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Introduction

Classical harmonic analysis gives a way to associate to any continuous function on the
circle S1 a harmonic function on the Poincaré disk. This is done by integrating f against
the Poisson kernel P : S1 × D → R, to produce a function Ff ∈ C(D) given by

Ff (x) =

∫
S1

P (x, v)f(v)dv.

The function Ff is called the Poisson integral of f . Any bounded harmonic function on D
extending continuously to ∂D = S1 is the Poisson integral of a unique continuous function
on S1 ([53][Section 6.3]).

The function Ff extends to a continuous function on the closed ball D, which restricts to
f on ∂D ≃ S1. From these observations we may deduce that that any continuous function
on the closed ball f ∈ C(D) can be decomposed uniquely into a sum

f = f0 + fh

where f0 ∈ C0(D) is a bounded continuous function on D vanishing at on the boundary S1,
while fh is a bounded harmonic function on D extending continuously to the boundary given
by the Poisson integral of f |∂D. This in turn implies that the assignment s : C(∂D) → C(D),
which sends a function f ∈ C(S1) to its Poisson integral Ff ∈ C(D), determines a right
inverse of the quotient map

q : C(D) → C(∂D) q(f) = f |∂D

given by restricting a function to the boundary. With G the isometry group of D, the map
s is what is called a semisplitting of the extension

0 → C0(D) → C(D) → C(∂D) → 0.

The map s also commutes with the natural action of G on D. The same procedure produces
G-equivariant semisplittings of extensions of higher dimensional real hyperbolic spaces

0 → C0(Hn) → C(Hn) → C(∂Hn) → 0
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and it is shown in [36, Theorem 2.4] how these G-equivariant semisplittings give us a
class in KKG

1 (C(S
1), C0(D)) representing the extension, where KKG

1 (C(S
1), C0(D)) is the

equivariant Kasparov group of the pair (C(Sn−1), C0(Hn)).
The spaces Hn are examples of symmetric spaces on noncompact type of rank 1. It

soon became clear to the author that the construction of such an equivariant semisplitting
could be done for any extension

0 → C0(X) → C(X) → C(X(∞)) → 0

where X is a symmetric space of noncompact type of rank 1 and X = X ∪ X(∞) is a
compactification of X called the geodesic compactification. The splitting s : C(X(∞)) →
C(X) is now constructed using so called Patterson–Sullivan densities on X(∞), which is
a special family of measures (µx)x∈X indexed by the points in X, and the splitting takes
the form

s(f)(x) =

∫
X(∞

f(v)dµx(v) x ∈ X.

For a symmetric space X of rank 2 or higher, Albuquerque ([1]) used an idea of Pat-
terson to produce a similar family of measures (µx)x∈X on X(∞) and it is natural to ask
whether one could use these densities to produce a splitting

s : C(X(∞)) → C(X) s(f)(x) =

∫
x∈X(∞)

f(v)dµx(v), (x ∈ X).

This turns out to be impossible. Indeed the function s(f) cannot be extend continuously
to the geodesic boundary for all functions f ∈ C(X(∞)). We are thus forced to looking at
other compactifications of X where the function s(f) for f ∈ C(X(∞)) could be extended.
This eventually leads to the main result of this thesis (Theorem 4.6), which, for a symmetric
space X of noncompact type. gives an extension

0 → C0(Y ) → C(X
F
) → C0(∂FX) → 0

that can be split by the map s determined by

s(f)(x) =

∫
X(∞)

f(v)dµx(v).

The compactification X
F

is called the (maximal) Furstenberg compactification of X,
∂FX ⊂ ∂XF is the Furstenberg boundary of X (which is not the boundary of the Fursten-

berg compactification) and Y = X
F \∂FX. Theorem 4.6 then gives us a KK1

G-cycle corre-

sponding to the extension. In the case where X has rank 1, we have X
F
= X = X ∪X(∞)

and ∂FX = X(∞) so this is indeed a generalization of the original example of [36, Theorem
2.4].
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Organization of the thesis

The thesis consists of four chapters. In Chapter I we introduce the background material
needed for the subsequent chapters. We cover the very basics of C*-algebras, K-theory and
the geodesic compactification of Hadamard manifolds. Some less basic concepts are covered
in the later part of the chapter, like equivariant KK-theory and equivariant extensions of
C*-algebras. We end Chapter I with the main example. The rest of the thesis will be
dedicated to extending this example to a wider class of spaces.

In Chapter II, we introduce symmetric and locally symmetric Riemannian spaces. We
look at a way to compactify non-compact symmetric spaces called the geodesic compact-
ification and study its properties. The main takeaway from Chapter II is the existence of
a certain map

µ : X →M1(X(∞)) x 7→ µx

from a symmetric space X to the probability measures on the boundary of the geodesic
compactification ofX. These maps, called conformal densities, allow us to define a Poisson-
like integral on symmetric spaces of non-compact type that have many similarities with the
ordinary Poisson integral from harmonic analysis. More explicitly, with X our symmetric
space and X(∞) the boundary of the geodesic compactification of X, we can define a map
C(X(∞)) → Cb(X) by sending an f ∈ C(X(∞)) to the function

Ff (x) =

∫
X(∞)

f(v)dµx(v) x ∈ X.

We end the Chapter with an example of the use of these Poisson-like integrals and show
that unlike in classical harmonic analysis, the function Ff does not extend to a function
on the whole geodesic compactification.

In Chapter III we introduce three alternative compactifications of a symmetric space
X that are (in case X is of noncompact type) all isomorphic to one another. These are the
“smallest” compactifications on which the function Ff defined in Chapter II does extend
to the whole compactified space. The important feature of these compactifications is that
a sequence xi ∈ X converges to a boundary point x∞ ∈ ∂X if and only if µxi converges
weakly to some measure in M1(X(∞)), where µx is now a specific choice of conformal
density called the Patterson–Sullivan density.

In Chapter IV we finally return to the example at the end of Chapter I, and construct
in a similar way a class in KKG

1 representing a certain equivariant extension of C*-algebras

0 → C0(Y ) → C(X
F
) → C(∂FX) → 0

We show how an equivariant semisplitting of any extension can be used to construct a con-
crete realization of an equivariant Kasparov module representing the class of the extension

in KKG
1 . We use the Furstenberg compactification X

F
introduced in Chapter III as this

is the compactification where the Poisson-like integral extends to a continuous function on
the whole compactification.





Chapter 1

Preliminaries

This chapter is a gentle introduction the theory we will need for the subsequent part of
the thesis. The reader familiar with the basics of C*-algebras and K-theory can safely
skip ahead to Section 1.7 where we define the geodesic compactification and introduce a
fundamental example.

Unless stated otherwise, all algebras will be assumed to be over the complex numbers.

1.1 C*-algebras

Let A be an algebra over C. By an involution on A we mean a map

∗ : A→ A a 7→ ∗(a) := a∗

satisfying the following properties for any a, b ∈ A and λ ∈ C

• (a+ b)∗ = a∗ + b∗

• (ab)∗ = b∗a∗

• (λa)∗ = λa∗.

Definition 1.1. A (complex) pre-C*-algebra is a (complex) algebra A with an involution
∗ : A → A, and a submultiplicative norm (meaning ∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A)
satisfying

∥a∗a∥ = ∥a∥2 ∀ a ∈ A (1.1)

A (semi-)norm satisfying equation (1.1) will be called a C*(-semi-)-norm. A C*-algebra is
a complete pre-C*-algebra. We call a C*-algebra unital if there is an element 1 ∈ A such
that

a1 = 1a = a

9



10 CHAPTER 1. PRELIMINARIES

for all a ∈ A. A C*-algebra A is called commutative if for all a1, a2 ∈ A we have

a1a2 = a2a1.

We call the innocuous looking equation (1.1) the C*-identity. It has profound conse-
quences for the theory of C*-algebras, which separates it from the theory of, say, Banach
*-algebras (complete normed algebras with an isometric involution).

A morphism or *-homomorphism ϕ : A → B between two C*-algebras is an algebra
homomorphisms which commutes with the involution, i.e.

ϕ(a∗) = ϕ(a)∗.

If A and B are unital C*-algebras, then a morphism

ϕ : A→ B

is called unital if it maps the unit in A to the unit in B.

Example 1.2. A representation of a C*-algebra A is a morphism π : A → B(H) for
some Hilbert space H. The representation is said to be faithful if π is injective and non-
degenerate if π(A)H is dense in H.

The prototypical example of a C*-algebra is the algebra of bounded linear maps on a
fixed complex Hilbert space H, denoted B(H), with the supremum norm given on T ∈
B(H) by

∥T∥ := sup∥x∥≤1∥T (x)∥.

The involution in B(H) is given by sending a map to its adjoint.

It is convenient to have a unit in the C*-algebra. The next example gives the to most
common ways to add a unit to a non-unital C*-algebra.

Example 1.3. Let A be a nonunital C*-algebra. The unitization of A, denoted A+, is the
universal C*-algebra satisfying the following property:

It is the smallest unital C*-algebra containing A as an ideal in the sense that any
morphism f : A → B from A to a unital C*-algebra B lifts to a unique unital morphism
f̂ : A+ → B.

The multiplier algebra of A, denoted M(A), is the universal C*-algebra satisfying the
following property:

It is the largest C*-algebra containing A as an essential ideal (Definition 1.9). Equiva-
lently, let B be any C*-algebra containing A as an essential ideal. Then there is a unique
map B →M(A) such that the inclusion ιA : A→M(A) factors through

A→ B −→M(A).
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We will see concrete realisations of these two algebras later when we define Hilbert C*-
modules in Section 1.4, but let us mention that for a locally compact (but noncompact)
Hausdorff space X we have

C0(X)+ = C(X ∪ {∞}),

where X ∪{∞} is the one-point compactification or the Alexandroff compactification of X
and

M(C0(X)) = C(βX)

with βX the Stone–Cech compactification of X.

The next two results are some of the many consequences of equation (1.1).

Theorem 1.4 ((Gelfand-Naimark) [41, Theorem 3.4.1] ). Any C*-algebra is a C*-subalgebra
of B(H) for some Hilbert space H.

Proposition 1.5 ([41] Cor. 2.1.2). Let A be an algebra with an involution ∗ : A → A.
Then there is at most one norm on A, making it a C*-algebra.

Example 1.6. Let A be any C*-algebra. Then define a norm on the n’fold direct sum of
A (treated as a vector space over C)

A⊕ · · · ⊕A︸ ︷︷ ︸
n

by

∥(b1, . . . , bn)∥2 := ∥b∗1b1 + · · ·+ b∗nb
2
n∥1/2.

Now define the algebra of A-valued n× n-matrices Mn(A). This is an algebra over C with
an involution given by the complex conjugate

(ai,j)
∗ = (a∗j,i),

and product given by the usual matrix multiplication:

(ai,j)(bij) = (

n∑
k=1

aikbkj).

The norm

∥(ai,j)∥ := sup
∥(b1,...,bn)∥2=1

∥∥∥∥∥∥(
n∑

j=1

(a1,jbj), . . . ,

n∑
j=1

(an,jbj)

∥∥∥∥∥∥
2

determines a C*-norm on Mn(A) making it into a C*-algebra, hence it is the unique C*-
norm on Mn(A).
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Any morphism ϕ : A→ B induces a map

ϕ :Mn(A) →Mn(B) (ai,j) 7→ ϕ(ai,j) (1.2)

which can be shown to be a *-homomorphism of C*-algebras.
Proposition 1.5 tells us that a C*-norm on A is uniquely determined by the algebraic

structure of A. This gives a close connection between the algebraic properties of A and
the topological properties of A, which makes it possible to translate theorems of algebra
into the language of C*-algebras. For example, here is a C*-analogue of the classical
Wedderburn theorem1

Example 1.7. Any finite dimensional C*-algebra A (i.e. A ⊂ B(H) for a finite dimensional
Hilbert space H), is isomorphic to a direct sum of full matrix algebras

A ≃
k⊕

i=n

Mni(C).

Example 1.8. Let us give another important example of C*-algebras, namely commutative
C*-algebras C0(X), of complex-valued functions on a locally compact Hausdorff space X
vanishing at infinity. Recall that a function f on a locally compact space X is said to
vanish at infinity if for any ϵ > 0 there is a compact subset Kϵ ⊂ X such that

|f(x)| < ϵ ∀ x ̸∈ Kϵ.

We can multiply and add two functions f, h ∈ C0(X) pointwise as follows

(fh)(x) = f(x)h(x) (f + h)(x) = f(x) + h(x), x ∈ X.

Similarly we define scalar multiplication by (λf)(x) = λf(x) x ∈ X,λ ∈ C. The norm
on C0(X) making it a C*-algebra, called the supremum norm, is defined by

∥f∥ := supx∈X |f(x)|. (1.3)

Note that C0(X) is unital if and only if X is compact, in which case C0(X) = C(X), with
unit given by the constant function X ∋ x 7→ 1 ∈ C.

If X is any topological space, then the algebra C0(X) can be defined just as in Example
1.8 and does produce a C*-algebra with respect to the supremum norm (eq. (1.3)). The
reason we restrict ourselves to locally compact Hausdorff spaces is that given a commutative
C*-algebra C0(X) there always exists a (unique up to homeomorphism) locally compact
Hausdorff space Y and an isomorphism of C*-algebras

1Another example is Kadison’s transitivity theorem which generalizes Jacobson’s transitivity theorem,
but we will not need it here.
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C0(Y ) ≃ C0(X).

Given a commutative C*-algebra A, we can always write A = C0(Y ) for some locally
compact Hausdorff space Y . For this reason, from now on X will always denote a locally
compact Hausdorff space. The space Y is called the Gelfand dual (or the spectrum) of A
which, as a set, consists of all *-homomorphisms

C0(Y ) → C.

The assignment

Y 7→ C0(Y )

determines a contravariant functor from the category of locally compact Hausdorff spaces
with morphisms given by proper continuous maps, to the category of commutative C*-
algebras, by sending a proper map f : X → X ′ to the map

C0(X
′) → C0(X) h 7→ h ◦ f h ∈ C0(X

′).

Note that we need properness of f to ensure that f ◦ h vanishes at infinity on X. The
Gelfand transform determines a contravariant equivalence of categories between the unital
commutative C*-algebras with unital morphisms and the category of compact Hausdorff
spaces. In the non-unital case we need to take care of what morphisms we allow 2. If
f : X → Y is a proper map, then the induced map

C0(Y ) → C0(X) h 7→ h ◦ f

sends approximate units in C0(Y ) to approximate units in C0(X) 3, so we cannot find a
map X × Y → X corresponding to the inclusion into the first factor

C(X) → C(X)⊕ C(Y ) = C(X ⊔ Y ).

Definition 1.9. Let A be a C*-algebra. A closed ∗-invariant subalgebra of I ⊂ A is called
a C*-subalgebra of A. If I ⊂ A is a C*-subalgebra for which

aI, Ia ⊂ I ∀ a ∈ A

then I is called an ideal of A.

An ideal I ⊂ A is called essential, if for any other ideal J ⊂ A, we have

I ∩ J = {0} ⇒ J = 0.

2See for instance [39, p. 9] for a category which is equivalent to the commutative C*-algebra category.
3An approximate unit of a C*-algebra A is a net eα of positive elements such that for all x ∈ A we have

∥eix− x∥ → 0 as i → ∞.
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An example of an essential ideal is C0((0, 1)) inside C([0, 1]). A typical non-example
is the following: Let I ⊂ A be an ideal of A and B any (non-trivial) C*-algebra, then
I ⊕ {0} ⊂ A⊕B is a non-essential ideal.

Let us collect some basic properties of C*-algebras.

Proposition 1.10 ([41] Chapter 2). Let A,B be C*-algebras, and ϕ : A→ B a morphism
of C*-algebras. Then

1. The map ϕ is contractive, meaning ∥ϕ(a)∥ ≤ ∥a∥;

2. Ker(ϕ) is an ideal in A;

3. The inclusion ϕ(A) ⊂ B is a closed C*-subalgebra of B;

4. There is an isomorphism

A/Ker(ϕ) ≃ ϕ(A);

5. If A and B are two C*-algebras, then their direct sum A ⊕ B is a C*-algebra with
respect to the operations

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

(a1, b1)(a2, b2) = (a1a2, b1b2)

(a1, b1)
∗ = (a∗1, b

∗
1)

λ(a1, b1) = (λa1, λb1)

for (ai, bi) ∈ A⊕B and λ ∈ C, and norm given by ∥(a, b)∥ = max(∥a∥, ∥b∥).

Tensor products of C*-algebras are more subtle as there are several choices of norms
on the algebraic tensor product of two C*-algebras. We will not delve into the theory of
tensor products for C*-algebras here, but refer the interested reader to the very thorough
exposition in [11]. Let us just define one norm, which in some interesting cases turns out
to be the only pre-C*-norm on the algebraic tensor product.

We denote by A1 ⊙A2 the algebraic tensor product of two C*-algebras A1, A2. This is
the linear span of the simple tensors (a1 ⊙ a2) with involution

(a1 ⊙ a2)
∗ = a∗1 ⊙ a∗2,

and product

(a1 ⊙ a2)(a
′
1 ⊙ a′2) = a1a

′
1 ⊙ a2a

′
2.

The tensor product of two Hilbert spaces H1 ⊗H2 is a Hilbert space in its own right with
respect to the inner product

⟨v ⊗ w, v′ ⊗ w′⟩ := ⟨v, v′⟩⟨w,w′⟩ v, v′ ∈ H1, w, w
′ ∈ H2.
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Definition 1.11. Let A1 and A2 be two C*-algebras with faithful representations πi : A→
B(Hi). Then we have an injective *-preserving algebra homomorphism

π1 ⊗ π2 : A1 ⊙A2 → B(H1 ⊗H2)

given by
π1 ⊗ π2(a⊙ a′)(h⊗ h′) := π1(a)(h)⊗ π2(a

′)(h′).

The minimal or spatial tensor product, denoted A1 ⊗A2, is the completion of A1 ⊙A2 in
B(H1 ⊗H2).

Since A1 ⊙A2 is a subalgebra of B(H ⊗H) closed under involution, it is clear that the
minimal tensor product norm is a pre-C*-norm on the algebraic tensor product. It remains
to be verified that the norm is independent of choice of faithful representations πi. We
refer the reader to [11, Chap. 3] for the proof of this fact. In case one of the algebras is
commutative, this is the only norm on the algebraic tensor product making its completion
a C*-algebra.

We will also need the following definition:

Definition 1.12. A short exact sequence of C*-algebras 0 → B → E → A → 0 is called
an extension of B by A. Note that B then must be isomorphic to an ideal of E.

The theory of extensions of C*-algebras will be covered in some detail later in Section
1.6. For now, let us give a simple example: For a commutative C*-algebra (ref. Ex 1.8) if
V ⊂ X is a closed subset, we can define a C*-subalgebra given by

I(V ) := {f ∈ C0(X) | f |V = 0}

which is easily seen to be an ideal of C0(X). All ideals of C0(X) arise in this way for some
closed subset of X. Letting O = X\V be the complement of V then it is easy to show we
have an isomorphism

I(V ) = C0(O) ⊂ C0(X)

and the quotient algebra is given by

C0(X)/C0(O) ≃ C0(X\O) = C0(V ).

This gives us an extension of C*-algebras

0 → C0(O) → C0(X) → C0(V ) → 0. (1.4)

For example if M is a manifold with boundary ∂M and interior M , we get an extension

0 → C0(M) → C0(M) → C0(∂M) → 0.

An operator system is a closed and ∗-invariant subspace F ⊂ A of a unital C*-algebra
A, such that 1A ∈ F .
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Definition 1.13 ([11, Definition 3.7.5]). Let E be a unital C*-algebra. An extension

0 → B → E
π−→ A→ 0

is called locally split if for every finite dimensional operator system F ⊂ A there exists a
unital completely positive map σ : F → E such that π ◦ σ = idF .

Definition 1.14. A C*-algebra A is said to be nuclear if for any C*-algebra B there is a
unique pre-C*-norm on A⊙B.

Definition 1.15. A C*-algebra A is called exact if for any exact sequence of C*-algebras

0 → I
ι−→ E

p−→ B → 0

the sequence

0 → I ⊗A
ι⊗id−−−→ E ⊗A

p⊗id−−−→ B ⊗A→ 0

is exact, where ι⊗ id and p⊗ id are the maps given on simple tensors in I ⊙A and B ⊙A
by

ι⊗ id(m⊙ a) = ι(a)⊙ a and p⊗ id(b⊙ a) = p(b)⊙ a

respectively, and extended to the C*-tensor product.

We mention without proof that any nuclear C*-algebra is exact, but the converse is
in general not true. One family of examples of exact C*-algebras which are not nuclear
are the reduced group C*-algebra of discrete non-amenable subgroups of GLn(C) (see
Theorem 1.37). Further, the following example shows that not all nuclear C*-algebras are
commutative.

Example 1.16. Let H be a Hilbert space. A finite rank operator F : H → H is a linear
map of the form

F (x) =
k∑

n=1

yi⟨xi, x⟩

for some finite set xi, yi ∈ H.

Let Bfin(H) denote the collection of all finite rank operators on H and let K := K(H)
denote the closure of Bfin(H). The algebra K can be shown to be nuclear C*-algebra sitting
in B(H) as an essential ideal.

Definition 1.17. An operator T ∈ K(H) defined in Example 1.16 is called a compact
operator. A compact operator is a bounded linear map T : H → H satisfying any of the
following equivalent conditions ([41, Chap. 2.4])

1. For any bounded U ⊂ H, T (U) has compact closure;
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2. T is the norm limit of finite rank operators

3. T is in the norm limit of finite sums of rank 1 projections

4. T ∈
⋂

I⊂B(H) I where I runs over all ideals of B(H) containing Bfin(H).

Let K = K(l2(N)) be the C*-algebra of compact operators on a separable infinite
dimensional Hilbert space (i.e. a Hilbert space with a countable infinite orthonormal
basis).

Definition 1.18. A C*-algebra A is called stable if A ⊗ K ≃ A. For any C*-algebra B,
the C*-algebra B ⊗K is called the stabilization of B.

The stabilization B⊗K is stable, since the tensor product is associative and K⊗K ≃ K.

Positive elements If A = C(X) is a commutative C*-algebra, then the subset A+ =
{f ∈ C(X) | f ≥ 0} of real-valued positive functions on X has the following properties:

1. Each element f ∈ A+ has a unique square root in A+;

2. The set A+ is a cone in A, meaning it is closed under addition and multiplication by
R≥0;

3. Every element in A+ is of the form |f |2 = ff for some function f ∈ A;

4. Every f ∈ A can be written as

f = f1 − f2 + i(f3 − f4)

for some fi ∈ A+.

The elements in A+ are called positive elements of A. For a general C*-algebra we have a
similar definition:

Definition 1.19. Let A be any C*-algebra and define

A+ := {a∗a | a ∈ A}.

The elements in A+ are called positive, and A+ is called the positive cone of A.

We have:

Proposition 1.20 ([41] Sec. 2.2). The positive cone satisfies the following properties

1. The set A+ is a cone in A, meaning it is closed under sums and multiplication by
R≥0
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2. Every a ∈ A+ has a unique square root in A+, i.e. there is an element b ∈ A+ such
that b2 = a;

3. every a ∈ A can be written as

a = a1 − a2 + i(a3 − a4)

for ai ∈ A+.

Now if ϕ : A→ B is a morphism of C*-algebras then

ϕ(a∗a) = ϕ(a)∗ϕ(a)

hence ϕ(A+) ⊂ B+. Similarly, the induced maps on matrix algebras

ϕ :Mn(A) →Mn(B) ϕ[(aij)] = [ϕ(aij)]

also preserves positive elements (being themselves morphisms of C*-algebras).

The following definition gives a weakening of the notion of morphisms of C*-algebras,
that is useful in applications (see Example 1.49)

Definition 1.21. A bounded linear map ϕ : A→ B between C*-algebras is called positive
if

ϕ(A+) ⊂ B+.

It is called contractive if ∥ϕ(a)∥ ≤ ∥a∥ for all a ∈ A.

A positive map is called completely positive if the induced map

ϕ :Mn(A) →Mn(B) [aij ] 7→ [ϕ(aij)],

is positive for all n ∈ N. Similarly it is called a completely positive contractive map if the
induced maps

ϕ :Mn(A) →Mn(B) [aij ] 7→ [ϕ(aij)]

are positive and contractive for all n ∈ N.

1.2 Group actions and crossed products

Throughout this thesis, all groups will be assumed to be locally compact and Hausdorff
topological groups, and, unless mentioned otherwise, unimodular, meaning the left and
right Haar measures agree (Definition 2.21). In this section we will see what happens when
a group G acts on a C*-algebra A. A good reference for this material is [44].
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Definition 1.22. A group action of a locally compact topological group G on a C*-algebra
is a group homomorphism

G→ Aut(A).

The action is called continuous if the map

G×A→ A (g, a) 7→ αg(a)

is continuous. It is called strongly continuous if for all a ∈ A, the map

G→ A g 7→ αg(a)

is continuous.

Clearly a continuous action is strongly continuous, but the converse may fail. So it
would be better to call it weakly continuous, but we will adhere to the convention of
Definition 1.22. Whenever there is a group action on a C*-algebra, it will always be
assumed to be strongly continuous.

Example 1.23. Assume X is a space with a continuous action of a group G, i.e. the map

G×X → X ×X (g, x) 7→ (x, gx)

is continuous. Then the action of G induces a strongly continuous action of G on C0(X)
by

(gf)(x) = f(g−1x). (1.5)

Definition 1.24. A G-C*-algebra or a C*-dynamical system (A,α), is a C*-algebra A
together with a strongly continuous action α : G→ Aut(A) of a group G.

A morphism of G-C*-algebras

ϕ : (A,α) → (B, β)

is a morphism of C*-algebras
ϕ : A→ B

that commutes with the action of G, that is,

ϕ(αg(a)) = βg(ϕ(a)).

Similar to Definition 1.12, we have the following:

Definition 1.25. A short exact sequence

0 → B → E → A→ 0

of G-C*-algebras, where each map commutes with the group action, is called an equivariant
extension of G-C*-algebras.
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We will often write A for a G-C*-algebra (A,α), when the action is clear from the
context.

Example 1.26. Let G be a group. A unitary representation of G is a continuous group
homomorphism

ϕ : G→ U(B(H)) ϕ(g) := Ug

from G to the group of unitaries on a Hilbert space H. We get a strongly continuous action
on B(H) and K(H) by

αg(T ) := UgTU
∗
g .

for T ∈ B(H) or T ∈ K(H) respectively.

Definition 1.27. A function f : G→ A is called compactly supported if

supp(f) := {g ∈ G | f(g) ̸= 0} ⊂ G

is compact. The set Cc(G,A) of compactly supported A-valued functions admits the struc-
ture of an algebra over C with respect to the operations given, for any f, h ∈ Cc(G,A),
by

• (f + h)(g) = f(g) + h(g)

• (f ⋆ h)(g) =
∫
G f(s)αs(h(s

−1g))ds.

where the integral is the (Bochner) integral with respect to the Haar measure ds on G. The
product ⋆ : Cc(G,A) → Cc(G,A) is called the convolution product. We can also define an
involution on Cc(G,A) by

• f∗(g) = αg(f(g
−1)∗).

turning Cc(G,A) into a ∗-algebra.

The natural substitute for representations of Cc(G,A) are the integrated forms of co-
variant representations. Let us go through the definitions.

Definition 1.28. A covariant representation (or covariant pair) for a G-C*-algebra (A,α)
is a pair (π, u) where

π : A→ B(H)

is a non-degenerate representation of A, and

u : G→ U(H) g 7→ ug

is a unitary representation (Example 1.26) of G satisfying the so called covariance relation:

π(αg(a)) = ugπ(a)u
∗
g. (1.6)
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Given a covariant representation of a G-C*-algebra (A,α) there is a natural way to
induce a *-preserving algebra homomorphism of Cc(G,A) on B(H) called the integrated
form of (ϕ, u).

Definition 1.29. Given a covariant representation (π, u) of (A,α), the integrated form is
the representation

π ⋊ u : Cc(G,A) → B(H)

given for an f ∈ Cc(G,A) by the Bochner integral

(π ⋊ u)(f) :=

∫
s∈G

π(f(s))usds.

The operator (π⋊u)(f) :=
∫
s∈G π(f(s))usds is the unique operator in B(H) which acts

on a vector v ∈ H by

v 7→
∫
s∈G

π(f(s))(us(v))ds.

There may be no C*-norm on Cc(G,A) but we can always find pre-C*-norms whose
completion give a C*-algebras (see Definition 1.1). We will now define the two most
common norms on Cc(G,A), denoted by ∥ · ∥r and ∥ · ∥.

Recall that the left regular representation of G is the unitary representation

λ : G→ U(L2(G)) g 7→ λg

where

λg(f)(t) = f(g−1t) for all f ∈ L2(G).

We define L2(G,H) to be the Hilbert space completion of Cc(G,H) with respect to the
inner product

⟨f, h⟩ :=
∫
G
⟨f(g), h(g)⟩dg (f, h ∈ Cc(G,H))

where dg denotes the Haar measure on G (see [54, Appendix I.4]). Let π : A → B(H) be
any faithful non-degenerate representation of our C*-algebra A, then we can extend π to
a representation π̂ : A→ B(L2(G,H)) given by

π̂(a)(h)(g) := π(αg−1(a))h(g) a ∈ A, h ∈ B(L2(G,A)), g ∈ G.

A long, but simple computation will show that the pair (π̂, λ) is a covariant pair for (A,α).

Definition 1.30. The regular representation of a G-C*-algebra is the integrated form of
the covariant pair (π̂, λ). That is, it is the representation

π̂ ⋊ λ : Cc(G,A) → B(L2(G,H))



22 CHAPTER 1. PRELIMINARIES

given for any f ∈ Cc(G,A), h ∈ L2(G,A) and g ∈ G by

(π̂ ⋊ λ)(f)(h)(g) =

∫
G
π(αg−1(f(s)))h(g−1s)ds.

Definition 1.31. The reduced crossed product of a C*-dynamical system (A,α), is the
completion of Cc(G,A) with respect to the norm

∥f∥r := ∥π̂ ⋊ λ(f)∥ f ∈ Cc(G,A).

The completion of Cc(G,A) is denoted

A⋊r,α G or A⋊r G.

Definition 1.32. The maximal or universal crossed product is the completion of Cc(G,A)
with respect to the norm

∥f∥ := sup
(π,u)

∥π ⋊ u(f)∥

where (π, u) runs over all covariant representations of (A,α). The completion of Cc(G,A)
is denoted

A⋊α G or A⋊G.

We refer the reader to the book of Williams [54] for the proof that these are indeed
pre-C*-norms on Cc(G,A) satisfying the C*-identity (eq. (1.1)). For crossed products by
discrete groups the book of Phillips [46] is also recommended.

Let us state the following property showing the maximality of the universal C*-norm
among all “sensible” norms on Cc(G,A):

Lemma 1.33. Let ∥ · ∥t be a pre-C*-norm on Cc(G,A) given by a representation of

πt : Cc(G,A) → B(H)

which is norm-decreasing with respect to the L1 norm on Cc(G,A) i.e. the norm

∥f∥1 :=
∥∥∥∥∫

G
f(g)∗f(g)dµ(g)

∥∥∥∥ .
Then for all f ∈ Cc(G,A) we have ∥f∥t ≤ ∥f∥.

Proof. The assertion follows from [54, Corollary 2.46].

The reduced crossed product is in general not the minimal pre-C*-norm on Cc(G,A),
however.
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Example 1.34 (Group C*-algebras). Let G be a group. Let id : G → C be the trivial G
action on C (i.e. the trivial representation of G) id(g) = 1 for all g ∈ G. Then the crossed
product

C∗
r (G) := C⋊r,id G

is called the reduced group C*-algebra of G (see [54, Example 7.9]), while

C∗(G) := C⋊id G

is the (full) group C*-algebra of G (see [54, Example 2.33]).

Both the reduced and universal crossed product C*-algebras retain some information
about the underlying dynamical system. In general, however, one loses information about
the underlying dynamics when passing to the associated crossed product C*-algebra, as
there are several examples of isomorphic crossed product C*-algebras arising from vastly
different topological dynamical systems (C0(X), α) (see [45] for several examples of this).

1.3 Exactness of the reduced crossed product functor

Given an equivariant morphism ϕ : A→ B of two G-C*-algebras, we can define a map

ϕ : Cc(G,A) → Cc(G,B) ϕ(f)(g) = ϕ(f(g)). (1.7)

which induces maps

ϕ : A⋊G→ B ⋊G ϕ : A⋊r G→ B ⋊r G.

The equivariance of ϕ makes the induced maps a ∗-homomorphism of the crossed products
C*-algebras. A natural question is: Under which conditions an extension of G-C*-algebras

0 → B → E → A→ 0

gives us an extension of the associated crossed product C*-algebras

0 → B ⋊(r),β G→ E ⋊(r),γ G→ A⋊(r),α G?

Definition 1.35. A group G is called exact (or C*-exact) if for any extension of G-C*-
algebras

0 → I → A→ A/I → 0

the associated sequence of reduced crossed products

0 → I ⋊r G→ A⋊r G→ (A/I)⋊r G→ 0

is also exact, i.e., − ⋊r G is an exact functor on the category of G-C*-algebras with
equivariant morphisms.
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It is known that the full crossed product functor −⋊G is always an exact functor for
any group G.

Some authors call G exact if C∗
r (G) is an exact C*-algebra, which amounts to the

minimal tensor product functor − ⊗ C∗
r (G) being exact (Definition 1.15). In general this

is weaker than our definition, but we will see the two definitions agree for discrete groups.
Here are some of the main theorems regarding exactness of groups:

Theorem 1.36 ([19, Theorem 6]). Let K be a field, n ≥ 1 a positive integer and G ⊂
GLn(K) any discrete subgroup. Then the reduced group C*-algebra C∗

r (G) is exact.

It turns out that if Γ is any discrete group we have

C∗
r (Γ) is an exact C*-algebra ⇔ −⋊r,α Γ is an exact functor

The implication ⇐ is always true for any locally compact group since if Γ acts trivially
on a C*-algebra A, then A ⋊r Γ ≃ A ⊗min C

∗
r (Γ). The other direction is proved in [31,

Theorem 5.2]. Hence we have the following

Theorem 1.37 ([31, Theorem 5.2] ). If K is any field and Γ any discrete linear subgroup
of GLn(K) then the functor

−⋊r Γ

is exact.

The authors of [31] prove this theorem by proving the following, slightly stronger state-
ment: For any discrete group Γ and a Γ-equivariant extension 0 → B → E → A → 0 the
sequence

0 → B ⋊r Γ → E ⋊r Γ → A⋊r Γ → 0 (1.8)

is exact if and only if the sequence

0 → (B ⋊ Γ)⊗ C∗
r (Γ) → (E ⋊ Γ)⊗ C∗

r (Γ) → (A⋊ Γ)⊗ C∗
r (Γ) → 0 (1.9)

is exact. This gives us a way to determine if a sequence of crossed products is exact even
in cases where the functor −⋊r Γ is not exact. Before listing some of these cases, we will
need the following definition:

Definition 1.38 ([11, Definition 4.3.5] ). An action of a discrete group Γ on a compact
space X is called amenable if there exists a net of weak*-continuous maps

mi : X → Prob(Γ) x 7→ mx
i

such that for each s ∈ Γ
lim
i→∞

sup
x∈X

∥s⋆mx
i −msx

i ∥1 = 0

where the norm is given for a measure µ ∈ Prob(Γ) by

∥µ∥1 =
∑
γ∈Γ

|µ(γ)|
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Any action of an amenable group on a compact space X is amenable in the sense of Def-
inition 1.38, but there are plenty of amenable actions by non-amenable groups. Amenable
actions on a compact spaceX induce strongly continuous group actions on C(X), and there
is a similar notion of amenability on the C*-algebraic level, though they become quite tech-
nical. We refer the interested reader to [11] section 4.5 for arbitrary unital C*-algebras and
discrete groups. For us the following will suffice as our definition

Proposition 1.39. Let Γ be a discrete group and A a nuclear Γ-C*-algebra. Then the
action of Γ on A is amenable if and only if

A⋊r Γ

is nuclear.

We are mostly interested in amenable actions due to the following theorem:

Theorem 1.40 ([11, Theorem 4.3.4] ). Let A be any C*-algebra and Γ a discrete group
acting amenably on A. Then

A⋊r Γ = A⋊ Γ.

So in case the action of Γ is amenable there is a unique pre-C*-norm on Cc(G,A). Let
us see an example of amenable actions

Example 1.41. Let G be a unimodular Lie group and Γ ⊂ G a discrete subgroup with
Γ\G of finite volume with respect to the restricted Haar measure of G. Let H ⊂ G be a
closed subgroup. Then the action of Γ on G/H is amenable if and only if H is amenable.
If Γ is an arbitrary discrete subgroup of G then the action of Γ on G/H is amenable if H
is amenable (see [55, Corollary 4.3.7]).

As a special case of this, if G is a connected semisimple Lie group with finite center
and maximal compact subgroup K, Γ ⊂ G a lattice (meaning Γ\G has finite volume) and
P ⊂ G is a parabolic subgroup (Definition 2.47), then the action of Γ on G/P is amenable
if and only if P is a minimal parabolic subgroup (as these are the only amenable parabolic
subgroups of G).

We will now list a few of the cases where the sequence of equation (1.8) is exact in the
next lemma.

Lemma 1.42. For Γ any discrete group, the sequence (1.8) is exact in the following cases

1. The action of Γ is amenable on all C*-algebras in the sequence.

2. A is nuclear and the action of Γ on A is amenable.

3. There is a unique C*-norm on the algebraic tensor product A⋊ Γ⊙ C∗
r (Γ).

4. The sequence 0 → B ⋊ Γ → E ⋊ Γ → A⋊ Γ → 0 is locally split (or semisplit).
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5. The sequence 0 → B → E → A → 0 is locally split by Γ-equivariant maps (or
equivariantly semisplit).

Proof. Case 1) follows from the fact that for any Γ-C*-algebra B with an amenable Γ
action we have B ⋊r Γ = B ⋊ Γ, and −⋊ Γ is an exact functor.

Case 2): The conditions assure that the crossed product A ⋊ Γ is nuclear, hence the
claim follows from Case 3 above.

Note that B ⋊ Γ is nuclear always implies that B is nuclear. If the action is amenable,
the converse also holds. For transformation groupoids given by the action of a discrete
group on a locally compact Hausdorff space, Theorem 3.5 of [2] A ⋊r Γ is nuclear if and
only if the action of Γ is amenable.

Case 3) follows from the correspondence of the sequences (1.8) and (1.9) and Corollary
3.7.3 [11], which states that the sequence

0 → B ⊗D → E ⊗D → A⊗D → 0

is exact if the algebraic tensor product A ⊙ D admits a unique C*-norm, which happens
for instance when either A or D are nuclear.

Case 4) If the sequence 0 → B → E → A → 0 is locally split (or semisplit), then by
Proposition 3.7.6 of [11] the sequence

0 → B ⊗D → E ⊗D → A⊗D → 0

is exact for any C*-algebra D.

Case 5) If the sequence 0 → B → E → A→ 0 is equivariantly locally split/semisplit,
then the sequence 0 → I⋊Γ → A⋊Γ → (A/I)⋊Γ → 0 is locally split/semisplit respectively,
so we can use Case 4).

1.4 Hilbert C*-modules

If we think of C as a C*-algebra, a complex Hilbert space H is nothing but a special module
over the C*-algebra C with an inner product taking values in C. The next definition is a
natural generalization of the notion of Hilbert spaces where C is replaced by an arbitrary
C*-algebra -

Definition 1.43 ( [34] p. 2). A right pre-Hilbert A-module, is a (complex) linear space
H, with a right A-module structure, together with a map ⟨−,−⟩ : H ×H → A satisfying

1. λ(xa) = (λx)a = x(λa) for all x ∈ H, a ∈ A and λ ∈ C,

2. ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩ for all x, y, z ∈ H, and all α, β ∈ C,
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3. ⟨x, ya⟩ = ⟨x, y⟩a for x, y ∈ H and all a ∈ A,

4. ⟨x, y⟩∗ = ⟨y, x⟩ for all x, y ∈ H,

5. ⟨x, x⟩ ≥ 0; and ⟨x, x⟩ = 0 ⇒ x = 0 for all x ∈ H,

If H is complete with respect to the norm

∥x∥ := ∥⟨x, x⟩∥1/2

it is called a right Hilbert A-module.

It should be clear that Definition 1.43 is modelled on the definition Hilbert spaces, in
fact since C is a C*-algebra, it is easy to show that

Example 1.44. A right Hilbert C-module is a Hilbert space.

The analogy between Hilbert spaces and right Hilbert C*-modules is not perfect though.
Recall that for a Hilbert space H, any bounded linear map T : H → H has an adjoint,
meaning there is a map T ∗ : H → H satisfying

⟨T (x), y⟩ = ⟨x, T ∗(y)⟩

for all x, y ∈ H. The map T ∗ is uniquely determined and automatically linear and bounded
if T is. For Hilbert C*-modules we have a similar notion

Definition 1.45. Let H be a right Hilbert A-module. By an operator on H we mean a
bounded C-linear map L : H → H for which

L(xa) = L(x)a for all x ∈ H, a ∈ A.

An operator L : H → H is called adjointable if there exists another operator L∗ such that

⟨L(x), y⟩ = ⟨x, L∗(y)⟩ for all x, y ∈ H.

The set of adjointable operators on H are denoted LA(H) or L(H).

As Definition 1.45 would suggest, there can be non-adjointable operators on Hilbert
C*-modules. An example of non-adjointable operators can be found in [34, p. 8]. We have
the following:

Lemma 1.46 ([34] p.8). Let H be a Hilbert A-module. Then L(H) is a C*-algebra with
respect to the norm

∥T∥ := sup
x∈H
∥x∥=1

∥T (x)∥ = sup
x∈H
∥x∥=1

sup
y∈H
∥y∥=1

∥⟨Tx, y⟩∥. (1.10)
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We shall now look at a class of operators which are always adjointable

Definition 1.47. Let A be a C*-algebra and H be a Hilbert A-module (Definition 1.43).
The rank one operators are the operators of the form

θx,y : H → H θx,y(z) = x⟨y, z⟩ for all z ∈ H

where x, y ∈ H. The compact operators in H, denoted K(H) is the closed linear span

K(H) := Span{θx,y | x, y ∈ H}

where the closure is taken with respect to the operator norm defined by eq. (1.10).

A little bit of work shows that for any x, y ∈ H θx,y is adjointable with adjoint given
by

θ∗x,y = θy,x.

It follows that K(H) ⊂ L(H).

Example 1.48. Let us look at a useful example of a Hilbert module. As a byproduct we
will get a concrete realization of the multiplier algebra defined in Example 1.3. Let A be
a C*-algebra. Define a map

⟨−,−⟩ : A×A→ A ⟨a, b⟩ := a∗b, a, b ∈ A. (1.11)

This can be shown to be an A-valued inner product satisfying properties (1)-(4) of Defini-
tion 1.43 hence A is a pre-Hilbert module over itself. Completeness follows from complete-
ness of A using the C*-identity (Equation (1.1)):

∥⟨a, a⟩∥1/2 = (∥a∥2)1/2 = ∥a∥.

So A is a Hilbert A-module with respect to the inner product of equation (1.11).

It turns out that if A is nonunital, we have

L(A) =M(A) and K(A) = A.

Example 1.49 ([34] p. 7). Let A be a unital C*-algebra and, B ⊂ A any C*-subalgebra
containing the unit of A. If H is a Hilbert A-module, let ϕ : A→ B be a map satisfying

1. ϕ|B = IdB;

2. ϕ is a contractive completely positive map (Definition 1.21);
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The map ϕ satisfying property (1) and (2) is called a conditional expectation from A to B.
By a result of Tomiyama ([11, Theorem 1.5.10]) if ϕ is contractive and satisfies property
(1), it is automatically completely positive and B-linear, meaning

ϕ(ab) = ϕ(a)b for all a ∈ A and b ∈ B.

As in Example 1.48 we may treat A as a Hilbert A-module with inner product

⟨a1, a2⟩A := a∗1a2

The Hilbert module A becomes a Hilbert B-module with respect to the B-valued inner
product

⟨x, y⟩B := ϕ(⟨x, y⟩A) x, y ∈ H.

The complete positivity of ϕ is exactly what is needed to ensure that ⟨−,−⟩B satisfies
property (5) of Definition 1.43, since if ai ∈ H (i = 1, . . . , n) is any finite sequence of
elements in H, then

ϕ

⟨
n∑

i=1

ai,

n∑
j=1

aj⟩

 =

n∑
i=1

n∑
j=1

ϕ(⟨ai, aj⟩)

which is is positive for all finite sums
∑n

i=1 ai in A if and only if ϕ is completely positive
(see the proof of [34, Lemma 4.3(i)]).

1.5 K-theory

Operator K-theory is an example of what is called a generalized homology theory on
C*-algebras extending the topological K-theory for compact topological spaces through
Gelfand duality. We will define both operator K-theory and (compactly supported) topo-
logical K-theory in this section and return to this material later when we introduce equiv-
ariant KK-theory in the next section. Let us start with topological K-theory.

As previously, X denotes a locally compact Hausdorff space, and all vector bundles will
be assumed to be complex and of finite rank. Additionally we will assume any vector bundle
π : E → X to be trivial outside a compact set. Note that saying that a bundle E → X
on a locally compact but noncompact Hausdorff space X is trivial outside a compact set,
is equivalent to saying that E is the restriction of a bundle E∞ :→ X ∪ {∞} on the one
point compactification of X.

We denote by en = X × Cn the trivial bundle of rank n over X.

Definition 1.50. We define the Whitney sum of two vector bundles πi : Ei → X (i = 1, 2)
to be the vector bundle

E1 ⊕ E2 := {(v1, v2, x) ∈ E1 × E2 ×X | π1(v1) = π2(v2) = x}
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Definition 1.51 ([22] p. 39). Two vector bundles Ei → X (i = 1, 2) are called stably
isomorphic, denoted E1 ≃s E2, if there is a trivial vector bundle en → X such that

E1 ⊕ en = E2 ⊕ en.

Definition 1.52. Given a bundle π : E → X over X and a continuous map f : Y → X,
the pullback of E by f is the bundle

f∗E → Y

with total space
f∗E = {(v, y) ∈ E ⊕ Y | f(y) = π(v)}

and bundle map (f∗π) : f∗E → Y given by projection onto the second factor.

It should be clear that the pullback of a bundle preserves the rank of the bundle, and
that the pullback of a trivial bundle is trivial. We also have the that for any set O ⊂ Y
and continuous map ϕ : X → Y and bundle E → Y , we have ϕ∗(E|O) = (ϕ∗E)|ϕ−1(O).
Combined, these three properties give us the following:

Lemma 1.53. Let π : E → X be a bundle, and K ⊂ X a compact subset such that the
restrictionπ|X\K : E|X\K → X\K is trivial. Let ϕ : Y → X be a proper map. Then ϕ∗E
is trivial outside a compact set in Y .

Denote by [E] and [E′] the stable isomorphism class of the bundles E and E′ re-
spectively. Then the equivalence class of their sum [E ⊕ E′] only depends on the stable
isomorphism class of E and E′, so we may define an operation on the collection of stable
isomorphism classes by

[E]⊕ [E′] := [E ⊕ E′].

Denote by V (X) the collection of all stable isomorphism classes of bundles over X. This
is an abelian semigroup with respect to Whitney sums, and the class [e0] (the rank–zero
bundle) is the zero element

The next proposition has important consequences for the theory, and is one of the
reasons we restrict our attention to vector bundles that are trivial outside a compact set.

Proposition 1.54 ([42, Proposition 1.7.9] ). If X is compact, then any vector bundle over
X is a subbundle of a trivial bundle en for some n. Equivalently, for any bundle E → X,
there is a bundle E′ → X, and n ∈ N such that

E ⊕ E′ = en.

One consequence of Proposition 1.54 is that the semigroup V (X) has the cancellation
property, meaning

[E1]⊕ [E2] = [E1]⊕ [E3] ⇒ [E2] = [E3]
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since we may add a bundle E′
1 to each side for which E′

1 ⊕ E1 = em for some m.
Knowing this, we can form the Grothendieck group Gr(V (X)) as the collection of formal

differences
{[E1]− [E2] | [Ei] ∈ V (X)}/ ∼

with addition defined by ([E1]−[E2])+([E′
1]−[E′

2]) := ([E1⊕E′
1]−[E2⊕E′

2]) and identifying
elements

[E1]− [E2] ∼ [E′
1]− [E′

2] ⇔ [E1 ⊕ E′
2] = [E′

1 ⊕ E2].

Definition 1.55. The (unreduced compactly supported complex) topological K-theory
group of X is defined to be

K0(X) := Gr(V (X)).

Now, to steer things towards operator K-theory, assume that X is compact, so that
C0(X) = C(X) and let

M∞(C) = lim
n→∞

Mn(C)

be the algebraic direct limit of n × n-matrices with complex coefficients and connecting
morphisms

Mn(C) →Mn+1(C) x 7→ diag(x, 0).

The Serre-Swan theorem tells us that there is a 1-1 correspondence between isomorphism
classes of complex vector bundles on X and homotopy classes of projection valued contin-
uous maps X →M∞(C) (see [26, Section 4.1]).

The Whitney sum of two projection valued functions p, p′ ∈ C(X,M∞(C)) is given by

p⊕ p′ = diag(p, p′),

i.e. by the block diagonal matrix with entries p and p′ along the diagonal. The sta-
ble equivalence relations of vector bundles translate to certain equivalence relations the
corresponding projection valued functions, which produces a semigroup under addition.
Taking the Grothendieck group gives us the operator K-theory groups for C(X), denoted
K0(C(X)) which agrees with K0(X).

With this example in mind, let A be an arbitrary unital C*-algebra and consider the
projections in the algebraic direct limit

C(A,M∞(C)) =M∞(A) = lim
n∈N

Mn(A),

where the connecting morphisms are simply the maps

Mn(A) →Mn+1(A) M 7→M ⊕ 0

given by padding a matrix in Mn with zeros. Recall that an element in M∞ is represented
by some element in Mn(A) for some n ∈ N (see Example 1.6). For any two elements in
p, q ∈M∞(A) we define their sum p⊕ q to be the block diagonal matrix diag(p, q).
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Projections in M∞(A) are, as for C*-algebras, the elements p ∈M∞(A) for which

p = p2 = p∗.

We are now ready to define the equivalence relation:

Definition 1.56. Two projections p, q ∈ M∞(A) are called equivalent, denoted p ∼ q, if
there is a rectangular A valued matrix v such that

p = v∗v q = vv∗.

Assuming A is unital, we define:

Definition 1.57. Two projections p, q ∈M∞(A) are called stably equivalent if there is an
n ∈ N such that

In ⊕ p ∼ In ⊕ q

where In is the n× n-identity matrix.

Let V (A) be the collection of stable equivalence classes of projections in M∞(A). This
is a semigroup with the cancellation property, with respect to addition given by diagonal
concatenation of block matrices. We define, just as in the topological case:

Definition 1.58. Let A be a unital C*-algebra, then the K-theory group of A is

K0(A) = Gr(V (A)).

If A is nonunital, then we define

K0(A) = Ker(ι∗ : K0(A
+) → K0(C) = Z)

where ι : A+ → C is the canonical unital *-homomorphism from the unitization of A.

Bott periodicity and the six–term exact sequence of K-theory

Definition 1.59. Let A be a C*-algebra. The suspension of A is the C*-algebra

SA := C0(R, A)

of continuous functions from R to A vanishing at infinity. Similarly, we denote then n-fold
suspension by

SnA := C0(Rn, A).

For a *-homomorphism ϕ : A→ B we define the mapping cone of ϕ to be

Cϕ := {(a, f) ∈ A⊗ C([0, 1], B) | f(0) = ϕ(a), f(1) = 0}.
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We define higher K-groups as follows

Definition 1.60. Let A be any C*-algebra, then for n ∈ N define

Kn(A) := K0(S
nA).

Let us go through some of the basic properties of the Ki(A)-groups, starting with
functoriality: If

ϕ : A→ B

is a *-homomorphism, we get a morphism of the associated matrix C*-algebras

Mn(A) →Mn(B) (ai,j) 7→ (ϕ(ai,j)).

This gives us a map

ϕ∗ : V (SnA) → V (SnB) ϕ[p] := [ϕ(p)]

which can be shown to commute with addition, so by the universal properties of the
Grothendieck group induces a map

ϕ∗ : Kn(A) → Kn(B).

Hence we have the following

Proposition 1.61. For any n ∈ N, the assignment

A→ Kn(A)

is a functor from the category of C*-algebras to the category of abelian groups.

Next, let us state the following fundamental theorem

Proposition 1.62 (Bott periodicity [41, Theorem 7.5.1 7]). For any C*-algebra A there
is an isomorphism

δ : K2(A) → K0(A).

Let us see what the K-theory functor does to extensions of C*-algebras

Theorem 1.63 ([41, Theorem 7.5.18]). Given an extension

0 → B
ι−→ E

p−→ A→ 0

of C*-algebra, we have a 6-term exact sequence of K-groups:
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K0(B) K0(E) K0(A)

K1(A) K1(E) K1(B)

ι∗ p∗

∂∂

p∗ ι∗

The maps p∗ and ι∗ are induced by functoriality of Ki. Let us see how the maps ∂,
called the connecting morphisms, are constructed in [41]. Let

0 → B
ι−→ E

p−→ A→ 0

be an extension of C*-algebras. We have natural maps

j : B → Cp k : SA→ Cp

to the mapping cone of p (Definition 1.59) where j(b) = (ι(b), 0) and k(f) = (0, f) are
the inclusion maps. It is shown in [41, Lemma 7.5.12] that j∗ : K0(B) → K0(Cp) is an
isomorphism. We now define the connecting map to be

∂ = (j∗)
−1k∗ : K0(SA) = K1(A) → K0(B)

Using a similar construction for the extension

0 → SB → SE → SA→ 0

and Bott periodicity obtain the map

∂ : K0(A) → K1(B).

1.6 Equivariant extensions and KK-theory

The interplay between extensions of C*-algebras and K-homology dates back to the now
classical work of Brown, Douglas and Fillmore ([9], [10]) where the authors, motivated by
the study of essentially normal operators, set out to classify extensions of the form

0 → K → E → C(X) → 0

where K := K(l2(Z)) are the compact operators on a separable infinite dimensional Hilbert
space. By what seems a coincidence the Ext-group they defined turned out to be isomorphic
to the K-homology of the space X, that is the abstract homology theory dual to topological
K-theory defined in the previous section. The definition of the Ext-group was later extended
to include extensions of the form

0 → K → E → A→ 0
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for arbitrary stable C*-algebras A (see Definition 1.18) at the expense of making Ext a
semigroup. Voiculescu then showed [52] that if A is separable, the semigroup is actually a
monoid (i.e. has a zero element) with unit the class of any split extension. The invertible
elements of Ext(A) were later characterized by Arveson in [3] (see also [27, Theorem 3.2.9])
as those extensions for which the associated “Busby invariant” (Def. 1.69) map ϕ : A →
Q(B) lifts to a completely positive contractive map ψ : A→M(B), which is easily proved
to be equivalent to having a completely positive contractive splitting of the quotient map
in the extension. This is automatic if A is nuclear, by the lifting theorem of Choi and
Effros [12].

The theory was greatly generalized by Kasparov in [29] and later in [30] laying the
foundations of KK-theory, the bivariant K-theory which bears his name. A new semigroup
Ext(A,B) was defined which extends the definition of Ext(A) to extensions of the form

0 → B → E → A→ 0

so Ext(A) = Ext(K, A). Kasparov then proved using his generalized Stinespring dilation
theorem, that

KK1(A,B) = KK(SA,B) = Ext(A,B)0

where Ext(A,B)0 denotes the subgroup of Ext(A,B) of invertible elements and SA =
C(0, 1)⊗A is the suspension of A. The group KK-groups introduced by Kasparov generalize
K-theory and its dual theory K-homology in the sense that (assuming A is separable)

KK(C, A) = K0(A) KK(A,C) = K0(A).

The isomorphism uses the characterization of invertible elements in Ext(A,B) given by
the existence of a completely positive splitting ϕ : A→ E of the quotient map p : E → A of
the extension. The splitting also gives a concrete realization of the KK1-cycle representing
the extension.

Parallel to this, a theory of equivariant extensions and equivariant KK-theory emerged.
The equivariant KK-groups were defined by Kasparov in [30], but it was not linked to
an equivariant Ext-group. The equivariant version of the Ext-semigroup was defined in
[51] which also gave a characterization of invertibility of elements by means of equivariant
completely positive splittings, and proved an isomorphism

ExtG(A,B)0 ≃ KK1
G(A,B)

just as in the non-equivariant case, but this time we need B to be equivariantly KG :=
K(
⊕

n∈N L
2(G))-stable rather than just K-stable. We will focus entirely on the equivariant

side of the story here, but the non-equivariant case can always be recovered by setting
G = {0}.
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1.6.1 Equivariant KK-theory

Let us start by recalling the definition of equivariant KK-theory, and the equivariant
extension semigroup ExtG. For a good reference to KK-theory see for instance [5] where
there is a short description on equivariant KK-theory in Chapter VIII.20. The book [27]
is also a good reference to KK-theory, which focuses heavily on extensions of C*-algebras,
but equivariant KK-theory is not covered.

Throughout this section G will denote a locally compact group and all C*-algebras will
be assumed to be separable, meaning they have a countable dense subset or equivalently,
can be represented on a Hilbert space with a countable basis. Recall that we call a C*-
algebra A a G-C*-algebra (Def. 1.24) if it is endowed with a strongly continuous action of
G, that is, an action for which the map

G→ A g 7→ αg(a)

is continuous for all a ∈ A, where αg ∈ Aut(A) denotes the group action of g on A.
If (A,G, α) is a G-C*-algebra, a right Hilbert A-module will be assumed to also have a

group action satisfying the following compatibility conditions:

Definition 1.64 ([5, Definition 20.1.1] ). Let (A,G, α) be a G-C*-algebra. An equivariant
right Hilbert A-module is a right Hilbert A-module H (in the sense of Definition 1.43) with
an action of G by bounded invertible linear transformations for which

G 7→ R g 7→ ∥⟨gx, gx⟩∥ (1.12)

is continuous and
g(xa) = (gx)αg(a).

From now on, any Hilbert module over a G-C*-algebra, will be assumed to be equiv-
ariant.

An action of G on H satisfying equation (1.12) is called a continuous G-action. As in
the case of Hilbert spaces, an action of G on H induces an action of G on the adjointable
operators L(H) by (gT )(x) = gT (g−1x), which is not in general continuous with respect
to the operator topology on L(H), just strictly continuous, i.e. for each x ∈ H the map
g 7→ (gT )(x) is continuous.

Definition 1.65 ([5] Definition 20.1.2). An operator T ∈ L(H) for which g 7→ gT is
operator norm-continuous is called a G-continuous operator.

We are now ready to define equivariant Kasparov modules:

Definition 1.66 ([5, Definition 20.2.1] ). An odd Kasparov G-module for the G-algebras
(A,B) is a triple (H,ϕ, F ) where H is a countably generated (equivariant) right Hilbert
B-module with a continuous action of G, ϕ : A→ L(H) is an equivariant *-homomorphism
and F ∈ L(H) is G-continuous operator such that
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• [F, ϕ(a)] ∈ K(H)

• (F 2 − 1)ϕ(a) ∈ K(H)

• (F ∗ − F )ϕ(a) ∈ K(H)

• (gF − F )ϕ(a) ∈ K(H)

for all a ∈ A and g ∈ G.

An equivariant Kasparov module is call degenerate if we have

[F, ϕ(a)] = (F 2 − 1)ϕ(a) = (F ∗ − F )ϕ(a) = (gF − F )ϕ(a) = 0.

The set of degenerate Kasparov G-modules will be denoted by DG(A,B).

Given a Kasparov G-module (H,ϕ, F ) for (A,B), let fA : C → A and fB : B → D be
two equivariant *-homomorphisms. Then the pullback of (H,ϕ, F ) by fA is a Kasparov
G-module for (C,B) given by

f∗A(H,ϕ, F ) = (H,ϕ ◦ fA, F ).

Similarly, the pushforward of (H,ϕ, F ) by fB is a Kasparov G-module over (A,D) given
by

fB∗ (H,ϕ, F ) = (H ⊗B D,ϕ⊗ 1, F ⊗ 1)

Two Kasparov G-modules (H1, ϕ1, F1), (H2, ϕ2, F2) for (A,B) are said to be unitarily
equivalent, denoted by (H1, ϕ1, F1) ≃u (H2, ϕ2, F2), if there is a unitary u ∈ L(H1, H2)
intertwining the action of G, ϕi and Fi. They are said to be homotopic if there is a
Kasparov G-module (Ĥ, ϕ̂, F̂ ) for (A,C([0, 1], B)) such that

(ev0)∗(Ĥ, ϕ̂, F̂ ) ≃u (H,ϕ, F ) and (ev1)∗(Ĥ, ϕ̂, F̂ ) ≃u (H ′, ϕ′, F ′),

where evt : C([0, 1], B) → B is the evaluation at t. We can add two Kasparov modules,
just as in the non-equivariant case, by defining

(H,ϕ, F )⊕ (H ′, ϕ′, F ′) := (H ⊕H ′, ϕ⊕ ϕ′, F ⊕ F ′) (1.13)

The collection of all Kasparov G-modules for (A,B) becomes an abelian semigroup with
respect to addition. We denote this semigroup by EG(A,B). Finally

Definition 1.67. Denote by KK1
G(A,B) the quotient of EG(A,B) by the relation of ho-

motopy equivalence.

Proposition 1.68 ([5, Proposition 20.2.3] ). KK1
G(A,B) is an abelian group with respect

to addition given on Kasparov modules by eq. (1.13).
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Next, let us define the equivariant extension group ExtG(A,B) following [51]. An
extension of G-C*-algebras

0 → B
ι−→ E

p−→ A→ 0

is called an equivariant extension of B by A if both ι and p are equivariant, though some
authors prefer to call this an equivariant extension of A by B. For ease of notation we will
refer to the extensions by its middle algebra and write (E). Two G-extensions (E) and
(E′) of B by A are said to be isomorphic if there is a ∗-homomorphism E → E′ such that
the following diagram commutes:

0 B E A 0

0 B E′ A 0.

The homomorphism E → E′ is then necessarily an equivariant ∗-isomorphism ([51]
Theorem 2.2). As with non-equivariant extensions, there is a 1 to 1 correspondence between
isomorphism classes of G-extensions and elements in HomG(A,Q(B)), the set of equivariant
∗-homomorphisms from A to the Corona algebra Q(B) = M(B)/B. The construction of
the extension associated with a given Busby map ϕ : A → Q(B), is given by the pullback
diagram

Eϕ A

M(B) Q(B)

p

T ϕ

qB

where qB :M(B) → Q(B) is the quotient map and T and p are the canonical maps of the
pullback construction. Explicitly, we have

Eϕ = {(a,m) ∈ A⊕M(B) | ϕ(a) = qB(m)},

with p and T the projections onto the first and second factor respectively and the associated
extension being

0 → B → Eϕ → A

where the inclusion B → Eϕ is induced by the inclusion of B →M(B).

Conversely, given a G-extension we associate to it a map ϕ : A → Q(B). To define ϕ,
we need to first define the map T : E →M(B) which is given implicitly by the equation

ι(T (e)b) = eι(b).

The injectivity of ι ensures T is uniquely determined.
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The map T restricts to the identity on B, since for any b, b′ ∈ B we have

ι(T (ι(b′))b) = ι(b′)ι(b) = ι(b′b).

So T (ι(b′)) acts by left multiplication by b′ on B in M(B), which is exactly how b′ is
imbedded into M(B). Given any splitting s (not necessarily linear) of p : E → A, we
define:

Definition 1.69. The Busby map for the extension (E) is the map

ϕ = qB ◦ T ◦ s.

To see that ϕ does not depend on the choice of splitting, assume s1, s2 : A→ E are two
splittings of the quotient map p : E → A of the extension (E), that is p ◦ si = idA. We
have that for any a ∈ A p(s1(a)− s2(a)) = 0, hence s1(a)− s2(a) ∈ ι(B). Thus

qB ◦ T ◦ s1(a)− qB ◦ T ◦ s2(a) = qB(T (s1(a)− s2(a))) = 0

since T (ι(B)) is contained in B ⊂M(B). Two G-extensions are called unitarily equivalent
if there is a unitary u ∈ M(B) with gu − u ∈ B for all g ∈ G and a ∗-homomorphism
E → E′ such that the following diagram commutes

0 B E A 0

0 B E′ A 0

Adu

The map E → E′ is necessarily an isomorphism, but need not be equivariant. In what
follows we use ≃u to indicate unitary equivalence of extensions. The next lemma shows
what this amounts to at the level of Busby maps

Lemma 1.70. Given two equivariant ∗-homomorphisms

ϕi ∈ HomG(A,Q(B))

their extensions (Eϕi
) (i = 1, 2) are unitarily equivalent if and only if there is a u ∈M(B)

such that

• gqB(u) = qB(u) for all g ∈ G;

• Ad(u) ◦ ϕ1 = ϕ2.

Proof. Assume u ∈M(B) is as in the Lemma. We have

Ei := Eϕi
= {(a,m) ∈ A⊕M(B) | ϕi(a) = qB(m)}

but ϕ(a) = qB(m) ⇔ ψ(a) = AdqB(u)(qB(m)) = qB(Adu(m)) hence the map id ⊕ Adu :
A⊕M(B) → A⊕M(B) restricts to an isomorphism E1 → E2 which makes the following
diagram commute
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0 B E1 A 0

0 B E2 A 0

Adu

Conversely, assume the above diagram commutes for some u ∈ M(B) and an arbitrary
isomorphism f : E1 → E2. Using the implicit definition of the maps Ti : Ei →M(B):

ιi(Ti(e)b) = eιi(b)

substituting ι1 = f ◦ ι2 ◦Adu∗ the left hand side becomes

ι1(T1(e)b) = (f ◦ ι2)(Adu∗(T1(e))Adu∗(b)),

while the right hand side reads

eι1(b) = f ◦ ι2(T2(f−1(e))Adu∗(b)).

Putting these together gives us

T1 ◦ f = Adu ◦ T2.

Let s1 : A→ E1 be any splitting of the quotient maps p1 : E1 → A. The map s2 = f◦s1,
is then a splitting for p2 and the Busby map thus related by

ϕ1 = qB ◦ T1 ◦ s1
= qB ◦ (Adu ◦ T2 ◦ f−1) ◦ (f ◦ s2)
= qB ◦ (Adu ◦ T2 ◦ s2)
= AdqB(u) ◦ (qB ◦ T2 ◦ s2) = AdqB(u) ◦ ϕ2

Finally, for a unitary u ∈ M(B) we have gu − u ∈ B if and only if gqB(u) = qB(u),
which concludes the proof.

Remark 1.71. Since qB(u) is a unitary in Q(B), the reader may wonder why we did
not simply pick a unitary in Q(B) when defining unitary equivalence. There is nothing
seriously wrong with this approach, but the resulting Ext-groups (to be defined shortly)
have been less used in practice.

More precisely, if in the definition of unitary equivalence we pick an invariant unitary
u ∈ Q(B) rather than one in M(B) we get what is called “weak” unitary equivalence in
[5], and another ExtG group that does not agree with the usual ExtG-group of Definition
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1.72 (see for instance [15] section V.6 for an example using the Cuntz algebra in the non-
equivariant case). The reason they differ boils down to the fact that not all unitaries in
Q(B) can be lifted to unitaries in M(B).

To define addition of two extensions, we will need to make some extra assumptions on
the algebra B. We need to assume B is stable (Def. 1.18), i.e. that there is a *-isomorphism

B ≃ B ⊗K

where K has the trivial G-action. Assuming B is stable, let (Ei) (i = 1, 2) be two G-
extensions of B by A. Then we define their sum to be the extension

0 →M2(B)
ι̂−→ Ê

ι−→ A→ 0

where

Ê =

{[
e1 b1
b2 e2

] ∣∣∣∣ ei ∈ Ei, bi ∈ B, p1(e1) = p2(e2)

}
the quotient map is given by

p̂ = p1 ⊕ p2 :

[
e1 b1
b2 e2

]
7→ p1(e1)

and the inclusion ι̂ is the obvious one. This is an extension of B by A since when B is
stable we have M2(B) ≃ B . At the level of Busby invariants this additive structure takes
the form

ϕ1 ⊕ ϕ2 = ϕ′

where
ϕ′(a) = AdqB(V1)(ϕ1(a)) +AdqB(V2)(ϕ2(a))

for any choice of G-invariant isometries Vi ∈ M(B) with V1V
∗
1 + V2V

∗
2 = 1. To prove

the existence of such isometries, we use the fact that B is stable, since then we have an
imbedding M(K) ⊗ M(B) ⊂ M(B ⊗ K) ≃ M(B) and any two isometries Wi ∈ M(K)
with W1W

∗
1 +W2W

∗
2 give isometries Vi = Wi ⊗ 1 ∈ M(K) ⊗M(B) ⊂ M(B) which are

G-invariant and satisfy V1V
∗
1 + V2V

∗
2 = 1.

Similar to the non-equivariant case, an extension (Eϕ) associated with the map ϕ ∈
HomG(A,Q(B)) is called degenerate if ϕ lifts to an equivariant *-homomorphism

ϕ̂ : A→M(B).

This is equivalent to the quotient map p : E → A being split by an equivariant ∗-
homomorphism. To see why, let s : A → E be a splitting of p assumed without loss
of generality to be linear. Then

T (s(aa′)− s(a)s(a′)) = ϕ̂(aa′)− ϕ̂(a)ϕ̂(a′) = 0.
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Hence s(aa′)− s(a)s(a′) ∈ KerT . Now p(s(aa′)− s(a)s(a′)) = aa′ − aa′ = 0 hence

s(aa′)− s(a)s(a′) ∈ KerT ∩B,

but since T acts as the identity on B, this means kerT ∩B = {0} and so s is multiplicative.
The fact that s is ∗-preserving and equivariant can be proved similarly.

We can now define an equivalence relation on HomG(A,Q(B)) by saying ϕ ∼ ϕ′ if and
only if there are degenerate ∗-homomorphisms ϕ0, ϕ

′
0 ∈ HomG(A,Q(B)) such that4

ϕ⊕ ϕ0 ≃u ϕ
′ ⊕ ϕ′0.

Definition 1.72. The equivariant extension semigroup is defined as

ExtG(A,B) = HomG(A,Q(B))/ ∼

and ExtG(A,B)0 denotes the subgroup of invertible elements in ExtG(A,B).

As in the non-equivariant case, there is a way to characterize G-extensions which are
invertible using splittings. Let KG := K(

⊕
n∈N L

2(G)) with G acting diagonally by the
regular representation. Then we have

Theorem 1.73 ([51, Theorem 8.1] ). An extension

0 → B ⊗KG → E → A⊗KG → 0 (1.14)

is invertible if and only if the sequence

0 → B ⊗KG ⊗KG → E ⊗KG → A⊗KG ⊗KG → 0 (1.15)

obtained by tensoring everything with KG, is equivariantly semisplit.

Clearly if the extension 0 → B ⊗KG → E → A⊗KG → 0 is equivariantly semisplit in
the first place, by the equivariant completely positive map

s : A⊗KG → E

then the sequence of equation (1.15) would also be equivariantly semisplit, by the map

s⊗ id : A⊗KG ⊗KG → E ⊗KG

so being equivariantly semisplit after tensoring with KG is weaker than being equivariantly
semisplit.

We will need the following definition:

4This should be reminiscent of the way Kasparov’s KK-groups are defined as operator homotopy equiv-
alence classes of Kasparov modules modulo degenerate modules.
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Definition 1.74 ([51, Definition 9.1]). A G-C*-algebra B is called K-proper if for any
countably generated Hilbert B-module E with a continuous G-action, there is an isomor-
phism

E ⊕ (B ⊗ L2(G)∞) ≃ B ⊗ L2(G)∞

as Hilbert B-modules, where

L2(G)∞ =
⊕
n∈N

L2(G)

is the infinite sum of L2(G).

So a C*-algebra is K-proper if it satisfies an equivariant version of Kasparov’s stabiliza-
tion theorem. The definition is a generalization of proper actions on topological spaces, in
the sense that if B = C0(X) for some locally compact Hausdorff proper G-space X, then
B is K-proper.

This is by no means the only candidate for a generalization of proper actions to G-C*-
algebras (see [48] [38], [30]). See also [37, Theorem 8.5 ] for several equivalent definitions
of K-proper actions. We are now ready to state the main theorem of [51] which reads

Theorem 1.75 ([51] Theorem9.2). Assume A, B are G-C*-algebras with B K-proper.
Then

ExtG(A,B ⊗KG)
0 ≃ KK1

G(A,B)

We will not repeat the proof here. However, in the next section we will see how to
assign a class to an equivariantly semisplit G-extension of commutative C*-algebras (see
Example 1.84). Commutative C*-algebras are very far from being stable though, so we
will first need make precise what it means for an equivariant KK-cycle to be “associated”
with an extension of non-separable and/or non K-proper C*-algebra. If

0 → B
ι−→ E

p−→ A→ 0

is a G-extension, then by tensoring everything with KG we get a G-extension

0 → B ⊗KG
ι⊗id−−−→ E ⊗KG

p⊗id−−−→ A⊗KG → 0

which in turn gives an element in ExtG(B⊗KG, A⊗KG)
0 = KK1

G(B,A). We refer to this
element as the class corresponding to the extension.

1.7 An example from harmonic analysis

We will now introduce an example, studied in [36], where classical harmonic analysis is
used to produce an equivariant completely positive splitting of an extension and a class in
equivariant KK-theory.

First, we will need to define the geodesic compactification of symmetric spaces of non-
positive curvature. Our main reference will be [16, Section 1.7]:
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Definition 1.76. A Hadamard manifold is a complete simply connected Riemannian man-
ifold with non-positive sectional curvature.

The important feature of Hadamard manifolds is the following:

Theorem 1.77 (Hadamard). For any Hadamard manifold X and any point x0 ∈ X, the
exponential map exp : Tx0X → X is a global diffeomorphism.

Let X be a Hadamard manifold of dimension n.

Definition 1.78. For each x ∈ X and v ∈ TxX, we denote by γx,v : R → X the unique
geodesic in X with

γx,v(0) = x and γ′x,v(0) = v

The geodesic γx,v is called a directed geodesic (or a geodesic ray) centered at x in direction
v.

Now fix a point x0 ∈ X and write γv := γx0,v. We define:

Definition 1.79 ([16, Section 1.27 1.7]). The geodesic boundary of X is defined to be

X(∞) := {γv | ∥v∥ = 1}

We topologize X(∞) in such a way that the map

X(∞) → Sn−1 ⊂ Tx0X, γv 7→ v

is a homeomorphism, i.e. the pullback or weak topology induced by the map X(∞) →
Sn−1.

For any open set U ⊂ X(∞) ≃ Sn−1 ⊂ Tx0X and r > 0, define

SU
r :=

( ⋃
v∈U t>r

γv(t)

)
⊔ U

which is a truncated cone of rays centered at x0 in the direction of vectors in U .

Definition 1.80 ([16] Sec. 1.7). The geodesic compactification of X is (as a set) the
disjoint union

X = X ∪X(∞).

We endow X ∪ X(∞) with the topology generated by the open sets of X together with
SU
r , where U ranges over all open sets in Sn−1 and r over all positive numbers.
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The topology on X ∪ X(∞) given in Definition 1.80 is called the cone topology, and
makesX∪X(∞) homeomorphic to the closed n-ball, withX its interior points andX(∞) ≃
Sn−1 its boundary.

It is useful to have the following convergence criterion in mind: Given a sequence of
points (xi)i∈N in X, then xi → v ∈ X(∞) if and only if d(xi, x0) → ∞ and the vector
vi ∈ Tx0X pointing in the direction of the geodesic connecting x0 and xi converges to v
in Sn−1 ⊂ Tx0X. Thus for any geodesic ray γv and any sequence of points xi ∈ γv(R+)
for which d(x0, xi) → ∞, the sequence (xi)i∈N converges in the geodesic compactification
to v ∈ Sn−1 ≃ X(∞). Not all convergent sequences are of this form though, as there are
sequences xi ∈ X such that xi → v ∈ X(∞), but d(xi, γv) := inft>0 d(xi, γv(t)) → ∞ as
i→ ∞.

There is another way to describe the points in X(∞), sometimes more convenient in
practice, which we will now define. Let

P = {γx,v | x ∈ X, v ∈ Sn−1 ⊂ TxX}

be the set of all (unit speed) geodesic rays in X (Definition 1.78). Then define an equiva-
lence relation on P by

γ ∼ γ′ ⇔ sup
t∈R+

d(γ(t), γ′(t)) <∞ (1.16)

We have the following lemma

Lemma 1.81 ( [16, Proposition 1.7.3] ). For any x0 ∈ X, the set P/ ∼ is in bijection with
the geodesic rays of the form

γx0,v for v ∈ Sn−1 ⊂ Tx0X.

Example 1.82. It may be helpful to think of what Lemma 1.81 looks like when X is the
euclidean space Rn. In this case the Lemma simply states that if γ is any geodesic ray in
Rn, then γ is parallel to a unique geodesic ray centered at 0. So Lemma 1.81 is an analogue
of Euclid’s parallel postulate5 for Hadamard manifolds.

However, the case of Rn may leave the reader wondering why we use geodesic rays at
all, and not just geodesics. After all in Rn for two geodesics γ, γ′ : R → Rn (i.e. straight
lines) the conditions

sup
t∈R+

d(γ(t), γ′(t)) <∞ (1.17)

and

sup
t∈R−

d(γ(t), γ′(t)) <∞ (1.18)

5which is equivalent to the statement that any straight line is parallel to a unique straight line through
a point
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and

sup
t∈R

d(γ(t), γ′(t)) <∞

are all equivalent to the condition that d(γ(t), γ′(t)) is constant in t. We mention that in
case the space X has negative curvature, there are geodesics which satisfy (1.17) but do not
satisfy (1.18), and that are not constant in t in either direction. That is, there are geodesics
which are “parallel” in the positive direction, but diverge in the negative direction.

Under the bijection established by Lemma 1.81 the set P/ ∼ inherits a topology from
X(∞). It is thus possible to view X(∞) as a quotient of the space of all geodesics in X.
One bonus of this description is that the G-action on X(∞) is now simple to express. It is
just

g[γx,v] = γgx,(dg)v, (1.19)

which is the image of γx,v under the action of G on X.

With X any Riemannian space, we denote by Iso(X) its isometry group, and Iso(X)0

the connected component of the isometry group of X.

Proposition 1.83 ([16] p. 30). Any isometry ϕ : X → X extends to a homeomorphism

ϕ : X ∪X(∞) → X ∪X(∞).

The extension makes X ∪X(∞) a G = Iso(X)-space. The action of G on X(∞) is given
by equation (1.19).

The case of the hyperbolic spaces Now assumeX = Hn is the real hyperbolic n-space.
Then Hn is a Hadamard manifold, and thus we can define its geodesic compactification

Hn := Hn ∪ ∂Hn.

By Proposition 1.83, the isometry group G = Iso(Hn)0 = SO0(1, n), acts on Hn by home-
omorphisms that extend the isometric action of G on Hn.

Indeed if n = 2, then H2 can be identified with the disk D ⊂ R2 ≃ C. An orientation
preserving isometry acts on H2 by a Möbius transformation:

z 7→ eiθ
z − a

1− az
a ∈ D, θ ∈ R.

The Möbius actions act by homeomorphisms on the closed disk D but they are not
isometries with respect to the angular metric on S1 unless a = 0. We then get an equivariant
extensions of G-C*-algebras

0 → C0(Hn)
ι−→ C(Hn)

q−→ C(∂Hn) → 0. (1.20)



1.7. AN EXAMPLE FROM HARMONIC ANALYSIS 47

Let now Γ be a discrete torsion-free subgroup Γ ⊂ G = Iso(Hn)0 = SO(n, 1)0. Using
Theorem 1.37, we get an exact sequence of crossed products

0 → C0(Hn)⋊r Γ
ι⋊id−−→ C(Hn)⋊r Γ

q⋊id−−−→ C(∂Hn)⋊r Γ → 0. (1.21)

By Theorem 1.63 this induces a six term exact sequence in K-theory:

K0(C0(Hn)⋊r Γ) K0(C(Hn)⋊r Γ) K0(C(∂Hn)⋊r Γ)

K1(C(∂Hn)⋊r Γ) K1(C(Hn)⋊r Γ) K1(C0(Hn)⋊r Γ)

∂∂

For any torsion free discrete subgroup Γ of G, Γ acts properly and freely on Hn and it is
well known that this implies

Ki(C0(Hn)⋊r Γ) = Ki(C0(Hn/Γ)).

In case Γ satisfies certain technical conditions, which are known to hold if Γ is cocompact6,
we also have

Ki(C(H
n
)⋊r Γ) = Ki(C

∗
r (Γ)).

Thus the K-theory of two interesting C*-algebras make their appearance in the above 6-
term sequence: One is the continuous functions on the space Hn/Γ, which is a classifying
space for free and proper Γ actions, the other is the reduced group C*-algebra of Γ (see
Ex. 1.34) C∗

r (Γ).
The extension of equation (1.20) is equipped with a completely positive equivariant

splitting
C(∂Hn) → C(Hn)

defined by integration against the Poisson kernel which for Hn with the ball model takes
the form

P : Hn × ∂Hn → R P (x, ξ) =
1− |x|2

|x− ξ|n
(1.22)

where | − | is the euclidean distance. It is a well-known fact that all bounded harmonic
functions f on Hn which can be extended continuously to ∂Hn can be written as an integral

f(x) =

∫
∂Hn

P (x, ξ)f̂(ξ)dλ(ξ),

for some function f̂ ∈ C(∂Hn). The assignment f̂ 7→ f has the following properties:

6The condition on Γ we are tacitly requiring is that it should satisfy the Baum-Connes conjecture with
coefficients in C and C(H

n
). Then K(C0(Hn) ⋊r Γ) = Ktop

i (Γ, C0(Hn)) = Ktop
i (Γ,C) = Ki(C

∗
r (Γ)) where

the first and third equality follows from the Baum-Connes conjecture, and the second is the content of
Lemma 5 of [17]



48 CHAPTER 1. PRELIMINARIES

• The function f extends to the whole geodesic compactification Hn
and restricts to f̂

on ∂Hn ≃ Sn−1;

• The map f̂ 7→ f is a G-equivariant completely positive splitting of the quotient map
q : C(Hn) → C(∂Hn).

We saw in Section 1.6 how these equivariant semisplittings are used to determine if
the extension can be represented by a class in KK1

Γ(C(∂Hn), C0(Hn)). We will see later
in Chapter IV how to create a KK1

G-cycle representing a G-equivariant extension using a
G-equivariant semisplitting. In the case of the extension of equation (1.20) however, we
can clearly construct the corresponding Kasparov module as follows:

Example 1.84. We repeat here the construction in Section 3.2 of [36]. Let G = Iso(Hn)0 =
SO(1, n)0 and write µx = P (x,−)dv for x ∈ Hn, where dv is the Lebesgue measure on
∂Hn ≃ Sn−1. The family µx satisfies

µgx = g∗µx, g ∈ G, x ∈ Hn

and µx varies continuously with x in the sense that if xi → x, then∫
∂Hn

f(v)dµxi(v) →
∫
∂Hn

f(v)dµx(v)

for all f ∈ C(∂Hn). Now define

T1Hn = Hn × ∂Hn
.

The map

ρ : Cc(T1Hn) → Cc(H), ρ(Ψ)(x) :=

∫
∂Hn

Ψ(x, v)dµx(v)

is a conditional expectation, hence (see Example 1.49) we get a pre-Hilbert C0(Hn)-module
structure on Cc(T1Hn) given by the inner product

⟨f, f ′⟩(x) := ρ(ff ′)(x), x ∈ Hn, f, f ′ ∈ Cc(T1Hn).

Denote by L2(T1Hn, µx)C0(Hn) the completion of Cc(T1Hn) with respect to this inner prod-
uct. As the notation suggests, we think of L2(T1Hn, µx)C0(Hn) as sections of a continuous

field of Hilbert spaces (L2(C(∂Hn)), µx), fibered over Hn, which vanish at infinity. We
also have an action of C(∂Hn) on L2(T1Hn, µx)C0(Hn) by adjointable operators, given by
multiplication:

(f ·Ψ)(x, v) = f(v)Ψ(x, v) f ∈ C(∂Hn),Ψ ∈ Cc(T1Hn).

Let p ∈ L(L2(T1Hn, µx)x∈C0(Hn)) be the adjointable operator given by
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p(Ψ)(x, v) =

∫
∂Hn

Ψ(x,w)dµx(w).

It can be shown that p is a projection, i.e. that p∗ = p2 = p. Moreover p commutes with
the action of G since

p(gΨ)(x, v) =

∫
∂Hn

Ψ(g−1x, g−1w)dµx(w) = Ψ(g−1x, g−1w)dµx(w)

= Ψ(g−1x,w)(g−1)∗dµx(w) = Ψ(g−1x,w)dµg−1(w) = g(pΨ)(x, v).

The triple
(L2(T1Hn, µx)C0(Hn), C(∂Hn), 2p− 1)

is an KasparovG-module representing the class of extension (1.20) in KK1
Γ(C(∂Hn), C0(Hn))

(see [36, Theorem 3.4]).

The space Hn is an example of a symmetric space of noncompact type of rank 1. In
the next sections, we will discuss what happens when we try to extend the construction in
Example 1.84 to a larger class of spaces, namely the symmetric spaces of noncompact type
(of arbitrary rank).





Chapter 2

Symmetric spaces and conformal
densities

2.1 Background on symmetric spaces

One of the standard reference for the theory of symmetric spaces is the book of Helgason
[23] from which most of the material in this section is taken. For the general theory of
manifolds of nonpositive curvature the book of Eberlein [16] is recommended. The section
about Lie theory is taken from the book of Knapp [33] and Borel and Ji [7].

All manifolds in this and later sections will, unless stated otherwise, be assumed to
be complete Riemannian manifolds. Riemannian globally symmetric spaces are defined in
either of the following ways

1. The geometric way: As complete Riemannian spaces for which the geodesic sym-
metries are global isometries.

2. The group theoretic way: As Riemannian symmetric pairs (G,K)

3. The Lie algebraic way: As orthogonal symmetric Lie algebras (g, s).

There are maps to move between the definitions in the direction

(1) −→ (2) −→ (3) (2.1)

but going the other way generally requires some choice. In what follows, we will switch
between these three points of view, so let us go through the details of how each are defined
and how they are related, starting with the geometric definition, which will be the one we
use most often in this work.

51



52 CHAPTER 2. SYMMETRIC SPACES AND CONFORMAL DENSITIES

2.1.1 The geometric way

Definition 2.1. Given a manifold X, a geodesic symmetry or central symmetry at p ∈ X
is a pair (sp, Up) where Up ⊂ X is an open neighborhood of p and sp : Up → Up is
diffeomorphism which flips every geodesic centered at p contained in Up.

Such geodesic symmetries always exist for any manifold since we can construct them
at a point p ∈ X using the composition

expp ◦ (−Id) ◦ exp−1
p : Up → Up

which is a local diffeomorphism and “radially isometric”, meaning it preserves the distance
from p.

Let us for a moment think about what happens for the sphere X = Sn. Given a point
p in Sn, then a geodesic symmetry at p is simply a rotation by an angle of π about an
axis through p. It follows that any geodesic symmetry on Sn is the restriction of a global
isometry of Sn. This leads us to the following definition:

Definition 2.2. A Riemannian globally symmetric space (henceforth a symmetric space)
is a complete Riemannian manifold X for which each geodesic symmetry is the restriction
of a global isometry of X. A Riemannian locally symmetric space, is a space where each
geodesic symmetry is a local isometry.

The following theorem is very useful as it shows any locally symmetric space has a
symmetric space as universal cover:

Theorem 2.3 ([23, Theorem IV.6.5.6] ). A simply connected locally symmetric space is
globally symmetric.

Though it will not be used in this thesis, we mention that there is another character-
ization of locally symmetric space found in the literature, which succinctly states that a
manifold is locally symmetric if and only if its curvature tensor is invariant under all paral-
lel translates (see [23, Theorem IV.2.1.3] ). The “only if” part of the implication is proved
by the existence of so-called transvections along geodesics, which are 1-parameter families
of isometries on symmetric spaces that implement parallel transports along geodesics. Let
us see how they are defined.

Let γ : R → X be a geodesic centered at some point p ∈ X. For some ϵ > 0 and
some geodesic symmetry sp : Up → Up around p, the segment γ(−ϵ, ϵ) ⊂ Up. Now let
qt = γ(t) for t ∈ (−ϵ/2, ϵ/2) and sqt : Uqt → Uqt a geodesic symmetry. The composition
pt := sp ◦ sqt : Up ∩ Uqt → Up ∩ Uqt is a local isometry which acts as translation along γ
sending p to γ(2t).

Definition 2.4 (Transvections). The local isometries of the form sp ◦ sq, where sp, sq are
geodesic symmetries, are called local transvections or transvections if sp, sq are (global)
isometries. If X is globally symmetric the transvections form a subgroup of Iso(X) called
the transvection group.
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So why do we care about transvections? As we hinted to earlier, one reason is they
implement parallel transport along a geodesic which shows that the curvature tensor must
be invariant under parallel transports, as it is invariant under isometries. More precisely,
assume X is globally symmetric now. Given a geodesic γ centered at p, the transvections
along γ form a 1-parameter subgroup of isometries pt generated by flips along points in
γ(R), which act on points of γ by translation along γ, and act on vectors on γ(R) by
parallel transport along γ. Later we will see that the tangent space of X can be identified
with a subset p ⊂ g of the Lie algebra of G = Iso(X)0, and the transvections are then the
elements of G of the form (see [16, Proposition 2.1.1])

exp(tV )x0

for some fixed point x0 ∈ X and V ∈ p ≃ Tx0X, hence any geodesic can be written as

t 7→ exp(tV )x0 V ∈ Tx0X.

More generally we have the following:

Proposition 2.5 ([23, Th. IV.7.2]). Let X be any symmetric space, G = Iso(X)0 and
K = Stabx0G ⊂ G. The Lie algebra g of G decomposes as g = k ⊕ p with k the Lie
algebra of K, and p ≃ Tx0X. Let a ⊂ p be a linear subspace such that for all x, y, z ∈ a
[x, [y, z]] ∈ a. Then exp(a)x0 ⊂ X is a totally geodesic submanifold of X, and every totally
geodesic submanifold arises in this way.

In Proposition 2.5 a need not be be a subalgebra. Subspaces in p satisfying the con-
ditions in Proposition 2.5 are called Lie triple systems. An immediate consequence of the
existence of transvections is the following lemma:

Lemma 2.6 ([16, Proposition 2.1.1] ). Let X be a globally symmetric space, then the
identity component Iso(X)0 ⊂ Iso(X) of the isometry group of X acts transitively on X.

Proof. By completeness any two points p, q ∈ X can be connected by a geodesic γ, but on
γ(R) ⊂ X the transvection group along γ acts transitively.

2.1.2 The group theoretic way

Let us now look at the group theoretic definition of symmetric spaces.

Definition 2.7. A Riemannian symmetric pair (henceforth a symmetric pair) is a pair of
groups (G,K) where G is connected Lie group and K ⊂ G a closed subgroup satisfying
the following:

• there is an involutive automorphism θ : G → G such that (Gθ)0 ⊂ K ⊂ Gθ, where
Gθ is fixed point group of θ;
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• The subgroup AdG(K) ⊂ GL(g) is compact.

A symmetric pair (G,K) is called effective if it satisfies the following additional condition

• Z(G) ∩K is discrete.

The second condition in Definition 2.7 tell us that K is compact in G/Z(G) (i.e.
K/(Z(G) ∩ K) is compact), since kerAdG = Z(G) when G is connected. We do not
require K to be compact in Definition 2.7. For this reason many authors add the condition
that the group G has finite center. This is done because Gθ contains the center of G and
will be compact if and only if the center is finite (see Proposition 2.19 below).

Proposition 2.8 ([23, Th. VI.2.1] , [23, Th. VI.2.2 (ii)] ). Let (G,K) be a symmetric
pair. Assume G/K is a symmetric space without compact or Euclidean factors in its de
Rahm decomposition. Then K contains a unique maximal compact subgroup H ′ ⊂ K which
is also a maximal compact subgroup of G. All maximal compact subgroups of a connected
semisimple Lie group G are connected and conjugate.

Note that K1 ⊂ G is conjugate to K is the same thing as saying K1 fixes gK in G/K
for some g ∈ G.

Proposition 2.9 (Proposition IV.3.4 [23]). Let (G,K) be a Riemannian symmetric pair.
The homogeneous space G/K admits a G-invariant metric, and any such metric makes it
into a Riemannian symmetric space. The symmetry se at [e] ⊂ G/K is given by

se(gK) = θ(g)K.

If Lg denotes the left action of g ∈ G on G/K by left multiplication, we have

seLθ(g)se = Lg ∀ g ∈ G.

Proof. We will only show existence of such a metric, and refer to [23, Proposition IV.3.4]
for the complete proof. We write X = G/K for the quotient of G by K, 0 := [K] ∈ X for
the class of K in X and dθ for the differential dθ : g → g of θ. Since θ is an involution,
so is dθ, hence if we write k = Eig+1(dθ) and p = Eig−1(dθ) for the +1 eigenspaces
and −1 eigenspaces of dθ respectively, we have g = k ⊕ p. Now since K ⊂ Gθ, we get
Ad(K)dθ = dθAd(K), hence Ad(K) preserves the eigenspaces of dθ, and restricts to a
map on p and k. We thus get a well-defined K-action on T0X = p.

Let B0 : T0X × T0X → C be any inner product on T0X = p. By compactness of
Ad(K) ⊂ GL(p) we may define a K-invariant inner product by averaging with respect to
the normalized Haar measure µ on ad(K) as follows:

⟨X,Y ⟩0 :=
∫
T∈ad(K)

B0(TX, TY )dµ(T ) X,Y ∈ p = T0X.
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The inner product ⟨−,−⟩0 determines a Riemannian metric on G/K by

⟨X,Y ⟩x := ⟨dLg−1X, dLg−1Y ⟩0 ∀ X,Y ∈ TxX.

This is clearly a G-invariant metric (as Lg ◦ Lg′ = Lgg′) giving G/K the structure of a
Riemannian manifold. Write s0 for the map s0(gK) = θ(g)K. Then (ds0)0 = dθ = −I :
p → p is the map flipping every line through the origin and so a geodesic symmetry. Any
other symmetry is conjugate to s0 by some Lg.

The G-invariant metric of Proposition 2.9 is in general not unique. For instance if p is a
reducible Ad(K)-module, we can scale the metric on each Ad(K)-invariant component by
a scalar and get a different G-invariant metric. However, in the proof of Proposition 2.9,
the geodesic symmetry sp is constructed in a way that does not depend on the choice of
invariant metric. Neither does the Riemann curvature tensor [23, Theorem IV.4.2] which
is determined entirely by the Lie algebra g and given by the formula

R(X,Y )Z = −[[X,Y ], Z] (2.2)

or scaled by 1/4 depending on the convention.
Symmetric spaces with a unique Riemannian metric (up to scaling) are called irre-

ducible, and are precisely those non-Euclidean symmetric spaces which admit no non-trivial
de Rham decomposition (see the end of Section 2.1.3).

Definition 2.10. For a Lie algebra g, the Killing form is the (possibly degenerate) bilinear
form on g given by

B0(X,Y ) = Tr(adX ◦ adY ), X, Y ∈ g.

The following example shows us the “standard” choice of inner product on the homo-
geneous space G/K with G semisimple:

Example 2.11. Let X = G/K be a noncompact symmetric space without Euclidean
factors in its de Rahm decomposition. Denote by T0X = p the tangent space at 0. The
Killing form B0 (Definition 2.10) restricts to an inner product on p and for any k ∈ K and
X,Y ∈ p we have

adAd(k)XY = [Ad(k)X,Y ] = Ad(k)([X,Ad(k)−1(Y )])

so adad(k)X = Ad(k) ◦ adx ◦Ad(k)−1. It follows that

B0(Ad(k)(X),Ad(k)(Y )) = Tr(Ad(k) ◦ adX ◦ adY ◦Ad(k)−1)

= Tr(adX ◦ adY ) = B0(X,Y ).

is indeed Ad(K)-invariant.
Cartan’s criterion states that g is semisimple if and only if B0 is non-degenerate when

defined on the whole of g. The group G = Iso(X)0 is semisimple if X has no Euclidean
factors (see the discussion on p. 198 [23]), hence B0 is non-degenerate on p.
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2.1.3 The Lie algebraic way

We now turn to the Lie algebraic way to define symmetric spaces.

Definition 2.12. Let Θ be an involutive Lie algebra homomorphism. Then Θ is called a
Cartan involution if the bilinear form

BΘ(X,Y ) := −B(X,Θ(Y )) X,Y ∈ g

is a positive definite bilinear form on g, where B denotes the Killing form on g (see Ex.
2.11). The decomposition g = k⊕p into eigenspaces of Θ, with k = Eig+Θ and p = Eig−Θ,
is called the Cartan decomposition of g.

Finally, we have

Definition 2.13. An orthogonal symmetric Lie algebra (g,Θ) is a Lie algebra g over R
together with an involutive automorphism Θ : g → g such that

• k = gΘ (the fixed point algebra of Θ) is a compact subalgebra of g

• k does not intersect the center of g.

An orthogonal symmetric Lie algebra is called irreducible if ([23] VIII.5.5)

• g is semisimple and k contains no ideal of g

• the algebra adg(k) acts irreducibly on p.

An orthogonal symmetric Lie algebra is called effective if it satisfies

• Z(g) ∩ k = 0.

The next proposition shows exactly what involutions of g are Cartan involutions:

Proposition 2.14 ([23, Corollary III.7.1]). Let g be a Lie algebra with a decomposition

g : k⊕ p

with k a subalgebra of g and p a subspace. Then the map

s : g → g s(x, y) = (x,−y), x ∈ k, y ∈ p

is is an automorphism of g if and only if s is a Cartan involution.

It could be helpful to see an example of Cartan involutions:
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Example 2.15 ([33, Proposition 6.28] ). Any real semisimple Lie algebra g is isomorphic
to a matrix Lie algebra which is closed under transposition. If g is endowed with a Cartan
involution Θ, this isomorphism may be chosen so that Θ corresponds to the map

Θ(g) = (−g)t

where t denotes the transpose.

Proposition 2.14 tells us that the automorphism Θ in Definition 2.13 is a Cartan invo-
lution in the sense of Definition 2.12.

The Riemannian structure on G/K for G = Lie(g) of an irreducible orthogonal sym-
metric Lie algebra g is unique up to scaling. To see why, let (−,−) and ⟨−,−⟩ be two
K-invariant inner products on T0X = p. By Riesz representation, there exists a positive
definite matrix A such that (AX,Y ) = ⟨X,Y ⟩. Since both inner products are Ad(K)-
invariant, A commutes with ad(K), which by Schur’s lemma implies that A = λI for some
scalar λ.

The second condition in Definition 2.13 ensures that any semisimple orthogonal sym-
metric Lie algebra decomposes as a direct sum

g =
⊕

gi

of Θ-invariant irreducible orthogonal symmetric Lie algebras, mutually orthogonal with
respect to the Killing form.

The three types of irreducible symmetric spaces

Throughout this section (g,Θ) will denote an effective symmetric orthogonal Lie algebra
and B the (possibly degenerate) inner product given by the Killing form. As usual we
denote by k ⊂ g the fixed point subalgebra of Θ and p the −1 eigenspace of Θ, so that
g = k⊕ p. Then

Definition 2.16 ([23, p. 230]). The Lie algebra g = k⊕ p is said to be of

• compact type if B is negative definite on g;

• noncompact type if B is non-degenerate (equiv. g is semisimple) and B|p is positive
definite;

• Euclidean type if p is an abelian ideal in g.

We say that a symmetric pair (G,K) is of compact/noncompact/Euclidean type if its as-
sociated orthogonal Lie algebra is. Similarly, a symmetric spaceX is of compact/noncompact/Euclidean
type if its associated symmetric pair (G,K) is of compact/noncompact/Euclidean type, re-
spectively.

We have the following decomposition theorem
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Theorem 2.17 (Theorem V.1.1 [23]). The Lie algebra g decomposes into a direct sum of
Θ-stable subalgebras g = g0 ⊕ g+ ⊕ g− such that

• The decomposition is orthogonal with respect to the Killing form;

• (g0,Θ|g0), (g+,Θ|g+), (g−,Θ|g−) are of Euclidean, compact and noncompact type
respectively.

Note that Theorem 2.17 shows that any effective orthogonal Lie algebra g is semisimple
up to a Euclidean factor g0. The corresponding statement for symmetric spaces reads

Theorem 2.18 ([23, Proposition V.4.2]). Let X be a simply connected symmetric space.
Then X admits a decomposition

X = X0 ×X+ ×X−

where X0 is of Euclidean type, X+ is of compact type and X− is of noncompact type.

As the name suggests, the symmetric spaces of compact type are indeed compact. It
follows from the Hadamard theorem (Theorem 1.77) that both the noncompact type and
Euclidean types are diffeomorphic to Rn for some n. The decomposition in Theorem 2.18
can be further refined by the classical de Rham decomposition of our simply connected
symmetric space X. This yields a decomposition of X into irreducible components

X = X0 ×X1
+ × · · · ×X

n+
+ ×X1

− × · · · ×X
n−
− ,

where each Xi
+ (resp. Xi

−) are now simply connected symmetric spaces associated with
irreducible orthogonal Lie algebras of compact (resp. noncompact) type, and X0 is of
Euclidean type. See [23, Proposition VIII.5.5] .

The following proposition shows how to move from an orthogonal symmetric Lie algebra
to a symmetric pair:

Proposition 2.19 ([33, VI.6.31]). Let G be a connected semisimple Lie group with Lie
algebra g, Cartan involution Θ : g → g and corresponding Cartan decomposition (Definition
2.12)

g = k⊕ p.

Let K ⊂ G be the analytic subgroup corresponding to k. Then

1. there exists a Lie group automorphism θ : G→ G with θ2 = Id and deθ = Θ;

2. The fixed point subgroup Gθ is equal to K;

3. The map K × p → G given by (k, x) = kexp(x) is a diffeomorphism onto G;

4. The subgroup K is closed;
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5. The subgroup K contains the center of G;

6. The subgroup K is compact if and only if the center of G is finite;

7. when the center of G is finite K is a maximal compact subgroup.

In particular, if G has semisimple Lie algebra and G has finite center, then G has a
maximal compact subgroup K ⊂ G given as the fixed points of some involution θ : G→ G.

Proposition 2.19 and Proposition 2.8 show that if (G,K) is of noncompact type we may
assume

• G is semisimple;

• K = Gθ for the Cartan involution of G;

• K ⊂ G is a maximal compact subgroup given as the stabilizer of some point x0 ⊂
X = G/K.

In case G = Iso(X)0 = with X = X ′ × Rn is a symmetric space with Euclidean factor
Rn, the group G is of the form G = G′ × En, where G

′ = Iso(X ′)0 is semisimple and
En = Iso(Rn)0. So modulo the factor En, G can always be assumed to be semisimple.

Definition 2.20. The involution θ defined in Proposition 2.19 is called the Cartan invo-
lution (or global Cartan involution) of G.

Let us end this section with a comment on the Haar measures and symmetric pairs.
Recall that a (left/right) Haar measure on G is a (left/right) G-invariant Radon measure
on G and are unique up to scaling. Define

Rg : G→ G Rg(h) = hg

to be the right translation map on G. The pushforward of µl by Rg is the measure defined
on Borel sets A ⊂ G by

(Rg)∗µl(A) µl(Ag
−1)

which is also a left Haar measure on G, hence by uniqueness of Haar measure must be a
scalar multiple of µl. We thus have a well defined map on G given by

∆G : G→ R+ ∆(g)(Rg)∗µr = µr.

It can be shown to be a group homomorphism and independent on the choice of Haar
measure µl. We define:



60 CHAPTER 2. SYMMETRIC SPACES AND CONFORMAL DENSITIES

Definition 2.21. The group homomorphism

∆G : G→ R+

is called the modular function of G. A group with trivial modular function, i.e. ∆G(g) = 1
for all g ∈ G, is called unimodular.

Examples of unimodular groups are compact groups, solvable groups, discrete groups,
abelian groups and all groups with trivial abelianization as these admit no non-trivial
group homomorphisms to abelian groups. Products and semidirect products of unimodular
groups are also unimodular. A connected semisimple Lie group G is unimodular as well
since it admits an Iwasawa decomposition (see Proposition 2.54):

G = KAN

with K compact, A abelian and N nilpotent (all unimodular). We thus get:

Proposition 2.22. Let (G,K) be the symmetric pair associated with a symmetric space
X. Then G is unimodular.

Proof. We have seen (Theorem 2.17) that the Lie algebra of G is semisimple up to a
Euclidean factor of En = Iso(Rn), thus

G = G′ ⊕ En

for some semisimple G′. Being a product of unimodular groups, G is unimodular.

As a consequence we have the following important corollary:

Corollary 2.23. Let (G,K) be the symmetric pair associated with a symmetric space X.
If H ⊂ G is any closed unimodular subgroup, then

G/H

admits a G-invariant measure.

Proof. This follows from the fact that for any locally compact group G and closed subgroup
H ⊂ G the homogeneous space G/H admits a G-invariant measure if and only if ∆H is
the restriction of the modular function ∆G of G to H. i.e. if their modular functions of G
and H agree on H (see [47] Section 3.1).

Assuming now (G,K) is a symmetric pair associated with a symmetric space X and
Γ ⊂ G any discrete subgroup.

Definition 2.24. A subset F ⊂ G is called a strict fundamental domain for the action of
Γ on G if
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• F is a Borel subset of G;

• the quotient map π : G→ G/Γ restricts to a bijection on F .

Regarding strict fundamental domains, we have the following, which holds for any
locally compact group:

Lemma 2.25 ([40, Lemma 4.1.1]). Any discrete subgroup Γ ⊂ G admits a strict funda-
mental domain.

The existence of a strict fundamental domain for Γ gives us the following natural choice
of G-invariant measure on G/Γ.

Definition 2.26. Let π : G → G/Γ be the natural quotient map and µG a left Haar
measure on G. Then define a measure on G/Γ by µG/Γ(A) = µG(π

−1(A) ∩ F ) where F is
any choice of strict fundamental domain for Γ.

The measure in Definition 2.26 is often referred to as the restriction of the Haar measure
of G and is clearly G-invariant on G/Γ. If K ⊂ G is compact we can play the same game
for

K\G/Γ

by averaging the measure µG/Γ over K to get a measure on K\G/Γ.

Comparing definitions of symmetric spaces

Let us now see how the assignments in equation (2.1) on page 51 are constructed. When we
say a symmetric pair or orthogonal symmetric Lie algebra is associated with a symmetric
space or a symmetric pair respectively, we mean they are constructed in the way described
in this section.

Using the same numbering as in equation (2.1), we have:
(1) −→ (2): Given a symmetric space X defined the geometric way, we can get a

symmetric pair (G,K) by setting G = Iso(X)0, the connected component of the identity
of the isometry group of X, and K = StabG(x0) for some point x0 ∈ X. The group G is
known to admit a smooth structure making it into a Lie group acting smoothly on X (see
[23] p. 211) and K is a closed subgroup, hence also a Lie group. The geodesic symmetry
(Definition 2.1) sx0 : X → X is a global isometry on X, and we can define a map θ : G→ G
by

θ(g) := sx0gsx0 .

Note that sx0 may not be in Iso(X)0, but conjugation by sx0 preserves Iso(X)0, so this
map is well defined. Since sx0ksx0 fixes x0 for all k ∈ K we have

Gθ
0 ⊂ K ⊂ Gθ
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hence (G,K) is a symmetric pair with respect to the involution θ.
(2) −→ (3): To go from a symmetric pair to an orthogonal symmetric Lie algebra

is done in the only sensible way one can think of. Given a symmetric pair (G,K) with
involution θ, let g be the Lie algebra of G, and Θ = deθ the differential of θ at e. The proof
that (g,Θ) is an orthogonal symmetric Lie algebra (ref. Definition 2.13) can be found in
[23, Theorem IV.3.3] .

Clearly many symmetric pairs can give the same orthogonal symmetric Lie algebra, as
many Lie groups have the same Lie algebra, but the assignment of an orthogonal symmetric
Lie algebra to a symmetric pair is canonical in the sense that it does not require any choice.

It should be emphasised that if G = Iso(X)0 and K = stabG(x0) is a symmetric pair
associated with a symmetric space X, then the pair (G,K) (resp. orthogonal symmetric
Lie algebra (g,Θ)) has the following properties, not shared by all symmetric pairs (resp.
orthogonal symmetric Lie algebras) :

• The group K ⊂ G is compact (resp. k = Eig+1(Θ) ⊂ g is compact)

• The pair (G,K) is effective, i.e. Z(G) ∩K is discrete (resp. Z(g) ∩ k = 0).

• The involution θ on G is unique (reps. Θ is unique on g)1

Thus the assignment X 7→ (G,K) sending a symmetric space to its associated sym-
metric pair is not surjective. For this reason, as we are mostly interested in the geometric
realization of symmetric pairs and orthogonal symmetric Lie algebras, we will restrict
ourselves to effective symmetric symmetric pairs (G,K) with K compact, and effective
orthogonal symmetric Lie algebras.

The added complexity in the definitions of symmetric pairs and orthogonal Lie algebras
may seem a bit gratuitous at this point, as we are only interested in their associated
symmetric space. To properly motivate symmetric pairs would take us too far from the
scope of the thesis, however we mention that in many cases (like when G reductive and
K ⊂ G is maximal compact), the symmetric pair (G,K) is an example of a Gelfand pair,
meaning that the subalgebra

Cc(K\G/K) ⊂ Cc(G)

of K-bi-invariant compactly supported functions on G is commutative with respect to
the convolution product (see Definition 1.27). Gelfand pairs are actively studied for their
applications to representation theory and to exotic group C*-algebras among others (see
[14]).

Cartan subalgebras

As in the previous section, let g = (g,Θ) be an effective orthogonal symmetric Lie algebra
(Definition 2.13) associated with a symmetric space of noncompact type X = G/K with

1This is a property of all effective symmetric pairs.
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G = Iso(X)0 and K = StabG(x0) and g = k ⊕ p its Cartan decomposition (Definition)
2.12). Then any subalgebra a ⊂ p is necessarily abelian, since for any x, y ∈ a, we have

Θ([x, y]) = [Θ(x),Θ(y)] = [−x,−y] = [x, y] (2.3)

so [x, y] ∈ k ∩ a = {0} for all x, y ∈ a.

Definition 2.27 (Cartan subalgebra). A Cartan subalgebra of g is a maximal (abelian)
subalgebra a ⊂ p.

Let us mention that Definition 2.27 is the one used when dealing with symmetric spaces
(see [7] p. 45), while books dealing with Lie theory tend to use another definition which
in general is nonequivalent to ours. See for instance [33]. The Lie theoretic definition is as
follows:

Definition 2.28 (Cartan subalgebra (Lie theory)). Let a ⊂ p be a maximal subalgebra,
and m = Zk(a) (the centralizer of a in k). Let t ⊂ m be the center of m. Then the Cartan
subalgebra of g is the algebra t⊕ a.

Whenever t ̸= {0} the two definitions of Cartan subalgebras are not equivalent. We
emphasise that when we speak of a Cartan subalgebra in the subsequent part of the thesis,
we will always mean a Cartan subalgebra in the sense of Definition 2.27.

Definition 2.29. The (real) rank of G (or X = G/K) is the dimension of A and is denoted
by rkR(G) or simply rk(G) (or rk(X)).

Example 2.30. The symmetric spaces of noncompact type of rank 1 are either [47]

• Hn
R the n-dimension real hyperbolic space;

• Hn
C the n-dimension complex hyperbolic space;

• Hn
H the n-dimension quaternionic hyperbolic space;

or the exceptional case

• The Cayley plane, or octonionic hyperbolic plane, P2(O).

2.2 Some Lie theory

We will go over some some of the Lie theory required for the subsequent part of the Chapter.
For completeness, let us state the following definition:

Definition 2.31. A Lie group is a smooth manifold G where the group operations are
diffeomorphisms of G.
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Definition 2.32. A (real) Lie algebra, is an algebra g together with a map, called the Lie
bracket,

[−,−] : g× g → g

which is bilinear over R and satisfies, for any x, y, z ∈ g

1. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0;

2. [x, x] = 0.

The first property of Definition 2.32 shows that g is in general not associative with
respect to the product given by the Lie bracket.

Example 2.33. Given an associative algebra A over R, A becomes a Lie algebra with
respect to the Lie bracket

[x, y] := xy − yx x, y ∈ A.

Definition 2.34. A Lie algebra g is called semisimple if the Killing form B0 : g× g → R
(Definition 2.10) is non-degenerate.

2.2.1 Roots and Weyl chambers

Let g be a semisimple Lie algebra, and g = k⊕p its Cartan decomposition (Definition 2.12).
Let a ⊂ p be a maximal subalgebra (i.e. a Cartan subalgebra). As we saw in equation
2.3, a must be abelian and it is shown in [33, Lemma VI.4.6.45] that the elements in a act
on g by the adjoint representation as semisimple operators and that we can find a basis of
common eigenvectors in g making ad(a) into diagonal matrices with real entries.

Fix H ∈ a and let x ∈ g be an eigenvector of H. Since ad(H +H ′) = ad(H) + ad(H ′)
for all H,H ′ ∈ a, we see that that the map

λ : a → C λ(H) = EigH(x)

i.e. the map sending H to its eigenvalue at x, is a linear functional on a. We define

Definition 2.35. The restricted roots (henceforth roots) of g associated with a are the
functionals λ ∈ a⋆ for which

gλ = {X ∈ g | adH(X) = λ(H)X for all H ∈ a}

is non-trivial. Denote the set of all roots by Λ.

The eigenspaces of the ad(a)-action, yields a orthogonal decomposition of g

g = g0
⊕
α∈Λ

gα (2.4)
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Definition 2.36. The decomposition of Equation 2.4 is called the root space decomposition
of g with respect to the restricted roots of a.

The kernels of all the roots Λ are linear hyperspaces in a which partition a into open
cones. These are the connected components of the space

a\
⋃
λ∈Λ

kerλ. (2.5)

Definition 2.37. The connected components of Equation 2.5 are called the Weyl chambers
of a. Pick a Weyl chamber and call it the positive Weyl chamber. We denote this positive
Weyl chamber by a+.

The positive Weyl chamber is thus an open cone a+ in a. In case g = k ⊕ k is the
Lie algebra associated with a symmetric space of noncompact type with corresponding Lie
group G = Iso(X)0, the exponential exp : g → G restricts to a diffeomorphism p → X =
G/K and we denote by A = exp(a). By a slight abuse of terminology we will also refer to
the image of the positive Weyl chamber under exp as the positive Weyl chamber of A, and
denote it by A+.

Definition 2.38. The positive roots of a is the subset

Λ+ := {λ ∈ Λ | λ(a+) ≥ 0}.

We then define:

Definition 2.39. The simple roots of a is the collection of positive roots λ ∈ Λ+ which
cannot be written as a sum of two positive roots. Denote the set of simple roots by Σ

The simple roots play the role of a basis for the root system in the sense that any
positive root can be written as a sum of simple roots (and any root can be written as a
difference of two positive roots), though the expansion is not unique.

Definition 2.40. The Weyl group of g with respect to a, denoted W = W (g, a) is the
group generated by reflections about the hyperspaces kerλ where λ runs over all restricted
roots of g.

We have the following proposition, which is a consequence of [23, Corollary VII.2.13]:

Proposition 2.41. With G the semisimple Lie group with Lie algebra g, and K = exp(k)
a maximal compact subgroup we have

W = ZK(a)/NK(a)

where ZK(a) is the centralizer of a in K and NK(a) is the normalizer of a in K.
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The Weyl group W is finite, but this is not at all obvious at this point. The next
proposition implies W is finite since the set of Weyl chambers is finite.

Proposition 2.42 ([23, Theorem VII.2.12]). The action of W on a is simply transitive on
the set of Weyl chambers of a.

A simply transitive action means that for any two Weyl chambers chambers a1, a2 ⊂ a
there is exactly one Weyl group element w ∈W such that

wa1 = a2

in other words, a+ is a strict fundamental domain (Definition 2.24) for the action of W on
a\
⋃

λ∈Λ kerλ. In fact a+ is a strict fundamental domain for the W -action on a ([7] p. 189).

2.2.2 Positive Weyl chambers at infinity and G-orbits in X(∞)

In Section 1.7 we constructed a compactification for any Hadamard manifold X called
the geodesic compactification X ∪ X(∞). Let us see what this looks like for symmetric
spaces of noncompact type. We deduce by Theorem 2.18 and Definition 2.16 that sym-
metric spaces of noncompact type are nonpositively curved simply connected complete
Riemannian manifolds, hence give examples of Hadamard manifolds.

When studying the geodesic compactification of symmetric spaces of noncompact type,
there is a marked distinction between the rank 1 and higher rank case. Here are some
properties of rank 1 symmetric spaces

• G = Iso(X)0 (and K ⊂ G a maximal compact) acts transitively on X(∞)

• The classical harmonic theory of the Poincaré disc can be extended using geodesic
boundaries and so-called Patterson–Sullivan densities (or harmonic densities) [47].

• The assignment X(∞) ∋ x 7→ StabG(x) ⊂ G is a 1-1 correspondence between
parabolic subgroups of G and points in X(∞).

• For every two points x, y ∈ X(∞) there is a geodesic γ such that limt→∞ γ(t) = x
while limt→−∞ γ(t) = y.

All the above properties fail spectacularly for higher ranks. For instance one can show
that in the higher rank case, the largest number of distinct maximal flats A1, . . . , An ⊂ X
for which γ ⊂

⋂
Ai depends only on the equivalence class [γ] ∈ X(∞) of the geodesic γ.

This number is invariant under the action of G since if γ ⊂
⋂
Ai, then gγ ⊂

⋂
gAi. If G

was to act transitively, every geodesic would have to lie in the same number of maximal
flats. This is never the case for higher rank symmetric space. We illustrate why with an
example:
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Example 2.43. Let X = H2 × H2 and x0 ∈ H2 be an arbitrary point. Let A ⊂ X be
a maximal flat, and v1, v2 ⊂ Tx0H2 be any two vectors of length 1 in the norm given by
the Riemannian metric. Let γi(t) = exp(tvi)x0 be the corresponding geodesics. Any two
vectors (v1, 0) and (0, v2) in T(x0,x0)X span a flat 2-dimensional subalgebra. This follows
from the curvature formula of Equation 2.2 and the fact that

[(v1, 0), (0, v2)] = 0.

So A = exp(span{(v1, 0), (0, v2)}) ⊂ X is a maximal flat totally geodesic subspace.
From this observation we can deduce that all maximal flat submanifolds of X containing
(x0, x0) are of the form

A = γ1(R)× γ2(R)

for two geodesics γi centered at x0. A geodesic in A centered at (x0, x0) must take the
form

γα,β(t) := (exp(αtv1)x0, exp(βtv2)x0)

for some real numbers α, β ≥ 0 and α+β = 1. If α, β > 0 then the vector αv1+βv2 uniquely
determines v1 and v2, so it sits in a unique maximal flat A tangential to v1 and v2. If for
instance β = 0 then αv1+βv2 = v1 does not say anything about the second coordinate, so
a geodesic in this direction would be contained in any maximal flat tangential to v1.

As usual we let G = Iso(X)0 and K = StabG(x0) ⊂ G a maximal compact given as
the stabilizer of some point x0 ∈ X. We denote by g the Lie algebra of G, and recall
that it is semisimple since X has no Euclidean factors being of noncompact type. We can
decompose g by the Cartan involution inherited by G as

g = k⊕ p

with exp : p → G/K a diffeomorphism (see Proposition 2.19).
Denote by a ⊂ p be a maximal abelian subalgebra of p, A = exp(a) ⊂ G/K = X is a

maximal flat totally geodesic submanifold of X (by Proposition 2.5), and we write A+ and
a+ for the positive Weyl chambers of A and a respectively.

Definition 2.44. The positive Weyl chamber at infinity, denote A+(∞), is the set of limit
points of A+ in the geodesic boundary X(∞) (Definition 1.79). Under the identification
p ≃ Tx0X it can be identified with the unit vectors in a+. The closure A+(∞) is called the
closed positive Weyl chamber at infinity.

Since A ≃ Rn, the positive Weyl chamber at infinity A+(∞) will be a connected subset
homeomorphic to a ball inX(∞). It is very useful however to think of A+(∞) as a simplicial
complex in Sn−1 bounded by a family of “walls” given by limit points of exp(ker(α)) ⊂ A,
with α ∈ Λ+ running over all positive root. The reason we want to keep track of the
“walls” is that they determine the G-orbit of the point in A+(∞). To see how, we need
the following:
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Proposition 2.45. The closed positive Weyl chamber at infinity A+(∞) is a strict funda-
mental domain for the action of G on X(∞).

The proof is straightforward, but it requires the use of polar decomposition of X which
we have not yet defined, so we omit it here (see [7, p. 44]).

We have the following definition:

Definition 2.46. The regular boundary Xreg(∞) of X ∪X(∞) is the G-orbit of A+(∞)
in X(∞)

We deduce from the fact that A+(∞) is open and dense in A+(∞) that the regular
boundary Xreg(∞) ⊂ X(∞) is also open and dense.

We now collect some properties of the G-orbit structure of X(∞). Let 2Σ denote power
set of the set of simple roots. Before describing the G-orbits in X(∞) we will need the
following definition:

Definition 2.47 ([7, Proposition I.2.6]). A (proper) subgroup P ⊂ G is called parabolic,
if it is the stabilizer in G of a point on the geodesic boundary X(∞).

Let P0 ⊂ G be a minimal parabolic subgroup, in the sense that it contains no other
proper parabolic subgroups of G.

Lemma 2.48. There is a 1-1 correspondence between conjugacy classes of parabolic sub-
groups containing P0 and subsets I ∈ 2Σ.

Proof. See Corollary IV.11.17 and Proposition IV.14.18 of [6]

We denote by PI ⊂ G the unique parabolic subgroup containing P0 corresponding to the
set I ⊂ 2Σ. For algebraic groups over C a more common definition of parabolic subgroups
are those closed subgroups H ⊂ G for which G/H is a complete variety (or equivalently a
projective variety).

The following proposition lists some of the properties of parabolic subgroups found in
[33, Section V.7.]:

Proposition 2.49. Let P ⊂ G be a parabolic subgroup of G as in Definition 2.47. Then
P admits a decomposition

P =MPAPNP

where:

• MP is reductive;

• AP ⊂ A is abelian;

• NP is nilpotent;
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• MP normalizes Np and centralizes AP ;

• MP ⊂ K if and only if P is minimal;

• AP = A if and only if P is minimal;

• P is the normalizer of NP ;

• The normalizer of P in G is P .

• P ∩K =MP ∩K is a maximal compact in P

When P is minimal we write P = MAN without any subscripts. For each proper
subset I ∈ 2Σ we also get a subset of the boundary of A+(∞) as follows: Let

A+
I (∞) = {exp(x) ∈ A+(∞) | x ∈ a+, ∥x∥ = 1, and α(x) = 0 ⇔ α ∈ I}.

This is the limit inX(∞) of a subcone in A+. It is equal to the interior points of
⋂

α∈I kerα∩
A+(∞) in case it is not discrete and equal to the whole set if discrete. There is a more
concise way to describe this subset, namely (see [7, Corollary I.2.17])

A+
I (∞) = {v ∈ A+(∞) | StabG(v) = PI}.

Finally, we are ready to describe the G-orbits in X(∞):

Lemma 2.50. The closed positive Weyl chamber at infinity A+(∞) is the disjoint union

A+(∞) =
⊔
I∈2Σ

A+
I (∞)

with the convention that A+
∅ (∞) = A+(∞).

For each I we have a G-equivariant homeomorphism

GA+
I (∞) ≃ A+

I (∞)×G/PI = A+
I (∞)× (KMP /MP ).

Proof. This follows again from Proposition I.2.16 of [7] which reads

X(∞) =
⊔
P⊂G

A+
P (∞)

where A+
p (∞) = {v ∈ X(∞) | StabG(v) = P} and P runs over all parabolic subgroups in

G. But since StabG(gv) = gStabG(v)g
−1 we get that

A+(∞) =
⊔
I∈2Σ

A+
I (∞)
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since A+(∞) is a fundamental domain for the G action on X(∞) and 2Σ is in 1-1 corre-
spondence with conjugacy classes of parabolic subgroups. Lastly, for each fixed I ∈ 2Σ the
map

fI : GA+
I (∞) → A+

I (∞)×G/PI f(ga) = (a, gPI)

is easily seen to be a G-equivariant homeomorphism with inverse f−1
I (a, gPI) = ga.

Thus, the regular boundary has a nice description as a trivial G-bundle:

Xreg(∞) ≃ A+(∞)×G/P0

where P0 ⊂ G is a minimal parabolic subgroup and comes with a projection

pr : Xreg(∞) → G/P0.

We will see later (Equation 2.7 in the next section) that there is a G-equivariant iso-
morphism

G/PI = (KMP )/MP

which is equivariant with respect to a certainG-action on (KMP )/MP given by the Iwasawa
projections (Definition 2.57). This G-action restricts to the usual left multiplication action
on K ⊂ G, hence we see that K acts transitively on each G orbit in X(∞).

2.2.3 Lie group decomposition theorems

In this section we introduce some of the main decomposition theorems for semisimple Lie
groups that will be used later. Let G = Iso(X)0 for a symmetric space X of noncompact
type and K ⊂ G a maximal compact subgroup. Let g denote the Lie algebra of G, and
k ⊂ g the Lie algebra of K.

Theorem 2.51. Any semisimple Lie algebra g admits a Cartan involution (Definition
2.20) which is unique up to inner automorphisms of g, i.e. if Θ,Θ′ : g → g are two
Cartan involutions, then there exists a g ∈ G such that Ad(g) is in Int(g) = Ad(G)0 and
Θ′(x) = (Ad(g) ◦Θ ◦Ad(g−1))(X) for all X ∈ g.

Proof. This is Corollary VI.6.18 and Corollary VI.6.19 of [33].

We let a ⊂ p be denote a maximal abelian subalgebra, and A = exp(a) the corre-
sponding subgroup. We may switch between thinking of A as a subgroup of G and as a
submanifold of G/K, as A ∩K = ∅.

Since p is not a Lie subalgebra of g, exp(p) is not a subgroup of G, so we have no exact
analogue of the Cartan decomposition for g on the Lie group G. The closest thing we have
is the diffeomorphism K × p → G given in 2.19.

The next decomposition we will need, when defining polar coordinates, is a corollary
to the following proposition,
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Proposition 2.52 ([33, Theorem VII.7.39]). Every element in G has a decomposition as
k1ak2 with k1, k2 ∈ K and a ∈ A. In this decomposition, a is uniquely determined up to
conjugation by a member of the Weyl group W (G,A). If a = exp(H) for H ∈ a such
that λ(H) ̸= 0 for all λ ∈ Σ (i.e. a is in a Weyl chamber), then k1 is unique up to right
multiplication by a member of M = ZK(A) (the centralizer in K of A).

We let A+ denote a choice of positive Weyl chamber in A ⊂ G (see Sec. 2.2.1) and A+

the its closure in G (or equivalently in G/K). The maximal compact K acts on the space

K/M ×A+

by left multiplication on K/M and trivially on A+. We have the following corollary

Corollary 2.53 (Polar coordinates on G/K). There is a well defined surjective continuous,

K-equivariant map ϕ : K/M ×A
+ → X = G/K given by

ϕ(kM, a) = kaK

with following properties

• ϕ restricts to an imbedding K/M ×A+ → X with open dense image.

• ϕ(kM, a) = ϕ(k′M,a′) implies a = a′.

It follows that every element x ∈ X can be written as x = ka, where a ∈ A+ is unique, and
if a is not on the boundary of A

+
, k is unique, modulo M = ZK(A).

Proof. The Weyl group W (G,A) permutes the positive Weyl chambers of A and A
+

is
a fundamental domain for W (G,A) action on A, hence Theorem 2.52 gives us that G =
KA+K and so

X = G/K = KA+.

The other claims follow readily from Proposition 2.52.

Proposition 2.54 ( [33] Theorem 6.46). Let P =MAN be a minimal parabolic subgroup
of G. Then the map

G ≃ K ×A×N (k, a, n) 7→ kan ∈ G

where K is our maximal compact subgroup is a diffeomorphism. The decomposition G =
KAN is called the Iwasawa decomposition.

Definition 2.55. The assignments

k : G→ K

a : G→ A

n : G→ N
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determined by Proposition 2.54 are called the Iwasawa projections onto K, A and N
respectively.

Note that Iwasawa decomposition shares two subgroups in common with the minimal
parabolic P =MAN and we have M ⊂ K. This gives a very useful isomorphism

G/P = K/M (2.6)

which holds (only!) when P is minimal. This isomorphism is G-equivariant with respect
to the G-action on K/M given by

g · kM := k(g)kM.

The next proposition give us a decomposition of G generalizing the Iwasawa decompo-
sition, or horospherical decomposition):

Proposition 2.56 ([7, Equation I.1.20] ). Let P = MPAPNP ⊂ G be any parabolic
subgroup. Then the map

KMP ×AP ×NP → G (n, a,mk) 7→ namk ∈ G

is a diffeomorphism. The decomposition

G = KMPAPNP

is called the generalized Iwasawa decomposition, or the horospherical decomposition of G.

Definition 2.57. The assignments

kP : G→ KMP

aP : G→ AP

nP : G→ NP

determined by Proposition 2.56 are called the generalized Iwasawa projections.

Using this generalized Iwasawa decomposition, Equation 2.6 now looks like

G/P = (KMP )/MP . (2.7)

Just as for Equation 2.6 the identification is given by sending g = namk

gP 7→ mkMP .

The action of G on (KMP )/MP is given by

g · kmMP := kP (g)kmMP .

The following spaces play a central role in the book of Borel and Ji:
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Definition 2.58. Let I ⊂ Σ be a subset of simple roots and PI =MIAINI the correspond-
ing parabolic given by Proposition 2.49. Then the boundary symmetric space associated
with I is

XI =MI/(MI ∩K).

A corollary of Proposition 2.56 is

Corollary 2.59 ([7, p. 35]). Let I ⊂ Σ be a subset of simple roots, and PI =MIAINI the
corresponding parabolic subgroup of G. Then the symmetric space X decomposes as

NI ×AI ×XI ≃ G/K = X

by the map

(n, a,m(MI ∩K)) 7→ namK.

2.3 The Dirichlet problem on symmetric spaces

The existence of solutions of partial differential equations on a bounded region with pre-
scribed (often continuous) boundary values go under the name Dirichlet problems. For the
Laplace-Beltrami operator ∆ on the hyperbolic disk D the problem can be stated as fol-
lows: Given a continuous function f on S1 does there exist a harmonic function on D ≃ H2

extending f?

One can also generalize this question to the higher dimensional hyperbolic n-space Hn

with boundaries the (n − 1)-sphere in the obvious way. In both cases the problem has a
positive answer: A function f ∈ C(Sn−1) determines a unique harmonic function in C(Hn)
extending f given by its Poisson integral

Ff (x) :=

∫
Sn−1

f(y)P (x, y)dλ(y)

where λ is the normalized Lebesgue measure on Sn−1 and P (x, y) is the Poisson kernel
(Equation 1.22). Note that the hyperbolic spaces are examples of symmetric spaces of
noncompact type of rank 1, and it is a fact that any such space admits a positive solution
to the Dirichlet problem for ∆ by means of so-called harmonic densities. Harmonic densities
are examples of conformal densities which we will describe in the next section. But first,
for completeness, let us mention the following fundamental result due to Furstenberg [18],
(see also [20, Th. 12.10] ) characterizing the space of bounded harmonic functions on X.
Let H : G → a be given by H(kan) = log(a), i.e. the inverse of exp of the A-part of the
Iwasawa decomposition G = KAN of G. We have denoted by b∗ ∈ a∗ the dual of the
barycenter of a+ which we will defined in the next section (equation (2.8) on page 74). For
now let’s just think of b∗ as a special functional on a.
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Theorem 2.60 ([18, Chap. V, Theorem 3.5.4]). With X a symmetric space of noncompact
type, let

Hp := {f ∈ Cb(X) | ∆(f) = 0}.

be the bounded harmonic functions on X where ∆ is the Laplace-Beltrami operator. Let
P0 ⊂ G be a minimal parabolic subgroup of G, then there is a G-equivariant bijection

L∞(G/P0) ≃ Hp

determined by the Poisson integral formula

L∞(G/P0) ∋ f 7→

(
gx0 7→

∫
G/P0

f(v)P (g, v)dµ(v)

)

where m is the unique K-invariant probability measure on G/P0 and

P (g, v) = e−b∗(H(g−1k))

Theorem 2.60 puts no constraints on the rank of the space X, however if the rank is 1
(and only then), the space G/P0 coincides with the whole geodesic boundary X(∞). As we
will see later, this has important consequences for the boundary behaviour of the Poisson
integral

gx0 7→
∫
G/P0

f(v)P (g, v)dm(v).

2.4 Conformal densities

Conformal densities are certain families of measures on the geodesic boundary X(∞) as-
sociated with discrete subgroups of G = Iso(X)0. They were originally constructed by
Patterson [43] for Fuchsian groups acting on the hyperbolic plane, then generalized by Sul-
livan to higher dimensional hyperbolic spaces [49], and finally by Albuquerque to arbitrary
higher rank noncompact symmetric spaces in [1].

The conformal densities are defined for arbitrary discrete subgroups of the isometry
group of X, however since we will not need this level of generality here, we will quickly
restrict ourselves to the case where the discrete subgroup Γ ⊂ G is a lattice, meaning Γ\G
has finite volume with respect to the restricted Haar measure of G (ref. Definition 2.26).

As before, let X be a symmetric space of noncompact type, and Γ ⊂ G = Iso(X)0 a
discrete subgroup. Keeping the notation of section 2.2.1, let

b :=
∑
α∈Λ+

mαHα ∈ a+ (2.8)
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where mα = dim(gα) is the dimension of the root space of α (Equation 2.4), while Hα

is the vector in a dual to the root α. Since a+ is a cone, b is also in the positive Weyl
chamber. We call this vector the barycenter of a+. Normalizing

b1 := b/||b|| (2.9)

with respect to the norm induced by the Killing form, we get an element in a+(∞) ≃
A+(∞) ⊂ X(∞). The vector b1 is a unit vector in Tx0X pointing in the direction of max-
imal “maximal divergence” of geodesic rays, or the direction of maximal volume growth,
as does any vector in its K-orbit. This is because b1 turns out to be an extremal value of
the function

H 7→
∏

α∈Σ+

(sinh(α(H))mα H ∈ a (2.10)

among the unit vector of a+. The function in equation 2.10 measures the rate of change
of the volume form on X, see [24, Proposition I.5.1 ]. The special orbit Gb1 ⊂ X(∞) in
X(∞) is denoted by ∂FX. We can describe ∂FX also in terms of Brownian motions on X:
Limits of random walks in X almost certainly lie in ∂FX. Again, since b1 is in the interior
of A+(∞), it is a regular boundary point we get the following

Proposition 2.61. There is a G-equivariant isomorphism

∂FX ≃ G/P0

where P0 is any minimal parabolic subgroup.

Proof. Since b1 is in the interior of the positive Weyl chamber at infinity A+(∞), Lemma
2.50 tells us that the stabilizer of a point on Gb1 is a minimal parabolic, hence Gb1 =
∂XF = G/P0.

Let us define:

Definition 2.62. The Busemann function is the map h : X ×X(∞) → R given by

hv(x) = lim
t→∞

d(x, γv(t))− t

where γv is the unique geodesic ray centered at x0 with γ′v(0) = v

To see that Busemann function is well defined, let f(t) = d(x, γv(t))−t. By the triangle
inequality we have that for s < t

d(x, γv(t)) ≤ d(x, γv(s)) + t− s

hence
(d(x, γv(t))− t)− (d(x, γv(s))− s) ≤ 0
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so f(t) − f(s) ≤ 0 and f is monotone non-increasing. Similarly, the reverse triangle
inequality yields

|f(t)| = |d(x, γv(t))− t|
= |d(x, γv(t))− d(γv(t), x0)|
≤ d(x, x0)

hence f is also bounded so converges as t→ ∞.

The Busemann function shows up everywhere when dealing with asymptotic behaviour
in negatively curved symmetric spaces. It is useful to think of the Busemann function as
defining a distance between points in X and points in ∂X. To motivate this, let X be a
symmetric space of noncompact type with a point x0 ∈ X given. Let γ be a geodesic ray
centered at x0. Let y = γ(t0) (t0 ∈ R+) be a point on γ(R+), and Br be the ball of radius
r (in the metric of X) centered at γ(t0 + r).

Definition 2.63. The limit of Br as r → ∞ is called the horosphere centered at [γ] ∈ ∂X
with radius y.

See Section 1.10 of [16] for the proof of the following proposition

Proposition 2.64. Let y ∈ X and v ∈ ∂X. The horosphere centered at v of radius y is
the level set

h−1
v (hv(y)).

Let B be the horosphere centered at v of radius x0. Then the value hv(y) is the negative
of the distance between y and B (if y is inside B) or equal to this distance (if y is outside
B).

Example 2.65. Let us compute the Busemann function in the case X = Rn with the
Euclidean metric. Let v ∈ ∂Rn ≃ Sn−1 be a point in the geodesic boundary represented
by a geodesic ray (a straight line) γv centered at 0. The horosphere centered at v of radius
x0 is nothing but the hyperplane through x0 orthogonal to γ. Thus, using the expression
for the Busemann function in Proposition 2.64, the Busemann functions are given by

hv(y) = ||y||cos(α)

where α is the angle between the line γ and the line segment from 0 to y.

In Example 2.69 below, we will see another way to determine the Busemann function
on symmetric spaces of noncompact type of rank 1. We are now ready to define conformal
densities. The following definition holds for arbitrary discrete subgroups Γ ⊂ G.
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Definition 2.66 ([?, Definition 1.1] ). A Γ-conformal density on X(∞) of dimension s ≥ 0
is a map

µ : X →M+(X(∞)) x 7→ µx

from X to the positive Borel measures on X(∞) satisfying the following properties

1. µ is Γ-equivariant (meaning γ∗µx = µγx for all x ∈ X and γ ∈ Γ) and continuous
with respect to the weak topology on M+(X(∞))

2. For all x ∈ X the measures µx0 and µx are equivalent and

dµx
dµx0

(v) = e−shv(x)

where hv(x) is the Busemann function (Definition 2.62).

Definition 2.67 (critical exponent). The critical exponent, denoted β := β(Γ), of a dis-
crete subgroup Γ ⊂ G is the infimum of all dimensions of all Γ-conformal densities.

The subgroup Γ is said to be of divergence type if
∑

γ∈Γ e
−βd(x0,γx0) = ∞.

It is not clear from Definition 2.67 that such an infimum is finite. This is proved in [?,
Corollary 3.9]. We can determine the critical exponent in any of the following ways:

• By the equation β(Γ) = infs∈R+

∑
γ∈Γ e

−sd(x0,γx0) <∞

• By the limit β(Γ) = lim supt→∞
log |Γx0∩B(x0,t)|

t

• (If Γ is a lattice) by β(Γ) = ||b||.

The third point shows that for lattices the critical exponent β(Γ) only depends on the
group G. Since we will exclusively be dealing with lattices and all lattices are of divergence
type ( [?, Proposition D]) we will henceforth assume Γ is of divergence type.

We summarize the main results in [1] regarding conformal densities for lattices in the
following proposition

Proposition 2.68. Given a lattice Γ ⊂ G, there exists a Γ-conformal density µx of di-
mension β(Γ) such that for all x ∈ X

1. µx is a probability measure in the Lebesgue class on ∂FX = Gb1 ⊂ Xreg(∞);

2. x 7→ µx is G-equivariant, that is µgx = g∗µx for all g ∈ G;

3. µx is the unique Kx = StabG(x)-invariant measure on ∂FX.

Furthermore, the conformal density µ is the unique Γ-conformal density supported on
Xreg(∞) of dimension β(Γ).
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The density in Proposition 2.68 is constructed using an idea of Patterson [43]. We will
show how to create these densities and refer to [1] for the proof of its properties. The
construction works for any non-elementary group (i.e. groups which do not stabilize any
finite subset of X) with only minor adjustments if it is not of divergence type. Define for
any s > β(Γ) a function

ψ(s) =
∑
γ∈Γ

e−sd(x0,γx0)

and probability measures

µx0,s :=
1

ψ(s)

∑
γ∈Γ

e−sd(x0,γx0)δγx0 s > β(Γ)

where δy denotes the Dirac point measure at y. By a compactness argument we can find
a convergent sequence si with s1 ≥ s2 ≥ . . . such that si → β(Γ) and µx0,si converges to
some probability measure µx0 on X ∪X(∞).

Now, if g ∈ G, it is easy to check the assignment x 7→ µx,s is G-equivariant:

g∗µx0,s : =
1

ψ(s)

∑
γ∈Γ

e−sd(x0,γx0)δgγx0 =
1

ψ(s)

∑
γ∈Γ

e−sd(x0,g−1γx0)δγx0

=
1

ψ(s)

∑
γ∈Γ

e−sd(gx0,γx0)δγx0 = µgx0,s.

Hence g∗µx = µgx. We also have

1

ψ(s)

∑
γ∈Γ

e−sd(gx,γx0)δγx0 =
1

ψ(s)

∑
γ∈Γ

e−s(d(gx,γx0)−d(x,γx0))e−sd(x,γx0)δγx0 .

Define Ψ : X ∪X(∞) → R+ to be the function

Ψ(x) =

{
d(gx0, x)− d(x0, x) x ∈ X

hx(gx0, x0) x ∈ X(∞).

This function is continuous on X ∪X(∞) and gives an expression for the Radon-Nikodym
derivative

g∗µx0,s = e−sΨµx0,s.

Taking limits as s→ β = β(Γ) yields

g∗µx0 = e−βΨµx0 .

Now pick a ball Br(x0) of radius r centered at x0. Since Br(x0) is bounded the set
Br(x0) ∩ Γx0 is finite, hence when si → ∞, as ψ(si) → ∞, we have
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µx0,si(Br(x0)) =
1

ψ(s)

∑
γ∈Γ

e−sd(gx,γx0)δγx0(Br(x0)) ≤
1

ψ(si)
|Br(x0) ∩ Γx0| → 0.

This shows the support of µx0 must lie on the boundary of X ∪X(∞). Letting x vary,
the family µx is thus a Γ-conformal density on X(∞) of dimension β, which is actually
G-equivariant.

We only used the fact that Γ is of divergence type to ensure that suppµx is in X(∞)
since ψ(s) blows up as s→ β. This requirement can be dropped if we scale ψ by a slowly
increasing function in s as is done in [43].

Looking at the limit of µx0 = lims→β(Γ) µx0,s since all µx0,s are K = StabG(x0)-
invariant, so is the limit measure µx0 . Since K acts transitively on the Furstenberg bound-
ary ∂FX = G/P0 the measure µx0 is the unique K-invariant probability measure on ∂FX.
Similarly for any x ∈ X the measure µx is the unique Kx = StabG(x)-invariant probability
measure on ∂FX. This shows that the Patterson–Sullivan densities for a lattice Γ, does
not depend on Γ.

Example 2.69. Let us see how these conformal densities can be computed for a familiar
example. The simplest examples of symmetric spaces of noncompact type are those of rank
1. As we have seen, these are entirely classified, and are either Hn (the hyperbolic n-space
over R, C or the quaternions H) or the exceptional case which is the Cayley plane.

For X = Hn = Hn
R, we have G = Iso(X)0 = SO(1, n)0 and K = SO(n). The Iwasawa

decomposition of G takes the form (see [47, Lemma 2.4] )

G = KAN

where K = 1⊕ SO(n) ⊂ G is a maximal compact subgroup,

K =

{[
I1 0
0 S

] ∣∣∣∣S ∈ SO(n)

}
≃ SO(n)

A =


cosh(t) 0 −sinh(t)

0 In−1 0
sinh(t) 0 cosh(t)

 ∣∣∣∣∣∣ t ∈ R


and

N = U


1 u −||u||2

2
0 In−1 −ut
0 0 1

 ∣∣∣∣∣∣u ∈ Rn−1

U ≃ Rn−1,

where

U =


1√
2

0 1√
2

0 In−1 0
1√
2

0 − 1√
2

 .
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Note thatcosh(t) 0 −sinh(t)
0 In−1 0

sinh(t) 0 cosh(t)

cosh(s) 0 −sinh(s)
0 In−1 0

sinh(s) 0 cosh(s)

 =

cosh(s− t) 0 −sinh(s+ t)
0 In−1 0

sinh(s+ t) 0 cosh(s+ t)


So we have A ≃ R and the restricted root system is as trivial as it gets. We could also
deduce A ≃ R from the isomorphism:

UAU =


et 0 0
0 In−1 0
0 0 e−t

 ∣∣∣∣∣∣ t ∈ R

 ≃ R.

There are two roots and one positive root, corresponding to the choice of positive direction
of the identification A ≃ R. Adhering to the notation in [47] we write at for the matrixcosh(t) 0 −sinh(t)

0 In−1 0
sinh(t) 0 cosh(t)


Since G has rank 1, there is a unique conjugacy class of parabolic subgroups. A standard
choice of parabolic subgroup is given by

P =MAN

where

M = U


1 0 0
0 g 0
0 0 1

 ∣∣∣∣∣∣ g ∈ SO(n− 1)

U.

Since P is minimal the Langlands decomposition tells us that M ⊂ K, hence we have
PK = KP = K(MAN) = KAN = G. This gives

Hn = G/K = (KAN)/K = PK/K = P/K =MAN/K = AN.

Any point in Hn can thus be written uniquely as x = atnx0 (note that we have not used
that Hn is rank 1, just that P is minimal).

Using the G-equivariant isomorphism

∂Hn ≃ G/P

with G acting by left multiplication on G/P , we pick ξ0 = eP ⊂ G/P and x0 = [e] ⊂ G/K.
Then for any point x = natx0 ∈ Hn we have

hv(x) = t.
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Now using the fact that the critical exponent of any lattice in G is given by δ = 2n
([47, Proposition 3.9]) we can write down the Radon-Nikodym derivatives of the Patterson–
Sullivan densities of a lattice in G explicitly as follows. With x and ξ as above. Let µx be
the Patterson–Sullivan density of a lattice Γ ⊂ G, then we have

dµx
dµx0

(ξ) = e−2nhξ(x) = e−2nt.

2.5 An example where the Poisson integral does not extend
continuously

Let us return to the example of section 1.7, now with Hn replaced by a symmetric space
X of noncompact type.

At the end of Section 2.3, we listed some special properties of rank 1 symmetric spaces
of noncompact type. The following lemma is yet another important perk of being rank 1:

Lemma 2.70. Let X be a symmetric space of noncompact type of rank 1 and µ : X →
M1(∂X) the Patterson–Sullivan density of any lattice Γ ⊂ G = Iso(X)0. Then the assign-
ment

f 7→ Ff Ff (x) =

∫
∂X

f(v)dµx(v) (x ∈ X)

determines a G-equivariant completely positive splitting of the extension

0 → C0(X) → C(X ∪X(∞)) → C(X(∞)) → 0.

Since the Patterson–Sullivan densities have been defined also for higher rank symmetric
spaces, the question of whether a similar splitting can be constructed in higher ranks
naturally presents itself. However by Proposition 2.68, the support of these higher rank
densities is contained in a single G-orbit ∂FX in X(∞). If two functions f1, f2 ∈ C(X(∞))
agree on this orbit, their Poisson integrals

Ffi(x) =

∫
∂FX

fi(v)dµx(v)

would also agree. This is thus not a splitting of the extension in Equation 2.11. One could
try to circumvent this issue by defining X(∞)0 = X(∞)\∂FX and looking at the extension

0 → C0(X ∪X(∞)0) → C(X ∪X(∞)) → C(∂FX) → 0. (2.11)

At least now the map f 7→ Ff is injective from C(∂FX). There is however a fundamental
issue here, as seen in the following proposition
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Proposition 2.71. Let X be a noncompact symmetric space of rank ≥ 2. Then there
exists a function f ∈ C(∂FX) such that the Poisson integral

Ff (x) =

∫
∂FX

f(v)dµx(v) (2.12)

does not extend to a continuous function on X(∞).

Proof. Let f ∈ C(∂fX). In Theorem 2.3 of [25] and the subsequent remark, the authors
prove that Ff (xi) → f(w) if xi converges to w along a geodesic ray centered at x0. This can
also be deduced from [13, Theorem 2.4]. If Ff could be extended continuously to X(∞),
it would thus have to be constant on each positive Weyl chamber at infinity A+(∞).

Now let A ⊂ X be a maximal flat submanifold and A+
i ⊂ A (i = 1, 2) two adjacent

Weyl chambers, i.e. A+
1 ∩ A+

2 is of dimension dim(A) − 1. Then A+
1 (∞) ∩ A+

2 (∞) ̸= ∅.
Let f ∈ C(∂FX) be any function that separates the points {wi} = A+

i (∞) ∩ ∂FX. Then
Ff |A+

i (∞) is just the constant function with value f(wi). Since by assumption f(w1) ̸=

f(w2) Ff is not continuous at A+
1 (∞) ∩A+

2 (∞).

The proposition tells us that for many functions f ∈ C(∂FX) the Poisson integral Ff

cannot be extended to the whole geodesic compactification when the rank of X is greater
than 1.

We should warn the reader that it is claimed in [13, Theorem 2.4] that if xi is a
sequence in X converging to a point w in X(∞) then µxi converges in the weak topology
on M1(G/P0) to certain measure µw supported on a subset of G/P0. In the case where
w ∈ Xreg(∞), then µw is the point measure with support A+

w(∞)∩ ∂FX, where A+
w(∞) is

the positive Weyl chamber at infinity containing w. It follows from their result that the
Poisson integral is constant on positive Weyl chambers at infinity. They also claim the
measure µw is independent of choice of convergent sequence xi → w.

Theorem 2.4 of [13] implies the Poisson integral (Equation 2.12) admits a continuous
extension to the whole compactification, but also that it is constant on all positive Weyl
chambers at infinity, and as we have seen in the proof of Proposition 2.71 this results in
a contradiction. To see why Theorem 2.4 of [13] implies there is a well-defined continuous
extension of Ff for every function f ∈ C(G/P0), let us prove the following lemma:

Lemma 2.72. Let X ⊂ (V, d) be any subset of a metric space V and X0 ⊂ X a subset
such that X ⊂ X0. Assume f ∈ C(X0) and that there is a function f : X → C such that
for any convergent sequence xi → x, with xi ∈ X0, we have

f(x) = lim
i
f(xi).

Then f ∈ C(X).
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Proof. Since X is a metric space with respect to the restricted metric of V , it is sequential,
i.e. the topology is determined by its convergent sequences, which implies f is continuous
if and only if it maps convergent sequences to convergent sequences. Let yi → y be any
convergent sequence of points in X. Pick xi ∈ X0 such that

d(xn, yn) < 1/n

||f(xn)− f(yn)|| < 1/n.

This can be done since X0 is dense in X (and by the assumptions on f in the lemma).
Then a triangle inequality argument shows that the sequence

x1, y1, x2, y2, . . .

is also Cauchy. Since yi converges in X, this Cauchy sequence has limit y, hence xi also
converges to y. It follows that

||f(y)− f(yn)|| ≤ ||f(xn)− f(yn)||+ ||f(y)− f(xn)||
< 1/n+ ||f(y)− f(xn)|| −−−→

n→∞
0

which concludes the proof.

With Lemma 2.72 at our disposal, we start to see what is the issue with extending
the Poisson integral for arbitrary functions on C(∂FX): If µxi converges weakly to the
same measure µw independently of choice of convergent sequence xi → w, then the Poisson
integral converges

Ff (xi) =

∫
∂FX

f(s)dµxi(s)
i→∞−−−→

∫
∂FX

f(s)dµw(s)

for any sequence xi → w. Combining this with Lemma 2.72 would imply that Ff extends
continuously to X ∪X(∞), which would contradict Proposition 2.71.

In the next chapter we will introduce another compactification of X where the Poisson
integral Ff of Equation 2.12 does extend to a continuous function on the compactified
space, for every f ∈ C(∂FX).





Chapter 3

Compactifications of symmetric
spaces

3.1 The (maximal) Furstenberg compactification

As we have seen, there are serious problems with extending the Poisson integral to the
whole geodesic boundary. In this section we will introduce a new compactification of X
on which the Poisson integral does extend continuously. This compactification is called
the maximal Furstenberg compactification and was first constructed by Furstenberg in
[18]. There are several other compactifications isomorphic to it, like the maximal Satake
compactification or a certain Martin compactification which, depending on the application,
may be easier to work with.

Let us start with the following definition

Definition 3.1. A compactification X
A
dominates a compactification X

B
if the identity

map on X extends to a (necessarily equivariant) surjection X
A → X

B
.

The next lemma holds with minor changes for any semi-simple G with finite center (see
[18] Chapter II).

Lemma 3.2. Given a minimal parabolic subgroup P0 ⊂ G, with µx0 the unique K-invariant
probability measure on G/P0, the map

x = gx0 7→ g∗µx0

determines a G-equivariant imbedding of X into M1(G/P0) (the space of probability mea-
sures on G/P0 = K/M).

Proof. Let us show the map is injective. As usual µx0 is the unique K-invariant probability

measure on G/P . Using the Cartan decomposition G = KA
+
K we may write g ∈ G as

g = kak′ for k, k′ ∈ K and a ∈ A+. Then

85
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g∗µx0 = µx0 ⇔ k∗a∗k
′
∗µx0 = µx0

⇔ k∗a∗k
′
∗µx0 = k∗µx0 (since k∗µx0 = µx0)

⇔ a∗k
′
∗µx0 = µx0

⇔ k′∗µx0 = a−1
∗ µx0

It follows that

g∗µx0 = µx0 ⇔ a∗µx0 = µx0

hence we can, by uniqueness of the A+-component of the polar decomposition (Corollary
2.53), reduce the question to proving the implication

a∗µx0 = µx0 ⇔ a = 0.

Using the expression for the Radon-Nikodym derivative
dg∗µx0
dµx0

(see [1] p. 26), this reduces

to proving

d(a∗µx0)

dµx0

(kM) = e⟨b,H(k−1a)⟩ = 1 ∀ kM ∈ K/M

where H : G = NAK → a is the logarithm of the A-part of the Iwasawa decomposition
G = NAK1. This in turn is equivalent to

⟨b,H(k−1a)⟩ = 0 ∀ kM ∈ K/M.

Putting k̂ = e yields

⟨b, log(a)⟩ = 0

but this holds if and only if

log(a) ∈
⋂

α∈Λ+

Ker(α)

which implies that a = 0. To see why, note that
⋂

α∈Λ+ Ker(α) = 0 unless the root system
is of type A1 (i.e. has a single positive root). The only symmetric space of noncompact
type with restricted root system of type A1 are of rank 1. In this case K acts transitively

1We defined the Iwasawa decomposition in Proposition 2.54 as G = KAN with corresponding Iwasawa
projection a : G = KAN → A. Note that G = G−1 = (KAN)−1 = NAK and since AN is a subgroup G
we have AN = NA. This gives similar Iwasawa decompositions G = NAK = ANK = KNA but it should
be mentioned that in general G ̸= AKN = NKA (see [40] Ex. 7.1.5). Each decomposition has their own
corresponding Iwasawa projections. It is easy to show we can express the map H : G = NAK → a using
the original Iwasawa projections (Definition 2.55) a : G = KAN → A as follows H(g) = −log(a(g−1)
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on unit sphere Sn ⊂ T0X. It follows that for some k we have H(k−1a) = ||a||b. Hence also
here we must have a = 0.

Now to show the assignment is continuous, let x = gx0 for some g ∈ G. Then for any
f ∈ C(G/P ) we have

µx(f) =

∫
G/P

f(kM)eρ(H(k−1g))dµx0(kM).

Since eρ(H(k−1g)) depends continuously on g, the assignment x 7→ µx is continuous with
respect to the weak topology on M1(G/P ).

Lemma 3.2 shows that X can be equivariantly imbedded into M1(G/P0), which is a
compact metrizable space with respect to the weak topology.

Definition 3.3. The (maximal) Furstenberg compactification X
F
is the weak closure of X

in M1(G/P0).

The boundary of this compactification will be denoted by ∂XF , not to be confused
with the Furstenberg boundary ∂FX = G/P0 of Proposition 2.61). As it is the closure of
an imbedding of X of M1(G/P0), it is clear that is metrizable, in fact it can be shown to
be homeomorphic to a closed ball.

If xi is any sequence in X converging to a point v ∈ ∂FX, then [25, Theorem 2.3] tells
us that µxi → δv, the point measure at v. This gives us a G-equivariant imbedding

G/P0 = ∂FX ⊂ ∂XF

as a compact G-orbit in ∂XF . In fact we will see later (Proposition 3.30) that this is the

unique compact (or closed) G-orbit in X
F
.

Proposition 3.4. Let f ∈ C(G/P0), then the map

x 7→
∫
G/P0

f(v)dµx(v)

admits a continuous extension to X
F
.

Proof. This follows directly from the construction of X
F
. If xi converges to a boundary

point x∞ in X
F
this is equivalent to µxi → µs (weakly) for some measure µs ∈M1(G/P0),

that is ∫
∂FX

f(v)dµxi(v) →
∫
∂FX

f(v)dµs(v)

for all f ∈ C(∂FX). Since this is independent of choice of convergence sequence xi → s,
Lemma 2.72 implies the extension is continuous.
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We also denote by Ff the extension of Ff to X
F
. It is known that the Furstenberg

compactification is isomorphic to other compactifications, like the maximal Satake com-
pactification and the Martin compactification with parameter λ = λ0 (defined in Definition
(3.15)). The fortunate feature of the Furstenberg compactification is that the continuous
extension of the Poisson integral to the whole compactification can be readily proven as
we did in Proposition 3.4.

There are however some downsides. One of which is that the Furstenberg compactifi-
cation is only defined if X →M1(G/P0) is injective, which leaves out any symmetric space
with a euclidean factor (since G/P0 is compact P0 necessarily contains any Rn-factor of
G, hence R acts trivially on G/P0 and must lie in the kernel of the map X 7→M1(G/P0)).
One may argue that these spaces are not very interesting anyway as we may compactify
the R-factor separately.

Let us conclude our discussion on the Furstenberg compactification by explaining the
term ”maximal”, which we have occasionally prepended to the Furstenberg compactifica-
tion without much justification. Originally the Furstenberg compactification was defined
as the imbedding into M1(G/P0) as we did above, but one could also use larger parabolic
subgroups PI . Under certain conditions ([7] Prop. I.6.16) the map

X →M1(G/PI)

defined exactly as before, would also be injective and yield another compactification. In this
way we get a family of compactifications, indexed by certain ”admissible” subsets I ⊂ Σ of
simple roots. Our ”maximal” Furstenberg compactification is readily seen to dominate all
other such compactifications in the sense of Definition 3.1, since P0 is minimal. For more
on this see [7].

3.2 The Laplace operator and Casimir elements for symmet-
ric spaces

Let us take a short detour and introduce our favorite differential operator, the Laplace
operator:

Definition 3.5 ([24, p. 31] ). Given a Riemannian manifold (M, g), the Laplace-Beltrami
(or simply the Laplace) operator ∆ on M is the differential operator ∆, given in local
coordinates (x1, ..., xn) at p ∈M for an f ∈ C2(M) by

∆(f) =
1√
|g|

n∑
j=1

∂j

n∑
i=1

gij
√
|g|∂if

where gij = ⟨∂i, ∂j⟩ is the matrix representation of the Riemannian metric g in the coordi-
nates (x1, ..., xn), g

ij the inverse matrix of gij , and |g| = det(gij).
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When dealing with symmetric pairs (G,K) we have not yet specified a G-invariant
metric on G/K, so it is convenient to have a notion of a ”Laplace like” operator that does
not hinge upon this choice of metric. With this in mind, we define the Laplacian operators
as follows.

Definition 3.6 ([18, Definition 4.3] ). Let G be a semisimple Lie group with finite center
and K ⊂ G a maximal compact subgroup. A differential operator on G/K is called a
Laplacian if

1. ∆(1) = 0 for the constant function 1;

2. ∆ is an elliptic second order differential operator;

3. ∆ is G-invariant, meaning g[∆(f)] = ∆(gf) for all g ∈ G, where gf(x) = f(g−1x).

The Laplace operator is of course an example of a Laplacian operator in the sense of
Definition 3.6. We define

Definition 3.7. With M and ∆ as in Definition 3.5, a function f ∈ C2(M) is harmonic if

∆(f) = 0.

A very useful property of harmonic functions on rank 1 symmetric spaces is given by
the following proposition:

Proposition 3.8 ([24, Theorem II.5.28]). Let X be a symmetric space of rank one (or Rn)
and let u ∈ C2(X ×X) be a function satisfying

∆xu(x, y) = ∆yu(x, y) on X ×X

where ∆ denotes the Laplace-Beltrami operator on X. Then for any (x, y) ∈ X ×X and
r ≥ 0 ∫

Sr(x)
u(s, y)ds =

∫
Sr(y)

u(x, t)dt.

So, if we have a harmonic function f ∈ C2(X) on a rank 1 symmetric space X (or Rn),
then by Proposition 3.8 with u(x, y) = f(x) we get

f(x) =
1

c(r)

∫
Sr(x)

f(t)dt (3.1)

where c(r) =
∫
Sr(x)

1ds is the area of the sphere of radius r centered at x in X. In case

X = Rn, if a function f satisfies equation (3.1) for any x, it is known to be harmonic,
hence in this case equation (3.1) characterizes harmonic functions.
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One could also call a function harmonic if ∆(f) = 0 with respect to any Laplacian
operator (Def. 3.6). These functions can then be characterized by an integral equation
similar to equation (3.1) (see [18, Theorem 4.4]).

Lastly, let us relate the Laplace-Beltrami operators to a certain element in the universal
enveloping Lie algebra of u(g) of g called the Casimir element. For ease of notation, let us
assume g is a complex Lie algebra (if it is real, replace it with the complexification gC and
using the natural map u(g) → u(g)C given by Proposition 3.10 below).

First we need to define:

Definition 3.9. The universal enveloping Lie algebra, denoted u(g), of a Lie algebra g is
the quotient of the tensor algebra

T (g) :=
∞⊕
n=0

g⊗
n

by the relation
x⊗ y − y ⊗ x ∼ [x, y].

The universal enveloping Lie algebra u(g) of Definition 3.9 comes equipped with an
inclusion

ι : g → u(g)

defined by ι(x) = x for all x ∈ g. The terms ”enveloping” and ”inclusion” indicates that the
Lie algebra g is a subalgebra of u(g), and indeed the map ι : g → u(g) is always injective.
As with any universal object, it is uniquely determined by some universal properties, which
for u(g) read.

Definition 3.10 ([33, Proposition III.1.3.3] ). The universal enveloping Lie algebra u(g)
and the canonical inclusion ι : g → u(g) of a Lie algebra g satisfy the following universal
property:

For any unital associative algebra A and linear mapping π : g → A such that

π(x)π(y)− π(y)π(x) = π([x, y]) ∀ X,Y ∈ g,

there exists a unique unital algebra homomorphism π̂ : u(g) → A such that π̂ ◦ ι = π.

Let D(G) and D(G/K) denote the algebra of differential operators on G and G/K,
respectively which are invariant under the action of G by left multiplication. Recall that
for a Lie group G the Lie algebra g acts on C∞(G) as a differential operator by

(x · f)(g) := d

dt

∣∣∣∣
t=0

f(getx) x ∈ g, g ∈ G. (3.2)

Using the universal property of Proposition 3.10 we can extend the action of g on C∞(G)
to an action of u(g) on C∞(G).
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This action is trivially invariant under the usual left action of G on C(G) by left
multiplication, hence we have a well-defined map

u(g) → D(G)

Proposition 3.11 ([33, p. 180]). The map u(g) → D(G) is an algebra isomorphism.

Now for a symmetric space (or any homogeneous space), X = G/K, a function f ∈
C∞(G/K) determines a right K-invariant function f̂ ∈ C∞(G) by f̂ = f ◦ q , where
q : G→ G/K is the quotient map. However, if x ∈ g, the function

F = (x · f̂) ∈ C∞(G) (3.3)

may no longer be right K-invariant. In fact for k ∈ K we have

F (gk) =
d

dt

∣∣∣∣
t=0

f̂(gketx) =
d

dt

∣∣∣∣
t=0

f̂(gketxk−1k) =
d

dt

∣∣∣∣
t=0

f̂(getAdk(x)) (3.4)

by right K-invariance of f̂ . Thus to ensure x ∈ g descends to a well-defined differential
operator on C∞(G/K) we would have to assume Adk(x) = x for all k ∈ K.

Denote by D(G)K the right K-invariant differential operators in D(G). Combining
equation (3.4) with Proposition 3.9 tells us that we have an isomorphism

D(G)K ≃ {x ∈ u(g) | Adk(x) = x, for all k ∈ K}.

Thus in particular the center Z(u(g)) determines a well-defined family of G-invariant
differential operators on G/K, by the action given in equation (3.3). Not all elements
in Z(u(g)) are Laplacian operators in the sense of Definition 3.6 though, as they can be
non-elliptic and of any order. Now if (G,K) is a symmetric pair with G semisimple, which
happens if G = Iso(X)0 for a symmetric space with no euclidean factors, then the Killing
form (Ex. 2.11) is non-degenerate, which gives us an identification g 7→ g∗ by x 7→ ⟨x,−⟩
for x ∈ g, and so

EndC(g) ≃ g⊗ g∗ ≃ g⊗ g → u(g) (3.5)

All the isomorphisms in equation (3.5) are G-equivariant maps with respect to the adjoint
action of G on g and thus the image of Id ∈ EndC(g) in u(g) is a G-bi-invariant differential
operator on G. We now define:

Definition 3.12. The Casimir element Ω of u(g) is the element given in a basis x1, ..., xn
of g by

Ω :=
∑
i,j

B(xi, xj)xj ⊗ xi

where B is a choice of inner product on g.
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Note that this is the image of 2Id ∈ EndC(g) in Z(g) ⊂ u(g) given by chain of maps
in (3.5), hence is G-invariant. The Casimir element is invariant of choice of basis xi ([33,
Prop. V.5.24]) and can be defined similarly with respect to arbitrary inner products on g.

Proposition 3.13 ([24, Ex. A.4 p.331]). Assume G/K is a noncompact symmetric space.
Then under the action of Z(u(g)) on G/K given by equation (3.3) the Casimir element
corresponds to the Laplace-Beltrami operator.

3.3 The Martin compactification

The Martin compactification has its root in the study of the asymptotic behaviour of
Green’s functions. In the case of H2 and the Laplace operator, classical harmonic analysis
tells us that any bounded harmonic function can be written as an integral of a function on
∂H2 ≃ S1.

Recall that the Furstenberg boundary ∂FX ≃ G/P0 determines the space of all bounded
harmonic functions on a symmetric space of noncompact type X = G/K by sending
f 7→ (x 7→

∫
∂FX f(v)dµx(v)) where µx is the unique Kx = StabG(x)-invariant probability

measure on G/P0.
However in higher ranks, for dimension reasons, the Furstenberg boundary ∂FX is not

the boundary of any ”nice” G-compactification of X. The idea of Martin in [35] was to
find a compactification of X for which the classical harmonic analysis on H2 could carry
over. To achieve this, he noted that the Poisson kernel can be written as a limit

P (x, ξ) = lim
y→ξ

G(x, y)

G(x0, y)
(3.6)

of Green’s functions for the Laplace operator ∆ on H2. Thus he was led to the idea of
constructing an ideal boundary ∂XM (0), consisting of all possible functions obtained as
limits of fractions of Green’s functions as in equation (3.6). The union X ∪ XM (0) was
topologized in a natural way and, almost by construction, a theory similar to the classical
theory of Poisson integrals could be defined for this compactification.

Later this was generalized by looking at Green’s functions of differential equations of
the form

(∆ + λ)(f) = 0, λ ∈ R
and a similar boundary ∂XM (λ) was constructed.

We will now define this compactification in more detail and show that it is isomorphic
to the Furstenberg compactification whenever they are both defined.

A Green’s function is a kernel of an integral operator which acts as an inverse of a
differential operator on a domain with prescribed boundary values. In particular, if L is a
differential operator in the variable x, then(∫

(LG(x, y))f(y)dλ(y)

)
= f(x).
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There is a priori no reason to assume that such a G should exist. For a λ ∈ R, we will
denote by

Lλ = ∆+ λ Lλ(f) = ∆(f) + λf

where ∆ is the Laplace-Beltrami operator on X. Let Gλ be a Green’s function associated
with Lλ which vanishes at infinity. The spaces

Cλ(X) = {f ∈ C∞(X) | Lλ(f) = 0, f > 0}

of Lλ are convex cones and, when non-empty, will be referred to as the positive eigenspace
of Lλ. The extremal points of Cλ are called minimal eigenfunctions or simply minimal
functions. We have the following:

Theorem 3.14 ([20, p. 97]). There is a value λ0 ≥ 0 for which Cλ ̸= 0 if and only if
λ ≤ λ0.

We define

Definition 3.15. The value λ0 of Theorem 3.14 is called the bottom of the spectrum of ∆.

The reason we call it the bottom of the spectrum is that it coincides with the bottom
of the L2-spectrum of ∆ (see for instance [50, Th. 2.2]). We recall that the L2-spectrum
of ∆ does not have any eigenvalues, only an absolutely continuous part [4].

On symmetric spaces of noncompact type, there is a simple way to determine the
bottom of the spectrum λ0, namely.

Proposition 3.16 ([20, p.97]). For a symmetric space X = G/K a symmetric space of
noncompact type we have

λ0(X) =
||b||2

4

where b is the barycenter of a+ (eq. (2.8) on page 74).

Example 3.17. Note that the barycenter is not determined by the root system of the Lie
group G since it keeps track of the multiplicities of the root (i.e. the dimension of the root
spaces gα in equation (2.4)) so we could have Lie groups G of equal rank and isomorphic
root spaces with barycenters of different length. The easiest example of this phenomenon
are the real hyperbolic spaces

Hn = SO0(1, n)/SO(n)

which all have the same root system (namely A1) and are all of rank 1. This means there
are two roots {α,−α} ⊂ a∗ ≃ R, one positive root α ∈ a∗ and the Weyl group W = Z2

acts by flipping the two root vectors. In the root space decomposition of the Lie algebra
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so(1.n) = g0 ⊕ gα ⊕ g−α

the dimension of gα is the same as the dimension of g−α (since the Cartan involution
determines a bijection Θ : gα → g−α), and the dimension of g0 = ZK(a) ⊕ a = m ⊕ a is
dim(m) + dim(a), where m is the Lie algebra of the M component of a minimal parabolic
subgroup P = MAN . We have seen in Example 2.69 that M ≃ SO(n − 1), so we can
determine

dim(M) =
(n− 1)(n− 2)

2

dim(a) = 1

dim(SO(n, 1)0) =
n(n+ 1)

2

which yields

dim(gα) =
dim(g)− dim(g0)

2

=
n(n+ 1)− [(n− 1)(n− 2) + 2]

4

=
4n

4
= n.

Now the bottom of the spectrum of the Laplace operator ∆ on Hn is given by the formula
in Proposition 3.16:

λ0(Hn) =
∥b∥2

4
=
n2

4
.

For any λ ≤ λ0 there exists a unique positive Green’s function Gλ vanishing at infinity
[28, Theorem 16.6.1]. Define

Kλ(x, y)


Gλ(x,y)
Gλ(x0,y)

y ̸= x0

0 y = x0, x ̸= x0

1 y = x = x0

where x, y ∈ X and as usual x0 denotes the equivalence class of K in X = G/K. For any
fixed x, the function Kλ(x, y) is continuous in y except at y = x0. By uniqueness of the
Green’s function the map

y 7→ Kλ(−, y)

is injective. It can also be shown that the family of functions {K(−, y)}y∈X are uniformly
continuous in y, hence are precompact in C(X) with the topology of uniform convergence
on compact sets.
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Definition 3.18. The Martin compactification with parameter λ ≤ λ0 is the closure of

{K(−, y)}y∈X in C(X). Denote this closure by X
M
(λ).

So as a set, the Martin boundary ∂XM (λ) consists of equivalence classes of unbounded
sequences yi ∈ X for which Kλ(−, yi) converges uniformly on compact sets. We follow [35]
and define

Definition 3.19. A sequence xi ∈ X for which K(−, xi) converges in X
M
(λ) is called a

fundamental sequence.

The limit of an unbounded fundamental sequence is denoted by Kλ(−, ξ), where ξ is
thought to represent a point on the boundary ∂XM (λ). These limit functions are called
the Martin kernels and play the role of the Poisson kernel in the Martin compactification.

There is remarkably little variation in isomorphism type of the compactificationsX
M
(λ)

as λ varies. In fact, all X
M
(λ) for λ < λ0 turn out to be isomorphic to the closure of X in

X
M
(λ0)×X ∪X(∞)

under the diagonal imbedding. This is precisely the smallest compactification dominating

both X ∪X(∞) and X
M
(λ0).

We will now restrict our attention to the case where λ = λ0 as this will turn out to be
isomorphic to the maximal Furstenberg compactification defined earlier. Our overarching
goal is to describe in detail the compactifications on which the Poisson integral

Ff : x 7→
∫
G/P

f(v)dµx(v)

extends for any f ∈ C(G/P ). The parameter λ = λ0 is in a sense the ”smallest” com-
pactification for which this is possible, as evidenced by the construction of the Furstenberg

compactification. Note that for any compactification that dominates X
F
(Definition 3.1),

we can extend the Poisson integral by composing it with the surjection onto X
F
. Let us

prove the following theorem:

Theorem 3.20. Let X be a symmetric space of noncompact type. Then there is an equiv-
ariant isomorphism

X
M
(λ0)

∼−→ X
F

extending the identity map on X.

We will follow [20] and prove Theorem 3.20 by comparison of convergence criteria.
Before proving it, we will need some preliminary lemmas. Let Hα ∈ a denote the dual
vector of a root α, and

aI = span{Hα | α ∈ I} ⊂ a (3.7)

aI = (aI)
⊥ ⊂ a (3.8)
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so that a = aI ⊕ aI . We denote by AI and AI the exponential of aI and aI respectively.

The polar decomposition X = KA+ allows us to write any x ∈ X as

x = kaIa
I

where aI ∈ AI , aI ∈ AI and k ∈ K. We denote by PI the parabolic subgroup associated
with the subset I ⊂ Σ, and PI =MIAINI its Langlands decomposition.

We denote by SI = PI ∩K = MI ∩K. This is a maximal compact subgroup in both
MI and PI which coincides with the centralizer of AI in K (see [7] p.31).

As mentioned above, the notion of a fundamental sequence in [20] is slightly different
from the one in [7]. We have used the definition of the latter reference which gives a
necessary and sufficient condition for convergence. In [20] however, the authors use a
stronger notion of fundamental sequence that is sufficient but not necessary for convergence
to boundary points. One can go from our definition of fundamental sequence to their
definition by passing to a subsequence, but we would like to find a convergence criterion
for sequences that is sufficient and necessary in polar coordinates.

To keep track of which definition we are using we will call the one in [20] strong
fundamental sequences as they are fundamental sequences in the sense of Definition 3.19.
Here is the definition:

Definition 3.21 (strong fundamental sequence [20] III.3.35). A sequence xi ∈ X is called
strong fundamental if there exists a subset I ⊂ Σ of simple roots (Definition 2.39) such
that we can write

xi = kia
I
i a

i

with aIi ∈ AI ∩A+, ai ∈ A+, and ki ∈ K with

• aIi → aI for some aI ∈ AI

• α(ai) → 0 for all α ∈ AI

• α(ai) → ∞ for all α ̸∈ I

• kn → k for some k ∈ K.

Let us see how the authors produce a strong convergent subsequence from a fundamental

sequence converging to a boundary poitn in X
M
(λ0):

Let xn ∈ X be a fundamental sequence in X
M
, assumed to converge to a boundary

point x∞ ∈ ∂X(λ0). Let I = {α ∈ Σ | supi α(ai) <∞} and as in equation (3.7), decompose
a as the direct sum

a = aI ⊕ aI .

By passing several times to subsequences the authors assume that kn converges, α(ai)
converges for all α ∈ I and α(ai) → ∞ for all α ̸∈ I, which yields the desired strong
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fundamental sequence. Using the decomposition of a, we may write an = aInaI,n, and the
last conditions imply aIn → aI in aI .

However, [20, Corollary VII.7.32 ] tells us that both the limit aI , and the set I are
intrinsic to the limit point, so in particular shared by all strong fundamental subsequences
of xn. If a

I
n did not converge we could produce two subsequences that converge to distinct

points aI and âI in aI . This would imply xn has two subsequences converging to distinct
limit points, yielding a contradiction as xn is assumed to converge.

Similarly, if α(an,I) ̸→ ∞ for some α ̸∈ I, we could pass to a subsequence where α(an,I)
is bounded. We could then enlarge I by α and run into the same issues.

Hence the only thing that requires passing to a subsequence is the convergence of kn.
Let us summarize the discussion in the following lemma:

Lemma 3.22. An unbounded sequence xn in X converges to a boundary point x∞ ∈
∂XM (λ0) if and only if there is an I ∈ Σ such that we can write

xn = kna
I
nai

with kn ∈ K, aIn ∈ AI ∩A+ and ai ∈ A+, and

• aIn → a in AI

• α(ai) → 0 for all α ∈ I

• α(ai) → ∞ for all α ∈ ∆\I.

• [kn] → [k] in K/(SI ∩ aSIa−1).

Furthermore, this I is uniquely determined by the limit point x∞.

For other necessary and sufficient conditions for unbounded sequences in X to converge

in X
M
(λ0) see [7] p. 124. We can now state the following:

Lemma 3.23. An unbounded sequence xn is fundamental if and only if there is a subset
I ⊂ Σ and a decomposition xn = kna

I
nai such that

• aIi → aI for some aI ∈ AI

• α(ai) = 0 for all α ∈ I

• α(ai) → ∞ for all α ̸∈ I

• [ki] converges in K/(SI ∩ aISI(aI)−1).

Hence two fundamental sequences xn and x′n have the same limit if and only if I = I ′,
lim aIi = lim (a′i)

I and k−1k′ ∈ SI ∩ aISI(aI)−1.

Proof. This is Proposition VII.7.31 of [20].
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This gives us a complete characterization of fundamental sequences in X in terms of
their polar decomposition. Similarly, we have

Lemma 3.24. A sequence xi ∈ X ⊂ X
F

converging to a boundary point x∞ ∈ ∂XF if
and only if there is a subset I ⊂ Σ such that xi = kia

I
i a

i with

• aIi → aI for some aI ∈ AI

• α(ai) = 0 for all α ∈ I

• α(ai) → ∞ for all α ̸∈ I

• [ki] converges in K/(SI ∩ aISI(aI)−1).

Proof. This is Prop. IX.9.46 [20].

We can now prove Theorem 3.20:

Th. 3.20. The conditions for a sequence {xi} ⊂ X to converge to a boundary point is
stated in Lemma 3.24 for the Furstenberg compactification and Lemma 3.22 for the Martin
compactification and are clearly identical. We conclude that the identity map on X extends
to an isomorphism between these two compactifications.

3.4 The Chabauty compactification

We will here describe a third compactification isomorphic to the maximal Furstenberg
and Martin compactification with λ = λ0. It is called the Chabauty compactification.
Where the Martin compactification has a differential geometric flavour, and the Furstenberg
compactification is defined using measure theory, the Chabauty compactification is defined
almost entirely by group theoretic means.

Let X be a symmetric space of noncompact type and P = P(G) the collection of all
closed subgroups of G = Iso(X)0. The set P can be endowed with the topology induced
by the following neighborhood basis about a closed subgroup C ∈ P

VK,U (C) := {D ∈ P | K ∩D ⊂ CU, C ∩K ⊂ DU}

where U runs over a neighborhood basis of e ∈ G and K runs over all compact subgroups
of G. We have the following theorem

Theorem 3.25 ([8, Th. 1, §5.3, Chapter VIII] ). The space P with the topology induced
by VK,U , is compact and Hausdorff.

See §5.6, Chapter VIII of the same reference for the Hausdorff part. Now for a sym-
metric space of noncompact type X = G/K we have a natural imbedding

X → P x 7→ StabG(x) =: Kx. (3.9)
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Definition 3.26. The Chabauty compactification X
C
of X is defined to be the closure of

X in P under the imbedding given by equation (3.9).

The following lemma gives a way to check if a sequence in the Chabauty compactifica-
tion converges

Lemma 3.27 ([21, Lemma 2] ). A sequence of closed subgroups Fi ∈ P converges to F ∈ P
if and only if

• if xi ∈ Fi is a sequence such that xi → x in G, then x ∈ F

• each x ∈ F there is a sequence xi ∈ Fi such that xi → x in G.

As mentioned, we have the following theorem, valid for any symmetric space X of
noncompact type:

Theorem 3.28 ([21]). Let X be a symmetric space of noncompact type. Then the identity
map on X extends to G-equivariant isomorphisms

X
C ↔ X

F ↔ X
M
(λ0).

3.4.1 G-orbits and a natural extension

Let us look at the G-orbit structure of X
F
. Recall our standing assumptions that X is a

symmetric space of noncompact type and G = Iso(X)0 is the isometry group (a semisimple
Lie group) with maximal compact subgroup K ⊂ G. Let I ⊂ Σ be a subset of simple
roots of G, and let PI be the corresponding parabolic subgroup. In case I = ∅ we have
P∅ is a minimal parabolic subgroup of G. For any I the parabolic subgroup PI admits a
Langlands decomposition (Proposition 2.49)

PI =MIAINI

and we define:

Definition 3.29. For any parabolic subgroup P ⊂ G, the boundary symmetric space XP

associated with P is defined to be ( [7] eq. I.4.31)

XP :=MP /(K ∩MP )

and is thus isomorphic to the MP -orbit of x0 = K ⊂ G/K in X. For I ⊂ Σ we denote by
XI the boundary symmetric space of the parabolic subgroup PI .

Let XP be the boundary symmetric space of a parabolic subgroup P ⊂ G. Similar to
the Iwasawa projections, we define the map

m : P →MP m(man) = m
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of projection onto the MP -factor in the Langlads decomposition of P . Then the boundary
symmetric space XP has a natural P -action given by

p ·m(MP ∩K) = m(p)m(MP ∩K) ∀ p ∈ P. (3.10)

Next, for any k ∈ K we get a map XP → XkP , where
kP = kPk=1 by

k ·m(MP ∩K) = km(MkP ∩K) = km(kMP ∩K) ∀ k ∈ K. (3.11)

Now for P any parabolic subgroup of G with Langlands decomposition P =MPAPNP ,
using the generalized Iwasawa decomposition of Proposition 2.56

G = KMP ×AP ×NP

and the associated projection (Definition 2.57)

m : G→ KMP

we see that we can write any element in g as a product g = kman, with km ∈ KMP ,
a ∈ AP , n ∈ NP . Combining equation (3.10) and equation (3.11) we get a G-action the
collection of all boundary symmetric spaces given for an element g = kp ∈ G by (see for
instance [7] Proposition I.10.8)

g ·m(MP ∩K) = (m(p)m)k(MPk ∩K). (3.12)

Let us prove it is well-defined. The generalized Iwasawa decomposition tells us that the
product km is uniquely determined, but the elements k and m are only determined up to
an element in Mp ∩K. More precisely, km = k′m′ for k, k′ ∈ K and m,m′ ∈ MP if and
only if there is an s ∈MP ∩K such that

ks = k′ and s−1m = m′.

Thus if we write KP =MP ∩K we have

k′KP = ksKP = k
(
sKP s

−1
)
k−1 = kKPk

−1 = kKP .

Then for any m̂MP ∩K ∈ XP we get

g · m̂KP = k(mm̂)kKP = kmm̂k−1kKPk
−1

= kmm̂k−1k′KP (k
′)−1 = k′m′m̂sKP (k

′)−1

= k′m′m̂KP (k
′)−1 = k′m′m̂s(k′)−1k′KP (k

′)−1

= k′(m′m̂)k
′
KP = k′(m′m̂)Kk′P
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showing that the G action of equation (3.12) is well-defined.
We are now ready to write the G-orbit structure of the Furstenberg compactification

X
F
as

X
F
= X

⊔
I⊂Σ

GXI = X
⊔
I⊂Σ

KXI (3.13)

where XI = MI/(MI ∩K) are the boundary symmetric spaces associated with PI . Since
all XI are are not closed unless I = ∅ in which case it is a single point, we get the following

Proposition 3.30. There is a unique closed G-orbit in X
F
. It is given by

GX∅ ≃ G/P0 ≃ ∂FX

where P0 ⊂ G is a minimal parabolic.

We can thus define

X0 = X
F \∂FX

and get an extension

0 → C0(X0) → C(X
F
) → C(∂FX) → 0.

From the theory in the preceding sections we have the following

Proposition 3.31. The assignment f 7→ Ff (eq. (2.12)) from C(∂FX) to C(X
F
) deter-

mines an equivariant completely positive contractive splitting of the extension

0 → C0(X0) → C0(X
F
) → C(∂FX) → 0.

Proof. The map

Ff (x) =

∫
∂FX

f(v)dµx(v)

extends continuously to a function on X
F

which agrees with f on ∂FX. Since µx are all
probability measures, this assignment is easily seen to be a completely positive contraction.
The G-equivariance of the density x 7→ µx makes it G-equivariant.

3.5 A worked example

Since all higher rank symmetric spaces of noncompact type are of dimension 4 or higher,
trying to visualize their compactifications can be challenging and inevitably lead to some
sort of compromise between rigour and clarity of exposition.



102 CHAPTER 3. COMPACTIFICATIONS OF SYMMETRIC SPACES

We have opted to look at a 3-dimensional example, at the expense of having to add a
euclidean factor to our space. This poses no issues when defining the geodesic compactifi-
cation.

The space we will be looking at is X = H2 × R, with isometry group G = SL2(R)× R
and maximal compact subgroup K = SO(2)× {0}.

First, let us see what goes wrong in the case of the Furstenberg compactification: Recall
that it is defined by first imbedding X into M1(G/P ) where P is a minimal parabolic
subgroup of G. The theory developed in [18] is not well suited for this example as G is not
semisimple.

The situation is also quite unappealing for the Chabauty compactification, which is
defined for the imbedding of X into the space P of all closed subgroups of G, by the
assignment

x 7→ StabG(x).

if x = (x1, x2) ∈ H2 × R and G = SL2(R)× R, then

StabG(x) = StabSL2(R)(x1)

hence the function will be constant along the R-factor. The closure of the image of X in
P is simply the closure of the image of the H2-factor.

One could circumvent this issue by looking at a slightly larger group of isometries of
H2 × R, namely

G = SL2(R)× (R⋊ Z2)

allowing also reflections along the R factor, in which case

StabG(x1, x2) = StabSL2(R)(x1)× StabR⋊Z2(x2).

Note that since StabR⋊Z2(x2) = Z2 would be the reflection about x2, this would indeed
make the assignment x 7→ StabG(x) injective.

If we are given a sequence (h, ri) ∈ H2 × R for some fixed h ∈ H2 and ri ∈ R with
ri → ∞, then the stabilizer of (h, ri) will be the group

SO2 × Z2

where Z2 is the subgroup of reflections about ri. Using the convergence criterion in Lemma
3.27 it is easy to see that

StabG(h, ri) → StabSL2(h)× {0}.

For a general sequence (hi, ri) ∈ H2 × R, using Lemma 3.27 we can show that the limit
takes either of two forms K×{0} for some compact subgroup K ⊂ G if ri is unbounded or
K × Z2 if ri is bounded. Only the latter limit points see the R-factor. In this way we get
that the Chabauty compactification of H2 × R will be a closed ball with a neighborhood
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of the north and south pole in ∂H2 ⋊R identified. Thus the Chabauty compactification is
homeomorphic to a solid torus. See also the Remark 2.1 of [32].

For the case of the geodesic compactification however, things work out without many
issues as it is defined for any Hadamard manifold (see Section 1.7). The geodesic compact-
ification of H2 ×R can be visualized as a globe (see figure 3.1) with the equator identified
with ∂FX. The north and south pole are our irregular boundary points. A positive Weyl
chamber at infinity A+(∞) is an open half circle with boundaries the two irregular points.
There is a single positive root on A given as the dual of the vector in A orthogonal to the
axis (Id,R) depicted by the red line in Figure 3.1

Figure 3.1: The geodesic compactification of H2 × R

The orbits of G on X(∞) are the circles parallel to ∂FX or the two fixed points, which
are both fixed points of G.

The polar coordinates (Cor. 2.53) can also be visualized easily in this example. With
A+ the closure of A+ in X (see Figure 3.1) any element in X can be written as a product
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x = ka a ∈ A+, k ∈ K = SO(2)× {0}.

The properties of this coordinate system is now easy to visualize. Since the K-component
acts by rotation about the axis connecting the north and the south pole, and this axis of
rotation is exactly ∂A+, the K-component of the coordinate is unique if and only if x is
not on ∂A+ ⊂ X while the A+-component is always unique.

The Patterson–Sullivan densities of a lattice in X give measures which are supported
on ∂FX. These ”don’t see” the R-direction, meaning that if g = (I, r) ∈ G = SL2(R)× R
µx = µrx for all r ∈ R. Thus if we have a sequence of points xi ∈ X converging to infinity
along the north-south axis then µxi → µx0 (the unique K = StabG(x0)-invariant measure).



Chapter 4

The Kasparov module of the
boundary extension

4.1 The KK1
G-class of the boundary extension

In Section 1.6 we saw the intimate connection between equivariant extensions and KK1
G-

cycles given by Theorem 1.75 which stated that forA andB G-C*-algebras withB K-proper
(Definition 1.74) we have an isomorphism

ExtG(A,B ⊗KG)
0 ≃ KK1

G(A,B).

The space

KG = K

(⊕
n∈N

L2(G)

)
is given the G-action with respect to the diagonal action of the regular representation on⊕

n∈N L
2(G) and ExtG(A,B⊗KG)

0 is the subgroup of invertible extensions in ExtG(A,B⊗
KG) (Definition 1.72).

We mentioned that in case an equivariant extension

0 → B → E → A→ 0 (4.1)

of (separable)G-C*-algebras does not satisfy the condition in Theorem 1.75, the equivariant
extension obtained by tensoring everything with KG

0 → B ⊗KG → E ⊗KG → A⊗KG → 0 (4.2)

does satisfy the conditions in the theorem, and we say that the KK1
G-class associated with

the extension of equation (4.1) is the class associated with the extension of equation (4.2)
under the isomorphism given by Theorem 1.75.

105
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We are now going to go through the way in which one produces a KK1
G-cycle from an

equivariant semisplit extension. Then relate it to the usual KK1
G-groups defined in Section

1.6. Let

0 → B → E → A→ 0 (4.3)

be a G-equivariant extension of G-C*-algebras with an equivariant completely positive
contractive splitting s : A → E. As a consequence of Lemma 1.73 if the extension 4.3 is
equivariantly semisplit, then the extension is invertible in ExtG(A,B ⊗ KG) (though the
converse is not in general true, unless A and B are KG-stable).

We saw in Section 1.6 that the extension 4.3 is equivariantly semisplit if and only
if the associated Busby map (which is necessarily G-equivariant) lifts to a G-equivariant
completely positive contractive map

ϕ̂ : A→M(B).

Assuming the Busby map lifts to M(B), we will now construct an explicit realization of
the cycle in KK1

G(A,B) representing the class of the extension 4.3. We call a completely
positive map ρ : A→ L(F ) from A to a Hilbert B-module F strict if for some approximate
unit ei ∈ A, there exists a p ∈ L(F ) such that

∥(ρ(ei)− p)x∥ → 0 ∥(ρ(ei)∗ − p∗)x∥ → 0

for all x ∈ F . The points ρ(ei) is said to converge strictly to p un L(F ). The following the-
orem, due to Kasparov, generalizes both the Stinespring dilation theorem and the classical
GNS-construction.

Theorem 4.1 ([34, Theorem 5.6]). Let A, B be C*-algebras, F a right Hilbert B-module
and ρ : A→ L(F ) a strict completely positive map. Then

1. there exists a Hilbert B-module Fρ, a *-homomorphism πρ : A → L(Fρ) and an
element vp ∈ L(F, Fρ) such that

ρ(a) = v∗ρπρ(a)vρ a ∈ A

ϕρ(A)vρF is dense in Fρ.

2. If H is a Hilbert B-module, π : A→ L(H) is a *-homomorphism w ∈ L(F,H) and

ρ(a) = w∗π(a)w a ∈ A

π(a)wF is dense in H

then there is a unitary u ∈ L(Fρ, H) such that

π(a) = uπρu
∗ (a ∈ A)

and w = uvρ.
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Strictness is automatic in many cases of interest, in particular if A is unital or if ρ is
nondegenerate, since then ρ lifts to a strictly continuous unital map ρ :M(A) → L(F ) (see
[34, Corollary 5.7]).

If in Theorem 4.1 we assume A and B are G-C*-algebras and ρ is G-equivariant, then
Fρ can be chosen to be a Hilbert B-G-module and πρ and vρ G-equivariant. It may be
helpful to get an idea of how this special triple (Fρ, πρ, vρ) is constructed. The space Fρ is
the completion of the algebraic tensor product

A⊙ F

with respect to the (possibly degenerate and incomplete) B-valued inner product, given on
simple tensors by

⟨a⊗ x, a′ ⊗ x′⟩(b) := ⟨ρ(a∗a′)x, x′⟩ (a, a′ ∈ A, x, x′ ∈ B). (4.4)

We quotient out the zero elements of the inner product of equation 4.4 and then complete
A⊙ F to an Hilbert B-module, denoted Fρ = A⊗ρ B. The C*-algebra B acts on A⊗ρ F
by acting on the right on F and the representation πρ : A → A ⊗ρ F is given by left
multiplication on the A component. The map v∗ρ : L(F,A ⊗ρ F ) is the extension of the
map given on simple tensors a⊗ x ∈ A⊗ρ F by

v∗(a⊗ x)ρ := ρ(a)x

and its adjoint is

vρ : F → A⊗ρ F → F vρ(x) = lim
i
(ei ⊗ x)

where ei is any countable approximate unit forA1. If ρ is nondegenerate (meaning ρ(ei) → 1
strictly) or unital then we have vρ(x) = 1⊗ x.

Now for any a ∈ A

v∗ρπρ(a)vρ(x) = ρ(a)x

thus ρ(a) = Advρ ◦ πρ(a). A short computation shows that when ρ is nondegenerate we
have

v∗ρvρ(x) = v∗ρ(1⊗ x) = ρ(1)x = x

thus in this case vρ is an isometry and

p := vρv
∗
ρ(a⊗ x) = vρρ(a)x = 1⊗ ρ(a)x

is a projection in L(A⊗ρ F ).

1for the existence of this limit we need ρ to be strict!
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For a non-strict completely positive we can use [27, Lemma 3.2.8] which states that
any completely positive map ϕ : A→ B with B unital, has a (unique) extension

ϕ̂ : A+ → B

to the unitization A+ of A such that ϕ̂(1) = 1. If ϕ is contractive, ϕ̂ will also be contractive.
This map is now unital, hence nondegenerate and we can use Theorem 4.1.

There is a different description of the groups KK1
G(A,B) that is easier to relate to

extensions, namely:

Definition 4.2 ([51, p. 11]). A A-B KK1-cocycle is a triple (π, v, p) where

• π : A→M(B) is a *-homomorphism;

• v : G → U(M(B)) is a strictly continuous map with v(e) = 1 and vgh = vgβg(vh
where β is the G-action on B extended to M(B) (where vg := v(g));

• p ∈M(B) is a a projection

satisfying

1. Advg ◦ βg ◦ π(a) = π(αg(a)) for all a ∈ A and all g ∈ G;

2. Advg ◦ βg(p)− p ∈ B ⊗K;

3. pπ(a)− π(a)p ∈ B, for all a ∈ A.

Let E(A,B) denote the set of all A-B KK1-cocycles. Then we have:

Proposition 4.3. If (π, v, p) is a A-B KK1-cocycle then the triple (B, π, (2p − 1)) is a
Kasparov G-module for (A,B) and the map

E(A,B) → KK1
G(A,B) (π, v, p) 7→ (B, π, (2p− 1))

is surjective.

Proof. This follows from Theorem [51, Theorem 4.3]

In [51] the author defines an equivalence relation on the collection E(A,B), but we will
cheat a little and say that two A-B KK1-cocycles are homotopic if they map to the same
element in KK1

G(A,B) with the map given in Proposition 4.3. Denote by [(π, v, p)] the
equivalence class of a A-B KK1-cocycle under the equivalence relation of being mapped to
the sameKK1

G(A,B) class. We similarly define an additive structure on the collection of all
homotopy classes of A-B KK1-cocycle by pulling back the group structure on KK1

G(A,B).
Then:
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Definition 4.4. Let kK1
G(A,B) denote the abelian group of A-B KK1-cocycle E(A,B)

modulo the relation of mapping to the same element in KK1
G(A,B) with the group struc-

ture inherited by KK1
G(A,B).

Given an extension
0 → B → E → A→ 0

and assume the Busby map lifts to a completely positive equivariant contraction ρ : A →
M(B) We have the following, which is a consequence Theorem 5.3 and Theorem 4.3 of
[51]:

Theorem 4.5. Let ρ : A → M(B) be a completely positive contractive G-equivariant lift
of the Busby map of the G-equivariant extension

0 → B → E → A→ 0.

With the notation of Theorem 4.1, let p = vρv
∗
ρ. Then ρ is nondegenerate, p is a projection

in M(B) and the triple
(Fρ, πρ, (2p− 1))

is a Kasparov G module for (A,B) representing the extension. If ρ is not nondegenerate,
replace A by the unitization A+ and using [27, Lemma 3.2.8] replace ρ with the unique
unital extension ρ̂ :M(A) →M(B), the class of

(Fρ̂, πρ̂, (2p− 1))

now represents the extension.

Proof. This can be proved by following a sequence of isomorphisms

ExtG(A⊗KG, B ⊗KG)
0 → ExtG,t(A⊗KG, B ⊗KG)

0 → kK1
G(A,B) → KK1

G(A,B)

constructed in [51]. The group ExtG,α(A,B)0 are the invertible elements of a ”twisted”
extension group.

Returning to our G-extension

0 → C0(X
F \∂FX) → C(X

F
) → C(∂FX) → 0 (4.5)

we have seen that the Poisson integral on the Furstenberg boundary ∂FX extends to a con-

tinuous function on the Furstenberg compactification X
F
. We will now follow [36] Section

3.2 and define a KK1
G-cycle corresponding to the extension. To simplify the notation, let

Y = X
M\∂FX. We will also denote by

ϕ : C(∂FX) → Cb(Y )
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the lift of the Busby function. If we write Ff ∈ C(X
F
) for the Poisson integral of f , that

is

Ff (y) =

∫
∂FX

f(v)dµy(v)

it is easy to verify that for f ∈ C(∂FX) and h ∈ C0(Y ) we have

s(f)(h)(y) = Ff (y)h(y)

i.e. s(f) is the multiplication by Ff map. We now use Theorem 4.5 to produce a Kasparov
G-module representing the extension.

Let E0 = Cc(∂FX×Y ) = C(∂FX)⊗Cc(Y ), and define the Cc(Y )-valued inner product
inner product on simple tensors by

⟨f ⊗ h, f ′ ⊗ h′⟩(y) := s(ff ′)(y)h(y)h′(y) = Fff ′(y)h(y)h
′(y)

Let E be the resulting Hilbert C*-module obtained by removing the zero length vectors
and completing E0 with respect to this inner product. Then E is a Hilbert C0(Y )-module
with respect to right multiplication and the map

π : C(∂FX) → E π(f)h(x, y) = f(y)h(x, y) f ∈ C(∂FX), h ∈ E0

determines a *-homomorphism to the adjointable operators on E. Since s is unital, the
elements vs : C0(Y ) → E defined in Theorem 4.1 is an isometry, here given by

vs(f) = 1⊗ f ∈ E0

with adjoint
v∗s(f ⊗ h) = s(f)h f ⊗ h ∈ E0.

This gives us a projection

p = vsv
∗
s : E0 → E0 p(f ⊗ h)(x, y) = 1⊗ s(f)h

At the level of functions on E0 = Cc(Y × ∂FX), the map p is given by

p(f)(x, y) =

∫
∂FX

f(v, y)dµy(v).

where µy is either the Patterson–Sullivan density at y ∈ X, or its limit measure on the
boundary point y ∈ ∂XF of the Furstenberg compactification.

The triple (E, π, p) is the triple given by Theorem 4.1 for the splitting and thus we have
by Theorem 4.5 the following theorem:

Theorem 4.6. The triple (E, π, 2p−1) is a G-equivariant KK1
G-cycle for (C(∂FX), C0(Y ))

representing the class of the boundary extension 4.5.



4.2. CONCLUDING REMARKS 111

In case X = Hn, HnF is isomorphic to the geodesic compactification Hn and

∂FX = ∂Hn

so the extension 4.5 reduces to the familiar boundary extension

0 → C0(Hn) → C0(Hn) → C(∂Hn) → 0.

The reader is invited to verify that the triple (E, π, 2p−1) given by Theorem 4.6 is precisely
Kasparov module constructed in [36, Theorem 3.4] (see Example 1.84).

4.2 Concluding remarks

The results in the previous section rely on the existence of the Furstenberg compactification,
that is, we have to assume the symmetric space is of noncompact type, or else the isometry
group G = Iso(X)0 will not be semisimple and the whole theory developed in [18] is no
longer applicable.

We saw in Chapter III that the Chabauty compactification, the Martin compactification
with parameter λ = λ0 and the (maximal) Furstenberg compactification are all equivari-
antly isomorphic for symmetric spaces of noncompact type. In Section 3.5 we tweak the
Chabauty compactification into a compactification of H2 ⋊ R by working with the full
isometry group, to produce a space homeomorphic to a solid torus.

For the case of the Chabauty compactification, this does produce an extension

0 → C0(Y0) → C(X
C
) → C(∂FX) → 0

with Y0 = X
C\∂FX, but it is still unclear to the author whether the Poisson integral

construction can be used to produce a splitting of this extension.
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[25] S. Helgason and A. Korányi. A Fatou-type theorem for harmonic functions on sym-
metric spaces. Bulletin of the American Mathematical Society, 74(2):258–263, 1968.

[26] N. Higson and J. Roe. Analytic K-Homology. Oxford Mathematical Monographs.
Oxford University Press, Oxford, New York, Dec. 2000.

[27] K. K. Jensen and K. Thomsen. Elements of KK-Theory. Mathematics: Theory &
Applications. Birkhäuser Basel, 1991.
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