
Reduced GM–WM concentration inside the Default Mode 
Network in individuals with high emotional intelligence 
and low anxiety: a data fusion mCCA+jICA approach
Alessandro Grecucci,1,2 Bianca Monachesi, 1 and Irene Messina1,3

1Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto (TN), Italy 38068, Italy 
2Centre for Medical Sciences, CISMed, University of Trento, Trento, Italy 38122, Italy 
3Faculty of Social and Communication Sciences, Universitas Mercatorum, Rome, Italy 
Correspondence should be addressed to Bianca Monachesi, Department of Psychology and Cognitive Science, University of Trento, Corso Bettini, 84, Rovereto, TN 
38068, Italy. E-mail: bianca.moanchesi@gmail.com
Alessandro Grecucci and Bianca Monachesi equally contributed to this paper.

Abstract

The concept of emotional intelligence (EI) refers to the ability to recognize and regulate emotions to appropriately guide cognition and 
behaviour. Unfortunately, studies on the neural bases of EI are scant, and no study so far has exhaustively investigated grey matter 
(GM) and white matter (WM) contributions to it. To fill this gap, we analysed trait measure of EI and structural MRI data from 128 
healthy participants to shed new light on where and how EI is encoded in the brain. In addition, we explored the relationship between 
the neural substrates of trait EI and trait anxiety. A data fusion unsupervised machine learning approach (mCCA + jICA) was used to 
decompose the brain into covarying GM–WM networks and to assess their association with trait-EI. Results showed that high levels 
trait-EI are associated with decrease in GM–WM concentration in a network spanning from frontal to parietal and temporal regions, 
among which insula, cingulate, parahippocampal gyrus, cuneus and precuneus. Interestingly, we also found that the higher the 
GM–WM concentration in the same network, the higher the trait anxiety. These findings encouragingly highlight the neural substrates 
of trait EI and their relationship with anxiety. The network is discussed considering its overlaps with the Default Mode Network.
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Introduction
The concept of emotional intelligence (EI) comprises a number 
of personality traits and competencies that involve the ability 
to perceive, understand, regulate and harness emotions adap-
tively in the self and in others (Salovey and Mayer, 1990; Zanella 
et al., 2022; Ghomroudi et al., 2023; Monachesi et al., 2023). In 
this sense, an emotionally intelligent individual can be described 
as a person who is effective in utilizing emotional signals to 
guide behaviours appropriately and advantageously. Large meta-
analytic evidence has shown clear associations between EI and 
mental/general health indicators (Schutte et al., 2007; Martins 
et al., 2010), subjective well-being (Sánchez-Álvarez et al., 2016; 
Xu et al., 2021), adaptive emotion regulation (Zanella et al., 2022), 
better relationships (Malouff et al., 2014; Walker et al., 2022) and 
academic/work achievements (O’Boyle et al., 2011; MacCann et al., 
2020; Sánchez-Álvarez et al., 2020). Despite the large documen-
tation on various social, cognitive and interpersonal outcomes 
related to EI, the empirical validity of the concept is still debated 
and an exhausted description of the neural processes that may 

underpin the construct is frequently mentioned as missing point 
in the determination of EI construct validity (Waterhouse, 2006; 
Humphrey et al., 2007; Tarasuik et al., 2009). The present study 
sought to provide new and more exhaustive knowledge on the 
neurocircuit underlying the EI for its better neurobiological con-
ceptualization.

In literature, there are leading theories of EI conceiving the 
construct in terms of trait or abilities (e.g. Webb et al., 2013). In 
the present study, we focused on trait EI since it represents an 
individual’s predisposition measure, which is involved in person’s 
behaviours and intents (Zanella et al., 2022), but it does not over-
lap with general cognitive functions as the ability EI mostly does. 
Indeed, the continued reflexive process on emotional experience 
and its integration with goal-directed behaviours, which charac-
terize EI (Salovey and Mayer, 1990), should be reflected not only in 
the involvement of purely executive functions, but also and above 
all brain structures involved in the coordination of social and 
affective systems. In this sense, there is evidence of brain char-
acteristics underlying EI and involving both white matter (WM) 
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and grey matter (GM). For example, voxel-based morphometry 
(VBM) studies have reported significant correlations between indi-
vidual differences in EI and GM volume/density in areas such as 
the orbito-frontal cortex (OFC) and the insula and temporal lobe 
(Koven et al., 2011; Takeuchi et al., 2011; Weber et al., 2013; Tan 
et al., 2014; He et al., 2018). In addition, intra- and inter-personal 
aspects of EI have been reported as positively correlated with WM 
integrity in the right anterior insula, and in a part of the right 
inferior longitudinal fasciculus (ILF), respectively (Takeuchi et al., 
2013).

The literature offers several, compatible hypotheses for the 
interpretation of these data. A first hypothesis is based on 
the ‘somatic marker’ theory (Damasio, 1996). According to this 
hypothesis, the core of EI is the ability of integrating sensory and 
visceral bodily information, localized in the orbitofrontal/ven-
tromedial prefrontal and insula areas of the brain. A second 
hypothesis empathizes the importance of social skills in EI. This 
hypothesis is in line with the detection of areas in Social Cogni-
tive Network, such as the temporal lobes (Yao et al., 2018) and 
the ILF in association to EI (Takeuchi et al., 2013). In the present 
study, we consider also a third, less explored, hypothesis which 
considers the possible role of the Default Mode Network (DMN) 
in EI. The DMN is made up of functional hubs: the medial pre-
frontal cortex, the posterior cingulate cortex, precuneus and the 
angular gyrus (Andrews-Hanna et al., 2014). Neuroimaging stud-
ies have recently shown that the DMN is largely implied in anxiety 
(Saviola et al., 2020; Baggio et al., 2023), borderline personality (Gre-
cucci et al., 2022; Langerbeck et al., 2023), narcissistic personality 
(Jornkokgoud et al., 2023), negative affectivity (Ghomroudi et al., 
2023), anger expression problems (Sorella et al., 2022; Grecucci 
et al., 2023a), rumination (Zhou et al., 2020) and general psy-
chopathology (Coutinho et al., 2016; Messina et al., 2016). All this 
evidence converges toward the direction of the DMN as being 
implied in many if not all mental disorders. In contrast, previ-
ous behavioural studies have reported overthinking, rumination 
as well as decreased anxiety, emotional reactivity and impulsivity 
in individuals with high EI (Kauts and Saroj, 2010; Zanella et al., 
2022). Indeed, EI is associated with higher subjective well-being 
(Sánchez-Álvarez et al., 2016; Xu et al., 2021) and more adaptive 
emotion regulation (Zanella et al., 2022). If it is true that the DMN 
is positively associated with psychological problems, and EI is neg-
atively associated with psychological problems, we expect EI to be 
negatively correlated with the DMN. In other words, we expect 
that individuals with higher EI will exhibit decreased GM–WM 
concentration in regions of the DMN linked to processes like rumi-
nation, overthinking, emotional reactivity and anxiety (Baggio 
et al., 2023). These areas have also been associated with border-
line and narcissistic personality disorders (Grecucci et al., 2022; 
Jornkokgoud et al., 2023; Langerbeck et al., 2023). Moreover, based 
on the evidence that higher the EI, the lower the anxiety, we also 
expect the reduced GM–WM concentration inside the DMN to be 
also associated with anxiety but in an opposite direction.

Considering the absence of an integral and comprehensive 
neurobiological model of EI, in the present study, we opted for 
a methodological approach coherent with a network perspec-
tive, which allows the study of emotional processes as distributed 
across a subset of regions (Hamann, 2012). To this aim, we 
adopted a multimodal canonical correlation analysis with joint 
independent component analysis (mCCA-jICA; Sui et al., 2013). 
This approach is based on decomposing the cortex into natu-
rally grouping networks, based on covarying GM and WM con-
centrations. Generally, this approach can firstly find maximally 
correlated components between multiple modalities (mCCA), and 

then to decompose these correlated components into spatially 
independent components (jICA). The mCCA-jICA has been already 
successfully applied to investigate covarying GM and WM con-
centration in the context of cognitive decline and mild cogni-
tive impairment (Ling et al., 2019), anxiety (Baggio et al., 2023) 
and obsessive-compulsive disorder (Kim et al., 2015). Here, it is 
employed to reveal those independent components of covarying 
GM and WM concentration associated with the trait EI. Note that 
previous studies of EI provided promising attempts in describing 
neural basis of EI in terms of WM and GM features. However, they 
investigated the neural underpinnings of EI focusing only on one 
measurement of the brain characteristics or both but separately 
(Takeuchi et al., 2011, 2013).

The advantages of this approach are multiple. Independent 
component analysis (ICA) applied to structural brain features (i.e. 
source-based morphometry, (Xu et al., 2009) is an unsupervised 
machine learning multivariate method that considers the statis-
tical dependency among voxels. Based on regions with covary-
ing GM and WM concentration, the brain is decomposed into 
naturally grouping networks with lower and consistent dimen-
sionality (Kim et al., 2015; Grecucci et al., 2023b). This has the 
advantage of avoiding a priori atlas-defined regions (ROIs) and 
biologically implausible portions of the brain (e.g. spheres can-
tered on coordinates). Constraining the effect of interest on such 
arbitrary partitions may be in fact misleading (Sorella et al., 
2022; Baggio et al., 2023; Grecucci et al., 2023b). Finally, an 
approach based on decomposing the cortex into naturally group-
ing networks (based on covarying GM and WM concentrations) is 
also more coherent with a network perspective in neuroscience 
(Hamann, 2012), building upon the notion that emotional pro-
cesses are distributed across a subset of regions constituting a
network.

Methods
Participants
Brain scans and questionnaire scores of 128 German-speaker 
participants (36 Females, mean age 29.72, SD = 12.43; years of 
education mean: 12.73, SD = 0.87) were included in the present 
study. The data were selected from ‘Leipzig study for mind-body-
emotion interactions’ OpenNeuro database (accession number 
ds000221) (LEMON, Babayan et al., 2019), the collection of which 
was conducted at the Max Planck Institute for Human Cognitive 
and Brain Sciences (MPI CBS) in Leipzig (Germany), between 2013 
and 2015. Participants were selected based on medical eligibil-
ity for magnetic resonance sessions and the absence of past or 
present psychiatric and neurological disorders. All participants 
provided written informed consent prior to the data collection, 
and they received a compensation after the completion of all 
assessments. In the present study, further inclusion criteria for 
the extracted subset of participants were a negative drug test, 
no excessive alcohol use and a negative diagnosis at the SCID-
I for a psychopathological screening (information retrieved in 
Babayan et al., 2019). For each participant, we extracted structural 
MRI scans (T1 Weighted—MP2RAGE) and the measure of trait 
EI and trait anxiety. Namely, we selected the scores of German 
version of the Trait EI Questionnaire Short-Form (TEIQue—SF, 
Petrides, 2009), one of the most widely used measures. TEIQue—
SF, developed by Petrides (2009), conceptualizes EI as a personality 
trait and provides a comprehensive operationalization of trait 
EI theory. The questionnaire, administered in the German vali-
dated version, assesses four factors: (i) well-being (α = 0.94), (ii) 
self-control (α = 0.86), (iii) emotionality (α = 0.90), (iv) sociability 
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(α = 0.88), and a total trait EI index (α = 0.96). The German version 
demonstrated good model fit reliability (χ2 (54, N = 352) = 147.78, 
CFI = 0.95, SRMR = 0.049 and RMSEA = 0.07), and the test valid-
ity was reliable (0.88 ≤ α ≤ 0.96) (Babayan et al., 2019). TEIQue—SF 
comprises 26 items across the four factors: well-being (6 items), 
self-control (6 items), emotionality (8 items) and sociability (6 
items), along with four items contributing to the total trait EI 
index score. Responses are recorded on a 7-point Likert scale (1 
to 7, from ‘completely disagree’ to ‘completely agree’). The total 
trait EI index score is computed by dividing the sum of items 
scores by the total number of items. For this study, we included 
in the analysis only the total trait EI index as an exhaustive and 

complete measure of the EI construct, and to avoid redundancy in 
the analysis. The descriptive statistics for the total trait EI index 
(N = 128) were M = 154.29 and SD = 17.44 (max value = 195; min 
value = 103). Note that we used the sum of scores, as reported in 
the Lemon dataset, and not the average. Although there are no 
established norms for TEIQue-SF, when considering the average 
of scales, our sample perfectly aligns with the values reported 
in the original validation study by Cooper and Petrides (2010) 
(M = 5.143, our sample; M = 5.1, the original study). In addition, 
we selected the scores of the German version of the State-Trait 
Anxiety Inventory (Laux et al., 1981) to assess the anxiety trait. 
It consists of 20 items, with a 4-point Likert scale ranging from 

Fig. 1. Diagram of the mCCA + jICA method. First, the structural T1 images were pre-processed and the features of two neuroimaging modalities (GM 
and WM) were extracted and reorganized into two matrices, X1 and X2. After dimensionality reduction, mCCA was applied to X1 and X2, and the 
canonical variants B1 and B2 as well as the associated components C1 and C2 were computed. Then, jICA was applied to C1 and C2 to compute the 
maximized joint-independent component matrices S1 and S2 (sources) and the relative loading coefficients mixing matrix D. The loading coefficients 
were then used for predicting EI and additional analyses.
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1 (almost never) to 4 (nearly always). The descriptive statistics 
for the anxiety were M = 36.98 and SD = 8.19 (max value = 57; min 
value = 21). According to the developer (Spielberger et al., 1983), 
our sample falls within the moderate anxiety level. Indeed, the 
defined ranges classify scores of 20–39 as low anxiety, 40–59 as 
moderate anxiety and 60–80 as high anxiety. The validity and reli-
ability values for the German version of the two scales as well 
as the internal consistency (Cronbach’s α) for the whole sample 
in the original dataset are reported in the study of Babayan et al. 
(2019).

Image acquisition
For Structural images acquisition, a 3 Tesla scanner (MAGNETOM 
Verio, Siemens Healthcare GmbH, Erlangen, Germany) equipped 
with a 32-channel head coil was used. T1-weighted structural 
volumes were acquired using MP2RAGE sequence (TR = 5000 ms, 
TE = 2.92 ms, TI1 = 700 ms, TI2 = 2500 ms, FOV = 256 mm, voxel 
size = 1 mm isotropic), and with 176 slices interspersed during 
8 min 22 s of scanning. During the acquisition, participants were 
asked to stay awake and look at a low-contrast fixation cross.

Data analysis
Pre-processing
Structural MRI data have been firstly assessed for its quality 
in order to exclude any possible scanning artefacts. Then, the 

pre-processing was conducted using Computational Anatomy 
Toolbox (CAT12, http://www. neuro.uni-jena.de/cat/), a tool-
box for statistical Parametric Mapping (SPM12, http://www.fil.
ion.ucl.ac.uk/spm/software) in MATLAB environment (https://it.
mathworks.com/products/matlab.html). The structural images 
were manually reoriented to the anterior commissure as the ori-
gin, and then segmented into GM, WM and cerebrospinal fluid 
(CSF). The GM image registration was conducted with Diffeo-
morphic Anatomical Registration using Exponential Lie algebra 
(DARTEL) tools for SPM12 (https://github.com/scanUCLA/spm12-
dartel, Komatsu et al., 2018). Finally, the DARTEL images were 
normalized to MNI-152 standard space and each image was 
smoothed with a 12 mm full-width at half-maximum (FWHM) 
Gaussian kernel [12, 12, 12].

Data fusion unsupervised machine learning
For the network decomposition, the mCCA + jICA was applied to 
structural data using the Fusion ICA Toolbox (FIT, http://mialab.
mrn.org/software/fit, Calhoun et al., 2009) in the MATLAB 2018 
environment. The dimensionality of both GM and WM features 
was reduced using singular value decomposition (SVD) for each 
modality retaining more than 98.9% of non-zero eigenvalues of 
both modalities. A modified Akaike’s information criterion (AIC, 
Akaike, 1974; Li et al., 2009) was used to estimate the num-
ber of joint sources, k, from matrix X (Calhoun et al., 2001).

Fig. 2. Independent covarying GM–WM networks. mCCA + jICA was able to decompose the brain into 12 covarying GM–WM networks. Only the positive 
tail of the distribution is plotted.
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The mCCA served to separate the reduced features by the mix-
ing profiles and the associated components (Sui et al., 2013). The 
canonical variates represent the contribution of the associated 
component to the features of the individual subjects. The cor-
relation of canonical variates was maximized step-wisely from 
the first to the last associated component, while the correlation 
between the canonical covariates with different indices was min-
imized. Then, the jICA was applied to decompose the matrix into 
independent networks. The jICA is a data fusion method which 
can combine multiple types of data from the same participants 
and extract their correlated information (Calhoun et al., 2009). The 
joint sources are maximally and spatially independent and each 
corresponds to a set of GM regions and a set of WM regions. GM 

shares the same contribution to the intersubject covariation and 
hence capture the linked GM and WM group differences (Xu et al., 
2009). This was done as the components found using mCCA typi-
cally contain sources that are not independent due to the spatial 
dependency of neuroimaging data across modalities. The statis-
tical dependency among the joint independent components was 
minimized via information maximization (Calhoun et al., 2009). 
See Figure 1 for an outline of the method.

Infomax algorithm was used to separate independent sources, 
which performs optimally under the assumption of super-
Gaussianess. To increase stability of the non-linear optimization, 
jICA was performed for 100 times. Results were plotted via Surf 
Ice (https://www.nitrc.org/projects/surfice/).

Fig. 3. Visual representation of ICGM5 and ICWM5 and their association with trait EI. (A) Brain plots of ICGM5 and (B) ICWM5. The red and the blue 
colours in the brain plots represent positive and negative correlational values, respectively. (C) Plot of the regression between EI (i.e. total trait EI index 
score of TEIQue-SF) and ICGM5 (on the left) and ICWM5 (on the right). Marginal effect in the regression is also displayed at the bottom of the chart.
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Covarying GM–WM components associated with EI and 
anxiety
By performing the mCCA-jICA analysis, the brain was decom-
posed into independent covarying GM–WM components. Covary-
ing components means that these two types of features for the 
two modalities are correlated with each other, and that they are 
concatenated and decomposed together when performing mCCA-
jICA. However, the correlation between the ICs of the GM and 
WM does not necessarily imply that both these two modalities 
correlate in turn with the psychological construct of interest 
(trait EI). Therefore, to verify that, the loading coefficients of 
every IC were entered in a backward regression for WM and GM, 
separately, and the total trait-EI was entered as the dependent 
variable (see Liang et al., 2021, for similar procedure). To control 
for the eventual effects of age and gender, we included them in 
the two stepwise regressions. Only those components associated 
with trait EI for both modalities will be discussed as the joint 
independent components underlying the psychological construct 
(Liang et al., 2021). JASP (Version 0.16) was used to perform the
analyses.

To assess the relationship between EI and anxiety, and then 
between anxiety and the neural networks involved in EI, we com-
puted a Spearman correlation controlling for age and gender. All 
correlations were Bonferroni corrected.

Results
Networks decomposition
The information theoretic criteria estimated 12 independent 
covarying GM (ICGM) and WM (ICWM) components. The values of 
these components refer to the increased GM–WM concentration. 
The meaning of the covariation between a GM and a WM com-
ponent refers to a similar pattern of GM–WM concentration. The 
brain regions involved in the WM networks have to be interpreted 
as regions of WM tracts that pass nearby and across the resulted 
named areas. See Figure 2 for details of the ICs.

Neural prediction
For what concerns GM networks, multiple linear regression using 
backward data entry returned that a model including ICGM5 
(beta = −169.452, P = 0.007) and ICGM10 (beta = −182.868, P = 0.01) 
were successfully and negatively associated with EI. Similarly, 
for WM analysis, the multiple linear regression using back-
ward data entry again returned that a model including ICWM5 
(beta = −394.571, P = 0.014) was successfully and negatively asso-
ciated with EI. ICGM5 and ICWM5 were highly correlated (Pearson 
r = 0.497, P < 0.001). Of note, the effects of age and gender were not 
significant in the winning models of both the stepwise regressions. 
The regions of GM and WM involved in the IC5 were spanning 

Fig. 4. Visual representation of ICGM10 and its association with trait EI. (A) Brain plots of ICGM10. The red and the blue colours in the brain plots 
represent positive and negative correlational values, respectively. (B) Plot of the regression between EI (i.e. total trait EI index score of TEIQue-SF) and 
ICGM10. Marginal effect in the regression is also displayed at the bottom of the chart.
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Table 1. Grey matter (GM) and white matter (WM) regions included in IC5 (threshold = 4). BA = Brodmann Areas.

Area BA Volume (cc) Random effects: max value (x, y, z)

ICGM5
 Middle Frontal Gyrus 9, 10, 46 2.9/2.2 5.4 (−36, 26, 33)/10.9 (43, 20, 22)
 Sub-Gyral * 0.6/2.6 6.2 (−40, 40, 4)/9.5 (40, 17, 23)
 Inferior Frontal Gyrus 9, 10, 45, 46, 47 2.0/2.2 6.0 (−42, 37, 6)/7.4 (49, 23, 20)
 Lingual Gyrus 17, 18 1.2/1.7 6.3 (−3, −89, −9)/6.6 (1, −88, −8)
 Superior Temporal Gyrus 41 0.6/0.0 5.9 (−40, −30, 17)/ −999.0 (0, 0, 0)
 Middle Temporal Gyrus * 0.8/0.0 5.8 (−40, −64, 23)/ −999.0 (0, 0, 0)
 Inferior Parietal Lobule 7, 39, 40 1.2/2.1 5.6 (−50, −37, 24)/5.5 (52, −26, 26)
 Insula 13, 41 1.9/0.3 5.5 (−43, −31, 20)/4.5 (49, −24, 21)
 Inferior Occipital Gyrus 17 0.1/0.1 5.0 (−10, −92, −9)/4.2 (16, −91, −8)
 Supramarginal Gyrus 40 0.4/0.1 5.0 (−52, −45, 26)/4.1 (59, −38, 30)
 Superior Parietal Lobule 7 0.0/0.4 −999.0 (0, 0, 0)/5.0 (30, −58, 43)
 Transverse Temporal Gyrus 41 0.3/0.0 5.0 (−40, −30, 11)/ −999.0 (0, 0, 0)
 Precentral Gyrus 9 0.1/0.0 4.8 (−36, 24, 36)/ −999.0 (0, 0, 0)
 Cingulate Gyrus 31 0.0/0.5 −999.0 (0, 0, 0)/4.8 (7, −41, 32)
 Cerebellar Tonsil * 0.0/0.4 −999.0 (0, 0, 0)/4.6 (33, −50, −40)
 Cuneus 18 0.1/0.0 4.6 (−3, −93, 0)/ −999.0 (0, 0, 0)
 Precuneus 19 0.0/0.4 −999.0 (0, 0, 0)/4.5 (30, −62, 40)
 Angular Gyrus * 0.1/0.1 4.4 (−40, −65, 31)/4.2 (42, −65, 32)

ICWM5
 Sub-Gyral * 0.1/1.9 4.2 (−10, −21, 47)/7.6 (43, 11, 17)
 Precentral Gyrus 4, 9 0.0/0.5 −999.0 (0, 0, 0)/6.9 (34, 13, 34)
 Medial Frontal Gyrus 6 1.1/0.0 6.0 (−7, −10, 53)/ −999.0 (0, 0, 0)
 Middle Frontal Gyrus * 0.0/0.4 −999.0 (0, 0, 0)/5.6 (37, 13, 31)
 Lingual Gyrus 18 0.5/0.0 5.4 (−12, −77, −1)/ −999.0 (0, 0, 0)
 Inferior Parietal Lobule 40 0.4/0.1 5.0 (−43, −34, 40)/4.4 (43, −50, 40)
 Postcentral Gyrus 3, 4 0.0/0.3 −999.0 (0, 0, 0)/4.7 (22, −29, 53)
 Superior Frontal Gyrus * 0.0/0.1 −999.0 (0, 0, 0)/4.4 (19, 34, 33)
 Paracentral Lobule 6 0.2/0.0 4.3 (−7, −18, 47)/ −999.0 (0, 0, 0)
 Inferior Frontal Gyrus * 0.0/0.1 −999.0 (0, 0, 0)/4.0 (37, 10, 29)

(*) = area not recognized by standard BA atlas.

from frontal to parietal and temporal lobes, including insula, cin-
gulate, fusiform, parahippocampal gyrus, cuneus and precuneus 
(Figure 3).

The areas of GM involved in the ICGM10 were mainly the cau-
date, frontal regions and the middle-inferior temporal area (see 
Figure 4). Of note, both networks—especially IC5—overlap with 
the Default Mode Network (see Supplementary material for a 
visual comparison). For a detailed list of all areas involved in IC5 
and ICGM10, see Tables 1 and 2. Areas for ICWM10 are reported 
in the Supplementary material.

Additional analyses
To assess the relationship between EI and anxiety, and then 
between anxiety and the loading coefficients of ICGM5 and 
ICWM5, we computed a Spearman correlation with a corrected 
Bonferroni threshold of 0.0125, controlling for age and gender. 
Spearman correlation was preferred to Pearson correlation as 
anxiety was not normally distributed as the results at the Wilk-
Shapiro test showed (W(128) = 0.98, P = 0.04), differently from all 
other variables (P > 0.06). As expected, EI was significantly and 
negatively correlated with anxiety (𝜌 = −0.511, P < 0.001). More-
over, anxiety significantly and positively correlated with both 
ICGM5 (𝜌 = 0.227, P = 0.011) and with ICWM5 (𝜌 = 0.282, P = 0.001) 
(see Figure 5). To further rule out the effect of gender on EI, we 
directly ran a simple independent t-test that returned to be not 
significant (t(1126) = 0.164, P = 0.870). In addition, to further rule 
out the effect of age on EI, we ran a Pearson correlation that 
returned to be not significant as well (r = −0.005, P = 0.952).

Table 2. Grey matter (GM) regions included in IC10 (thresh-
old = 4.5). BA = Brodmann Areas.

Area BA Volume (cc)
Random effects: max 
value (x, y, z)

Rectal Gyrus 11 0.3/0.3 5.3 (−6, 18, −25)/5.8
(3, 23, −26)

Caudate * 0.5/0.0 4.7 (−12, 14, 9)/ −999.0
(0, 0, 0)

Sub-Gyral * 0.0/0.1 −999.0 (0, 0, 0)/4.4
(42, 19, 23)

Superior 
Frontal Gyrus

6, 9 0.1/0.2 4.3 (−22, 44, 32)/4.3
(10, 10, 58)

Medial Frontal 
Gyrus

6 0.1/0.0 4.1 (−3, −22, 62)/ −999.0 
(0, 0, 0)

Middle Frontal 
Gyrus

8 0.1/0.0 4.1 (−24, 25, 40)/ −999.0 
(0, 0, 0)

Tuber * 0.0/0.1 −999.0 (0, 0, 0)/4.1
(36, −58, −30)

Lentiform 
Nucleus

* 0.0/0.1 −999.0 (0, 0, 0)/4.0
(18, 3, −3)

Culmen * 0.0/0.1 −999.0 (0, 0, 0)/4.0
(24, −35, −22)

(*) = area not recognized by standard BA atlas.

Discussion
A still debated issue for the determination of EI construct validity 
is the description of its neural correlates. So far, several studies 
approached the topic focusing on brain structural features asso-
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Fig. 5. Correlations between EI, anxiety and loading coefficients of ICGM5, ICWM5, ICGM10. Top of the panel: correlations density plot between EI (i.e. 
total trait EI index score of TEIQue-SF), Anxiety (ANX trait), and the loading coefficients of ICGM5 and ICWM5. Anxiety is significantly and negatively 
correlated with EI, and positively correlated with ICGM5 and ICWM5. Bottom of the panel: heatmap of correlations.

ciated with EI, and emphasizing WM or GM features, separately. 
The present study, instead, is aimed at investigating the neural 
characteristics associated with trait EI by using the advanced and 
promising unsupervised machine learning approach known as 
mCCA-jICA, which is able to reveal the covarying concentration 
of both WM and GM at once.

Results of our study firstly identified 12 independent covarying 
GM and WM networks. Especially, the loading coefficients of one 
GM–WM component (IC5) was found to be significantly and nega-
tively correlated with trait EI total index. In other words, the lesser 
the GM–WM concentration inside this network, the higher the EI 
traits. Consistently, the same network showed an opposite (posi-
tive) correlation between GM and WM concentration and anxiety 
scores; the higher the GM–WM concentration, the higher the anx-
iety. Last but not least, EI was negatively correlated with anxiety. 
This result is in line with a previous study (Wang et al., 2021) that 
found a possible indirect influence of EI on the link between GM 
volume and social anxiety. Interestingly, the areas belonging to 
the IC5 overlap with those involved in the Default Model Networks 
(DMN) such as the precuneus, the cingulate cortex, the parahip-
pocampal gyrus and portions of the frontal and temporal lobe 
(Doucet et al., 2019). This result suggests that higher scores in EI 
and lower scores in anxiety were associated with less increased 
GM and WM concentration in the DMN. The link between EI and 
the DMN has been already reported in resting-state fMRI studies 
(Takeuchi et al., 2013; Killgore et al., 2017; George et al., 2018; Ling 
et al., 2019), where greater suppression of the DMN associated to 
EI has been equated to the more general evidence of greater DMN 

suppression in superior cognitive performance, also when cog-
nitive performance include emotional elements (Pan et al., 2018; 
Leonards et al., 2023). But as far as we know, this is the first evi-
dence of a link between EI and the structural properties of the 
regions belonging to the DMN. We interpreted this association 
in the light of the emerging model of DMN as implied in many 
psychological problems (Langerbeck et al., 2023). Accumulating 
evidence aligns with the association of the DMN with anxiety 
(Saviola et al., 2020; Baggio et al., 2023), borderline personality (Gre-
cucci et al., 2022; Langerbeck et al., 2023), narcissistic personality 
(Jornkokgoud et al., 2023), anger-related problems (Sorella et al., 
2022; Grecucci et al., 2023a) and rumination (Zhou et al., 2020). In 
sum, our results indicate that the lesser the GM–WM concentra-
tion of the regions belonging to the DMN, the lower the anxiety, 
and the higher the EI.

Due to the strong overlap between the network of areas acti-
vated in social cognition and the DMN (Buckner and Carroll, 
2007; Schilbach et al., 2008)—especially in the case of higher-
order social cognition tasks (e.g. attributing mental states to 
others)—the results of the present study are also compatible with 
EI theories that empathizes the importance of social cognition 
skills (Takeuchi et al., 2013). In a more comprehensive view, the 
DMN seems to be implicated, more in general, in semantic func-
tions (including representation of generalities concerning social 
interactions or self-representations) (Binder et al., 2009) and self-
projection functions (Buckner and Carroll, 2007), which are the 
basis for humans’ understanding of one’s own and others’ mental 
states.
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Interestingly, also the anterior insula and the dorsal anterior 
cingulate cortex (dACC) were involved in the IC5. This suggests the 
additional intervention of the salience network (SN) in EI. Previous 
studies have hypothesized that the SN may coordinate the switch-
ing between the DMN (internally oriented attention) and exter-
nally oriented attention (Christoff et al., 2016). We reason that the 
efficacy of such coordination, as well as the flexibility in functions 
switching, could importantly contribute to individual differences 
in EI. More related with emotional abilities, Zanella et al. (2022) 
found a modulation of blood oxygenation level dependent (BOLD) 
temporal variability in the salience network associated with both 
EI trait and emotion regulation strategies.

Further, a negative correlation between EI and GM volume is 
not uncommon, especially in the temporal lobe (Tan et al., 2014; 
Yao et al., 2018; Wang et al., 2021), which is involved in the process-
ing of social and affective information and in the EI measures of 
thinking disposition (Yao et al., 2018). Indeed, lower GM volume 
in one region would not necessarily indicate worse affective or 
cognitive function (Aichelburg et al., 2016; Yao et al., 2018). Nev-
ertheless, our results do not support evidence of increased GM 
volume in prefrontal regions (i.e. orbitofrontal cortex) as brain 
mark of EI (Koven et al., 2011; Weber et al., 2013; He et al., 2018). Dif-
ferent analysis as well as different measures of EI or its subscale 
may explain this discrepancy.

The GM feature of the IC10 was also associated with the trait EI. 
Although the WM counterpart was not statistically associated, we 
emphasize that the components resulting from the mCC + jICA 
analysis consist in a covarying concentration of the two modali-
ties and they are correlated. This means that the ICWM10 could be 
partially involved in the EI. Further studies are needed to support 
and extend this partial result. In this context we limit our specula-
tions to the association between the EI and the GM concentration 
in a brain circuit which resemble the reward one, especially for 
the caudate (Grahn et al., 2008).

Limitations and conclusions
As a first application of the mCC-jICA approach to the inves-
tigation of the neural basis of EI, the present study has some 
limitations to be pointed out. We focused on the construct of EI in 
terms of personality trait, but we acknowledge that other lead-
ing models conceptualized it in terms of abilities (Webb et al., 
2013). Future studies should integrate both perspectives for a 
whole comprehension of EI in terms of neural basis and theorical 
frameworks.

Another limitation concerns the sample and the imbalance 
between female and male participants (28% of female). Indeed, 
there is evidence that EI may depend by gender ant it is reduced 
in men (Fischer et al., 2018). However, we controlled for age and 
gender in all our analyses and we could not find any effect of 
them. Further studies may want to further inquire these aspects. 
Finally, even if the mCC + jICA is a multimodal neuroscientific 
approach and helped us to consider multiple brain structural fea-
tures, these latter should be also integrated with information 
related to the brain functionality, especially since the relationship 
between brain volume and connectivity may be inverse (Yao et al., 
2018).

Besides these limits, the present study represents a first valu-
able investigation to exhaustively reveal the neural correlates of 
EI. It expands our understanding on the brain networks involved 
in this complex psychological construct by using a pioneering 
and holistic neuroscientific technique. Our finding paths the way 
for further research in better delineating the role of the DMN 

and partially of the salience network, which may parallel those 
involved in cognitive abilities.
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