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Abstract Recent advances in satellite technologies, statistical andmathematicalmod-
els, and computational resources have paved the way for operational use of satellite
data in monitoring and forecasting natural hazards. We present a review of the use
of satellite data for Earth observation in the context of geohazards preventive moni-
toring and disaster evaluation and assessment. We describe the techniques exploited
to extract ground displacement information from satellite radar sensor images and
the applicability of such data to the study of natural hazards such as landslides, earth-
quakes, volcanic activity, and ground subsidence. In this context, statistical techniques,
ranging from time series analysis to spatial statistics, as well as continuum or discrete
physics-based models, adopting deterministic or stochastic approaches, are irreplace-
able tools for modeling and simulating natural hazards scenarios from a mathematical
perspective. In addition to this, the huge amount of data collected nowadays and the
complexity of the models and methods needed for an effective analysis set new com-
putational challenges. The synergy among statistical methods, mathematical models,
and optimized software, enriched with the assimilation of satellite data, is essential
for building predictive and timely monitoring models for risk analysis.
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1 Motivation

Satellite Earth observation is increasingly used by the research community, civil pro-
tection authorities, international organizations, and industry to monitor and forecast
natural hazards in order to develop disaster risk management strategies, see for exam-
pleVanWesten (2000), Joyce et al. (2009), Tomás andLi (2017) and references therein.
In recent decades, such applications have benefited from advances in remote sensing
technologies and data processing algorithms, thus opening theway to awider variety of
fields exploiting such methodologies. The collaboration among international author-
ities or institutes has lead to initiatives aimed at applying satellite Earth observation
to geohazards monitoring. Among them, we mention the International Charter Space
and Major Disasters and the Committee on Earth Observation Satellites (CEOS), or
conferences like the International Forum on Satellite Earth Observations for Geohaz-
ards (Bally 2014) held in 2012 and organized by the European Space Agency (ESA)
and the Group on Earth Observations (GEO).

The present paper provides an updated overview on the literature about the use
of satellite data for natural hazards monitoring and forecasting. The review is ambi-
tiously designed for both mathematicians and statisticians interested in exploring this
research field and geo-scientists interested in an educated report on the state-of-the-art
mathematical and statistical techniques used therein. In particular, we focus on ground
displacement measurements obtained through interferometric processing of synthetic
aperture radar (SAR) data and analyze the natural hazards that can be studied bymeans
of this type of data, with a review on the statistical techniques, the mathematical mod-
els, and the computational methods used to address such problems.

The results of the literature search highlight the importance of Earth observation
satellite data in monitoring and forecasting natural hazards, the central role of the
analysis of ground displacement measurement derived from SAR data in the study of
many natural geohazards and recent advances in numerical and computational models
and methods in this field. The growth of methodological and technical aspects in this
area of research creates the need for automated and fast processing methodologies.
Indeed, the impact on society of the result of these kinds of analyses is bounded by
the capability of delivering timely results that can support hazard mitigation, without
relying uniquely on visual inspection of the data by experts.

Often, experimental data analyses need to be established accounting for the under-
lying physical principles, whereas physics-based numerical models require calibrating
their parameters on the basis of observed data to be accurate and predictive. In this
regard, the scientific literature of Earth observation satellite data for monitoring and
forecasting natural hazards is still lacking. Indeed, advanced statistical methodologies,
physics-basedmodels, and numerical and computational techniques seldom have been
combined to overcome the issues arising from the complexity and the huge dimen-
sionality of Earth observation data, and the need for fast and accurate response. Such
a statement opens new directions of research and challenges that should be tackled
soon by the scientific community: in monitoring and forecasting natural hazards it
is of utmost importance to support civil protection authorities in decision planning
processes by means of reliable, physically sound, and prompt responses that can stem
from mathematical analyses integrated with Earth observation satellite data evidence.
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The paper is organized as follows: Sect. 2 provides an overviewonEarth observation
satellite data, with a focus on interferometric processing of SAR data; Sect. 3 analyzes
the application of the aforementioned data in the field of natural hazards monitoring
and forecasting, with a focus on landslides, earthquakes, volcanic activity, and ground
subsidence; Sect. 4 focuses on statistical models and methods currently used in this
field of research; Sect. 5 describes physics-based approaches used to model natural
hazards with a special focus on the integration of satellite data into such models; Sect.
6 draws the conclusions of the paper.

2 Earth Observation Satellite Data

Satellites are equipped with systems that can collect different types of “images”
through either passive sensors that detect the reflection of the electromagnetic radia-
tion produced by the Sun (such as visible, infrared, multispectral, and hyperspectral)
or active sensors that exploit radiation emitted by the sensor itself (such as radar
and LiDAR). Different types of satellite data can provide different information about
the soil, the vegetation, the infrastructure, the atmosphere, and the sea. In particular,
SAR images can be exploited to assess ground motions, thus measuring the effect of
geological processes on the ground surface.

The observation of deformations and motions of ground surface masses is also
of paramount importance for monitoring and forecasting many geohazard risks, and
the aim of the present paper is to provide a focused review of the use of ground
deformations measurements derived from Earth observation satellite SAR data for
monitoring and forecasting natural hazards such as landslides, earthquakes, volcanic
activity, and ground subsidence.

This reviewwill not cover thefield of atmospheric and climate analyseswhich inves-
tigate the composition of the atmosphere using data from remote sensing instruments.
Examples include the study of the distribution of aerosols in the atmosphere using
data collected by the Multiangle Imaging Spectroradiometer (MISR) and Moderate-
resolution Imaging Spectrometer (MODIS) (Nguyen et al. 2012), the estimation of
CO2 mole fraction in the atmosphere using data collected by the Greenhouse Gases
Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS) (Nguyen
et al. 2014), the prediction of the total column ozone using data collected by the
Total Ozone Mapping Spectrometer (TOMS) (Huang et al. 2002), the estimation of
the terrestrial latent heat flux using data collected by MODIS and Landsat (Xu et al.
2018), and analysis of the sea surface temperature from MODIS and the Advanced
Microwave Scanning Radiometer-Earth Observing System (AMSR-E) (Ma and Kang
2018).

2.1 SAR Data

SAR is a remote sensing system mounted on Earth observation satellites which col-
lects images of the ground by measuring the echo of a pulse of electromagnetic wave
(microwave) sent to the target by the SAR system itself. SAR technology enables the
collection of images regardless of the presence of daylight or the weather conditions,
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Fig. 1 Geometric configuration of the SAR sensor of the ERS satellite. Figure adapted from the ESA Earth
online website (https://earth.esa.int)

since electromagnetic waves can penetrate clouds. The temporal frequency of acquisi-
tion of SAR images depends on the repeat cycle of the satellite (i.e., the time between
two passages of the satellite over the same geographical location), which ranges from
a few days to a few weeks, and on the payload of the satellite, such as the tilt angle
and swath width of the sensor, that affects the revisit time (the time between two
observations of the same point on the Earth). The revisit frequency also depends on
the latitude of the geographical location: the semi-polar orbit of the satellites implies a
higher revisit frequency near the poles and a lower revisit frequency near the equator.
The spatial resolution of the SAR images depends on the technical characteristics of
the SAR system used. For example, the ERS mission, the first ESA program in Earth
observation for environmental monitoring, was composed of two satellites (ERS-1 and
ERS-2) operating in a 35-day repeat cycle, carrying a SAR operating in the C-band
(frequency of 5.3 GHz) with a wavelength of 5.6 cm; the spatial resolution is 26 m in
range (across track) and between 6 and 30 m in azimuth (along track). Figure 1 shows
the geometric configuration of the SAR sensor of the ERS satellite.

SAR images are collected by many Earth observation programs currently active,
already concluded, or planned for future launch. Some examples are ERS (ESA),
Envisat (ESA), TerraSAR-X (DLR), TanDEM-X (DLR), Radarsat (CSA), JERS
(JAXA), ALOS (JAXA), COSMO-SkyMed (ASI), and Sentinel (ESA). Many of these
observation programs make the collected data freely available, see for example the
Copernicus Programme (https://www.copernicus.eu), the European system for mon-
itoring the Earth. This program aims at providing policymakers, researchers, and
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commercial and private users with environmental data collected in near real time on a
global level fromEarth observation satellites (the Sentinel families) and in situ sensors.
In particular, the Sentinel-1 mission comprises a constellation of two polar-orbiting
satellites, operating day and night performing C-band synthetic aperture radar imag-
ing. One of the advantages of the Sentinel-1 mission is the Terrain Observation with
Progressive Scans (TOPS) mode, which is the acquisition pattern of the wide swath
and extra wide swath modes of Sentinel-1. The TOPS mode relies on the antenna
beam steering in the along-track direction, which provides large area mapping and is
designed to provide enhanced imaging performance in terms of signal-to-noise ratio
and azimuth ambiguity (Prats-Iraola et al. 2012; Scheiber et al. 2014; Yagüe-Martínez
et al. 2016).

Moreover, NHAZCA S.r.l. and Geocento Ltd developed a tool (https://www.
sarinterferometry.com/insar-feasibility-tool) for the search of groups of data suitable
for interferometric analysis among the SAR data made available by various satellite
Earth observation programs.

2.2 Interferometric Processing of SAR Data

The raw data collected by SAR sensors (composed of amplitude, phase, and polar-
ization of the backscattered signal) can be processed by means of various image
processing techniques to retrieve information about the scanned geographical region.
Interferometry is a technique that allows one to obtain topographic and kinematic
information about the ground surface from the analysis of the phase difference of
different SAR images. Indeed, the phase of the signal is determined by the distance
between the sensor and the target, thus providing information on the relative position
of the target with respect to the satellite. The interferometric analysis of SAR images
of the same geographical region collected at different times (InSAR) was developed to
measure the height topography, thus producing digital elevationmodels of the scanned
area. As a further development, this technique has been extended to the estimation of
surface displacement. This extension is called differential InSAR (DInSAR), since it
considers the differences of interferograms, where the contribution due to the topog-
raphy (known from a digital elevation model or estimated) is compensated to recover
only the components due to the deformation. Originally, DInSAR was used to inves-
tigate single events of ground displacement by analyzing two SAR images acquired
at different passes of the satellite and producing maps of the surface deformation
occurring between the two acquisitions (repeat-pass interferometry). More advanced
multi-temporal or multi-interferogram InSAR techniques allow one to estimate time
series of surface deformation maps by analyzing a stack of SAR images of the same
geographical region collected over a period of time. The deformation measurements
are obtained through a phase-unwrapping procedure that reconstructs the displace-
ments given the phase differences (measured in radians); the values obtained from
this processing are differences with respect to a master image and a reference point
conveniently selected.

One of the advantages of InSAR is providing very precise measurements of surface
deformation; indeed, the measured ground displacement can have centimetric or mil-
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limetric precision, depending on the wavelength of the electromagnetic signal used.
It should be noted that the InSAR technique measures the projection of the actual
ground motion on the direction of the line of sight of the sensor, since the difference in
the phases of two SAR images of the same area collected at different times represents
the change in the relative position of the target with respect to the satellite, making it
possible to detect only the component of the groundmotion parallel to the trajectory of
the microwave pulse used by the SAR system. In other words, it measures how much
the ground is approaching or moving away from the sensor, which is not necessarily
located at the local geographical zenith.

Because of temporal decorrelation in the signal due to change in the dielectric prop-
erties of the reflective surface over time, thermal noise, atmospheric screen phase, or
other disturbances, the time series of surface deformation cannot be retrieved for all
the pixels of the SAR images. Indeed, time series of surface deformation can be com-
puted only for targets that show coherence along the stack of SAR images; such targets
correspond, for example, to rocks (natural reflectors) or buildings (artificial reflectors),
which act as permanent reflectors by maintaining constant dielectric properties over
the monitoring period. For portions of the ground covered by forests or agricultural
fields, the coherence along the stack of images is not preserved because the radar
backscatter signal contains a contribution from the vegetation layer. Another source
of coherence loss between SAR images is related to the baseline, which is the sep-
aration between the orbital position of different acquisitions. Indeed, the correlation
of the scanned images is influenced by the component of the baseline perpendicular
to a look direction (effective baseline), introducing spatial decorrelation phenomena
corrupting the interferograms.

Many techniques have been developed for the computation of time series of surface
deformation for specific stable targets. The reader may refer to Crosetto et al. (2016)
for a review. Some examples are persistent scatterer interferometry (PSI) algorithms
(Ferretti et al. 2001;Hooper et al. 2004;Crosetto et al. 2010), and small baseline subsets
(SBAS) algorithms (Berardino et al. 2002; Casu et al. 2006). PSI considers a reference
acquisition and a stack of SAR images taken over a large time interval from the
reference acquisition up to the decorrelation baseline (the orbital separation at which
the interferometric phase is pure noise) and identifies stable scatterers by analyzing
the time series of amplitude values supposing a deformation model linear in time,
while SBAS is based on the combination of differential interferograms produced by
couples of SAR images separated by small baselines and identifies as stable scatterers
the pixels exhibiting a sufficiently high phase coherence with a deformation model
which supposes spatial and temporal smoothness.

The number of identified stable targets depends on the technical properties of the
sensor, such as thewavelength of the radar signal and on the processing technique used.
For instance, larger wavelengths are less sensible to the vegetation layer because they
have enhanced canopy penetration capability, thus providing larger temporal correla-
tions. In this respect, Hanssen (2005) discusses the feasibility of InSAR analysis and
the factors affecting its precision and reliability. Moreover, recently developed tech-
niques aim at extending the coverage of motion results: some examples are provided
by Van Leijen and Hanssen (2007), who proposes two methods with adaptive defor-
mation models for the selection of persistent scatterers, and Sowter et al. (2013), who
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proposes the intermittent SBAS technique, which relaxes the pixel selection criterion
to retrieve motion time series for a wider range of reflectors (see Cigna and Sowter
2017 for a comparison between the performance of SBAS and intermittent SBAS).
Concerning the extension in coverage due to improvement in technical properties of
sensors, the reader may refer, for example, to Bovenga et al. (2012) for a comparison
between InSAR results obtained from X-band and C-band satellite radar sensors in
the context of landslide hazard assessment.

Recent advancements in PSI and SBAS algorithms have been introduced to enhance
the coverage of InSARmeasurements. In this regard, Ferretti et al. (2011) propose the
SqueeSAR algorithm, which jointly processes point scatterers and distributed scat-
terers, thus improving the density and quality of measurement points over non-urban
areas, and Fornaro et al. (2014) extend SqueeSAR, enabling the identification of mul-
tiple scattering mechanisms from the analysis of the covariance matrix. Extensions of
the SBAS algorithm have been proposed by Lauknes et al. (2010), where better robust-
ness is achieved using an L1-norm cost function, Shirzaei (2012), where the accuracy
is enhanced by using newmethods for identification of stable pixels andwavelet-based
filters for reducing artifacts, and Falabella et al. (2020), where the usability is extended
to low-coherence regions using a weighted least-squares approach.Moreover, Hetland
et al. (2012) propose an approach, called multiscale InSAR time series, that extracts
spatially and temporally continuous ground deformation fields using awavelet decom-
position in space and a general parametrization in time. Other extensions deal with
the problems related to the large volume of data produced by the wide-swath satel-
lite missions with short revisit times, such as Sentinel-1, which poses computational
challenges for the systematic near-real-time monitoring of the Earth surface and calls
for efficient processing techniques, such as those proposed by Ansari et al. (2018) and
references therein.

Recent developments in InSAR techniques allow for the estimation of the three-
dimensional deformation of the surface. In this framework, the first proposals combine
SAR images acquired at different incidence angles in both ascending and descend-
ing orbits Wright et al. (2004), Gray (2011). These approaches have low sensitivity
to the north–south component of the ground deformation, because of the near-polar
orbits of the satellites. Approaches proposed to overcome such limitation are pixel-
offset tracking techniques (Fialko et al. 2001, 2005; Strozzi et al. 2002; Hu et al.
2010), which exploit correlations in the amplitude measurements of SAR images, and
multi-aperture InSAR (Bechor and Zebker 2006; Hu et al. 2012; Jung et al. 2014;
Mastro et al. 2020), which splits the SAR signal spectrum into separate sub-bands to
create different-looking interferograms. Other approaches infer the three-dimensional
surface displacement field by integrating InSAR data with other sources of infor-
mation, such as GPS data (Gudmundsson et al. 2002; Spata et al. 2009) or optical
images (Grandin et al. 2009). These techniques, developed to study single deforma-
tion episodes, have been extended to the estimation of the temporal evolution of the
three-dimensional surface displacement: some examples are the pixel-offset SBAS
technique (Casu et al. 2011; Casu and Manconi 2016), the multidimensional SBAS
methodology (Samsonov and d’Oreye 2012), other approaches based on the Kalman
filter Hu et al. (2013), the minimum-acceleration approach Pepe et al. (2016), and the
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combination of interferograms of multiple-orbit tracks and different incidence angles
(Ozawa and Ueda 2011).

InSAR processing is usually performed through commercial software which imple-
ments state-of-the art interferometric techniques. Some examples are the software
provided by TRE ALTAMIRA (https://site.tre-altamira.com), GAMMA (https://
www.gamma-rs.ch), and Aresys (http://www.aresys.it/).

3 Natural Hazards Monitoring and Forecasting Through InSAR Data

InSARmeasurements of surface deformation can be exploited to monitor and forecast
natural and man-made hazards. Indeed, they are extensively used to study landslides,
earthquakes, volcanic activities, ground subsidence, or heave (see, for example, Lu
et al. 2010, Chen et al. 2000). InSAR data enable the observation and the precise
quantification of the ground deformations produced by such natural events and pro-
vide useful information for both natural hazards preventive monitoring and disaster
evaluation and assessment. Indeed, the analysis of such data in this context enables the
identification of early warning signals or triggering factors, the observation of their
behavior, and the a posteriori assessment of the extent of the consequences or the
effectiveness of mitigation measures.

The importance of InSAR data for hazard monitoring is proven by its use by local
public authorities. For instance, in Italy (which is, among all the European coun-
tries, one of the most affected by natural hazards), two examples are the Piedmont
and Tuscany regional administrations. Indeed, InSAR data are currently used for land
monitoring by Arpa Piemonte, the regional agency for the protection of the envi-
ronment (http://www.arpa.piemonte.it/approfondimenti/temi-ambientali/geologia-e-
dissesto/telerilevamento). Moreover, the regional government of Tuscany requested,
founded, and supported, under the agreement “Monitoring ground deformation in the
Tuscany Region with satellite radar data,” the development of a monitoring system
able to perform continuous and systematic analysis of InSAR data obtained from
Sentinel-1 acquisitions (Raspini et al. 2018; Bianchini et al. 2018). At a national level,
the project “Progetto Piano Straordinario di Telerilevamento” of the Ministry of the
Environment and for Protection of the Land and Sea (http://www.pcn.minambiente.it/
mattm/progetto-piano-straordinario-di-telerilevamento/) used InSAR data to monitor
areas with high landslide risk (Costantini et al. 2017).

For monitoring other natural hazards such as floods, avalanches, and wildfires, the
analysis of ground displacements obtained from InSAR data is not as meaningful as
for the aforementioned cases. In these cases, other types of data are preferred, such as
those obtained from SAR images through processing techniques different from inter-
ferometry or data collected by other types of sensors. For example, the analysis of the
amplitude component of SAR images provides information about the reflectivity prop-
erties (such as dielectric constant and roughness) of the target, enabling, for example,
the identification of flooded regions (because of the different reflectivity properties of
the wet soil and the dry soil) and of avalanches (because of the different reflectivity
properties of the compact snow and that involved in the avalanche). Flood data are
analyzed, for example, in Kussul et al. (2008), Pulvirenti et al. (2011), Stephens et al.
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(2012), and Vishnu et al. (2019), where a segmentation of the amplitude component of
SAR images is performed in order to assess flood extent. Other examples concerning
monitoring of avalanches are Eckerstorfer and Malnes (2015) and Wang et al. (2018),
where avalanche are detected using the amplitude component of SAR images. The
reader may also refer to Eckerstorfer et al. (2016) for a review on remote sensing for
avalanche detection using optical, LiDAR, and radar sensors. Other kinds of data used
for the study of the aforementioned natural hazards are optical, thermal, or LiDAR
images. As for wildfires, see for example Sifakis et al. (2011) for an analysis of data
from the MSG-SEVIRI sensor (collecting data in 12 spectral channels) to monitor
wildfires, and Schroeder et al. (2011) for the use of Landsat multispectral data in
monitoring forest disturbance.

3.1 Landslides

Ground displacement InSAR data are widely used to monitor slow-moving landslides.
Indeed, InSAR ground deformation measurements have been analyzed for landslide
risk assessment by monitoring mountain slopes, as in Colesanti et al. (2003), Rott and
Nagler (2006), Hu et al. (2017), and Nobile et al. (2018), or by checking and updating
landslide hazard and risk maps and inventory maps, as in Cascini et al. (2009) and Lu
et al. (2014b).

The interest in the topic of landslide monitoring and forecast through the analy-
sis of InSAR data is proven by projects such as the ESA CAT-1 project (ID: 9099)
“Landslides forecasting analysis by displacement time series derived from satellite
and terrestrial InSAR data” (Mazzanti et al. 2011) and the MUSCL project (Monitor-
ing Urban Subsidence, Cavities and Landslides by remote sensing) within the Fifth
Framework Programme for Research and Development of the European Commission
(Rott et al. 2002).

Tofani et al. (2013b) highlight the usefulness of InSAR data in landslide mapping,
monitoring, and hazard analysis by presenting the results of a questionnaire about the
use of remote sensing in current landslide studies in Europe. Besides the prevalent
use of radar imagery for landslide studies, Tofani et al. (2013b) underline the use of
other remote sensing data such as aerial photos, optical imagery, and meteorological
sensors, which are not covered in this review.

3.2 Earthquakes

In the case of active seismic regions, the analysis of InSAR ground deformation data
enables one to evaluate the strain accumulated in the ground and to identify faults that
are not visible through optical images, thus providing a valuable tool for estimating
seismic risk. For example,Moro et al. (2017) identify earthquake earlywarning signals
from ground velocity and acceleration maps obtained from surface deformation data
derived from InSAR processing. Moreover, InSAR data can be used to assess the
effects of an earthquake and of the events associated with it. The first example is
provided by Massonnet et al. (1993), who exploit InSAR data to detect the co-seismic
ground displacements produced by an earthquake that occurred in 1992 in Landers,
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California. As a more recent example, Kuang et al. (2019) use InSAR data to study a
seismic event and the landslides and ground deformations induced by it.

3.3 Volcanic Activity

In the case of volcanic activity, InSAR data allow one to monitor ground deformations
produced by the inflation and the deflation of the volcano that precede and follow
an eruption, thus providing relevant information about magma dynamics. Indeed, the
continuous monitoring of the deformations allows for the study of the volcanic evo-
lution during quiescent periods. Moreover, ground deformation data collected during
volcanic eruptions give useful information to assess the extent and the severity of the
consequences of this natural event. In this field of application, the InSAR technique
offers the advantage of collecting images in presence of volcanic gases following an
eruption that obstruct the collection of optical measurements. InSAR data are used in
Chaussard et al. (2013) and Lu et al. (2002) to study time-dependent volcanic defor-
mations, and in Schaefer et al. (2015) to measure ground deformation during volcanic
eruptions in order to evaluate volcanic slope instabilities. De Novellis et al. (2019),
instead, exploit InSAR data to study a volcanic eruption and its correlated seismic
phenomena.

3.4 Ground Subsidence

InSAR ground deformation data can be used to study land subsidence or heave, which
could be caused by natural processes such as sediment compaction or man-made
interventions, for example, mining activity, geothermal field exploitation, or fluid
extraction from aquifers or oil reservoirs. Some examples of application in this context
are provided by Fielding et al. (1998), who study ground subsidence in oil fields due
to the extraction of large volumes of fluid from shallow depths, Carnec and Fabriol
(1999), who study land subsidence in a geothermal reservoir, Lu and Danskin (2001),
Motagh et al. (2008), and Lubis et al. (2011), who study ground deformation produced
by water reservoir dynamics and exploitation, and Perski et al. (2009), who analyze
ground deformation induced by mining activity in a salt mine.

4 Statistical Models and Methods

The statistical analysis of ground deformation data derived from InSAR processing of
satellite images is mostly performed qualitatively by expert visual interpretation of the
surfacemotionmaps,with the help of standarddescriptive andgraphical statistics tools.
However, automated procedures would allow continuous real-time monitoring, thus
enhancing the impact of remote sensing on natural hazardmitigation. Indeed, develop-
ing decision support systems that automatically analyze real-time data acquired from
monitoring instruments to identify early warning signals and emergency conditions
is of paramount importance in the mitigation of the socioeconomic impact of natural
hazards (Groat 2004), but poses computational andmethodological challenges, related
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for example to the characterization of the spatial structure of the data and to the proper
handling of the outliers in the detection of emergencies (Brenning and Dubois 2008).
This is in fact a relatively new direction of research, and there are only a few exam-
ples in the literature of statistical techniques applied to the analysis of InSAR ground
deformation time series in the context of monitoring and forecasting natural hazards.

The statistical models applied to InSAR data can be divided into two categories:
time series analysis methods and spatial statistic methods.

4.1 Time Series Analysis

Time series of ground deformationmeasurements derived frommulti-temporal InSAR
can be used to study the trend of motion of the region under study in order to identify
specific deformation patterns or change points related to natural hazards.

In this setting, a first step of the analysis consists in the identification of specific
trends of motion and the consequent classification of the time series of the data set into
classes featuring similar behavior. This task has been performed manually by experts
(see, for example, Cigna et al. 2011) and, more recently, through time series classi-
fication algorithms. The need for automated techniques for time series classification
arose from the difficulties in the systematic visual classification of large data sets.

One example is Milone and Scepi (2011), who apply a k-medoids clustering tech-
nique to time series of ground deformations obtained through InSAR processing. The
application considered in the article poses challenges related to the dimensionality of
the data set (which involves 18,452 time series). To address this problem, the authors
choose a clustering technique specifically developed to deal with large data sets: the
clustering large applications (CLARA) algorithm that combines a sampling approach
(which reduces the dimensionality of the problem by randomly selecting subsamples
of the original data) and the k-medoids algorithm.

Other works deal with the problem of grouping time series into classes of trends
using methods based on statistical testing. Following this idea, Berti et al. (2013)
present an automated technique to classify ground deformation time series through
a conditional sequence of statistical tests aimed at comparing the time series in the
data set to a set of predefined displacement patterns. The idea is that the distinctive
predefined target trends describe different styles of ground deformation that can be
interpreted in terms of the underlying physical process. To implement this method,
Berti et al. (2013) identify six reference trends (shown in Fig. 2): uncorrelated, linear,
quadratic, bilinear, discontinuous with constant velocity, and discontinuous with vari-
able velocity. These reference trends have been identified by expert visual inspection
of 1,000 time series from the available data set. The classification procedure consists
of a sequence of standard statistical tests aimed at automatically assigning each time
series to one of the six reference trends.

Following a similar idea, Chang and Hanssen (2015) propose a probabilistic
approach to tackle the problem of InSAR time series classification based on mul-
tiple hypothesis testing. The set of reference trends (called in this case a library of
canonical kinematic models) is much richer than the previous one: starting from a
set of six canonical functions (accounting for linearity, seasonal periodicity, disconti-
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Fig. 2 Examples of ground displacement time series following the six reference trends. Figure adapted
from Berti et al. (2013)

nuities, and nonlinearity), the set of all the competing alternative models is obtained
by nested combinations, leading to a number of reference trends considered that can
be on the order of hundreds. The testing procedure exploited to identify the optimal
model is based on the B-method of testing, a multiple hypothesis testing technique
for simultaneous comparison of different models with different numbers of degrees of
freedomfixing the same discriminatory power for all the alternative hypotheses, where
the null hypothesis is the steady-state behavior, and the library of canonical kinematic
models is the alternative hypotheses in this case. This formulation poses computa-
tional challenges related both to the large number of data and to the cardinality of the
library of canonical kinematic models; to address this problem, an efficient numerical
implementation is devised, aided by the formulation of the testing procedure, which
allows one to compute the matrices involved in the computation of the test statistics
only once.

These works aim at identifying groups of locations featuring different types of
deformation trends in order to discriminate the locations with irregular or fast-rate
trends from those featuring stability. A further step in the analysis consists in the
quantification of the deviation of the time series in the data set from expected behaviors
in order to identify early warning signals or anomalous behaviors. To this aim, Cigna
et al. (2012) develop a semiautomated methodology by defining two deviation indexes
to quantify the divergence of the time series from a historical trend of motion. The
effectiveness of this methodology has also been proven by Tapete and Casagli (2013),
who apply the methodology developed by Cigna et al. (2012) to assess the structural
stability of archaeological monuments and historical buildings. This methodology
is based on the error quantification of a linear regression estimate. In practice, the
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Fig. 3 Graphical representation of the computation of DI1 (left panel) and DI2 (right panel). Figure
adapted from Cigna et al. (2012)

algorithm fixes a priori a breaking time (tb) and aims at identifying and quantifying
the deviation of the portion of the time series following tb (updated pattern) from the
linear trend estimated on the portion of the time series preceding tb (historical pattern).
To this aim, two possibilities are considered: the time series may show changes in
velocity and/or acceleration at tb (movements that are precursors of major events), or
it may show a discontinuity at tb (sudden change influencing the time series locally).
To account for the two cases, two deviation indexes are defined. The first deviation
index (DI1) accounts for the distances of the points of the updated pattern from the
regression line estimated using the historical pattern, and it is computed as the sum of
the quantities �i shown in the first panel of Fig. 3 normalized by the standard error
of the regression (s)

DI1 =
1
NU

∑NH+NU
i=NH+1 |�i |
s

.

The second deviation index (DI2) accounts for the difference in the values of the two
regression lines estimated from the historical and the updated patterns evaluated at tb

DI2 = dU (tb) − dH (tb),

as shown in the second panel of Fig. 3. The two deviation indexes are able to provide
significant information in the analysis of different geological contexts, such as eruption
precursor signals identification and assessment of tectonic events.

The aforementioned works rely on algorithms which consider only the temporal
dependence of the data set and do not use the spatial dependence of the data. However,
in all the cases, the spatial distribution of the data is exploited for interpretation,
by representing the results obtained (such as the cluster number or the value of a
deviation index) on maps and providing geological interpretation to coherent regions.
This highlights the importance of the spatial dependence of the data and the need for
its inclusion in the analysis.
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4.2 Spatial Statistics

Spatial statistics techniques have been applied in the setting of DInSAR processing of
two SAR images to analyze surface deformations occurring between the two acquisi-
tion times. One example is provided by Yaseen et al. (2013), who apply geostatistical
techniques to DInSARmeasurements of ground deformation induced by earthquakes.
With the aim of characterizing and understanding the earthquake causative faults
mechanisms,Yaseen et al. (2013) study coseismic displacements obtained from InSAR
processing of pre- and post-earthquake SAR images. In this context, kriging is applied
in order to interpolate missing values due to coseismic temporal decorrelation, thus
providing data for computing the parameters of a slip distribution model through the
inversion of coseismic displacements.

In the setting of multi-temporal InSAR, where the data depend both on space and
time, spatial statistics tools have been applied to automatically analyze and characterize
ground displacement and help interpretation.

One of the methods applied in this context is PSI Hotspot and Cluster Analysis
(PSI-HCA), a spatial statistical approach proposed by Lu et al. (2012) with the aim of
analyzing InSAR data to automatically and efficiently map landslides. This approach
is based on Getis–Ord G∗

i statistic and kernel density estimation. In practice, the
G∗

i (d) statistic is computed for each spatial location in the data set using the following
equation

G∗
i (d) =

∑
x j + xi − ni j x̄∗

s∗
(

(n·ni j )−n2i j
n−1

) 1
2

,

where xi is the velocity measured at the spatial location under consideration, x j are
the velocities measured at the ni j spatial locations within a distance d from the spatial
location under consideration, and x̄∗ and s∗ are the mean and the standard deviation,
respectively, of the velocities measured at the n spatial location of the whole data set.
The G∗

i (d) statistic is therefore a measure of association between the spatial location
under consideration and its neighbors within a distance d. The choice of the distance
d is based on the topography of the region under study by exploiting a digital terrain
model. A smooth hotspot map is finally obtained through kernel density estimation
with a quadratic kernel function. The regions of the hotspotmap featuring high absolute
values highlight areas affected by landslides, with the sign indicating the direction of
the displacement (towards or away from the sensor for positive or negative values,
respectively). Figure 4 shows, as an example, the hotspot map obtained by Lu et al.
(2012) applying PSI-HCA to InSAR data for the Arno River basin area.

Another example of InSAR data analysis accounting for both spatial and temporal
dependence is provided by Cohen-Waeber et al. (2018), who apply independent and
principal component analysis in order to detect spatial and temporal patterns in surface
ground deformation time series in the context of a study of slow-moving landslides.
Themodes identified in the analysis account for continuous linear motion and seasonal
or annual cycles correlated to precipitation, which induces soil swelling and changes
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Fig. 4 Example of hotspot map obtained with PSI-HCA applied to ascending and descending InSAR data
on a study region covering the Pistoia–Prato–Firenze andMugello basins in the Arno River basin. Reprinted
from Lu et al. (2012)

in pore pressure. Indeed, the resulting components relate to different geomechanical
processes, providing insights into the characterization of landslide dynamics. This
technique is therefore useful in improved hazard forecasting, as it allows the separation
of common spatiotemporalmodes of variations of displacement, enablingone to isolate
the underlying driving mechanisms.

4.3 Integration of Other Data

InSAR data can be integrated with data obtained from other sources. Some examples
of the integration of InSAR and GPS data are found in Polcari et al. (2016), Peyret
et al. (2008), and He et al. (2007). Del Soldato et al. (2018b) integrate InSAR data with
data from different sources (such as GPS, aerial optical photographs, and traditional
measurements carried out through geological and geomorphological surveys) in the
context of a historical study of landslide evolution. Tofani et al. (2013a) integrate
InSAR data with data collected by ground-based monitoring instrumentation, such as
inclinometers and piezometers, to characterize and monitor a landslide. Del Soldato
et al. (2018a) combine InSAR data and GNSS (Global Navigation Satellite System)
to investigate subsidence-related ground motions. Novellino et al. (2017) combine
InSAR data with aerial photograph data and field surveys in order to update a landslide
inventory.
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4.4 Software Performance Optimization

In recent years, spatial and temporal resolution of Earth observation instruments has
increased. Therefore, adopting proper techniques to speed up the analysis process has
become inevitable (Plaza et al. 2011), since processing data from SAR systems may
become a computationally heavy task. Computational challenges in processing remote
sensingdata are reviewed inMaet al. (2015) andmainly concern the following: the high
data dimensionality; the complexity of mathematical models and analysis methods,
such as those described in the present and next sections; the efficient data storage and
the use of dedicated or parallel hardware architectures, such as field-programmable
gate arrays (FPGAs) and graphics processing units (GPUs) (Lee et al. 2011); and the
implementation of efficient and strongly scalable algorithms, exploiting the peculiar
properties of the underlying hardware and providing accurate solutions quickly, up to
real-time computing.

In order to effectively apply advanced statistical techniques to large-scale data,
an efficient implementation relying on modern programming techniques is required.
Some examples of such techniques are expression templates and object factories,
which guarantee a wide flexibility and extensibility together with a high computa-
tional efficiency. Many libraries written using the Rcpp package (Eddelbuettel 2013)
have been developed in order to integrate high-performance C++ codes into the R
statistical programming framework, thus providing a more user-friendly processing
interface. Samatova et al. (2006) also presents parallel statistical computing techniques
for climate modeling. Despite having been applied to different classes of problems,
such methods can be inspirational for the development of optimized computational
techniques for Earth observation data analysis.

A rapidly growing research field in this framework relies on the use of machine
learning and neural network models (Ma et al. 2015). The main challenge in this
scenario is in providing a training set that is representative enough, with a possible
integration with simulation results obtained from physics-based differential models.
Kussul et al. (2016) proposes, in the remote sensing domain, amethodology for solving
large-scale classification and area estimation problems by means of a deep learning
paradigm: the application concerns the generation of high-resolution land cover and
land use maps for the territory of Ukraine from 1990 to 2010 and 2015. Similar
techniques, using more general SAR data, have been applied to hydro-geological risk
management, such as spatial prediction of flash floods in tropical areas. For instance,
Ngo et al. (2018) and Price et al. (2018) present an automatic detection technique of
anomalies, such as road damage, from SAR imagery. A deep learning approach using
COSMO-SkyMed SAR data for ship classification and navigation control is proposed
in Wang et al. (2017), and the techniques proposed therein could also be instrumental
for the analysis of ground displacement.
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5 Physics-Based Models and Methods

Natural events have spatial, temporal, and spatiotemporal variability that requires
effective modeling techniques for proper estimation and decision planning according
to scientific principles.

All Earth natural events, including landslides, earthquakes, volcanic activity, and
other geological phenomena, are intrinsically stochastic and affected by variability,
irregularity, and any other type of uncertainty (Sen 2016). However, it is often con-
venient to introduce proper idealization concepts and assumptions so that uncertain
phenomena become graspable by the physical knowledge available: in such an ide-
alized deterministic framework, for a given set of circumstances the outcome of an
event is uniquely predictable.

Such events are frequently described bymathematicalmodels derived fromphysical
principles and simulated by computer software of arbitrary complexity, depending on
the accuracy needed and the time available to produce prompt responses. In order to
enhance the accuracy and the level of realism of the predictions produced by numerical
simulations, the use of InSAR data can be functional for calibrating the large set of
parameters, often affected by huge variability, that characterize the physical models
adopted. The first part of this section presents both deterministic and stochastic sets
of state-of-the-art models and methods integrating physical knowledge that have been
proposed in the literature for monitoring and forecasting the natural hazards covered
by the present review. Finally, Sect. 5.5 presents a review of different strategies that
have been proposed in order to integrate satellite data within the context of physical
models.

5.1 Landslides

Themain difficulties in physics-basedmodels for propagating landslides arise from the
complex nature of slope movements and the computational effort required to provide
accurate results from simulating their time- and space-dependent behavior (van Asch
et al. 2007). Approaches for landslide simulation are usually based either on discrete
or on continuum models.

Continuumapproaches commonly involvemodeling the complex landslidematerial
as a continuum fluid medium governed by elastoplastic and rheological properties
characterized by a limited number of parameters, as described in Cremonesi et al.
(2017) and Hungr (1995). The typical physical laws taken into account are equations
governing the conservation of mass, momentum, and energy that, depending on the
complexity of the model, can be formulated for the solid, fluid, and gas phases, as in
Pudasaini (2012) and Pitman and Le (2005), or for a single homogenized phase. For
instance, the motion of rigid viscoplastic landslide material can be described using the
Navier–Stokes equations for an incompressible fluid

�

(
∂u
∂t

+ ((u − r) · ∇) u
)

− ∇ · σ D + ∇ p = �b,

∇ · u = 0,
(1)
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where u is the velocity of the material particles, p the pressure, � the density, σ D the
deviatoric part of the Cauchy stress tensor, andb a forcing term (e.g., the gravity force).
Equation (1) is coupled with proper boundary conditions, as described in Cremonesi
et al. (2017), and it is solved in an arbitrary Lagrangian–Eulerian fashion, that is, over
a computational domain �t that moves at each time t with velocity r. Dealing with
an evolving free surface is a hard task and makes Eulerian approaches less convenient
than Lagrangian ones which, on the other hand, are more computationally demanding.
In Crosta et al. (2009), the arbitrary Lagrangian–Eulerian approach is used to model
entrainment and deposition in rock and debris avalanches. Cremonesi et al. (2017)
presents a Lagrangian finite element (FE) technique with a basal slip model used for
three-dimensional simulations of landslides. In contrast to the standard FE method
for elastoplastic flows (Crosta et al. 2003), different alternatives have been developed
in order to overcome the otherwise unfeasible computational effort, such as depth
averaging (Quecedo et al. 2004) for landslides in which the depth is much smaller than
the length, or mesh-free methods (Wang et al. 2019) for large deformation modeling.

In discretemethods, the landslide ismodeled as a discrete set of particles of different
shape interacting with each other through contact forces whose physical description
is crucial in order to take into account the actual material properties. In Taboada and
Estrada (2009), a discrete element (DE) model is adopted for simulating the motion
of rock avalanches, which is modeled, on the basis of granular physics and shear
experiments, as a dense granular flow of dry frictional and cohesive particles: different
phases are identified, from the slope failure to the avalanche triggering and motion. A
similar model is adopted in Lu et al. (2014a) to address catastrophic slope failure under
heavy rainfall conditions: despite the resulting simulation providing scenario-based
run-out paths, particle velocities, and landslide-affected areas, such a discrete model
has numerical limitations due to the complex mechanisms of landslides, particularly
when the pore pressure increases. A different discrete approach, based on molecular
dynamics, is proposed in Martelloni et al. (2013) for shallow landslides caused by
rainfall. Here, the interaction between particles is modeled through a proper potential
function that takes into account a realistic range of viscosities; the two-dimensional
algorithm presented produces characteristic velocity and acceleration patterns that are
typical of real landslides.

5.2 Earthquakes

Mathematical models of seismic wave propagation are irreplaceable tools for investi-
gating theEarth’s structure and constructing ground shaking scenarios fromearthquake
phenomena. Earthquake ground motion prediction plays a central role in seismic
hazard analysis and has been employed within both probabilistic and deterministic
frameworks for estimating the expected ground motion at a site given an earthquake
of known magnitude, distance, faulting style, etc. A reference introduction to compu-
tational seismology, covering the one-dimensional wave equation to more advanced
state-of-the-art parallel numerical techniques, can be found in Igel (2017). Finite differ-
ence (FD), FE, and hybrid FD/FE methods have dominated the literature on modeling

123



Math Geosci

of earthquake motion in the past few decades, opening the way for numerical seismic
exploration and structural modeling, such as in Moczo et al. (2007).

Mathematical models for elastodynamics analyses in seismology are often derived
from the equations of motion, as presented inMazzieri (2012), namely the equilibrium
equations for an elastic medium subjected to an external seismic force f

�
∂2u
∂t2

− ∇ · σ (u) = f + fvisc
(

u,
∂u
∂t

)

, (2)

where � is the density, u is the soil displacement, σ (u) is the stress tensor taking
into account for the soil elastic properties, and fvisc represents the viscoelastic volume
forces depending on the displacement and the velocity. Viscoelastic FE models have
been used in Hu et al. (2004) to analyze post-seismic deformation fields of the great
1960Chile earthquake, providing promising results on the characterization of viscosity
parameters and post-seismic seaward motion.

More sophisticatedmathematicalmodels for seismic analysis combine the accuracy
of spectral element techniques (Mazzieri et al. 2011) with the flexibility of discon-
tinuous Galerkin FE methods (Wollherr et al. 2018 and Antonietti et al. 2018). Such
versatility, together with the ongoing progress of computational power, is likely to
enable three-dimensional numerical simulations of different seismic excitation sce-
narios, such as the series of earthquakes analyzed byPaolucci et al. (2014) that occurred
in Haiti and Chile in 2010, New Zealand in 2010–2011, Japan in 2011, and Italy in
2012.

Coupled multi-physics approaches modeling the Earth structure, the fault structure,
stress states during large earthquakes, and the consequent tsunami generation have
been proposed in Uphoff et al. (2017) and in Ulrich et al. (2019) for the 2004 Sumatra
and 2018 Sulawesi earthquakes and tsunamis, respectively.

Advancements in computational seismology have led to the development of
high-performance software for modeling seismic wave propagation and earthquake
dynamics, such as the spectral element simulator SPEED (Mazzieri et al. 2013),
used for elasto-dynamics applications as the ones shown in Fig. 5, the discontinu-
ous Galerkin package SeisSol (Breuer et al. 2014). Another example is contained
in Komatitsch et al. (2010), where a high-order FE method has been implemented on
a large parallel GPU cluster.

5.3 Volcanic Activity

Lava flow simulations can be used for planning evacuation or countermeasures in order
tomitigate the risks during effusive eruptions.Costa andMacedonio (2005a) present an
overview of the main physics-based approaches for lava flow prediction, from simple
probabilistic models to more complex computational fluid dynamics simulations.

Stochastic methods are shown to provide approximate maximum slope scenarios
in a very narrow computational time frame; they are also used to produce hazard
maps with lava invasion probabilities for different geographic sites. Such models are
usually based on Monte Carlo or Lattice Boltzmann simulation methods and rely on
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Fig. 5 Example of elasto-dynamics applications of SPEED. Reprinted from Paolucci et al. (2014)

the assumption that topography plays the major role in determining the lava flow
path: the flow is assumed to propagate randomly starting from a source point, and
upward paths are prevented whereas downward paths have a higher probability along
the maximum slope direction (see, e.g., Favalli et al. 2005).

On the other hand, continuum models require a higher computational effort, but
they are able to accurately predict the flow front velocity by taking into account pos-
sible human intervention scenarios (lava diversion, natural or artificial barriers, etc.).
Following the transport theory, lava can be reasonably modeled as an incompressible
non-Newtonian fluid in the presence of a free surface. During heat loss, which occurs
by radiation, lava cools and undergoes phase transitions that transform its fluid dynam-
ics properties, which requires a different modeling approach. As already described in
Sect. 5.1 for landslides, the physical equations that need to be simulated are the mass,
momentum, and energy conservation laws (see Costa and Macedonio 2005a and ref-
erences therein). An introduction to geomorphological fluid mechanics with a focus
on lava flows is contained in Balmforth et al. (2001).

Due to the high complexity of the physical processes involved, the numerical solu-
tion of the complete conservation equations for real lava flows is often unfeasible.
Simplified models have been derived to overcome the computational difficulties:
in Costa and Macedonio (2005b) a two-dimensional depth-averaged model for lava
thickness, velocities, and temperature is proposed, representing a good compromise
between the full three-dimensional description and the need to restrain the computa-
tional costs. Such approach, which is valid in the limit H2∗ /L2∗ � 1 (where H∗ is the
undisturbed fluid height and L∗ the characteristic length in the flow direction), consists
of solving the mass, momentum, and energy balance equations integrated over the lava
thickness. Given a terrain bed surface of height H , the fluid height h (assumed to be
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directed as z in the three-dimensional space) evolves as

∂h

∂t
+ ∂(uxh)

∂x
+ ∂(uyh)

∂y
= 0,

where ux and uy are the depth-averaged fluid velocity components along the x and y
directions, respectively, which satisfy proper approximations to the balance equations.
Similar shallow-depth approximation models for temperature-dependent lava flow
advance are also proposed in Bernabeu et al. (2016).

A different approach, presented in Carcano et al. (2013), consists in modeling a
multiphase flow to describe the injection and dispersal of a hot and high-velocity
gas/pyroclast mixture in the atmosphere: the gas phase is assumed to be composed of
atmospheric air mixed with different chemical components leaving the crater, such as
water vapor and carbon dioxide, whereas the pyroclasts are modeled as solid particles
of given size, density, and thermal properties.

Cellular automata, a concept born in the field of artificial intelligence, are being
increasingly used in the literature for geological investigation. The research commu-
nity has recently shown a huge interest in cellular automata models for lava flow
prediction: in such models, the three-dimensional space is populated by “living” cells
to which different parameters are associated, such as spatial coordinates, lava thick-
ness and temperature, and fluxes to and from neighbor cells. A set of rules determining
the temporal evolution of such cell parameters is prescribed starting from elementary
physical principles, for example: the lava flow from one cell to another occurs by
means of a hydrostatic pressure gradient, the altitude of the cells is increased as soon
as the lava cools down and solidifies, and temperature varies through physical laws
describing thermal radiation. One key example is the development of the MAGFLOW
cellular automaton model which was employed to investigate the Etna volcano lava
flows in 2001 (Vicari et al. 2007), 2004 (Del Negro et al. 2008), and 2006 (Herault
et al. 2009). Although the validation and interpretation of these models remain key
problems (Dewdney 2008), the sensitivity of the MAGFLOWmodel was analyzed in
depth in Bilotta et al. (2012).

Given the wide variety of numerical methods available for lava flow prediction,
assessing their validity is of the utmost importance: this issue has been addressed by
proposing different benchmark cases, either analytical (as in Dietterich et al. (2017))
or experimentally driven (as in Kavanagh et al. 2018), that can be used to discriminate
the range of applications and the scenarios covered by each model.

5.4 Ground Subsidence

Physics-based models for subsidence available in the literature have been used to
investigate the elastic properties of the ground such as displacement, stress, and strain
distribution: Yao et al. (1993) propose a mechanical FE analysis of surface subsidence
arising from mining an inclined seam, with a comparison to empirical models. In
Sayyaf et al. (2014) the land subsidence phenomenon is investigated following the
theory of porous media, considering both a solid and a fluid phase: the equations
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solved have the same form as Eq. (2), where the total density � here is given by

ρ = nρW + (1 − n)ρS,

n being the groundporosity, andρW andρS thewater and the solid density, respectively.
Coulthard (1999) presents applications of mathematical models in investigating

phenomena induced by underground mining and tunneling, including subsidence,
stresses generated when an open stope is filled or when two adjacent stopes are mined,
interactions among different tunnels, and effects of under-mining a pre-existing tunnel.
Suchmodels are based on the analysis of nonlinear stresses, which can be used to assist
the design of excavations and rock support mechanisms.

A model for subsidence prediction caused by extraction of hydrocarbons is dis-
cussed in Fokker andOrlic (2006). Such a semi-analytic model applies the viscoelastic
equations to a multi-layered subsurface with physical parameters varying across the
different layers. The numerical method discussed therein has few unknowns, so the
computations turn out to be very fast and fill the gap between analytic single-layered
and more elaborate FE models.

The differences between a multi-seam mining-induced subsidence profile and that
of single-seam mining have been investigated in Ghabraie et al. (2017) by means of
sand-plaster physical models, where different mining configurations were compared.
The proposed characterization of the multi-seam subsidence is shown to be useful
for enhancing subsidence prediction methods. Similar sand-plaster approaches were
compared to FE models in Ghabraie et al. (2015) on a subsidence mechanisms gen-
erated by extraction of longwall panels. Another work published by Marketos et al.
(2015) focuses on understanding the macroscopic mechanisms that lead to rock salt
flow-induced ground displacements, and to this end, a FE model is used in which the
rock salt layer is represented by a viscoelastic Maxwell material. In Ferronato et al.
(2008), a class of elastoplastic interface models at a regional scale is integrated into an
FE geomechanical porous mediummodel in order to analyze the role exerted by stress
variation induced by gas/oil production on land subsidence. An interesting hybrid
continuum/discrete approach is proposed in Vyazmensky et al. (2007): the surface
subsidence associated with block caving mining is studied by a continuum mechani-
cal FE model for the rock coupled to a discrete network of evolving soil fractures. In
an attempt to reduce the computational effort required to simulate subsidence induced
by mining under an open-pit final slope, a DE model is presented in Xu et al. (2016),
where friction, contact, and gravity forces of a discrete set of jointed rock masses
(rather than a continuum medium) are modeled.

Ground subsidence induced by natural events has also been analyzed. In Gambolati
and Teatini (1998), the evolution of soil compaction in Venice, the Po River delta, and
Ravenna was simulated through a one-dimensional FE model driven by groundwater
flow and calibrated through experimental physical parameters. Land subsidence by
aquifer compactionwas studied inShearer (1998) through an extensionofMODFLOW
(a popular FD package for groundwater flow released in 1983, see McDonald and
Harbaugh 2003) and applied to a simulation of the port of Hangu in China. Another
example of models for natural subsidence concerns the saltwater intrusion process in
the phreatic aquifer andwas applied to the Po River Plain in Giambastiani et al. (2007),
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where a numericalmodel enabled the quantification of density-dependent groundwater
flow, hydraulic head, salinity distribution, seepage, and salt load fluxes to the surface
water system.

5.5 Data Assimilation

In the context of natural hazard monitoring and forecasting, it is of paramount impor-
tance to exploit information coming both from the observation and sensing of the
area under study and the prior knowledge about the phenomenon under consideration.
Many works deal with the integration of Earth observation satellite data and known
models of the dynamics of the specific natural hazard. This enables one to describe
the dynamics of the phenomenon by resorting to physical models that characterize
the laws governing its evolution or to numerical simulations that emulate its behav-
ior, where the physical parameters involved are calibrated on experimental data that
enhance the predictive properties of the model itself.

In the spirit of assimilation of satellite data and physical laws, Moretto et al. (2017)
analyze, in the context of the study of slow-moving landslides, the integration of
InSAR data and failure forecasting methods (FFMs) based on the creep theory, which
characterizes the velocity and the acceleration of the slope. Elliott et al. (2016) provide
a review of the role of satellite data in the monitoring and forecasting of the active
tectonics and earthquakes and its use, shown in Fig. 6, for modeling the distribution
of the strain via elastic dislocation theory, which models the fault slip in the Earth’s
crust.

Segall (2013) investigates the use of satellite data for the study of volcanic deforma-
tions with the aim of forecasting eruptions, and underlines the importance of including
the underlying physicochemical process in the analysis through the exploitation of
deterministic models in model-based forecasts. Other examples of integration of satel-
lite data information into numerical models are presented byWright and Flynn (2003),
who compare numerical model results based on the dual-band method with data from
a hyperspectral imaging system providing thermal measurements of the lava surface
in order to retrieve the end-member thermal components of the lava determining its
temperature distributions; in Woo et al. (2012), who integrate InSAR data with three-
dimensional numerical models for the study of ground deformations produced by
mining, through the use of satellite groundmotion data to calibrate a predictive numer-
ical model with the aim of assessing ground subsidence; and in Rutqvist et al. (2015),
whopresent a numerical analysis of an enhancedgeothermal system formonitoring and
guiding cold-water injection strategies and exploiting InSAR ground-surface defor-
mation data for calibration of the model parameters which characterize the hydraulic
and mechanical properties of the reservoir, such as the bulk modulus.

6 Conclusions

This review shows the importance of Earth observation satellite data in monitoring
and forecasting natural hazards. We focus on the analysis of InSAR measurements
of ground displacement, which enables the study of many natural geohazards such
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Fig. 6 Use of satellite data for observing and interpreting earthquake faulting and deformation. Reprinted
from Elliott et al. (2016)

as landslides, earthquakes, volcanic activity, and ground subsidence. Moreover, we
describe recent advances in numerical and computational models and methods for
these applications.

A promising field of research concerns the techniques for the analysis of time series
of ground deformations, described in Sect. 4.1. With these methods, the InSAR data
are used not only for monitoring or a posteriori assessment, but also for forecasting
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natural disasters. Thus, these techniques pave the way for an operative use of InSAR
technology by civil protection authorities and for a concrete impact of the result of
these analyses on society.

This direction of research gives rise to new challenges. Delivering timely results
requires automated and fast data processing methodologies, while at the same time
ensuring that decisions are based on solid and reliable analyses, exploiting and inte-
grating statistical methodologies and physical-based models.
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