
Master in High Performance
Computing

GPU accelerated contact
simulations

Supervisor(s):
Luca Heltai Supervisor,
Teseo Schneider Supervisor

Candidate:
Alexander Cristhoper Trujillo Ochoa

8th edition
2021–2022

Contents

Acknowledgments 4

Abstract 7

1 Introduction 9

2 Theory overview 11
2.1 Kinematics of hyper-elastic models . 11

2.1.1 Neo-Hookean model . 12
2.2 Finite element method . 13
2.3 Incremental potential method . 14
2.4 Newton method for minimization . 15

2.4.1 Line search method . 15
2.5 Incremental potential contact (IPC) . 16

3 PolyFEM library 17
3.1 Benchmarking and design . 19

3.1.1 Hessian matrix for elastic form . 22
3.1.2 Backtracking line search . 23

4 CUDA implementation 25
4.1 CUDA tools and libraries . 25
4.2 Sending data to GPU . 26
4.3 Hessian computation . 27

4.3.1 Mapping for hessian computation . 27
4.4 Backtracking line search . 28

4.4.1 Value and gradient computation . 28

5 Polysolve library 30
5.1 Linear solvers available . 30

5.1.1 Direct solvers . 30
5.1.2 Iterative solvers . 31
5.1.3 Eigen sparse matrix wrapper for AMGCL 31

ÍNDICE GENERAL 3

5.2 Using AMGCL CUDA backend . 32

6 Results and GPU benchmarking 33
6.1 Stress benchmarking . 34
6.2 Size benchmarking (hessian computation) . 35
6.3 Counterproductive for small cases . 36

Conclusions 38

Future work 39

References 40

List of Figures

1.1 We show key frames from a highspeed video capture of a foam practice ball
fired at a fixed plate. This shows a high fidelity behavior with the actual physical
event, stating the importance to obtain a faster implementation for this library. [1] 10

2.1 Stress-Strain curve for polymer film [13]. 12

3.1 Node positions for each mesh element, each point represents a basis function
which explicit formulation can be found on appendix C of [5]. 18

3.2 Call graph of the main modules for PolyFEM library. 20
3.3 Call graph of the non-linear solver class of PolyFEM library. 21
3.4 Call graph of the backtracking line search class of PolyFEM library. 23

6.1 Stress case for benchmarking: armadillo compression by falling to rollers. Soft-
ware: Paraview. 33

6.2 Comparison between multithreading (MT) and MT + GPU implementation for
cases shown in table 6.1. 34

6.3 Performance benchmarking of the hessian computation of strain density energy
function for cases shown in table 6.2 . 36

6.4 Walking elephant simulation, current object has 7K mesh elements. Software:
Paraview. 37

6.5 Downgrade of the performance of GPU implementation when the number of
mesh elements is less than 7K. 38

Acknowledgments

To my parents, Carmen Rosa Ochoa Cabrera and Leoncio Zenon Trujillo Aquino for their un-
conditional support throughtout my career.

I am truly thankful to MHPC program along with Luca Heltai and Teseo Schneider for their guid-
ance and pieces of advice which pointed this project in the right direction. As well to Daniele
Panozzo for its weekly recommendation about computational toolkit details and Yibo Liu for her
joint collaboration during this year.

Thanks to my friends and MHPC colleagues, Giulio Malenza, Serafina Di Gioia , Debarshi
Banerjee for the constant discussion during the courses where we learned from each other.

This work presented and travel allowances were supported by the Abdus Salam International
Centre for Theoretical physics (ICTP) which made possible this opportunity.

Abstract

This project aims at implementing a GPU accelerated non-linear solver for hyperelastic neo-
Hookian models with contact. The project will build on the PolyFEM [11], a C++ and Python
finite element library (https://polyfem.github.io/), coupled with the Incremental potential contact
method which allows accurate simulation of surface-to-surface contact (https://ipc- sim.github.io/).

Currently, PolyFEM relies on multithreading libraries like TBB, the strategy is to reengineer the
non-linear solver section of the code to make it suitable for CUDA [10] device functions taking
advantage of libraries such as cuBLAS, cuSPARSE, Thrust and external sparse linear solvers
with GPU support. Our goal is to obtain a performance improvement of stress tests in compari-
son with multithreading implementation from low to high end CPUs.

The project will be conducted in collaboration with Teseo Schneider (University of Victoria).

Chapter 1

Introduction

It is no surprise that numerical methods applied to specific physics-based simulations could be
computationally expensive, but nowadays GPU computational power could improve the perfor-
mance in general along with multi-threading implementations.

The current project aims to implement a GPU version of the PolyFEM library, which could
speed-up up to 3 times simulations using non-linear models in comparison with the current ver-
sion using Intel threading building blocks or C++ threads, those tests were run on CPU models
as AMD(R) EPYC(TM) 7452 with NVIDIA GPU RTX A5000 and Intel Core(TM) i7-5930K
with NVIDIA GeForce GTX 1080 Ti.

We focused on Neo-Hookean models (specifically to the code section that assembles and solves
this model) as PolyFEM could be linked with the Incremental potential contact (IPC) library to
obtain accurate simulation of surface-to-surface contact which uses this mentioned part of the
code, in the following chapters we point the hot-spots and parallelizable parts that could take
advantage of a GPU implementation.

10

(a) Video footage

(b) Simulation using PolyFEM and IPC

Figure 1.1: We show key frames from a highspeed video capture of a foam practice ball fired
at a fixed plate. This shows a high fidelity behavior with the actual physical event, stating the
importance to obtain a faster implementation for this library. [1]

This thesis is structured in the following way:

• Chapter two will contain the theoretical framework to understand the underlying working
of PolyFEM and IPC library.

• Chapter three will focus on the benchmarking of the current implementation and will point
out portions of code to be suitable for GPU computation.

• Chapter four will present a restructuration of the multithreading parts and the steps to
convert them as CUDA kernels, as well managing external libraries as EIGEN for CUDA
code.

• Chapter five will cover about Polysolve which is a cross-platform Eigen wrapper for many
different external linear solvers, for this project we will modify the library compilation
process to activate the CUDA backend for the AMGCL library.

• Chapter six will show the final results and benchmark in comparison with original imple-
mentation for computer graphics stress and small tests.

Chapter 2

Theory overview

In order to grasp the underlying work of PolyFEM we present a condensed overview of how finite
element and Incremental Potential contact method are used for hyperelastic model simulations
and implemented on this library.

2.1 Kinematics of hyper-elastic models
The mathematical framework needed for this simulations starts with defining how it changes the
state of the material from time to time. For this we consider X as the configuration of several
points in the material at certain point. We will quantify the deformation of the objects of interest
in terms of a deformation mapping (ϕ) between an initial configuration X0 and a deformed
configuration Xd , consider this two configurations we will define the displacement mapping u
as the difference between the deformed configuration and the original one [12].

ϕ(X0, t) = Xd (2.1)

u(X0, t) = ϕ(X0, t)−X0 (2.2)

One important notation that arises is the deformation gradient, which will contain the deforma-
tion information of the material.

F =
∂ϕ

∂X0

(2.3)

And more generally
F = ∇u+ I (2.4)

Once presented this notation, here is the governing equation of motion gave by the basic
principles of continuum mechanics, so to speak an extension of the Newton second law but
applied over the continuum of the material.

ρ0(X0)
∂2u

∂t2
+ f int = f ext (2.5)

2.1 Kinematics of hyper-elastic models 12

Where ρ0 is the mass density of the material and f int is normally stated as the divergence of the
first Piola-Kirchoff stress tensor describing the forces of interaction in the material.

f int = −∇X0 ·P (2.6)

To connect the stress tensor and configuration of the material, we obtain this relation from
the definition of the stress tensor which is the derivative of the strain energy density function (Ψ)
with respect to the deformation gradient [12].
This strain energy is known as the constitutive law for hyperelastic materials, which depends on
a specific model of the elastic material.

P =
∂Ψ

∂F
(2.7)

2.1.1 Neo-Hookean model
We start with the definition of neo-hookean elasticity, which we can consider as an extension of
the linear Hookean model, as we can observe in the Fig. 2.1 generally for elastic materials the
relation stress-strain is linear at low stress, but as we continue to exert more stress it becomes a
non-linear relation which is important to take into account for close to real life simulations.

Figure 2.1: Stress-Strain curve for polymer film [13].

Another important characteristic is the hyperelastic strain energy density which is stated by
the next formula, specifically for 3D models:

2.2 Finite element method 13

Ψ(F) =
µ

2
(Trace(FTF)− 3)− µlog(det(F)) +

λ

2
log(det(F))2 (2.8)

The λ, µ terms arises from the linear elasticity construction which depends of the properties of
the material such as Y, the Young modulus, and ν, the Poisson ratio.

λ =
Yν

(1 + ν)(1− 2ν)
(2.9a)

µ =
Y

2(1 + ν)
(2.9b)

Now for this specific model we obtain the corresponding stress tensor P

P(F) = µF+ (log(det(F))λ− µ)F-T (2.10)

2.2 Finite element method
This method is used to solve continuous linear mappings, considering A a linear mapping which
maps from a Hilbert space V to V:

Au = f (2.11)

A solution u can be approximate by means of using the weak formulation, considering a test
function v and applying a bi-linear form in both sides.

< Au, v >=< f, v > (2.12)

The next step is to determine the basis functions ϕ that belongs to space V, in this way u can
be expressed as

u =
∑
i

uiϕi (2.13)

Finally we replace the expansions, this is known as Galerkin method.∑
j

uj < Aϕj, ϕi >=< f, ϕi > (2.14)

For a material with volume Ω and boundary surface ∂Ω, the chosen bi-linear form is the follow-
ing:

< f, ϕi >=

∫
Ω

fϕidΩ (2.15)

To approximate the result of the previous integral we use the Gaussian quadrature method, where
with a set of n points and n weights the integral of a function f could be computed, for example
the 1D version: ∫ b

a

f(x)dx =
n−1∑
i

wif(xi) (2.16)

2.3 Incremental potential method 14

wi =

∫ b

a

∏
j ̸=i

(x− xj)

(xi − xj)
dx (2.17)

This last values w could be computed beforehand and stored in a table for further use, as well
this method is known to solve exactly integral for polynomials with degree less than 2n-1.

With gaussian quadrature and the decomposition in the finite functional space we could
rewrite equation 2.12 as:∑

j

uj

∑
k

w2
k A(xk)ϕj(xk)ϕi(xk) =

∑
k

wk f(xk)ϕi(xk) (2.18)

One important consideration for this method is the presence of the following:

Mi,j =

∫
Ω

ϕiϕjdΩ =
∑
k

wk ϕj(xk)ϕi(xk) (2.19)

This is known as the mass matrix, and from now on we will refer to it as M.

2.3 Incremental potential method
Considering the equation 2.5, by using the Galerkin method approach we can express it as:

M ü+ f int(u) = f ext(t) (2.20)

For this example we will use implicit Euler for the time discretization, which is the default used
in PolyFEM. The set of equations for this method is shown in 2.21a where h is the user-defined
time-step.

xt+1 = xt + hẋt+1 (2.21a)
ẋt+1 = ẋt + hẍt+1 (2.21b)

According to [2], it is postulated the existence of a conservative potential V related to the internal
forces of the material, therefore possible to formulate the time step update for new positions
xt as the minimization of an Incremental Potential which is the Euler-Lagrange equation of the
function 2.20

xt+1 = argminxt+1E(xt+1, xt, vt) (2.22)

E(xt+1, xt, vt) =
1

2
(xt+1 − x̂)TM(xt+1 − x̂)− h2fext.x

t+1 + h2V (2.23)

Where x̂ = xt + hvt for implicit Euler, for this thesis we specify for Neo-Hookeans models,
where Ψ is its strain energy density function :

E(xt+1, xt, vt) =
1

2
(xt+1 − x̂)TM(xt+1 − x̂)− h2fext.x

t+1 + h2Ψ(xt+1) (2.24)

2.4 Newton method for minimization 15

2.4 Newton method for minimization
In order to find the minimum of 2.24 , the default non-linear solver implementation in polyFEM
is the multi-dimensional version of the Newton method for root-finding (∇E(xt) = 0)

xt+1 = xt − (HxE(xt))−1∇xE(xt) (2.25)

In this way, we obtain directly ∆x by solving the following linear equation system.

HxE(xt)∆xt = −∇xE(xt) (2.26)

This linear system is solved iteratively until tolerance regarding ∆x is met. Considering the
previous model, the following needs to be computed per each iteration

∇x(Ψ(F)) = µF− µ

det(F)
Adjugate(F) +

λ log(det(F))

det(F)
Adjugate(F) (2.27)

Hx(Ψ) = µI+(
µ + λ(1− log(det(F)))

det(F)2
)Adj(F)Adj(F)T+(

λlog(det(F))− µ

det(F)
)
∂

∂F
Adj(F)

(2.28)

2.4.1 Line search method
In order to improve and obtain the estimation of the solution of equation 2.22 in less steps it is
required to compute a step length s, this parameter scales the iterative method xn = x + sg(x),
for example g(x) for newton method is stated in 2.25, and approximately optimizes the target
function along the line x+ sg(x).
For this thesis we will focus on the Backtracking line search coupled with newton descend
method as it is the default non-linear solver. We add the step-size parameter s to equation 2.25

xt+1 = xt − s(HE(x
t))−1∇E(xt) (2.29)

To find the adequate step-size per iteration we use the backtracking search, first we consider the
following parameters 0 < α < 0.5, 0 < β < 1, then we start the iterations with s = 1 and while
the criteria 2.30a is true, we shrink s = βs and continue to calculate E(xt) + αs∇E(xt)Tv

E(xt + sv) > E(xt) + αs∇E(xt)Tv (2.30a)
v = −(HE(x

t))−1∇E(xt) (2.30b)

2.5 Incremental potential contact (IPC) 16

2.5 Incremental potential contact (IPC)
Li et. al [1] proposes a modification of IP 2.24 to handle large deformation dynamics with
frictional contact by adding the barrier (B) and friction (D) potential terms.

xt+1 = argminxt+1E(xt+1, xt, vt) +B(xt, d̂) +D(xt, d̂) (2.31)

Where d̂ is a user-defined parameter called geometric accuracy, which defines how close objects
can come to touching.
The computation of these two later potentials is done by the IPC library toolkit [3], theoretical
details of these are beyond the scope of this thesis, but it is worth to mention that the computation
of those takes less that 2% of the total execution time per time-step so we will focus entirely on
optimizing PolyFEM library which is the one that will do the minization solving, gradient and
hessian computation of the Incremental potential contact 2.31. Once we ported polyFEM on
GPU, IPC could benefit entirely on it as the minimization problem and hessian assembly are the
bottleneck of the entire simulation for accurate surface-to-surface contact.

In order to keep track of the computation of the gradient and hessian of the incremental
potential contact, we will divide 2.31 into several forms named as:

• Inertia form:
1

2
(xt+1 − x̂)TM(xt+1 − x̂)

• Body form: fext.x
t+1

• Elastic form: Ψ(xt+1)

• Friction form: D(xt, d̂)

• Contact form: B(xt, d̂)

With these two additional potentials, these are the gradient and global hessian of the system
respectively:

∇xE(xt+1) =
1

2
M(xt+1 − x̂)− h2fext + h2∇xΨ(F) +∇x(D(xt, d̂) +B(xt, d̂)) (2.32)

HxE(xt+1) =
1

2
M + h2HxΨ(F) +Hx(D(xt, d̂) +B(xt, d̂)) (2.33)

Chapter 3

PolyFEM library

As stated on the introduction of the thesis, PolyFEM provides the computational framework and
user interface for IPC toolkit. In order to start a simulation, the user must give a set of meshes
and parameters regarding the linear solver method, boundary conditions, time steps, material
properties, etc, which should be contained in a text-based format supported by polyFEM such as
JSON.
To manage vectors and matrices (dense and sparse) allocations and operations along the source
code, Eigen 3.4.0 [4] is used, this later version is prefered due to its new implementation for
CUDA kernel compatibility.
All of this information is managed and validated by the main function which will initialize the
respective parameters and deploy the diverse polyFEM submodules in the following order:

• Mesh loading: This module will look for mesh object files mentioned by the user, which
contains the information of the cells, vertices and faces of a certain discretized structure,
all of this will be stored in arrays of matrices for further computation.

• Build basis functions and quadrature vector: It is in charge of setting the corresponding
basis to approximate the displacement vector as stated in 2.13 and the quadrature values
to approximate integral calculations 2.17. By default spline basis are built following the
Poly-spline method [5] which has demonstrated to be robust against interpolation errors
for bad element quality by increasing basis construction complexity of spline method. It is
important to mention that the mesh cells are hexahedra which works with node positions
for quadratic bases (Q2) in 2D or 3D as shown in Fig. 3.1.

• Assemble mass matrix and right hand side: Both are necessary to complete the compu-
tation of the term M and fext present in equation 2.24. For the default basis construction,
these functions are locally supported, as a result most of the pairwise integrals are zero,
leading to a sparse matrix.
This non-zeros integral could be expressed as a sum of integrals over the mesh elements,
allowing that for a given element a local mass matrix to be assembled. A global mapping
defined on a reference element has to be taken into account to yield the global mass matrix
entries, for this reason a transpose inverse Jacobian matrix should multiply each basis due

18

to the change on the local variable (translation).
Regarding the right hand side assembler, this contains the information of the Neumann and
Dirichlet boundary conditions, commonly presence of external forces. The construction of
the latter is a independent per-element assembly.

• Solving problem: This module will check for which kind of problem we are trying to
solve, if it is time dependent and its formulation. As we will focus on the solution of Neo-
Hookean simulations by means of incremental potential approach, the class which we will
work on this thesis is the transient non-linear tensor problem. This class will perform the
following initialization:

– It will check if the initial mesh configuration contains intersections.
– Initializes the classes which solves the value, gradient and hessian of each form

as expressed in equation 2.5, specifically for Neo-Hookean formulation
– It will deploy the time integrator module, which by default is the Implicit Euler,

by setting the updates of positions and velocities as it is in 2.21a

Once done this, for each time-step it instantiates a non-linear solver (Default: Newton
descent method) which will perform the minimization algorithm 3. Once the updated
value is computed, the time integrator will update as well the velocities and acceleration.

• Export data: This last step manages all the displacements data along time-steps in a
visual tool markup format to be reproduced by software like Paraview [6].

Figure 3.1: Node positions for each mesh element, each point represents a basis function which
explicit formulation can be found on appendix C of [5].

3.1 Benchmarking and design 19

Algorithm 1 Non-linear solver
SparseMatrix init H(E) Vector init ∇E,∆x Scalar E , stepsize , tol
Data: Vector x , ProblemClass Prob , LinearSolver LS , LineSearch BT
ConstrainUpdate(x) // Updates the constrain set for the friction form

∇E <- Prob . ComputeGradient(x)
CheckConvergence(∇E)
/* Checks if ∇E is not small enough to meet convergence criteria */

while ∆x < tol do
SystemComputation(x)
E <- Prob . ComputeValue(x)
∇E <- Prob . ComputeGradient(x)
H(E) <- Prob . ComputeHessian(x)
∆x <- LS. solve(E, ∇E,H(E))
LS . CheckSolution()
if ∆x.∇E > 0 then

print("Not a descent direction")
continue

stepsize <- BT . BacktrackingLineSearch(x, ∆x,E)
x <- x+ stepsize ∆x

/* LS.solve solves H∆x = −∇E */

return x

3.1 Benchmarking and design
In this section we will show which sections of the code takes the most time to compute, currently
parallelized by using C++ threads or threading building blocks oneAPI software, as well to give
an insight of this library design. Once we determined the hot spots and bottlenecks of the im-
plementation, we filtered which functions has the higher compute-to-memory ratio, suitable for
GPU heavy computation.
For this, we used a stress case of an armadillo creature with 65K mesh elements falling to a cou-
ple of rolling rods to exert extreme compression to the figure. To solve linear systems we relied
on PARDISO MKL external library which uses LDLT factorization. Coupled with Valgrind we
ran 3 time-steps of the stress case to obtain a profile report generated by Callgrind.

3.1 Benchmarking and design 20

Figure 3.2: Call graph of the main modules for PolyFEM library.

3.1 Benchmarking and design 21

According to Fig 3.2, solve problem class is the one that takes ∼70% of the computation
(measured in CPU cycles) and it has been run for 3 time-steps (original is 400 time-steps) so
it is guaranteed this relative percentage will increase up to 95% because mesh loading, mass
matrix assembly and basis construction are a one time computation modules during the whole
run. From now on we totally focus on the solve problem class implementation to find where are
the hot-spots.

Figure 3.3: Call graph of the non-linear solver class of PolyFEM library.

The solve problem class follows the steps written in items 3, the initialization process and
time integrator set up are negligible according to the report, therefore the non-linear solver takes
almost the whole time execution of this.
As shown in 3.3, the non-linear solver has two main components, line search algorithm and
newton descent for the minimization problem, despite the line search for this report takes barely
∼4% of the computation, it is important to mention this report was run for few timesteps, later
benchmarks will show that line search could take up to ∼15% - ∼20% of the non-linear solver,
for this reason we will treat this component as well.
Firstly the important improvements should be on the newton descent solver, where we can find
two hotspots:

• Linear solver: PolyFEM relies on external libraries to solve Sparse linear systems, for
this reason a toolkit called PolySOLVE [7] was implemented to take care of the necessary
wrappers for integrating these solvers to Eigen vectors and sparse matrices.
On CUDA implementation chapter we will return to this point to make use of libraries that
contains CUDA backends such as AMGCL [8].

3.1 Benchmarking and design 22

• Hessian Assembly: To solve equation 2.22 it is required to obtain the global sparse hes-
sian matrix of that function which is in the order of Nº mesh elements x Nº mesh elements.
As stated in chapter 3, it is possibly to assembly this matrix by computing independently
each local hessian matrix for mesh element and set a global mapping to obtain the full
matrix.
This approach makes the hessian assembly embarrassingly parallel as we can take advan-
tage of a GPU by allocating thousand of threads per block (NVIDIA current technology
allows max 1024 threads per block) and each block could compute 1024 local hessian ele-
ments, let’s set an example to appreciate GPU’s computational power, currently this mesh
test has 65K elements , for a 16 threads CPU this means that each thread have to compute
4K local hessian, a GPU instead could allocate 65 blocks which will compute the entire
amount of local hessians for this mesh at once.

3.1.1 Hessian matrix for elastic form

Algorithm 2 Assembly Hessian for Elastic form
SparseMatrix init H , localH Vector init Qda , Jacit , LocalGrad , x
Data: Displacement u , AssemblyUtils AUtils , MeshCache Mcache
TBBThreadAllocation() // Start of the multithreading function

/* Each thread will have a local storage containing the respective computed

data as local Hessian or gradient */

for MeshElement in MeshCache do
SystemComputation(u, MeshElement)
JacIT <- Autils . ComputeLocalMapping(MEl)
Qda <- Autils . ObtainQuadratureVector(MEl)
LocalGrad <- Autils . ObtainLocalGradient(MEl)
x <- MeshCache . LocalDisplacement(MEl, u)

localH <- LocalHessianComputation(x ,LocalGrad ,Qda , JacIT)

row, col, value <- GlobalMapping(MeshElement ,LocalH)

AddValues(row, col, value,H)
TBBThreadFree() // End of the multithreading function

H .CompressedSparseMatrix()
/* Converts the sparse matrix from a triplet version to a compressed column

storage */

return H

3.1 Benchmarking and design 23

Additionally, Callgrind gave us a insight, as the computation of the hessian matrix is made by
parts regarding each form as stated in the list 2.5, the one that is the most computational heavy is
the elastic form, this means the computation of the second derivative of the strain density energy
function for NeoHookean models 2.8. The algorithm followed by the polyFEM multithreading
implementation is shown in algorithm 2, in the next chapter we will modify this approach to
make it suitable for a entire computation on GPU.

The function LocalHessianComputation in algorithm 2 refers to compute equation 2.28,
which as well it needs to be multiplied by the quadrature vector to obtain the approximation
of the integral. Therefore is no surprise that this form is the heaviest to compute, due to several
matrix operations for each mesh element, this is perfect to implement and compute in the GPU.

3.1.2 Backtracking line search
This implementation tries to find the step-size in which the energy decreases in a time-step as
stated in equation 2.30a, as we increase the number of time-steps and the possible number of
iterations to achieve convergence of the minimization of IPC, the line search becomes more
expensive computationally as it is constantly evaluating the value of IPC 2.31 and its gradient for
cases where certain tolerance is met, as shown in Fig. 3.4. The steps to compute this section can
be found on algorithm 3

Figure 3.4: Call graph of the backtracking line search class of PolyFEM library.

3.1 Benchmarking and design 24

Algorithm 3 Backtracking line search
Vector init ∇E , NEWx

Data: Vector ∆x x , Scalar OldEnergy , stepsize =1, ProblemClass Prob
∇E <- Prob . ComputeGradient(x)

/* If the norm of the gradient is less certain tolerance it will be used

instead of the energy value for updating the line search */

bool UseGradNorm <- ∇E < tol
OldEnergy <- UseGradNorm ? ∇E.norm : OldEnergy
while iterations < MAX ITERATIONS do

NEWx <- x+ stepsize∆x
if UseGradNorm then

∇E <- Prob.ComputeGradient(NEWx)
Energy <- ∇E .norm()

else
Energy <- Prob.ComputeValue(NEWx)

if Energy > OldEnergy then
stepsize <- stepsize/2

return stepsize

Chapter 4

CUDA implementation

In the previous chapter we found the algorithms suitable for GPU computation, they are heavy on
computation with respect of memory access and takes most of the total execution time, now it is
time to show the CUDA kernel design for each of them, source code of the GPU implementation
can be found here : https://github.com/AlexTru96/polyfem.
Before moving on, it is worth to mention the following characteristics of the software building
tools used for this project:

• CMAKE: Minimum version : 3.19 , currently used for developing: 3.24.1

• GCC compiler: Version used for developing: 9.4.0

• NVCC compiler: Version used for developing: 11.7

4.1 CUDA tools and libraries
The main strategy for this project is to re-engineer the sections mentioned before to make it
suitable for CUDA device functions taking advantage of libraries such as CuSparse, Eigen and
Thrust.

• CuSparse: Will be used for sparse matrices sum, as each form will compute its own
global hessian matrix it will be at least 5 matrices to sum of order Nº mesh elements x Nº
mesh elements for each iteration in the newton descent solver.

• Eigen: 3.4 release [4] contains a unified GPU backend which allows support for matrix
allocations and operations inside CUDA kernels (tested on this project for dense matrices
with size less than 20x20).

• Thrust: A CUDA Toolkit for data transfer management and provides data parallel primi-
tives for reduce and sort operations. Regarding data, Thrust vector framework has similar
interface as standard library vector for C++ to send data structures to GPU or CPU, addi-
tionally it is compatible with std::vector allocations which provides flexibility and allows a

4.2 Sending data to GPU 26

better approach to port already existent data structures to GPU, for example Eigen::Vector
and Eigen::Matrix.

4.2 Sending data to GPU
There are parameters, vector and matrices that will be present during the whole simulation as
they are needed in every time-step, for this reason we created a new function in charge to send
to the GPU these variables that will last the lifetime of the simulation. We got the following list
of data that is moved forward to the GPU at the start, all of them are vector of size Nº of mesh
elements. (Considering 3D dimension)

• Vectors of parameters (Vector <Double>, Size: nº mesh elements): µ , λ, ρ

• External forces (Structure: Vector<Eigen::Matrix(3,3)>): fext

• Quadrature (Vector <Eigen::Matrix(3,1)>): Qda

• Gradient of the basis (Structure: Vector<Eigen::Matrix(3,3)>): Grad

• Evaluation of the basis on the quadrature points(Structure: Vector <Eigen::Matrix(3,1)>):
Val

• Index and values of the basis according to global mapping (Structure: Vector <(int ,
double)>): GlobalData

To keep track of all this data once sent, a data structure is required to store the GPU pointers
and to use it freely as an argument in any module that could require it for further computation,
this structure is called DATA_POINTERS_GPU on the source code

Algorithm 4 Solve transient non-linear tensor problem
SendingDataToGPU ()

ThrustVector µ, λ, ρ < − ThrustCopy(std :: vectorµ, λ, ρ)
ThrustVector forcesGPU < − ThrustCopy(std :: vector forces)
ThrustVector QdaGPU < − ThrustCopy(std :: vector Quadrature)
ThrustVector GradGPU < − ThrustCopy(std :: vector Grad)
ThrustVector V alGPU < − ThrustCopy(std :: vector V al)
ThrustVector GlobalDataGPU < − ThrustCopy(std :: vector GlobalData)

/* After sending the data, the following function will update the data

structure containing all the allocated pointers */

Update(DataPointersGPU)
InitializeSolver()
for t in TOTAL TIMESTEPS do

NewtonMinimize(DataPointersGPU)
UpdateQuantities()

4.3 Hessian computation 27

4.3 Hessian computation
Once the data is already allocated in the GPU we can use the pointers directly as arguments for
CUDA kernels, but first we set the strategy to change a thread parallelization in the algorithm 2
to a kernel function.
As each thread will store its own local hessian, sending this data back to CPU would create
a bottleneck as this transference has to be repeated every newton descend iteration, the ideal
scenario is to send back only the vector of non-zero values and compress the sparse hessian
matrix back on the CPU.

4.3.1 Mapping for hessian computation
A solution for the last was to send the mapping of the already assembled hessian matrix on CPU,
taking advantage of the constant mapping of elastic form hessian matrix, this means the rows and
columns index of the non zero values does not vary throughout time-steps. Therefore, we call the
hessian computation only once as multithreading and we store the row and column index for the
global mapping and the order of computation which indicates the corresponding mesh element.
The obtained structure (mapping) is a vector of vector of pairs, if we consider i as a row and
j as a column, mapping[i] is the vector of pairs that contains the index of the columns of non
zeros values(first) and index counter (second), counting from 0 to the number of nonzero values
considering a sweep from row to columns.

Extraction and allocation of the mapping structure to the GPU can be found in the function
assemble_energy_hessian_GPU on AssemblerUtils.cpp and algorithm 5 can be found on the file
NeoHookeanElasticity.cu

4.4 Backtracking line search 28

Algorithm 5 GPU Assembly Hessian for Elastic form
SparseMatrix init H Vector init NonZeroV alues
Data: Displacement u , DataPointerToGPU GPUData, Vector< Vector<Pair> > Mapping
/* Mapping is allocated and copied in CPU and GPU */

ThrustVector u′ < − ThrustCopy(Eigen :: vector u)
ThrustVector NZeroV alGPU < − ThrustCopy(std :: vector NonZeroV alues)

NT<- 32 // A warp

NB<- NMeshElements / 32 + 1 // Blocks required to compute each local hessian

HessianComputationKernel< < <NT,NB> > > (GPUData, Mapping, u′, NZeroV alGPU)
Each GPU thread
localH <- LocalHessianComputation(u′ ,LocalGrad ,Qda , JacIT)
ComputedValuesReduction :
NZeroV alGPU(Mapping : Index) < −ATOMICADD(localH,Mapping : (i, j))

NonZerosValues <- CopyToCPU(NZeroValGPU)
H .ReplaceNonZeroValues(NonZerosValues)
H .CompressedSparseMatrix()
return H

4.4 Backtracking line search
According to the valgrind [14] report on 3.4 and the algorithm shown on 3, this method makes
use constantly of the value and gradient computation of the IPC, for this reason the quickest way
to optimize this portion of the code is by directly implementing a GPU version of those, taking
into account that elastic and body form are the hot-spots for this calculation.

4.4.1 Value and gradient computation
Unlike the hessian assembler, this computation does not require a mapping and the sum reduction
operation can be done straightforward inside the kernel

4.4 Backtracking line search 29

Algorithm 6 GPU Gradient and value computation for elastic form
Vector init ∇EScalar init E
Data: Displacement u , DataPointerToGPU GPUData
ThrustVector u′ < − ThrustCopy(Eigen :: vector u)
ThrustVector GradEGPU < − ThrustCopy(Eigen :: vector∇E)

NT<- 32 // A warp

NB<- NMeshElements / 32 + 1 // Blocks required to compute each local hessian

GradientComputationKernel< < <NT,NB> > > (GPUData, u′, GradEGPU)
Each GPU thread
localGrad <- LocalGradComputation(u′ ,Grad ,Qda , JacIT)
ComputedValuesReduction :
GradEGPU < −ATOMICADD(localGrad)

ValueComputationKernel< < <NT,NB> > > (GPUData, u′, EGPU)
Each GPU thread
localEnergy <- LocalEnergyComputation(u′ ,Grad ,Qda , JacIT)
ComputedValuesReduction :
EGPU < −ATOMICADD(localEnergy)

∇E <- CopyToCPU(GradEGPU)
E <- CopyToCPU(EGPU)
return ∇E,E

CAVEAT: The reduction for summing between and within blocks used on the latter is only
available for GPU’s with NVIDIA compute capability 6.0 or higher.

Chapter 5

Polysolve library

One main step of newton descent method is to solve the linear system for each iteration as shown
in 2.25, polyFEM works with structures as Eigen::Vector, Eigen::SparseMatrix for that some ex-
ternal libraries provides Eigen backend to operate directly with these structures such as:
PARDISOMKL, SuperLU, CholmodSupernodalLLT, but it is not always the case and
wrappers from Eigen to the required data structure are necessary to make use of these libraries.
For this reason to create a standard linear solver function able to use any external library inde-
pendent if it has a Eigen backend or not, polySOLVE toolkit has been developed to take care of
this issue.
On this project we will modify this library to make use of CUDA backend available on some
external projects such as AMGCL [8]. Source code used on this project can be found on :
https://github.com/AlexTru96/polysolve/tree/polyFEM_GPU

5.1 Linear solvers available
Currently polySOLVE contains wrappers for a bundle of external sparse linear solvers, direct
and iterative ones. Which has its own pros and cons respectively

5.1.1 Direct solvers
Those work mostly on a decomposition of the linear system matrix and apply forward or back-
ward substitutions. Are known to consume more memory and have little room to parallelization
strategies because of data dependencies, but these methods are very robust for any kind of matrix
independent of its sparsity pattern.

• PARDISO MKL : Contains factorizations of kind LDLT , LLT , LU

• SuperLU : LU factorization

• UmfPackLU :LU factorization

• CholmodSupernodalLLT :LLT factorization

5.1 Linear solvers available 31

5.1.2 Iterative solvers
On the contrary, these methods are more easy to parallelize and make good usage of GPU com-
putation, but these methods not will always converge and it is heavily dependent of a good
preconditioner.

• AMGCL : Focus on the algebraic multigrid method

• HYPRE : Contains solvers such as generalized minimal residual method, conjugate gra-
dient, Jacobi method, etc.

• Eigen : Inner sparse linear solvers such as conjugate gradient and stabilized bi-conjugate
gradient

5.1.3 Eigen sparse matrix wrapper for AMGCL
For example AMGCL library does not contain a Eigen backend to manage the original variables
of polyFEM directly, for this reason on the algorithm 7 is shown how this is managed for this
specific case:

Algorithm 7 Eigen wrapper for AMGCL linear solver
Data: Eigen::SparseMatrix A , Eigen::Vector b, x JSON PropertiesList
CreateLinearSolver ()

Array < StorageIndex > OuterV ector < −A.outerIndexPointer()
Array < StorageIndex > InnerV ector < −A.innerIndexPointer()
Array < Scalar > V alueV ector < − A.valuesPointer()
AdquireProperties(PropertiesList)
auto A′ < − std :: tie(numRows, Inner,Outer, V alues)
auto Am < −AMGCL.Adapter(A′)
AMGCLSolver S < −MakeSolver(Am)

/* Once created the solver, we use the backend to copy b and x vectors */

Vector < Scalar > b_ < − amgcl :: BackendCopy(b)
Vector < Scalar > x_ < − amgcl :: Solve(S, b_)

5.2 Using AMGCL CUDA backend 32

5.2 Using AMGCL CUDA backend
For this project we take advantage of the AMGCL CUDA backend, which uses cuBLAS for
the matrix operations throughout the solving process. In the algorithm 8 we point out how to use
this backend for polySOLVE.

Algorithm 8 AMGCL CUDA backend
Data: Eigen::SparseMatrix A , Eigen::Vector b, x JSON PropertiesList
using Backend = amgcl :: backend < CUDA >
using Prop = amgcl :: preconditioner, amgcl :: solver
using AMGCLSolver = amgcl :: make_solver < Prop,Backend >

CreateLinearSolver()

Vector < Scalar > b_ < − amgcl :: BackendCopy(b)

Vector < Scalar > x_ < − Thrust :: copy(amgcl :: Solve(S, b_))

Chapter 6

Results and GPU benchmarking

We will evaluate time execution performance of the CUDA implementation using 2 CPU models
to test how much impacts GPU computation in comparison with only a multi-threaded(MT)
version. For the MT case we will use PARDISO with LDL factorization as sparse linear solver
as this was the fastest solver tested for this specific scenario, and AMGCL with CUDA backend
to benchmark the new implementation.

Figure 6.1: Stress case for benchmarking: armadillo compression by falling to rollers. Software:
Paraview.

6.1 Stress benchmarking 34

6.1 Stress benchmarking

Implementation Hardware Specifications Case simulation
Only multithreading (4T) CPU: AMD(R) EPYC(TM)

7452
Armadillo creature with 63K
elements compressed by
rollers (40 time-steps, solver:
Pardiso LDLT)

CPU: Intel Core(TM) i7-
5930K

Multithreading (4T) + GPU CPU: AMD(R) EPYC(TM)
7452 / GPU : NVIDIA RTX
A5000

CPU: Intel Core(TM) i7-
5930K / GPU: NVIDIA
GeForce GTX 1080 Ti

Armadillo creature with 63K
elements compressed by
rollers (40 time-steps, solver:
Algebraic multigrid with
sparse approximation inverse
as preconditioner (AMGCL))

Table 6.1: Stress cases to test GPU performance

Figure 6.2: Comparison between multithreading (MT) and MT + GPU implementation for cases
shown in table 6.1.

6.2 Size benchmarking (hessian computation) 35

As shown in Fig. 6.2 the sections of the code that takes the most advantage of the new
implementation are the hessian assembly and the linear solver required for newton descent solver.
A important aspect to highlight is related to execution time of the assembly hessian as it equalizes
between two CPU models, this mostly because the whole computation is being done in GPU
leaving only the compression of the hessian matrix to CPU. This indicates great news for users
with a GPU, a low or medium end CPU could achieve the same performance as an expensive
high-end CPU as shown on this benchmarking.

6.2 Size benchmarking (hessian computation)
As mentioned on chapter 4, the CUDA implementation of the Hessian computation for the elastic
form it allows to allocate one thread per mesh element, in certain sense it means that the com-
putational time complexity of this algorithm is constant but bounded by the number of CUDA
cores and memory that GPU has. This is a considerable change in comparison with the linear
complexity of the previous parallel implementation, it is expected to have an overhead but as
long as the number of elements are less than the maximum concurrent number of GPU threads
the computation time should be constant plus thread allocation latency.

Implementation Hardware Specifications Case simulation
Only multithreading (2T , 4T
, 16T)

CPU: AMD(R) EPYC(TM)
7452

Armadillo creature with 63K
elements
Armadillo creature with
122K elements
Armadillo creature with
219K elements

Single thread + GPU CPU: AMD(R) EPYC(TM)
7452 / NVIDIA RTX A5000

Armadillo creature with 63K
elements
Armadillo creature with
122K elements
Armadillo creature with
219K elements

Table 6.2: Performance test for different number of mesh
elements for the hessian computation of the elastic form

6.3 Counterproductive for small cases 36

(a) Armadillo 65K elements (b) Armadillo 122K elements

(c) Armadillo 219K elements (d) Multithreading vs GPU

Figure 6.3: Performance benchmarking of the hessian computation of strain density energy func-
tion for cases shown in table 6.2

As shown in the Figure d on 6.3, the explanation of the performance behavior for GPU
implementation for different sizes is that computation time is constant but as the number of
threads required increases as well it did the thread allocation overhead.

6.3 Counterproductive for small cases
One important aspect for GPU computation is to make sure the ratio between computation and
memory read-write is high enough but as well we must consider the data transfer bandwidth
between CPU and GPU, even if the data is small enough it exists a latency to take into account.
According to the algorithm 5 and 6, the displacement , gradient and non zero values vector needs
to be transferred to GPU to compute the corresponding function or copied back to CPU in each
iteration. To prove the impact of this data transfer overhead we will show a test simulation of a
walking elephant, which has approximate 7K elements.

6.3 Counterproductive for small cases 37

Figure 6.4: Walking elephant simulation, current object has 7K mesh elements. Software: Par-
aview.

Implementation Hardware Specifications Case simulation
Only multithreading (4T) CPU: AMD(R) EPYC(TM)

7452
Elephant creature with 7K
mesh elements
40 time-steps, linear solver:
PARDISO LDL

4 threads + GPU CPU: AMD(R) EPYC(TM)
7452 , NVIDIA RTX A5000

Elephant creature with 7K
mesh elements
40 time-steps, linear solver:
AMGCL with CUDA

Table 6.3: Small case to test GPU performance

6.3 Counterproductive for small cases 38

Figure 6.5: Downgrade of the performance of GPU implementation when the number of mesh
elements is less than 7K.

As shown in Fig. 6.5 for this case GPU implementation was six times slower, the major
slowdown occurred on line search computation as this currently calls the gradient and value
computation and for those functions the computation is not as heavy as hessian one, the data
transfer took a toll on the performance in general as the computation load was not enough to get
benefit of a GPU.

Conclusions

• As shown in Fig. 6.2, polyFEM with CUDA implementation was able to speed up four
times the original implementation considering parallelization with 4 threads for a AMD(R)
EPYC(TM) 7452 model, it is worth to mention this high end CPU it has a cost market of
approximate $2000 with a GPU NVIDIA RTX A5000 of $2500 and has similar perfor-
mance in comparison with a Intel Core(TM) i7-5930K with NVIDIA GeForce GTX 1080
Ti which both together cost less than $1000.
This proves that our implementation aims to low-medium end CPU users who can obtain
great computational performance with a GPU.

• Fig. 6.3 demonstrates potential to further speedup for simulations of objects with higher
number of elements as this is only bounded by memory and number of parallel processors
a GPU has. But even if the number of elements is greater than the maximum number of
GPU thread allocations this has to be order of magnitudes superior to create an important
bottleneck on the computation.

• AMGCL with CUDA backend was up to 3 times faster than PARDISO MKL with LDL
factorization (fastest multithreading implementation for this stress test), this by using
sparse approximate inverse as preconditioner and relaxation for the linear solver. An im-
portant caveat arises, this preconditioner would not work for other simulations as it is
highly dependent of the sparsity pattern and matrix conditioning.

• The performance shown in Fig 6.5 for small cases (<20K mesh elements), reveals that
it is still preferred to work with a multi-thread implementation when the object has few
elements, for that reason it is planned to implement a function to determine which version
to run for a certain simulation according to the computational load.

Future work

• PolySOLVE coupled with PETsc : Currently a interface for PETsc is being implemented
for PolySOLVE, providing a bundle of linear solvers available as well PETsc latest de-
velopment [9] provides support for GPU accelerated sparse linear solvers, which some of
them are direct solvers as CHOLMOD, in this way that solver could be used for any
kind of simulation.

• Generic GPU backend: This project was only using CUDA as programming interface
for GPU computation, so one of the future plans is to generalize this support for NVIDI-
A/CUDA and AMD/HIP.

Bibliography

[1] Li, M., Ferguson, Z., Schneider, T., Langlois, T., Zorin, D., Panozzo, D., Jiang, C., amp;
Kaufman, D. M. (2020). Incremental potential contact. ACM Transactions on Graphics,
39(4). , https://doi.org/10.1145/3386569.3392425

[2] Couro Kane, Jerrold E Marsden, Michael Ortiz, and Matthew West. 2000. Variational
integrators and the Newmark algorithm for conservative and dissipative mechanical sys-
tems., Int. J. for Numer. Meth. in Eng. 49, 10 (2000)

[3] Minchen Li; Ferguson Zachary. IPC-SIM/IPC: Incremental Potential Contact (IPC) Re-
trieved December 3, 2022, from https://github.com/ipc-sim/IPC

[4] Gaël Guennebaud and Benoît Jacob and others (2010) Eigen v3 Retrieved December 3,
2022, from https://eigen.tuxfamily.org/index.php?title=3.4

[5] Schneider T., Dumas J., Gao X. , Botsch M, Panozzo D. and Zorin D.
(2019). Poly-Spline Finite-Element Method. ACM Transactions on Graphics, 38(3). ,
https://doi.org/10.1145/3313797

[6] Henderson, A. (2007). ParaView Guide, A Parallel Visualization Application. , Kitware
Inc., 2007.

[7] Teseo Schneider; Ferguson Zachary. Polysolve: Easy-to-use wrapper for linear solver
Retrieved December 3, 2022, from https://github.com/polyfem/polysolve

[8] Denis Demidov. AMGCL - a C++ library for solving large sparse linear
systems with algebraic multigrid method Retrieved December 3, 2022, from
https://github.com/ddemidov/amgcl

[9] Richard Tran Mills and Mark F. Adams and Satish Balay and Jed Brown and Alp
Dener and Matthew Knepley and Scott E. Kruger and Hannah Morgan and Todd
Munson and Karl Rupp and Barry F. Smith and Stefano Zampini and Hong Zhang
and Junchao Zhang (2021). Toward performance-portable PETSc for GPU-based exascale
systems. Parallel Computing(108), https://doi.org/10.1016/j.parco.2021.102831

[10] NVIDIA and Vingelmann, Péter and Fitzek, Frank H.P. (2020). CUDA, release:
10.2.89, https://developer.nvidia.com/cuda-toolkit

BIBLIOGRAPHY 42

[11] Teseo Schneider; Ferguson Zachary. PolyFEM: A polyvalent C++ FEM library Re-
trieved December 3, 2022, from https://github.com/polyfem/polyfem

[12] J. Bonet and R.D. Wood, (1997). Nonlinear continuum mechanics for finite element anal-
ysis., Cambridge University Press, 1997.

[13] Lim, H.; Hoag, S. W. (2013). Plasticizer effects on physical–mechanical prop-
erties of solvent cast Soluplus® Films. AAPS PharmSciTech, 14(3), 903–910.,
https://doi.org/10.1208/s12249-013-9971-z

[14] Valgrind. (n.d.) Retrieved December 3, 2022, from
https://valgrind.org/info/developers.html

	Acknowledgments
	Abstract
	Introduction
	Theory overview
	Kinematics of hyper-elastic models
	Neo-Hookean model

	Finite element method
	Incremental potential method
	Newton method for minimization
	Line search method

	Incremental potential contact (IPC)

	PolyFEM library
	Benchmarking and design
	Hessian matrix for elastic form
	Backtracking line search

	CUDA implementation
	CUDA tools and libraries
	Sending data to GPU
	Hessian computation
	Mapping for hessian computation

	Backtracking line search
	Value and gradient computation

	Polysolve library
	Linear solvers available
	Direct solvers
	Iterative solvers
	Eigen sparse matrix wrapper for AMGCL

	Using AMGCL CUDA backend

	Results and GPU benchmarking
	Stress benchmarking
	Size benchmarking (hessian computation)
	Counterproductive for small cases

	Conclusions
	Future work
	References

