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Abstract

In this thesis, we study minimal hypersurfaces with U(m)-invariant Kähler metrics. We pro-

vide new method to construct AE scalar flat Kähler manifolds which contains stable minimal

hypersurface. In complex dimension 2, we compute the ADM mass and volume of the stable

minimal hypersphere. Once we have both volume of stable minimal hypersphere and ADM

mass, we have compared them and check that it satisfy the Riemannian Penrose Inequality.
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Introduction

Our work in this thesis is concerned to prove the Penrose Inequality for a special class of Kähler

manifolds namely U(m)-invariant Kähler manifolds. The Penrose Inequality was conjectured

by Roger Penrose [26] in 1973, which is the generalization of the Positive Mass Theorem. The

Penrose Inequality estimates the mass of a spacetime in terms of the volume of its black holes.

Following is the statement of a well known conjecture, the Riemannian Penrose Inequality.

Theorem 0.0.1. Let (Mn, g) be a complete AE manifold with non-negative scalar curvature,

which has an outermost minimal hypersurface Σ . Then the ADM mass mADM satisfies the

following

mADM ≥ 1

2

(
V (Σ)

VE(Σ1)

)n−2
n−1

, (0.0.1)

where VE(Σ) and VE(Σ1) are volumes of outermost minimal hypersurface and standard unit

hypersphere respectively. Moreover, equality holds if and only if Mn is isometric to a spatial

Schwarzschild manifold outside its horizon.

The notion of ADM mass was introduced by Arnowitt et.al [2] in the context of Hamilto-

nian formulation of general relativity. The first proof of the Riemannian Penrose Inequality

in dimension three was made by Huisken and Ilmanen [17]. They used the inverse mean

curvature flow for a largest connected component of apparent horizen.

Bray [7, 8] proved Theorem 0.0.1 using conformal flow and allowing multiple connected

components, first in dimension three and later up to dimension eight.

Hein and Lebrun proved the version of original Penrose Inequality for asymptotically Eu-

clidean (in short AE) Kähler manifolds. They replaced the outermost minimal hypersurface

in the original inequality by 2m− 2 real dimension submanifolds and gave the lower bounds
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of the ADM mass. Following is the Kähler version of the Penrose type inequality.

Theorem 0.0.2. Let (M, g, J) be an AE Kähler manifold of a complex dimension m with a

scalar curvature R ≥ 0. Then (M,J) carries a canonical divisor D that is expressed as a sum∑
niDi of compact complex hyper-surfaces with positive integer coefficients together with the

property that ∪Di ̸= ∅ whenever (M,J) ̸= Cm. In term of this divisor, we have

mADM ≥ (m− 1)!

(2m− 1)πm−1

∑
j

njvol(Dj), (0.0.2)

where the equality holds if and only if (M2m, g, J) is a scalar flat Kähler.

By Theorem 0.0.1 and Theorem 0.0.2 we have two different type of inequalities. We like

to compare these two inequalities and understand the following problem.

Assume that there exist AE Kähler manifold M with nonnegative scalar curvature which

contain both the outermost stable minimal hypersphere and the canonical divisor. Then which

of the inequality in (0.0.1) and (0.0.2) is better than the other one ?

Now, having this problem in mind, one can ask the questions, i.e. is there exists AE

scalar flat Kähler manifold which contain stable minimal outermost hypersurfaces? How we

can construct AE scalar flat Kähler manifolds? The discussions in this thesis provide a new

method to construct such Kähler manifolds.

In Chapter 1, we recall basic notions and provide a brief review of the general theory of

the Penrose Inequality in Riemannian and Kähler case.

In Chapter 2, we consider the family of canonical hyperspheres Σ2m−1
et in U(m)-invariant

Kähler manifold (Ma,b, ∂∂̄f(t)) which is defined as follows,

Ma,b = {(z1, ...zm) ∈ Cm : −∞ < a < t < b < +∞},

where

t = logS, S =
m∑
i=1

|zi|2

for any (z1, ..., zm) ∈Ma,b. The family of canonical hypersphere is defined as follows,

Σ2m−1
et =

{
(z1, z2, . . . , zm) ∈ Cm : et =

m∑
i=1

|zi|2
}

⊂Ma,b,
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We compute the mean curvature of of Σet with any U(m)-invariant Kähler metric. We pro-

vide two different proofs of the mean curvature formula: the first one is a direct computation

of the second fundamental form in dimension four, while the second proof is more geometric

and based on the first variation formula of area. Moreover, it is for higher dimensions which

also works in dimension four. Following is the main result of Chapter 2.

Theorem 0.0.3. The mean curvature and the volume of Σ2m−1
et ⊂ (Ma,b, ω =

√
−1∂∂̄f(t))

w.r.t outward normal vector are respectively given by ,

H(t, f(t)) =
−1

(2m− 1)(2)
3
2

√
etft(ftt)

3
2

(2(m− 1)f 2
tt + ftttft) ,

V (Σ2m−1) = (2)m
√
fttf

m−1
t VE(Σ

2m−1
1 ) ,

where VE(Σ2m−1
1 ) is the Euclidean volume of a unit hypersphere.

Since the Burns metric is U(m)-invariant and foliated by 3-spheres outside the exceptional

divisor, we can apply our formula of mean curvature to check that either it contains a minimal

3-sphere or not . For more detail about these metrics, the reader is refer to [29, 19]. These

metrics on Bl0(Cm) are scalar flat AE and is known as Burns-Simanca metrics. These metrics

play an important role in the construction of the constant scalar curvature Kähler metrics on

the blowup of compact manifolds [1]. As a consequences of our main result Theorem 0.0.3,

we obtain the following results.

Corollary 0.0.4. The blowup of C2 does not contain a minimal hypersphere in the family

of canonical hypersphere ΣS with Burns metric.

Corollary 0.0.5. The space Bl0C2/Γ2, where Γ2 = Z/2Z with Eguchi Hanson metric does

not contain a minimal hypersphere in the family of canonical hyperspheres ΣS.

Corollary 0.0.6. The projective space CPm with Fubini Study metric contains a minimal

hypersphere in the family of canonical hyperspheres ΣS.

Even we know the fact that the space CPm is not AE, we still for curiosity want to know

that either the minimal hyperspheres contain stable one. But thanks to the known fact due

to Simons, that a compact manifold with positive Ricci curvature does not contain stable
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minimal hypersurfaces [30]. After checking the examples (known to the author), we did not

find even one AE manifold which contains a stable minimal hypersurface in ΣS.

In Chapter 3, we prove that every U(m)-invariant Kähler manifold Ma,b with nonnega-

tive scalar curvature satisfy a system of nonlinear differential equations subjected to some

constrains.

Theorem 0.0.7. Let ω =
√
−1∂∂̄f(t) be a Kähler metric with non negative scalar curvature,

where f :Ma,b → R is a smooth function. Then R ≥ 0 if and only ifxt = xy − (2m− 1)x2

yt ≤ m(m− 1)(1− x)x ,
(0.0.3)

where x = ftt
ft

and y = (2m− 1)x+ xt
x
. In particular if the scalar curvature vanishes, then we

have xt = xy − (2m− 1)x2

yt = m(m− 1)(1− x)x .

In this thesis, all the results are for scalar flat metrics, so whenever we refer to system

(0.0.3) , we mean to consider the equality case.

One natural question arises about the converse of Theorem 0.0.7. More precisely, if we

have a solution (x(t), y(t)) of the system (0.0.3), are we able to construct a scalar flat Kähler

metric ω =
√
−1∂∂̄f(t) in such a way that x = ftt

ft
> 0 and y = (2m − 1)x + xt

x
? Moreover,

if we are able to construct such metric, is it unique? Are there exist minimal hyperspheres.?

In particular, stable minimal hyperspheres? The answer is given in the following.

Theorem 0.0.8. Let (x, y) be a solution of system (0.0.3). Then the following assertion hold

true.

• Let f(t) and u(t) be two solutions of the ordinary differential equation x = ftt
ft

on some

small interval I, with given initial conditions as follow
x = ftt

ft

f(t0) = α

ft(t0) = β ,

and


x = utt

ut

u(t0) = a

ut(t0) = b .
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Then the Kähler metrics ωf and ωu has the following relation ωf = µωu.

• The AE scalar flat Kähler manifold Ma,∞ contains a minimal hypersphere Σet0 in the

family of canonical hyperspheres Σet if and only if y(t0) = 0 for some t0.

• The minimal hypersphere ΣS0 is stable if and only if 0 < x(t0) ≤ 1 .

Once we found a family of scalar flat Kähler metrics from a solution of the system (0.0.3),

naturally we try to find a way to understand the solutions of the system (0.0.3), and end up

with the following theorem.

Theorem 0.0.9. All the solutions (x, y) of system of nonlinear differential equations (0.0.3)

are contained in level set of the function

f(x, y) :=
(y + (1−m)x−m)m

(mx− y +m− 1)m−1
, (0.0.4)

which we denote by Lλ .

Since corresponding to solutions (x, y) of system (0.0.3), we have scalar flat Kähler metrics,

so we would like to translate all the information given in Theorem 0.0.8 to the new setting,

i.e. in terms of the level set.

Theorem 0.0.10. The AE Kähler manifold (Cm \BRλ
(0), ωλ) with scalar flat Kähler metric

ωλ corresponding to the level set Lλ contains a minimal hypersphere ΣS0 of radius S0 = et0

in the family of canonical hyperspheres ΣS if and only if

λ(x0) =
((1−m)x0 −m)m

(mx0 +m− 1)(m−1)
,

where x(t0) = x0.

Moreover, the minimal hypersphere ΣS0 is stable if and only if

λ ∈
[
(−1)m(2m− 1),

(−m)m

(m− 1)m−1

[
.

For the higher dimension, we do not know the domain of the metric but for a complex

dimension 2, we explicitly know the radius of the ball BRλ
, and it behaves in the following

way :

Rλ =

<∞ λ→ 3

0 λ→ 4 .
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For m = 2 and x(t) > 0, the level sets Lλ of the function f(x, y) are given in the following

graph.

λ =
(y − x− 2)2

(2x− y + 1)
. (0.0.5)

0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

0

1

2

3

4

5

6

7

Figure 1: Level curves

Figure 1 represent the level sets Lλ for some λ. It is clear from the figure that when λ→ 4,

L4 approaches to the origin. The figure contains only those level sets which are interested for

us, i.e. for which x > 0. We notice that each level set contains the point (1, 3), which means

that all the scalar flat Kähler metrics corresponding to the level sets are AE. The level set L0

and L∞ contain the Burns and Eguchi Hanson metric respectively if x → 1−. Furthermore,

The level set L4 passing through the origin is a level set of the scalar flat Kähler metric (PMY)

given in [14].

Remark 0.0.11. Figure 1 suggests that there are two metrics on each level set approaching

to the Euclidean metric.

Theorem 0.0.12. For complex dimension m = 2, if x(t) > 0 for all t, then Lλ contains two

AE Kähler metrics on MRλ,∞ in which one metric contains two minimal hypersphere if and
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only if

λ =
(x0 + 2)2

(2x0 + 2)
,

for some x0 > 0. Moreover, one of the the minimal hypersphere is stable if and only if

λ ∈ [3, 4[ .

The following result is concerning with the volume of minimal hyperspheres.

Theorem 0.0.13. For m = 2, the AE Kähler manifold MRλ,∞ contains minimal hyperspheres

at x0(λ), where

x0(λ) = λ− 2±
√

(λ− 3)λ , (0.0.6)

for λ ∈ [3, 4).

Volume of Σet : V (Σ3
et) = (2eν−)

3
2
√
xVE(Σ

3
1) where

ν−(x) = − log

(
1 +

√
4(x− 1) + λ

λ

)
.

The volume of the minimal stable hypersphere behaves in the following way:

V (x0(λ)) =

VE(Σ3
1) λ→ 3

0 λ→ 4

Theorem 0.0.14. For m = 2, the ADM mass of the the AE Kähler manifold MRλ,∞ is λ
2
.

Theorem 0.0.15. For m = 2, the AE Kähler manifold MRλ,∞ satisfies the Riemannian

Penrose inequality,

mADM ≥ 1

2

(
VΣ3(x0)

VE(Σ3
1)

) 2
3

.

λ

2
≥ eν(x)

1
3

=

(
λ− 2−

√
λ(λ− 3)

) 1
3(

1 +

√
4
(
λ−3−

√
λ(λ−3)

)
+λ

λ

)
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Chapter 1

Preliminaries

1.1 Basic notions of Riemannian manifolds

We start this section by recalling the definition of a Riemannian metric and variation of

hypersurfaces in Riemannian manifold. The general theory for existence of compact minimal

hypersurfaces and its stability can be found in [3, 5, 11, 13, 23, 24, 28, 34].

Definition 1.1.1. A Riemannian metric g on a smooth manifold M is a correspondence

which assign to each point p ∈ M a positive definite, symmetric bilinear form gp on the

tangent space

gp : TpM × TpM → R .

In local coordinate system x = (x1, x2, . . . xn), with basis (∂x1 , ∂x2 . . . ∂xn) of TpM ,

gij = g(∂xi , ∂xj) .

A smooth manifold M is called a Riemannian manifold if there is a Riemannian metric g

on M .

Definition 1.1.2. An affine connection ∇ on M is a mapping

∇ : V (M)× V (M) → V (M) ,

satisfying the following properties with ∇(X, Y ) = ∇Y (X):
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1. ∇fX+gY (Z)) = f∇X(Z) + g∇Y (Z);

2. ∇X(Y + Z) = ∇X(Y ) +∇X(Z);

3. ∇X(fY ) = f∇X(Y ) +X(f)fY .

The following result characterizes that there is a unique connection associated to every

Riemannian manifold which we call a Levi-Civita connection.

Theorem 1.1.3. Let M be a Riemannian manifold. Then there exist a unique affine con-

nection ∇ satisfying the following properties for all X, Y, Z ∈ V(M):

1. ∇X(Y )−∇Y (X) = [X, Y ];

2. X(g(Y, Z)) = g(∇X(Y ), Z)) + g(X,∇XZ),

where [X, Y ] is a Lie bracket of vector fields.

Definition 1.1.4. Let f : Σ → M be an immersion and g is a Riemannian metric on N .

Then f induces a Riemannian metric on Σ given by

gΣ(X, Y )p := g(dfp(X), dfp(Y ))f(p) ∀p ∈ Σ, ∀ X, Y ∈ TpΣ.

This immersion is called an isometric immersion.

Definition 1.1.5. The second fundamental form is defined by

Πη(X) = g (∇X(X), η) . (1.1.1)

Definition 1.1.6. The mean curvature H of immersed manifold Σ is the gΣ-trace of the

second fundamental form Π .

Definition 1.1.7. A submanifold Σ of M is called totally geodesic if the second fundamental

form Πη(X) = 0, ∀X ∈ TpΣ.

Definition 1.1.8. A submanifold Σ is said to be minimal if its mean curvature H vanished.

9



Its clear from the above definitions that the class of minimal submanifolds is larger than

the class of totally geodesic submanifolds.

Now if we have a smooth family of immersion F : (−ϵ, ϵ) × Σ → M such that F0 = Σ and

∂tFt = ftη, where Ft = F (t, x), Σt = Ft(Σ) and η is a unit normal vector to Σ, then we say

that Ft is a variation.

Remark 1.1.9. For any compacted supported function f on Σ, there is a variation Ft with

ft|t=0 = f . If we set F̃t = expx(tf(x)η) where expx : TxΣ → Σ, then ∂tF̃ = fη.

Associated to the variation Ft we define the area functional A(t) = Area(Σt). The change

in the area functional up to second order is given in the following theorem.

Theorem 1.1.10. Consider the immersion F : (−ϵ, ϵ)× Σ →M . We have

d

dt
|t=0A(Σt) = −dim(Σ)

∫
Σ

Hf , (1.1.2)

d2

d2t
|t=0A(Σt) =

∫
Σ

(|∇Σf | − (|Π|2 +Ricg(η, η))f
2) +H2f 2 +Hf ′ , (1.1.3)

where H and Π are mean curvature and second fundamental form of Σ respectively.

It is clear from (1.1.2) that the minimal hypersurfaces are critical points of the area

functional.

Definition 1.1.11. A minimal hypersurface Σ is called stable if d2

d2t
|t=0A(t) ≥ 0.

Or equivalently, a minimal hypersurface Σ is said to be stable if and only if∫
Σ

(|∇Σf | ≥
∫
Σ

(|Π|2 +Ricg(η, η))f
2). (1.1.4)

1.2 Kähler manifolds

In this section, we recall some notions in complex Kähler geometry that we use in the upcoming

Chapters (for further details see [31]) .
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Definition 1.2.1. . A complex manifold is a smooth manifold M such that the transition

maps Φi ◦Φ−1
j : Φj(Ui∩Uj) ⊂ Cn → Φi(Ui ∩ Uj) ⊂ Cn are holomorphic for any pair of i, j ∈ I

with Ui ∩ Uj ̸= ∅.
Each pair (Ui,Φi) is called complex chart and the whole collection is called complex atlas.

Definition 1.2.2. An endomorphism J : TPM → TPM is said to be an almost complex

structure on a smooth manifold M if J2 = −1.

Definition 1.2.3. An almost complex structure J on a smooth manifold M is integrable if

it arises from the holomorphic charts.

Definition 1.2.4. The Nijenhuis tensor N(J) : TM × TM → TM is defined by

N(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ],

for X, Y ∈ TM .

Any complex structure on M induces a canonical integrable almost complex structure J .

The question is whether the converse of this is possible or not? The answer is positive and is

given in the following theorem.

Theorem 1.2.5. An almost complex structure J is integrable if and only if N(J) = 0, where

N is the Nijenhuis tensor.

Definition 1.2.6. Let (M,J) be a complex manifold with complex structure J . The com-

plexified tangent bundle of M is defined as TCM = TM
⊗

RC.

The complex structure J can be extend to TCM and decompose the complexified tangent

bundle point wise into eigen-spaces of i and −i, i.e.

TCM = T 1,0M ⊕ T 0,1M,

where T 1,0M = {X ∈ TCM : JX = iX} and T 0,1M = {X ∈ TCM : JX = −iX}.
The definition of J can be extend to the real cotangent bundle T ∗M by,

Jα(X) = −α(JX),

11



for α ∈ T ∗M and X ∈ TM . Similarly, we can complexified the cotangent bundle, and the

complex structure J gives the decomposition of cotangent bundle

T ∗
CM = (T 1,0M)∗ ⊕ (T 0,1)∗M.

In local coordinates (z1, . . . , zm) where zi = xi +
√
−1yi, if we define

∂zi =
1

2
(∂xi − i∂yi) and ∂z̄i =

1

2
(∂xi + i∂yi),

then T 1,0M is spanned by {∂zi} while T 0,1M is spanned by {∂z̄i}. The basis for the dual spaces

(T 1,0M)∗ and (T 0,1)∗M are given by 1-forms respectively dzi = dxi+idyi and dz̄i = dxi−idyi .
The complex structure J on T 1,0M and T 0,1M is defined by J(∂zi) = i∂zi and J(∂z̄i) = −i∂z̄i
respectively while on (T 1,0M)∗ and (T 0,1)∗M it is defined by J(dzi) = idzi and J(dz̄i) = idz̄i.

We noted that the complex structure gives natural decomposition of complexified exterior

power of cotangent bundle
k∧
T ∗
CM :=

k∧
T ∗M ⊗ C,

where T ∗
CM = (T 1,0M)∗ ⊕ (T 0,1M)∗. Indeed we have

k∧
T ∗
CM := ⊕p+q=k

(
p∧(

T 1,0M
)∗ ⊕ q∧

(T 0,1M)∗

)
.

We denote the space of (p, q)-forms by A(p,q)(M), which is locally spanned by dzi∧, . . . , dzp ∧
dz̄p+1, . . . dz̄q. Thus we have

Ak(M) = ⊕p+q=kA
(p,q)(M).

The exterior derivative is a map d : Ak(M) → Ak+1(M) such that d2 = 0. On a complex

manifold M , the decomposition of forms gives rise to decomposition of exterior differential

d = ∂ + ∂̄ where

∂ : A(p,q)(M) → A(p+1,q)(M),

∂̄ : A(p,q)(M) → A(p,q+1)(M),

with the relations that d2 = 0, ∂2 = 0 = ∂̄2 and ∂∂̄ = −∂̄∂.

Definition 1.2.7. Let (M, g, J) be a Riemannian manifold with complex structure J . The

metric g is called Hermitian if g is compatible with complex structure J , i.e. if g(JX, JY ) =

g(X, Y ), for all tangent vectors X, Y .
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Given a Hermetian metric g, if we define ω(X, Y ) = g(JX, Y ) for all tangent vectors X, Y ,

then ω is anti-symmetric real 1-1 form.

In local coordinates z = (z1, z2 . . . zm), the Hermitian condition implies that

g

(
∂

∂zi
,
∂

∂zj

)
= g

(
∂

∂z̄i
,
∂

∂z̄j

)
= 0.

So that the Hermitian metric g is determined by

gij̄ = g

(
∂

∂zi
,
∂

∂z̄j

)
.

We can express g and the associated 2-form ω as

g = gij̄dzi ⊙ dz̄j,

ω = igij̄dzi ∧ dz̄j.

Definition 1.2.8. A Hermitian manifold (M, g, J) is said to be a Kähler manifold if the

associated 2-form ω is closed, i.e. if dω = 0.

Since the Kähler form ω is closed real form it defines a cohomology class [ω] ∈2 (M,R) .

The most important result is that on compact manifold Kähler metrics in fixed cohomology

class can be parameterized by single real valued function.

Theorem 1.2.9. Let M be a compact Kähler manifold with Kähler form ω. Then for any

other Kähler form ω̄ ∈ [ω] ∈ H2(M,R), there exist a smooth real function f such that

ω = ω̄ + i∂∂̄f .

The next theorem characterizes some properties of Kähler manifolds, in which the most

important one is that the Kähler form ω can be described locally by real valued function.

Theorem 1.2.10. Let M be a complex manifold with a compatible Riemannian metric g

and Levi-Civita connection ∇. Then the following are equivalent.

1. dω = 0.

2. ∇J = 0.
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3. For each point p ∈ M , there is a smooth real function f in a neighbourhood of p such

that ω = i∂∂̄f .

Its clear that every Kähler manifold has underlying Riemannian manifold structure. The

next Lemma tells us that there is an interesting relationship between the volume element of

Riemannian manifold and m-from of Kähler form.

Lemma 1.2.11. If ω is a Kähler form, then ωm

m!
is the volume element of the Riemannian

metric defined by the Kähler form.

Proof. The computation is really pointwise. Let us fixing point p ∈ M and holomorphic

coordinates zi = xi +
√
−1yi. The set {∂xi , ∂yi : i = 1, . . . ,m} form an orthonormal fram for

the real tangent space TpM and {dxi, dyi : i = 1, . . . ,m} is its coframe. The fram and cofram

for the complex tangent space are denoted by

∂zi =
1

2
(∂xi − i∂yi), dzi = dxi + idyi .

In this notation, the Kähler form and the associated metric are given as follow

ω =
√
−1

m∑
i=1

dzi ∧ dz̄i , (1.2.1)

g =
m∑
i=1

dzi ⊙ dz̄i = 2(dxi ⊗ dxi + dyi ⊗ dyi) . (1.2.2)

The volume element of the Riemannian metric is given by

dV =
√
gdx1dyy1 · · · dyym = 2mdx1dyy1 · · · dxmdyym . (1.2.3)

Thus we have

ωm = m!(
√
−1)mdz1 ∧ dz̄1 · · · dzm ∧ dz̄m . (1.2.4)

By using the relation dzi ∧ dz̄i = −2
√
−1dxi ∧ dyi in (1.2.4), we have

ωm

m!
= 2mdx1dyy1 · · · dxmdyym . (1.2.5)

We see that (1.2.3) and (1.2.5) conclude the proof.
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The Ricci and scalar curvature of the Kähler metric ω = igij̄dzi ∧ dz̄j can be computed

respectively by the following formulae,

Rij̄ = −∂i∂̄j log(det(gij̄) , (1.2.6)

R = −gij̄∂i∂̄ log(det(gij̄)) . (1.2.7)

1.3 Generalities of Penrose Inequality

In this section, we provide a brief discussion about the Riemannian Penrose Inequality an

important case of a conjecture made by Roger Penrose. We consider space like slices (M3, g,Π)

of a space time where g is the positive definite metric on M3 and Π is the second fundamental

form of M3 in the space time.

Definition 1.3.1. [16] A complete connected non-compact Riemannian manifold (M, g) of

dimension n ≥ 3 is said to be AE if there is a compact set K ∈M such that the complement

of K is disjoint union of ends, where each end is diffeomorphic to the complement of a closed

ball in Rn. Moreover in AE coordinates (x1, . . . , xn) the metric g satisfy

gij̄ = δij̄ +O(|x|−τ ) , (1.3.1)

with

gij̄,k = O(|x|τ−1). (1.3.2)

where |x| =
√∑n

i=1 xi.

In other words, the metric g becomes Euclidean metric plus terms that fall off rapidly

at infinity. An asymptotically locally Euclidean manifolds (in short ALE) are those where

ends are asymptotic to flat cones. The ALE manifolds with zero scalar curvature are very

important as they provide counter example to the generalized positive mass conjecture [15]

by Hawking and Pope.

Definition 1.3.2. A complete connected non-compact Riemannian manifold (M, g) of dimen-

sion n ≥ 3 is said to be asymptotically locally Euclidean if there is a compact set K ∈M such
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that the complement of K is disjoint union of ends, and there is a a diffeomorphism between

M − K and (Rn − Bn)/Γ where B is a ball around the origin in Rn. This diffeomorphism

gives a specific set of coordinates at infinity, such that

gij̄ = δij̄ +O(|x|τ ) ,

with

gij̄,k = O(|x|τ−1),

where Γ ⊂ SO(n) which acts freely on the unit sphere.

Remark 1.3.3. If Γ = 1, then ALE manifold is AE.

To the end of every asymptotically Euclidean Riemannian manifold there is an associated

quantity called the ADM mass. The notion of ADM mass was introduced by Arnowitt Deser

and Misner [2] in the context of Hamiltonian formulation of general relativity.

Definition 1.3.4. For AE manifold, the ADM mass is denoted by m and defined as

mADM =
1

16π
lim
r→∞

∫
Sr

∑
i,j

(gij,i − gii,j)ηjdµ,

where Sr is the coordinate sphere of radius r, ηj is unit normal to Sr and dµ is the area

element of Sr in coordinate chart.

The definition of ADM mass seems to be depend on the choice of coordinates. But Bartnik

[4] and chruśceil [10] independently proved that if we impose weak fall of conditions of the

following type:

1. the scalar curvature of the metric has the property
∫
Rd <∞;

2. the component of the metric satisfy gij−δij ∈ C1,α
−τ for some τ > n−2

2
and some α ∈ (0, 1)

at each end in some asymptotic coordinates,

then the ADM mass is finite and does not depend on the choice of coordinates.

Theorem 1.3.5. (The Riemannian Positive Mass Theorem)

Let (M, g) be any asymptotically Euclidean manifold with non negative scalar curvature

R ≥ 0. Then the ADM mass mADM ≥ 0 and the equality holds if and only if (M, g) is

isometric to the Euclidean space.
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The Riemannian Positive Mass Theorem was first proved by Schoen and Yau [27] for an

n-dimensional manifold with 3 ≤ n ≤ 7. Witten [33] in 1981, proved the Theorem 1.3.5 for

spin manifolds in any dimension. Lohkamp [20] extend the proof to any dimension without

spin assumption. Hawking and Pop conjectured [15] that a similar Positive Mass Theorem

hold for ALE manifolds, but later on LeBrun [19] found counterexamples to the conjecture in

1988.

The Riemannian Penrose inequality is generalization of the Positive Mass Theorem which

gives the relation of the ADM mass of an end with the area of the of the surfaces representing

black holes. In the time symmetric case black holes are represented by compact minimal

surfaces, which are called apparent horizen. Before moving on to the statement of the Rie-

mannain Penrose inequality, we present some definitions and as an example, consider the

Schwarzchild manifold.

Definition 1.3.6. Let (M3, g) be totally geodesic submanifold in the spcace time, the ap-

parent horizon of (M3, g) is the smallest surface Σ so that any closed minimal surface Σ′ is

"inside" of Σ (with respect to the AE end).

Remark 1.3.7. There is a chosen end of M3 and Σ′ is "inside" of Σ is defined with respect

to this end.

Remark 1.3.8. Since the AE manifolds is allowed to have many ends so there could be

multiple horizen associated to each end.

Definition 1.3.9. A surface Σ is said to be outer minimizing if every surface which enclose

it has (strictly) greater area. Mathematically, an outer minimizing surface is stable minimal

surface.

Since the apparent horizon does not contained in any other surface, so they are outer

minimizing (stable surfaces). From the stability argument [25] it follows that outermost

minimal surfaces must have the topology of sphere.

Example 1.3.10. The Schwarzchild manifold

The Schwarzchild metric is defined on R3 \B2m(0), and is given by
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g̃m =

(
1− 2m

r

)−1

dr2 + r2gS2 . (1.3.3)

The metric g̃m approaches the Euclidean metric as r → ∞. The parameter m is positive

constant and equals to the total mass of the manifold. The coordinates sphere r = 2m is a

single minimal sphere of the Schwarzchild manifold. The coordinates sphere r = 2m is called

the apparent horizen. The Schwarzchild is spherically symmetric and Ricci flat.

Definition 1.3.11. A manifold M3 is spherically symmetric if there is an action of rotation

group SO(3) on M and the orbits of this action are 2-sphere.

Figure 1.1: The Schwarzchild manifold

18



Remark 1.3.12. From (1.3.3), the metric coefficient becomes infinite at r = 0 and at r = 2m.

It seems that that the coordinate sphere is not part of the manifold. But it turn out that the

singularity r = 2m is only coordinate singularity and can be remove by using the change of

coordinates.

Define

r∗ =

∫
dr

1− 2m
r

= r + 2m log(r − 2m) .

Then we have (
1− 2m

r

)
dr∗ =

(
1− 2m

r

)−1

dr2 .

Now in this coordinates (1.3.3) can be written as

g̃m = (1− 2m

r
)(dr∗)2 + r2gS2 .

Clearly r = 2m is no more a singular point. Thus the change of coordinates allows a smooth

extension of g̃m to the boundary.

Theorem 1.3.13. Let (M3, g) be a complete, smooth, asymptotically Euclidean manifold

with non negative scalar curvature which has an outermost minimal hypersurface Σ. Then

mADM ≥
√

A

16π
. (1.3.4)

with equality if and only if (M3, ) is isometric to the Schwarzchild metric (R3 \ 0, g̃m) of mass

m outside their respective horizons.

The first proof of the Riemannian Penrose Inequality was made by Huisken and Ilma-

nen [17] by using inverse mean curvature flow, for largest connected component of apparent

horizen. Bray [7] proved Theorem 1.3.13 using conformal flow and allowing multiple connected

components, later in 2009 he extends the proof upto dimensions 8 , [8].

1.4 The Penrose Inequality for Kähler manifolds

In 2016, Hein and Lebrun [16] proved that the lower bound of the mass of the end of AE

Kähler manifolds can be given in terms of the volume of the canonical divisor. Moreover
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he proved an explicit formula for the mass of ALE Kähler manifolds. In the case when the

ALE Kähler manifold is scalar flat, he proved that the mass is a topological invariant of the

underlying smooth manifold. In order to present his formula of mass for ALE manifold we

recall some definitions.

Definition 1.4.1. The de Rham cohomology group of the manifold M defined as

Hm(M) =
closed m-forms on M
exact m-forms on M

,

where the set of closed m-forms are the kernal of d : Am(M) → Am+1(M) and the set of

m-exact forms are image of d : Am−1(M) → Am(M). The de Rham cohomology group for

compactly supported forms is denoted by Hm
c (M).

There is a natural map between the deRham cohomology group of compact supported

forms and H2(M)

H2
c (M) → H2(M).

Lemma 1.4.2. Let (M, g) be any ALE manifold. Then the natural map

ϕ : H2
c (M) → H2(M) (1.4.1)

is an isomorphism.

If the manifold is complex, in particular oriented, then we have.

Theorem 1.4.3. (Poincaré duality for non compact manifold)

For noncompact oriented manifold M of real dimension 2m ,

H2
c (M) ∼ (H2m−2(M))∗.

Now we are ready to state the formula of mass for ALE Kähler manifolds proved in [16].

Theorem 1.4.4. Let (M, g, J) be an ALE Kähler manifold of a complex dimension m. Then

the mass m is given by

m = −⟨ϕ−1(c1), [ω]
m−1⟩

(2m− 1)πm−1
+

(m− 1)!

4(2m− 1)

∫
RgdV (1.4.2)
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where Rg and dV are respectively the scalar curvature and volume form of g, c1 is the first

chern class of (M,J), [ω] ∈ H2(M) is the Kähler class of g, and ⟨·, ·⟩ is the duality pairing

between H2
c (M) and H2n−1(M). Moreover, If the ALE Kähler metric is assumed to be scalar

flat, then the mass is a topological invariant, determined completely by the smooth manifold,

together with the first chern class and the Kähler class [ω] of the metric.

Remark 1.4.5. In general if we have an AE manifold and we find the mass of an end, by the

Positive Mass Theorem at least we can have the idea (measure) that it should be positive. But

the Positive Mass Theorem is not true for ALE manifolds, so there is a question why should

one belief that (1.4.2) is good definition of mass. The answer of this question is very well

explained in [16] and here we present the argument. We recall a well known result ([9],[6]) for a

compact Kähler manifold that the total scalar curvature is a topological invariant determined

by the first chern class of the complex structure and the Kähler class of the metric, i.e.∫
M

RdV =
4π

(m− 1)!
⟨c1, [ω]m−1⟩.

The equation (1.4.2) can be rewritten as,

∫
M

RdV =
4(2m− 1)

(m− 1)!
m +

4π

(m− 1)!
⟨c1, [ω]m−1⟩ (1.4.3)

The essence of the formula in Theorem 1.4.4 is that it measure the deviation of ALE manifold

from being compact.

Remark 1.4.6. Having the understanding of (1.4.3), one can immediately notice the known

fact that ALE Ricci flat manifolds has zero mass.

Hein and Lebrun proved that the Positive Mass Theorem also hold for Kähler manifolds

even if the manifold is non spin, which one would expect due to [20, 27].

Theorem 1.4.7. The Positive Mass Theorem for Kähler manifolds

Let (M,J) be an AE Kähler manifold with non negative scalar curvature R ≥ 0. Then

m ≥ 0.

The equality holds if and only if (M,J) is a Euclidean space.
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Theorem 1.4.8. The Penrose type Inequality for Kähler manifolds

Let (M, g, J) be an AE Kähler manifold of a complex dimension m with scalar curvature

R ≥ 0. Then (M,J) carries a canonical divisor D that is expressed as a sum
∑
niDi of

compact complex hyper-surfaces with positive integer coefficients, and with the property that

∪Di ̸= ∅ whenever (M,J) ̸= Cm. In term of this divisor,

m ≥ (m− 1)!

(2m− 1)πm−1

∑
j

njvol(Dj), (1.4.4)

where the equality holds if and only if (M2n, g, J) is a scalar flat Kähler.

Remark 1.4.9. The Hein and Lebrun version of Penrose type Inequality claim that the lower

bound of the mass can be obtained if the compact stable minimal hypersurface in Penrose

inequality is replaced by 2m− 2 dimensional real manifold.
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Chapter 2

Mean curvature and volume of

hyperspheres

In this chapter, we consider some special class of hypersurfaces and study mean curvature

and volume of of each hypersphere the family of canonical hyperspheres in Cm with U(m)

invariant Kähler metrics. We give a brief introduction of the U(m)-invariant Kähler metrics

that will often use in this thesis. The most vital part of this chapter is the computation of

the mean curvature and volume of the hypersphere in the family of canonical hyperspheres.

We pick some known example where we can apply our formula and check if there exist any

minimal hypersphere in ΣS.

2.1 U(m)-invariant Kähler metric on Cm \ 0

We consider those Kähler metrics for which the potential function f : (0,∞) → R is invariant

in local coordinates {(z1, z2, . . . , zm)} and depends only on S = |z1|2 + |z2|2 + · · ·+ |zm|2. For

more details the reader is referred to [14, 18, 22, 32] where U(m)-invariant Kähler metrics has

been studied.

In this section, we discuss all interesting geometric quantities of the U(m)-invariant Kähler

metric which will be used latter, i.e. volume element Ricci curvature and scalar curvature.

We will mostly use three types of coordinate S, t and Θ.
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Remark 2.1.1. First we set the notations for this section. We consider ω =
√
−1gij̄dzi ∧ dz̄j

and the metric associated to ω is g = gij̄dzi ⊙ dz̄j . For instance if

ω =
√
−1

m∑
i=1

dzi ∧ dz̄i,

then the associated metric g in real coordinate can be written as

g =
m∑
i=1

dzi ⊙ dz̄i = 2(dxi ⊗ dxi + dyi ⊗ dyi).

Therefore whenever we use the real coordinates we should be comfortable with the factor 2.

We consider the real (1, 1) form

ω =
√
−1∂∂̄f(S) =

√
−1(fS∂∂̄S + fSS∂S ∧ ∂̄S), (2.1.1)

where S = |z1|2 + |z2|2 + · · ·+ |zm|2 and fS denotes the derivative of f with respect to S.

The metric:

The metric g associated to the Kähler form (2.1.1) is given as follows,

g =



fS + fSS|z1|2 z1z̄2fSS . . . z1z̄mfSS

z2z̄1fSS fS + fSS|z2|2 . . . z2z̄mfSS

...
... . . . ...

zmz̄1fSS zmz̄2fSS · · · fS + fSS|zm|2


By direct computation one can see that

det(g) = (fS)
m−1(fS + SfSS), (2.1.2)

Clearly det(g) > 0 if and only if fS > 0 and fS + SfSS > 0. We summarize that the form

(2.1.1) defines Kähler metric if and only if fS > 0 and fS + SfSS > 0.

The component of the inverse metric of g

gij̄ =
(fS)

m−2

det(g)
[(fS + SfSS)δij̄ − fSSziz̄j].
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Remark 2.1.2. In our notation, the potential function of Euclidean metric is f(S) = S
2
.

The Volume form is denoted and defined by

ωm

m!
= (

√
−1)m((fS)

m−1(fS + SfSS)dz1 ∧ dz̄1 ∧ ... ∧ dzm ∧ dz̄m . (2.1.3)

By Lemma 1.2.11 we know that (2.1.3) is a volume form of the Riemannian metric and in

real coordinates it can be written as

ωm

m!
= (2fS)

m−1(2(fS + SfSS)dx1 ∧ dyi · · · dxm ∧ dym .

ωm

m!
= (fS)

m−1((fS + SfSS)dVE , (2.1.4)

where dVE is the Euclidean volume form.

The Ricci and scalar curvature

If we denote v(S) = log(det(g)), then the Ricci curvature and scalar curvature can be com-

puted respectively by the following formulae

Rij = −∂∂̄v(S) = −(vSδij̄ + vSSzizj̄), (2.1.5)

R = − S1−m

det(g)
[Sm(fS)

m−1vS]S . (2.1.6)

The logarithmic coordinates

It is convenient to consider the change of logarithmic coordinates t = logS and f(t) = f(S)

for the computation purpose. The Kähler form given in (2.1.1) can be written in coordinates

t as follows

ω =
√
−1(ftt∂t ∧ ∂̄t+ ft∂∂̄t). (2.1.7)

Indeed we have fS = ft
S

and fSS = 1
S2 (ftt − ft) .

The determinant given equation (2.1.2) becomes

det(g) = e−mtfm−1
t ftt.

The Ricci and scalar curvature in t

If we define v(t) = log(e−mtfm−1
t ftt), then the Ricci form and scalar curvature are given

respectively as follows:

Rij̄(ω) = −
√
−1∂i∂̄j̄v(t),
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R = −△ v(t). (2.1.8)

We know that if we fix the Kähler metric ω om M and ϕ be any smooth real function on

M , then there is τ ∈ (−ϵ, ϵ) for small enough ϵ such that ωτ = ω + τ
√
−1∂∂̄ϕ is still Kähler

metric on M , and we have

△ϕ =
1

ωm
d

dτ
|τ=0(ω + τ

√
−1∂∂̄ϕ)m . (2.1.9)

The purpose of following Lemma is to give the explicit formula for scalar curvature equation

which involve only derivatives of the potential function f(t) .

Lemma 2.1.3. Let ω =
√
−1∂∂̄f(t) be a U(m) invariant Kähler metric on Cm \ {0} and

ϕ = ϕ(t). Then we have

△ϕ(t) = (m− 1)
ϕt
ft

+
ϕtt
ftt

. (2.1.10)

Proof. In coordinates t equation (2.1.3) becomes,

ωm = m!e−mtfm−1
t fttdz1 ∧ dz̄1... ∧ dz̄m.

Now ϕ = ϕ(t), we have

ωmτ = (
√
−1∂∂̄(f(t)) + τϕ(t))m = m!(e−mt(ft + τϕt)

m−1(ftt + τϕtt)) ,

and thus

d

dτ
ωmτ

∣∣∣∣
τ=0

=
d

dτ
(ω + τ

√
−1∂∂̄ϕ)m

∣∣∣∣
τ=0

= m!
(
(m− 1)e−mtfm−2

t fttϕt + e−mtfm−1
t ϕtt

)
.

Using (2.1.9), we obtain

△ϕ(t) = (m− 1)
ϕt
ft

+
ϕtt
ftt

. (2.1.11)

Proposition 2.1.4. The scalar curvature of ω =
√
−1∂∂̄f(t) is

R =
m(m− 1)

ft
− 2(m− 1)fttt

ftftt
+
f 2
ttt

f 3
tt

− ftttt
f 2
tt

− (m− 1)(m− 2)ftt
f 2
t

. (2.1.12)
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Proof. By (2.1.8) and Lemma (2.1.3), the scalar curvature is

R = −△ v(t) = −
(
(m− 1)

vt
ft

+
vtt
ft

)
, (2.1.13)

where v(t) = log(e−mtfm−1
t ftt). Putting the values of νt and vtt in (2.1.13), we have

R =
m(m− 1)

ft
− 2(m− 1)fttt

ftftt
+
f 2
ttt

f 3
tt

− ftttt
f 2
tt

− (m− 1)(m− 2)ftt
f 2
t

. (2.1.14)

In general the scalar equation for Kähler metrics is nonlinear fourth order PDE but for

the U(m)-invariant Kähler metrics it reduce to nonlinear fourth order ODE. We also recall

the condition that make ω to be a Kähler-Einstein metric, i.e. the solution of the following

equation

Ric(ω)− λω = 0, (2.1.15)

for some real constant λ.

Since ω =
√
−1∂∂̄f(t), we have

Ric(ω)− λω = −
√
−1∂∂̄

(
log(e−mtfm−1

t ftt) + λf(t)
)
.

By equation (2.1.7), it follows easily that all spherical symmetric solutions of the equation

∂∂̄ψ = 0 is of the form,

ψ =

c1t+ c2 if m = 1

c if m ≥ 2 ,

for some constant c, c1, c2 ∈ R. Thus ω is Kähler-Einstein metric if and only if

fm−1
t ftt = eψ(t)+mt−λf .

Hence we have proved the following results.

Proposition 2.1.5. Let ω =
√
−1∂∂̄f(t) be a Kähler form on C\0. Then ω is Kähler-Einstein

metric if and only if there exist c1, c2 ∈ R such that f(t) satisfies

ftt = ec1t+c2−λf .
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Proposition 2.1.6. Let ω =
√
−1∂∂̄f(t) be a Kähler form on Cm \ 0 with m ≥ 2. Then ω

is Kähler-Einstein if and only if there exist c ∈ R such that f(t) satisfies

fm−1
t ftt = ec+mt−λf .

Example 2.1.7. Let f(t) = eβt

β
with β ̸= 0. Then we have

ftt = eβt.

Thus the Kähler form defined by

ωβ =

√
−1

β2
∂∂̄eβt,

are all Ricci flat on C \ 0.

Example 2.1.8. Let f(t) = t2

2
. Then ftt = 1, and the Kähler form

ω0 =
√
−1∂∂̄

(
t2

2

)
,

is Ricci flat on C \ 0.

– Notation: For z = (z1, . . . , zm) ∈ Cm we denote zj = ρje
iθj the polar coordinates on

C . We denote the new coordinates by

Θ = (ρ1, . . . , ρm, θ1, . . . , θm) .

The metric corresponding to the Kähler form given in (2.1.1) is

g = fSS(∂S ⊙ ∂̄S) + fS∂∂̄S , (2.1.16)

with the convention that ∂S ⊙ ∂̄S = ∂S ⊗ ∂̄S + ∂̄S ⊗ ∂S .

In the coordinates Θ, we have S =
∑

j ρ
2
j and the metric g associated to (2.1.16) becomes

g =
m∑

k,j=1

fSSρjρk(dρj ⊙ dρk + ρjρkdθk ⊙ dθj) + fS(dρj ⊙ dρj + ρ2jdθj ⊙ dθj). (2.1.17)
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The matrix corresponding of the metric g in this new coordinate is a block matrix

g =

A 0

0 B

 ,
where A and B denotes the matrix representation of the metric g with respect to (∂ρ1 , . . . , ∂ρm)

and (∂θ1 , . . . , ∂θm) respectively. The matrix A and B are as follows

A =



g11 g12 . . . gim

g21 g22 . . . g2m

...
... . . .

...

gm1 gm2 . . . gmm


, B =



ρ21g11 ρ1ρ2g12 . . . ρ1ρmg1m

ρ1ρ2g21 ρ22g22 . . . ρ2ρmg2m

...
... . . .

...

ρ1ρmgm1 ρ2ρmgm2 . . . ρ2mgmm


,

where gii = 2fSSρ
2
i + 2fS and gij = 2fSSρiρj. Clearly the determinant of the matrix g is

det(g) = det(A) · det(B).

By direct computation we have

det(A) = 2m(fS)
m−1(fSSS + fS), det(B) = 2m

(
m∏
i=1

ρi

)2

(fS)
m−1(fSSS + fS)

which gives

det(g) = 22m

(
m∏
i=1

ρi

)2

(fS)
2m−2(fSSS + fS)

2. (2.1.18)

In local coordinates (ρ1, ..., ρm, θ1, ..., θm), the volume form 2.1.4 becomes

dV =

(
m∏
i=1

ρi

)
(2fS)

m−1(2(fSSS + fS)dρ1 ∧ ... ∧ dρm ∧ dθ1 ∧ ... ∧ dθm . (2.1.19)

2.2 Computing mean curvature: the 4-dimensional case

We consider the family of canonical hyperspheres denoted by ΣS and defined as follows,

ΣS = {(z1, z2, . . . , zm) ∈ Cm : S = |z1|2 + |z2|2 + · · ·+ |zm|2} ⊂ Cm.
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We want to compute the mean curvature of this family ΣS with U(m)-invariant Kähler metrics

discussed in previous section. This section contains only 4 dimensional case, while in the next

section we generalize to higher dimension. The approach to obtain the mean curvature of ΣS

is direct computation of the second fundamental form of ΣS . The main result of this section

is following,

Theorem 2.2.1. The mean curvature of the family ΣS ⊂ C2 with radial Kähler metric

ω =
√
−1∂∂̄f(S) and outward normal vector η is a function that depends on the potential

function of ω and is given by

H(S, f(S)) =
−1

3
√
Sα

3
2fS

(α2 + 2fS(fSSSS
2 + 3fSSS + fS)),

where α = 2(fSSS + fS).

In order to compute the mean curvature the first thing is to know the normal vector to

the hypersphere ΣS. For this we consider ΣS as a level set of the function h : C2 → R defined

by

h(ρ1, θ1, ρ2, θ2) = ρ21 + ρ22 .

Lemma 2.2.2. The normal vector to ΣS is η = ρ1∂ρ1+ρ2∂ρ2 , with length E =
√

2S(fSSS + fS).

Proof. We compute the gradient of h, which is normal to the level set of the function h

∇h = gij∂ih∂j = g11∂ρ1h∂ρ1 + g12∂ρ1h∂ρ2 + g22∂ρ2h∂2 + g21∂ρ2h∂ρ1

= 2(g11ρ1 + g21ρ2)∂ρ1 + 2(g12ρ1 + g22ρ2)∂ρ2

=
ρ1

fSSS + fS
∂ρ1 +

ρ2
fSSS + fS

∂ρ2 .

Since 2(g11ρ1 + g21ρ2) =
ρ1

fSSS+fS
and 2(g12ρ1 + g22ρ2) =

ρ2
fSSS+fS

the norm of ∇h is

∥∇h∥ =
√
g(∇h,∇h) =

√
2S

fSSS + fS
.

The normal vector is given by

η̃ =
∇h
∥∇h∥

=
1

E
(ρ1∂ρ1 + ρ2∂ρ2).

That is η̃ = η
E
, where η = ρ1∂ρ1 + ρ2∂ρ2 and E =

√
2S(fSSS + fS).
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Once we have the normal vector we can restrict the Kähler metric on C2 \ 0 to the family

of hyperspheres ΣS, i.e. on the tangent space TpΣS = {X ∈ R4 : g(X, η) = 0}. Since the

tangent space is independent of the metric so the basis for TpΣS can be obtained by using the

Euclidean metric.

Lemma 2.2.3. Th restriction of the metric g to ΣS is given by

gΣS
=


2SfS 0 0

0 2S(fSSS + fS) 0

0 0 2fSρ
2
1ρ

2
2


Proof. We choose basis e1 = −ρ2∂ρ1 + ρ1∂ρ2 , e2 = ∂θ1 + ∂θ2 , e3 = ρ22∂θ1 − ρ21∂θ2 for TpS3

R,

gΣS
(e1, e1) = g(−ρ2∂ρ1 + ρ1∂ρ2 ,−ρ2∂ρ1 + ρ1∂ρ2)

= ρ22g11 + ρ21g22 − 2ρ1ρ2g21

= ρ22(2fSSρ
2
1 + 2fS) + ρ21(2fSSρ

2
2 + 2fS)− 4ρ21ρ

2
2fSS

= 2fS(ρ
2
1 + ρ22) = 2fSS

gΣS
(e2, e2) = g(∂θ1 + ∂θ2 , ∂θ1 + ∂θ2)

= g33 + 2g34 + g44 = ρ21a+ 2ρ1ρ2b+ ρ22d

= ρ21(2fSSρ
2
1 + 2fS) + 4ρ21ρ

2
2fSS + ρ22(2fSSρ

2
2 + 2fS)

= 2fSS(ρ
2
1 + ρ22)

2 + 2fS(ρ
2
1 + ρ22)

= 2fSSS
2 + 2fSS

= 2S(fSSS + 2fS)

gΣS
(e3, e3) = g(ρ22∂θ1 − ρ21∂θ2 , ρ

2
2∂θ1 − ρ21∂θ2)

= ρ42g33 + ρ41g44 − 2ρ21ρ
2
2g34

= ρ42ρ
2
1(2fSSρ

2
1 + 2fS) + ρ41ρ

2
2(2fSSρ

2
2 + 2fS)− 4ρ41ρ

4
2fSS

= 2fSρ
2
2ρ

2
1S

31



gΣS
(e2, e3) = g(∂θ1 + ∂θ2 , ρ

2
2∂θ1 − ρ21∂θ2)

= ρ22g33 − ρ21g44

= ρ21ρ
2
2(2fSSρ

2
1 + 2fS)− ρ21ρ

2
2(2fSSρ

2
2 + 2fS) = 0

Since ∂ρi and ∂θj are orthogonal, therefore g(e1, e2) = (e1, e3) = 0. Thus the restricted metric

on the family of sphere is

gΣS
=


2SfS 0 0

0 2S(fSSS + fS) 0

0 0 2fSρ
2
1ρ

2
2S


with inverse

g−1
ΣS

=


1

2SfS
0 0

0 1
2S(fSSS+fS)

0

0 0 1
2fSρ

2
1ρ

2
2S


.

So far, we have got the induced metric on ΣS. The next step is the computation of

the coefficients of the second fundamental form of the family of hyperspheres ΣS. For this

purpose we need to compute the connection of the metric. Since the restricted metric to ΣS

is diagonal, we only need the connections given in the following Lemma,

Lemma 2.2.4. The connections of the metric on Cm \ 0

∇e1(e1) = −Eη̃ + ρ22Γ
k
11∂k + ρ21Γ

k
22∂k − 2ρ1ρ2Γ

k
12∂k

∇e2(e2) = Γk33∂k + 2Γk34∂k + Γk44∂k

∇e3(e3) = ρ42Γ
k
33∂k + ρ41Γ

k
44∂k − 2ρ21ρ

2
2Γ

k
34∂k
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Proof. We know that ∇∂i(∂j) = Γkij∂k and so

∇e1(e1) = ∇(−ρ2∂ρ1+ρ1∂ρ2 )(−ρ2∂ρ1 + ρ1∂ρ2)

= ∇−ρ2∂ρ1 (−ρ2∂ρ1 + ρ1∂ρ2) +∇ρ1∂ρ2
(−ρ2∂ρ1 + ρ1∂ρ2)

= −ρ2∇∂ρ1
(−ρ2∂ρ1 + ρ1∂ρ2) + (ρ1)∇∂ρ2

(−ρ2∂ρ1 + ρ1∂ρ2)

= −ρ2(−ρ2∇∂ρ1
(∂ρ1)−∇∂ρ1

(ρ2)∂ρ1 + ρ1∇∂ρ1
(∂ρ2) + ∂ρ2) + ρ1(−ρ2∇∂ρ2

(∂ρ1)−∇∂ρ2
(ρ2)∂ρ1

+ ρ1∇∂ρ2
(∂ρ2)))

= −ρ2∂ρ2 + ρ22Γ
k
11∂k − ρ22ρ2Γ

k
12∂k − ρ2∂ρ2 − ρ2ρ1Γ

k
12∂k − ρ1∂ρ1 + ρ21Γ

k
22

= −ρ2∂ρ2 − ρ1∂ρ1 + ρ22Γ
k
11∂k + ρ21Γ

k
22∂k − 2ρ1ρ2Γ

k
12∂k

= −Eη̃ + ρ22Γ
k
11∂k + ρ21Γ

k
22∂k − 2ρ1ρ2Γ

k
12∂k.

In the same way we get,

∇e2(e2) = Γk33∂k + 2Γk34∂k + Γk44∂k

∇e3(e3) = ρ42Γ
k
33∂k + ρ41Γ

k
44∂k − 2ρ21ρ

2
2Γ

k
34∂k

In the next lemma we list all possible Christoffel symbols.

Lemma 2.2.5. The Christoffel Symbols of (C2 \ 0, g) in coordinates basis {∂ρ1 , ∂ρ2 , ∂θ1 , ∂θ2}
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are given as

Γ1
11 =

1

2(g11g22 − g212)
(g22∂ρ1g11 − g12(2∂ρ1g12 − ∂ρ2g11))

Γ2
11 =

1

2(g11g22 − g212)
(−g12∂ρ1g11 + g11(2∂ρ1g12 − ∂ρ2g11))

Γ3
11 = 0 = Γ4

11

Γ1
12 =

1

2(g11g22 − g212)
(g22∂ρ2g11 − g12∂ρ1g22)

Γ2
12 =

1

2(g11g22 − g212)
(−g12∂ρ2g11 + g22∂ρ1g22)

Γ3
12 = 0 = Γ4

12

Γ1
13 = 0 = Γ2

13

Γ3
13 =

1

2(g11g22 − g212)
(
g22
ρ21
∂ρ1(ρ

2
1g11)−

g12
ρ1ρ2

(∂ρ1(ρ1ρ2g12))

Γ4
13 =

1

2(g11g22 − g212)
(
−g12
ρ1ρ2

∂ρ1(ρ
2
1g11) +

g11
ρ21

(∂ρ1(ρ1ρ2g12)

Γ1
14 = 0 = Γ2

14

Γ3
14 =

1

2(g11g22 − g212)
(
g22
ρ21
∂ρ1(ρ1ρ2g12) +

a

ρ2
∂ρ1(ρ

2
2g22))

Γ4
14 =

1

2(g11g22 − g212)
(
−g12
ρ1ρ2

∂ρ1(ρ1ρ2g12) +
g11
ρ2

(∂ρ1(ρ
2
2g22)))

Γ1
22 =

1

2(g11g22 − g212)
(g22(2∂ρ2g12 − ∂ρ1g22) + g11∂ρ2g22)

Γ2
22 =

1

2(g11g22 − g212)
(−g12(∂ρ2g12 − ∂ρ1g22) + g11∂ρ2g22)

Γ3
22 = 0 = Γ4

22

Γ1
23 = 0 = Γ2

23

Γ3
23 =

1

2(g11g22 − g212)
(
g22
ρ21
∂ρ2(ρ

2
1g11)−

g12
ρ1ρ2

∂ρ2(ρ1ρ2g12))

Γ3
23 =

1

2(g11g22 − g212)
(
g22
ρ21
∂ρ2(ρ

2
1g11)−

b

ρ1ρ2
∂ρ2(ρ1ρ2g12))
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Γ4
23 =

1

2(g11g22 − g212)
(
−g12
ρ1ρ2

∂ρ2(ρ
2
1g11) +

g11
ρ22

(∂ρ2(ρ2ρ1g12)))

Γ1
24 = 0 = Γ2

24

Γ3
24 =

1

2(g11g22 − g212)
(
g22
ρ21
∂ρ2(ρ1ρ2g12)−

g12
ρ1ρ2

∂ρ2(ρ
2
2g22))

Γ1
24 = 0 = Γ2

24

Γ4
24 =

1

2(g11g22 − g212)
(
−g12
ρ1ρ2

(∂ρ2(ρ1ρ2g12) +
a

ρ22
(∂ρ2(ρ

2
2g22)

Γ1
33 =

1

2(g11g22 − g212)
(−g22∂ρ1(ρ21g11) + g12∂ρ2(ρ

2
1g11))

Γ2
33 =

1

2(g11g22 − g212)
(g12∂ρ1(ρ

2
1g11)− g11∂ρ2(ρ

2
1g11))

Γ3
33 = 0 = Γ4

33

Γ1
34 =

1

2(g11g22 − g212)
(−g22∂ρ1(ρ1ρ2g22) + g22∂ρ2(ρ1ρ2g22))

Γ2
34 =

1

2(g11g22 − g212)
(g12∂ρ1(ρ1ρ2g12)− a∂ρ2(ρ1ρ2g12))

Γ3
34 = 0 = Γ4

34

Γ1
44 =

1

2(g11g22 − g212)
(−g12∂ρ1(ρ22g22) + g12∂ρ2(ρ

2
2g22))

Γ2
44 =

1

2(g11g22 − g212)
(g12∂ρ1(ρ

2
2g22)− g11∂ρ2(ρ

2
2g22))

Γ3
44 = 0 = Γ4

44 .

We have collected all the ingredients which we need to compute the coefficient of the

second fundamental form.

Proposition 2.2.6. The second fundamental form of ΣS is

Π =


g(∇e1(e1), η) 0 0

0 g(∇e2(e2), η)( g(∇e3(e3), η)

0 g(∇e3(e2), η) g(∇e3(e3), η)


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where E =
√
2S(fSSS + fS)

g(∇e1(e1), η) = −E +
1

E
[(ρ22Γ

1
11 + ρ21Γ

1
22 − 2ρ1ρ2Γ

1
12)]ρ1g11 + (ρ22Γ

2
11 + ρ21Γ

2
22 − 2ρ1ρ2Γ

2
12)ρ2g22

+ (ρ22Γ
2
11 + ρ21Γ

2
22 − 2ρ1ρ2Γ

2
12)ρ1g12 + (ρ22Γ

1
11 + ρ21Γ

1
22 − 2ρ1ρ2Γ

1
12)ρ2g12]

g(∇e2(e2), η) =
1

E
[(Γ1

33 + Γ1
44 + 2Γ1

34)]ρ1g11 + (Γ2
33 + Γ2

44 + 2Γ2
34)ρ2g22 + (Γ1

33 + Γ1
44 + 2Γ1

34)ρ2g12

+ (Γ2
33 + Γ2

44 + 2Γ2
34)ρ1g12]

g(∇e3(e3), η) =
1

E
[(ρ42Γ

1
33 + ρ41Γ

1
44 − 2ρ21ρ

2
2Γ

1
34)ρ1g11 + (ρ42Γ

2
33 + ρ41Γ

2
44 − 2ρ21ρ

2
2Γ

2
34)ρ2g22

+ (ρ42Γ
2
33 + ρ41Γ

2
44 − 2ρ21ρ

2
2Γ

2
34)ρ1g12 + (ρ42Γ

1
33 + ρ41Γ

1
44 − 2ρ21ρ

2
2Γ

1
34)ρ2g12]

and E =
√

2S(fSSS + fS).

Proposition 2.2.7. The eigenvalues of the second fundamental form Π are

λ1 =
−1

2fSS
1
2

(
√
α) = λ3

λ2 =
−1

α
3
2

(2fSSSS
3
2 + 6fSSS

1
2 +

2fS

S
1
2

)

where α = 2fSSS + 2fS.

Proof.

g−1
ΣS
Π =


λ1 0 0

0 λ2 0

0 0 λ3


where

λ1 =
1

2SfS
g(∇e1(e1), η)

λ2 =
1

2S(fSSS + fS)
g(∇e2(e2), η)

λ3 =
1

2fSρ21ρ
2
2

g(∇e3(e3), η)
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Since eigenvalues does not depend on the chosen basis so for simplification we take lim ρ2 → 0,

λ1 = lim
ρ2→0

1

2SfS
g(∇e1(e1), η)

= lim
ρ2→0

1

2SfS
(−E +

1

E
[(ρ22Γ

1
11 + ρ21Γ

1
22 − 2ρ1ρ2Γ

1
12)]ρ1g11 + (ρ22Γ

2
11 + ρ21Γ

2
22 − 2ρ1ρ2Γ

2
12)ρ2g22

+ (ρ22Γ
2
11 + ρ21Γ

2
22 − 2ρ1ρ2Γ

2
12)ρ1g12 + (ρ22Γ

1
11 + ρ21Γ

1
22 − 2ρ1ρ2Γ

1
12)ρ2g12]]

=
−1

2fSρ1
(
√

(2fSSS + 2fS))

λ2 = lim
ρ2→0

1

2S(fSSS + fS)
g(∇e2(e2), η)

= lim
ρ2→0

(
1

2S(fSSS + fS)

1

E
[(Γ1

33 + Γ1
44 + 2Γ1

34)ρ1a+ (Γ2
33 + Γ2

44 + 2Γ2
34)ρ2d

+ (Γ1
33 + Γ1

44 + 2Γ1
34)ρ2b+ (Γ2

33 + Γ2
44 + 2Γ2

34)ρ1b]

=
−1

(2fSSS + 2fS)
3
2

(2fSSSρ
3
1 + 6fSSρ1 +

2fS
ρ1

)

λ3 = lim
ρ2→0

1

2fSρ21ρ
2
2

g (∇e3(e3), η)

= lim
ρ2→0

1

2fSρ21ρ
2
2

1

E
[(ρ42Γ

1
33 + ρ41Γ

1
44 − 2ρ21ρ

2
2Γ

1
34)ρ1g11 + (ρ42Γ

2
33 + ρ41Γ

2
44 − 2ρ21ρ

2
2Γ

2
34)ρ2g22

+ (ρ42Γ
2
33 + ρ41Γ

2
44 − 2ρ21ρ

2
2Γ

2
34)ρ1g12 + (ρ42Γ

1
33 + ρ41Γ

1
44 − 2ρ21ρ

2
2Γ

1
34)ρ2g12]

=
−1

2fSρ1
(
√

(2fSSS + 2fS)

Since now we have S = ρ21 so we get

λ1 =
−1

2fSS
1
2

(
√
α) = λ3

λ2 =
−1

α
3
2

(
2fSSSS

3
2 + 6fSSS

1
2 +

2fS

S
1
2

)
where α = 2fSSS + 2fS.

Corollary 2.2.8. Considering the U(m)-invariant metric the family of canonical hypersphere

does not contain any totally geodesic hypersphere.
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Proof. Since positivity of (2.1.2) forces α = 2fSSS+2fS to be positive. Therefore the second

fundamental form can not vanish identically.

Once we get the eigenvalues of the second fundamental, the mean curvature formula is

just the average of the eigenvalues, i.e.

H(S, f(S)) =
λ1 + λ2 + λ3

3

=
−1

3
√
Sa

3
2fS

(
a2 + 2fS(fSSSS

2 + 3fSSS + fS)
)
,

which completes the proof of the Theorem 2.2.1.

2.3 The variational approach: the higher dimensional case

In this section, we extend the proof of Theorem 2.2.1 to higher complex dimensions m, by

using the first variation formula given in Theorem 1.1.2. The change in the area functional

is measured in terms of mean curvature. The area of ΣS can be computed by restricting the

volume form given in 2.1.4 to ΣS to get the volume form on ΣS, and then integrate. Before

going to compute the area we prove the following,

Lemma 2.3.1. The mean curvature of ΣS with U(m)-invariant metric is constant.

In order to restrict the 2.1.4 to ΣS, we need the unit normal vector to Σ . The following

Lemma gives us the expression of the unit normal vector.

Lemma 2.3.2. The unit normal vector to Σ2m−1
S is

η̃ =
R

E
∂R,

where E =
√
2S(fSSS + fS).

Proof. The proof is straightforward computation similar to Lemma 2.2.2.

Proposition 2.3.3. The area of the family of hyperspheres Σ2m−1 is given as follows

AΣ2m−1 = S(m− 1
2
)(2fS)

m−1
√
2(fSSS + fS)VE(Σ

2m−1
1 ).

where VE(Σ2m−1
1 ) is Euclidean volume of unit hypersphere.
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Proof. The contraction of 2.1.4 with unit normal gives,

dVΣ2m−1 = (2fS)
m−1
√

2(fS + SfSS dVE|ΣS
. (2.3.1)

where dVE is Euclidean Volume form of Cm. After integration of the above equation we get

the area

AΣ2m−1 = (2fS)
m−1
√
2(fSSS + fS)

∫
ΣS

dVE|ΣS

= (2fS)
m−1
√
2(fSSS + fS)VE(ΣS)

= R2m−1(2fS)
m−1
√

2(fSSS + fS)VE(Σ1) ,

where VE(Σ1) is the area of unit hypersphere with Euclidean metric.

Remark 2.3.4. The the area of unit hypersphere is given by

VE(Σ1) = (2π)m
m−1∏
k=1

1

2k
.

Once we have the area of family of canonical hyperspheres Σ2n−1
S , we want to understand

the change in the area function under variation of the hypersphere Σ2m−1
S of radius R in the

normal direction. The variation of Σ2m−1
S in normal direction ∂R gives hypersphere of new

radius R̃. If S̃ = R̃2, then we denote and define the new hypersphere with radius R̃ by

Σ2m−1

S̃
= Σ2m−1

S + t∂R .

Let p̃ ∈ Σ2m−1

S̃
. Then p̃ = p + t∂R for some t, where p = (R, 0, 0, ..., 0) = R∂R ∈ Σ2m−1

S , and

so the Euclidean distance is

|p̃|2 = ⟨ (R + t)∂R, (R + t)∂R ⟩ = (R + t)2.

This shows that that the new radius R̃ = R + t, for some t.

The next lemma measures the change in area while moving Σ2m−1
S in normal direction.

Lemma 2.3.5. Let Σ2m−1

S̃
be the above variation of Σ2m−1

S . Then the first variation of area

is given by

d

dt
A(Σ2m−1

S̃
)

∣∣∣∣
t=0

=
2m−1Sm−1fm−2

S√
α(S)

(
(m− 1)(α(S))2 + 2fS(fSSSS

2 + 3fSSS + fS)
)
VE(Σ

2m−1
1 ).
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Proof. By Proposition 2.3.3, we have

A(Σ2m−1

S̃
) = 2m−1VE(Σ

2m−1
1 )R̃2m−1(fS(S̃))

m−1

√
α(S̃)

= 2m−1VE(Σ
2m−1
1 )K(S̃), (2.3.2)

where α(S̃) = 2S̃ fSS(S̃) + 2fS(S̃). Differentiating K(S̃) in (2.3.2), we obtain

d

dt
K(S̃) = (2m− 1)R̃2m−2(fS(S̃))

m−1

√
α(S̃)

+ (m− 1)R̃2m−1

√
α(S̃)(fS(S̃))

m−2 d

dt
fS(S̃)

+
1

2
√
α
R̃2m−1fS(S̃)

m−1 d

dt
α(S̃)

Since at t = 0, R̃ = R and fS(S̃) = fS(S) = fS, so we have

d

dt
K(S̃)

∣∣∣∣
t=0

=
1√
a(S)

[
(2m− 1)R2m−2(fS)

m−1α(S) + (m− 1)R2m−1fm−2
S α(S)

d

dt
fS(S̃)

∣∣∣∣∣
t=0

+
1

2
R2m−1(fS)

m−1 d

dt
α(S̃)

∣∣∣∣
t=0

]
. (2.3.3)

By chain rule we know that

d

dt
fS(S̃) =

d

dS̃
fS(S̃)

d

dt
(S̃)

=
d

dS
fS(S̃)

dS

dS̃

dS̃

dt
. (2.3.4)

We recall that S̃ = R̃2 = (R+ t)2 and so we have dS̃
dS

= 1+ t
R

and dS̃
dt

= 2t+2R. Thus (2.3.4)

implies that
d

dt
fS(S̃)

∣∣∣∣
t=0

= fSS2R .

Similarly we obtain

d

dt
α(S̃)|t=0 = 8fSSR + 4R3fSSS .

Then (2.3.3) becomes

d

dt
K(S̃)

∣∣∣∣
t=0

=
1√
a(S)

[
(2m− 1)R2m−2(fS)

m−1α(S) + 2(m− 1)fm−2
S fSSα(S)R

2m+

4(fS)
m−1fSSR

2m + 2R2m+2(fS)
m−1fSSS

]
.
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After replacing α = 2(fSSR
2 + fS) we obtain

d

dt
K(S̃)

∣∣∣∣
t=0

=
1√
α(S)

[(8m− 2)R2mfSSf
m−1
S + 2R2m+2fm−1

S fSSS + 2(2m− 1)R2m−2fmS

+ 4(m− 1)R2m+2fm−2
S f 2

SS].

After simplification and replacing R2 = S, we have

d

dt
A(Σ2m−1

S̃
)

∣∣∣∣
t=0

=
2m−1Sm−1fm−2

S√
α(S)

(
(m− 1)(α(S))2 + 2fS(fSSSS

2 + 3fSSS + fS)
)
, .

By (1.1.2), the first variation formula for the area function is given by

d

dt
A(Σ2m−1

S̃
)

∣∣∣∣
t=0

= −(2m− 1)

∫
Σ2m−1

S

Hg(∂R, η̃)dVΣ2m−1
S

,

where H is the mean curvature of Σ2m−1
S . Since the mean curvature only depends on radius,

we have

d

dt
A(Σ2m−1

S̃
)

∣∣∣∣
t=0

= −(2m− 1)
EH

R

∫
Σ2m−1

S

dVΣ2m−1
S

= −(2m− 1)
EH

R
A(Σ2m−1

S ) ,

which further implies that

H =
−R

(2m− 1)A(Σ2m−1
S )E

.
d

dt
A(Σ2m−1

S̃
)

∣∣∣∣
t=0

.

Proposition 2.3.3 and Lemma 2.3.5 implies the following result.

Theorem 2.3.6. The mean curvature of the family Σ2m−1
S ⊂ Cm with radial Kähler metric

ω =
√
−1∂∂̄f(S) with outward normal vector η, is a function that depend on the potential

function of Kähler metric given as follows,

H =
−1

(2m− 1)α
3
2

√
SfS

((m− 1)α2 + 2fS(fSSSS
2 + 3SfSS + fS)).

Remark 2.3.7. The variataional approach of the proof of mean curvature is more geometric

as compared to the direct computation of the second fundamental form of ΣS.
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2.4 Examples

In this section, we apply the formula in Theorem 2.2.1 for different metrics.

2.4.1 The Fubini Study metric

The complex projective space CPm is endowed with the Fubini Study metric. The Kähler

form is given by

ωFS =

√
−1

2
∂∂̄ log(|z1|2 + · · ·+ |zm+1|2) , (2.4.1)

where [z1, . . . , zm+1] are homogeneous coordinates of CPm . In the chart U1 = {(z1, . . . , zm+1) ∈
Cm+1 : z1 ̸= 0} with local coordinates {ξ = (ξ1, ..., ξm) : ξi =

zi
z1
}, we can relate to this metric

a local Kähler potential given by

ωFS =

√
−1

2
∂∂̄ log(1 + |ξ|2) ,

=

√
−1

2
∂∂̄ log(1 + S) ,

where S = |ξ|2.
Now, when the Fubini Study metric is in the form of U(m)-invariant metric, we look at the

family of canonical hyperspheres ΣS ⊂ Cm with the Fubini Study metric. Notice that ΣS can

be covered by m+ 1 charts but since the mean curvature is constant, its enough to consider

only one chart. The potential function we use for a Fubini Study metric is given by

f(S) =
1

2
log(1 + S).

By the formula in Theorem 2.3.6, we get

H(S, f(S)) =
S −m

3
√
S

.

Thus (CPm, ωFS) contains a minimal hypersphere of radius m in the family of canonical

hypersphere ΣS.
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2.4.2 Kähler metric on the blow up of Cm at the origin

Let us consider the blow up of Cm at the origin. We denote the blow up of Cm at the origin

by Bl0Cm and defined as

Bl0C
m = {((z1, z2, . . . , zm), [t1, t2, . . . , tm]) ∈ Cm × CPm−1 : zitj − zjti = 0} ⊂ Cm × CPm−1 .

There is a natural projection map π1 : Bl0Cm → Cm defined by

π1((z1, z2, . . . , zm), [t1, t2, . . . , zm]) = (z1, z2, . . . , zm) .

The inverse image π−1
1 (p) of p ∈ Cm is a line passing through that point p.

The exceptional divisor E is defined as the inverse image of the origin, i.e. π−1(0) = CPm−1.

The map π1 restrict to a biholomorphism

π1 : Bl0C
m \ E → Cm \ 0.

A system of charts that cover the exceptional divisor is given as follows: for every i =

1, 2, . . . ,m,

U1
i = {((z1, z2, . . . , zm), [t1, t2, . . . , zm]) : ti ̸= 0, zj = zitj} .

The coordinate map Φi : U
1
i → Cm is defined as

((z1, z2, . . . , zm), [t1, t2, . . . , tm]) →
(
zj,

t1
ti
, . . . ,

ti−1

ti
,
ti+1

ti
, . . . ,

tm
ti

)
,

with inverse map Φ−1
i : Cm → U1

i

(z1, z2, . . . , zm) → ((z1zi, ziz2, . . . , zi, . . . , zizm), [z1, . . . , zi−1, 1, zi+1, . . . , zm]). (2.4.2)

For every i = 1, 2, . . . ,m the charts U1
i intersects the exceptional divisor E as

E ∩ U1
i = {zi = 0} .

Remark 2.4.1. The superscript of U1
i represent the charts for first blow up Bl0Cm.

Lemma 2.4.2. The pull back of the smooth form ω =
√
−1∂∂̄ log(S) on Cm \ 0 extend to

the Fubini Study metric on the exceptional divisorE = CPm−1.
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Proof. Given the smooth form

ω =
√
−1∂∂̄ log(S)

on Cm \{0} where S =
∑m

i=1 |zi|2. Then the pull back π∗
1ω is given in local coordinates (2.4.2)

by,

π∗
1ω = ∂∂̄ log(|zi|2(|z21 |+ |z2|2 · · ·+ |zi−1|2 + 1 + |zi+1|2 + · · ·+ |zm|2)

= ∂∂̄ log(|z1|2 + |z2|2 · · ·+ |zi−1|2 + 1 + |zi+1|2 + · · ·+ |zm|2). (2.4.3)

Clearly (2.4.3) is the Fubini Study metric on the exceptional divisor E in homogeneous coor-

dinates [z1, . . . , zi−1, 1, zi+1, . . . , zm].

Let g : Cm → R be a smooth function that depends on S =
∑m

i=1 |zi|2. Then the smooth

form

ω =
√
−1∂∂̄(logS + g(S)) , (2.4.4)

which gives Kähler metric on Cm \ {0} if and only if 1
S
+ gS > 0 and gS +SgSS > 0. The next

proposition explains when the Kähler form (2.4.4) on Cm \ 0 can be extend to the blowup of

Bl0C
m.

Proposition 2.4.3. The smooth form ω =
√
−1∂∂̄(logS + g(S)) on Cm \ {0} extend to

Kähler metric on the Bl0Cm if and only if gS(0) > 0, and 1
S
+ gS > 0, gS + SgSS > 0.

Proof. For the sake of simplicity, we prove only the case when m = 2. The general case follow

from the same argument.

Given the projection map,

π1 : Bl0C
2 → C2

On the chart U1, we have S = |z1|2(1 + |z2|2) and E ∩ U1
1 = {z1 = 0} . The pull back of the

Kähler metric (2.4.4) to the Bl0C2 is given in coordinates (2.4.2) by

π∗
1ω =

(1 + |z2|2)(gS + SgSS) z1z̄2(gS + SgSS)

z2z̄1(gS + SgSS) |z1|2(gS + |z1|2|z2|2gSS) + 1
1+|z2|2

 .
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The restriction of π∗
1ω to the exceptional divisor E is given below,

π∗
1ω|E =

(1 + |z2|2)gS(0) 0

0 1
1+|z2|2


Clearly π∗

1ω|E is positive definite if and only if gS(0) > 0.

In the same way on U1
2 , the pull back π∗

1ω

π∗
1ω =

 1
1+|z1|2 + |z2|2(gS + |z1|2|z2|2gSS) z1z̄2(gS + SgSS)

z2z̄1(gS + SgSS) (1 + |z1|2)(gS + SgSS)


can be restrict to the exceptional divisor as follows

π∗
1ω|E =

 1
1+|z1|2 0

0 (1 + |z1|2)gS


which is positive definite if and only if gS(0) > 0.

Remark 2.4.4. If gS(0) = 0, then π∗
1ω|E defines metric only along the exceptional divisor.

So the condition gS(0) ̸= 0 guaranty the non degeneracy of the metric orthogonal to the

exceptional divisor. The other two conditions 1
S
+ gS > 0, gS + SgSS > 0 are because ω has

to be Kähler metric on C2 \ 0.

Remark 2.4.5. By (2.1.6) the scalar curvature of the Kähler metric ω =
√
−1∂∂̄(logS + S)

on the Bl0Cm is given by

R =
(−2 +m)(−1 +m)

(1 + S)2
. (2.4.5)

Remark 2.4.6. For m = 2, the Kähler metric ω =
√
−1∂∂̄(logS + S) is scalar flat. This

metric is known as Burns metric (see for example [19, 29]).

Remark 2.4.7. Consider the local coordinates (z1, . . . , zm) on Bl0C
m \ E such that S =∑m

i=1 |zi|2. Then the Kähler metric can be written as

ω = δij̄(1 +
1

S
) +

−1

S2
zizj̄dzi ∧ dz̄j = δij̄ + δij̄

1

S
− −1

S2
zizj̄dzi ∧ dz̄j.
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Thus for a large S, the Burns metric looks like Euclidean metric

gij̄ = δij̄ +O

(
1

S

)
.

By comparing with Definition 1.3.1, the decay rate τ is 2.

Proposition 2.4.8.
(
Bl0C

2, ω =
√
−1∂∂̄(log(S) + S

)
does not contain any minimal hyper-

sphere in the family of canonical hyperspheres ΣS .

Proof. By Theorem 2.2.1, the mean curvature of the family of canonical hyperspheres ΣS is

given by

H(S, log(S) + S) =
−(3S + 1)

3
√
2S(S + 1)

=
−1√
2S

− 2S√
2S(S + 1)

.

Clearly H does not vanishes for any S. Therefore Bl0C
2 does not contain any minimal

hypersphere in ΣS.

Remark 2.4.9. By Proposition 2.2.7, we can compute the principal curvature of ΣS with

Burns metric,

λ1 = λ3 =
−
√
S√

2(S + 1)
(2.4.6)

λ2 =
−1√
2S

(2.4.7)

The principal curvatures of ΣS with Burns metric behaves like the principal curvatures of

Euclidean sphere, i.e. λi → −1√
2S

for large S, which is compatible with the fact that the Burns

metric is AE. But if S → 0, then ΣS does not shrink to a point from all direction like the

Euclidean sphere. By (2.4.6) and (2.4.7), it is easy to see that as S → 0 , λ1 = λ3 → 0 and

λ2 → ∞ .

As S → 0, one of the principal directions collapse and all the hypersurfaces converges to to

the exceptional divisor, which is holomorphic submanifold of Bl0(C2), so one would naturally

expect that the principal curvature vanish there .
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Proposition 2.4.10. The basis {e1, e2, e3} of ΣS can be lift to the basis {ẽ1, ẽ2, ẽ3} of π−1
1 (ΣS)

where ẽ1 = −ρ̄2∂ρ1 + ∂λ, ẽ2 = ∂θ1 , ẽ3 = ρ22∂θ1 − (ρ22 + ρ21)∂µ . Moreover {ẽ1, ẽ2, ẽ3} → {∂λ, ∂θ1}
as S → 0 .

Proof. Given the projection map,

π1 : Bl0C
2 → C2

and ΣS ⊂ C2. We have basis the following basis

e1 = −ρ2∂ρ1 + ρ1∂ρ2 , e2 = ∂θ1 + ∂θ2 , e3 = ρ22∂θ1 − ρ21∂θ2

for ΣS. We can lift these basis to π−1(ΣS) in Bl0C2 via the map

F : C2
(z1,z2)

→ U1
1 ,

(ρ1, ρ2, θ1, θ2) → (ρ1, λ, θ1, µ) := (ρ1,
ρ2
ρ1
, θ1, θ2 − θ1) .

The differential of F is given as follows;

dF : TC2
(z1,z2)

→ TU1

dF (γ(t)) =
d

dt
F (γ(t)|t=0.

Now we have dF (∂ρ2) = 1
ρ̄1
∂λ, dF (∂θ1) = ∂θ1 − ∂µ and dF (∂θ2) = ∂µ. We have lift the

{e1, e2, e3} to π−1(ΣS) as follows:

ẽ1 = dF (e1) = dF (−ρ̄2∂ρ1 + ρ̄1∂ρ2)

= −ρ̄2∂ρ1 + ∂λ

ẽ2 = dF (e2) = dF (∂θ1 + ∂θ2) = ∂θ1

ẽ3 = dF (e3) = dF (ρ22∂θ1 − ρ21∂θ2)

= ρ22(∂θ1 − ∂µ)− ρ21∂µ

= ρ22∂θ1 − (ρ22 + ρ21)∂µ

Clearly when ρ1, ρ2 → 0 we get {ẽ1, ẽ2, ẽ3} → {∂λ, ∂θ1}.
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2.4.3 The Eguchi Hanson metric

Consider smooth form

ω =
√
−1∂∂̄(

√
S2 + 1 + logS − log(

√
S2 + 1 + 1)) (2.4.8)

on C2 \ 0 where S = |z1|2 + |z2|2. The smooth form (2.4.8) extends to the Kähler metric on

on Bl0C
2/Γ2 where Γ2 = Z/2Z . The metric associated to (2.4.8) is known in literature as

the Eguchi-Hanson metric ([12],[21])

Remark 2.4.11. Consider the smooth form ω =
√
−1∂∂̄(log(S) + g(S)) on C2 \ 0 where

g(S) =
√
S2 + 1 − log(

√
S2 + 1 + 1) . By Lemma 2.4.3, Since gS(0) = 0, therefore ω can not

be extend to the metirc on whole Bl0C2 .

Remark 2.4.12. For large S, we have f(S) = S+O
(
1
S

)
. Since

√
S2 + 1 ∼ S and log(

√
S2 + 1+

1) ∼ log(S + 1) ∼ log(S) + 1
S
. Therefore for large S we have,

ω = ∂∂̄f(S) = ∂∂̄(S +O

(
1

S

)
= δij̄ +O

(
1

S2

)
.

This shows that the Eguchi Hanson metric fall off to Euclidean metric and the decay rate τ

is 4.

Remark 2.4.13. The Eguchi Hanson metric

ω =
√
−1∂∂̄(

√
S2 + 1 + logS − log(

√
S2 + 1 + 1))

is Ricci flat. Since

log(det(g)) = log(fS(fS + SfSS)) = 1

Thus Rij̄ = −∂∂̄ log(det(g)) = 0 ∀ i, j = 1, 2 .

Proposition 2.4.14. Bl0C2/Γ2 with Eguchi Hanson metric does not contains any minimal

hypersphere ΣS.

Proof. For f(S) =
√
S2 + 1 + logS − log(

√
S2 + 1 + 1), by Theorem 2.2.1 we have

H(S) = − 2S
√
2(1 + S2)

3
4

− 2S
3
2 (2 + S2)

(1 + S2)2
.

Clearly H does not vanishes for any S
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Chapter 3

Existence of AE scalar flat Kähler

metrics

In this chapter, we prove that if the scalar curvature is non negative then the scalar curvature

equation can be reduced to system of nonlinear of ODE. Moreover, we prove the existence of

AE scalar flat Kähler metric on Cm \BR(0) .

3.1 Scalar curvature and system of ODE

In this section, we prove that if we have U(m)-invaraint Kähler metrics ω =
√
−1∂∂̄f(t) with

non-negative scalar curvature, then we can construct x = ftt
ft

and y = (2m− 1)x+ xt
x
., which

are solutions of some system of ODE. We also discuss the converse direction.

Theorem 3.1.1. Let ω =
√
−1∂∂̄f(t) be a Kähler metric with non negative scalar curvature.

Then R ≥ 0 if and only if xt = xy − (2m− 1)x2

yt ≤ m(m− 1)(1− x)x .

where x = ftt
ft

and y = (2m− 1)x+ xt
x
. In particular if the scalar curvature vanishes, then we

have xt = xy − (2m− 1)x2

yt = m(m− 1)(1− x)x .
(3.1.1)
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Proof. Set ν = log ft . Then we have x = νt > 0, since ft > 0 and ftt > 0. Moreover, (2.1.14)

implies that

fttR = m(m− 1)(1− νt)νt − (m− 1)(m− 2)ν2t − 2(m− 1)(νtt + ν2t )

+
(νtt + νt)

2

ν2t
− νttt + 3νtνtt + ν3t

νt
,

or equivalently

fttR = m(m− 1)(1− νt)νt − (2m− 1)νtt −
(
νtt
νt

)
t

. (3.1.2)

Since ftt > 0 and R = 0, so we have

m(m− 1)(1− νt)νt − (2m− 1)νtt −
(
νtt
νt

)
t

= 0 .

As x = νt and y = (2m− 1)x+ xt
x
, we have

m(m− 1)(1− x)− (2m− 1)xt −
(xt
x

)
t
= 0 .

Thus we obtain

m(m− 1)(1− x) = (2m− 1)xt +
(xt
x

)
t
= yt .

Also y = (2m− 1)x+ xt
x

implies that

xt = xy − (2m− 1)x2 .

From Theorem 3.1.1 we have seen that, given a scalar flat Kähler metric ω =
√
−1∂∂̄f(t)

we can construct integral curve γ(t) = (x(t), y(t)) which satisfy the system (3.1.1). A natural

question arises about the converse of Theorem 3.1.1. More precisely, if we have solution

(x(t), y(t)) of the system (3.1.1), are we able to construct a scalar flat Kähler metric ω =
√
−1∂∂̄f(t) in such a way that x = ftt

ft
> 0 and y = (2m− 1)x+ xt

x
. Moreover, is it unique?

Assume that (x(t), y(t)) is solution to the system (3.1.1) such that x = (log ft)t and y =

(2m− 1)x+ xt
x
. Then by integrating x = (log ft)t we get

ft = e
∫
x(t)+C ,
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and we can construct a scalar flat Kähler metric as follows,

ω =
√
−1(ft∂∂̄t+ ftt∂t ∧ ∂̄t)

=
√
−1ft(∂∂̄t+ x(t)∂t ∧ ∂̄t) (3.1.3)

Clearly from 3.1.3, we see that the metric we construct from solution (x(t), y(t)) of the system

(3.1.1) is not unique. In fact corresponding to one solution (x(t), y(t)) of the system (3.1.1),

we get family of Kähler metrics. The following proposition tells us how these family of Kähler

metrics are related to each other.

Proposition 3.1.2. Let f(t) and u(t) be two solutions of the ordinary differential equation

x = ftt
ft

on some small interval I, with given initial conditions as follow
x = ftt

ft

f(t0) = α

ft(t0) = β ,

and


x = utt

ut

u(t0) = a

ut(t0) = b .

Then the Kähler metrics ωf and ωu has the following relation ωf = µωu

Proof. By Cauchy Theorem, the solution to the ordinary differential equation must be unique.

Therefore f(t) = µu(t) + α− µa with µ = β
b

and by 3.1.3 we get ωf = µωu .

We conclude that from the solution (x, y) of the system (3.1.1) we can construct Kähler

metrics ω =
√
−1∂∂̄f(t) but not uniquely. Now we are interested in finding solutions (x, y)

of the system (3.1.1) xt = xy − (2m− 1)x2

yt = m(m− 1)(1− x)x .
(3.1.4)

such that x > 0.

Definition 3.1.3. Consider the nonlinear system of ODExt = f(x, y)

yt = g(x, y).
(3.1.5)

A point (x0, y0) is called equilibrium point the system if f(x0, y0) = 0 = g(x0, y0).
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Definition 3.1.4. An equilibrium point (x0, y0) is asymptotically stable if for any given

solution (x(t), y(t)) of (3.1.5) with initial condition sufficiently close to (x0, y0) then

lim
t→∞

(x(t), y(t)) = (x0, y0)

In general for nonlinear system it is not trivial to find analytic solution but one can

linearize the non-system by finding Jacobian matrix of the system around the equilibrium

point and the eigenvalues helps to determine the type of the equilibrium point.

Definition 3.1.5. If all the eigenvalues of the Jacobian matrix of the system (3.1.5) at the

equilibrium point (x0, y0) are negative then the point is asymptotically stable.

Remark 3.1.6. There are many types of equilibrium point and their type can be determine

by the eigenvalues of the Jacobian matrix. But due to lack of time we can not present the

complete classification of equilibrium points of the nonlinear system and behaviour of the

solutions near them.

Lemma 3.1.7. The equilibrium point (1, 2m − 1) of the system (3.1.1) is asymptotically

stable.

Proof. The Jacobian of the system (3.1.1) is given by

J =

 y − 2(2m− 1)x x

m(m− 1)(1− 2x) 0

 .

J |(1,2m−1) =

−(2m− 1) 1

−m(m− 1) 0

 .
The eigenvalues are solutions of the following equation,

det(J |(1,2m−1) − kI) = k2 + (2m− 1)k +m2 −m = (k +m)(k + (m− 1)).

Clearly k = −m, 1−m are negative for all m.

Remark 3.1.8. Notice that the for the Euclidean metric (1, 2m−1) is solution to the system

(3.1.1). By Lemma (3.1.7) we learnt that the scalar flat Kähler metrics corresponding to the

solutions of the system (3.1.1) are asymptotically Euclidean.
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In order to find solutions of the system (3.1.1) it is convenient to define an affine diffeo-

morphism Φ : R2 → R2 by

Φ(x, y) = (x̃, ỹ) = (mx− y +m− 1, y + (1−m)x−m) , (3.1.6)

with the inverse given by

Φ−1(x̃, ỹ) = (x̃+ ỹ + 1, (m− 1)x̃+mỹ + (2m− 1)).

Lemma 3.1.9. The diffeomorphism defined in (3.1.6) transform system (3.1.1) to the follow-

ing system x̃t = −mx̃(1 + x̃+ ỹ)

ỹt = (1−m)ỹ(1 + x̃+ ỹ) .
(3.1.7)

Proof. By the affine diffeomorphism Φ we havex̃ = mx− y +m− 1

ỹ = y + (1−m)x−m
⇐⇒

x = x̃+ ỹ + 1

y = (m− 1)x̃+mỹ + (2m− 1) .

Thus we get xt = x̃t + ỹt. But by (3.1.1), xt = x(y − (2m− 1)x) = x(−mx̃− (m− 1)ỹ). So

we have

x̃t + ỹt = x(−mx̃− (m− 1)ỹ) . (3.1.8)

Similarly, we obtain

(m− 1)x̃t +mỹt = m(m− 1)x(−x̃− ỹ) . (3.1.9)

From (3.1.8) and (3.1.9), we obtain the system of ordinary differential equationsx̃t = −mx̃(1 + x̃+ ỹ)

ỹt = (1−m)ỹ(1 + x̃+ ỹ).

Now we are interested in finding solutions of the the system (3.1.7) which lies above the

line x̃ + ỹ = −1, since each of them corresponds to a scalar flat U(m)-symmetric Kähler

metric on Cm \ 0 up to constant. Before going to the solutions, we present several examples

where we construct solution of the system (3.1.1) for scalar flat Kähler metrics.
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Example 3.1.10. For the Euclidean metric, we have the constant integral curve γ(t) =

(x(t), y(t)) = (1, 2m− 1). Applying the affine diffeomorphism Φ, we get (x̃, ỹ) = (0, 0).

Example 3.1.11. Consider the Burns metric (Bl0C
2, ω) with the scalar flat metric ω =

√
−1∂∂̄f(t), where the potential function is given by

f(t) = t+ et .

We construct the integral curve γ(t) = (x(t), y(t)) as

x(t) =
et

1 + et
,

y(t) =
3et

1 + et
+

1

1 + et
,

which satisfy the system xt = xy − 3x2 = et

(1+et)2

yt = 2(1− x)x = 2et

(1+et)2
.

Next we show that the curve Φ ◦ γ is solution of the system (3.1.7). The diffeomorphism Φ

transform γ(t) = (x(t), y(t)) as follows

Φ ◦ γ = Φ(x(t), y(t)) = (x̃(t), ỹ(t)) = (0,
−1

1 + et
).

Clearly (x̃, ỹ) satisfies the systemx̃t = 0

ỹt = −ỹ(1 + ỹ) = 1
(1+et)2

,

Example 3.1.12. Consider the Eguchi Hanson metric (Bl0C
2/Γ2, ω) where Γ2 = Z/2Z and

the potential function of scalar flat metric ω =
√
−1∂∂̄f(t) is given by

f(t) = t+
√
1 + e2t − log(1 +

√
1 + e2t) .

We construct the curves x(t) =
e2t

1+e2t

y(t) = 2+3e2t

1+e2t
,
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which are solution of the following systemxt = xy − 3x2 = 2e2t

(1+e2t)2

yt = 2x(1− x) = 2e2t

(1+e2t)2
.

Applying diffeomorphism Φ, we get the new curvesx̃(t) =
−1

1+e2t

ỹ(t) = 0 ,

which satisfies the system x̃t = −2x̃(1 + x̃) = 2e2t

(1+e2t)2

ỹt = 0 .

3.2 Solution along separatices

In this section, we discuss solution of the system (3.1.7) along x̃ = 0 or ỹ = 0. We reconstruct

the scalar flat Kähler metric corresponding to these solutions. Recall that the solution of the

system (3.1.7) correspond to rotationally symmetric scalar flat Kähler metrics on Cm \ 0 and

the integral curves lies above the line x̃ + ỹ = −1. Clearly all points on the line x̃ + ỹ = −1

are singular points of the system (3.1.7). Since the eigenvalues of the Jacobian J are non zero

at origin, so origin is an isolated hyperbolic singular point for Φ∗V , and any other points is

regular. The solutions along the separatices can be described quite explicitly and we obtain

the expression of the metric given in the following result.

Proposition 3.2.1. Let m ≥ 2 and k ∈ {m− 1,m}. Then there exist constants A > 0 and

B > −1 such that

fS = A
k
√
1 +BS−k,

and ω =
√
−1∂∂̄f(S) defines a Kähler metric on Cm\0 in the domain |z|2 > k

√
−B or |z|2 > 0

according to −1 < B < 0, B = 0 or B > 0 respectively. Moreover, ω is scalar flat for all

k,A,B, and is Ricci flat whenever k = m.
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Proof. Consider system (3.1.7), the integral curve x̃(t) along the axis ỹ = 0 with x̃(0) = x̃0

which lies above the line x̃ + ỹ = −1 can be find by taking integration of the following

differential equation
dx̃

dt
= −mx̃(x̃+ ỹ + 1) .

By separating the variables we get,

x̃

1 + x̃
=

x̃0
1 + x̃0

e−mt . (3.2.1)

Now along the axis ỹ = 0, we have x = 1 + x̃, and by using (3.2.1) we obtain

x =
1

1− x̃0
1+x̃0

e−mt
. (3.2.2)

Recall that νt = x, so by integrating (3.2.2), we get

ν(t) = t+
1

m
log(1− x̃0

1 + x̃0
e−mt) + c .

Since ν = log(ft), so we have

ft = et+c m

√
1− x̃0

1 + x̃0
e−mt, (3.2.3)

for some constant c. We noted that the solutions with −1 < x̃0 ≤ 0 are defined for all t > 0,

while solutions with x̃0 > 0 are defined just for t > log m

√
x̃0

1+x̃0
. Now ft = fSe

t, we have

fS = A
m
√
1 +BS−m .

where A = ec and B = − x̃0
1+x̃0

. Here A is any positive constant and B > 0 for −1 < x̃0 ≤ 0,

where −1 < B < 0 for x̃0 > 0. According to these two cases fS is defined for S > 0, or just

for S > m
√
−B . By (3.2.3) we have

fm−1
t ftt = emt+mc . (3.2.4)

Comparing (3.2.4) with Proposition 2.1.6, the Kähler metric ω is Ricci flat for any A and B.

Similarly, considering the integral curve along the axis x̃ = 0 with ỹ(0) = ỹ0, which has to be

greater than −1, we find

νt =
1

1− ỹ0
1+ỹ0

e(1−m)t
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Similarly, in this case solutions with −1 < ỹ0 ≤ 0 are defined for all t > 0 while solutions

with ỹ0 > 0 are defined only for t > m−1

√
ỹ0

1+ỹ0
. Finally, in this case we have

fS = A
m−1
√
1 +BS1−m

where A any positive number and B = − ỹ0
1+ỹ0

. Notice that A is any positive constant and

B > 0 for −1 < ỹ0 ≤ 0 while −1 < B < 0 for ỹ0 > 0. Similar to the previous case, fS is

defined for S > 0, or just for S > m−1
√
−B, which completes the proof.

Remark 3.2.2. For m = 2 and k = 1, along the line x̃ = 0 with ỹ(0) = −1
2

, we obtained the

Burns metric on the Bl0C2. For m = k = 2, Along the line ỹ = 0 with x̃(0) = −1
2
, we get the

Eguchi Hanson metric on Bl0C2/Γ2.

By simple calculations we find that the metric of Proposition 3.2.1 is explicitly given by

ω =
√
−1A

k
√

1 +BS−k
(
∂∂̄S − BS−k−1

1 +BS−k ∂S ∧ ∂̄S
)
,

or equivalently

ω =
√
−1A

k
√
Sk +B

(
∂∂̄ logS +

Sk

B + Sk
∂ logS ∧ ∂̄ logS

)
.

In the next result, we extend the Kähler metric on Cm \ 0 in Proposition 3.2.1 to Kähler

metric on Mm
k = Bl0C

m/Γk, where Γk = Z/kZ .

Proposition 3.2.3. Assume that B > 0. Then the Kähler metric on Cm \ 0 given by

ω =
√
−1A

k
√
Sk +B

(
∂∂̄ logS +

Sk

B + Sk
∂ logS ∧ ∂̄ logS

)
(3.2.5)

induces the Kähler metric on Mm
k = Bl0C

m/Γk, where Γk = Z/kZ .

Proof. Recall that the blow up of Cm at the origin is given by

Bl0C
m = {((z1, . . . , zm), [t1, . . . , tm]) ∈ Cm × CPm−1 : zitj − zjti = 0} ,

with the system of charts

U1
i = {((z1, . . . , zm), [t1, . . . , zm]) : ti ̸= 0, zj = zitj} ,
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for i, j = 1, . . . ,m. These charts are biholomorphic to Cm via the map Φi : U
1
i → Cm defined

as

((z1, z2, . . . , zm), [t1, t2, . . . , zm]) →
(
zj,

t1
ti
, . . . ,

ti−1

ti
,
ti+1

ti
, . . . ,

tm
ti

)
,

with inverse

(z1, z2, . . . , zm) → ((z1, z1z2, . . . , z1zm), [1, z2, . . . , zm]). (3.2.6)

In (3.2.6) we have

S = |zi|2(|z21 |+ · · ·+ |zi−1|2 + 1 + |zi+1|2 + · · ·+ |zm|2).

For simplicity we fix U1, and denote z1 = λ and z̃ = (z2, . . . , zm) ∈ Cm−1. Then S =

|λ|2(1 + |z̃|2) and the metric in (3.2.5) can be written as

ω =
√
−1A k

√
(|λ|2(1 + |z̃|2)k +B

(
∂∂̄ log(1 + |z̃|2) + |λ|2k(1 + |z̃|2)k

B + |λ|2k(1 + |z̃|2)k
∂ logS ∧ ∂̄ logS

)
.

(3.2.7)

Since k is a positive integer, we have

|λ|2k∂ logS ∧ ∂̄ logS = |λ|2k−2[dλ ∧ dλ̄+ λdλ̄ ∧ ∂ log(1 + |z̃|2)

+ λ̄dλ ∧ ∂̄ log(1 + |z̃|2) + |λ|2∂ log(1 + |z̃|2) ∧ ∂̄ log(1 + |z̃|2)].

It is easy to see that ω is smooth on Bl0Cm but it is degenerate at point λ = 0 in the direction

of λ as soon as k ≥ 2. Therefore (3.2.7) does not defines Kähler metric on Bl0Cm.

On the contrary if we consider the quotient Mm
k = Bl0C

m/Γk with the cyclic group Γk =

Z/kZ . The action of the group Γk on Bl0C
m is defined as [γ] .(z, [t]) = (e2πiγz, [t]). The

quotient map Bl0C
m → Mm

k is defined by (λ, z̃) → (λk, z̃). Therefore in local coordinates
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(µ, z̃) we have

ω = A k
√

|µ|2(1 + |z̃|2)k +B

[
∂∂̄ log((1 + |z̃|2)

+
|µ|2(1 + |z̃|2)k

k2(B + |µ|2(1 + |z̃|2)k)
∂(log |µ|2(1 + |z̃|2)k) ∧ ∂̄(log |µ|2(1 + |z̃|2)k))

]
= A k

√
|µ|2(1 + |z̃|2)k +B

[
∂∂̄ log((1 + |z̃|2)

+
(1 + |z̃|2)k

k2(B + |µ|2(1 + |z̃|2)k)
[dµ ∧ dµ̄+ µdµ̄ ∧ ∂ log(1 + |z̃|2)k

+ µ̄dµ ∧ ∂̄ log(1 + |z̃|2)k + |µ|2∂ log(1 + |z̃|2)k ∧ ∂̄ log(1 + |z̃|2)k]
]

Clearly ω is smooth and if µ = 0 we have,

ω = A
k
√
B

[
∂∂̄ log(1 + |z̃|2) + (1 + |z̃|2)k

k2B
dµ ∧ dµ̄

]

which is positive definite. Therefore (3.2.5) defines a Kähler metric on the blow up of Cm at

origin quotient by the cyclic group Γk .

3.3 General solutions

In the previous section, we have discussed the solutions of the system of ODE (3.1.7) along the

lines x̃ = 0 and ỹ = 0 and construct the corresponding family of of scalar flat Kähler metrics.

As we will see in the next chapter that scalar flat Kähler metrics discussed in Proposition 3.1.1

does not contain any minimal hyperspheres in the family of canonical hyperspheres, so we

need to find more solutions of the system (3.1.7), in particular scalar flat Kähler metrics which

contains minimal hypersphere .The minimality and stability of hyperspheres in the family of

canonical hyperspheres ΣS will be discussed in details later.

In this section we focus on scalar flat Kähler metrics which correspond to the solution of the

system (3.1.7) more generally. We reduce system (3.1.7) to one equation as follows

dỹ

dx̃
=

(m− 1)

m

ỹ

x̃
,
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and solve it explicitly. By separation of variable we get,

dỹ

ỹ
=

(m− 1)

m

dx̃

x̃
,

and so the explicit solution is

ỹ = λ(x̃)
m−1
m .

This can be written as
(ỹ)m

(x̃)m−1
= λ . (3.3.1)

Using the substitution, x̃ = mx− y +m− 1, ỹ = y + (1−m)x−m, in (3.3.1), we have

(y + (1−m)x−m)m

(mx− y +m− 1)m−1
= λ . (3.3.2)

This further implies that the solution (x, y) of the system (3.1.1) has to satisfy (3.3.2) . Now

we define a function

f(x, y) :=
(y + (1−m)x−m)m

(mx− y +m− 1)m−1
. (3.3.3)

The equation (3.3.2) can be seen as level set of the function f(x, y), i.e. Lλ(f) = {(x, y) :

f(x, y) = λ}. By Lemma (3.1.7) we know that all solutions (x, y) of the system (3.1.1)

approaches (1, 2m − 1) and it is easy to see that each Lλ contains the point (1, 2m − 1).

Remember that we are interested in only those solutions (x, y) where x > 0 .

Thus from the above discussion we prove the following result.

Proposition 3.3.1. Each solutions (x(t), y(t)) of the system (3.1.1) is contained in one Lλ(f).

By Proposition 3.1.2 and Lemma (3.1.7), we know that corresponding to the integral curve

(x(t), y(t)) satisfying system (3.1.1), we have a family of AE scalar flat Kähler metrics and

thus we have the following result.

Theorem 3.3.2. There exist AE scalar flat Kähler metric ωλ =
√
−1∂∂̄fλ(t) up to constant

on Cm \BRλ
(0) corresponding to each level curve Lλ(f) .

The level sets L0(f) and L∞(f) are the lines y = (m − 1)x +m and y = mx + (m − 1)

respectively. Each of these line pass through (1, 2m− 1).
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Example 3.3.3. By Example 3.1.11, we have the integral curves of the Burns metric given

as follows,

x(t) =
et

1 + et

y(t) =
3et + 1

1 + et
.

Clearly (x(t), y(t)) satisfy the linear equation y = 2x+1. Thus the Burns metric is contained

in the level set L∞(f).

Example 3.3.4. By Example 3.1.12, we have the integral curves for Eguchi Hanson metric

given below x = e2t

1+e2t

y = 2+3e2t

1+e2t
,

Clearly (x(t), y(t)) satisfy the linear equation y = x + 2. Thus The Eguchi Hanson metric is

contained in L0(f).
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Chapter 4

Stable minimal hyperspheres in scalar

flat Kähler manifolds

In this chapter, we consider the family of canonical hyperspheres Σ2m−1
S with rotationally

symmetric Kähler metric ω =
√
−1∂∂̄f(t). We discuss the possible conditions for the family

contains a minimal stable hypersphere. We also prove that the AE scalar flat Kähler metrics

corresponding to the level set Lλ(f) contains minimal hypersphere in ΣS when λ belongs to

some certain interval.

4.1 Stable minimal hyperspheres

In this section we consider the Kähler metric ω and discuss the condition for the minimal

hyperspheres Σ2m−1
S0

in the family of canonical hyperspheres.

By considering the change of coordinates t = logS, the formula for mean curvature and

area of Σ2m−1
S given in Theorem 2.3.6 and Proposition 2.3.3 respectively changes as follow

H(t, f(t)) =
−1

(2m− 1)
√
2ft(ftt)

3
2

(2(m− 1)f 2
tt + ftttft) , (4.1.1)

V (Σ2m−1) =
√

2ftt(2ft)
m−1VE(Σ

2m−1
1 ) . (4.1.2)

Or equivalently

V (Σ2m−1) = (2ft)
2m−1

2

√
x(t)VE(Σ

2m−1
1 ) ,
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where x(t) = ftt
ft

.

Consider the hypersphere of radius S0 = et0 in Σ2m−1
S . Clearly Σ2m−1

S0
is minimal if and only

if

(2(m− 1)f 2
tt + ftttft)

∣∣
t=t0

= 0 ⇐⇒ fttt|t=t0 =
−2(m− 1)f 2

tt

ft

∣∣∣∣
t=t0

. (4.1.3)

The following lemma describes the condition when this minimal hypersphere is stable.

Lemma 4.1.1. The minimal hypersphere of radius S0 = et0 in the family of canonical hyper-

spheres Σ2m−1
S is stable if and only if[

f 2
t ftttt − 2(m− 1)(4m− 3)f 3

tt

]
t=t0

≥ 0 . (4.1.4)

Proof. We focus only on the terms which depend on the radius of the hyperspheres. Differ-

entiating (4.1.2) implies that

At = 2(m− 1)
√
fttfttf

m−2
t +

fm−1
t fttt

2
√
ftt

=
fm−2
t√
2ftt

(
2(m− 1)f 2

tt + ftfttt
)
.

Now differentiate again and using (4.1.3) we have

Att(t0) =
1√
ftt

((4m− 3)fttfttt + ftftttt)

=
fm−2
t√
ftt

(−2(m− 1)(4m− 3)
f 3
tt

ft
+ ftftttt)

=
fm−2
t√
fttft

(−2(m− 1)(4m− 3)f 3
tt + f 2

t ftttt) .

Thus the minimal hypersphere of radius S0 in the family of canonical hyperspheres Σ2m−1
S is

stable if and only if [
f 2
t ftttt − 2(m− 1)(4m− 3)f 3

tt

]
t=t0

≥ 0 .

In the above, we discussed the stability condition for the minimal hyperspheres Σ2m−1
S0

with respect to derivative of potential function of the Kähler metric ω. Now we translate the

minimality and stability conditions of hypersphere of radius S0 = et0 in the family Σ2m−1
S in

terms of x(t)) and y(t).
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Lemma 4.1.2. Assume that there is a minimal hypersphere of radius S0 = et0 in the family of

canonical hyperspheres Σ2m−1
S . Then solution of the system (3.1.1) at t0 is given by (x(t0), 0),

i.e. y(t0) = 0 .

Proof. Set ν = log ft then x = νt. By minimality, we have

H(t0) = 0

⇐⇒ (2(m− 1)f 2
tt + ftttft) = 0

⇐⇒ 2(m− 1)((eν)t)
2 + eν(eν)tt = 0 .

Now consider

2(m− 1)((eν)t)
2 + eν(eν)tt = 2(m− 1)(νte

ν)2 + eν(νtte
ν + (νt)

2eν

= (eν)2((2m− 1)(νt)
2 + νtt)

= (eν)2((2m− 1)x2 + xt)

= (eν)2 xy ,

where the last equality is by using (3.1.1). But (eν)2 > 0 and x > 0, so H(t0) = 0 ⇐⇒
y(t0) = 0.

Lemma 4.1.3. The minimal hypersphere of radius S0 = et0 in the family of canonical hyper-

spheres Σ2m−1
S is stable if and only if

dy

dx

∣∣∣∣
t=t0

≤ 0 .

Proof. By Lemma 4.1.1, the minimal hypersphere of radius S0 = et0 is stable if and only if

fttttf
2
t − C(m)f 3

tt ≥ 0 ,

where C(m) = 2(m− 1)(4m− 3).
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We recall the notation ν = log ft and x = νt. Now we have

fttttf
2
t − C(m)f 3

tt = (eν)ttte
2ν − C(m)(eν)t)

3

= e2ν(νttte
ν + νttνte

ν + 2(νt)νtte
ν + (νt)

3eν)− C(m)ν3t (e
ν)3

= e3ν(νttt + νttνt + 2(νt)νtt − (C(m)− 1)(νt)
3)

= e3ν(xtt + 3xxt − (C(m)− 1)x3)

= xyt + xty − (4m− 5)xxt − (C(m)− 1)x3)

= xt(y − (4m− 5)x) + xyt − (C(m)− 1)x3)

= x(y − (4m− 5)x)(y − (2m− 1)x)) + xyt − (C(m)− 1)x3)

= x
(
(y − (4m− 5)x)(y − (2m− 1)x) + yt − (C(m)− 1)x2)

)
= x(y2 − 6(m− 1)xy + yt) ,

where we have used xtt = (xy − (2m− 1)x2)t. But x > 0, we then obtain

fttttf
2
t − C(m)f 3

tt ≥ 0 ⇐⇒ yt ≥ −y2 + 6(m− 1)xy . (4.1.5)

At t = t0, by Lemma 4.1.2, y(t0) = 0 and thus (4.1.5) implies that yt ≥ 0. Moreover,

xt = xy − (2m− 1)x2 implies that xt|t=t0 < 0. Thus we have

dy

dx

∣∣∣∣
t=t0

=
dy

dt

dt

dx

∣∣∣∣
t=t0

≤ 0 .

If we consider the scalar flat Kähler metric ω =
√
−1∂∂̄f(t), then the condition for the

stability of minimal hypersphere of radius S0 = et0 is given in the following result.

Lemma 4.1.4. Let ω =
√
−1∂∂̄f(t) be a scalar flat Kähler metric. A minimal hypersphere

of radius S0 = et0 in the family of canonical hyperspheres Σ2m−1
S is stable if and only if

0 < x(t0) ≤ 1.

Proof. By Theorem 3.1.1, we can construct the integral curves x = ftt
ft
> 0 and y = 3x + xt

x

which satisfy the system xt = xy − (2m− 1)x2

yt = m(m− 1)(1− x)x .
(4.1.6)
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We write system (4.1.6) as follow

dy

dx
=
dy

dt

dt

dx
=
m(m− 1)(1− x)

y − (2m− 1)x
.

By Lemma 4.1.2, y(t0) = 0, and so we have

dy

dx

∣∣∣∣
t=t0

=
−m(m− 1)(1− x(t0))

(2m− 1)x(t0)
. (4.1.7)

By Lemma 4.1.3, ΣS0 is stable if and only if
dy

dx
|t=t0 ≤ 0 .

Hence (4.1.7) implies that 0 < x(t0) ≤ 1 .

By Lemmas 4.1.2 and 4.1.4, we conclude the following result.

Proposition 4.1.5. Let ω =
√
−1∂∂̄f(t) be a scalar flat Kähler metric on Cm \ 0 . Then ΣS0

is a stable minimal hypersphere if and only if (x(t), y(t)) satisfy the following system
xt = xy − (2m− 1)x2

yt = m(m− 1)(1− x)x

(x(t0), y(t0)) = (x0, 0)) 0 < x0 ≤ 1 .

Remark 4.1.6. We have constructed the scalar flat Kähler metric along the line ỹ = 0 and

x̃(t0) = x0 in Proposition 3.2.1 which satisfy the system 3.1.1. Since ỹ = 0 implies that

y = (m − 1)x + m. But x > 0, so we must have y(t0) ̸= 0, otherwise y(t0) = 0 ⇐⇒
x(t0) = m

1−m < 0, a contradiction. Similar result arises when we consider he case x̃ = 0

and ỹ(t0) = y0. Therefore, by Lemma 4.1.2 the metric in Proposition 3.2.1 does not contain

minimal hypersphere ΣS0 in the family of canonical hyperspheres.

4.2 Existence of stable minimal hyperspheres in asymp-

totically Euclidean manifolds Cm \BRλ
(0)

In this section, we discuss that the scalar flat Kähler metric in section 3.3 contains minimal

stable hypersphere when the level set of the function given in (3.3.3) intersect the x-axis.
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By Proposition 3.3.1, we have seen that the solutions of the system 3.1.1 contained in the

level set of the function

f(x, y) :=
(y + (1−m)x−m)m

(mx− y +m− 1)m−1
. (4.2.1)

By Lemma 4.1.2, we know that the hypersphere of radius S0 = et0 in Cm \ BRλ
(0) , is

minimal if y(t0) = 0 . Thus for (x(t0), y(t0)) = (x0, 0) we have

λ(x0) =
((1−m)x0 −m)m

(mx0 +m− 1)m−1
,

Lemma 4.2.1.
(
Cm \BRλ

(0), ωλ =
√
−1∂∂̄fλ(t)

)
where ωλ is the AE scalar flat Kähler metric

corresponding to the level set Lλ . The hypersphere ΣS0 of radius S0 = et0 at t = t0 is minimal

if and only if

λ(x0) =
((1−m)x0 −m)m

(mx0 +m− 1)m−1
,

Theorem 4.2.2.
(
Cm \BRλ

(0), ωλ =
√
−1∂∂̄fλ(t)

)
where ωλ is the AE scalar flat Kähler

metric corresponding to the level set Lλ . The minimal hypersphere ΣS0 of radius S0 = et0 at

t = t0 is stable if and only if λ ∈ [(−1)m(2m− 1), (−m)m

(m−1)m−1 ).

Proof. By Lemma 4.2.1, the hypersphere ΣS0 is minimal if and only if

λ(x0) =
((1−m)x0 −m)m

(mx0 +m− 1)m−1
.

By Lemma 4.1.4, we have that ΣS0 is stable if and only if 0 < x0 ≤, 1 which gives λ ∈
[(−1)m(2m− 1), (−m)m

(m−1)m−1 ].

Remark 4.2.3. It is important to notice that the level curves Lλ for λ ∈ [(−1)m(2m −
1), (−m)m

(m−1)m−1 ] cross the x-axis at two points which means that there exist two minimal hyper-

spheres in Cm \BRλ(0) in which one is stable and the other is not.

In general it is not easy to find the domain of the metric but in dimension 2 we can

compute the radius of the ball BRλ
. In the following proposition we reprove the fact that the

scalar flat metrics are AE and find the explicit domain for the metric.
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Figure 4.1: Level curves of f(x, y) for m = 2

Proposition 4.2.4. Let m = 2 and λ ∈ [3, 4) then the scalar flat Kähler metrics correspond-

ing to the Lλ(f) are AE and Rλ = eTλ where

Tλ =
1

2

(
−πλ√

−(−4 + λ)λ
− log(−1 +

4

λ
)

)
.

Proof. In complex dimension 2, the equation (3.3.2) becomes

(y − x− 2)2 = λ(2x− y + 1),

which further implies that

y = x+ 2− λ

2
±
√
λ(x− 1) +

λ2

4
. (4.2.2)

Putting this value of y in the first equation of (3.1.1) we have
dx

dt
= xy − 3x2

= x

(
−2x+ 2− λ

2
±
√
λ(x− 1) +

λ2

4

)
. (4.2.3)
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We denote

F±(x) = x

(
−2x+ 2− λ

2
±
√
λ(x− 1)) +

λ2

4

)
.

Obviously, F+(1) = 0 and F±(1− λ
4
) = 0. Now (4.2.3) implies that

dx

dt
= F±(x) =⇒ dt =

1

F±(x)
dx . (4.2.4)

By denoting

t+(x) =

∫ xλ(t)

α

1

F+(x)
dx where α ∈

(
1− λ

4
, 1

)
, (4.2.5)

t−(x) =

∫ xλ(t)

β

1

F−(x)
dx where β ∈

(
1− λ

4
,∞
)
, (4.2.6)

the Taylor expansion of F+(x) around x=1 is given by

F+(x) ≃ −(x− 1)− (1 +
1

λ
)(x− 1)2 +

(2− λ)

λ2
(x− 1)3 +O(x− 1)4 .

For the choice of α, (4.2.5) implies that

t+(x) =

∫ xλ(t)

1−λ
4

(
−1

x− 1
+O(x− 1)

)
dx = − log(1− x) +O((x− 1)2).

Clearly x→ 1− implies that t→ ∞ .

On the other hand for λ ∈ [3, 4), (4.2.6) implies that

lim
x→∞

t−(x) = lim
x→∞

∫ xλ(t)

1−λ
4

dx

x

(
−2x+ 2− λ

2
−
√
λ(x− 1)) + λ2

4

)
=

1

2

(
−πλ√

−(−4 + λ)λ
− log(−1 +

4

λ
)

)
= Tλ .

Since t = logR2 so we get Rλ = eTλ .

By Theorem 4.2.2, we have that when m = 2 the scalar flat Kähler metrics discussed in

Section 3.3 contains minimal stable hypersphere if λ ∈ [3, 4). Moreover we have explicitly

compute the domain of the metric in Proposition 4.2.4. The following proposition tell us how

the domain of the metric changes when λ approaches the extreme of the the interval [3, 4) .
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Proposition 4.2.5. The radius of the ball BRλ
behaves in the following way:

Rλ =

<∞ when λ→ 3

0 when λ→ 4 .

Proof. From Proposition 4.2.4, we have

lim
x→∞

t−(x) = Tλ =
1

2

(
−πλ√

−(−4 + λ)λ
− log(−1 +

4

λ
)

)
,

which gives

Rλ = eTλ .

Clearly if λ → 3 we have, Tλ → 1
2
(−

√
3π − log 3) and if λ → 4 we get, T4 → −∞. Therefore

we conclude that as λ→ 4, the radius of the ball BRλ
shrink to a point 0 .

Fu et. al [14] in 2016 presented the following result in which they proved the asymptotic

behaviour of the potential function for the AE scalar flat Kähler metric.

Theorem 4.2.6. [14] There exist a one parameter family of functions t → fa(t) defined

on R and smoothly depending on the parameter a > 0, such that the metric associated to

the Kähler form ωf is complete and scalar flat on Cn \ 0. Moreover, the function fa has the

following expansion as t→ ∞

fa(t) =

|w|2 − nan−1

(n−1)(n−2)
|w|4−2n + an

n
|w|2−2n +O(|w|−2n) for n ≥ 3

|w|2 + 2a log |w|2 + a2

2|w|2 +O(|w|−4) for n = 2, .

In particular, the metric is AE at infinity, and as t→ −∞, we have the following expansion

fa(t) = a log |w|2 − 2a

n(n− 1)
log(− log |w|2) +O(

1

log |w|2
)

where t = log |w|2.

In the next Lemma, we construct of (x, y) for the scalar flat Kähler metric given in Theorem

4.2.6.
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Lemma 4.2.7. For m = 2, the asymptotic curves for the AE scalar flat Kähler metric given

in Theorem 4.2.6 behaves in the following way,(x(t), y(t)) → (1, 3) when t→ ∞

(x(t), y(t)) → (0, 0) when t→ −∞

Proof. At infinity the asymptotic behavior of the potential function is given by

fa(t) = et + 2at+
a2e−t

2
+O(e−2t) .

which gives the asymptotic curves as follows,

x(t) =
(fa)tt
(fa)t

=
et + a2e−t

2
+O(e−2t)

et + 2a− a2e−t

2
+O(e−2t)

y(t) = 3x(t) +
xt
x

= 3− 4a(a− 2et)

a2 − 4aet − 2e2t
− 2a2

a2 + 2e2t

It is easy to see that as t→ ∞ we have (x(t), y(t)) → (1, 3).

On the other hand near the origin we have the asymptotic behaviour of the potential function

given as follows

fa(t) = at− a log(−t) +O(
1

t
).

The asymptotic curves near the origin are given as follows,

x(t) =
1

t(t− 1)

y(t) =
2

t− 1
− 1

t

As t→ −∞ then (x(t), y(t)) → (0, 0).

By Lemma 4.2.7 and Proposition 4.2.5 we conclude the AE scalar flat Kähler metric given

in Theorem 4.2.6 for m = 2 is contained in the level set L4. In other words we have the

following proposition.

Proposition 4.2.8. For m = 2 the Kähler metric ωλ corresponding to the level curve Lλ
approaches to ωfa as λ→ 4.
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The following graph represent the level set Lλ for some λ, and as its clear from the graph

when λ → 4 and L4 approaches the origin. The figure contains only those level sets which

are interested for us, i.e. for which (x > 0). Notice that every level set contained the point

(1, 3) , which means that all the scalar flat Kähler metrics corresponding to the level sets are

asymptotically Euclidean. The level set L0 and L∞ contained the Burns and Eguchi Hanson

metric if x → 1−1. The level set L4 passing through the origin is level set of the scalar flat

Kähler metric (PMY) given [14].
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4.3 Penrose Inequality in complex dimension 2

So far, we have proved the existence of minimal hyperspheres in scalar flat AE Kähler manifold

in any dimension. In this section, we compute the ADM mass and volume of the minimal

hypersphere in complex dimension 2.

Proposition 4.3.1. The volume of the hyperspheres ΣS with ω =
√
−1∂∂̄f(t)) at any point

is given by

A(t) =
√
x(t)(2ft)

3
2VE(Σ

3
1). (4.3.1)

where VE(Σ3
1) = 2π2 is the Euclidean volume of unit 3-sphere.
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From the proof of Theorem 3.1.1 we recall that ν = log ft and νt = x(t), which gives the

relation between the derivatives of the potential function as follows,

ft = eν , ftt = x(t)ft (4.3.2)

In order to find the volume of ΣS0 , we only need the expression of the potential function f at

x0(λ). By equation (4.2.4) we have ,

dt =
1

F±(x)
dx .

Multiply both sides by x(t) and integrating we get,∫ t

t0

x(t)dt =

∫ x(t)

x(t0)

x(t)

F±(x)
dx. (4.3.3)

Notice that ν = log ft and νt = x(t) implies that

ν(t) =

∫ t

t0

x(t)dt (4.3.4)

By (4.3.3) and (4.3.4) we get,

ν(x(t)) =

∫ x(t)

x(t0)

x(t)

F±(x)
dx =

∫ x(t)

x(t0)

dx

2− 2x− λ
2
±
√
λ(x− 1) + λ2

4

We choose different normalization and get,

ν−(x(t)) =

∫ x(t)

1−λ
4

x(t)

F−(x)
dx = − log

(
1 +

√
4(x− 1) + λ

λ

)
(4.3.5)

ν+(x(t)) =

∫ x(t)

1−λ
4

x(t)

F+(x)
dx = − log

(
1−

√
4(x− 1) + λ

λ

)
(4.3.6)

Proposition 4.3.2. Given (MRλ,∞, ωλ) where ωλ is AE scalar flat Kähler metric correspond-

ing to Lλ. Then Lλ contains minimal hypersphere at x0(λ) where

x0(λ) = λ− 2±
√

(λ− 3)λ (4.3.7)

73



where λ ∈ [3, 4). Moreover, the volume of these minimal hyperspheres can be computed as

follows:

V (x0(λ)) =
√
x0(λ)(2e

ν−(x0(λ)))
3
2VE(Σ

3
1) (4.3.8)

where

ν−(x0(λ)) = − log

(
1 +

√
4x0(λ) + λ− 4

λ

)
.

The minimal hypersphere at x0(λ) = λ− 2−
√

(λ− 3)λ is stable and its volume behaves in

the following way:

V (x0(λ)) =

VE(Σ3
1) λ→ 3

0 λ→ 4

Proof. By Lemma 4.2.1, we know that ΣS0 is minimal if and only if

λ(x0) =
(x0 + 2)2

2x0 + 1
.

x0(λ) = λ− 2±
√

(λ− 3)λ. (4.3.9)

Clearly the minimal hypersphere at x0(λ) = λ−2−
√

(λ− 3)λ is stable. By (4.3.2) and 4.3.5

we have,

V (x0(λ)) =
√
x0(λ)(2e

ν−(x0(λ)))
3
2VE(Σ

3
1) (4.3.10)

Theorem 4.3.3. The ADM mass of the AE Kähler manifold MRλ,∞ is λ
2
.

Proof. Taylor expansion of ft(x) and ftt(x) around x = 1−

ft(x) ∼ − λ

2(x− 1)
− 1

2
+

1

2λ
(x− 1)− 1

λ2
(x− 1)2 +O(x− 1)3

ftt(x) ∼ − λ

2(x− 1)
−
(
1 + λ

2

)
+

(
−1

2
+

1

2λ

)
(x− 1) +

λ− 2

2λ2
(x− 1)2 +O(x− 1)3

mADM = lim
x→1−

(ft(x)− ftt(x)) = lim
x→1−

(
λ

2
+O(x− 1)

)
=
λ

2
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Theorem 4.3.4. Form = 2, the AE Kähler manifoldMRλ,∞ satisfies the Riemannian Penrose

inequality,

mADM ≥ 1

2

(
VΣ3(x0)

VE(Σ3
1)

) 2
3

.

λ

2
≥ eν(x)

1
3

=

(
λ− 2−

√
λ(λ− 3)

) 1
3(

1 +

√
4
(
λ−3−

√
λ(λ−3)

)
+λ

λ

)
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