) acts by right multiplication, where σ and
τ are represented by the same matrices as for S and T respectively, whilst the duality
group acts by left multiplication. We used this fact to construct the representatives (3.35)
and (3.36), following the definitions after (2.14). The condition that the matrix for G is
modular implies that the lattice of genuine lines is Lagrangian, while the quotient by Γ∞
takes care of the choice of lattice generator. With this recipe one easily reproduces the
diagrams in (2.19), (2.21), (2.22), (2.24), and constructs the ones for higher rank.

In order to define a duality symmetry operator D for a variant G and a duality element
M ∈ SL(2,Z), we must solve the matrix equation

M ·G · Σ = G (3.37)

which determines the topological manipulation Σ that compensates for the action of M on
the global form. The global variant G could be invariant under M : this implies that (3.37)
is solved by Σ ∈ Γ∞. Hence the M duality defect is invertible in G, but the presence of a
nontrivial parabolic element Σ = τnν(u) implies that the partition function transforms as

[M Z](B) = exp
(2πin

2N

∫
P(B)

)
Z(uB). (3.38)

21More precisely, the action is SL
(
2,Zgcd(2,N)N

)
. The gcd factor is only important on non-spin manifolds

and it corresponds to τ2N = 1, while if ω2(TM) = 0 then τN = 1. We will thus ignore it in our analysis.
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When M = S, N = 2, G = PSU(2)1, and Σ = τ (namely u, n = 1) this just becomes the
familiar anomaly between 1-form symmetry and 0-form symmetry

I = 2πi
4

∫
S ∪P(B), (3.39)

as was first noticed in [20].22

Whenever u ̸= 1, the rescaling implemented by ν(u) is important because it allows the
stacking operation to have an order compatible with M . Consider for instance the case of
S duality and gauge group PSU(N)u for N prime. Then, in order for the duality defect to
be invertible, we need for the topological manipulation Σ to square to charge conjugation:
Σ2 = C. Furthermore, it imposes a condition on the counterterm u, namely u2 + 1 = 0
mod N . In these cases the PSU(N)u variant has an invertible self-duality symmetry which
acts via the element23

Σu = τu ν(u) ∈ Γ∞. (3.40)

As emphasized before, this simple representation of global forms does not apply when
N is not prime (e.g., because some Lagrangian lattices have two generators). In those cases
the correct transformation Σ must be computed by brute force.

3.4 Examples: su(3) and su(4)

With these tools at hand, we can provide explicit examples of SSB in the N = 1∗ vacua.
A detailed exposition of the su(2) case was provided in section 3.1. Here we describe the
examples of su(3) and su(4), which are slightly more complicated and lead to some additional
important insights. As before, we mostly focus on the S duality symmetry at τYM = i and
make some comments regarding ST triality on the way.

su(3). There are four global variants SU(3), PSU(3)0, PSU(3)1, PSU(3)2 which form two
orbits under S duality. The non-invertible symmetry is always spontaneously broken. The
map (2.10) among lattices yields

⟨D(1,0)⟩
S←→ ⟨D(0,1)⟩, ⟨D(1,1)⟩

S←→ ⟨D(2,1)⟩ (3.41)

and thus
SU(3)

Vacuum H C(0) C(1) C(2)

Cond. line D(1,0) D
U
(0,1) D

U
(1,1) D

U
(2,1)

TQFT Z3 SPT0 SPT2 SPT1
SSB D ✓ ✓ ✓ ✓

P SU(3)1

Vacuum H C(0) C(1) C(2)

Cond. line DU
(1,0) D

U
(0,1) D(1,1) D

U
(2,1)

TQFT SPT0 SPT2 Z3 SPT1
SSB D ✓ ✓ ✓ ✓

22For N > 2 a similar interpretation is possible, however now the 0-form symmetry comes with an action
ρ ∈ Aut(ZN ) : B → uB making the symmetry a split 2-group [73]. Likewise, the anomaly must now be
classified by an appropriate class I ∈ H5(B2ZN ⋊ρ BZ4 , U(1)

)
.

23Using the matrix formulation, M =
(

0 −1
1 0

)
and G =

(
u −1
1 0

)
give Σ =

( −u 1
−u2−1 u

)
. The condition Σ ∈ Γ∞

for the defect to be invertible gives u2 +1 = 0 mod N , and then Σ =
(

u−1 1
0 u

)
. This matrix can be decomposed

as Σ =
(

u−1 0
0 u

)(
1 u
0 1

)
corresponding to the element τu ν(u) with right action. It is also possible to check the

result directly by using the explicit formula for the PSU(N)u partition function (3.26).
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where vacua connected by SSB are given the same background color. This case is similar
to su(2), since N = 3 is a prime number. Notice that the S duality defect on PSU(3)1 is
implemented by including the topological manipulation τστ2 (instead of just σ). This follows
either from direct computation or from the matrix formalism we introduced in section 3.3.

The su(3) theories also have a Coulomb vacuum, corresponding to the partition 3 = 1+2.
We will comment on the physics of such vacua in section 3.5. The case of generic N prime is
also very similar. In the SU(N) variant we have a spontaneously broken S duality symmetry
unless we are in a confining vacuum C(r) with r2 + 1 = 0 mod N , in which case both the
duality symmetry and the 1-form symmetry are preserved. Other non-invariant variants
work similarly, but with some of the TQFTs permuted, while in the invariant variant(s) the
invertible action in the IR is implemented by (3.40).

For the ST triality symmetry the orbits instead are:

⟨D(1,0)⟩ ⟨D(0,1)⟩

⟨D(2,1)⟩

ST

STST ⟨D(1,1)⟩

ST

(3.42)

In the SU(3) variant the symmetry is implemented by στ−1 and we find:

SU(3) – triality
Vacuum H C(0) C(1) C(2)

Cond. line D(1,0) D
U
(0,1) D

U
(1,1) D

U
(2,1)

TQFT Z3 SPT0 SPT2 SPT1
SSB D ✓ ✓ × ✓

This is consistent with the action on dyons.

su(4). Since N = 4 is not prime, the su(4) theory has two new gapped vacua: HC(0)
2,2 and

HC
(1)
2,2 which correspond to the condensation of the lattices of dyons ⟨D(2,0) ⊕D(0,2)⟩ and

⟨D(1,2)⟩, respectively. According to (2.10), their orbits under S are:

⟨D(1,0)⟩ ⟨D(1,1)⟩ ⟨D(2,1)⟩

⟨D(0,1)⟩ ⟨D(3,1)⟩ ⟨D(1,2)⟩ ⟨D(2,0) ⊕D(0,2)⟩

S S S
S (3.43)

By assigning the corresponding TQFTs to these vacua, we find the following table:

SU(4)
Vacuum H C(0) C(1) C(2) C(3) HC

(1)
2,2 HC

(0)
2,2

Cond. line D(1,0) D
U
(0,1) D

U
(1,1) D

U
(2,1) D

U
(3,1) DU

(1,2) D(2,0) ⊕D
U
(0,2)

TQFT Z4 SPT0 SPT3 SPT2 SPT1 Z1
4|2 Z0

4|2 ≃ Z2

SSB D ✓ ✓ ✓ ✓ ✓ ✓ ×

The theory Zℓ
N |k was defined in (3.20). Notice the presence of phases in which Z4 is

spontaneously broken to Z2. To show that the vacua transform in the correct way under
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gauging the 1-form symmetry, we use the results of section 3.2. For the doublets {H,C(0)}
and {C(1), C(3)} it follows directly from the first three lines in (3.28). Regarding the doublet
{C(2), HC

(1)
2,2} and the singlet HC(0)

2,2 , their relation follows from the last line of (3.28) and
from (3.29). In particular, notice that

[σ SPT2](B) = Z
[
Z1

4|2
]
(B) and

[
σ Z[Z0

4|2]
]
(B) = Z[Z0

4|2](B). (3.44)

There are three other variants to consider, of which two are obtained from the table above
by gauging Z4 with a discrete torsion, and the last one by gauging only the Z2 subgroup.
The former two give the following configurations:

P SU(4)1

Vacuum H C(0) C(1) C(2) C(3) HC
(1)
2,2 HC

(0)
2,2

Cond. line DU
(1,0) D

U
(0,1) D(1,1) D

U
(2,1) D

U
(3,1) DU

(1,2) D(2,2) ⊕D
U
(0,2)

TQFT SPT0 SPT3 Z4 SPT1 Z1
4|2 SPT2 Z0

4|2 ≃ Z2

SSB D ✓ ✓ ✓ ✓ ✓ ✓ ×

and
P SU(4)2

Vacuum H C(0) C(1) C(2) C(3) HC
(1)
2,2 HC

(0)
2,2

Cond. line DU
(1,0) D

U
(0,1) D

U
(1,1) D(2,1) D

U
(3,1) DU

(1,2) DU
(2,0) ⊕D(0,2)

TQFT SPT0 Z1
4|2 SPT3 Z4 SPT1 SPT2 Z0

4|2 ≃ Z2

SSB D ✓ ✓ ✓ ✓ ✓ ✓ ×

On the first one, the IR S duality symmetry acts through Σ
(
PSU(4)1

)
= στ2στ while on

the second one it acts through Σ
(
PSU(4)2

)
= στ2στ2σ.

Not surprisingly, the most involved case is the one in which the duality symmetry is
invertible corresponding to the global variant [SU(4)/Z2]0. To find the table of vacua we
must gauge the Z2 subgroup of Z4. Since Z4 is a non-trivial extension

1 −→ Z2 −→ Z4 −→ Z2 −→ 1, (3.45)

then the backgrounds Ce for the Z2 subgroup and Be for the Z2 quotient are related by

δCe = β(Be), (3.46)

with β the Bockstein map associated to the above sequence (explicitly β(Be) = 1
2δBe).

According to [74], gauging the Z2 subgroup results in a theory with Z2×Z2 1-form symmetry
and a mixed anomaly

I = πi

∫
Bm β(Be) = πi

∫
Be β(Bm), (3.47)

where Bm ∈ H2(X,Z2) is the gauge field for the dual 1-form symmetry. The mixed
anomaly (3.47) cannot be matched by a Z2 × Z2 SPT phase, so we expect the [SU(4)/Z2]0
vacua in N = 1∗ to always display (partial) SSB of the 1-form symmetry. The theory also
has a Z2 0-form symmetry s that acts as a Z2 automorphism exchanging Be with Bm.
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Let us first give the table of the results and then describe in detail some subtleties of
the gauging procedure. We find

[SU(4)/Z2]0
Vacuum H C(0) C(1) C(2) C(3) HC

(1)
2,2 HC

(0)
2,2

Cond. line DU
(1,0) D

U
(0,1) D

U
(1,1) D

U
(2,1) D

U
(3,1) DU

(1,2) D(2,0) ⊕D(0,2)

TQFT Z2 Z2 Z2 Z2 Z2 Z2 Z2 × Z2
SSB D ✓ ✓ ✓ ✓ ✓ ✓ ×

The lattices generated by the condensed dyons in each vacuum always contains at least one
local line (not counting the identity). This is consistent with the fact that at least a Z2 must
be spontaneously broken. In the last vacuum, in which we have a Z2 × Z2 theory, the duality
symmetry is unbroken, but it acts nontrivially as an outer automorphisms exchanging the
two Z2 factors. To understand the matching of the mixed anomaly we need to carefully follow
the discrete gauging procedure and understand the coupling of the Z2 × Z2 symmetry with
the Z2 gauge theory. We describe Ce in (3.46) as a torsor over H2(X, Z2), by choosing a
splitting Ce = Cβ

e + C ′
e, with C ′

e ∈ H2(X;Z2) and δCβ
e = β(Be). We can gauge the 1-form

symmetry as usual by summing over C ′
e. This means that

[σZ2 · Z] (Be, Bm) = 1√
H2(X,Z2)

∑
c′ ∈H2(X,Z2)

eπi
∫

c∪Bm Z(Be + 2c), c = Cβ
e + c′ . (3.48)

The fact that the above has a mixed Z2 × Z2 anomaly follows from considering the gauge
transformation Bm → Bm + δλ. This kind of mixed anomaly allows for a Bardeen-like
counterterm:

2πiK(Be, Bm) = 2πi
4

∫
Be ∪ Bm. (3.49)

With this notation we find:

S ·Z[SU(4)/Z2]0(Be, Bm) = Z[SU(4)/Z2]0(Bm, Be) e2πi K(Be,Bm) ≡ s ·Z[SU(4)/Z2]0(Be, Bm) (3.50)

where we have chosen to include the counterterm in the definition of s. Thus the invertible
S duality is implemented by the discrete Z2 symmetry. This is the action that we must
match in the IR vacua.

To consistently assign vacua, we must compute the action of the Z2 gauging on the
SU(4) TQFTs. We find

[σZ2 · SPTk] (Be, Bm) =
√
H2(X, Z2) δZ2(Bm + kBe) e

πik
4

∫
P(Be)+πi

∫
Cβ

e ∪(Bm+kBe). (3.51)

This is a Z2 gauge theory coupled to Be + kBm. The Pontryagin square term is in principle
ill-defined, however this is resolved by the term kCβ

e ∪ Be. The mixed anomaly is instead
encoded in the coupling Cβ

e ∪ Bm. On the other hand

[σZ2 · Z4] (Be, Bm) =
√
H2(X, Z2) δZ2(Be) eπi

∫
Cβ

e ∪Bm+2πi K(Be, Bm) (3.52)

is the image under s of σZ2 · SPT0. To see it explicitly, we use the counterterm to write
πi
∫
Cβ

e ∪ Bm + 2πiK(Be, Bm) = πi
∫
Cβ

m ∪ Be, with δCβ
m = β(Bm). We also have that[

σZ2 · Z1
4|2

]
(Be, Bm) =

√
H2(X, Z2) δZ2(Be)e

πi
2

∫
P(Bm)+πi

∫
Cβ

m∪Be , (3.53)
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describing the action of s on σZ2 · SPT2. Finally,

[σZ2 · Z2] (Be, Bm) =
∣∣H2(X;Z2)

∣∣ δZ2(Be) δZ2(Bm) eπi
∫

Cβ
e ∪Bm (3.54)

is the Z2 × Z2 gauge theory which is invariant under s.

3.5 Comments on Coulomb vacua

All su(N) theories with N ≥ 3 also have gapless Coulomb vacua. Such vacua often appear
dressed by SPT phases or discrete gauge theories that follow from the precise patterns of
Higgsing or confinement. Focusing on the pure Coulomb vacuum — which is labeled by
the partition N = 1 + (N − 1) and in which the SU(N) symmetry is Higgsed to U(1) —
since at τYM = i there is a non-invertible self-duality symmetry in the UV, this must also
be true in the Coulomb vacuum.

It is known that pure Maxwell theory hosts a wealth of non-invertible defects coming
from the composition of SL(2,Z) modular transformations with the gauging of a discrete
subgroup Γ ⊂ U(1)[1]

e ×U(1)[1]
m of the 1-form symmetry [14, 75]. Once the subgroup Γ and the

modular transformation M are identified, this fixes the Coulomb coupling τC of the Maxwell
theory. In a pure Coulomb vacuum the 1-form symmetry is spontaneously broken, while
the duality symmetry is preserved. Here M = S, while the choice of Γ is dictated by the
UV global variant G, with the convention that the 1-form symmetry of the SU(N) variant
is associated to the subgroup Z[1]

N,e ⊂ U(1)[1]
e generated by

Ul = e
il
N

∫
F̃ , F̃ = 1

e2 ⋆F + iθ

2π F. (3.55)

Gauging the electric 1-form symmetry projects onto Wilson lines Wn with n = Nm but also
allows for fractionalized ’t Hooft lines Tm′/N . We can restore the standard quantization by
defining A = 1

NA
′ and Ã = NÃ′ for the dual gauge field. The action in the A′ variables has

a coupling τ ′C = τC/N
2. By composing with S duality, one finds that a duality symmetry

defect exists if

τC = −N
2

τC
⇒ τ

(e)
C = iN. (3.56)

The magnetic gauging can be treated similarly, finding τ (m)
C = i/N . The above argument fixes

the Maxwell coupling τC = iN in the pure Coulomb vacuum of the SU(N) N = 1∗ theory.
Other global variants can be treated using the appropriate discrete gauging. We can

do it directly at the level of the action by writing it as follows:

S =
∫ [ 1

2e2 (dA− b) ∧ ⋆(dA− b) +
i

2πG ∧ (Nb− dl) + iNp

4π b ∧ b+ iN

2π b ∧ C
]
. (3.57)

Here b is the dynamical Z[1]
N,e gauge field, C is the background field for the dual 1-form

symmetry (dC = 0), whilst G and l are dynamical fields acting as a Lagrange multiplier
restricting b to be in ZN by the equations of motion. We set the theta angle in the electric
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frame to zero for simplicity.24 We define shifted variables b′ = b − dA and G′ = G+ p dA,
so that the action reads:

S =
∫ [ 1

2e2 b
′ ∧ ⋆ b′ + iNp

4π b′ ∧ b′ + iN

2π b
′ ∧ (C +G′) + iN

2π dA ∧G
′ − i

2πG
′ ∧ dl

]
. (3.58)

Integrating out l sets G′ = dV , and then the term dA ∧ dV can be dropped. The field b′

can be integrated out by its equation of motion:

1
e2 ⋆ b

′ + iN

2π
(
p b′ + dV + C

)
= 0, (3.59)

which sets b′ = − iN
2π

( 1
e2 ⋆ + iNp

2π

)−1(dV + C). The action becomes

S =
∫ [ 1

2e2β
(dV + C) ∧ ⋆(dV + C)− iNp

4πβ (dV + C) ∧ (dV + C)
]

(3.60)

with β = p2 + 4π2

e4N2 . If we start from the self-dual coupling 1
e2 = N

2π then the complexified
coupling τC = θ

2π + 2πi
e2 is given by

τ
(e)
C = N(i− p)

(1 + p2) . (3.61)

This is in an electric duality frame (since dV couples electrically to C). In the magnetic
frame the answer instead reads

τ
(m)
C = (i+ p)

N
(3.62)

and it reproduces the naive answer for PSU(N)0 (magnetic gauging) τC = i/N . This
reasoning allows us to fix the coupling τC in pure Coulomb vacua with different global forms.

3.6 Cubic anomalies and invariant vacua

Lastly we perform some further consistency checks based on ’t Hooft anomalies. It is
known [50, 51] (see also [52, 76] for a recent discussion) that the SL(2,Z) group — or more
appropriately its spin cover Mp(2,Z) — can have nontrivial ’t Hooft anomalies. The ’t Hooft
anomaly for a single Maxwell field, IMaxwell, for a given cyclic subgroup Zk of the metaplectic
group is related to the chiral anomaly of a Weyl fermion IWeyl by:

IMaxwell = 56 IWeyl. (3.63)

The latter must be carefully defined. Since S4 = (−1)F , the correct structure to consider is

Spin−Mp(2,Z) = Spin(d)×Mp(2,Z)
ZF

2
(3.64)

where the quotient is by the diagonal ZF
2 generated by (−1)F , and the possible anomalies

are captured by a bordism group

ΩSpin−Mp(2,Z)
5 (pt) = Z32 ⊕ Z2 ⊕ Z9. (3.65)

24This is sufficient to deal with duality transformations, since the self-dual coupling is purely imaginary.
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The first two summands stem from the cubic anomaly of S, while the third one from the
cubic anomaly of ST . On the other hand, if the symmetry group were only SL(2,Z)× ZF

2 ,
its anomalies would be classified by [52]

ΩSpin
5

(
BSL(2,Z)

)
= Z4 ⊕ Z9, (3.66)

the first factor stemming from the subgroup generated by S while the second from ST . The
anomaly for the su(N) N = 4 theory can be computed on the Coulomb branch (since the
scalars are not charged under S-duality and thus the symmetry is unbroken on the Coulomb
branch), where we have rank(G) = (N − 1) N = 4 vector multiplets. Each vector multiplet
contributes 56IWeyl from the vector plus 4IWeyl from the 4 Weyl fermions (which transform
as if they had charge 1 under a chiral rotation, see eq. (2.32)) [51]. Therefore

IN=4 = 60 (N − 1) IWeyl. (3.67)

On the other hand, the chiral anomaly for U(1)R is given by25

Ichiral = −
4∑

i=1
q3

i (N2 − 1) IWeyl = −24 (N2 − 1) IWeyl, (3.68)

the minus sign stemming from the opposite action of SL(2,Z) and U(1)R on the fermions.
Given a cyclic subgroup Zk of Mp(2,Z), the presence of such cubic anomalies would prevent
the existence of a gapped vacuum invariant under the symmetry.26 For this to be consistent
with our results, the fact that the preserved subgroup is diagonal in both Mp(2,Z) and
U(1)R is essential.

Consider first the duality generated by S. A crucial point is that the duality symmetry
preserved in the IR starting from τYM = i is not ZF

8
27 but rather Z4 × ZF

2 , see the comments
at the end of section 2.3. Thus the anomaly is valued in Z4, and since 60 = 24 = 0 modulo 4,
the anomaly must vanish and it does not give any constraint on the N = 1∗ physics.28

A stronger constraint comes from considering the non-invertible symmetry generated by
ST , which is a symmetry of the theory at τYM = e

2πi
3 and can be preserved by the N = 1∗

deformation using our methods. In this case, the preserved symmetry is Z3 × ZF
2 and we

must cancel the anomaly mod 9. Thus it must be that

AST = 6(N − 1) + 3(N2 − 1) = 0 mod 9 (3.69)

25The rotation R− 3π
k

gives phases e− 3πi
k , e

πi
k , e

πi
k , e

πi
k to the four fermions in the N = 4 vector multiplet,

see table (2.36). Equivalently, we can use a normalization in which the charges of all fermions are integer and
the periodicity of U(1)R is 2π. This amounts to assigning charges (3,−1,−1,−1).

26One might be concerned that such cubic anomalies could have a different description when the symmetry
is non-invertible. On way to think about it is to work on a manifold with trivial H2(X), so that we are blind
to the 1-form symmetry and the duality defect looks invertible. In such a case we can turn on a standard
background gauge field in H1(X,Zk).

27We use the superscript F to indicate that (−1)F is inside the symmetry group.
28Notice however that, were it not for the U(1)R compensating transformation, the N = 4 anomaly would

be 60(N − 1) = −4(N − 1) mod 32 which is generically nontrivial. This happens for example in the Konishi
deformation (2.43).
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whenever the theory admits a massive vacuum which preserves the triality symmetry — i.e.,
when there is an ST -invariant Lagrangian lattice of dyons. We can write

AST = 3N(N − 1) mod 9 =

6 mod 9, for N = 3m+ 2,
0 mod 9, otherwise.

(3.70)

The ST -invariant Lagrangian lattice of dyons is present if and only if29

∃ k′, s, ℓ̃ such that N = (k′)2s and ℓ̃(ℓ̃− 1) + 1 = 0 mod s. (3.71)

The following table contains information about the anomaly and the presence of (possibly
multiple) invariant Lagrangian lattices of dyons for small values of N :

N AST Dinvariant
2 6 ×
3 0 ⟨D(1,1)⟩
4 0 ⟨D(2,0) ⊕D(0,2)⟩
5 6 ×
6 0 ×
7 0 ⟨D(2,1)⟩ , ⟨D(4,1)⟩

N AST Dinvariant
8 6 ×
9 0 ⟨D(3,0) ⊕D(0,3)⟩
10 0 ×
11 6 ×
12 0 ⟨D(6,0) ⊕D(2,2)⟩
13 0 ⟨D(3,1)⟩ , ⟨D(9,1)⟩

(3.72)

We indicated the generators of the lattice, when it exists. Notice that the anomaly cancellation
condition is necessary but not sufficient to conclude that there is an invariant vacuum, as
the cases N = 6 and N = 10 show.30 Here too it is important to include the R-symmetry
anomaly in order to have the required cancellation. For example, in the case N = 3 we have
24 + 12 = 0 mod 9, but neither term is vanishing on its own.

4 Gapless flows: N = 2 orbifolds and the conifold

The existence of non-invertible duality defects is not limited to the example of N = 4 SYM
theory. In this section we first construct new examples of self-duality defects in a class of
N = 2 Lagrangian SCFTs and then, similarly to section 2, we study how the defects can be
preserved under deformations and what effects they have on the low-energy description.

4.1 Dualities from class S

We consider Lagrangian N = 2 SCFTs described by a necklace quiver with r su(N) nodes
and bifundamental hypermultiplets. For our purposes, it is convenient to recall their class S
description which is given in terms of the 6d N = (2, 0) SCFT of type AN−1 compactified
on a torus T 2

r with r distinct regular punctures. The generalized S-duality group acting
29This criterion for the existence of a TQFT invariant under ST is the analog of (3.31) for S. Its derivation

is a simple generalization of the case for S, see [71] for a proof at the level of invariant TQFTs.
30The values of s such that

(
ℓ2 − ℓ + 1 = 0 mod s

)
has solutions, are those that can be represented as

s = x2 + xy + y2 for coprime x, y and are s = 1, 3, 7, 13, 19, 21, 31, 37, 39, 43, 49, . . . From the representation,
one sees that s = 0, 1 mod 3. Since q2 = 0, 1 mod 3, if N = 2 mod 3 then it should be s = 2 mod 3, which is
not possible. This shows that anomaly cancelation is necessary to have an invariant vacuum.
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on the marginal couplings is given by the mapping class group MCG(T 2
r ) of the Riemann

surface [77]. For r = 1, this is the SL(2,Z) S-duality group of N = 4 SYM.
The group MCG(T 2

r ) can be described following [78]. Its action is naturally described
on the covering space of the conformal manifold of our theory. We denote by τ the complex
structure of the torus, taking values in the complex upper half-plane, and by pi (with
i = 1, . . . , r) the positions of the punctures in the complex plane. In this parametrization,
a set of generators of MCG(T 2

r ) is:

S : (τ, p1, . . . , pr) 7→
(
−1
τ
,
p1
τ
, . . . ,

pr

τ

)
,

T : (τ, p1, . . . , pr) 7→ (τ + 1, p1, . . . , pr) ,
ℓi : (τ, p1, . . . , pr) 7→ (τ, p1, . . . , pi + 1, . . . , pr) ,

ℓ
(τ)
i : (τ, p1, . . . , pr) 7→ (τ, p1, . . . , pi + τ, . . . , pr) ,
si<r : (τ, p1, . . . , pr) 7→ (τ, p1, . . . , pi+1, pi, . . . , pr) ,
sr : (τ, p1, . . . , pr) 7→ (τ, pr − τ, p2, . . . , pr−1, p1 + τ) .

(4.1)

Using the above transformations, one can restrict τ to lie in the fundamental domain, and
all the punctures to lie in the fundamental cell of the complex plane, namely one can write
pi = xi + τ yi with 0 ≤ xi, yi < 1. Then, the complexified gauge couplings of the necklace
quiver are related to these parameters in the following way:

τi = pi+1 − pi for 1 ≤ i ≤ r − 1, τr = τ + p1 − pr,
r∑

i=1
τi = τ. (4.2)

In order to obtain positive gauge couplings, the punctures must be ordered such that
Im(pi+1) > Im(pi). Once this is done, for a generic choice of parameters, we can no longer
act with any transformation (4.1). Indeed, the physical conformal manifold is the quotient of
its covering space by the duality group. The duality symmetry defects arise at the orbifold
points that are generated by this quotienting procedure. Indeed, such points arise when there
is a left-over set of transformations that leaves a point of the conformal manifold invariant,
when the latter is still seen as an open subset of the covering space.

It is nevertheless instructive to write the transformations (4.1) in the gauge-coupling
parametrization τ1, . . . , τr, now thought as being defined on the covering space. These
transformations act as:

S : (τ1, . . . , τr) 7→
(τ1
τ
, . . . ,

τr−1
τ

,
τr − τ − 1

τ

)
,

T : (τ1, . . . , τr) 7→ (τ1, . . . , τr−1 , τr + 1) ,
ℓi : (τ1, . . . , τr) 7→ (τ1, . . . , τi−1 + 1, τi − 1, . . . , τr) ,

ℓ
(τ)
i : (τ1, . . . , τr) 7→ (τ1, . . . , τi−1 + τ, τi − τ, . . . , τr) ,
si : (τ1, . . . , τr) 7→ (τ1, . . . , τi−1 + τi, −τi, τi+1 + τi, . . . , τr) .

(4.3)

These formulas have to be interpreted with the cyclic convention τ0 ≡ τr and τr+1 ≡ τ1.
Note that these elements satisfy relations, and one could restrict to a smaller set of

generators [78]. We can also introduce the element ω = ℓ
(τ)
j sj−1sj−2 . . . sj+1 (for any j)
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that acts as a cyclic permutation τi → τi+1. The case r = 2 is somewhat special. The
transformations ℓ1 and ℓ2 are inverses of each other, as are ℓ(τ)

1 and ℓ(τ)
2 . Thus we can consider

only ℓ ≡ ℓ1 and ℓ(τ) ≡ ℓ
(τ)
1 , which act as:

ℓ : (τ1, τ2) 7→ (τ1 − 1, τ2 + 1) ,
ℓ(τ) : (τ1, τ2) 7→ (τ1 − τ, τ2 + τ).

(4.4)

In the same way, s1 and s2 are not independent and we can keep s ≡ s1 which acts by

s : (τ1, τ2) 7→ (τ2 − τ, τ1 + τ), (4.5)

so that ω = s ℓ(τ) simply acts as a permutation of the two gauge couplings.
From the structure of the quiver it follows that for gauge group SU(N)r there is a single

ZN 1-form symmetry, which is the diagonal of the would-be center symmetry of each SU(N)
factor. Accordingly, there is only a set of N genuine Wilson lines. Using the topological
manipulation σ we can gauge the 1-form symmetry, exactly as we did for N = 4 SYM based
on a single node, and we end up with a theory with global form SU(N)r/ZN and a dual
magnetic ZN 1-form symmetry. The genuine magnetic line operators end up also carrying
electric charge if one stacks with an SPT (acting with the τ operation) before performing σ.
Our discussion here is very brief since all details work exactly as in the single gauge group
case. The action of S must map a fundamental Wilson line to a fundamental ’t Hooft line.
Hence S takes us from the global form SU(N)r to

(
SU(N)r/ZN

)
0 (where the suffix specifies

that the ’t Hooft line does not carry electric charge), and vice versa. Similarly, T takes us
cyclically along all the

(
SU(N)r/ZN

)
k

global forms for k = 0, . . . , N − 1. The generators S
and T are the only ones to act on the global form, in the very same way as in SL(2,Z).

Note however that acting with S as in (4.3) in general does not preserve the ordering
of the punctures, i.e., it does not preserve the fact that Im τi > 0. However, it is always
possible to combine this action with a suitable string of permutations si and shifts ℓ(τ)

i such
that all Im τi > 0 after the transformation. If all the τi are exactly the same after the
transformation, we found a point of the conformal manifold which is fixed under a (composite)
transformation that contains S.

We can now identify the fixed points of S-duality.

Example: r = 2. This is the N = 2 SCFT consisting of two su(N) gauge nodes. It
corresponds to a torus T 2

2 with two punctures. Since S and T act in the standard way on τ ,
we fix it at the S duality invariant point τ = i. The action of S duality can be geometrically
interpreted as a 90-degree clockwise rotation around the bottom-left corner of the torus. The
invariant position of the punctures, up to a shift, is

p1 = i

2 , p2 = 1
2 + i, ⇒ τ1 = i+ 1

2 , τ2 = i− 1
2 . (4.6)
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Indeed, the transformation that leaves them invariant is as shown in the picture below:

p1

p2

ℓ
(τ)
2 S
−−−→ p2

p1

ℓ−1
2−−→ p2

p1

ℓ
(τ)
2 s1−−−→

p2

p1

(4.7)
At each step we have dressed the transformations in such a way that the gauge couplings
are positive. Following the discussion in section 2, we construct a topological interface IΣ
that acts on the marginal couplings of the N = 2 SCFT as follows:

Σ ≡ ℓ
(τ)
2 s1ℓ

−1
2 ℓ

(τ)
2 S = ω ℓ ℓ(τ)−1S = s ℓ S. (4.8)

Composing such topological interface with another topological interface φσ that implements
the topological manipulation σ, we define a topological operator DΣ = φ†

σ◦IΣ that implements
the non-invertible self-duality symmetry of the theory. A similar reasoning applies to the
triality defects at τ = e

2πi
3 . As we will see, the defect DΣ can be preserved under a massive

N = 1 RG flow.

Example: r = 4. The previous discussion generalizes to the case of T 2
4 , i.e., an N = 2

SCFT with a necklace quiver with four su(N) gauge nodes. In this case there is a one-
dimensional complex line of points within the conformal manifold which are fixed under
S duality, given by τ = i and

(p1, p2, p3, p4) =
(
α, 1 + iα, i− iα, 1 + i− α

)
with 0 < Im(α) < Re(α) < 1

2 . (4.9)

Using (4.2), this configuration corresponds to the following complexified gauge couplings:

(τ1, τ2, τ3, τ4) =
(
1 + (i− 1)α, i− 1− 2iα, 1 + (i− 1)α, −1 + 2α

)
. (4.10)

The gauge couplings are all positive. We act on the punctures with (4.1) in such a way
to leave them invariant:(

α, 1 + iα, i− iα, i+ 1− α
) S−→

(
−iα, −i+ α, 1− α, 1− i+ iα

)
→∏4

i=1 ℓ
(τ)
i−−−−−−→

(
i− iα, α, 1 + i− α, 1 + iα

) π−→
(
α, 1 + iα, i− iα, i+ 1− α

)
, (4.11)

where π = s2s3s1. We visualize these transformations in the picture below:

p1
p2

p3
p4 ∏

i
ℓ

(τ)
i S

−−−−−→
p2

p4

p1
p3

π−→
p1

p2

p3
p4

(4.12)

Once again we construct a topological interface IΣ, where Σ = π
∏

i ℓ
(τ)
i S, which we compose

with a topological interface that implements the action of σ in order to construct a non-
invertible self-duality symmetry defect DΣ.
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We conclude this section with some extra comments on higher values of r. For r = 4k
and r = 4k + 2 the story is similar, as we can always organize the punctures into k squares
as in r = 4, possibly plus two more punctures as in r = 2. Note that all punctures must be
distinct. For odd values of r = 2n + 1 we can place 2n punctures as in the previous case
of r even, plus one puncture in the middle of the torus, e.g.:

p3

p1
p2

p4
p5

s1

s2

s3

s4

s5

(4.13)

Using the same techniques we find, for example if r = 5: Σ = s5 s4 s1
∏5

i=1 ℓ
(τ)
i S.

4.2 Non-invertible duality defects on the conifold

Starting from the N = 2 quiver SCFTs and their self-duality defects introduced above,
we can adopt the same strategy as in section 2 and introduce relevant deformations that
partially break supersymmetry to N = 1, while preserving the non-invertible symmetry. A
particularly interesting example is the r = 2 theory considered above, i.e., the N = 2 SCFT
consisting of two su(N) gauge nodes and two bifundamental hypermultiplets. We decompose
the hypermultiplets in terms of N = 1 chiral superfields Aα, Bβ with α, β = 1, 2 transforming
respectively in the (N,N) and (N,N) representation, while we call Φ and Φ̃ the adjoint
chiral multiplets in the N = 2 vector multiplets. The superpotential is

W = ϵαβ Tr
(
ΦAαBβ + Φ̃BαAβ

)
= TrΦ(A1B2 −A2B1) + Tr Φ̃(B1A2 −B2A1). (4.14)

With two gauge nodes there is a non-Abelian SU(2) flavor symmetry under which Aα and
Bβ transform as doublets.

We can show that there exist massive deformations of the N = 2 SCFT that preserve
the non-invertible symmetry defect DΣ. Consider the superpotential deformation

δW = m

2
(
TrΦ2 − Tr Φ̃2) (4.15)

that partially breaks supersymmetry to N = 1. Any N = 2 SCFT has SU(2)R × U(1)r
R-symmetry group. The supercharges Qi

α (i = 1, 2) transform as doublets of SU(2)R and
with charge [Qi

α]r = −1 under U(1)r. In our conventions the superspace coordinate measure
d2θ transforms with charge [d2θ]r = −1. Both TrΦ2 and Tr Φ̃2 are neutral under SU(2)R

and have U(1)r charge [TrΦ2]r = [Tr Φ̃2]r = 2. As a result,
∫
d2θ δW has charge 1. Under

a Σ-duality transformation, the integrated superpotential deformation
∫
d2θ δW picks up a

phase −e− iπ
2 (notice the sign difference with respect to our discussion in section 2.3). This

is due to the fact that Σ involves the action of ω that sends Φ → Φ̃ and m → −m. Since
the mass deformation (4.15) breaks the superconformal U(1)r explicitly, we can use a U(1)r
transformation to compensate for the action of Σ:

D−π
2
= r−π

2
×DΣ (4.16)
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is a symmetry of the deformed theory. The effect of (4.15) can be understood more clearly
upon integrating out the adjoint chiral fields Φ and Φ̃ [57]. This leads to an N = 1 theory
with su(N) × su(N) gauge group, bifundamental chiral fields Aα, Bα̇ (α, α̇ = 1, 2) and a
quartic superpotential

WKW = λ

2 ϵ
αβϵα̇β̇ TrAαBα̇AβBβ̇ = λTr

(
A1B1A2B2 −A1B2A2B1

)
, (4.17)

where λ = −1/m, exhibiting an enhanced SU(2) × SU(2) global symmetry. The choice of
relative sign in (4.15) is crucial to obtain such enhancement. There is another choice of mass
deformation that preserves the non-invertible symmetry: δW = m

2
(
TrΦ2 + Tr Φ̃2).

Using the methods of [66] one can show that the N = 1 theory flows to a non-trivial IR
fixed point, where the dimension of the chiral superfields is 3/4 (as determined from their
R-charge 1/2). The operator (4.17) has R-charge 2 and is an exaclty marginal deformation
of the N = 1 SCFT which, together with the gauge couplings, gives rise to manifold of fixed
points of complex dimension 2. We refer to this theory, introduced in [57] to describe a
stack of N D3-branes probing a conifold singularity, as the Klebanov-Witten (KW) theory
or as the conifold theory.

As opposed to the case of the N = 1∗ theory discussed in section 3, the adjoint mass
deformation (4.15) leads to an interacting gapless IR theory with no spontaneous breaking of
the non-invertible symmetry. We should then understand how S-duality acts on the conformal
manifold of the conifold theory. To address this, we will first resort to AdS/CFT, and then
perform a purely field theoretic analysis.

For general Zr orbifold SCFTs, we can also turn on adjoint mass deformations

δW =
∑r

i=1
mi Tr(Φ2

i ) (4.18)

that are preserved by the duality Σ up to a phase (then reabsorbed by an R-symmetry
rotation). For small masses, the N = 2 duality group acts as [78]:

S : (m, m1, . . . , mr) 7→
(m
τ
, m1 −m

τ1
τ
, . . . , mr−1 −m

τr−1
τ

, mr −m
τr − 1
τ

)
,

ℓ
(τ)
i : (m, m1, . . . , mr) 7→ (m,m1, . . . , mi−1 +m, mi −m, . . . , mr),
si : (m, m1, . . . , mr) 7→ (m,m1, . . . , mi−1 +mi, −mi, mi+1 +mi, . . . , mr).

(4.19)

We introduced m =∑r
i=1mi, and in the last two formulas one has to use the cyclic convention

m0 ≡ mr and mr+1 ≡ m1. We then look for mass configurations that at τ = i are invariant
under Σ up to a phase. For r = 2 (at τ1 = i+1

2 ) one finds two solutions for m1,m2:

m2 = −m1 : (m1,m2) Σ7→ −(m1,m2) and m2 = m1 : (m1,m2) Σ7→ −i (m1,m2).
(4.20)

This reproduces what we discussed above. For r = 4 we find that m1 = −m3 = m and
m2 = m4 = 0 gives a consistent duality-preserving deformation (but there might be more).
It would be interesting to study this problem further.
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4.3 Holographic aspects

Both the N = 2 quiver SCFT with r = 2 nodes and the N = 1 KW SCFT are paradigmatic
examples of AdS/CFT. They arise from D3-branes probing toric Calabi-Yau singularities,
here C2/Z2 × C and the conifold, respectively. These two singularities have a single vanishing
2-cycle, where D5-branes can be wrapped yielding fractional branes. A regular D3-brane, when
placed at the singularity, breaks into two types of mutually BPS states, each corresponding to
one node of the quiver. As long as the NSNS 2-form gauge potential B2 is in a certain range

— (4.22) below — the two states are a D5-brane wrapped on the 2-cycle, and an anti-D5-brane
on the 2-cycle with −1 units of worldvolume flux [79–81]. If the number of D5 and D5 is the
same, the two nodes have the same rank and the quiver gauge theory is a SCFT, while if it
is not the same, then an interesting RG flow occurs, where the ranks of the gauge groups
gradually diminish towards the IR [82–84]. Here we will be interested in the conformal case.

Both theories above have a (symmetry preserving) conformal manifold that can be
parameterized by two complex couplings. In the N = 2 case these are simply the two
gauge couplings, while in the N = 1 KW theory the conformal manifold is embedded in
the space of the two gauge couplings and the quartic superpotential coupling. In the latter
case the two complex parameters are not exactly identified with the N = 1 gauge couplings,
although, following [85], we still assume that they have a positive imaginary part. In both
SCFTs there is a simple way to determine the holographic description of the exactly marginal
couplings via probe branes.

Let us first consider the N = 2 SCFT. By looking at the DBI + WZ action of a D3-brane
at the C2/Z2 × C singularity, and at a D5-brane wrapped on the vanishing 2-cycle, one
obtains the following map between field theory and supergravity parameters:

τ1 + τ2 = τSG
gs
≡ 1
gs

(
C0 + i e−ϕ), τ1 = − 1

4π2α′gs

∫
S2

(
C2 − τSGB2

)
, (4.21)

where τj = θj/2π + 4πi/g2
j are the N = 2 complexified gauge couplings, C0 and C2 are the

RR 0-form and 2-form fields of type IIB supergravity, ϕ is the dilaton, and B2 the NSNS
2-form field. Given that Im τj should be positive, these formulas are correct only if

0 < 1
4π2α′

∫
S2
B2 < 1. (4.22)

Indeed, only in this range a wrapped D5 and a wrapped anti-D5 with −1 units of worldvolume
flux have positive D3 charge and can be mutually BPS. Outside of the range the decomposition
is different: for n < 1

4π2α′
∫
B2 < n+ 1 the mutually BPS states are a wrapped D5 with −n

units of flux, and a wrapped anti-D5 with −n− 1 units of flux. The formulas (4.21) for the
gauge couplings should be accordingly modified. We will take the alternative point of view
that one should first perform a large gauge transformation of B2, corresponding to the integer
shift δ 1

4π2α′
∫

S2 B2 = −n in order to map it inside the range (4.22), and then apply (4.21).
The relevant type IIB SL(2,Z) transformations are the following:

τSG 7→
a τSG + b

c τSG + d
,

(
C2
B2

)
7→

(
a b

c d

)(
C2
B2

)
, (4.23)
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under which we have

C2 − τSGB2 7→
1

c τSG + d

(
C2 − τSGB2

)
. (4.24)

We can then deduce the SL(2,Z) transformations of the complexified gauge couplings. We
set gs = 1 and identify τ = τSG = τ1 + τ2. Naively, we obtain the transformations:

τ 7→ aτ + b

cτ + d
, τ1 7→

τ1
cτ + d

, (4.25)

and τ2 = τ − τ1. They agree with the transformations in (4.1).31 As discussed in section 4.1,
one should be careful since these transformations do not always respect Im τj > 0. In fact,
from the point of view of supergravity we also have large gauge transformations of B2 and C2
which shift their respective integrals by integer amounts. These give rise to transformations
ℓ(τ) and ℓ acting as in (4.4). The transformation ℓ has a clear field-theoretical interpretation
as a shift of the theta angles. The transformation ℓ(τ) is more subtle: since Im τ > 0, ℓ(τ) is
such that in its orbit there is one and only one representative with Im τ1,2 > 0. Therefore
the transformation in (4.25) has to be combined with a suitable repetition of ℓ(τ) (whose
order depends on τ1, τ2) in (4.4) in order to respect Im τj > 0. We find:

C = −
( 1 0

0 1
)
, ℓ(τ)C : τ → τ, τ1 → τ2, τ2 → τ1 (4.26)

T =
( 1 1

0 1
)
, T : τ → τ + 1, τ1 → τ1, τ2 → τ2 + 1

ℓT : τ → τ + 1, τ1 → τ1 + 1, τ2 → τ2

S =
( 0 −1

1 0
)
,

[
ℓ(τ)

]n
S : τ → −1

τ
, τ1 →

τ1
τ

+ nτ, τ2 → −
τ1 + 1
τ
− nτ.

In the last line the integer power n is a function of τ and τ1. Notice that C is the holographic
avatar of s from (4.5).

One can repeat the holographic analysis verbatim for the N = 1 KW SCFT by studying
a D3-brane probing the conifold singularity and a D5-brane wrapped on the vanishing 2-cycle.
In this context we continue using the notation τ1 and τ2 to parametrize the conformal
manifold although, as emphasized before, in the Klebanov-Witten model τ1 and τ2 are not
simply related to the gauge couplings. The holographic description indicates that the N = 2
generalized S-duality transformations are inherited by the Klebanov-Witten theory. This
is what we expected from the analysis of section 4.2.

4.4 N = 1 non-invertible symmetry from Seiberg duality

As shown in section 4.2, the Klebanov-Witten theory has a non-invertible self-duality symmetry
inherited from its parent N = 2 SCFT. Further evidence of this symmetry comes from the
holographic realization of the theory, as discussed in section 4.3. It is natural to ask whether
it is possible to describe the S-duality symmetry in purely N = 1 field theoretic terms. It
turns out that, at least for N = 2, one can understand S-duality of the KW theory in terms
of Seiberg duality. The argument does not apply to larger values of N , and it would be
worth exploring this question further.

31To see this more clearly, one should use the gauge coupling basis (τ1, τ2) introduced in (4.3) which is more
natural for the comparison with supergravity.
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In the specific case of N = 2, the su(2)×su(2) conifold theory can be described as an so(4)
theory with Nf = 4 flavors in the fundamental representation. The global variant Spin(4)
corresponds to SU(2)× SU(2), while SO(4)± are identified with P

(
SU(2)× SU(2)

)
0,1.32 The

Spin(4) theory with fundamental matter has a Z[1]
2 electric 1-form symmetry acting on the

spinor Wilson line that we denote by s, while the Wilson line in the vector representation
V is screened. In SU(2)2 language, the line s corresponds to a fundamental Wilson line
W1 for the first gauge group, or W2 for the second gauge group, while the Wilson line
V = W1W2 can be screened by the bifundamental matter. The SO(4)+ variant has an
’t Hooft line T which is charged under the dual magnetic 1-form symmetry, while the SO(4)−
variant has a genuine dyonic line denoted by sT . We denote the chiral multiplets by vi

α

where α is an index in the fundamental representation of the flavor symmetry group SU(4),
while i is in the vector representation of the gauge algebra so(4). The Klebanov-Witten
superpotential can be written as

WKW = 1
2 λ ϵijkl ϵ

αβγδ vi
α v

j
β v

k
γ v

l
δ = λB, (4.27)

where B is the baryon operator. The action of Seiberg duality on so(N) gauge theories
with Nf ≥ N ≥ 4 and vanishing superpotential has been studied in [38] and it displays a
nontrivial mapping between global variants:

Spin(N) +Nf ↔ SO(Nf −N + 4)− +Nf

SO(N)+ +Nf ↔ SO(Nf −N + 4)+ +Nf .
(4.28)

Notice that this duality action is different from the one of S duality, which maps Spin to
SO+ since it maps a Wilson line to an ’t Hooft line.

The case of Nf = N = 4 is doubly special. First, the gauge algebras are self-dual since
Nf −N − 4 = N = 4. Second, for Nf = N we should consider the baryon operator B. Its
Seiberg dual is the difference of the gauge kinetic terms for the two su(2) factors [86]:

B ↔ Tr
(
W2

(1) −W
2
(2)
)
, (4.29)

and thus the dual of the KW superpotential is a shift of the relative coupling η = τ1 − τ2
and vice versa.33 It is convenient to parametrize a point on the SU(4)-preserving conformal
manifold by (η, λ), so that the total gauge coupling τ = τ1 + τ2 is a specific function τ(η, λ)
whose precise form is not known. We denote a KW theory by the data

(
G + Nf , η, W

)
where G is the global form of the gauge group. We then use the results of [38] to build
a self-duality. Starting from

(
Spin(4) + 4, η, λB) we perform a first Seiberg duality to(

SO(4)− + 4, λ′, η′B′ +Mv′v′), where the primed variables η′, λ′ are some functions of the
unprimed ones, M is the meson field, and v′ are the dual quark fields. Then we perform
a shift of θ1 by 2π, which also maps the SO(4)− theory to SO(4)+. The relative gauge

32By P
(
SU(2)×SU(2)

)
we mean

(
SU(2)×SU(2)

)
/Z2 where the quotient is by the diagonal center. See [38]

for an in-depth treatment of so theories with matter in the vector representation.
33In this section we denote by τ1, τ2 the N = 1 gauge couplings, which should not be confused with the

exactly marginal gauge couplings parametrizing the two-dimensional conformal manifold that we discussed in
section 4.3. We hope this does not cause confusion to the reader.
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coupling η is shifted by 1, and so is τ . This induces a nontrivial map λ→ λ̃ on the baryon
coupling, such that

τ
(
η + 1, λ̃

)
= τ(η, λ) + 1. (4.30)

Finally, we perform a second Seiberg duality from SO(4)+ to SO(4)+ and then integrate
out the new meson field M ′ through its equations of motion. In this way we obtain a dual
description in terms of

(
SO(4)+ + 4, η′′, λ′′

)
. We interpret this duality as the N = 1 version

in the conifold of the N = 2 S-duality element Σ, and we denote it as ΣN=1. Importantly,
one can derive that ΣN=1 maps the global form Spin(4) to SO(4)+.

In order to define a self-duality defect we must assume that there exists a fixed point
λ = λ′′, η = η′′, and then compose the map with a discrete gauging of the Z[1]

2 symmetry. We
propose that this gives rise to a non-invertible self-duality symmetry defect.34 We summarize
the construction in the following graph:

Spin(4) + 4, η, λB SO(4)− + 4, λ′, η′B′ +Mv′v′

SO(4)+ + 4, η′′, λ′′B′′ SO(4)+ + 4, λ′ + 1, η̃′B′ +Mv′v′

Seiberg duality

shift θ1ΣN=1

Seiberg duality

(4.31)
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A TQFTs for N = 1 SYM

In this appendix we briefly review the TQFT description of the vacua of pure N = 1 su(N)
SYM. Let us start with G = SU(N) with its N equivalent confining vacua. In the k-th
vacuum the dyon D(k,1) condenses and the theory is described by35

SPT−k(B) = exp
(
−2πik

2N

∫
P(B)

)
. (A.1)

34This duality is absent in the theory without superpotential, since Seiberg duality generates a Klebanov-
Witten-type term [38].

35Here, for simplicity, we turn off the gauge field for the Z2N R-symmetry. That symmetry has a cubic
remnant of the chiral anomaly, which is saturated in the IR and it becomes an ’t Hooft anomaly for the
domain wall operators.
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These vacua form N “universes”, which can be described by the TQFT of a ZN -valued scalar
ϕ with the following partition function:

Z(B) =
∑

ϕ∈H0(X,ZN )
exp

(2πi
2N

∫
ϕ ∪P(B)

)
. (A.2)

This TQFT reproduces the mixed anomaly

I = 2πi(N − 1)
2N

∫
A ∪P(B) (A.3)

between the Z2N R-symmetry and the 1-form symmetry. Denoting as Vn = einϕ the point-like
operators, we can construct the projector Pk on the k-th vacuum as

Pk = 1
N

N−1∑
n=0

e
2πi
N

nk Vn. (A.4)

It is simple to show that the ZN 0-form symmetry defects Un satisfy

Un Pk = Pk+n Un. (A.5)

These are the topological avatars of N = 1 domain walls between confining vacua. In order to
be consistent with the action (A.2), the domain wall must also be stacked with an SPT1(B)
theory when changing vacuum. This works as an inflow theory for a minimal AN,1 TQFT, thus

DW = U ×AN,1(B), (A.6)

which is indeed a subsector of the Acharya-Vafa theory [87].
In the PSU(N)0 case, we can find the TQFT of vacua by gauging the 1-form symmetry:

Z(C) = 1√
|H2(X,ZN )|

∑
ϕ∈H0(X,ZN )
b∈H2(X,ZN )

exp
(2πi
2N

∫
ϕ ∪P(b) + 2πi

N

∫
b ∪ C

)
. (A.7)

The vacua are now generically inequivalent and host a Zgcd(k,N) TQFT. Following [15], the
IR domain wall becomes a non-invertible defect D = U × AN,1(b).

B Local order parameters for N = 1∗

In this appendix we recall the transformation properties of the order parameter introduced
in section 3.1, following the discussion in [88]. Neglecting some prefactors, we can rewrite
the superpotential (3.7) in terms of the following functions:

h(N)(τ) = E2(τ)−NE2(Nτ), (B.1)

g
(k)
ℓ (τ) = E2(τ)−

k′

k
E2

(
k′τ + ℓ

k

)
, N = kk′, ℓ = 0, . . . , k − 1,

where h(N)(τ) corresponds to the (unique) fully Higgsed vacuum.
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The Eisenstein series E2(τ), that we can evaluate as

E2(τ) =
12
πi

η′(τ)
η(τ) (B.2)

in terms of the Dedekind eta function η(τ), is a quasi-modular form of degree 2, therefore

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6c(cτ + d)
πi

. (B.3)

An immediate consequence is that h(N)(τ+1) = h(N)(τ) and g(k)
ℓ (τ+1) = g

(k)
ℓ+k′(τ), consistently

with the expected properties of these vacua under the modular T transformation. In addtion,
from (B.3) it is straightforward to obtain

h(N)
(
−1
τ

)
= τ2 g

(N)
0 (τ), g

(N)
0

(
−1
τ

)
= τ2 h(N)(τ). (B.4)

Now let us consider an integer ℓ > 0, with gcd(ℓ,N) = p. Define p̃ = −
(
ℓ/p
)−1

mod N/p
in other

words there exists an integer r such that −p̃ ℓ/p− rN/p = 1. The the following holds:

− 1
τ + ℓ

N
=M · τ ′ with M =

(
ℓ/p r

N/p −p̃

)
, τ ′ = p τ + p̃

N/p
, (B.5)

where M ∈ SL(2,Z) acts by fractional linear transformations. Combining this with the
transformation (B.3) yields

g
(N)
ℓ

(
−1
τ

)
= τ2 g

(N/p)
p̃ (τ). (B.6)

When N is prime, the transformations (B.4) and (B.6) (with p = 1) account for the mapping
of the order parameter under the modular S transformation for all the vacua.

For N = kk′ the procedure is similar. Denoting gcd(ℓ, k) = p and p̃ = −
(
ℓ/p
)−1

mod k/p
so

that there exists r such that −p̃ ℓ/p − rk/p = 1, we note that

−k′

τ + ℓ

k
= M̂ · τ̂ with M̂ =

(
ℓ/p r

k/p −p̃

)
, τ̂ =

pτ
k′ + p̃

k/p
. (B.7)

This relation, together with (B.3), leads to

g
(k)
ℓ

(
−1
τ

)
= τ2 g

(N/p)
k′p̃ (τ). (B.8)

The expression above perfectly matches the action of S-duality on the Lagrangian sublat-
tices (2.10), according to the correspondence between gapped vacua in SU(N) N = 1∗ SYM
and global forms for the algebra su(N).

When N is a perfect square, i.e., when k′ = k, there is a vacuum for which the order
parameter vanishes identically for any value of τ , namely

g
(k)
0 (τ) = 0 ∀τ. (B.9)

This corresponds to the presence of a vacuum state which is invariant under the full SL(2,Z),
as we illustrate in the example of N = 4 in the main text.
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C TQFTs and topological manipulations

Here we provide some details about the topological field theories introduced in the main text
as well as the non-trivial operations performed on them. Most of the calculations described
below rely on the ability to decompose a given cocycle in terms of elements belonging to
different cohomologies. Moreover, it is crucial for the consistency of the computations that
the resulting expressions are themselves unrestricted sums over such cohomologies. However,
this is not generally the case if one allows for an arbitrary spacetime topology. We then
proceed to describe under which conditions these manipulations can be performed.

Consider a dynamical 2-form field b ∈ H2(X,ZN ), where X denotes the spacetime
manifold. Take N = kk′ and perform the decomposition b = k c + b′. Naively, one would
say that c and b′ are arbitrary elements in H2(X,Zk′) and H2(X,Zk), respectively. Instead,
these two bundles are correlated by the fact that db must be trivial. To properly define
this procedure consider the group extension

1 −→ Zk′ −→ ZN −→ Zk −→ 1. (C.1)

This short exact sequence splits if and only if gcd(k, k′) = 1. If gcd(k, k′) ̸= 1, then consistency
with the short exact sequence implies the following correlation between the bundles

dc = −β(b′), where β : H2(X,Zk)→ H3(X,Zk′) (C.2)

is the Bockstein map. We could think of β(b′) ≡ b′ ∗e as the pull-back of an extension
class e ∈ H3(B2Zk, Zk′) [74] characterizing the bundle. Therefore, b′ is not an arbitrary
element of H2(X,Zk), rather it has to be an element such that β(b′) is trivial in cohomology.
In other words, b′ is restricted to the cocycles that trivialize the extension class e under
the pull-back b′ ∗e. This would imply that b′ is not freely summed over, hence making it
difficult to integrate it out.

In order to highlight how this obstacle may be avoided, let us uplift b′ to a Z-valued
cochain, such that the Bockstein map reads

β(b′) = 1
k
db′. (C.3)

In order to understand if β(b′) can be non-trivial in cohomology, we integrate it on a 3-cycle
γ3. If ∂γ3 = 0, by Stokes theorem we immediately find that the integral vanishes. However,
if H2(X) has torsion, we could have ∂γ3 = nγ2 so that

∫
γ3
β(b′) = n

k

∫
γ2
b′ ̸= 0. Thus, if

H2(X;Z) is freely generated, this cannot happen and β(b′) is necessarily trivial in cohomology,
meaning that (C.2) does not impose any constraint on b′. We will restrict to simply-connected
four-manifolds, so as to guarantee that H2(X;Z) is freely generated.36

Finally, notice that the solutions to (C.2) for c form a torsor over H2(X;Zk′). We can
thus choose an arbitrary particular solution c∗ such that dc∗ = −β(b′) and set c = c∗ + c′

36A simply-connected manifold has H1(X;Z) = 0. The universal coefficient theorem for cohomology states
that there exists a short exact sequence 0 → Ext1

Z
(
Hi−1(X;Z),Z

)
→ Hi(X;Z) → HomZ

(
Hi(X;Z),Z

)
→ 0.

Taking i = 2, on a simply-connected manifold H2(X;Z) ∼= HomZ
(
H2(X;Z),Z

)
are isomorphic and the latter

is freely generated.
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with c′ ∈ H2(X;Zk′). In the following, with a slight abuse of notation, we will simply
indicate a sum over c.

Now we provide a more detailed account of the manipulations presented in the main text.
We start with the theories Zℓ

N |k describing vacua with partial breaking/confinement of the
ZN 1-form symmetry. Their partition function is in (3.20). As mentioned in the main text,
the SPT phase is evaluated in the preserved subgroup Zk. This stems from the fact that the
Zk′ gauge theory has support on trivial Zk′ backgrounds, i.e., its partition function is a delta
function imposing B = k′B′ and in that case the partition function reduces to

Z[Zℓ
N |k](k′B′) =

√
|H2(X,Zk′)| exp

(2πiℓ
2k

∫
P(B′)

)
, (C.4)

which is a well defined Zk SPT phase. The extreme cases are a pure ZN gauge theory with
partition function Z[ZN ] = Z[Z0

N |1], and SPTℓ with partition function Z[SPTℓ] = Z[Zℓ
N |N ].

Whenever gcd(ℓ, k) = 1, there is an alternative expression:

Z[Zℓ
N |k](B) = 1√

|H2(X,ZN )|
∑

b∈H2(X,ZN )
exp

(
−2πiℓ−1

2k

∫
P(b) + 2πi

N

∫
b ∪B

)
, (C.5)

where ℓ−1 is the inverse of ℓ mod k. In order to show that the above expression equals (3.20),
one decomposes b = kb′ + b′′ with b′ ∈ H2(X,Zk′) (as previously explained, we assume a
simply connected spacetime). Summing over b′ yields a delta function δH2(X,Zk′ )(B), while
completing the square and summing over b′′ gives the same SPT phase as in (3.20).

Let us now describe some of the computations from section 3.2. In particular, the first
two entries in equation (3.28) follow almost by definition. In order to derive the third one,
we need to make use of the following result:

1√
|H2(X,Zk)|

∑
c∈H2(X,Zk)

exp
(2πip

2k

∫
P(c)

)
= 1 (C.6)

when X is a simply-connected spin manifold [71]. We therefore have, assuming gcd(ℓ,N) = 1:

[σ SPTℓ](B) = 1√
|H2(X,ZN )|

∑
b∈H2(X,ZN )

e
2πiℓ
2N

∫
P(b) + 2πi

N

∫
b∪B (C.7)

= 1√
|H2(X,ZN )|

∑
b∈H2(X,ZN )

e
2πiℓ
2N

∫
P(b+ℓ−1B)− 2πiℓ

−1
2N

∫
P(B) = SPT−ℓ−1(B).

To establish the last equality one uses (C.6). Here ℓ−1 is the inverse modulo N , which exists
due to the assumption gcd(ℓ,N) = 1. Let us introduce the generic notation (ℓ )−1

x to denote
the multiplicative inverse mod x. When this condition fails, we define p = gcd(ℓ,N) and
split the dynamical field as b = (N/p) c+ b′. As explained at the beginning of this section,
the following manipulations are perfectly justified as long as the spacetime is restricted to a
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simply-connected four-manifold. Given that, the sum over connections reads:

[σ SPTℓ](B) = 1√
|H2(X,ZN )|

∑
c∈H2(X,Zp)

b′∈H2(X,ZN/p)

exp
(2πiℓ

2N

∫
P(b′) + 2πi

N

∫
b′ ∪B + 2πi

p

∫
c ∪B

)

= |H2(X,Zp)|√
|H2(X,ZN )|

∑
b′∈H2(X,ZN/p)

exp
(2πiℓ/p

2N/p

∫
P(b′) + 2πi

N/p

∫
b′ ∪B/p

)
δH2(X,Zp)(B)

= exp
(
−
2πi(ℓ/p)−1

N/p

2Np

∫
P(B)

)
Z[Zp](B) = Z

[
Z

(ℓ/p)−1
N/p

N |N/p

]
(B), (C.8)

thus leading to the last entry in (3.28). In the first line we used the fact that P is a quadratic
form, P(A + B) = P(A) +P(B) + 2A ∪ B, to drop the c dependence. In the second line
we performed the sum over c and dropped terms which are trivial on the support of the
delta function. Finally setting B = pB′ to solve the constraint, we performed the final sum
over b′ using (C.6) and reinstated the old variable B.

Let us now consider the general case and prove (3.29). Setting N = kk′, p = gcd(ℓ, k),
we want to compute

σ Z
[
Z(ℓ)

N |k

]
(B) =

√
|H2(X,Zk′)|
|H2(X,ZN )|

∑
c∈H2(X,ZN )

exp
( 2πiℓ
2Nk′

∫
P(c) + 2πi

N

∫
c ∪B

)
δH2(X,Zk′ )(c)

=
√
|H2(X,Zk′)|
|H2(X,ZN )|

∑
c̃∈H2(X,Zk)

exp
(2πiℓ

k

∫
P(c̃) + 2πi

k

∫
c̃ ∪B

)
. (C.9)

To go to the second line we solved the delta function constraint by c = k′c̃. We are now
in a familiar situation and we further decompose c̃ = (k/p)c′ + c′′ so that c′ appears only
linearly and gives rise to a Zp delta function enforcing B = pB′:

(C.9) = |H2(X,Zp)|√
|H2(X,Zk)|

∑
c′′∈H2(X,Zk/p)

exp
(2πiℓ/p

k/p

∫
P(c′′) + 2πi

k/p

∫
c′′ ∪B′

)

=
√
|H2(X,Zp)| exp

(
−
2πi(ℓ/p)−1

k/p

k/p

∫
P(B′)

)
. (C.10)

Here we used that H2(X) is torsion-free and the sum (C.6) to rearrange the prefactors. We
can now reinstate the variable B = pB′ and the Zp gauge-theory factor explicitly to find:

σ Z
[
Z(ℓ)

N |k

]
(B) = exp

(
−
2πik′(ℓ/p)−1

k/p

2Np

∫
P(B)

)
Z[Zp](B) = Z

[
Zℓ̃

N |N/p

]
(B) (C.11)

with ℓ̃ ≡ −k′(ℓ/p)−1
k/p, thus proving equation (3.29).
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