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Introduction

In this thesis we address the problem of relaxation of the Cartesian area functional with
respect to the strict convergence in BV for maps u : Ω ⊂ R2 → R2. The relaxation
technique allows to extend the notion of non-parametric area of C1-maps to more general,
possibly singular, maps. The existence of discontinuities for a map u can be interpreted at
the level of its graph as the presence of ”holes” and so computing the relaxed area consists
in finding the ”most convenient” way to fill these holes, by means of surface area. As
opposite to the scalar case, that has been completely understood, the 2-codimensional one,
that we are considering here, turns out to be very challenging and many open questions
are still left.
The content of the thesis is based on results contained in [3], [4] and [14], which have been
obtained during the period of Ph.D. at SISSA (International School for Advanced Studies)
in Trieste, in collaboration with Giovanni Bellettini and Riccardo Scala.

Let Ω ⊂ R2 be a bounded open set and v = (v1, v2) : Ω → R2 be a map of class
C1(Ω;R2). The area functional A(v; Ω) computes the 2-dimensional Hausdorff measure
H2 of the graph

Gv := {(x, y) ∈ Ω× R2 : y = v(x)} (0.0.1)

of v, a Cartesian 2-manifold in Ω× R2 ⊂ R4, and is given by

A(v; Ω) :=
∫
Ω

√
1 + |∇v|2 + |Jv|2 dx =

∫
Ω
|M(∇v)| dx, (0.0.2)

whereM(∇v) = (1,∇v1,∇v2, Jv) and Jv = ∂v1
∂x1

∂v2
∂x2
− ∂v2

∂x1

∂v1
∂x2

is the Jacobian determinant
of v. As opposite to the case when the map is scalar-valued, the functional A(· ; Ω) is not
convex, but only polyconvex in ∇v, and its growth is not linear, due to the presence of
det(∇v).
The main motivation for studying relaxation of this functional is to try to extend A(· ; Ω)
in a reasonable way out of C1(Ω;R2): setting for convenience

A(v; Ω) := +∞ ∀v ∈ L1(Ω;R2) \ C1(Ω;R2),

let us consider the sequential lower semicontinuous envelope

Aτ (u; Ω) := inf

{
lim inf
k→+∞

A(vk; Ω) : (vk) ⊂ C1(Ω;R2) ∩ S, vk
τ−→ u

}
∀u ∈ S (0.0.3)

of A(· ; Ω) with respect to a metrizable topology τ on a subspace S ⊆ L1(Ω;R2) containing
those v ∈ C1(Ω;R2) with A(v; Ω) < +∞, and choose this as the extended notion of area.

v
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A typical choice is S = L1(Ω;R2) and τ the L1(Ω;R2) topology, i.e., Aτ = AL1 , a case
in which little is known1. It is not difficult to show that the domain of AL1 is properly
contained in BV (Ω;R2), but its characterization for the moment is not available. Also,
one can prove that

AL1(u; Ω) ≥
∫
Ω

√
1 + |∇u|2dx+ |Dsu|(Ω), (0.0.4)

but the inequality might be strict, as we can see already for two elementary maps (see
uV in (0.0.5) and uT in Fig. 1 below). Here ∇u is the approximate gradient of u, | · |
is the Frobenius norm, Dsu is the singular part of the distributional gradient Du of u,
and |Dsu|(Ω) stands for the total variation of Dsu. Finding the expression of AL1(· ; Ω)
is possible, at the moment, only in very special cases. This is also due to its nonlocal
behaviour, since for several maps u, the set function

U 7→ AL1(u;U) := inf

{
lim inf
k→+∞

A(u;U) : (vk) ⊂ C1(U ;R2), vk → u in L1(U ;R2)

}
is not subadditive with respect to the open set U ⊆ Ω. This happens, for example, for
uT on an open disk Bℓ, as conjectured in [20], and proven in [1]. A complete picture can
be found in [8, 44], where AL1(uT ;Bℓ) is explicitely computed, taking advantage of the
symmetry of the map and of Bℓ. We refer also to [5] where an upper bound inequality is
proved for a triple junction map without symmetry assumptions.
Also for the vortex map uV : Bℓ \ {0} → S1,

uV (x) :=
x

|x|
, (0.0.5)

the above mentioned nonsubadditivity holds. Notice that uV ∈ W 1,p(Bℓ;R2) for p < 2.
The nonlocal behaviour is hidden in the following results, proved in [1]: we have

AL1(uV ;Bℓ) =

∫
Bℓ

√
1 + |∇uV |2dx+ π if ℓ is sufficiently large, (0.0.6)

while

AL1(uV ;Bℓ) <

∫
Bℓ

√
1 + |∇uV |2dx+ π if ℓ is sufficiently small. (0.0.7)

The explicit computation of AL1(uV ;Bℓ) for small values of ℓ has been done in [6],
where it is shown that in (0.0.7), in place of π, the singular contribution of AL1(uV ;Bℓ) is
exactly the area of the solution to a Plateau-type problem in codimension 1. It looks like
a (half) catenoid constrained to contain a segment (a radius of Bℓ) and it is the vertical
part of a Cartesian current2 obtained as a limit of the graphs of a recovery sequence. If
ℓ is large enough, a minimizer of this Plateau problem has the shape of two half-disks of
radius 1, whose total area is π, recovering the result in (0.0.6).

The L1-topology is rather weak, and so it is convenient in order to show compactness
results, in the effort of proving existence of minimizers of some possible weak formulation of

1For scalar valued maps it is known that the domain of AL1(·; Ω) is BV (Ω), and on BV (Ω) the relaxed
functional can be represented as the right-hand side of (0.0.4), see [18,28].

2For the theory of Cartesian currents we refer to [25,26], while for a brief introduction see Chapter 1.
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the two-codimensional Cartesian Plateau problem, but also to treat existence of minimizers
of relevant energies involving the area functional (see [20]). However, the above discussion
illustrates the difficulties of the study of the corresponding relaxation problem. Besides all
nonlocality phenomena, the L1-convergence does not provide any control on the derivatives
of v and, of course, neither on the Jacobian determinant.
The aim of this thesis is to study the relaxation of the area in S = BV (Ω;R2) in a different
topology, stronger than the L1-topology, in order to possibly avoid nonlocality and keep
some control of the gradient terms. Specifically, we take as τ in (0.0.3) the topology
induced by the strict convergence in BV (Ω;R2). We recall that (vk) converges to u strictly
BV (Ω;R2) if vk → u in L1(Ω;R2) and |Dvk|(Ω) → |Du|(Ω). On the space W 1,1(Ω;R2)
this notion of convergence is weaker than the strong W 1,1-convergence, and in general not
related with the weak W 1,1-convergence In advantage, the strict convergence, unlike the
ones of Sobolev spaces, still allows to consider relaxation in (0.0.3) for all BV -maps. We are
therefore led to consider, for all u ∈ BV (Ω;R2), the corresponding relaxed area functional
Aτ = ABV (which we call simply BV -relaxed area)

ABV (u; Ω) := inf

{
lim inf
k→+∞

A(vk; Ω) : (vk) ⊂ C1(Ω;R2), vk → u strictly BV (Ω;R2)

}
.

(0.0.8)
One of the main advantages of considering the strict convergence (at least in dimension 2)
is related to its inheritance property on one-dimensional slices, where it further behaves like
a uniform convergence. This sort of rigidity of the strict convergence allows us to compute
explicit integral formulas of the BV -relaxed area for many more maps in comparison to
the L1-case.
The analysis of the BV -relaxed area turns out to be highly related to the study of the BV -
relaxed Jacobian total variation TVJBV (see (0.0.13) below), that is a generalized notion
of total variation of the Jacobian determinant for a BV function. Roughly, this quantity
seems to be the correct object to consider in order to fill completely vertical holes in the
graph of a singular map. For this reason, it will appear as singular term in the expression
of the BV -relaxed area for maps with 0-dimensional singularities, like vortex-type maps
(Chapter 2) or, more in general, 0-homogeneous maps (Chapter 4).

In the last part of Chapter 1, we briefly introduce the formalism of currents. In par-
ticular, we recall some results valid for the class of integer multiplicity currents, that will
be crucial in the proof of Theorem 3.2.2. Moreover, we recall some useful properties of
Cartesian currents [26, 27], with the purpose to establish a connection with a recent ap-
proach developed by Mucci in [40], based on the notion of minimal lifting measures in the
sense of Jerrard and Jung [31]. Currents represent a powerful geometric tool, especially the
Cartesian ones, in order to introduce generalized version of graphs and treat singularities
in a manageable geometric sense. However, we will underline some differencies between
the two approaches, basically related to the fact that currents are oriented objects, then
the way to regard singularities of maps (and so the corresponding way to ”fill the holes
in the graph”) can be different from the point of view of approximation by smooth maps.
Similar observations can be found already for the L1-relaxed area in [6], where the authors
point out that the minimal Cartesian current that fills the hole in the graph of uV has less
area than the catenoid constrained to contain a segment, which was described above.

In Chapter 2 (based on results in [3]) we start our analysis with maps w : Bℓ \ {0} →
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S1 = {x ∈ R2 : |x| = 1} of the form

w(x) = φ(uV (x)) = φ

(
x

|x|

)
, (0.0.9)

with φ : S1 → S1 Lipschitz continuous. The vortex map corresponds to the case φ = id.
To the best of our knowledge, nothing is known about AL1(w;Bℓ) when φ ̸= id; in Chapter
6 we shall formulate some conjectures in the case of a double vortex, i.e. in angular
coordinates φ(θ) = e2iθ.
We prove in Theorem 2.2.3 that

ABV (w;Bℓ) =

∫
Bℓ

√
1 + |∇w|2dx+ π|deg(φ)|. (0.0.10)

In particular,

ABV (uV ;Bℓ) =

∫
Bℓ

√
1 + |∇uV |2dx+ π. (0.0.11)

By (1.3.9), for ℓ large enough we find ABV (uV ;Bℓ) = AL1(uV ;Bℓ) while by (1.3.10), for
small values of ℓ we have ABV (uV ;Bℓ) > AL1(uV ;Bℓ). We also remark that for any radius
ℓ, in the computation of ABV (uV ;Bℓ), the minimal surface employed to fill the holes of
the graph GuV ⊂ R4 of uV is the unit two dimensional disk living upon the origin of R2.

Thereafter, we extend our analysis to a more general class of maps u ∈W 1,1(Ω; S1). To
state our result, denote by Det∇u the distributional Jacobian determinant of u and recall
that when it is a Radon measure and |Det∇u|(Ω) < +∞, then Det∇u can be written as

Det∇u = π
m∑
i=1

diδxi , (0.0.12)

where the points xi ∈ Ω are the topological singularities of u, around which the degree of
u is nontrivial and equals di ∈ Z \ {0} (see for instance [11]). The main result of Chapter
2 is the following:

Theorem 0.0.1. Let u ∈ W 1,1(Ω; S1) be with |Det∇u|(Ω) < +∞, so that (0.0.12) holds.
Then

ABV (u; Ω) =

∫
Ω

√
1 + |∇u|2dx+ |Det∇u|(Ω) =

∫
Ω

√
1 + |∇u|2dx+ π

m∑
i=1

|di|.

The total variation of Det∇u can be characterized by relaxation. More precisely, for
maps v ∈W 1,2

loc (Ω;R
2), we introduce the functional TVJ(v; Ω) :=

∫
Ω |det∇v|dx, measuring

the total variation of the Jacobian determinant of v, and consider

TVJW 1,1(u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2), vk → u in W 1,1(Ω;R2)

}
,

for all u ∈W 1,1(Ω;R2). It is known (see [11]) that for u as in Theorem 0.0.1,

TVJW 1,1(u; Ω) = |Det∇u|(Ω).
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We shall show in Theorem 2.3.3 that

TVJW 1,1(u; Ω) = TVJBV (u; Ω),

where

TVJBV (u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2), vk → u strictly BV (Ω;R2)

}
.

(0.0.13)

We notice that the choice of the L1-convergence in the relaxation is in this case not in-
teresting: if u ∈ W 1,1(Ω;S1) and Ω is simply connected, then TVJL1(u; Ω) trivializes and
becomes identically zero (see [11, Cor. 5]). Weak notions of Jacobian determinant are
needed in order to detect the presence of fractures in the image of singular maps, since the
pointwise Jacobian determinant cannot do this job. In fact, for a map u as before, clearly
det∇u = 0 a.e., but Det∇u is a non-zero measure. We can also interpret it in terms of non
trivial relaxed Jacobian total variation in (0.0.13), that in particular is telling us that any
limit of TVJ along a smooth approximating sequence for u is non-zero.
Eventually, we consider some piecewise constant maps valued in S1, in particular the sym-
metric triple-point map (see Fig. 1). If we call Tαβγ the equilateral triangle with vertices

b

Figure 1

α, β, γ ∈ S1 and L := |β − α| its side length, then we shall prove in Theorem 2.4.1 that

ABV (uT ;Bℓ) = |Bℓ|+ LH1(JuT ) + |Tαβγ |,

where | · | is the Lebesgue measure and JuT is the jump set of uT .
In particular, in view of the results in [1], [8], we find ABV (uT ;Bℓ) > AL1(uT ;Bℓ). We will
also see that the same argument used to prove Theorem 2.4.1 provides a proof also for a
symmetric n-uple junction function.

As opposite to AL1(u; ·), we see that ABV (u; ·), at least for the maps u taking values
in S1 considered here, is a measure, and admits an integral representation.

In Chapter 3 we deal with maps u jumping on a curve, which are Lipschitz continuous
outside of it. The main difference with the previous chapter (and also with Chapter 4) is
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that in this case the image of u can have non-zero Lebesgue measure. More in details, we
start by considering the case of a straight jump, i.e. u : R = [a, b] × [−1, 1] → R2 is such
that u ∈ Lip(R±;R2), where R+ = {(t, σ) ∈ R : σ > 0} and R− = {(t, σ) ∈ R : σ < 0}.
We briefly say that u is piecewise Lipschitz in R. Denoting by u± the trace of u|R± , we

can consider the affine interpolation surface Xaff spanning graph(u±), namely

Xaff(t, s) = (t, su+(t) + (1− s)u−(t)) ∀(t, s) ∈ [a, b]× I,

where I := [0, 1]. Then we prove the following

Theorem 0.0.2. Let u : R→ R2 be piecewise Lipschitz in R. Then

ABV (u,R) = A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (0.0.14)

The last integral in (0.0.14) is the area of Xaff . In other words, the best way to fill the
hole in the graph of u upon the jump segment [a, b] is given by the surface Xaff .
While the proof of the upper bound inequality for (0.0.14) is quite standard (Proposition
3.2.5), the one of the lower bound is more involved (Proposition 3.2.4), and it requires some
tools from the theory of integer multiplicity currents, such as the isoperimetric inequality
and the flat norm (briefly recalled in Chapter 1). Of course, the difficulty is concentrated
around the jump segment, upon which one has to show that the graph of an approximating
smooth sequence (vk) has (at the limit) area bounded from below by the area of the affine
interpolation surface Xaff . The properties of the strict convergence (Lemmas 3.1.1 and
3.1.4) enter at the level of vertical slices of the graph of vk in a neighbourhood of the jump
segment, but these results only are not enough to pass to the limit in the area of the graph
of vk. For this purpose, the idea is to make a decomposition of the graph of vk and of the
surface Xaff in several tiny strips. The key point is that, when the number of these strips is
very high, the boundaries of graph(vk) and X

aff are decomposed in little pieces which are
pairwise uniformly close together, as a consequence of the strict convergence. At the same
time, the strips which decompose Xaff are very close to a minimal mass current having the
same boundary of Xaff .
In Remark 3.2.6, we propose an alternative proof of the lower bound inequality in (0.0.14),
based on results in [40] with the theory of Cartesian currents, briefly summarized in Chapter
1.
In [10], the authors compute the relaxed area AL∞(u,Ω) with respect to the local uniform
convergence out of the jump set, for u as in Proposition 3.2.4. They obtain, as singular
contribution, the area of the minimal semicartesian3 surface spanning the graphs of the
two traces. In particular, since Xaff is semicartesian and spans graph(u±) as well (see [10,
Definition 2.4]), we have AL∞(u,R) ≤ ABV (u,R). In general, this inequality holds strictly,
even if graph(u±) are coplanar. We can find an example in [10, Remark 8.5], where one
can notice that in order to minimize the area of the spanning surface, the approximating
sequence needs not keep the total variation of the limit map, which instead is forced to be
preserved under strict convergence. Moreover, it can be seen that, in general, AL∞(u, ·) is
not subadditive (take u = uT ), while ABV (u, ·) is clearly a measure.
Thereafter, we generalize Theorem 0.0.2 where the jump set is a curve α of class C2

3See Remark 3.2.2.
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contained in Ω. In this case, one can still build up Xaff along the image of α and prove
that it is the right object to consider. The analysis presents some technical issues when
the curve touches ∂Ω. To this purpose, we shall suppose that Ω is class C1 and that α hits
∂Ω transversally.

In Chapter 4, we study ABV for 0-homogeneous maps. Precisely, we say that u ∈
BV (Bℓ;R2) is 0-homogeneous (or simply homogeneous) if it is of the form

u(x) = γ

(
x

|x|

)
a.e x ∈ Bℓ, (0.0.15)

for some γ ∈ BV (S1;R2). Notice carefully the difference with definition (0.0.9): we are re-
laxing the regularity assumption on φ and, in addition, we are not imposing any constraint
on its image. In order to ensure the consistency of definition (0.0.15), we shall prove in
Proposition 4.3.4 that the homogeneous extension of a map γ ∈ BV (S1;R2) belongs to
BV (Bℓ;R2). Notice that the maps uV and uT are 0-homogeneous, as well as the vortex-
type maps in (0.0.9). The aim of this chapter is to prove an integral representation formula
for ABV (u,Bℓ), which further shows that u ∈ Dom

(
ABV (· ;Bℓ)

)
for any u as in (0.0.15).

This class of functions turns to be very interesting from the geometric point of view, be-
cause of their connection with singular planar Plateau problems, arising in the analysis of
the relaxed Jacobian total variation. In fact, using the strict BV -convergence, it is possible
to define a notion of area enclosed by the image of γ. More explicitely, we consider the
relaxation

P (γ) := inf

{
lim inf
n→+∞

P (φn) : φn ∈ Lip(S1;R2), φn → γ strictly BV (S1;R2)

}
(0.0.16)

of the (singular) Plateau problem

P (φ) = inf

{∫
B1

|Jv| dx : v ∈ Lip(B1;R2), v|∂B1
= φ

}
(0.0.17)

associated to any φ ∈ Lip(S1;R2). The problem in (0.0.17) was already considered by E.
Paolini in [42] (see also [24], [21, pag. 338] and references therein for further information
on the planar Plateau problem) and it is singular in the sense that φ can self intersect.
For both (0.0.16) and (0.0.17), we shall establish invariance under domain rescaling and
boundary data reparametrization and continuity properties with respect to the strict con-
vergence of the data. Moreover, we prove a characterization of P (γ) in terms of the original
P computed for the Lipschitz curve γ̃ obtained from γ by ”filling jumps with segments”.
The construction of γ̃ can be done by suitably reparametrizing a smooth approximating
sequence for γ in the strict convergence (see Lemma 4.3.5).
In the first place, we consider the relevant subclass of homogeneous piecewise constant
maps and we compute their BV -relaxed area. In Examples 4.2.1 and 4.2.6, we construct
piecewise constant maps, not homogeneous, with infinite BV -relaxed total variation, and so
infinite BV -relaxed area. The interesting feature of Example 4.2.1 is that the constructed
map takes only 3 distinct values and its L1-relaxed area is finite. This in particular shows
the proper inclusion

Dom(ABV (· ; Ω)) ⊊ Dom(AL1(· ; Ω)).
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In Example 4.2.6, we build a map assuming only 5 distinct values whose minimal lifting
current4 has no vertical part, i.e. the completely vertical lifting measure is zero.
Next, we prove the main result of the chapter, that reads as follows:

Theorem 0.0.3. Let γ ∈ BV (S1;R2) and u be as in Definition 0.0.15. Then

ABV (u;Bℓ) =

∫
Bℓ

√
1 + |∇u|2dx+ |Dsu|(Bℓ) + P (γ), (0.0.18)

where Dsu is the singular part of the measure Du.

A crucial ingredient in the proof of Theorem 0.0.3 is the computation of TVJBV (u,Bℓ)
in terms of the relaxed Plateau problem (0.0.16) (Theorem 4.3.13). It is easy to see that
the expression in (0.0.18) defines a finite positive measure on Bℓ.

The aim of Chapter 5 is to combine the results of the previous chapters to compute the
BV -relaxed area for general piecewise Lipschitz maps, whose jump set is a finite family of
smooth curves allowed to meet at junction points. More precisely, let Ω ⊂ R2 be a bounded
open set of class C1 and be {Ωk}k=1,...,N a finite partition of Ω made of Lipschitz sets.
Suppose that the Σ := ∪k∂Ωk is the support of a finite family of C2-curves αℓ : Iℓ → Ω,
ℓ = 1, . . . , n, Iℓ = (aℓ, bℓ). We suppose that the curves αℓ, arc-length parametrized on Iℓ,
are injective on Iℓ, αℓ(Iℓ) ⊂ Ω, and that αℓ is of class C

2 up to aℓ and bℓ (namely α̇ℓ and
α̈ℓ are continuous on Iℓ). Furthermore, we assume that αℓ(Iℓ) and αℓ(Ih), for ℓ ̸= h, may
intersect only at the endpoints. Finally, we also allow αℓ to have endpoints on ∂Ω (and we
assume such endpoints to be distinct for different curves). So, the αℓ’s can have common
endpoints only at the interior of Ω, and we denote these junction points by {pi}i=1,...,m.

A map u ∈ BV (Ω;R2) is called piecewise Lipschitz on Ω if its restriction to any Ωk is
Lipschitz. Notice that if pi is a junction point and Ωi

k (k = 1, . . . , Ni) denote the connected
components of Ω \ Σ which have pi as boundary point, then there exists the limit

βik := lim
x→pi
x∈Ωi

k

u(x).

For the sake of simplicity, we assume that the enumeration k = 1, . . . , Ni respects the
counterclockwise order of Ωi

k’s around pi. For all i we denote by γ̃i the Lipschitz curve
which parametrizes on S1 the polygon in R2 with vertices βi1, β

i
2, . . . , β

i
Ni
, in the order.

Notice carefully that this can be a self-intersecting polygonal curve. Finally, set I = [0, 1].
The main result is the following

Theorem 0.0.4 (Relaxation for general piecewise Lipschitz maps). Let u : Ω→ R2

be piecewise Lipschitz on Ω. Then

ABV (u; Ω) =

∫
Ω\Σ
|M(∇u)| dx+

n∑
ℓ=1

∫
[aℓ,bℓ]×I

|∂tXaff
(ℓ) ∧ ∂sXaff

(ℓ)|dtds+
m∑
i=1

P (γ̃i), (0.0.19)

where, for any ℓ = 1, . . . , n,

Xaff
(ℓ)(t, s) = (t, su+ℓ (t) + (1− s)u−ℓ (t)) ∀(t, s) ∈ [aℓ, bℓ]× I, (0.0.20)

and u±ℓ are the traces of u on the support of αℓ.

4The notion of minimal lifting current is given in Section 1.5 of Chapter 1.
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Let us examine the expression (0.0.19): the first integral is the classical area out of
Σ; next we have a singular contribution composed by two terms, the first one is coming
from a 1-dimensional measure concentrated along the image of αℓ’s, while the second one
is 0-dimensional, since it is concentrated at the junction points. In particular, we recover
the same structure of the BV -relaxed area for qualitatively different maps, like Sobolev
functions valued in S1 in Theorem 0.0.1 and homogeneous maps in Theorem 0.0.3. All
these computations show that the BV -relaxed area is a quite rigid notion of extended area
for graphs and suggest that it could be a local object. In other words, the structure of
this functional seems to be robust, due to the ”stable behaviour” of the surfaces filling the
holes in the graph. So far, indeed, we have never recorded interaction phenomena between
singularities and the boundary of the domain nor among singularities each other, which
are always the cases where nonlocality appears for the L1-relaxed area, for instance.
The proof of the lower bound inequality in (0.0.19) is almost a straightforward consequence
of Corollary 3.2.12 in Chapter 3 about piecewise Lipschitz maps jumping on a family of
disjoint curves and continuity properties of the generalized Plateau-type problem (0.0.16),
studied in Chapter 4. The proof of the upper bound, instead, is more involved: one would
like to apply relaxation results of Chapter 4 around each junction point pi, where the map
u is not homogeneous, in general; so, the idea is to slightly modify the jump set around
pi by straightening the curves αℓ and defining a recovery sequence which is homogeneous
and piecewise constant in small balls Br/2(pi) and coincides with u out of ∪mi=1Br(pi). The
main difficulty is to show how this modified jump set can be glued in a smooth way with
the curves αℓ’s out of ∪mi=1Bri(pi).

We point out that, at the present stage, we miss the generalization of our results in
higher dimension or codimension. On the one hand the strict convergence in BV provides
some control on the gradient of u, and consequently, on the distributional determinant. In
the case of maps u : Ω ⊂ R3 → R3, for instance, this notion of convergence might be useful
to get some control of the 2 × 2-subdeterminants of ∇u, but seems too weak to control
the higher order minor. On the other hand, even in the case of maps u : Ω ⊂ R3 → R2,
the strict convergence in BV is not sufficient to imply any sort of uniform convergence on
two-dimensional slices, which, in our arguments, is crucial to localize the concentrations of
|det∇vk| (where (vk) is a sequence converging to u).

Finally, in Chapter 6 we collect some open problems and further directions that we
would like to explore. First, we give some preliminary ideas in order to show the subaddivity
of ABV (u; ·) for a generic u ∈ Dom(ABV ), that is the main question left open by our
analysis. Moreover, we underline that a further step in the computation of the BV -relaxed
area could be to provide density properties in BV for the class of general piecewise Lipschitz
maps (or similar kind of maps) with respect to the strict convergence. Next, we try
to formulate some questions about the L1-relaxed area, related to perturbated vortices,
vortices of degree d > 1, multipoles and symmetric n-ple point maps.





Chapter 1

Definitions and tools

We start this preliminary chapter by recalling some basic tools of Measure Theory and
fundamental properties of BV functions. In Section 1.3 we define the area functional and
its classical extension via relaxation with respect to the L1-convergence. We introduce also
the relaxed area with respect to the strict convergence in BV , that is the main object of
this thesis. In Section 1.4 we define some weak notions of Jacobian determinant and its
total variation. Finally, in Section 1.5 we present a quick overview on integer multiplicity
and Cartesian currents.

1.1 Notation

In the sequel, we denote by Rn the n-dimensional Euclidean space, endowed with the
Euclidean norm | · |. The symbol Br(x) stands for the ball of radius r centered at x. If
x = 0, we often write Br := Br(0). The symbol Ω always denotes an open set of Rn; we
specify whenever Ω is bounded. The topological boundary of Ω is denoted by ∂Ω. For
k = 0, 1, . . . ,∞, we use the standard notation Ck(Ω;Rm) (and Ck

c (Ω;Rm)) to denote the
space of k-times continuously differentiable maps (and compact support in Ω) valued in
Rm. The space of Lipschitz continuous maps is denoted by Lip(Ω;Rm). For p ∈ [1,∞], we
denote by Lp(Ω;Rm) and W 1,p(Ω;Rm) respectively the Lebesgue space and the Sobolev
space of exponent p; we denote the corresponding norms by ∥ · ∥Lp and ∥ · ∥W 1,p . If
m = 1, we usually omit the target space R in the notation. For an integer M ≥ 2, we set
SM−1 := {x ∈ RM : |x| = 1}, that is the unit sphere in RM . The n-dimensional Lebesgue
and Hausdorff measures are denoted by L n and Hn. We write also | · | in place of L n.

1.2 Radon measures and BV functions

For an exhaustive theory on BV functions we refer to [2]. We start by recalling some basic
definitions of measure theory.
Let Ω ⊆ Rn be an open set. Denote by B(Ω) its Borel σ-algebra and by Bc(Ω) the collection
of relatively compact Borel subsets of Ω. A positive measure on the space (Ω,B(Ω)) is
called a Borel measure. If a Borel measure is finite on compact subsets of Ω, it is called a
positive Radon measure. If it is finite on Ω we say simply that it is a finite positive measure.
Let M ≥ 1 be an integer. We say that a set function µ : Bc(Ω) → RM is a vector Radon
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measure on Ω if it is a (vector) measure1 on (K,B(K)) for every compact subset K ⊂ Ω.
If µ can be extended to a measure µ : B(Ω) → RM , then we say that µ is a finite vector
Radon measure. In this case, we define the total variation of µ as the finite positive measure
|µ| given by

|µ|(B) := sup

{
N∑
i=1

|µ(Bi)| : N ∈ N, Bi ⊂ B, Bi ∈ B(Ω) pairwise disjoint

}
∀B ∈ B(Ω).

(1.2.1)

Of course, the total variation can be defined also for a vector Radon measure as in (1.2.1)
(where the Bi’s are contained in Bc(Ω)), and it is a positive measure on B(Ω), that can be
possibly infinite on Ω. We denote byMloc(Ω;RM ) (resp. M(Ω;RM )) the space of (resp.
finite) vector Radon measures valued in RM . We say that a sequence (µh) in M(Ω;RM )
converges to µ ∈ M(Ω;RM ) in the weak∗ topology if

∫
Ω f · dµh →

∫
Ω f · dµ for every

f ∈ C0
c (Ω;RM ).

We recall a fundamental result that we will sistematically use in our analysis.

Theorem 1.2.1 (Reshetnyak). Let µh, µ be finite Radon measures in Ω, taking values

in RM . Suppose that µh
∗
⇀ µ and |µh|(Ω)→ |µ|(Ω). Then

lim
h→+∞

∫
Ω
f

(
x,

µh
|µh|

(x)

)
d|µh|(x) =

∫
Ω
f

(
x,

µ

|µ|
(x)

)
d|µ|(x)

for any continuous bounded function f : Ω× SM−1 → R.

Proof. See for instance [2, Theorem 2.39].

Now we can give the definition of BV function. Let m ≥ 1 be an integer. We say
that a function u ∈ L1(Ω;Rm) is of bounded variation if its distributional gradient Du is a
finite vector Radon measure with values in Rm×n. The space of all functions u : Ω→ Rm

of bounded variation is denoted by BV (Ω;Rm). If m = 1, we write BV (Ω) := BV (Ω;R).
The total variation measure |Du| can be computed as in (1.2.1) where | · | is the Frobenius
norm of a (m × n) matrix, which in turn coincides with the euclidean norm of RM with
M = mn. The total variation of u is by definition the real positive number |Du|(Ω).
For any u ∈ BV (Ω;Rm), by the Lebesgue decomposition theorem, Du can be written as
Du = ∇uL n +Dsu, where ∇u is the absolutely continuous part and Dsu is the singular
part, both with respect to L n. Moreover, u is approximately differentiable for almost every
x ∈ Ω and ∇u(x) is the approximate gradient at x. In particular, for every B ∈ B(Ω)
there holds

Du(B) =

∫
B
∇u dx+Dsu(B), |Du|(B) =

∫
B
|∇u| dx+ |Dsu|(B). (1.2.2)

1From [2, Definition 1.4], a vector measure µ on the space (X, E), where X is a nonempty set and E is
a σ-algebra in X, is a function µ : E → Rm such that µ(∅) = 0 and for every sequence of pairwise disjoint
sets (Ei) ⊂ E

µ

(
∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei).
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The measure Dsu can be further decomposed into the jump part DJu and the Cantor part
DCu. If DCu = 0, then we say that u ∈ SBV (Ω;Rm), i.e. the space of special bounded
variation functions on Ω valued in Rm.
We denote by Ju the approximate jump set of u ( [2, Definition 3.67]). The structure
theorem for BV functions asserts that Ju is (n − 1)-rectifiable; moreover, for Hn−1-a.e.
x ∈ Ju there exists a unit vector ν(x) which is normal to the approximate tangent space
of Ju and one can define the traces u+(x) ̸= u−(x) as

u+(x) := aplim
y→x,(y−x)·ν>0

u(y), u−(x) := aplim
y→x,(y−x)·ν<0

u(y).

We recall the following approximation result by means of smooth functions.

Theorem 1.2.2 (Approximation by smooth functions). Let u ∈ BV (Ω;Rm). Then
there exists a sequence (vk) ⊂ C∞(Ω;Rm) ∩BV (Ω;Rm) such that

vk → u in L1(Ω;Rm) and

∫
Ω
|∇vk| dx→ |Du|(Ω).

Proof. See [2, Theorem 3.9].

1.3 Area functional

Let Ω ⊂ Rn be an open bounded set and u ∈ C1(Ω;Rm). Denote by Gu the graph of u,
which is a Cartesian manifold of dimension n in Ω × Rm ⊂ Rn+m. The area functional
A(u; Ω) computes the n-dimensional Hausdorff measure Hn of Gu, namely

A(u; Ω) := Hn(Gu) =

∫
Ω
|M(∇u)|dx ∈ [0,+∞], (1.3.1)

where for a matrix ξ ∈ Rm×n, M(ξ) is the n-vector2 of Rn+m whose components are the
minors of ξ up to order min{n,m}, with the convention that the minor of order 0 is equal
to 1. For an n-vector η ∈ Λn(Rn+m), the symbol |η| stands for the norm induced by the
euclidean one of Rn+m (see [26, Section 2.2.1]).
Notice that if min{n,m} = 1, the previous expression defines a convex functional, while if
min{n,m} > 1, it is only polyconvex (see [17]).
Notice that

|M(∇u)| ≥ |∇u| ∀u ∈ C1(Ω;Rm), (1.3.2)

but the growth of |M(∇u)| is not linear in the gradient of u, due to the presence of the
higher order minors of ∇u.
In the context of Calculus of Variations, it is useful to extend the definition of area func-
tional for less regular maps, possibly discontinuous ones. As briefly mentioned in the Intro-
duction, a traditional way is to proceed by relaxation with respect to the L1-convergence.
This topology is quite natural to consider in the applications, when the energy functional
involves an area term, because of compactness properties of sequences with bounded en-
ergies: in fact, in this case, by (1.3.2), one would obtain a bound on the total variation

2The linear space of n-vectors of Rn+m is denoted by Λn(Rn+m).
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along a sequence with bounded area, and so, if also the L1-norm is bounded, it admits a
convergent subsequence in the weak∗ topology of BV (see [2, Theorem 3.23]).
The procedure by relaxation can be done as follows: first, we set formally

A(u; Ω) :=


∫
Ω
|M(∇u)|dx if u ∈ C1(Ω;Rm) ∩ L1(Ω;Rm),

+∞ if u ∈ L1(Ω;Rm) \ C1(Ω;Rm).

(1.3.3)

Then define the extended functional AL1 as the lower semicontinuous envelope of (1.3.3)
with respect to the L1-topology. Since this is a metrizable topology, the relaxation proce-
dure is equivalent to define directly the extended area functional for every u ∈ L1(Ω;Rm)
as

AL1(u; Ω) := inf

{
lim inf
k→+∞

A(vk; Ω) : (vk) ⊂ C1(Ω;Rm), vk → u in L1(Ω;Rm)

}
. (1.3.4)

It is not difficult to see that

Dom(AL1(· ; Ω)) := {u ∈ L1(Ω;Rm) : AL1(u; Ω) < +∞} ⊂ BV (Ω;Rm), (1.3.5)

where the inclusion holds strictly: for n = m = 2, an example is provided by the map
u(x) = x

|x|3/2 in Ω = B1((1, 0)).

In [1], the authors proved that

AL1(u; Ω) = A(u; Ω) ∀u ∈ C1(Ω;Rm) ∩ L1(Ω;Rm).

Moreover, notice that the expression (1.3.1) is well defined for u ∈ W 1,p(Ω;Rm), if p ≥
min{n,m}. Also in this case, one can prove ( [1, corollary 3.13]) that AL1(u; Ω) = A(u; Ω).
Now, we recall two fundamental results that we will use in the sequel.

Theorem 1.3.1 (Theorem 3.7, [1]). For every u ∈ BV (Ω;Rm), we have

AL1(u; Ω) ≥
∫
Ω

√
1 + |∇u|2dx+ |Dsu|(Ω). (1.3.6)

The previous expression holds as an equality for scalar maps, while in general it might
be a strict inequality if m > 1, due to the presence of the higher order minors of the
Jacobian matrix in the definition of area functional (see for instance (1.3.7) below).

Theorem 1.3.2 (Theorem 3.14, [1]). Let (Ei)i∈I be a finite partition of Rn, with Ei of
locally finite perimeter3 for every i ∈ I. Let Ω ⊂ Rn be an open set such that L n(∂Ω) = 0
and Hn−1(∂∗Ei ∩ ∂Ω) = 0 for every i ∈ I. Let v ∈ BVloc(Rn;Rm) be defined by v(x) = αi

for x ∈ Ei, where (αi)i∈I is a finite family of points of Rm. Suppose that for every x ∈ Ω
there exists r > 0 such that L n(Br(x) ∩ Ei) > 0 for at most two indices i. Then

AL1(v; Ω) = L n(Ω) +
1

2

∑
i,j∈I
|αi − αj |Hn−1(Ω ∩ ∂∗Ei ∩ ∂∗Ej)

=

∫
Ω
|M(∇v)|dx+ |Dsv|(Ω).

3We refer to [2] for details on the theory of sets of finite perimeter. We denote by ∂∗E the reduced
boundary of a set E.
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Essentially, this theorem states that for a piecewise constant map v without triple (or
multiple) points, AL1(v; ·) is a measure, and thus subadditive. In particular, (1.3.6) holds
as an equality for v.

1.3.1 Non-subadditivity of AL1

If we regard the L1-relaxed area as a function of the set variable, then, in general, it is not
subadditive. This phenomenon was conjectured by De Giorgi in [20] and proved by Acerbi
and Dal Maso in [1]. The authors showed that there exists a map v ∈ BVloc(Rn;Rm) and
three open sets Ω1,Ω2,Ω3 ⊂ Rn such that

Ω3 ⊂ Ω1 ∪ Ω2 and AL1(v; Ω3) > AL1(v; Ω1) +AL1(v; Ω2).

De Giorgi suggested to consider v := uT : R2 → R2, i.e. the symmetric triple point
map (see Fig. 1). The authors apply Theorem 1.3.2 to uT in a suitable annular region
around the origin, where no triple points are present. Thanks to the following estimates
( [1, Lemmas 4.2 and 4.4])

AL1(uT ;Bℓ) ≤ πℓ2 + 4ℓL ∀ℓ > 0, (1.3.7)

AL1(uT ;Bℓ) > πℓ2 + 3ℓL ∀ℓ > 0, (1.3.8)

where L := |α − β| is the side of the target equilateral triangle, one can see that non-
subadditivity arises on any disk centered at 0, by choosing a suitable covering of it, made
of the union of an annulus and a small disk.
The inequality (1.3.7) has been refined by Bellettini and Paolini in [8], where the authors
exhibit an approximating sequence of Lipschitz maps constructed in a disk Bℓ by solving
three (similar) Plateau-type problems entangled at the target plane. The proof of the
upper bound of Theorem 2.4.1 is largely inspired by this construction. The result in [8]
turns out to be optimal, as shown in [44], where the symmetry of uT and Bℓ plays a crucial
role. In this work, the author shows also a further example of nonlocal phenomena, arising
in thin domains, that means in the case Ω is a tubular neighbourhood of JuT : the upper
bound given by Bellettini and Paolini is not optimal in this case; more surprisingly, the
vertical part of the minimal cartesian current filling the holes in the graph of uT seems not
to be contained in JuT ×R2. Furthermore, in [5] it is provided an upper bound for a triple
point map with no symmetry assumptions, neither in the source disk (the map can jump
on C2-curves meeting at a triple junction), nor in the target triangle (that can be generic).
The lack ofsubadditivity of AL1 appears also among Sobolev functions, as showed in [1,
Theorem 5.1] for the vortex map v := uV : Rn → Rn, for n ≥ 3, but argument works also
for n = 2. It is defined by uV (x) =

x
|x| for x ̸= 0, and it belongs to W 1,p

loc (R
n;Rn) for p < n.

They proved that

AL1(uV ;Bℓ) =

∫
Bℓ

√
1 + |∇uV |2dx+ ωn if ℓ is sufficiently large, (1.3.9)

where ωn is the Lebesgue measure of the unit ball B1 ⊂ Rn, while

AL1(uV ;Bℓ) ≤
∫
Bℓ

√
1 + |∇uV |2dx+ Cnℓ if ℓ is sufficiently small, (1.3.10)
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for some constant Cn > 0 depending only on n. For n = 2, the explicit computation of
AL1(uV ;Bℓ) for small values of ℓ has been done in [6], again strongly exploiting the radial
symmetries, where it is shown that AL1(uV ;Bℓ) is related to a Plateau-type problem in
codimension 1, whose solution is a sort of (half) catenoid constrained to contain a segment.
This “catenoid” describes the vertical part of a Cartesian current4 obtained as a limit of
the graphs of a recovery sequence. Specifically, the main result in [6] reads as

AL1(uV ;Bℓ) =

∫
Bℓ

√
1 + |∇uV |2dx+ inf Fφ(h, ψ), (1.3.11)

where the infimum is taken over all functions h ∈ C0([0, 2ℓ]; [−1, 1]) with h(0) = h(2ℓ) = 1,
and ψ ∈ BV ((0, 2ℓ)× (−1, 1)) with ψ = 0 on UGh, and

Fφ(h, ψ) =

∫
(0,2ℓ)×(−1,1)

√
1 + |∇ψ|2 dtds+ |Dψ|((0, 2ℓ)× (−1, 1))

+

∫
((0,2ℓ)×{−1,1})∪({0,2ℓ}×(−1,1))

|ψ − φ|dH1 − |UGh|,
(1.3.12)

where φ : R×[−1, 1]→ R is φ(t, s) =
√
1− s2, and UGh is the region in [0, 2ℓ]×[−1, 1] upon

the graph of h. The latter functional accounts for a Plateau problem in non-parametric
form with partial free boundary on a plane domain (see also [7] for more details). If ℓ is
large enough, a minimizer of Fφ has the shape of two half-disks of radius 1, whose total
area is π, recovering the result in (1.3.9).
Besides these two fundamental examples, in [10] it is proved that non-subaddivity of
AL1(u; ·) arises also for u : R = [a, b]× [−1, 1]→ R2 of the form

u(t, s) =

{
(f(t), 0) if t ∈ [a, b], s ∈ [0, 1],

(f(t), 1) if t ∈ [a, b], s ∈ [−1, 0],
(1.3.13)

for a non costant function f ∈ Lip([a, b]).

1.3.2 The case n = m = 2 and the functional ABV

From the previous examples, we learn that non-local phenomena represent a relevant issue,
which can not be avoided in the analysis of AL1 , even for very elementary maps from the
plane to the plane, as the symmetric triple point and the vortex map. In our analysis, we
adopt another strategy to attack the problem of extending the area functional: despite the
fact that the L1-topology is the most reasonable choice in the relaxation from the point
of view of Calculus of Variations, one can wonder also to study relaxation with respect
to a stronger topology than the L1. Moreover, one of the biggest issues in the analysis of
AL1(u; Ω) is related to the lack of control on the behaviour of the recovery sequences on
(n−1)-dimensional slices: to fix this, for instance in [10], for n = m = 2 and u jumping on a
line, the authors put stronger assumptions on the approximating sequences, and so they are
led to consider the relaxation with respect to the local uniform topology out of the jump set
of u. Another possibility, in the case u is not generic but has some geometric properties, is

4For a complete theory on Cartesian Currents we refer to [25,26], while for a brief overview see Section
1.5.
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to require the same properties also for the approximating sequences. For instance, suppose
that u ∈ BV (Ω;Rm) and |u| = 1 almost everywhere, then it is reasonable to put the
constraint vk ∈ C1(Ω; Sm−1) in (1.3.4). The resulting relaxed area has been computed
in the case n = m = 2 by Giaquinta, Modica, and Souček (see [26]), whose singular
contribution involves the result of an area-minimizing problem in the setting of Cartesian
currents. In the case of Sobolev maps, this number is related to the concept of minimal
connection between singularity points (see [11]). In the special case of the vortex map uV ,
this singular contribution is just the area of the lateral surface of a cylinder departing from
the circular hole upon the origin and attaching to the boundary of Bℓ × R2 ( [26, Section
6.2.3]). Both in the previous approaches, the relaxed area is not subadditive.
However, it is worth to remark that, in the context of L1-relaxation, the behaviour of a
recovery sequence on slices can be controlled in some cases by exploiting symmetrization
techniques. For instance, a fine symmetrization argument for the symmetric triple point
map uT can be found in [44, Chapter 4].
Furthermore, if u is a Sobolev map, then one can also consider the relaxed area with respect
the strong (or weak) convergence of Sobolev spaces. This approach has been explored by
De Philippis in [22], and it underlines the strict connection with weak notions of Jacobian
determinant (see Section 1.4 below).
Following the same spirit, we want to put on the space BV (Ω;Rm) a topology that allows
to control also the derivatives of the approximating sequence, not just the area of their
subgraphs, in order to gain control also at level of slices, to possibly avoid non-locality
issues. Our choice is the strict convergence in BV . In the sequel we will focus on the case
n = m = 2, so we shall study its properties in dimension 1, which will be applied in several
slicing arguments.
For seek of clarity, we recall the expression of the classical area functional in the case
n = m = 2, that can be deduced from (1.3.1), and the definition of strict convergence. Let
Ω ⊂ R2 be an open bounded set and u ∈ C1(Ω;R2), then

A(u; Ω) := H2(Gu) =

∫
Ω

√
1 + |∇u|2 + (det∇u)2dx. (1.3.14)

Definition 1.3.3 (Strict convergence). Let u ∈ BV (Ω;R2) and (uk) ⊂ BV (Ω;R2). We
say that (uk) converges to u strictly BV , if

uk
L1

−→ u and |Duk|(Ω)→ |Du|(Ω).

The topology of the strict convergence in BV is metrized by the distance

(u, v)→ ∥u− v∥L1(Ω;R2) + ||Du|(Ω)− |Dv|(Ω)| , u, v ∈ BV (Ω;R2).

Therefore, the corresponding relaxed area functional (that we will briefly call BV -relaxed
area) is defined by

ABV (u; Ω) := inf

{
lim inf
k→+∞

A(vk; Ω) : (vk) ⊂ C1(Ω;R2), vk → u strictly BV (Ω;R2)

}
.

(1.3.15)
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Notice that the class of competitors is non-empty thanks to Theorem 1.2.2. Clearly, we
have

AL1(· ; Ω) ≤ ABV (· ; Ω), (1.3.16)

hence

Dom(AL1(· ; Ω)) ⊂ Dom(ABV (· ; Ω)). (1.3.17)

The inequality (1.3.16) might be strict, in general, as we shall see in Chapter 2 for the
vortex map, in formula (2.2.16). Moreover, we will see in Chapter 4 that also the inclusion
(1.3.17) is strict, by providing an example among piecewise constant maps.
Of course, a boundedness assumption on the area along a smooth sequence vk does not im-
ply the existence of a subsequence strictly converging to u, but only weakly∗-BV . However,
in codimension 1 we have that ABV = AL1 .

Remark 1.3.4 (Weak convergences and strict convergence). Suppose that uk → u
strictly BV (Ω). Then uk ⇀ u w∗-BV (Ω), i.e.

uk
L1

−→ u and

∫
Ω
φ ·Duk →

∫
Ω
φ ·Du ∀φ ∈ C0

c (Ω;R2),

with · the scalar product in R2. A similar definition holds for vector valued maps. The
converse is not true, already in one dimension: consider the sequence (fk) ⊂W 1,1((0, 2π)),

fk(x) :=
1

k
sin(kx) ∀x ∈ (0, 2π).

Then fk ⇀ 0 weakly in W 1,1((0, 2π)), so in particular w∗-BV , but the convergence is
not strict in BV , since ∥f ′k∥L1((0,2π)) = 4 for all k ∈ N. We underline that on the space
W 1,1(Ω) the strict BV convergence is not comparable with the weak convergence: the
following slight modification of [25, Example 4, pag. 42], provides a sequence converging
strictly BV ((0, 1)) but not weakly in W 1,1((0, 1)). Consider the sequence (gk) ⊂ L1((0, 1))
defined by

gk(x) := 2k
k−1∑
i=0

χ[
i
k
, i
k
+ 1

k2k

](x) ∀x ∈ [0, 1], ∀k ≥ 1,

where χA is the characteristic function of the set A. Then ∥gk∥L1 = 1 for every k ∈ N.
Now, let fk ∈ C([0, 1]) be the primitive of gk vanishing at 0; then (fk) converges uniformly
to the identity, and ∥f ′k∥L1 = ∥gk∥L1 = 1 = ∥id′∥L1 for any k ∈ N, and so fk → id strictly
BV ((0, 1)). On the other hand, (f ′k) cannot converge weakly in L1 since it is not equi-
integrable (see [25, Theorem 2, pag. 50]), since gk tends to concentrate a large mass in
arbitrarily small sets, as k becomes large.
Similar examples can be considered also in the case of vector valued maps.

However, the following result (which we will use very often in the sequel) shows that
the strict BV convergence implies the uniform one, under certain hypotheses.

Lemma 1.3.5. Let (γk) ⊂W 1,1([a, b];R2) be a sequence converging strictly BV ([a, b];R2)
to γ ∈ BV ([a, b];R2). Then, for every compact subset K ⊂ [a, b] \ Jγ , we have that

γk → γ uniformly in K as k → +∞. (1.3.18)
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Proof. By contradiction, up to a not relabeled subsequence, we may suppose

∃δ > 0 ∃(τk) ⊂ K ∃k0 ∈ N : |γk(τk)− γ(τk)| > δ ∀k ≥ k0,

and there exists τ̄ ∈ K such that τk → τ̄ as k → +∞, sinceK is compact. Now, consider an
open interval E ⊂ [a, b] such that5 τ̄ ∈ E, ∂E ⊂ [a, b]\Jγ , and |γ̇|(E) < δ

4 . Such an interval
E exists because |γ̇|({τ̄}) = 0. By hypothesis on strict convergence, since |γ̇|(∂E) = 0, we
have

lim
k→+∞

∫
E
|γ̇k|dt = |γ̇|(E).

So, we can find an index k1 ∈ N such that k1 ≥ k0 and
∫
E |γ̇k|dt <

δ
2 , for every k ≥ k1.

Moreover, there exists k2 ∈ N, k2 ≥ k1, such that τk ∈ E for every k ≥ k2. Now fix F ⊂ E
such that |F | = |E| and γ|F can be identified with its natural continuous representative.
Pick a point z ∈ F , then

|γk(z)− γ(z)| ≥ −|γk(z)− γk(τk)|+ |γk(τk)− γ(τk)| − |γ(τk)− γ(z)|

≥ −
∣∣∣∣∫ z

τk

|γ̇k|dt
∣∣∣∣+ δ − |γ̇|(E) ≥ −

∫
E
|γ̇k|dt+ δ − δ

4

≥ −δ
2
+

3

4
δ =

δ

4
.

Therefore, (γk) does not converge to γ pointwise at any point of F , which leads to a
contradiction with the fact that γk → γ in L1([a, b]). So, (3.1.4) is proved.

An immediate consequence of Lemma 1.3.5 is that the uniform convergence takes place
on the full interval if Jγ = ∅. Precisely the following holds.

Corollary 1.3.6. Let (γk) ⊂W 1,1([a, b];R2) be a sequence converging strictlyBV ([a, b];R2)
to γ ∈ C([a, b];R2) ∩BV ([a, b];R2). Then,

γk → γ uniformly as k → +∞.

Remark 1.3.7. Lemma 1.3.5 is still valid with the same proof when γk and γ are valued
in Rm for m > 2. On the contrary, it is crucial that the domain is one-dimensional, since
counterexamples can be done already in dimension 2: for instance, the sequence (fk) given
by fk(x) := max{(1 − k|x|), 0}, x ∈ R2, converges to 0 in W 1,1(R2) but not uniformly in
any neighborhood of the origin.
In Lemma 3.1.4 and Lemma 4.3.5, we shall prove generalized versions of Corollary 1.3.6 to
the case Jγ ̸= ∅.

1.4 The Jacobian determinant and its total variation

From the definition (1.3.14), a natural energy that is strictly related to the area functional
is the total variation of the Jacobian determinant.

5If τ̄ = a or τ̄ = b, E is a semi-open interval.



10 CHAPTER 1. DEFINITIONS AND TOOLS

Definition 1.4.1 (Total variation of the Jacobian determinant). Let u ∈W 1,2
loc (Ω;R

2).
We define the total variation of the Jacobian of u as

TVJ(u; Ω) =

∫
Ω
|det∇u|dx. (1.4.1)

We need to define TVJ(· ; Ω) for less regular maps, such as Sobolev maps with exponent
p < 2, the main example being the vortex map uV in (0.0.5). This can be accomplished
in two ways. The first one is to define the distributional Jacobian determinant Det∇u: if6
p ∈ [1, 2) and u ∈W 1,p(Ω;R2) ∩ L∞

loc(Ω;R2),

< Det∇u, φ >:= −1

2

∫
Ω
adj∇u(x)u(x) · ∇φ(x)dx ∀φ ∈ C∞

c (Ω), (1.4.2)

where adj∇u :=

(
∂u2
∂y −∂u1

∂y

−∂u2
∂x

∂u1
∂x

)
. This definition is justified by the property

u ∈ C2(Ω;R2)⇒ det∇u =
1

2
div(adj∇uu).

Notice that, if u ∈ C2(Ω;R2) and Br(x) ⊂⊂ Ω, then by the divergence theorem, writing
the outward unit normal to ∂Br(x) as ν = (ν1, ν2), and its π/2-counterclockwise rotation
ν⊥ = τ = (τ1, τ2),∫

Br(x)
det∇u dz = 1

2

∫
∂Br(x)

(adj∇uu) · ν dH1

=
1

2

∫
∂Br(x)

((∂u2
∂y

u1 −
∂u1
∂y

u2
)
ν1 +

(
− ∂u2

∂x
u1 +

∂u1
∂x

u2
)
ν2

)
dH1

=
1

2

∫
∂Br(x)

(
u1
(∂u2
∂y

,−∂u2
∂x

)
· ν + u2

(
− ∂u1

∂y
,
∂u1
∂x

)
· ν
)
dH1

=
1

2

∫
∂Br(x)

(u1∇u2 · τ − u2∇u1 · τ) dH1

=
1

2

∫
∂Br(x)

(
u1
∂u2
∂s
− u2

∂u1
∂s

)
ds,

(1.4.3)

where s is the (oriented) line integral variable on ∂Br(x) and we set ∇ui ·τ := ∂ui
∂s , i = 1, 2.

By [41, Formula (3.7)] (which in turn is a consequence of Theorem 3.2 in [41]), one sees
that formula (1.4.3) is valid also for u ∈W 1,∞(Ω;R2).

We recall that
Det∇u = det∇u ∀u ∈W 1,2(Ω;R2),

while if p ∈ [1, 2) they can differ, for instance det∇uV is null, whereas Det∇uV = πδ0
(see [42]). Then one is led to define TVJ(u; Ω) = |Det∇u|(Ω), for those u for which Det∇u
is a Radon measure with finite total variation in Ω.

The second way is to argue by relaxation. For p ∈ [1, 2] and u ∈W 1,p(Ω;R2) one sets

TVJW 1,p(u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2), vk → u in W 1,p

}
. (1.4.4)

6Alternatively, if p ≥ 4
3
, it is enough to require only u ∈ W 1,p(Ω;R2).
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It is known that TVJ(u; Ω) = TVJW 1,2(u; Ω) for u ∈ W 1,2(Ω;R2). Moreover, when
p ∈ [1, 2), TVJW 1,p(· ; Ω) coincides with the total variation of the Jacobian distributional
determinant of u, provided u ∈ W 1,p(Ω;S1) (see Theorem 2.1.6 below, and [11, Theorem
11 and Remark 12]). The same conclusions do not hold in general, for maps inW 1,p(Ω;R2)
which do not take values in S1 (see [11, Open problem 5]). Notice also that relaxation in
(1.4.4) can also be done with respect to the weak convergence in W 1,p (we do not treat
this in the present thesis and refer the reader to [11,22–24,39,42]).

We emphasize that we required C1-regularity for the approximating sequences in (1.4.4).
This ensures that such sequences are contained inW 1,2

loc (Ω;R
2) which is the minimal feature

to guarantee that det∇vk ∈ L1
loc(Ω). Replacing the C1-regularity with theW 1,2

loc -regularity
7

gives rise to the same relaxed functionals; this can be seen by a density argument, since
any v ∈ W 1,2

loc (Ω;R
2) can be approximated by maps vk ∈ C1(Ω;R2) in W 1,2

loc (Ω;R
2) (such

a convergence ensures the corresponding convergence of TVJ(vk; Ω) to TVJ(v; Ω)). In the
same way, one can also replace the C1-regularity with the C∞-regularity.

The approach by relaxation can be used also for jumping maps, as we shall see in the
next Chapters, via approximation in the strict BV -convergence: Let u ∈ BV (Ω;R2) and
set

TVJBV (u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω;R2), vk → u strictly BV (Ω;R2)

}
.

(1.4.5)

In this way, we can extend Definition 1.4.1 to BV -maps and we can ask if this extension
is compatible with 1.4.4 for (a subclass of) Sobolev maps: this will be the content of
Theorem 2.3.3, for Sobolev maps valued in S1. Moreover, the relaxation with respect to
the L1-convergence is possible, but uninteresting in the case of maps with values in S1,
because the resulting relaxed functional turns out to be zero (see [11, Corollary 5]).

1.5 Overview on currents

We shall use the formalism of rectifiable currents in the proof of Proposition 3.2.4. More-
over, in Chapters 3 and 4 we will make several links with a recent approach via Cartesian
currents, that was developed in [40]. In this section, we introduce these objects and sum-
marize their fundamental properties. We refer to [26,27] and [33] for a complete discussion
on currents.
Let U ⊆ RN be an open set and k ≤ N . The space Dk(U) of the k-currents in U is the dual
of the space Dk(U) of the k-forms with C∞

c (U)-coefficients. The space Dk(U) is endowed
with the usual weak∗ convergence, namely Tj ⇀ T iff Tj(ω)→ T (ω) for every ω ∈ Dk(U).
For any current T ∈ Dk(U), we define its mass as

|T | := sup{T (ω) : ω ∈ Dk(U), ∥ω(x)∥ ≤ 1,∀x ∈ U},

where ∥ξ∥ stands for the comass of the k-covector ξ ∈ Λk(U) (see [26, Section 2.2.1]).

Theorem 1.5.1 (Lower semicontinuity of the mass). Let Tj , T ∈ Dk(U). If Tj ⇀ T
then |T | ≤ lim infj→+∞ |Tj |.

7As sometimes can be found in literature.
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Proof. See [26, Proposition 1, Section 2.2.3].

The boundary of a k-current T ∈ Dk(U) is the (k − 1)-current ∂T ∈ Dk−1(U) defined
by ∂T (η) := T (dη) for every η ∈ Dk−1(U), where dη is the exterior differential of η.
The support of T ∈ Dk(U) is defined by

sptT =
⋂
{K ⊂ U closed : T (ω) = 0 ∀ω ∈ Dk(U) with sptω ⊂ U \K}.

Assume that T ∈ Dk(U) is such that |T |, |∂T | < +∞. Let f ∈ Lip(U, V ), V ⊂ RN , be such
that f|sptT is proper, i.e. f−1(K)∩ sptT is compact in U for every compact set K ⊂ V .

Then the push-forward of T through f is the current f♯T defined by f♯T (ω) := T (f ♯ω)
for every ω ∈ Dk(V ), where f ♯ω is the pull-back of ω through f . Moreover, there holds
f♯∂T = ∂f♯T .

1.5.1 Integer multiplicity currents

A relevant subclass of currents is the one of integer multiplicity currents. Given an oriented
k-rectifiable set8 M ⊂ U and a multiplicity funtion θ :M → Z locally Hk M summable,
we define the current

T (ω) =

∫
M
⟨ξ(x), ω(x)⟩θ(x)dHk ∀ω ∈ Dk(U),

where ξ(x) is the k-vector in U which orients for Hk-almost every x ∈M the approximate
tangent k-space TxM of M at x. The product ⟨·, ·⟩ denotes the duality between vectors
and covectors (see [26, Section 2.2.1]). We say that the current T defined as above is an
integer multiplicity (rectifiable) k-current in U and we denote it by T := τ(M, θ, ξ). If θ
is identically equal to 1, T reduces to the oriented integration over the rectifiable set M
and we denote it simply T := [[M ]]. Notice that, according to this definition, any oriented
smooth k-submanifold of RN can be regarded as a current; moreover, the definition of
boundary is compatible with the Stokes theorem.
The next compactness theorem is due to Federer and Fleming.

Theorem 1.5.2 (Compactness). Let (Tj) ⊂ Dk(U) be a sequence of integer multiplicity
currents such that supj∈N{|Tj | + |∂Tj |} < +∞. Then there exists an integer multiplicity
current T ∈ Dk(U) and a subsequence {Tj′} such that Tj′ ⇀ T .

The context of integer multiplicity currents is a good setting to solve Plateau prob-
lems. Indeed, thanks to their lower semicontinuity and compactness properties, one can
easily prove the existence of minimal mass currents, using direct methods. More precisely,
suppose for simplicity that U = RN , then we say that an integer multiplicity current
T ∈ Dk(RN ) is mass-minimizing in RN if T has compact support and |T | ≤ |S| for every
integer multiplicity current S ∈ Dk(RN ) with ∂S = ∂T .

The next theorem ensures the existence of a mass-minimizing current among integer
multiplicity ones with fixed boundary.

8M is said to be k-rectifiable if it can be written apart for a null Hk-set as disjoint union of Borel subsets
of k-dimensional C1-submanifolds with finite Hk measure.
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Theorem 1.5.3 (Existence of minimal currents). Suppose that R ∈ Dk−1(RN ) has
compact support and that there exists an integer multiplicity current Q ∈ Dk(RN ) with
∂Q = R. Then there exists a mass-minimizing integer multiplicity current T ∈ Dk(RN )
with ∂T = R.

Now we define the notion of flat norm, that allows to characterize the weak convergence
for compactly supported integer multiplicity currents with bounded mass and boundary
mass. Let T ∈ Dk(RN ) of integer multiplicity with compact support and |∂T | < +∞. We
define the flat norm of T as

∥T∥F := inf{|S|+ |R| : T = ∂R+ S, R ∈ Dk+1(RN ) i.m., S ∈ Dk(RN ) i.m.}. (1.5.1)

Theorem 1.5.4 (Flat norm and weak convergence). Let T, (Tj)j inDk(RN ) be integer
multiplicity currents with supj∈N{|Tj | + |∂Tj |} < +∞. Assume that sptTj ⊂ K for every

j ∈ N, for some compact set K ⊂ RN . Then Tj ⇀ T if and only if ∥Tj − T∥F → 0 as
j → +∞.

Finally, we recall the Isoperimetric theorem for integer multiplicity currents.

Theorem 1.5.5 (Isoperimetric Inequality). Let k ≥ 2. Suppose that T ∈ Dk−1(RN )
is of integer multiplicity, sptT is compact and ∂T = 0. Then there exists R ∈ Dk(RN ) of
integer multiplicity, with compact support and ∂R = T , such that

|R|
k−1
k ≤ C|T |,

where C is a constant depending only on k and N .

Concerning the proofs of Theorems 1.5.2, 1.5.3, 1.5.4, and 1.5.5, we refer to Theorems
7.5.2, 8.3.3, 8.2.1, and 7.9.1 in [33], respectively.

1.5.2 Cartesian currents

In Chapters 3 and 4, we will make use of the theory of Cartesian currents, developed by
Giaquinta-Modica-Souček [26, 27], to make a connection with an alternative approach in
the study of the area of singular graphs via strict convergence and minimal lifting measures,
recently developed by Mucci [40].
Let Ω ⊂ Rn be an open set. The space cart(Ω;Rm) has been introduced to generalize the
notion of graph of a map from Ω to Rm. Start by fixing coordinates x = (x1, . . . , xn) in Ω
and y = (y1, . . . , ym) in the target space Rm.

Definition 1.5.6 (Cartesian currents). The space cart(Ω× Rm) of Cartesian currents
is the space of all integer multiplicity n-currents T on U := Ω × Rm ⊂ Rn+m such that
∂T = 0, |T | < +∞, and the following conditions hold:

� p♯T = [[Ω]], where p♯T (ω) := T (p♯ω) for every ω ∈ Dn(Ω), and p : U → Ω is the
orthogonal projection on Rn;

� T 0̄0 ≥ 0, where T 0̄0 is the Radon measure defined by T 0̄0(f) := T (fdx1 ∧ . . . ∧ dxn)
for every f ∈ C0

c (U);
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� ∥T∥1 := sup{T (|y|f(x, y)dx1 ∧ . . . ∧ dxn) : f ∈ C∞
c (U), |f | ≤ 1} < +∞.

The key point of the previous definition is that Cartesian currents arise as weak limit
of smooth graphs with equibounded area. However, not all Cartesian currents can be
obtained in such a way, and the problem of describing the closure of smooth graphs with
respect to the weak convergence of currents is still open (see [26, Sec. 4.2.1]). Notice
that if v ∈ C1(Ω;Rm) ∩ L1(Ω;Rm) and Hn(Gv) < +∞, then [[Gv]] ∈ cart(Ω × Rm) and
∥Gv∥1 = ∥v∥L1 . Moreover, the graph of a discontinuous map v : Ω → Rm cannot be
regarded as a cartesian current, in general, because its boundary in Ω × Rm can be not
trivial. However, there are maps with non-removable discontinuity points whose graph is
a Cartesian current: for example, the 0-homogeneous extension of the double-eight curve
(see for instance [39]), to which Example 4.2.5 is largely inspired.
A particularly important result is a kind of structure theorem, which shows that every T ∈
cart(Ω×Rm) can be written in a suitable sense as an integration over a graph with possibly
”vertical parts”.

Theorem 1.5.7 (Structure of cart(Ω × Rm)). Let T ∈ cart(Ω × Rm). Then there exists
a map vT ∈ BV (Ω;Rm) and an integer multiplicity current ST ∈ Dn(Ω × Rm) with finite
mass, such that T = [[GvT ]]+ST . Moreover, ST is ”vertical”, i.e. ST (φ(x, y)dx

1∧. . .∧dxn) =
0 for every φ ∈ C∞

c (Ω× Rm).

The proof of this result can be found in [26, Sec. 4.2.3]. See also [1, Theorems 2.3 and
2.5].

1.5.3 Minimal lifting currents

In this subsection, we anticipate some notation and recall useful results contained in [40], to
make more clear the connection between our analysis of the BV -relaxed area and Mucci’s
approach based on minimal lifting measures and cartesian currents.
Let Ω ⊂ Rn be an open set and u ∈ BV (Ω;Rm). Jerrard and Jung introduced in [31] the
notion of minimal lifting measure µ[u] ∈M(Ω×Rm;Rm×n) associated to u, characterized
by the following conditions:

1. if u ∈W 1,1(Ω;Rm), then

µji [u] = (id ▷◁ u)♯(∂iu
jL n Ω) ∀i = 1, . . . , n, j = 1, . . . ,m,

where (id ▷◁ u)(x) := (x, u(x)) is the graph map;

2. if uk → u strictly BV (Ω;Rm), then

µ[uk]
∗
⇀ µ[u] and |µ[uk]|(Ω× Rm)→ |µ[u]|(Ω× Rm).

µ[u] is called minimal lifting measure since p♯|µ[u]|(Ω × Rm) = |Du|(Ω), where p :
Ω×Rm → Ω is the orthogonal projection. The existence of µ[u] is guaranteed by Theorem
1.2.2. Moreover, µ[u] is unique thanks to the explicit formula (see [31, Theorem 2.2])∫

Ω×Rm

ϕ(x, y)dµji [u] =

∫
Ω

[∫ 1

0
ϕ(x, us(x))ds

]
d(Du)ji ∀ϕ ∈ C∞

c (Ω× Rm), (1.5.2)
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where for s ∈ [0, 1], us is defined by us(x) := su+(x) + (1− s)u−(x) for Hn−1-a.e. x ∈ Ju
and it coincides with a precise representative u(x) for Hn−1-a.e. x ∈ Ω \ Ju.
Now we can define the notion of minimal lifting current associated to u. For simplicity,
let us consider the case n = m = 2. Any integer multiplicity current T ∈ D2(Ω × R2) is
identified by the measures

µh[T ] := T dx, µji [T ] := T dxī ∧ dyj , i, j = 1, 2, µv[T ] := T dy,

where 1̄ := 2, 2̄ := 1 and dx := dx1∧dx2, dy := dy1∧dy2. The measure T dx is defined by
T dx(φ) := T (φdx) for every φ ∈ C∞

c (Ω×R2). In a similar way, one defines T dxī∧dyj
and T dy. If T = Gu + ST ∈ cart(Ω;R2), then clearly µh[T ] = (id ▷◁ u)♯(L

2 Ω), by the
structure Theorem 1.5.7. The next result is proved in [40, Theorem 3.5].

Theorem 1.5.8 (Mucci). Let u ∈ BV (Ω;R2) and suppose that ABV (u; Ω) < +∞. Then
there exists a unique Cartesian current Tu = Gu+STu ∈ cart(Ω;R2), obtained by imposing
µji [Tu] := µji [u], i, j = 1, 2. Moreover |Tu| ≤ ABV (u; Ω).

We say that Tu is the minimal lifting current associated to u. Theorem 1.5.8 is telling
us that the vertical part µv[Tu] of Tu is uniquely determined by requiring that its mixed
components coincide with the minimal lifting measures in the sense of Jerrard-Jung. In
this case, we say that the measure µv[u] := µv[Tu] is the completely vertical lifting of u.
If u is smooth, then Tu = Gu and µv[u] = (id ▷◁ u)♯(det∇uL 2 Ω); interestingly, in this
case, one can prove that (see [40, Theorem 6.2])

|µv[u]|(Ω× R2) =

∫
Ω
|det∇u|dx = TVJ(u; Ω). (1.5.3)

The lower bound |Tu| ≤ ABV (u; Ω) for the BV -relaxed area is, in general, not optimal, as
pointed out in [40] and as we shall see in Example 4.2.6, even in the case u is piecewise
constant.
Finally, the uniqueness of Tu still holds true in higher dimension, but fails in higher codi-
mension (see [40, Sections 7 and 8]).





Chapter 2

Singular maps with values in S1

We start the study of the BV -relaxed area by considering singular maps that take values
in the unit circle S1 ⊂ R2. After a brief introductory section, where we recall the notion of
multiplicity and degree for Sobolev maps, we start our analysis to maps u ∈ W 1,1(Ω;S1).
We recall in Theorem 2.1.6 a structure result for the distributional Jacobian determinant
of u in the case it is a finite Radon measure, in particular in the case ABV (u; Ω) is finite.
In Section 2.2 we treat the special case of vortex-type maps, which have just one singular
point (at the origin) and are the simplest homogeneous maps that generalize the vortex
map. In Section 2.3, we extend the analysis to the class W 1,1(Ω; S1) and show an integral
representation formula for the BV -relaxed area. The last Section 2.4 is dedicated to the
case of symmetric piecewise constant maps, which are valued in the ordered vertices of a
regular polygon (that we can assume inscribed in S1). The analysis of these maps is not
different from the one of the triple point map uT , on which we shall focus. In particular, we
exhibit an explicit recovery sequence for ABV (uT ; Ω), mostly inspired to the construction
in [8]. The content of this chapter is based on results published in [3].

2.1 Sobolev maps and topological degree

In what follows Br(x) denotes the open ball of R2 centered at x of radius r > 0.

Definition 2.1.1 (Multiplicity). Given u ∈ W 1,1(Ω;R2), for all measurable sets A ⊆ Ω
and all y ∈ R2, we set

mult(u,A, y) := ♯{u−1(y) ∩A ∩Ru},

where Ru ⊆ Ω is the set of regular points of u (see [26, pag. 202]). Similarly, if u ∈
W 1,1(∂Br(x);S1), we define

mult(u,A, y) := ♯{u−1(y) ∩A ∩Ru},

for all measurable sets A ⊆ ∂Br(x) and all y ∈ S1.

Let u ∈W 1,1(Ω;R2); by [26, Theorem 1, Section 3.1.5], if det∇u ∈ L1(Ω), we have∫
A
| det∇u|dx =

∫
R2

mult(u,A, y)dy, (2.1.1)

17
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for any measurable set A ⊆ Ω. In particular, mult(u,A, ·) is measurable and finite a.e. in
R2.

If a Lipschitz continuous map φ : ∂Br(x) → S1 has constant multiplicity on ∂Br(x),
then we will make use of the simplified notation

mult(φ) := mult(φ, ∂Br(x), ·).

Definition 2.1.2 (Degree). Given u ∈W 1,1(Ω;R2) with det∇u ∈ L1(Ω), for all measur-
able sets A ⊆ Ω, we let

deg(u,A, y) :=
∑

x∈u−1(y)∩A∩Ru

sign(det∇u(x)), (2.1.2)

for those y ∈ R2 for which mult(u,A, ·) is finite.

Clearly

mult(u,A, ·) ≥ |deg(u,A, ·)|. (2.1.3)

By [25, Theorem 6, Section 3.1.5], if det∇u ∈ L1(Ω), then∫
A
det∇u dx =

∫
R2

deg(u,A, y)dy, (2.1.4)

for any measurable set A ⊆ Ω, and by (2.1.1) and (2.1.3)∫
Ω
|det∇u|dx ≥

∫
R2

|deg(u,Ω, y)|dy. (2.1.5)

Remark 2.1.3. The notion (2.1.2) of degree is too weak to be related to the trace of u
on ∂Ω. However, homological invariance is recovered under stronger hypotheses on u; for
instance if u, v are Lipschitz in Ω̂ ⊃⊃ Ω and u = v in Ω̂ \Ω, then deg(u,Ω, ·) = deg(v,Ω, ·)
a.e. in R2 (see [26, pag. 233 and 469]). In particular, if u, v : Br(x) → R2 are Lipschitz
continuous and u = v on ∂Br(x), then we might extend u to a Lipschitz map u on R2; the
map v coinciding with v in Br(x) and with u outside Br(x) is a Lipschitz extension of v.
Hence deg(u,Br(x), ·) = deg(v,Br(x), ·), which implies deg(u,Br(x), ·) = deg(v,Br(x), ·).

Definition 2.1.4. For an open disc Br(x) ⊂ R2 and u ∈W 1,1(∂Br(x);S1), we define (see
(1.4.3))

deg(u) :=
1

2π

∫
∂Br(x)

(
u1
∂u2
∂s
− u2

∂u1
∂s

)
ds ∈ Z. (2.1.6)

If u ∈ W 1,1(Ω;S1), Br(x) ⊂⊂ Ω, and u ∂Br(x) ∈ W 1,1(∂Br(x);S1) (which is true for
almost every r), we set

deg(u, ∂Br(x)) := deg(u ∂Br(x)). (2.1.7)

Remark 2.1.5. If u : Br(x) → R2 is Lipschitz continuous and |u| = 1 on ∂Br(x), then
deg(u,Br(x), ·) is constant in B1 = B1(0), and coincides with deg(u, ∂Br(x)). Indeed
deg(u,Br(x), ·) is a constant c in B1 thanks to [30, Theorem 1.3] (and zero on R2 \ B1),
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and then it is sufficient to check that deg(u,Br(x), y) = deg(u, ∂Br(x)), for a.e. y ∈ B1.
By applying (1.4.3) to the left-hand side of (2.1.4) one has∫

R2

deg(u,Br(x), y)dy =

∫
B1

deg(u,Br(x), y)dy = πc

=

∫
Br(x)

det∇u(z) dz = πdeg(u ∂Br(x)).

In this particular case, thanks to (2.1.5), we conclude∫
Br(x)

| det∇u(z)|dz ≥
∫
B1

|deg(u, ∂Br(x))|dy = π|deg(u, ∂Br(x))|. (2.1.8)

2.1.1 Singular Sobolev maps with values in S1

We will make use of the following theorems.

Theorem 2.1.6. Let u ∈W 1,1(Ω;S1). Then

TVJW 1,1(u; Ω) < +∞⇐⇒ Det∇u is a finite Radon measure.

In this case TVJW 1,1(u; Ω) = |Det∇u|(Ω), and there exists a finite set {x1, . . . , xm} of
points in Ω such that

Det∇u = π

m∑
i=1

diδxi , (2.1.9)

where di = deg(u, ∂Bri(xi)) ∈ Z \ {0} for a.e. ri > 0 small enough. In particular

|Det∇u|(Ω) = π
m∑
i=1

|di|.

Proof. See for instance [11, Proposition 3, Theorem 11 and Remark 11]. See also [32,
Proposition 5.2].

Remark 2.1.7. Theorem 2.1.6 provides the existence of a radius ri > 0 such that the
number di not only is the degree of the trace of u on ∂Bri(xi), but also on almost every
circumference ∂Bρ(xi) with ρ < ri. Moreover, on these circumferences, we may assume
that u is continuous, since its trace is still of class W 1,1. For more details, we refer the
reader to [11].

Remark 2.1.8. If u ∈ W 1,1(Ω;S1) and we do not assume the finiteness of Det∇u, then
one can see that there exist points {Pj , Nj}∞j=1 ∈ Ω such that

∑∞
j=1 |Pj −Nj | < +∞ and

Det∇u = π
∑∞

j=1(δPj − δNj ). This result can be found in [13, Theorem 2.10], see also [12].

Theorem 2.1.9. Let u ∈ W 1,1(S1;S1). Then there exists a sequence in C∞(S1;S1) con-
verging to u in W 1,1(S1; S1).

Proof. See [37, Theorem 2.1].

Theorem 2.1.10. Let B ⊂ R2 be a bounded open connected set, and u ∈ W 1,1(B;S1).
Then there exists a sequence in C∞(B; S1) converging to u in W 1,1(B;S1) if and only if
Det∇u = 0 in the sense of distribution.

Proof. See [43, Theorem 1.5].
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2.2 Relaxation for vortex-type maps in W 1,p(Bℓ;S1)

In this section we focus on maps w ∈W 1,1(Bℓ;S1) of the form

w(x) = φ

(
x

|x|

)
, (2.2.1)

where φ : S1 → S1 is a Lipschitz map.
Of course det∇w = 0 a.e. on Bℓ. Moreover, w ∈ W 1,p(Bℓ; S1) for every p ∈ [1, 2);

indeed, for x ∈ Bℓ \ {0}, let us write in polar coordinates

w(x) = w̃(ρ, θ) = φ(cos θ, sin θ) =: f(θ) = (f1(θ), f2(θ)) ∀ρ ∈ (0, ℓ), ∀θ ∈ [0, 2π).
(2.2.2)

Then for a.e. θ ∈ [0, 2π) and all ρ ∈ (0, ℓ)

∇ρ,θw̃(ρ, θ) =

(
0 f ′1(θ)
0 f ′2(θ)

)
, |∇ρ,θw̃(ρ, θ)| = |∂θw̃(ρ, θ)| = |f ′(θ)|,

∫
Bℓ

|∇w|pdx =

∫ 2π

0

∫ ℓ

0
ρ

(
|∂ρw̃|2 +

|∂θw̃|2

ρ2

) p
2

dρdθ

=

∫ 2π

0

∫ ℓ

0

|f ′(θ)|p

ρp−1
dρdθ ≤ 2πlip(f)p

∫ ℓ

0

1

ρp−1
dρ < +∞;

(2.2.3)

in particular ∫
Bℓ

|∇w|dx = ℓ

∫ 2π

0
|f ′(θ)|dθ. (2.2.4)

Remark 2.2.1. We have used that f in (2.2.2) is Lipschitz continuous in [0, 2π]. Let us
check that lip(f) = lip(φ) and, moreover, Var(f) :=

∫ 2π
0 |f

′(θ)|dθ =
∫
S1 |∇

S1φ(y)|dH1(y) =
Var(φ), where

∇S1φ(z) := lim
y→z

y∈S1\{z}

φ(y)− φ(z)
|y − z|

, (2.2.5)

is the (tangential) derivative of φ on S1, that is well-defined for a.e. z ∈ S1 as an element
of the tangent space Tφ(z)S1 to S1 at φ(z). Fix y0 ∈ S1 where φ is differentiable, and take
the unique θ0 ∈ [0, 2π) such that y0 = (cos θ0, sin θ0). From (2.2.5), it follows

∇S1φ(y0) =
d

dθ |θ=θ0
φ(cos θ, sin θ) = f ′(θ0), (2.2.6)

and therefore lip(φ) = lip(f). Moreover

Var(φ) =

∫
S1
|∇S1φ(y)|dH1(y) =

∫ 2π

0
|f ′(θ)|dθ = Var(f). (2.2.7)

In particular, from (2.2.4), we conclude∫
Bℓ

|∇w| dx = ℓVar(φ). (2.2.8)
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Remark 2.2.2 (Lifting). A lifting of φ is a map Φ : [0, 2π]→ R such that

φ(cos θ, sin θ) = (cos(Φ(θ)), sin(Φ(θ))) ∀θ ∈ [0, 2π]. (2.2.9)

The function f(·) = φ(cos(·), sin(·)) : [0, 2π]→ S1 being continuous on a simply-connected
set, always admits a continuous lifting Φ : [0, 2π]→ R such that

φ(cos θ, sin θ) = f(θ) = (cos(Φ(θ)), sin(Φ(θ))).

Moreover, since the covering map t ∈ R 7→ eit ∈ S1 satisfies |eit1 − eit2 | ≤ |t1 − t2| ≤
π|eit1 − eit2 | for all t1, t2 with |t1 − t2| ≤ π, any continuous lifting of φ must be Lipschitz,
indeed if |θ1 − θ2| ≤ π, then

|Φ(θ1)− Φ(θ2)|
|θ1 − θ2|

≤ π |e
iΦ(θ1) − eiΦ(θ2)|
|eiθ1 − eiθ2 |

= π
|φ(eiθ1)− φ(eiθ2)|
|eiθ1 − eiθ2 |

;

while if |θ1 − θ2| > π, the left-hand side is bounded by 2
π max[0,2π] |Φ|.

Using the 2π-periodicity of f , we see that Φ(2π)−Φ(0) ∈ 2πZ; hence Φ can be extended
in a Lipschitz way to the whole of R (this can be done extending periodically its first
derivative). It is possible to see that the lifting is unique up to a multiple of 2π: fix a
starting point, e.g. (1, 0) ∈ S1 and set φ(1, 0) =: y0 ∈ S1. Now extract the Argument
θ(y0) ∈ [0, 2π) of y0, and define Φ : R→ R as

Φ(t) := θ(y0) +

∫ t

0
λφ(s)ds, (2.2.10)

where λφ(s) ∈ R is uniquely determined by

∇S1φ(cos s, sin s) = λφ(s)τφ(cos s,sin s) a.e. s ∈ R, (2.2.11)

with

τφ(cos s,sin s) = φ⊥(cos s, sin s) =
(
− φ2(cos s, sin s), φ1(cos s, sin s)

)
(2.2.12)

the unit tangent vector to S1 (counter-clockwise oriented) at the point φ(cos s, sin s). By
definition, Φ is Lipschitz in R since lip(Φ) = ∥λφ∥∞ = lip(φ). In order to show the lifting
property (2.2.9), take a lifting Φ : R→ R of φ. Differentiating the equality φ(cos s, sin s) =
(cos(Φ(s)), sin(Φ(s))) gives

λφ(s)τφ(cos s,sin s) = Φ
′
(s)(− sin(Φ(s)), cos(Φ(s))) = Φ

′
(s)τφ(cos s,sin s), a.e. s ∈ R,

so that Φ
′
= λφ a.e. in R. This implies, by (2.2.10), that Φ(t)−Φ(t) is a constant multiple

of 2π. Thus Φ also satisfies (2.2.9), and any lifting of φ is of the form (2.2.10), up to a
constant multiple of 2π.

As a further consequence of the previous discussion and of (2.2.11)-(2.2.12), for any
lifting Φ̃ of φ, and in particular for Φ, the map f̃(θ) = (cos(Φ̃(θ)), sin(Φ̃(θ))) satisfies the
same linear ordinary differential system as f , namely

f ′1 = −Φ′f2, f ′2 = Φ′f1 a.e. in R. (2.2.13)

Finally, from (2.2.13) it follows λφ = f1f
′
2 − f2f ′1 a.e. in R, so that by (2.1.6), we get

Φ(2π) = Φ(0) +

∫ 2π

0
λφ(θ)dθ = Φ(0) + 2πdeg(φ). (2.2.14)
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Now we prove the following

Theorem 2.2.3 (Relaxation for vortex-type maps). Let ℓ > 0, and w : Bℓ \{0} → S1
be as in (2.2.1). Then

ABV (w;Bℓ) =

∫
Bℓ

√
1 + |∇w|2dx+ π|deg(φ)|. (2.2.15)

In particular,

ABV (uV ;Bℓ) =

∫
Bℓ

√
1 + |∇uV |2dx+ π. (2.2.16)

We divide the proof into two parts, the lower bound (Proposition 2.2.4) and the upper
bound (Proposition 2.2.5).

Proposition 2.2.4 (Lower bound). Let w : Bℓ \{0} → S1 be the map defined in (2.2.1).
Suppose that (vk) ⊂ C1(Bℓ;R2) ∩ BV (Bℓ;R2) is such that vk → w strictly BV (Bℓ;R2).
Then

lim inf
k→+∞

A(vk;Bℓ) ≥
∫
Bℓ

√
1 + |∇w|2dx+ π|deg(φ)|.

Proof. We may assume that

lim inf
k→+∞

A(vk;Bℓ) = lim
k→+∞

A(vk;Bℓ) < +∞.

We define the functions ψk, ψ : (0, ℓ)→ [0,+∞) as

ψk(r) :=

∫
∂Br

|∇vk|ds, ψ(r) := lim inf
k→+∞

ψk(r), r ∈ (0, ℓ),

where s is an arc length parameter on ∂Br. By Fubini’s theorem it follows∫ ℓ

0
ψk(r)dr =

∫
Bℓ

|∇vk|dx,

hence, using Fatou’s lemma, the strict convergence of (vk) to w, and (2.2.8),∫ ℓ

0
ψ(r)dr ≤ lim inf

k→+∞

∫ ℓ

0
ψk(r)dr = lim

k→+∞

∫
Bℓ

|∇vk|dx

=

∫
Bℓ

|∇w|dx = ℓVar(φ).

(2.2.17)

In particular,
ψ is almost everywhere finite in (0, ℓ).

Now we claim that
ψ = Var(φ) a.e. in (0, ℓ). (2.2.18)

Indeed, without loss of generality we may assume that (vk) converges to w almost every-
where in Bℓ, so that for almost every r ∈ (0, ℓ)

vk ∂Br → w ∂Br H1 − a.e. in ∂Br. (2.2.19)
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Now fix r ∈ (0, ℓ) such that (2.2.19) holds; consider the total variation of vk ∂Br, that is
the L1(∂Br)-norm of the tangential derivative of vk (as in (2.2.5)):

|D(vk ∂Br)|(∂Br) =

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds.

Clearly

lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds ≤ lim inf

k→+∞

∫
∂Br

|∇vk|ds = ψ(r). (2.2.20)

Let us extract a subsequence (vkh) ⊂ (vk) depending on r, such that

lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds = lim

h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds. (2.2.21)

Since ψ is almost everywhere finite, we may suppose that ψ(r) < +∞, so that the sequence
(vkh ∂Br) is bounded in BV (∂Br;R2). Thus, using (2.2.19), we also have

vkh ∂Br⇀w ∂Br weakly∗ in BV (∂Br;R2) as h→ +∞. (2.2.22)

Now, since ∇w is only tangential, and |∇w(r, θ)|2 = |f ′(θ)|2
r2

, we get∫
∂Br

∣∣∣∣∂w∂s
∣∣∣∣ ds = ∫

∂Br

|∇w| ds =
∫ 2π

0
r|f ′(θ)|1

r
dθ = Var(φ). (2.2.23)

Hence, using the lower semicontinuity of the variation along (vkh ∂Br), (2.2.21), and
(2.2.20) we infer

Var(φ) =

∫
∂Br

∣∣∣∣∂w∂s
∣∣∣∣ ds ≤ lim inf

h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds
= lim

h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds = lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds ≤ ψ(r). (2.2.24)

Thus ψ ≥ Var(φ) almost everywhere in (0, ℓ) and, from (2.2.17), we deduce ψ = Var(φ)
almost everywhere in (0, ℓ), and so (2.2.18) is proved.

As a consequence of the previous arguments,

∀ε ∈ (0, ℓ) ∃rε ∈ (0, ε) ∃(vkh) ⊂ (vk) s.t.

vkh ∂Brε → w ∂Brε strictly BV (∂Brε ;R2),
(2.2.25)

where the subsequence (vkh) depends on ε. Indeed, proving (2.2.18), we have shown that
for almost every r ∈ (0, ℓ), there exists a subsequence (vkh) satisfying (2.2.22); so, given
ε ∈ (0, ℓ), there exists rε ∈ (0, ε) and a subsequence (vkh) depending on ε, such that

vkh ∂Brε⇀w ∂Brε weakly∗ in BV (∂Brε ;R2). (2.2.26)

But from the previous discussion we also deduce

lim
h→+∞

∫
∂Brε

∣∣∣∣∂vkh∂s

∣∣∣∣ ds = ψ(rε) = Var(φ) =

∫
∂Brε

∣∣∣∣∂w∂s
∣∣∣∣ ds; (2.2.27)
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thus the convergence in (2.2.26) is actually strict in BV (∂Brε ;R2).
Now, fix ε ∈ (0, ℓ) and, for simplicity, denote by (vh) the subsequence (vkh) for which

(2.2.25) holds. Remember that our approximating maps vh = ((vh)1, (vh)2) are of class
C1(Ω;R2), so they might have non-zero Jacobian determinant Jvh := det∇vh, as opposed
to w = (w1, w2), whose Jacobian determinant vanishes a.e. in Bℓ. In particular, we expect
the contribution of area given by Jvh to be non trivial around the origin. Thus, we split
the area functional as follows:

A(vh;Bℓ) = A(vh;Bℓ \Brε) +A(vh;Brε) ≥ A(vh;Bℓ \Brε) +

∫
Brϵ

|Jvh|dx,

and notice that, by definition of relaxed functional and [1, Theorem 3.7],

lim inf
h→+∞

A(vh;Bℓ \Brε) ≥ AL1(u;Bℓ \Brε) ≥
∫
Bℓ\Brε

√
1 + |∇w|2dx.

Hence

lim
h→+∞

A(vh;Bℓ) ≥ lim inf
h→+∞

A(vh;Bℓ \Brε) + lim inf
h→+∞

∫
Brϵ

|Jvh| dx

≥
∫
Bℓ\Brε

√
1 + |∇w|2dx+ lim inf

h→+∞

∫
Brϵ

|Jvh| dx.
(2.2.28)

To conclude the proof it is then sufficient to show that

lim inf
h→+∞

∫
Brε

|Jvh|dx ≥ π|deg(φ)|. (2.2.29)

Define the sequence wh : Bℓ → R2 as

wh(x) :=


vh(x) if |x| ≤ rε
ℓ− |x|
ℓ− rε

vh

(
rε
x

|x|

)
+
|x| − rε
ℓ− rε

w

(
rε
x

|x|

)
if rε < |x| < ℓ.

(2.2.30)

Then wh is Lipschitz continuous and interpolates vh ∂Brε and w ∂Brε in the annulus
enclosed by ∂Brε and ∂Bℓ. Now we show that

lim
h→+∞

∫
Bℓ\Brε

|Jwh|dx = 0. (2.2.31)

Indeed, passing to polar coordinates in Bℓ \Brε :

wh(x) = w̃h(ρ, θ) =
ℓ− ρ
ℓ− rε

ṽh(rε, θ) +
ρ− rε
ℓ− rε

w̃(rε, θ),

where

ṽh(rε, θ) := vh (rε(cos θ, sin θ))) = ((ṽh)1(rε, θ), (ṽh)2(rε, θ)),

w̃(rε, θ) := w (rε(cos θ, sin θ)) = f(θ).
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Making use of (2.2.2) and (2.2.13), we get

∂ρw̃h(ρ, θ) =
1

ℓ− rε
(−ṽh + f),

∂θw̃h(ρ, θ) =
1

ℓ− rε

[
(ℓ− ρ)∂θṽh − (ρ− rε)Φ′f⊥

]
,

where f⊥ := (−f2, f1), ṽh is evaluated at (rε, θ), and f and Φ′ are evaluated at θ. Then
we can compute:

∂ρw̃h ∧ ∂θw̃h =
1

(ℓ− rε)2
[
(ℓ− ρ)

{
(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2

}
+ (ℓ− ρ)

{
∂θ(ṽh)2f1 − (ṽh)1∂θ(ṽh)2

}
− (ρ− rε)Φ′

{
(ṽh)1f1 + (ṽh)2f2 − 1

}]
,

where we use also that f21 + f22 = 1. Thus since

Jwh(ρ cos θ, ρ sin θ) = ∂ρw̃h(ρ, θ) ∧
1

ρ
∂θw̃h(ρ, θ),

by the change of variable formula we get∫
Bℓ\Brε

|Jwh|dx =

∫ ℓ

rε

∫ 2π

0
|∂ρw̃h ∧ ∂θw̃h|dρdθ

≤Cℓ,ε

∫ ℓ

rε

∫ 2π

0
|(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2|dρdθ

+ Cℓ,ε

∫ ℓ

rε

∫ 2π

0
|(ṽh)1∂θ(ṽh)2 − ∂θ(ṽh)2f1|dρdθ

+ Cℓ,εlip(Φ)

∫ ℓ

rε

∫ 2π

0
|(ṽh)1f1 + (ṽh)2f2 − 1|dρdθ,

(2.2.32)

where Cℓ,ε is a positive constant depending only on ℓ and ε. Consider the first integral on
the right hand side of (2.2.32): its integrand is independent of ρ, and so∫ ℓ

rε

∫ 2π

0
|(ṽh)2∂θ(ṽh)1 − ∂θ(ṽh)1f2(θ)| dρdθ

=(ℓ− rε)
∫ 2π

0
|(ṽh)2(rε, θ)− f2(θ)| |∂θ(ṽh)1(rε, θ)| dθ

≤Cℓ,ε∥(vh)2 − w2∥L∞(∂Brε )

∫
∂Brε

∣∣∣∣∂vh∂s
∣∣∣∣ ds k→+∞−−−−→ 0,

where in passing to the limit we used (2.2.25), which implies that the variation of vh on ∂Brε

is necessarily equi-bounded and, together with Proposition 1.3.6, that vh → w uniformly
on ∂Brε . For the second integral, the argument is similar.
As for the third one, by the uniform convergence of (vh) to w on ∂Brε , we can pass to the
limit under the integral sign:∫ ℓ

rε

∫ 2π

0
|(ṽh)1f1 + (ṽh)2f2 − 1|dρdθ h→+∞−−−−→

∫ ℓ

rε

∫ 2π

0
|f21 + f22 − 1|dρdθ = 0.
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Therefore, (2.2.31) holds.

Now, we write the Jacobian determinant of vh on Brε in the following way:∫
Brε

|Jvh|dx =

∫
Bℓ

|Jwh|dx−
∫
Bℓ\Brε

|Jwh|dx. (2.2.33)

Notice that wh = w on ∂Bℓ, so that (see Remarks 2.1.3 and 2.1.5)

deg(wh, ∂Bℓ) = deg(w, ∂Bℓ) = deg(φ). (2.2.34)

We may suppose that vh takes values in B1, since the limit function w is valued in S1
(see [1, Lemma 3.3]). So wh : Bℓ → B1 is Lipschitz continuous and maps ∂Bℓ into ∂B1.
Then, by (2.2.34) and (2.1.8), we have∫

Bℓ

|Jwh|dx ≥ π|deg(w, ∂Bℓ)| = π|deg(φ)|. (2.2.35)

Finally, passing to the lower limit as h→ +∞ in (2.2.33), using (2.2.31) and the previous
inequality, we deduce estimate (2.2.29), which concludes the proof.

Proposition 2.2.5 (Upper bound). Let w : Bℓ\{0} → R2 be the map defined in (2.2.1).
Then there exists a sequence (vk) ⊂ C1(Bℓ;R2) ∩ BV (Bℓ;R2) such that vk → w strictly
BV (Bℓ;R2) and

lim sup
k→+∞

A(vk;Bℓ) ≤
∫
Bℓ

√
1 + |∇w|2dx+ π|deg(φ)|. (2.2.36)

Proof. Although vk needs to be of class C1, we claim that it suffices to build vk just
Lipschitz continuous. Indeed, assume that (vk) ⊂ W 1,∞(Bℓ;R2) ∩ C1(Bℓ;R2) converges
to w strictly BV (Bℓ;R2) and (2.2.36) holds. Consider, for all k ∈ N, a sequence (vkh) ⊂
C1(Bℓ;R2) approaching vk in W 1,2(Bℓ;R2) as h → +∞. In particular, we get the L1-
convergence of all minors of ∇vkh to the corresponding ones of ∇vk. Then, by dominated
convergence,

lim
h→+∞

A(vkh;Bℓ) = A(vk;Bℓ). (2.2.37)

Hence, by a diagonal argument, we find a sequence (vkhk
) converging to w strictlyBV (Bℓ;R2)

such that (2.2.36) holds for vkhk
in place of vk.

Let us consider the map φ : S1 → S1 given by

φ(cos θ, sin θ) := (cos(dθ), sin(dθ)) where d := deg(φ). (2.2.38)

Then

mult(φ) = |deg(φ)|, deg(φ) = deg(φ), (2.2.39)

and, in particular, mult(φ) = |deg(φ)|. Moreover, since the maps φ and φ have the
same degree, we can construct a Lipschitz homotopy H : [0, 1] × S1 → S1 between them.
Precisely, if Φ and Φ are Lipschitz liftings of φ and φ respectively, we define Ψ(t, ·) :=
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tΦ(·) + (1− t)Φ(·), which is Lipschitz. Hence one defines the map H(t, ·) : [0, 2π)→ S1 as
H(t, ·) := (cos(Ψ(t, ·), sin(Ψ(t, ·))), which satisfies

H(0, ·) = φ(·), H(1, ·) = φ(·). (2.2.40)

It remains to show that H(t, ·) defines a continuous (and then Lipschitz) map from S1 to
S1, i.e. that is 2π-periodic: to this aim it is enough to observe that Ψ(t, 2π) and Ψ(t, 0)
differ from a constant multiple of 2π and indeed, recalling (2.2.14), we have Φ(2π)−Φ(0) =
2πd = Φ(2π)− Φ(0), from which easily follows that Ψ(t, 2π)−Ψ(t, 0) = 2πd.

We now define the sequence (vk) ⊂ Lip(Bℓ;R2) as vk(0) := 0,

vk :=


vk in B ℓ

k
\ {0},

hk in B 2ℓ
k
\B ℓ

k
,

w = φ
(

x
|x|

)
in Bℓ \B 2ℓ

k
,

(2.2.41)

where

vk(x) :=
k

ℓ
|x|φ

(
x

|x|

)
∀x ∈ B ℓ

k
,

and

hk(x) := H

(
k

ℓ
|x| − 1,

x

|x|

)
∀x ∈ B 2ℓ

k
\B ℓ

k
.

Let us check that ∫
Bℓ

|Jvk|dx = π|d| ∀k ∈ N. (2.2.42)

Since H and w take values on S1, we have∫
Bℓ\B ℓ

k

|Jvk|dx =

∫
B 2ℓ

k
\B ℓ

k

|Jhk|dx+

∫
Bℓ\B 2ℓ

k

|Jw|dx = 0.

Moreover, mult(vk, B ℓ
k
, ·)=mult(φ), and therefore, by (2.1.1),∫

B ℓ
k

|Jvk|dx =

∫
B ℓ

k

|Jvk|dx =

∫
B1

mult(vk, B ℓ
k
, y)dy = |B1|mult(φ) = π|d|.

We now prove that vk → w in W 1,p(Bℓ;R2) for every p ∈ [1, 2). This, in particular,
implies the desired strict convergence in BV . Since vk = w in Bℓ \B 2ℓ

k
, we have to do the

computation in B 2ℓ
k
:∫

B 2ℓ
k

|vk − w|pdx ≤ 2p−1

∫
B 2ℓ

k

(|vk|p + |w|p)dx ≤ 2p|B 2ℓ
k
| k→+∞−−−−→ 0.

In addition
|∇vk| = |∇hk| ≤ 2k lip(H) a.e. in B 2ℓ

k
\B ℓ

k
,
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hence ∫
B 2ℓ

k
\B ℓ

k

|∇vk −∇w|pdx ≤ C

(2k)plip(H)p|B 2ℓ
k
|+
∫
B 2ℓ

k

|∇w|pdx


≤ C

Ckp
k2

+

∫
B 2ℓ

k

|∇w|pdx

 k→+∞−−−−→ 0,

(2.2.43)

where C > 0 is a positive constant independent of k. Finally, setting w(x) := φ
(

x
|x|

)
for

x ∈ Bℓ \ {0}, we have

∇vk(x) =
k

ℓ
|x|∇w(x) + k

ℓ
w(x)⊗ x

|x|
for a.e. x ∈ B ℓ

k
.

Whence∫
B ℓ

k

|∇vk −∇w|pdx ≤ C
∫
B ℓ

k

(
kp|x|p|∇w|p + kp

∣∣∣∣w(x)⊗ x

|x|

∣∣∣∣+ |∇w|p) dx
≤ C

∫
B ℓ

k

|∇w|pdx+ kp|B ℓ
k
|+
∫
B ℓ

k

|∇w|pdx

 k→+∞−−−−→ 0.

(2.2.44)

Now, we easily get (2.2.36): upon extracting a (not relabelled) subsequence such that (∇vk)
converges almost everywhere to ∇w, by (2.2.42) and dominated convergence theorem we
have

lim sup
k→+∞

A(vk;Bℓ) ≤ lim
k→+∞

∫
Bℓ

√
1 + |∇vk|2dx+ lim

k→+∞

∫
Bℓ

|Jvk|dx

=

∫
Bℓ

√
1 + |∇w|2dx+ π|d|.

Remark 2.2.6. In the proof of the upper bound in Proposition 2.2.5 we have shown the
W 1,p convergence of the recovery sequence to the function w, for p ∈ [1, 2). Hence

AW 1,p(w;Bℓ) ≤
∫
Bℓ

√
1 + |∇w|2dx+ π|deg(φ)|.

Moreover, since in general ABV (· ;Bℓ) ≤ AW 1,p(· ;Bℓ) for all p ≥ 1, we deduce

AW 1,p(w;Bℓ) =

∫
Bℓ

√
1 + |∇w|2dx+ π|deg(φ)|.

Remark 2.2.7. As a consequence of Theorem 2.2.3, if φ ∈ Lip(S1;S1) has degree 0, then

AL1(w;Bℓ) = ABV (w;Bℓ) =

∫
Bℓ

√
1 + |∇w|2dx.

Indeed, in general AL1 ≤ ABV and, by [1, Theorem 3.7], AL1(w;Bℓ) ≥
∫
Bℓ

√
1 + |∇w|2dx.
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2.3 Relaxation for maps in W 1,1(Ω;S1)

The main result of this section is contained in Theorem 2.3.6. In the following lemma we
generalize to a generic function in W 1,1(Bℓ;R2) the argument used to prove (2.2.25), by
showing that the strict BV convergence on Bℓ is inherited to almost every circumference
centered at the origin1. Unlike (2.2.25) of Proposition 2.2.4, in this more general context
we have to make use of Theorem 1.2.1.

Lemma 2.3.1 (Inheritance). Let (vk) ⊂ C1(Bℓ;R2), u ∈W 1,1(Bℓ;R2), and suppose that
vk → u strictly BV (Bℓ;R2). Then, for almost every r ∈ (0, ℓ), there exists a subsequence
(vkh), depending on r, such that

vkh ∂Br → u ∂Br strictly BV (∂Br;R2).

Proof. The (tangential) variation of the restriction of u on ∂Br is well-defined and finite
for almost every r ∈ (0, 1) since u ∈W 1,1(Bℓ;R2), and

|D(u ∂Br)|(∂Br) :=

∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣ ds = ∫ 2π

0
|∂θũ(r, θ)|dθ,

where ũ : R := (0, ℓ)× [0, 2π)→ R2, ũ(ρ, θ) := u(ρ cos θ, ρ sin θ). We compute∫
R
|∂θũ| dρdθ =

∫
Bℓ

|(∇u)τ |dx, (2.3.1)

with τ(x) := 1
|x|(−x2, x1), x ̸= 0. Indeed∫

R
|∂θũ| dρdθ

=

∫ ℓ

0

∫ 2π

0

[
2∑

i=1

ρ2
(
(∂x1ui)

2(sin θ)2 + (∂x2ui)
2(cos θ)2 − 2∂x1ui∂x2ui cos θ sin θ

)] 1
2

dρdθ

=

∫
Bℓ

1

|x|

[
2∑

i=1

(
(∂x1ui)

2x22 + (∂x2ui)
2x21 − 2∂x1ui∂x2uix1x2

)] 1
2

dx

=

∫
Bℓ

√
|∇u1 · τ |2 + |∇u2 · τ |2dx =

∫
Bℓ

|(∇u)τ |dx.

In the same way we get ∫
R
|∂θṽk| dρdθ =

∫
Bℓ

|(∇vk)τ |dx.

Thanks to Theorem 1.2.1, with the choicesM = 4, S3 ⊂ R4 = R2×2, f ∈ Cb((Bℓ\{0})×S3),

f(x, σ) :=
√
|σhor · τ(x)|2 + |σvert · τ(x)|2,

1In Chapter 3, the reader can find the proof of a further generalized version of this result for a generic
function in BV (Bℓ;R2).
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where σ ∈ S3 and σhor := (σ1, σ2), σvert := (σ3, σ4), we obtain

lim
k→+∞

∫
Bℓ

|(∇vk)τ |dx =

∫
Bℓ

|(∇u)τ |dx. (2.3.2)

Now we notice that for almost every r ∈ (0, ℓ) we have

vk ∂Br → u ∂Br in L1(∂Br;R2).

Then, since (vk ∂Br) ⊂ BV (∂Br;R2) for every r ∈ (0, ℓ), by the lower semicontinuity of
the variation we get∫

∂Br

∣∣∣∣∂u∂s
∣∣∣∣ ds ≤ lim inf

k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. r ∈ (0, ℓ). (2.3.3)

Integrating with respect to r and by Fatou’s lemma, we obtain∫
R
|∂θũ| drdθ =

∫ ℓ

0

∫
∂Br

∣∣∣∣∂u∂s
∣∣∣∣ dsdr ≤ ∫ ℓ

0
lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ dsdr ≤ lim inf

k→+∞

∫
R
|∂θṽk| drdθ.

(2.3.4)
But we notice that, by (2.3.1) and (2.3.2), we must have all equalities in (2.3.4). In
particular, ∫

∂Br

∣∣∣∣∂u∂s
∣∣∣∣ ds = lim inf

k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. r ∈ (0, ℓ),

and we conclude extracting a suitable subsequence (vkh) of (vk) depending on r such that

lim
h→+∞

∫
∂Br

∣∣∣∣∂vkh∂s

∣∣∣∣ ds = lim inf
k→+∞

∫
∂Br

∣∣∣∣∂vk∂s
∣∣∣∣ ds.

Definition 2.3.2. Let u ∈W 1,1(Ω;S1) and TVJW 1,1(u; Ω) < +∞. We set

TVJBV (u; Ω) := inf

{
lim inf
k→+∞

TVJ(vk; Ω) : (vk) ⊂ C1(Ω,R2), vk → u strictly BV

}
.

The proof of Theorem 2.3.6 is essentially a consequence of the following theorem.

Theorem 2.3.3 (Relaxation of TVJ in the strict convergence). Let u ∈W 1,1(Ω;S1)
be such that TVJW 1,1(u; Ω) < +∞, and write Det∇u as in (2.1.9). Then

TVJBV (u; Ω) = π

m∑
i=1

|di|.

In particular, TVJBV (u; Ω) = TVJW 1,1(u; Ω) = |Det∇u|(Ω).

As usual, we divide the proof of Theorem 2.3.3 into two parts, the lower bound (Propo-
sition 2.3.4) and the upper bound (Proposition 2.3.5).
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Proposition 2.3.4 (Lower bound for TVJBV ). Let u ∈W 1,1(Ω; S1) be such that
TVJW 1,1(u; Ω) < +∞, and write Det∇u as in (2.1.9). Then

TVJBV (u; Ω) ≥ π
m∑
i=1

|di|.

Proof. According to Theorem 2.1.6, we choose a radius ℓ > 0 so that the balls Bℓ(xi) ⊂ Ω,
i = 1, . . . ,m, are disjoint. Let (vk) ⊂ C1(Ω;R2) be such that vk → u strictly BV (Bℓ;R2)
and

lim
k→+∞

∫
Ω
|Jvk|dx = TVJBV (u; Ω).

To show the thesis it is sufficient to prove that, for all i = 1, . . . ,m,

lim
k→+∞

∫
Bℓ(xi)

|Jvk|dx ≥ πdi,

and it suffices to show this inequality for i = 1. Let us denote Bℓ(x1) simply by Bℓ. Without
loss of generality we may assume x1 = (0, 0). Since u ∈ W 1,1(Bℓ;S1), it is W 1,1(∂Br;S1),
in particular continuous, for almost every r ∈ (0, ℓ). Thus, we can choose r > 0 small
enough so that u ∂Br ∈W 1,1(∂Br;S1). Since the balls Bℓ(xi), i = 1, . . . ,m, are disjoint,
we also have deg(u, ∂Br, ·) = d1. From Theorem 2.1.9 and Lemma 2.3.1, we get that

∀ε ∈ (0, r) ∃rε ∈ (0, ε) ∃(vkh) ⊂ (vk) ∃(uh) ⊂ C∞(∂Brε ;S1) s.t.

u ∂Brε ∈W 1,1(∂Brε ; S1), uh → u ∂Brε in W 1,1(∂Brε ; S1),
and vkh ∂Brε → u ∂Brε strictly BV (∂Brε ;R2).

(2.3.5)

In particular, on ∂Brε we have uniform convergence of (uh) and (vkh) to u by Corollary
1.3.6. Setting as usual Jvkh = det∇vkh , write∫

Brε

|Jvkh |dx =

∫
Br

|Jwh|dx−
∫
Br\Brε

|Jwh|dx,

where wh ∈ Lip(Br;R2) and is given by

wh(x) :=


vkh(x) if |x| ≤ rε
r − |x|
r − rε

vkh

(
rε
x

|x|

)
+
|x| − rε
r − rε

uh

(
rε
x

|x|

)
if rε < |x| ≤ r.

(2.3.6)

Now, since ∥vkh − uh∥L∞(∂Brε )
→ 0 as h → +∞, arguing as in the proof of (2.2.31) we

have

lim
h→+∞

∫
Br\Brε

|Jwh|dx = 0. (2.3.7)

Moreover, from (2.3.6) we note that

deg(wh, ∂Br) = deg(uh, ∂Brε). (2.3.8)

Thanks to the uniform convergence of (uh) to u on ∂Brε , for h large enough, uh and
u ∂Brε must have the same degree

deg(uh, ∂Brε) = deg(u, ∂Brε) = d1.
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Then, arguing as in (2.2.35), we obtain that∫
Br

|Jwh|dx ≥ π|deg(wh, ∂Br)| = π|d1|,

for h ∈ N sufficiently large. In conclusion we get

TVJBV (u;Bℓ) = lim
h→+∞

∫
Bℓ

|Jvkh |dx ≥ lim inf
h→+∞

∫
Brε

|Jvkh |dx ≥ lim inf
h→+∞

∫
Br

|Jwh|dx ≥ π|d1|.

(2.3.9)

Proposition 2.3.5 (Upper bound for TVJBV ). Let u ∈W 1,1(Ω; S1) be such that
TVJW 1,1(u; Ω) < +∞, and write Det∇u as in (2.1.9). Then

TVJBV (u; Ω) ≤ π
m∑
i=1

|di|.

Proof. As in the proof of Proposition 2.3.4 we choose a radius ℓ > 0 so that the balls
Bℓ(xi) ⊂ Ω, i = 1, . . . ,m, are disjoint.

We construct a suitable recovery sequence (vk) ⊂ Lip(Ω;R2) such that

lim
k→+∞

vk = u in W 1,1(Ω;R2) (2.3.10)

and setting B := ∪ni=1Bℓ(xi),

lim
k→+∞

∫
Bℓ(xi)

|Jvk|dx = π|di|, i = 1, . . . ,m, and

∫
Ω\B
|Jvk|dx = 0. (2.3.11)

As in the proof of Proposition 2.3.4, we can find r1 ≤ ℓ so that u ∈W 1,1(∂Br1(xi);R2) and
deg(u, ∂Br1(xi)) = di, for all i = 1, . . . ,m. For every k ∈ N, we set Bk := ∪mi=1B2−kr1(xi).
By Theorem 2.1.10, there exists a sequence

(
ukn
)
n∈N ⊂ C

∞(Ω \Bk;S1) such that

lim
n→+∞

ukn = u in W 1,1(Ω \Bk; S1). (2.3.12)

Now, for all k > 1, we choose rk ∈ (2−kr1, 2
−k+1r1) such that the following conditions

hold: for all i = 1, . . . ,m,

u ∂Brk(xi) ∈W
1,1(∂Brk(xi);S

1),

lim
n→+∞

∥ukn ∂Brk(xi)− u ∂Brk(xi)∥W 1,1(∂Brk
(xi);S1) = 0.

(2.3.13)

In particular, for all k > 1 and i = 1, . . . ,m, we have

lim
n→+∞

∥ukn ∂Brk(xi)− u ∂Brk(xi)∥L∞(∂Brk
(xi);S1) = 0, (2.3.14)

thus, using (2.1.7), (2.3.13) and (2.1.6), we obtain

|deg(ukn, ∂Brk(xi))− deg(u, ∂Brk(xi))|

≤ 1

2π

(∫
∂Brk

(xi)

∣∣∣∣(ukn)1∂(ukn)2∂s
− u1

∂u2
∂s

∣∣∣∣ ds+ ∫
∂Brk

(xi)

∣∣∣∣(ukn)2∂(ukn)1∂s
− u2

∂u1
∂s

∣∣∣∣ ds
)
−→ 0

(2.3.15)
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as n→ +∞.
Therefore, there exists mk ∈ N such that, for all i = 1, . . . ,m,

deg(ukn, ∂Brk(xi)) = deg(u, ∂Brk(xi)) = di ∀n ≥ mk. (2.3.16)

Now, using (2.3.12) and (2.3.13), for all k > 1 there is m̃k ∈ N such that, for all i = 1, . . . ,m,

∥ukn − u∥W 1,1(Ω\(∪m
i=1Brk

(xi));S1) ≤ ∥u
k
n − u∥W 1,1(Ω\Bk;S1) ≤

1

k
∀n ≥ m̃k, (2.3.17)

∥ukn ∂Brk(xi)− u ∂Brk(xi)∥W 1,1(∂Brk
(xi);S1) ≤

1

k
∀n ≥ m̃k. (2.3.18)

Setting nk := max{mk, m̃k}, we define uk := uknk
, which satisfies (2.3.16) and (2.3.17) for

all k > 1. In particular

lim
k→+∞

∥uk − u∥W 1,1(Ω\(∪m
i=1Brk

(xi));S1) = 0. (2.3.19)

For all i = 1, . . . ,m, let now φi : S1 → S1 be the Lipschitz function defined in (2.2.38) with
d = di, which satisfies

mult(φi) = |deg(φi)| and deg(φi) = di.

Now, for all i = 1, . . . ,m, φi and uk ∂Brk(xi) have the same degree, and so there exists
a Lipschitz homotopy2 Hk,i : [0, 1]× S1 → S1 such that

Hk,i(0, y) = φi(y), Hk,i(1, y) = uk(rky + xi), y ∈ S1.

Let us define the sequence (vk) ⊂ Lip(Ω;R2) as follows: vk := uk in Ω \ B, and, for all
i = 1, . . . ,m, vk(xi) := 0 and

vk(x) :=


|x− xi|
rk+1

φi

(
x− xi
|x− xi|

)
if x ∈ Brk+1

(xi) \ {0},

hk,i(x) if x ∈ Brk(xi) \Brk+1
(xi),

uk(x) if x ∈ Bℓ(xi) \Brk(xi),

(2.3.20)

where

hk,i(x) := Hk,i

(
|x− xi| − rk+1

rk − rk+1
,
x− xi
|x− xi|

)
∀x ∈ Brk(xi) \Brk+1

(xi).

Since Hk,i and uk take values in S1, we have vk(x) ∈ S1 for x ∈ Ω \ (∪mi=1Brk+1
(xi)), and so∫

Ω\(∪m
i=1Brk+1

(xi))
|Jvk|dx = 0.

2To define it it suffices to consider two liftings of φ1 and uk(rk ·+x1) S1, and linearly interpolate them,
as done for H in (2.2.40). Observe that Hk,i is Lipschitz since uk ∂Brk (xi) is Lipschitz by the choice of
rk.
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In particular, the second condition in (2.3.11) holds. Moreover, by definition of vk, we have
that mult(vk, Brk+1

(xi), ·)=mult(φi), and therefore, by (2.1.1),∫
Brk+1

(xi)
|Jvk|dx =

∫
B1

mult(vk, Brk+1
(xi), y)dy = |B1|mult(φi) = π|di|,

and also the first condition in (2.3.11) follows.
It remains to show (2.3.10). By (2.3.19) and (2.3.17) we have∫

Ω
|vk − u|dx ≤

∫
Ω\(∪m

i=1Brk
(xi))
|uk − u|dx+ 2m|Brk(0)| → 0 as k → +∞,∫

Ω\(∪m
i=1Brk

(xi))
|∇vk −∇u|dx =

∫
Ω\(∪m

i=1Brk
(xi))
|∇uk −∇u|dx→ 0 as k → +∞.

Now, let us show that, for all i = 1, . . . ,m,

lim
k→+∞

∥∇hk,i∥L1(Brk(xi)
\Brk+1

(xi)) = 0.

Let us make the computation for i = 1, the other cases being identical. Set Hk = Hk,1 and
hk = hk,1. Assume without loss of generality that x1 = (0, 0), and denote Br(x1) = Br.
By definition of Hk we have

∥∂tHk∥L∞([0,1]×S1) ≤ ∥φ1∥L∞(S1) + ∥uk∥L∞(∂Brk
) ≤ 2 ∀k ∈ N. (2.3.21)

Moreover, since φ1 is Lipschitz,

|∇yHk(t, y)| ≤ |∇S1φ1(y)|+ rk|∇uk(rky)| ≤ C + rk|∇uk(rky)|. (2.3.22)

We now compute ∇hk for x ∈ Brk \Brk+1
:

∇hk(x) =
1

rk − rk+1
∂tHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)
⊗ x

|x|
+∇yHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)
∇
(
x

|x|

)
and we get∫

Brk
\Brk+1

|∇hk|dx

≤
∫
Brk

\Brk+1

1

rk − rk+1

∣∣∣∣∂tHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)∣∣∣∣+ ∣∣∣∣∇yHk

(
|x| − rk+1

rk − rk+1
,
x

|x|

)∣∣∣∣ ∣∣∣∣∇( x

|x|

)∣∣∣∣dx
≤ 1

rk − rk+1
∥∂tHk∥L∞

∣∣Brk \Brk+1

∣∣+ ∫ rk

rk+1

∫ 2π

0
ρ
1

ρ

∣∣∣∣∇yHk

(
ρ− rk+1

rk − rk+1
, (cos θ, sin θ)

)∣∣∣∣dρdθ
≤C(rk + rk+1) + C(rk − rk+1) + (rk − rk+1)

∫ 2π

0
rk|∇uk(rk(cos θ, sin θ))|dθ

≤Crk + (rk − rk+1)

∫
∂Brk

|∇uk|dH1 ≤ C (rk + (rk − rk+1))→ 0 as k → +∞,

(2.3.23)
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where we have used (2.3.18) in the last inequality. Then we conclude∫
Brk

\Brk+1

|∇vk −∇u|dx =

∫
Brk

\Brk+1

|∇hk −∇u|dx

≤
∫
Brk

\Brk+1

|∇hk|dx+

∫
Brk

\Brk+1

|∇u|dx→ 0.

Finally, for x ∈ Brk+1
, we have

∇vk(x) =
1

rk+1

x

|x|
⊗ φ1

(
x

|x|

)
+

1

rk+1
|x|∇

(
φ1

(
x

|x|

))
.

Then, since φ1 is Lipschitz,

|∇vk(x)| ≤
C

rk+1
,

so we get ∫
Brk+1

|∇vk −∇u|dx ≤
C

rk+1
|Brk+1

|+
∫
Brk+1

|∇u|dx→ 0,

and (2.3.10) follows.

Now, we can prove the main result of this section:

Theorem 2.3.6 (Relaxation for Sobolev maps valued in S1). Let u ∈ W 1,1(Ω; S1).
Suppose that Det∇u is a Radon measure with finite total variation |Det∇u|(Ω). Then

ABV (u; Ω) =

∫
Ω

√
1 + |∇u|2dx+ |Det∇u|(Ω) =

∫
Ω

√
1 + |∇u|2dx+ π

N∑
i=1

|di|, (2.3.24)

where N ∈ N and d1, . . . , dN ∈ Z \ {0} are such that Det∇u = π
∑N

i=1 diδxi .

Proof. We start with the proof of the lower bound. Arguing as in the proof of Proposition
2.3.4, we may suppose m = 1, Ω = Bℓ and x1 = (0, 0). Let (vk) ⊂ C1(Bℓ;R2) be such that
vk → u strictly BV (Bℓ;R2) and

lim inf
k→+∞

A(vk;Bℓ) = lim
k→+∞

A(vk;Bℓ) < +∞.

Select r1 > 0 and d1 ∈ Z as in the proof of Proposition 2.3.5. Without loss of generality we
can suppose that r1 = ℓ. So we deduce (2.3.5) and the uniform convergence of (vk) to u on
almost every circumference in Bℓ. Now write A(vk;Bℓ) = A(vk;Bℓ \ Brε) + A(vk;Brε) ≥
A(vk;Bℓ \Brε) +

∫
Brε
|Jvk| dx, so that

lim
k→+∞

A(vk;Bℓ) ≥ lim inf
k→+∞

A(vk;Bℓ \Brε) + lim inf
k→+∞

∫
Brϵ

|Jvk| dx

≥
∫
Bℓ\Brε

√
1 + |∇u|2dx+ lim inf

k→+∞

∫
Brϵ

|Jvk| dx.
(2.3.25)
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We now apply (2.3.9) and next pass to the limit as ε → 0+ to get the lower bound in
(2.3.24), i.e.,

lim inf
k→+∞

A(vk;Bℓ) ≥
∫
Ω

√
1 + |∇u|2dx+ π

N∑
i=1

|di|.

Concerning the proof of the upper bound, consider the sequence (vk) defined in (2.3.20),
which converges to u inW 1,1(Ω;R2). Then, upon extracting a subsequence such that (∇vk)
converges almost everywhere to ∇u, by (2.3.11) and dominated convergence we have, using
the inequality

√
1 + a2 + b2 + c2 ≤

√
1 + a2 + b2 + |c| for a, b, c ∈ R,

lim sup
k→+∞

A(vk;Bℓ(xi)) ≤ lim
k→+∞

∫
Bℓ(xi)

√
1 + |∇vk|2dx+ lim

k→+∞

∫
Bℓ(xi)

|Jvk|dx

=

∫
Bℓ(xi)

√
1 + |∇u|2dx+ π|di|,

that leads to

lim sup
k→+∞

A(vk; Ω) ≤ lim
k→+∞

∫
Ω\∪m

i=1Bℓ(xi)

√
1 + |∇vk|2dx+ lim sup

k→+∞
A(vk;∪mi=1Bℓ(xi))

=

∫
Ω

√
1 + |∇u|2dx+ π

m∑
i=1

|di|.

Remark 2.3.7. If u ∈ W 1,p(Ω; S1), p ∈ [1, 2), the recovery sequence defined in (2.3.20)
converges to u in W 1,p(Ω;S1) as well. Then, the results of Theorem 2.3.3 and Theorem
2.3.6 are still valid if one deals with the relaxation of the area functional with respect to
the strong topology of W 1,p(Ω;S1).

Remark 2.3.8 (Relaxation in the local uniform convergence outside singulari-
ties). If u is continuous in Ω \{x1, . . . , xm}, one can relax the area functional with respect
to the uniform convergence out of the singularities {xi}, i.e., we require that for every
compact set K ⊂ Ω \ {x1, . . . , xm} the approximating sequence (uk) ⊂ C1(Ω; S1) satisfies

uk → u in L∞(K),

or, in other words, if uk → u in L∞
loc(Ω\{x1, . . . , xm};R2). Therefore we are led to consider

AL∞(u; Ω) := inf
{
lim inf
k→+∞

A(uk; Ω) : (uk) ⊂ C1(Ω;R2), uk → u in L1(Ω;R2)

and uk → u in L∞
loc(Ω \ {x1, . . . , xm};R2)

}
.

(2.3.26)

It is then possible to show that

AL∞(u; Ω) =

∫
Ω

√
1 + |∇u|2dx+ π

m∑
i=1

|di|. (2.3.27)
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Notice that, if one considers the functional TVJL∞ , obtained by relaxing TVJ with this
notion of convergence, the counterpart of Theorem 2.3.3 does not hold anymore, since we
cannot guarantee a uniform bound on the L1 norm of ∇vk, needed to get (2.3.7); however,
we gain such a control on ∥∇vk∥L1 in the area functional, as soon as the approximating
sequence (vk) has bounded area.

The proof of (2.3.27) is the same of the one of Theorem 2.3.6, with the difference
that we can deduce straightforwardly the uniform convergence of (vk) on almost every
circumference in Br1 , without passing through (2.3.5).

2.4 Symmetric piecewise constant BV (Ω;S1) maps

This section is devoted to the proof of Theorem 2.4.1, that shows the explicit expression of
the BV -relaxed for the symmetric triple point map. As we shall anticipate also in Remark
2.4.5, we will generalize this result for more general piecewise constant maps in Chapter
4. However, for completeness we report the proof also in this particular case, where the
construction of the recovery sequence can be made explicitly.
Let us recall that a symmetric triple point map in R2 is a map u = uT : Bℓ(0) ⊂ R2 →
S1 taking three values {α, β, γ} ⊂ S1, vertices of an equilateral triangle, on three non-
overlapping 2π/3-angular regions A,B,C with common vertex at the origin and interfaces
a, b, c (see Figure 2.1). We denote by Tαβγ ⊂ R2 the triangle with vertices {α, β, γ}, whose

b

Figure 2.1: The symmetric triple point map: on the left the source disk Bℓ(0), three-sided
in the regions A,B,C, where u takes the values α, β, γ, depicted in the R2 target on the
right.

length side is |α − β| =: L =
√
3, and by JuT = a ∪ b ∪ c the jump set of u. We have

|Tαβγ | =
√
3
4 L

2 = 3
√
3

4 , and |Du|(Bℓ) = LH1(Ju) = 3Lℓ.

Theorem 2.4.1 (Relaxation for the symmetric triple-point map). Let uT : Bℓ :=
Bℓ(0)→ {α, β, γ} be the symmetric triple-point map. Then

ABV (uT ;Bℓ) = |Bℓ|+ LH1(JuT ) + |Tαβγ |, (2.4.1)
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Proof of Theorem 2.4.1: upper bound. For simplicity of notation, in what follows we
write

ε in place of 1/k,

with k ∈ N.
We construct a recovery sequence (uε)ε ⊂ Lip(Bℓ;R2) as ε → 0+. Let us consider the

rectangle
R := {(t, s) ∈ R2 : t ∈ (0, ℓ), s ∈ (0, L)}

and, for ε ∈ (0, ℓ), the functions mε : R → [0,+∞) (whose graph is plotted in Figure 2.2)
defined as

mε(t, s) :=


0 t ∈ [ε, ℓ]

2 ε−t
ε

sh
L t ∈ [0, ε), s ∈ [0, L2 ],

2 ε−t
ε

(L−s)h
L t ∈ [0, ε), s ∈ (L2 , L],

(2.4.2)

where h := L
2
√
3
= 1

2 . The number h is the height of each of the three isosceles triangles

with common vertex at the origin of the target space that decompose Tαβγ (see Figure 2.1
right). Let us denote by Sa

ε , S
b
ε, S

c
ε three tiny stripes around a, b, c in Bℓ, of width ε and

length ℓ− ε
2
√
3
, drawn in Figure 2.3. More explicitely, we have

Sb
ε :=

{
(x, y) ∈ Bℓ : |x| ≤

ε

2
, y ≥ ε

2
√
3

}
and Sa

ε (Sc
ε) is obtained by clockwisely rotating Sb

ε of an angle 2π
3 (4π3 respectively) around

the origin.
The idea is to glue mε on each strip in order to build three surfaces embedded in R4

living in three non-collinear copies of R3, whose total area contribution gives |Tαβγ | in the
limit ε→ 0+.

We introduce the affine diffeomorphism ψε :
[

ε
2
√
3
, ℓ
]
→ [0, ℓ] such that

ψ′
ε(y) =

ℓ

ℓ− ε
2
√
3

=: kε → 1 as ε→ 0+.

Now we can define uε on Sb
ε: we set

ξ :=
γ − α
L
∈ S1, η := −ξ⊥ = β,

(where ξ⊥ is the π
2 -counterclockwise rotation of ξ) and

uε(x, y) := α+

(
L

2
+
Lx

ε

)
ξ +mε

(
ψε(y),

L

2
+
Lx

ε

)
η ∀(x, y) ∈ Sb

ε.

In a similar way, we define uε on Sa
ε and Sc

ε. Setting T ε := Bε/
√
3 \ (Sa

ε ∪ Sb
ε ∪ Sc

ε) and

Aε := A \ (Sa
ε ∪Sb

ε ∪Sc
ε ∪T ε), Bε := B \ (Sa

ε ∪Sb
ε ∪Sc

ε ∪T ε), Cε := C \ (Sa
ε ∪Sb

ε ∪Sc
ε ∪T ε),

we define:

uε :=


α in Aε,

β in Bε,

γ in Cε.

(2.4.3)
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Figure 2.2: The graph of mε on the rectangle R.

It remains to define uε on the small triangle T ε. Let us divide it in four triangles
T a
ε , T

b
ε , T

c
ε , T

0
ε (see Figure 2.4). So, we set uε = 0 on T 0

ε and let uε be the affine function that
equals α (β, γ respectively), in the vertex of T ε confining with Aε (Bε, Cε respectively),
and equals 0 on the edge of T 0

ε . A direct check shows that the function uε is Lipschitz
continuous in Bℓ.

Let us compute the area of the graph of uε on Sb
ε: denoting by mε

t ,m
ε
s the partial

derivatives of mε, we have

∇uε(x, y) =

(
L
ε ξ1 +mε

s(ψε(y),
L
2 + L

ε x)
L
ε η1 mε

t (ψε(y),
L
2 + L

ε x)kεη1
L
ε ξ2 +mε

s(ψε(y),
L
2 + L

ε x)
L
ε η2 mε

t (ψε(y),
L
2 + L

ε x)kεη2.

)
(2.4.4)

Recalling that ξ · η = 0 and |ξ| = |η| = 1, we can compute the square of the Frobenius
norm of ∇uε

|∇uε(x, y)|2 = L2

ε2
[
ξ21 + (mε

s)
2η21 + 2ξ1η1m

ε
s + ξ22 + (mε

s)
2η22 + 2ξ2η2m

ε
s

]
+ (mε

t )
2k2εη

2
1

+ (mε
t )

2k2εη
2
2

=
L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2ε ,

(2.4.5)
where mε

s and mε
t are evaluated at

(
ψε(y),

L
2 + L

ε x
)
. Moreover, using that ξ · η⊥ = 1, we

have

(det∇uε)2 = k2εL
2

ε2
[(ξ1η2m

ε
t +mε

sm
ε
tη1η2)− (ξ2η1m

ε
t +mε

sm
ε
tη1η2)]

2 =
k2εL

2

ε2
(mε

t )
2.
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y

x

Figure 2.3: The strips Sa
ε , S

b
ε, S

c
ε and the little triangle T ε in the center.

So we have

A(uε;Sb
ε)

=

∫
Sb
ε

√
1 +

L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2ε +

k2εL
2

ε2
(mε

t )
2dxdy

=
L

ε

∫
Sb
ε

√
1 +mε

s

(
ψε(y),

L

2
+
L

ε
x

)2

+mε
t

(
ψε(y),

L

2
+
L

ε
x

)2

k2ε

(
1 +

ε2

L2

)
+O(ε2)dxdy

=
1

kε

∫
R\Pε

√
1 +mε

s(t, s)
2 +mε

t (t, s)
2k2ε

(
1 +

ε2

L2

)
+O(ε2)dtds,

(2.4.6)
where in the last equality we have performed the change of variables

(x, y) =

(
ε

L

(
s− L

2

)
, ψ−1

ε (t)

)
=: ϕε(t, s)

and we have set Pε = R \ ϕ−1
ε (Sb

ε). Notice that 1
kε
→ 1, k2ε

(
1 + ε2

L2

)
→ 1 as ε → 0+, so

that we get

lim inf
ε→0+

A(uε;Sb
ε) ≤

∫
R
1dtds+ lim inf

ε→0+

∫
R
|mε

t (t, s)|dtds+ lim inf
ε→0+

∫
R
|mε

s(t, s)|dtds. (2.4.7)
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Figure 2.4: The triangle T ε divided further in the four triangles T a
ε , T

b
ε , T

c
ε , T

0
ε .

Let us compute explicitely the derivatives of mε:

mε
t (t, s) =


0 t > ε

− 2
sh

εL
t < ε, s <

L

2

− 2
(L− s)h
εL

t < ε, s >
L

2

mε
s(t, s) =


0 t ≥ ε

2
ε− t
ε

h

L
t < ε, s <

L

2

− 2
ε− t
ε

h

L
t < ε, s >

L

2
.

Then, we obtain ∫
{t<ε,s<L

2
}
|mε

t (t, s)|dtds = ε

∫ L
2

0
2
sh

εL
ds =

hL

4∫
{t<ε,s>L

2
}
|mε

t (t, s)|dtds = ε

∫ L

L
2

2(L− s) sh
εL
ds =

hL

4
,

so we get ∫
R
|mε

t (t, s)|dtds =
hL

4
+
hL

4
=
hL

2
∀ε > 0. (2.4.8)

On the other hand,∫
{t<ε,s<L

2
}
|mε

s(t, s)|dtds =
∫
{t<ε,s>L

2
}
|mε

s(t, s)|dtds =
L

2

∫ ε

0
2
ε− t
ε

h

L
ds = O(ε),

so we get

lim inf
ε→0+

∫
R
|mε

s(t, s)|dtds = 0. (2.4.9)

Summarizing, from (2.4.7) we obtain

lim inf
ε→0+

A(uε;Sb
ε) ≤ ℓL+

hL

2
.

In the same way, we can prove that

lim inf
ε→0+

A(uε;Sa
ε ) = lim inf

ε→0+
A(uε;Sc

ε) ≤ ℓL+
hL

2
.
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Clearly, the definition of uε on Aε, Bε, Cε provides that

lim
ε→0+

A(uε;Aε ∪Bε ∪ Cε) = |Bℓ| = πℓ2.

It remais to show that the area contribution on T ε is infinitesimal: first notice that

A(uε;T 0
ε ) = |T 0

ε | = O(ε2).

Moreover on T a
ε (respectively T b

ε , T
c
ε ) u

ε is the affine parameterization of the segment (α, 0)
(respectively (β, 0), (γ, 0)) of the target space, therefore on T ε \ T 0

ε the area integrand has
no Jacobian contribution and so is O(ε−1), giving

A(uε;T a
ε ) = A(uε;T b

ε ) = A(uε;T c
ε ) = O(ε).

Then we have

A(uε;T ε) = A(uε;T 0
ε ) +A(uε;T a

ε ) +A(uε;T b
ε ) +A(uε;T c

ε ) = O(ε2) +O(ε).

In the end, we conclude

lim inf
ε→+0

A(uε;Bℓ) ≤ πℓ2 + 3ℓL+ 3
hL

2
,

where we recognize that the last quantity on the right-hand side is exactly |Tαβγ |.
As a final step, we have to check that (uε) converges to u strictly BV (Bℓ;R2). Clearly

uε → u in L1(Bℓ;R2). Let us compute the total variation of uε: we have

|Duε|(Bℓ) = |Duε|(Sa
ε ) + |Duε|(Sb

ε) + |Duε|(Sc
ε) + |Duε|(T ε).

In particular,
|Duε|(T ε) ≤ A(uε;T ε)→ 0 as ε→ 0+.

Computing the variation on the strip Sb
ε (similarly for the other strips) we find

|Duε|(Sb
ε) =

∫
Sb
ε

√
L2

ε2
(1 + (mε

s)
2) + (mε

t )
2k2εdxdy

=
L

ε

∫
Sb
ε

√
1 +mε

s

(
ψε(y),

L

2
+
L

ε
x

)2

+mε
t

(
ψε(y),

L

2
+
L

ε
x

)2

k2ε
ε2

L2
dxdy

=
1

kε

∫
R\Pε

√
1 +mε

s(t, s)
2 +mε

t (t, s)
2k2ε

ε2

L2
dtds.

Then, using (2.4.8) and (2.4.9), we conclude

lim sup
ε→0+

|Duε|(Sb
ε) ≤

∫
R
1dtds+ lim sup

ε→0+

∫
R
|mε

s(t, s)|dtds+O(ε) lim sup
ε→0+

∫
R
|mε

t (t, s)|dtds

= ℓL,

so that
lim sup
ε→0+

|Duε|(Bℓ) ≤ 3ℓL.
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By the lower semicontinuity of the variation, we get also

lim inf
ε→0+

|Duε|(Bℓ) ≥ |Du|(Bℓ) = 3ℓL,

which shows the desired convergence of (uε) to u strictly BV (Bℓ;R2).

Before proving the lower bound, similarly to Lemma 2.3.1, we show that the strict BV
convergence is inherited to almost every circumference centered at the origin.

Lemma 2.4.2 (Inheritance). Lemma 2.3.1 holds with uT in place of u.

Proof. Let ρ < ℓ and u be the triple point map; clearly

|D(u ∂Bρ)|(∂Bρ) = 3L. (2.4.10)

On the other hand, since (vk) converges to u in L1, for almost every ρ < ℓ we have
vk ∂Bρ → u ∂Bρ in L1(∂Bρ;R2), and by lower semicontinuity we infer that

|D(u ∂Bρ)|(∂Bρ) ≤ lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. ρ < ℓ. (2.4.11)

Integrating with respect to ρ ∈ (0, ℓ), by (2.4.10) and Fatou’s lemma, we have

|Du|(Bℓ) = 3ℓL =

∫ ℓ

0
|D(u ∂Bρ)|(∂Bρ)dρ

≤
∫ ℓ

0
lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣ dsdρ ≤ lim inf

k→+∞

∫
Bℓ

|∇vk|dx.
(2.4.12)

By assumption, (vk) converges to u strictly BV (Bℓ;R2), so we have all equalities in (2.4.12),
in particular, using (2.4.11),

|D(u ∂Bρ)|(∂Bρ) = lim inf
k→+∞

∫
∂Bρ

∣∣∣∣∂vk∂s
∣∣∣∣ ds for a.e. ρ < ℓ.

Upon extracting a suitable subsequence (vkh) depending on ρ we get the conclusion.

Proof of Theorem 2.4.1: lower bound. Let (vk) ⊂ C1(Bℓ;R2) be a recovery sequence,
i.e.,

vk → u strictly BV (Bℓ;R2) and lim
k→+∞

A(vk;Bℓ) = ABV (u;Bℓ).

Fix ρ ∈ (0, ℓ) and a subsequence (vkh) of (vk) whose restriction to ∂Bρ converges to u ∂Bρ

strictly BV (∂Bρ;R2), as in Lemma 2.4.2. For simplicity, let us still denote vkh by vk.
Let us split the area functional as

A(vk;Bℓ) = A(vk;Bℓ \Bρ) +A(vk;Bρ).

On Bℓ \Bρ we still have L1-convergence of (vk) to u, but u (Bℓ \Bρ) has no triple points,
so by Theorem 3.14 of [1],

lim inf
k→+∞

A(vk;Bℓ \Bρ) ≥ AL1(u;Bℓ \Bρ) =

∫
Br\Bρ

|
√

1 + |∇u|2dx+ |Dju|(Bℓ \Bρ)

= |Bℓ \Bρ|+ 3L(ℓ− ρ) = π(ℓ2 − ρ2) + 3L(ℓ− ρ).
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Therefore

lim
k→+∞

A(vk;Bℓ) ≥ lim inf
k→+∞

A(vk;Bℓ \Bρ) + lim inf
k→+∞

A(vk;Bρ)

≥π(ℓ2 − ρ2) + 3L(ℓ− ρ) + lim inf
k→+∞

∫
Bρ

|Jvk|dx,
(2.4.13)

where as usual Jvk := det∇vk.
Let us prove that

lim inf
k→+∞

∫
Bρ

|Jvk|dx ≥ |Tαβγ |, (2.4.14)

from which the lower bound in (2.4.1) is obtained by passing to the limit as ρ → 0+ in
(2.4.13). Now we observe that, since vk is Lipschitz on Bρ, it satisfies the following identity
(see (1.4.3)): ∫

Bρ

Jvkdx =
1

2

∫
∂Bρ

(
(vk)1

∂(vk)2
∂s

− (vk)2
∂(vk)1
∂s

)
ds ∀k ∈ N.

Let us parametrize ∂Bρ from [0, 2π) and set ṽk(t) := vk(s(t)) for t ∈ [0, 2π); then

( ˙̃vk)i(t) =
d

dt
(vk)i(s(t)) = ρ

∂(vk)i
∂s

(s(t)), i = 1, 2.

Thus we get∫
∂Bρ

(
(vk)1

∂(vk)2
∂s

− (vk)2
∂(vk)1
∂s

)
ds =

∫ 2π

0

(
(ṽk)1(t)( ˙̃vk)2(t)− (ṽk)2(t)( ˙̃vk)1(t)

)
dt.

Denoting ṽk(t) simply by vk(t), we can write∫
Bρ

Jvkdx =
1

2

∫ 2π

0
((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt.

To show (2.4.14) it is sufficient to prove that

lim inf
k→+∞

1

2

∫ 2π

0
((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt ≥ |Tαβγ |, (2.4.15)

since obviously ∫
Bρ

|Jvk|dx ≥

∣∣∣∣∣
∫
Bρ

Jvkdx

∣∣∣∣∣ . (2.4.16)

In order to show (2.4.15), denote by θ1 ∈ [0, 2π) (respectively θ2, θ3) the angle of the middle
point of the arc C ∩ ∂Bρ (respectively A ∩ ∂Bρ, B ∩ ∂Bρ) and write

1

2

∫ 2π

0
((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

=
1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

+
1

2

∫ θ3

θ2

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

+
1

2

∫ θ1

θ3

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt.

(2.4.17)
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Notice that, as a consequence of Lemma 2.4.2, vk converges to u strictly BV ([θ1, θ2];R2).
Furthermore, by restricting vk to [θ1, θ1+δ], for a small δ > 0, as a consequence of Corollary
1.3.6 we see that vk converges uniformly to v ≡ γ on [θ1, θ1 + δ]. In particular we have

lim
k→∞

vk(θ1) = γ.

Similarly vk will tend to α and β in θ2 and θ3, respectively. We set

Lk :=

∫ θ2

θ1

(
|v̇k(t)|+

1

k

)
dt, z(t) = zk(t) :=

∫ t

θ1

(
|v̇k(τ)|+

1

k

)
dτ, t ∈ [θ1, θ2].

Since z is strictly increasing with derivative bounded from below by 1
k , we can invert it

and denote its inverse t(z). We define wk : [0, Lk]→ R2 as

wk(z) = vk(t(z)).

Then we have

w′
k(z) = v̇k(t(z))

dt

dz
=

v̇k(t(z))

|v̇k(t(z))|+ 1
k

, dt =
1

|v̇k(t(z))|+ 1
k

dz.

Thus, (wk)k is uniformly Lipschitz continuous on [0, Lk] (with modulus of derivative bounded
by 1), and

1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)1(t)) dt

=
1

2

∫ Lk

0

(
(wk)1(z)(w

′
k)2(z)− (wk)2(z)(w

′
k)1(z)

)
dz.

(2.4.18)

We also have

lim
k→+∞

Lk = lim
k→+∞

∫ θ2

θ1

(
|v̇k(t)|+

1

k

)
dt = |Du| {y ∈ ∂Bρ : arg(y) ∈ [θ1, θ2]} = |γ−α| = L.

We further reparametrize wk on [0, L] by a multiple of the arc length parameter. Still denot-
ing the obtained function by (wk)k, we see that wk is uniformly bounded inW 1,∞([0, L];R2)
so, upon passing to a (not relabelled) subsequence, we have

wk
∗
⇀ w w∗-W 1,∞([0, L];R2),

for some w ∈ W 1,∞([0, L];R2). Hence, we can pass to the limit in (2.4.18), which now
reads

1

2

∫ L

0

(
(wk)1(z)(w

′
k)2(z)− (wk)2(z)(w

′
k)1(z)

)
dz

k→+∞−−−−→1

2

∫ L

0

(
w1(z)w

′
2(z)− w2(z)w

′
1(z)

)
dz.

(2.4.19)

Recalling that

w(0) = lim
k→+∞

wk(0) = lim
k→+∞

vk(θ1) = γ,

w(L) = lim
k→+∞

wk(L) = lim
k→+∞

wk(Lk) = lim
k→+∞

vk(θ2) = α,
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we see that w is a 1-Lipschitz curve on [0, L] starting from γ and ending at α; therefore it
must coincide with the unit speed parameterization of the segment connecting γ to α, i.e.,

w(z) = γ +
α− γ
L

z.

So, we can easily compute the limit integral in (2.4.19):

1

2

∫ L

0

(
w1(z)w

′
2(z)− w2(z)w

′
1(z)

)
dz = −1

2

∫ L

0

(
γ +

α− γ
L

z

)
· (α− γ)

⊥

L
dz

= −1

2
γ · (α− γ)⊥

=
1

2
(γ1α2 − γ2α1) = |Tα0γ |,

where Tα0γ is the triangle with vertices α, γ and the origin 0. We conclude that

lim
k→+∞

1

2

∫ θ2

θ1

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tα0γ |.

In a similar way, one can prove that

lim
k→+∞

1

2

∫ θ3

θ2

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tα0β|,

lim
k→+∞

1

2

∫ θ1

θ3

((vk)1(t)(v̇k)2(t)− (vk)2(t)(v̇k)2(t)) dt = |Tβ0γ |,

and (2.4.15) follows.

Remark 2.4.3. A result similar to Theorem 2.4.1 holds, up to trivial modifications, when
u : Bℓ(0)→ S1 is a symmetric n-uple point map, taking (in the order) the values α1, . . . , αn

vertices of the regular n-gon Pα1···αn inscribed in the unit circle, on n non-overlapping 2π/n-
angular regions with common vertex at the origin. In formulas, let L be the side of Pα1···αn

and h be the height of each isosceles triangle that decomposes Pα1···αn , then there holds
the following

Corollary 2.4.4. Let u : Bℓ(0)→ S1 be a symmetric n-ple map. Then

ABV (u,Bℓ) = |Bℓ|+ |Du|(Bℓ) + |Pα1···αn | = πℓ2 + nLℓ+
n

2
hL.

Remark 2.4.5. We point out that the ”orientation preserving” assumption on u is crucial
in order to adapt both the upper and the lower bound proofs of Theorem 2.4.1. Indeed, if
u does not follow the order of the target vertices, some of the triangles Tα10α2 , . . . , Tαn−10αn

overlap. As a consequence, the sequence (uε) may be not optimal anymore and, moreover,
the inequality (2.4.16) could be too rough, making the resulting lower bound not optimal
as well. In Chapter 4 we will find a way to overcome these issues, by considering a sort of
Plateau problem for possibly self-intersecting polygonal curve connecting the αj ’s.



Chapter 3

Piecewise Lipschitz maps jumping
on a curve

In this chapter we analyze the case of BV -maps which are Lipschitz out of a discontinuity
(smooth) curve. After proving some technical properties of strict convergence on one-
dimensional slices, we consider first the case of piecewise Lipschitz maps jumping on a
segment, for which an explicit integral expression of the BV -relaxed area is provided. The
argument in the proof of the lower bound is based on some results of the theory of integer
multiplicity currents, briefly sketched in Chapter 1. Thereafter, in Remark 3.2.6, we give
an alternative proof, which is derived by results in [40] on minimal lifting currents (see
Section 1.5 of Chapter 1). Finally, we extend the validity of the integral formula of the
BV -relaxed area to the case the discontinuity set is a curve of class C2. The results of this
chapter are contained in [4].

3.1 Slicing properties of strict convergence

Let R = [a, b]× [−1, 1]. For (t, σ) ∈ R, set

Rx1
t := {(x1, x2) ∈ R : x1 = t}, Rx2

σ := {(x1, x2) ∈ R : x2 = σ}.

If u ∈ BV (R;R2), by Lebesgue differentiation theorem and Fubini theorem, for almost
every t ∈ [a, b], the restriction u Rx1

t of u on the vertical segment Rx1
t coincides with the

trace of u on H1-almost every point of Rx1
t . So, for almost every t ∈ [a, b], the map u Rx1

t

is well defined because it is independent of the representative of u. The same argument
holds in Rx2

σ for almost every σ ∈ [−1, 1].

Lemma 3.1.1 (Inheritance of strict convergence to slices). Let u ∈ BV (R;R2).
Suppose that (vk) ⊂ C1(R;R2) is a sequence converging to u strictly BV (R;R2). Then
for almost every (t, σ) ∈ R, there exists a subsequence (vkh) ⊂ (vk), depending on t and σ,
such that

vkh Rx1
t → u Rx1

t strictly BV (Rx1
t ;R2), (3.1.1)

vkh Rx2
σ → u Rx2

σ strictly BV (Rx2
σ ;R2). (3.1.2)

47
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Proof. For almost every t ∈ [a, b], in view of the definition of Rx1
t , we can define the total

variation of u Rx1
t as

|D(u Rx1
t )|(Rx1

t ) = sup

{
−
∫ 1

−1
u(t, x2) · g′(x2)dx2; g ∈ C1

c ((−1, 1);B1(0))

}
, (3.1.3)

where B1(0) = {(ξ, η) ∈ R2 : ξ2 + η2 ≤ 1}. Let us show that

|D2u|(R) =
∫ b

a
|D(u Rx1

t )|(Rx1
t )dt, (3.1.4)

where D2u := Due2 is a Radon measure on R valued in R2 with finite total variation.
Since, for almost every t ∈ [a, b], vk Rx1

t → u Rx1
t in L1(Rx1

t ;R2), we have, using (3.1.3),

|D(u Rx1
t )|(Rx1

t ) ≤ lim inf
k→+∞

∫
R

x1
t

|∂2vk(t, x2)|dx2. (3.1.5)

Then, using Fatou lemma and Fubini theorem,∫ b

a
|D(u Rx1

t )|(Rx1
t )dt ≤

∫ b

a
lim inf
k→+∞

∫
R

x1
t

|∂2vk(t, x2)|dx2dt (3.1.6)

≤ lim inf
k→+∞

∫
R
|∂2vk(t, x2)|dtdx2 = |D2u|(R),

where in the last equality we used Theorem 1.2.1 with f(x, ν) =
√
ν23 + ν24 , for every

x ∈ R, ν ∈ S3 ⊂ R4 = R2 × R2, with

ν =

(
ν1 ν3
ν2 ν4

)
.

The converse inequality in (3.1.4) is standard1. So, (3.1.4) is proved and (3.1.6) holds as
an equality, which implies that also (3.1.5) holds as an equality, namely

|D(u Rx1
t )|(Rx1

t ) = lim inf
k→+∞

∫
R

x1
t

|∂2vk(t, x2)|dx2.

Extracting a subsequence (vkh) ⊂ (vk) depending on t, we get

vkh Rx1
t → u Rx1

t strictly BV (Rx1
t ;R2).

Finally, repeating the same argument for vkh on the horizontal slices {Rx2
σ }, we get (3.1.1)

for a (not relabeled) sub-subsequence.

1We recall that

|D2u|(R) = sup

{
−
∫
R

u · ∂x2g dx : g ∈ C1
c (R;B1(0))

}
.

Now, for g ∈ C1
c (R;B1(0)),

∫
R
u · ∂yg dx =

∫ b

a

(∫ 1

−1
u(t, x2) · ∂x2g(t, x2)dx2

)
dt ≤

∫ b

a
|D(u Rx1

t )|(Rx1
t )dt,

so |D2u|(R) ≤
∫ b

a
|D(u Rx1

t )|(Rx1
t )dt.
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Now, let Bl be the disk of R2 centered at the origin of radius l > 0. We want to
prove the analogue of Lemma 3.1.1 in Bl, by slicing with concentric circumferences. If
u ∈ BV (Bl;R2), as in the previous case, for almost every r ∈ (0, l) the restriction u ∂Br

is well-defined and independent of the representative of u. In particular, for almost every
r ∈ (0, l), we can define the total variation of u ∂Br as

|D(u ∂Br)|(∂Br) := sup

{
−
∫ 2π

0
ū(r, θ) · f ′(θ)dθ; f ∈ C1([0, 2π];B1(0)),

f(0) = f(2π), f ′(0) = f ′(2π)
}
(3.1.7)

which turns out to be finite (see Lemma 3.1.3), giving that u ∂Br ∈ BV (∂Br;R2), for
almost every r ∈ (0, l). Here

ū(r, θ) := u(r cos θ, r sin θ), r ∈ (0, l], θ ∈ [0, 2π).

We want to relate this quantity with the notion of tangential total variation.

Definition 3.1.2. For x = (x1, x2) ∈ R2 \ {(0, 0)}, set τ(x) = 1
|x|(−x2, x1). Let 0 < l < L

and AL,l := BL(0)\Bl(0) be an annulus around 0. We define the tangential total variation
of u ∈ BV (AL,l;R2) as the total variation of the Radon measure Dτu := Duτ , namely

|Dτu|(AL,l) = |Duτ |(AL,l) = sup
{
−
∫
AL,l

u · (∇gτ) dx : g ∈ C1
c (AL,l;B1(0))

}
. (3.1.8)

The last equality in (3.1.8) is justified since τ ∈ C∞(AL,l;R2) satisfies divτ = 0 everywhere,
so for any g = (g1, g2) ∈ C1

c (AL,l;R2) we have

−
∫
AL,l

u · (∇gτ) dx = −
∫
AL,l

u1∇g1 · τ dx−
∫
AL,l

u2∇g2 · τ dx

= −
∫
AL,l

u1div(g1τ) dx−
∫
AL,l

u2div(g2τ) dx

=

∫
AL,l

g1τ · dDu1 +
∫
AL,l

g2τ · dDu2 =
∫
AL,l

g · (dDu)τ = ⟨Duτ, g⟩.

This computation shows that |Dτu|(AL,l) ≤ |Du|(AL,l), since |τ | ≤ 1, and also that (3.1.8)
is compatible with the case u ∈W 1,1(AL,l;R2), where simply |Dτu|(AL,l) =

∫
AL,l
|∇uτ | dx.

Moreover, Du = Du
|Du| |Du| by polar decomposition, so that for every g ∈ C1

c (Bl;R2)

⟨Duτ, g⟩ =
∫
AL,l

g · (dDu)τ =

∫
AL,l

g ·
(
Du

|Du|
d|Du|

)
τ =

∫
AL,l

g ·
(
Du

|Du|
τ

)
d|Du|,

giving that

Dτu = Duτ =
Du

|Du|
τ |Du|. (3.1.9)
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Lemma 3.1.3 (Inheritance of strict convergence to circumferences). Let
u ∈ BV (BR;R2) and (vk) ⊂ C1(BR;R2) be a sequence converging to u strictlyBV (BR;R2).
Then, for almost every r ∈ (0, R), there exists a subsequence (vkh) ⊂ (vk), depending on
r, such that

vkh ∂Br → u ∂Br strictly BV (∂Br;R2) as h→ +∞. (3.1.10)

Proof. For almost every r ∈ (0, R), by Fatou lemma and Fubini theorem, the restriction
vk ∂Br has equi-bounded variation w.r.t. k. Moreover, we may assume that (vk) converges
to u almost everywhere in BR, so that, for almost every r ∈ (0, R),

vk ∂Br → u ∂Br H1-a.e. in ∂Br. (3.1.11)

Now, let r ∈ (0, R) be such that vk ∂Br has equi-bounded variation and (3.1.11) holds.
Then, there exists a subsequence (vkh) ⊂ (vk) depending on r such that

vkh ∂Br
∗
⇀ u ∂Br w*−BV (∂Br;R2).

By lower semicontinuity of the variation, we infer that for almost every r ∈ (0, R), u ∂Br ∈
BV (∂Br;R2) and

|D(u ∂Br)|(∂Br) ≤ lim inf
h→+∞

∫
∂Br

|∇vkhτ | dH
1. (3.1.12)

Let 0 < l < L ≤ R be such that vk → u strictly BV (AL,l,R2) where, as in Definition 3.1.2,

AL,l := BL(0) \Bl(0) (notice that this holds for a.e. l and L); by integration, we get∫ L

l
|D(u ∂Br)|(∂Br) dr ≤

∫ L

l

(
lim inf
h→+∞

∫
∂Br

|∇vkhτ | dH
1

)
dr

≤ lim inf
h→+∞

∫ L

l

∫
∂Br

|∇vkhτ | dH
1dr = lim inf

h→+∞

∫
AL,l

|∇vkhτ | dx.
(3.1.13)

Thanks to Theorem 1.2.1, with the choices M = 4, S3 ⊂ R4 = R2×2, f ∈ Cb(AL,l × S3),

f(x, ν) :=
√
|νhor · τ(x)|2 + |νvert · τ(x)|2,

where ν ∈ S3 and νhor := (ν1, ν3), νvert := (ν2, ν4), we obtain

lim
k→+∞

∫
AL,l

|∇vkτ | dx =

∫
AL,l

∣∣∣∣ Du|Du|τ
∣∣∣∣ d|Du| = |Dτu|(AL,l), (3.1.14)

where in the last equality we have used (3.1.9). So we get

|Dτu|(Bl) ≥
∫ L

l
|D(u ∂Br)|(∂Br) dr.

In order to prove the converse inequality, let g ∈ C1
c (AL,l;B1(0)). Then, in polar coordi-

nates, by definition (3.1.7),∫
AL,l

u · ∇gτ dx =

∫ L

l

∫ 2π

0
ū(ρ, θ) · ∂θḡ(ρ, θ) dρdθ ≤

∫ L

l
|D(u ∂Bρ)|(∂Bρ) dρ.
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So, we have proved that

|Dτu|(AL,l) =

∫ L

l
|D(u ∂Br)|(∂Br) dr.

In particular, we deduce that (3.1.13) is a chain of equalities. Then, (3.1.12) holds as an
equality and there exists a subsequence (vkh) ⊂ (vk), depending on r, which achieves the
full limit. Since l and L are arbitrary, we get the thesis.

3.1.1 Further properties in dimension 1

For our purposes, we need an improvement of Corollary 1.3.6, where discontinuous functions
γ at a single point, or at a finite number of points, are allowed. More precisely, we would like
to conclude that, up to further reparametrization, the approximating sequence converges
uniformly to a slight modification of the limit map γ; we start with one point discontinuity.

Lemma 3.1.4. Let I− := [−1, 0), I+ := (0, 1]. Suppose that (γk) ⊂ W 1,1([−1, 1];R2)
is a sequence converging strictly BV ([−1, 1];R2) to γ ∈ BV ([−1, 1];R2) ∩W 1,1(I−;R2) ∩
W 1,1(I+;R2), with γ+(0) ̸= γ−(0). Let S : [−1/3, 1/3]→ R2 be defined by

S(τ) :=
3

2

(
(1/3 + τ) γ+(0) + (1/3− τ) γ−(0)

)
, τ ∈ [−1/3, 1/3].

Let γ̃− (resp. γ̃+) be the reparametrization of γ|I− (resp. γ|I+) on [−1,−1
3) (resp. (13 , 1])

defined by the composition with the increasing linear function taking [−1,−1/3] onto [−1, 0]
(resp. [1/3, 1] onto [0, 1]). Define

γ̃ : [−1, 1]→ R2, γ̃ :=


γ̃− in [−1,−1/3)
S in [−1/3, 1/3]
γ̃+ in (1/3, 1].

(3.1.15)

Then there exist:

(a) a Lipschitz strictly increasing surjective function h : [−1, 1]→ [−1, 1],

(b) a subsequence (kj) and Lipschitz strictly increasing surjective functions hkj : [−1, 1]→
[−1, 1] for any j ∈ N, with supj ∥ḣkj∥∞ < +∞,

such that

lim
j→+∞

γkj ◦ hkj = γ̃ ◦ h uniformly in [−1, 1]. (3.1.16)

Proof. The lengths Lk of γk and L of γ are given by

Lk =

∫ 1

−1
|γ̇k| dτ,

L = |γ̇|([−1, 1]) =
∫ 0

−1
|γ̇| dτ + |γ+(0)− γ−(0)|+

∫ 1

0
|γ̇| dτ.
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Since, by assumption, γk → γ strictly BV ([−1, 1];R2), we have that Lk → L as k → +∞.
Fix η > 0 and for all k ∈ N define the function2

sk : [−1, 1]→ [0, L+ η], sk(t) :=
L+ η

Lk + η

∫ t

−1

(
|γ̇k(τ)|+

η

2

)
dτ, (3.1.17)

with Lipschitz inverse αk := s−1
k : [0, L+ η]→ [−1, 1]. Define

γ̂k : [0, L+ η]→ R2, γ̂k(s) := γk(αk(s)) ∀s ∈ [0, L+ η]. (3.1.18)

Since from (3.1.17)∣∣∣∣dγ̂kds (s)

∣∣∣∣ ≤ |γ̇k(αk(s))|
|ṡk(αk(s))|

≤ Lk + η

L+ η
≤ C for a.e. s ∈ [0, L+ η],

for some constant C > 0 independent of k, the sequence (γ̂k) is bounded in W 1,∞([0, L+
η];R2). Thus, up to a (not relabeled) subsequence, we may assume that there exists
γ̂ ∈W 1,∞([0, L+ η];R2) such that

γ̂k ⇀ γ̂ weakly* in W 1,∞([0, L+ η];R2) and uniformly in [0, L+ η]. (3.1.19)

We observe that for any open interval J ⊆ [0, L+ η],∫
J
| ˙̂γ|ds ≤ lim inf

k→+∞

∫
J
| ˙̂γk|ds ≤ |J | lim inf

k→+∞

Lk + η

L+ η
= |J |,

and thus

| ˙̂γ| ≤ 1 a.e. in [0, L+ η]. (3.1.20)

Now, in order to conclude the proof, we need to show that γ̂ is a reparametrization of γ̃.
Then the thesis of the lemma will follow by reparametrizing both γ̂k and γ̂ on [−1, 1].

Using that (γk) strictly converges BV ([−1, 1];R2) to γ ∈W 1,1(I−;R2) ∩W 1,1(I+;R2),
by Corollary 1.3.6 and a diagonal process, we can find an infinitesimal sequence (δkj ) ⊂
(0, 1] such that

∥γkj − γ∥L∞([−1,1]\(−δkj ,δkj ))
→ 0 (3.1.21)

and ∫ −δkj

−1
|γ̇kj (τ)| dτ →

∫ 0

−1
|γ̇(τ)| dτ,

∫ 1

δkj

|γ̇kj (τ)| dτ →
∫ 1

0
|γ̇(τ)| dτ

as j → +∞. In particular,

lim
j→+∞

γkj (±δkj ) = γ±(0) (3.1.22)

2We need η, since in principle γ̇k could vanish somewhere.
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and, setting

r−kj :=skj (−δkj ) =
L+ η

Lkj + η

∫ −δkj

−1

(
|γ̇kj |+

η

2

)
dτ,

r+kj :=skj (δkj ) =
L+ η

Lkj + η

[∫ 1

−1

(
|γ̇kj |+

η

2

)
dτ −

∫ 1

δkj

(
|γ̇kj |+

η

2

)
dτ

]
,

we have

lim
j→+∞

r−kj =
η

2
+

∫ 0

−1
|γ̇| dτ =: r−,

lim
j→+∞

r+kj =
η

2
+

∫ 0

−1
|γ̇| dτ + |γ+(0)− γ−(0)| =: r+.

(3.1.23)

As a consequence of (3.1.19), (3.1.22), and (3.1.23) we get

γkj (αkj (r
±
kj
)) = γ̂kj (r

±
kj
)→ γ̂(r±) = γ±(0).

Therefore the curve γ̂ maps the segment [r−, r+] into a curve joining γ−(0) and γ+(0).
Now, since r+− r− = |γ+(0)− γ−(0)|, from (3.1.20) we conclude that γ̂ coincides with the
unit-speed parametrization of the segment joining γ−(0) and γ+(0) on [r−, r+]. Hence we
have shown that

γkj ◦ αkj → S ◦ α̃ uniformly in [r−, r+] as j → +∞, (3.1.24)

for the affine increasing reparametrization α̃ : [r−, r+]→ [−1/3, 1/3].
We now check that γ̂ = γ◦α on [0, r−] for some increasing bijection α : [0, r−]→ [−1, 0],

and similarly γ̂ = γ ◦ β on [r+, L+ η] for some increasing bijection β : [r+, L+ η]→ [0, 1].
Indeed, the functions αk : [0, L+ η]→ [−1, 1] are strictly increasing and satisfy

|α̇k(sk(t))| =
Lk + η

(L+ η)(|γ̇k(t)|+ η
2 )
≤ C

η
,

so that we may assume (up to extracting a further not relabeled subsequence) that

αkj ⇀ α weakly* in W 1,∞([0, L+ η]) and uniformly in [0, L+ η],

for some nondecreasing map α ∈W 1,∞([0, L+ η]). Hence, using (3.1.21), we find out

γ̂kj (s) = γkj (αkj (s))→ γ(α(s)) for all s ∈ [0, r−).

This, together with (3.1.19), implies

γ̂(s) = γ ◦ α(s) for all s ∈ [0, r−).

A similar argument shows that this also holds for all s ∈ (r+, L+ η].
Finally, we observe that α is strictly increasing on [0, r−) ∪ (r+, L + η]. For, if α is

constant on some interval [s1, s2] ⊂ [0, r−), we have limj→+∞ αkj (s1) = limh→+∞ αkj (s2)
and hence

0 = lim
j→+∞

∫ s2

s1

α̇kj (s)ds = lim
j→+∞

∫ tkj,2

tkj,1

dτ = lim
j→+∞

(tkj ,2 − tkj ,1), (3.1.25)
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where tkj ,i are defined by skj (tkj ,1) = s1 and skj (tkj ,2) = s2. By definition (3.1.17) of skj
we have

0 < s2 − s1 =
∫ tkj,2

tkj,1

(
|γ̇kj (τ)|+

η

2

)
dτ. (3.1.26)

Possibly passing to a (not relabeled) subsequence and using (3.1.25), let t ∈ [−1, 0] be the
limit of (tkj ,1) and (tkj ,2). If t ̸= 0, for any open neighborhood J ⊂ (−1, 0) of t, using
(3.1.26), we get ∫

J
|γ̇| dτ = lim

h→+∞

∫
J
|γ̇kj | dτ ≥ s2 − s1,

which contradicts the inclusion γ̇ ∈ L1((−1, 0);R2). The same argument holds if t = 0, for
J a left neighbourhood of 0 in (−1, 0). We conclude that α is strictly increasing.

Let hkj be a rescaling of αkj on [−1, 1]; rescaling also α from [0, r−] to [−1,−1/3], and
then from [r+, L+ η] to [1/3, 1], using also α̃ in (3.1.24), we construct a reparametrization
h : [−1, 1]→ [−1, 1] such that (3.1.16) holds, and the lemma is proved.

Lemma 3.1.4 can be readily extended to curves γ with finitely many jump points:

Corollary 3.1.5. Assume that (γk) ⊂ W 1,1([0, 2π];R2) is a sequence that converges
strictly BV ([0, 2π];R2) to a map γ ∈ SBV ([0, 2π];R2) having finitely many jump points
0 < z1 < z2 < · · · < zn < 2π. Let θ0 > 0 be such that the intervals (zi−θ0, zi+θ0) ⊂ (0, 2π)
are disjoint, and for all i = 1, . . . , n let Si : [zi − θ0, zi + θ0]→ R2 be defined by

Si(τ) :=
1

2θ0

(
(τ − zi + θ0) γ

+(zi) + (zi + θ0 − τ) γ−(zi)
)
, τ ∈ [zi − θ0, zi + θ0].

Setting z0 := 0 and zn+1 := 2π, for all i = 0, . . . , n let γ̃i : [zi + θ0, zi+1 − θ0] → R2 be
a rescaled reparametrization of γ : [zi, zi+1] → R2. Finally, let γ̃ : [0, 2π] → R2 be the
Lipschitz curve defined as

γ̃ := γ̃0 ⋆ S1 ⋆ γ̃1 ⋆ S2 ⋆ γ̃2 ⋆ · · · ⋆ Sn ⋆ γ̃n, (3.1.27)

where ⋆ denotes the arc composition. Then there exist a subsequence (kj) and Lipschitz
increasing surjective functions h, hkj : [0, 2π]→ [0, 2π] such that

lim
j→+∞

γkj ◦ hkj = γ̃ ◦ h uniformly in [0, 2π]. (3.1.28)

Proof. We skecth the proof which is a direct consequence of the arguments used to prove
Lemma 3.1.4. Choose points wi, i = 1, . . . , n− 1 so that zi + θ0 < wi < zi+1 − θ0, and let
w0 = 0 and wn = 2π. Then we can apply Lemma 3.1.4 to any interval [wi, wi+1], and taking
a suitable subsequence and concatenating the obtained maps one can easily construct the
desired parametrizations.

3.2 Relaxation on piecewise Lipschitz maps jumping on a
curve

Recalling that R = [a, b] × [−1, 1], consider R+ = {(x1, x2) ∈ R : x2 > 0} and R− =
{(x1, x2) ∈ R : x2 < 0}.
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Definition 3.2.1 (Piecewise Lipschitz map). We say that a map u : R → R2 is
piecewise Lipschitz if u ∈ BV (R;R2) and u ∈ Lip(R−;R2) ∩ Lip(R+;R2).

Thus Ju ⊆ [a, b] × {0}; we define u± : [a, b] × {0} → R2 the traces of u|R± , which are

Lipschitz maps. Set I = [0, 1] and define Xaff : [a, b] × I → R3 the affine interpolation
surface spanning graph(u±) = {(t, u±(t)) : t ∈ [a, b]} ⊂ R× R2 = R3, namely

Xaff(t, s) = (t, su+(t) + (1− s)u−(t)) =: (t, X̂(t, s)) ∀(t, s) ∈ [a, b]× I. (3.2.1)

Remark 3.2.2. For a (semicartesian) map Φ : [a, b] × [c, d] → R3 of the form Φ(t, σ) =
(t, ϕ(t, σ)) = (t, ϕ1(t, σ), ϕ2(t, σ)), the area integrand is given by

|∂tΦ ∧ ∂σΦ| =
√
|∂σϕ1|2 + |∂σϕ2|2 + (∂tϕ1∂σϕ2 − ∂σϕ1∂tϕ2)2 =

√
|∂σϕ|2 + |Jϕ|2.

The main result of this section is the following:

Theorem 3.2.3 (Relaxed area of piecewise Lipschitz maps: straight jump). Let
u : R→ R2 be a piecewise Lipschitz map. Then

ABV (u,R) = A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2.2)

Notice that the Lipschitz regularity of u on R± ensures that the area functional has
the classical expression

A(u,R±) =

∫
R±

√
1 + |∇u|2 + |det∇u|2 dx;

therefore, the singular contribution produced by the relaxation in (3.2.2) is given by the
area of Xaff .

We divide the proof of (3.2.2) in two parts: the lower bound (Proposition 3.2.4) and
the upper bound (Proposition 3.2.5).

Proposition 3.2.4 (Lower bound for (3.2.2)). Let u : R→ R2 be a piecewise Lipschitz
map, and (vk) ⊂ C1(R;R2)∩BV (R;R2) be a sequence converging to u strictly BV (R;R2).
Then

lim inf
k→+∞

A(vk, R) ≥ A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2.3)

Proof. Fix ε ∈ (0, 1). We have

lim inf
k→+∞

A(vk, R) ≥ lim inf
k→+∞

A(vk, R \ ([a, b]× [−ε, ε])) + lim inf
k→+∞

A(vk, [a, b]× [−ε, ε])

≥ A(u,R \ ([a, b]× [−ε, ε])) + lim inf
k→+∞

A(vk, [a, b]× [−ε, ε]),

where in the last inequality we used [1, Theorem 3.7]. Sending ε to 0+, by dominated
convergence it follows A(u,R \ ([a, b]× [−ε, ε]))→ A(u,R+) +A(u,R−), so (3.2.3) will be
proven provided we show that

lim
ε→0+

lim inf
k→+∞

A(vk, [a, b]× [−ε, ε]) ≥
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2.4)
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Consider the maps

V ε
k : R→ R3, V ε

k (t, σ) = (t, vk(t, εσ)),

and the associated integer multiplicity 2-currents in R3

Vεk = V ε
k ♯[[R]].

Notice that, neglecting the term 1 + |∂x1vk|2, we get

A(vk, [a, b]× [−ε, ε]) ≥
∫
[a,b]×[−ε,ε]

√
|∂x2vk|2 + |Jvk|2 dx

=

∫
R
|∂tV ε

k ∧ ∂σV ε
k | dtdσ = |Vεk|,

(3.2.5)

where we used Remark 3.2.2, and | · | stands for the mass current. Consider also the maps

U ε
± : R± → R3, U ε

±(t, σ) = (t, u(t, εσ)), (3.2.6)

and the current

Sε = Xaff
♯ [[[a, b]× I]] + U ε

+♯
[[R+]] + U ε

−♯
[[R−]], (3.2.7)

see Fig. 3.1. We want now prove the following crucial inequality:

lim inf
k→+∞

|Vεk| ≥ |Sε|. (3.2.8)

To show (3.2.8) we prove that Vεk are close to suitable currentsMε
n independent of k (see

(3.2.19)) which converge to Sε as n→ +∞.

For any n ∈ N, n ≥ 1, consider a partition {t0 = a, t1, . . . , tn+1 = b} of [a, b] in (n+ 1)
intervals [ti−1, ti), with

ti − ti−1 ∈
(
b− a
2n

, 2
(b− a)
n

)
. (3.2.9)

Moreover, set

Ri = [ti−1, ti)× [−1, 1], R+
i = [ti−1, ti)× (0, 1], R−

i = [ti−1, ti)× [−1, 0),

and define the currents

Vεk,i = V ε
k ♯[[Ri]], Sε,i = Xaff

♯ [[[ti−1, ti)× I]] + U ε
+♯
[[R+

i ]] + U ε
−♯
[[R−

i ]], (3.2.10)

see Fig. 3.1. By definition, we have

Vεk =
n+1∑
i=1

Vεk,i and H2(sptVεk,i ∩ sptVεk,j) = 0 for i ̸= j,

Sε =

n+1∑
i=1

Sε,i and H2(sptSε,i ∩ sptSε,j) = 0 for i ̸= j.

(3.2.11)
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Furthermore,

∂Sε,i =−
(
U ε
−♯
[[{ti−1} × [−1, 0)]] +Xaff

♯ [[{ti−1} × I]] + U ε
+♯
[[{ti−1} × (0, 1]]]

)
− U ε

+♯
[[(ti−1, ti)× {1}]]

+
(
U ε
−♯
[[{ti} × [−1, 0)]] +Xaff

♯ [[{ti} × I]] + U ε
+♯
[[{ti} × (0, 1]]]

)
+ U ε

−♯
[[(ti−1, ti)× {−1}]].

(3.2.12)

Now, for fixed i ∈ {1, . . . , n} , set

γu,ε−,i(σ) = u(ti, εσ) ∀σ ∈ [−1, 0),
γu,ε+,i(σ) = u(ti, εσ) ∀σ ∈ (0, 1],

γ0i (s) = su+(ti) + (1− s)u−(ti) ∀s ∈ I,
Λ±,ε
u,i (t) = (t, u(t,±ε)) ∀t ∈ [ti−1, ti],

and define γu,εi : [−1, 1]→ R2 as in (3.1.15) where γ̃−, S, and γ̃+ are replaced by γu,ε−,i, γ
0
i

and γu,ε+,i in the order, after a rescaling on
[
−1,−1

3

]
,
[
−1

3 ,
1
3

]
, and

[
1
3 , 1
]
, respectively, as in

the statement of Lemma 3.1.4. Also, define Γu,ε
i : [−1, 1]→ ({ti} × R2) as

Γu,ε
i (σ) := (ti, γ

u,ε
i (σ)) ∀σ ∈ [−1, 1].

Using the definition of U ε
± and Xaff , by (3.2.12) we infer

∂Sε,i = −Γu,ε
i−1♯

[[[−1, 1]]]− Λ+,ε
u,i ♯

[[(ti−1, ti)]] + Γu,ε
i ♯[[[−1, 1]]] + Λ−,ε

u,i ♯
[[(ti−1, ti)]]. (3.2.13)

Moreover, set

γεk,i(σ) = vk(ti, εσ), Γε
k,i(σ) = (ti, γ

ε
k,i(σ)) ∀σ ∈ [−1, 1],

Λ±,ε
k,i (t) = (t, vk(t,±ε)) ∀t ∈ [ti−1, ti].

By definition of Vεk,i in (3.2.10), we also have

∂Vεk,i = −Γε
k,i−1♯

[[[−1, 1]]]− Λ+,ε
k,i ♯

[[(ti−1, ti)]] + Γε
k,i♯

[[[−1, 1]]] + Λ−,ε
k,i ♯

[[(ti−1, ti)]]. (3.2.14)

We now define F ε
k,i ∈ D2(R3) as a suitable affine interpolation between ∂Vεk,i and ∂Sε,i, see

Fig. 3.1. First observe that by Lemma 3.1.1, we can suppose that, for our choice of ε and
{t1, . . . , tn}, there exists a (not relabeled) subsequence of (vk)k, such that

vk(ti, ε·)→ u(ti, ε·) strictly BV ([−1, 1];R2) ∀i = 1, . . . , n, (3.2.15)

vk(·,±ε)→ u(·,±ε) strictly BV ([a, b];R2). (3.2.16)

In particular, by Lemma 3.1.4, we know that there are increasing Lipschitz bijections
hεk,i, h

ε
i : [−1, 1]→ [−1, 1] such that γεk,i ◦ hεk,i → γu,εi ◦ hεi uniformly in [−1, 1] as k → +∞.

For i = 1, . . . , n, we define

Φε
k,i(σ, s) := s(Γε

k,i ◦ hεk,i(σ)) + (1− s)(Γu,ε
i ◦ h

ε
i (σ)), (σ, s) ∈ [−1, 1]× I,

Ψ±,ε
k,i (t, s) := sΛ±,ε

k,i (t) + (1− s)Λ±,ε
u,i (t), (t, s) ∈ [ti−1, ti]× I.
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Therefore we set

F ε
k,i =− Φε

k,i−1♯
[[[−1, 1]× I]]−Ψ+,ε

k,i ♯
[[[ti−1, ti]× I]]

+ Φε
k,i♯

[[[−1, 1]× I]] + Ψ−,ε
k,i ♯

[[[ti−1, ti]× I]].
(3.2.17)

In particular, from (3.2.13) and (3.2.14), a direct check shows that

∂F ε
k,i = ∂Vεk,i − ∂Sε,i. (3.2.18)

Eventually, we let Mε,i be an integer multiplicity 2-current of R3 with minimal mass and
boundary ∂Sε,i (the existence of Mε,i is guaranteed by Theorem 1.5.3) and set

Mε
n :=

n∑
i=2

Mε,i. (3.2.19)

Note carefully that we do not sum over i from 1 to n+1, but only from 2 to n. In particular,
setting Sn

ε = Sε − Sε,1 − Sε,n+1, we have

∂Mε
n = ∂Sn

ε = −Γu,ε
1 ♯[[[−1, 1]]] + Γu,ε

n ♯[[[−1, 1]]]− Λ+,ε
u ♯[[[t1, tn]]] + Λ−,ε

u ♯[[[t1, tn]]], (3.2.20)

where

Λ±,ε
u (t) := (t, u(t,±ε)), t ∈ (t1, tn).

Thus, we have

|Vεk,i| ≥ |Vεk,i − F ε
k,i| − |F ε

k,i| ≥ |Mε,i| − |F ε
k,i| for i = 2, . . . ,n,

where we used the minimality of Mε,i and (3.2.18). By summing up, using (3.2.11), we
get3

|Vεk| =
n+1∑
i=1

|Vεk,i| ≥
n∑

i=2

|Vεk,i| ≥
n∑

i=2

|Mε,i| −
n∑

i=2

|F ε
k,i| ≥ |Mε

n| −
n∑

i=2

|F ε
k,i|. (3.2.21)

Therefore,

lim inf
k→+∞

|Vεk| ≥ |Mε
n| −

n∑
i=2

lim sup
k→+∞

|F ε
k,i|. (3.2.22)

In order to obtain (3.2.8), we have to prove that:

(i) |F ε
k,i| → 0 as k → +∞ for every i = 2, . . . , n;

(ii) Mε
n ⇀ Sε as n→ +∞,

so that (3.2.8) would follow by lower semicontinuity of the mass and (3.2.22).

(i). Since γεk,i ◦ hεk,i → γu,εi ◦ hεi uniformly in [−1, 1] as k → +∞, also Γε
k,i ◦ hεk,i →

Γu,ε
i ◦hεi uniformly; moreover, by Corollary 1.3.6 and thanks to (3.2.16), vk(·,±ε)→ u(·,±ε)

uniformly on [ti−1, ti], and the same holds for Λ±,ε
k,i and Λ±,ε

u,i . Finally, by (3.2.15) and

(3.2.16), and recalling also Lemma 3.1.4 (b), the L1-norm of the derivative of Γε
k,i ◦ hεk,i
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Figure 3.1: Here S = Xaff
♯ [[[a, b] × I]], Sε

± = U ε
±♯[[R

±]]. The horizontal and vertical axes

span the target space R2. The approximating current Vεk is depicted in bold, as well as the
boundary of its restriction to Ri, i.e. the current ∂Vεk,i. The current ∂Sε,i is depicted with
the oriented dotted straight lines, while F ε

k,i is the oriented surface obtained as the union
of the short segments connecting ∂Vεk,i and ∂Sε,i. Finally, for simplicity, we depict with

straight segments the graph of u± and the (semi)graph of u on {(t, σ) : σ = ±ε}, but it is
worth to remember that they are graph of Lipschitz maps.

and of Λ±,ε
k,i is uniformly bounded with respect to k. Hence (i) readily follows from the

definition of F ε
k,i in (3.2.17) (see also Remark 4.1.3).

(ii). First observe that ∂Mε
n has mass uniformly bounded with respect to n. Indeed

by (3.2.20)

|∂Mε
n| = |∂Sn

ε |

≤ |γ̇u,ε1 |([−1, 1]) + |γ̇
u,ε
n |([−1, 1]) +

∫ b

a

√
1 + |∂tu(t, ε)|2dt+

∫ b

a

√
1 + |∂tu(t,−ε)|2dt

≤ C(ε, ∥u∥∞, lip(u|R+), lip(u|R−)).

Moreover, by minimality of Mε,i and (3.2.11), |Mε
n| ≤ |Sn

ε | ≤ |Sε|, hence the sequence(
Mε

n

)
n
is compactly supported in R3 and has bounded mass and bounded boundary mass.

Again by minimality ofMε,i, we can assume that there exists a convex compact set K ⊂ R3

3In (3.2.21) we had to remove the first and last term of the sum, because condition (i) can be false for
i = 1 and i = n+1, since the strict convergence is inherited only on almost every line, as stated in Lemma
3.1.1.
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such that sptMε
n ⊂ K for every n ∈ N. Then, by Theorem 1.5.4, we have

Mε
n ⇀ Sε ⇐⇒ ∥Mε

n − Sε∥F → 0 as n→ +∞,

where ∥ · ∥F stands for the flat norm. Then, we are reduced to show that ∥Mε
n−Sε∥F → 0

as n→ +∞. Notice that

∥Mε
n − Sε∥F ≤

n∑
i=2

∥Mε,i − Sε,i∥F + ∥Sε,1∥F + ∥Sε,n+1∥F , (3.2.23)

where, by definition of flat norm (see (1.5.1)),

∥Mε,i − Sε,i∥F ≤ inf{|Gε
i | : Gε

i integer multiplicity 3-current s.t. ∂Gε
i =Mε,i − Sε,i}.

Observe that the class of competitors in the above minimum problem is non empty, since
it contains the affine interpolation current between Mε,i and Sε,i. So, pick a 3-current Gε

i

such that ∂Gε
i =Mε,i − Sε,i; then

|Gε
i | ≤ C|∂Gε

i |
3
2

by the Isoperimetric Theorem 1.5.5, for an absolute positive constant C > 0. For i =
2, . . . , n, we have

∥Mε,i − Sε,i∥F ≤ |Gε
i | ≤ C|∂Gε

i |
3
2 = C|Mε,i − Sε,i|

3
2 ≤ C

(
|Mε,i|

3
2 + |Sε,i|

3
2

)
≤ 2C|Sε,i|

3
2 ,

(3.2.24)
where in the last inequality we used the minimality ofMε,i. Now let us prove that |Sε,i| ≤ C

n
for every i = 1, . . . , n+1, where C is a constant independent of n. We start observing that

|Xaff
♯ [[[ti−1, ti)× I]]|

=

∫
[ti−1,ti]×I

|∂tXaff ∧ ∂sXaff | dtds

=

∫ ti

ti−1

∫
I
|(1, su̇+ + (1− s)u̇−) ∧ (0, u+ − u−)| dtds

≤
∫ ti

ti−1

∫
I

(
|u+ − u−|+

∣∣(su̇+1 + (1− s)u̇−1 )(u
+
2 − u

−
2 )− (su̇+2 + (1− s)u̇−2 )(u

+
1 − u

−
1 )
∣∣) dtds

≤ C1

n
∥u+ − u−∥L∞(a,b) +

C2

n
∥u+ − u−∥L∞(a,b)

(
∥u̇+∥L∞(a,b) + ∥u̇−∥L∞(a,b)

)
=
C

n
,
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where we used (3.2.9). Moreover, recalling (3.2.6), we have

|U ε
±♯
[[R±

i ]]| =
∫
R±

i

|∂tU ε
± ∧ ∂σU ε

±| dtdσ

=

∫
R±

i

|(1, ∂tu(t, εσ)) ∧ (0, ε∂σu(t, εσ))| dtdσ

≤ ε
∫
R±

i

|∂σu(t, εσ)| dtdσ + ε

∫
R±

i

|∂tu1(t, εσ)∂σu2(t, εσ)− ∂tu2(t, εσ)∂σu1(t, εσ)| dtdσ

≤ εC3

n

(
∥∇u∥L∞(R±) + ∥∇u∥2L∞(R±)

)
=
Cε

n
.

(3.2.25)
Thus,

|Sε,i| ≤ |Xaff
♯ [[[ti−1, ti)× I]]|+ |U ε

+♯
[[R+

i ]]|+ |U
ε
−♯
[[R−

i ]]| ≤
C

n
,

as claimed. Finally, by definition of flat norm and the isoperimetric inequality, ∥Sε,i∥F ≤
|Sε,i|

3
2 for i = 1, . . . , n+ 1, so that, from (3.2.24) and (3.2.23), we obtain

∥Mε
n − Sε∥F ≤ C(n− 1)

1

n
3
2

+
C

n
3
2

≤ C

n
1
2

+
C

n
3
2

→ 0.

This concludes the proof of (ii) and hence of (3.2.8).

We are now in a position to show (3.2.4). From (3.2.5) and (3.2.8),

lim inf
k→+∞

A(vk, [a, b]× [−ε, ε]) ≥ lim inf
k→+∞

|Vεk| ≥ |Sε|. (3.2.26)

As in (3.2.25), we have

|U ε
±♯
[[R±]]| ≤ ε

(
∥∇u∥L∞(R±) + ∥∇u∥2L∞(R±)

)
→ 0 as ε→ 0+,

so, from (3.2.26) and (3.2.7), we conclude

lim
ε→0+

lim inf
k→+∞

A(vk, [a, b]×[−ε, ε]) ≥ lim
ε→0+

|Sε| = |Xaff
♯ [[[a, b]×I]]| =

∫
[a,b]×I

|∂tXaff∧∂sXaff | dtds.

Proposition 3.2.5 (Upper bound for (3.2.2)). Let u : R→ R2 be a piecewise Lipschitz
map. Then there exists a sequence (vk)k ⊂ C1(R;R2) converging to u strictly BV (R;R2)
such that

lim sup
k→+∞

A(vk, R) ≤ A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2.27)

Proof. Although vk needs to be of class C1, we claim that it suffices to build vk just
Lipschitz continuous. Indeed, assume that (vk)k ⊂ W 1,∞(R;R2) converges to u strictly
BV (R;R2) and (3.2.27) holds. Consider, for all k ∈ N, a sequence

(
vkh
)
h
⊂ C1(R;R2)
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approaching vk in W 1,2(R;R2) as h → +∞. In particular, we get the L1-convergence of
all minors of ∇vkh to the corresponding ones of ∇vk. Then, by dominated convergence,

lim
h→+∞

A(vkh;R) = A(vk, R). (3.2.28)

Hence, by a diagonal argument, we find a sequence
(
vkhk

)
k
converging to u strictlyBV (R;R2)

such that (3.2.27) holds for vkhk
in place of vk.

Set for simplicity ε = εk = 1
k , and define the sequence (vε) ⊂ Lip(R;R2) as

vε(t, σ) :=

{
u(t, σ) (t, σ) ∈ R \ ([a, b]× [−ε, ε]),
ε+σ
2ε u(t, ε) +

ε−σ
2ε u(t,−ε) (t, σ) ∈ [a, b]× (−ε, ε).

(3.2.29)

First, let us check that vε → u strictly BV (R;R2) as ε→ 0+. Clearly, vε → u in L1(R;R2).
Hence, by lower semicontinuity of the total variation, it is enough to show that

lim sup
ε→0+

∫
R
|∇vε|dtdσ ≤ |Du|(R),

which in turn reduces to prove

lim sup
ε→0+

∫
[a,b]×[−ε,ε]

|∇vε|dtdσ ≤ |Du|([a, b]× {0}),

since ∫
R\([a,b]×[−ε,ε])

|∇vε|dtdσ =

∫
R\([a,b]×[−ε,ε])

|∇u|dtdσ

−→
∫
R+

|∇u|dtdσ +

∫
R−
|∇u|dtdσ as ε→ 0+.

For almost every t ∈ [a, b] and every σ ∈ [−ε, ε], one has

∂tvε(t, σ) =
ε+ σ

2ε
∂tu(t, ε) +

ε− σ
2ε

∂tu(t,−ε), ∂σvε(t, σ) =
1

2ε
(u(t, ε)− u(t,−ε)).

Thus, setting M := max{lip(u|R−), lip(u|R+)}, we get∫
[a,b]×[−ε,ε]

|∇vε| dtdσ ≤
∫
[a,b]×[−ε,ε]

|∂tvε(t, σ)| dtdσ +

∫
[a,b]×[−ε,ε]

|∂σvε(t, σ)| dtdσ

≤M
∫
[a,b]×[−ε,ε]

dtdσ +

∫
[a,b]×[−ε,ε]

1

2ε
|u(t, ε)− u(t,−ε)| dtdσ

=M(b− a)2ε+
∫ b

a
|u(t, ε)− u(t,−ε)| dt

ε→0+−→
∫ b

a
|u+(t)− u−(t)| dt = |Du|([a, b]× {0}).

Furthermore, since u is piecewise Lipschitz, we have

A(vε;R \ [a, b]× [−ε, ε]) = A(u,R \ [a, b]× [−ε, ε])→ A(u,R+) +A(u,R−) as ε→ 0+.
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So it remains to prove that

lim sup
ε→0+

A(vε; [a, b]× [−ε, ε]) ≤
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2.30)

Let us linearly reparametrize Xaff on R = [a, b] × [−1, 1], namely consider Y , having the
same image as Xaff , given by

Y (t, σ) = (t, Ŷ (t, σ)) =

(
t,
1 + σ

2
u+(t) +

1− σ
2

u−(t)

)
, (t, σ) ∈ R.

Now, using the trivial inequality
√
1 + a2 + b2 + c2 ≤ 1 + |a|+

√
b2 + c2, we find

A(vε; [a, b]× [−ε, ε])

≤
∫
[a,b]×[−ε,ε]

dtdσ +

∫
[a,b]×[−ε,ε]

|∂tvε| dtdσ +

∫
[a,b]×[−ε,ε]

√
|∂σvε|2 + |Jvε|2dtdσ

=2ε(b− a) + 2ε

∫
R
|∂tṽε| dtdσ +

∫
R

√
|∂σṽε|2 + |Jṽε|2 dtdσ,

(3.2.31)

where ṽε : R→ R2 is defined as ṽε(t, σ) = vε(t, εσ). A direct computation based in (3.2.29)
gives

∂tṽε(t, σ) =
1 + σ

2
∂tu(t, ε) +

1− σ
2

∂tu(t,−ε) for a.e. t ∈ [a, b] ∀σ ∈ [−1, 1]

∂σṽε(t, σ) = ε∂σvε(t, εσ) =
u(t, ε)− u(t,−ε)

2
for a.e. t ∈ [a, b] ∀σ ∈ [−1, 1].

Then we have

∂tṽε(t, σ)→
1 + σ

2
u̇+(t) +

1− σ
2

u̇−(t) = ∂tŶ (t, σ) a.e. in R,

∂σṽε(t, σ)→
u+(t)− u−(t)

2
= ∂σŶ (t, σ) a.e. in R.

Since ∂σŶ and ∂tŶ are in L∞(R;R2), by dominated convergence we can pass to the limit
in (3.2.31) as ε→ 0+, so that, using Remark 3.2.2, we obtain (3.2.30).

Remark 3.2.6. After having proved the upper bound inequality in Proposition 3.2.5, we
readily infer that ABV (u,R) < +∞. Hence Proposition 3.2.4 can be deduced from an
argument independently developed in [40], based on the theory of Cartesian currents [26].
Indeed, consider Tu := Gu + S, where Gu is the 2-current on R× R2 carried by the graph
of u and S is the 2-current on R× R2 given by S := X̃♯[[[a, b]× I]], where

X̃(t, s) := (t, 0, X̂(t, s)) = (t, 0, su+(t) + (1− s)u−(t)), t ∈ [a, b], s ∈ I.

Clearly, the mass of Tu is given by

|Tu| = |Gu|+ |S| = A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tX̃ ∧ ∂sX̃| dtds

= A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds.
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Now we claim that Tu is the minimal lifting current on R×R2 associated to u, according to
Theorem 1.5.8. Recall that this definition is given by imposing that the mixed components
of Tu are the minimal lifting measures µji [u] associated to u in the sense of Jerrard and
Jung [31]. Once the claim is proven, thanks to Theorem 1.5.8, we have |Tu| ≤ ABV (u;R),
i.e., inequality (3.2.3).

In order to show the claim, we start to prove that Tu ∈ cart(R × R2). For this, it is
enough to see that (∂Tu) (R× R2) = 0: We get

(∂Gu) (R× R2) = X̂−
♯ [[[a, b]]]− X̂+

♯ [[[a, b]]] = −∂X̃♯[[[a, b]× I]] = −(∂S) (R× R2),

where X̂±(t) := (t, 0, u±(t)), t ∈ [a, b]. Next, what remains to prove is that the vertical
component of Tu is the minimal completely vertical lifting associated to u. To this purpose,
denote by x = (x1, x2) the (horizontal) variable of R, y = (y1, y2) the vertical variable of
R2 and u = (u1, u2) the components of u. We have to check that

µji [Tu] = µji [u] ∀i, j = 1, 2, (3.2.32)

where µji [Tu] := Tu ((−1)idxī ∧ dyj). By (1.5.2), for every f ∈ C∞
c (R× R2),∫

R×R2

f(x, y)dµij [u] =

∫
R+∪R−

f(x, u(x))∂iu
jdx+

∫ b

a

(∫ 1

0
f(t, 0, X̂(t, s))ds

)
(uj

+−uj−)δi2dt,

where δij denotes the Kronecker symbol.

On the other hand, setting ω(x, y) := (−1)if(x, y)dxī ∧ dyj , we have∫
R×R2

f(x, y)dµij [Tu] =

∫
R+∪R−

f(x, u(x))∂iu
jdx+

∫
X̃([a,b]×I)

ω

=

∫
R+∪R−

f(x, u(x))∂iu
jdx+

∫
[a,b]×I

ω(X̃(t, s))dX̃ īj ,

where, if X̃ = (X̃1
1 , X̃

1
2 , X̃

2
1 , X̃

2
2 ), then dX̃

īj = dX̃ ī
1 ∧ dX̃

j
2 . Notice that dX̃ īj = 0 if ī = 2

and dX̃1j = (uj
+ − uj−) dt ∧ ds, so we get∫

[a,b]×I
ω(X̃(t, s))dX̃ īj =

∫
[a,b]×I

(−1)if(X̃(t, s))(uj
+ − uj−)δi2 dt ∧ ds

=

∫ b

a

(∫ 1

0
f(t, 0, X̂(t, s))ds

)
(uj

+ − uj−)δi2 dt,

and (3.2.32) follows.

3.2.1 Extension of Theorem 3.2.3

The validity of Theorem 3.2.3 is guaranteed also when the two traces u± of u on [a, b]×{0}
coincide on some subset of [a, b]×{0}. In particular, (3.2.2) extends to maps u whose jump
set Ju is a subset of [a, b] × {0}. However, the situation is different when the jump set is
curvilineous. Specifically, assume Ω ⊂ R2 is a bounded open and connected set, and:
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(H1) Σ = α([a, b]) ⊂ Ω is a simple curve, arc-length parametrized by α : [a, b]→ Ω of class
C2 and injective in [a, b);

(H2) If α(a) = α(b), then α̇(a+) = α̇(b−) and α̈(a+) = α̈(b−);

(H3) u ∈ W 1,∞(Ω \ Σ;R2); as usual, we denote by u± the traces of u on Σ, satisfying
u± ∈ Lip(Σ;R2).

Again, we introduce the affine interpolation surface Xaff : [a, b] × I → R3 spanning
graph(u± ◦ α) = {(t, u±(α(t))) : t ∈ [a, b]} ⊂ R× R2 = R3, namely

Xaff(t, s) = (t, su+(α(t)) + (1− s)u−(α(t))) ∀(t, s) ∈ [a, b]× I. (3.2.33)

Theorem 3.2.7 (Relaxed area of piecewise Lipschitz maps: curved jump). Sup-
pose (H1)-(H3). Then

ABV (u,Ω) =

∫
Ω\Σ
|M(∇u)| dx+

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2.34)

Remark 3.2.8. The image of the map Xaff sits in R3 and it is not exactly the interpolation
surface which closes the holes in the graph of u, which is instead given by

Ψ(t, s) = (α(t), su+(α(t)) + (1− s)u−(α(t))) ∈ R4 ∀t ∈ [a, b]× I. (3.2.35)

However, since |α̇| = 1,∫
[a,b]×I

|∂tΨ ∧ ∂sΨ| dtds =
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2.36)

To prove Theorem 3.2.7, we borrow from [9] some notation. We denote by x = (x1, x2)
coordinates in Ω and by (t, σ) coordinates in R = [a, b] × [−1, 1]. Since Σ is simple and
of class C2, we can find δ > 0 and a C1-diffeomorphism Λ : Rδ → Λ(Rδ), where Rδ =
[a, b]× [−δ, δ] and Λ(Rδ) ⊂ Ω is a curvilineous strip containing Σ of width 2δ. Explicitely
we have

Λ(t, σ) = α(t) + σα̇(t)⊥ ∀(t, σ) ∈ Rδ, (3.2.37)

with α̇(t)⊥ the counter-clockwise π
2 -rotation of α̇(t). For (x1, x2) ∈ Λ(Rδ), we can write

the inverse Λ−1(x1, x2) = (t(x1, x2), σ(x1, x2)), where:

� σ(x1, x2) = dΣ(x1, x2) is the signed distance4 of (x1, x2) from Σ;

� t(x1, x2) is the unique number in [a, b] such that α(t(x1, x2)) = πΣ(x1, x2), where
πΣ(x1, x2) = (x1, x2)− dΣ(x1, x2)∇dΣ(x1, x2) is the orthogonal projection on Σ.

Since α is of class C2, we have that σ is of class C2 as well and t is of class C1 on Λ(Rδ).
Moreover, for (x1, x2) ∈ Λ(Rδ), we have

|∇σ(x1, x2)| = |∇dΣ(x1, x2)| = 1, (3.2.38)

|∇t(x1, x2)| = 1 + δ∥∇dΣ∥∞ ≤ 1 + Cδ. (3.2.39)

We divide the proof of Theorem 3.2.3 in two parts, the lower and the upper bound inequal-
ities.

4The sign of dΣ is determined by the orientation induced on Σ by α, so that dΣ > 0 in the part of Λ(Rδ)
which is pointed by α̇⊥.



66 CHAPTER 3. PIECEWISE LIPSCHITZ MAPS JUMPING ON A CURVE

Proposition 3.2.9 (Lower bound for (3.2.34)). Let u : Ω → R2 as in Theorem 3.2.7
and (vk) ⊂ C1(Ω;R2) be a sequence converging to u strictly BV (Ω;R2). Then (3.2.3) holds
with Xaff in (3.2.33).

Proof. It is enough to show that

lim
ε→0+

lim inf
k→+∞

A(vk,Λ([a, b]× [−ε, ε])) ≥
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2.40)

We start by defining the maps Ψε
k : R→ R4 and Ψε

± : R± → R4 given by

Ψε
k(t, σ) = (Λ(t, εσ), vk(Λ(t, εσ))), Ψε

±(t, σ) = (Λ(t, εσ), u(Λ(t, εσ))).

Introduce the following integer multiplicity 2-currents in R4:

Vεk = Ψε
k♯[[R]], Sε = Ψ♯[[[a, b]× I]] + Ψε

−♯
[[R−]] + Ψε

+♯
[[R+]],

where Ψ is defined in (3.2.35). Using that Av ∧ Aw = detAv ∧ w for any A ∈ R2×2 and
v, w ∈ R2, by direct computation, we have

|∂tΨε
k ∧ ∂σΨε

k|2 = ε2|∂tΛ(t, εσ) ∧ ∂σΛ(t, εσ)|2
[
1 + |∇vk(Λ(t, εσ))|2 + |Jvk(Λ(t, εσ))|2

]
.

Hence, making the change of variable x = Λ(t, εσ), we obtain

A(vk,Λ([a, b]× [−ε, ε])) =
∫
Λ([a,b]×[−ε,ε])

|M(∇vk)| dx =

∫
R
|∂tΨε

k ∧ ∂σΨε
k| dtdσ = |Vεk|.

We notice that |Ψε
±♯
[[R±]]| → 0 as ε → 0+, as in (3.2.25), where ∥∇u∥L∞(R±) is replaced

with ∥u∥W 1,∞(Ω) and it is used that |α̈| ≤ C. Therefore, recalling also (3.2.36),

lim
ε→0+

|Sε| = |Ψ♯[[[a, b]× I]]| =
∫
[a,b]×I

|∂tΨ ∧ ∂sΨ| dtds =
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds.

So it is enough to show lim infk→+∞ |Vεk| ≥ |Sε|, which can be proved proceeding as in the
proof of Proposition 3.2.4, once we have checked that vk ◦ Λ(·, ε·) → u ◦ Λ(·, ε·) strictly
BV (R;R2). This is a straightforward computation, and we omit the details.

Proposition 3.2.10 (Upper bound for (3.2.34)). Let u : Ω → R2 be as in Theorem
3.2.7. Then, there exists a sequence (vk) ⊂ C1(Ω;R2) converging to u strictly BV (Ω;R2)
and such that (3.2.27) holds with Xaff in (3.2.33).

Proof. For simplicity, we assume that α(a) ̸= α(b) (the case of closed curves is simpler
and the following proof can be straightforwardly adapted). We start by fixing η > 0 small
enough and we extend the curve α to [a−η, b+η] in a C2-way, so that Ση := α([a−η, b+η]) ⊂
Ω, keeping the validity of (H1) on Ση . With this extension, we can assume (by choosing
a different δ if necessary) that Λ in (3.2.37) is defined on Rη := [a− η, b+ η]× [−δ, δ]. We
observe that

u+(α(t)) = u−(α(t)) for all t ∈ [a− η, a] ∪ [b, b+ η]. (3.2.41)
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Now, set ε = 1
k and, for k large enough,

∆a
ε := {x ∈ Λ([a− ε, a]× [−ε, ε]) : |σ(x)| ≤ t(x)− a+ ε},

∆b
ε := {x ∈ Λ([b, b+ ε]× [−ε, ε]) : |σ(x)| ≤ b+ ε− t(x)}.

We define the recovery sequence (vε) ⊂ Lip(Ω;R2) as

vε(x) =

{
ε+σ(x)

2ε u
(
Λ(t(x), ε)

)
+ ε−σ(x)

2ε u
(
Λ(t(x),−ε)

)
in Λ([a, b]× [−ε, ε]),

u(x) in Ω\
(
Λ([a, b]× [−ε, ε])) ∪∆

a
ε∪∆

b
ε

)
.

(3.2.42)
In order to define vε in ∆a

ε ∪∆b
ε it is sufficient to observe that, by (3.2.41), the restriction of

vε on ∂∆a
ε and ∂∆b

ε is Lipschitz continuous with Lipschitz constant bounded by ∥u∥W 1,∞ .
Hence, we can take a Lipschitz extension of vε in ∆a

ε ∪∆b
ε keeping the Lipschitz constant

(up to a dimensional factor independent of ε). Thus∫
∆a

ε∪∆b
ε

|M(∇vε)| dx→ 0 as ε→ 0+. (3.2.43)

Let us check that vε → u strictly BV (Ω;R2) as ε→ 0+. Clearly, vε → u in L1(Ω;R2), since
|Λ([a, b]× [−ε, ε])| → 0 and |∆a

ε ∪∆b
ε| → 0. So, by (3.2.43), as in the proof of Proposition

3.2.5, it is enough to show that

lim sup
ε→0+

∫
Λ([a,b]×[−ε,ε])

|∇vε| dx ≤ |Du|(Σ) =
∫ b

a
|u+(α(t))− u−(α(t))| dt.

Almost everywhere in Λ([a, b]× [−ε, ε]), we have

∇vε =
ε+ σ

2ε
∇u(Λ(t, ε))∂tΛ(t, ε)⊗∇t+

ε− σ
2ε
∇u(Λ(t,−ε))∂tΛ(t,−ε)⊗∇t

+
1

2ε
∇σ ⊗ (u(Λ(t, ε))− u(Λ(t,−ε))).

Therefore,

|∇vε| ≤
1

2ε

[
(ε+ σ)∥∂tΛ∥∞|∇u(Λ(t,−ε))||∇t|+ (ε− σ)∥∂tΛ∥∞|∇u(Λ(t, ε))||∇t|

+ |∇σ||u(Λ(t, ε))− u(Λ(t,−ε))|
]

≤ 1

2ε

[
2ε∥u∥W 1,∞∥∂tΛ∥∞(1 + Cε) + |u(Λ(t, ε))− u(Λ(t,−ε))|

]
,

where we used (3.2.38) and(3.2.39) with ε in place of δ. Thus, we get∫
Λ([a,b]×[−ε,ε])

|∇vε| dx ≤C(δ)(1 + Cε)|Λ([a, b]× [−ε, ε])|

+
1

2ε

∫
Λ([a,b]×[−ε,ε])

|u(Λ(t, ε))− u(Λ(t,−ε))| dx

=Oε(1) +
1

2ε

∫
Λ([a,b]×[−ε,ε])

|u(Λ(t, ε))− u(Λ(t,−ε))|dx,
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where Oε(1) is such that Oε(1) → 0 as ε → 0. Consider the last integral and perform the
change of variable x = (x1, x2) = Λ(t, σ), with

|det∇Λ(t, σ)| = |∂tΛ ∧ ∂σΛ| = |1 + σα̈ ∧ α̇| = |1− κΣσ| =: D(σ),

where κΣ is the curvature of Σ. We get

1

2ε

∫
Λ([a,b]×[−ε,ε])

|u(Λ(t, ε))− u(Λ(t,−ε))|dx

=
1

2ε

∫
[a,b]×[−ε,ε]

|u(Λ(t, ε))− u(Λ(t,−ε))|D(σ)dtdσ

≤ 1

2ε

∫ b

a

∫ ε

−ε
|u(Λ(t, ε))− u(Λ(t,−ε))| dtdσ +Oε(1)

=

∫ b

a
|u(Λ(t, ε))− u(Λ(t,−ε))| dt+Oε(1)

−→
∫ b

a
|u+(α(t))− u−(α(t))| dt as ε→ 0+.

It remains to prove (3.2.27) with Xaff in (3.2.33). To this purpose it is enough to show
that

lim inf
ε→0+

A(vε; Λ([a, b]× [−ε, ε])) ≤
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds.

Let us define φε : R→ R2 as

φε(t, σ) :=
1 + σ

2
u(Λ(t, ε)) +

1− σ
2

u(Λ((t,−ε))).

Thus, for x ∈ Λ([a, b]× [−ε, ε])

vε(x) = φε

(
t(x),

σ(x)

ε

)
and, almost everywhere in Λ([a, b]× [−ε, ε]),

∇vε = ∂tφε∇t+
1

ε
∂σφε∇σ, Jvε =

1

ε
|∂tφε ∧ ∂σφε||∇t ∧∇σ|,

where from now on, ∇t and ∇σ are evaluated at x, while ∂tφε and ∂σφε are evaluated at(
t(x), σ(x)ε

)
. Then, we get

|M(∇vε)|2 = 1 + |∂tφε|2|∇t|2 +
2

ε
∂tφε · ∂σφε∇t · ∇σ +

1

ε2

[
|∂σφε|2|∇σ|2

+ |∂tφε ∧ ∂σφε|2|∇t ∧∇σ|2
]

≤ 1 + |∂tφε|2(1 +Oε(1)) +
2

ε
|∂tφε · ∂σφε|(1 +Oε(1))

+
1

ε2

[
|∂σφε|2 + |∂tφε ∧ ∂σφε|2(1 +Oε(1))

]
,
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where we used (3.2.38) and(3.2.39) with ε in place of δ. Now, since Oε(1) ∼ ε and φε is
Lipschitz with Lipschitz constant independent of ε, we obtain

A(vε; Λ([a, b]× [−ε, ε]))

≤
∫
Λ([a,b]×[−ε,ε])

√
1 + |∂tφε|2 +

2

ε
|∂tφε · ∂σφε|+

1

ε2

[
|∂σφε|2 + |∂tφε ∧ ∂σφε|2(1 +Oε(1))

]
dx

+Oε(1)

≤
∫
[a,b]×[−ε,ε]

√
1 + |∂tφε|2 +

2

ε
|∂tφε · ∂σφε|+

1

ε2

[
|∂σφε|2 + |∂tφε ∧ ∂σφε|2(1 +Oε(1))

]
D(σ)dtdσ

+Oε(1),

where we made the change of variable x = Λ(t, σ), and so ∂tφε and ∂σφε are computed at(
t, σε
)
. Finally, by the change of variable σ

ε → σ, we get

A(vε; Λ([a, b]× [−ε, ε]))

≤
∫
R

√
Oε(1) + |∂σφε(t, σ)|2 + |∂tφε(t, σ) ∧ ∂σφε(t, σ)|2(1 +Oε(1))D(εσ) dtdσ +Oε(1)

−→
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds,

where, to pass to the limit as ε→ 0+, we apply the dominated convergence theorem (as in
the proof of Proposition 3.2.5).

We observe that Theorem 3.2.7 can be easily extended to the case of curves with one
endpoint or both endpoints on ∂Ω. Write:

(H4) Ω is of class C1, α : [a, b] → Ω is injective, arc-length parametrized, of class C2,
α((a, b)) ⊂ Ω, and α hits ∂Ω transversally at α(a), α(b).

Theorem 3.2.11. Suppose (H3) and (H4). Then (3.2.34) holds with Xaff in (3.2.33).

Proof. Lower bound: let (vk) ⊂ C1(Ω;R2) be a sequence converging to u strictlyBV (Ω;R2).
Fix 0 < ρ < b−a

2 and notice that Λ([a + ρ, b − ρ] × [−ε, ε]) ⊂ Ω, for ε > 0 small enough.
Then it is sufficient to show that

lim
ε→0+

lim inf
k→+∞

A
(
vk,Λ([a, b]× [−ε, ε]) ∩ Ω

)
≥
∫
[a+ρ,b−ρ]×I

|∂tXaff ∧ ∂sXaff | dtds; (3.2.44)

since the lower bound will follow by the arbitrariness of ρ > 0. After writing A(vk,Λ([a, b]×
[−ε, ε]) ∩Ω) ≥ A(vk,Λ([a+ ρ, b− ρ]× [−ε, ε])), the proof of (3.2.44) is identical to that of
(3.2.40).

Upper bound: let us fix η > 0 small enough so that B2η(α(a)) and B2η(α(b)) are
disjoint, and consider Ωη := Ω ∪ B2η(α(a)) ∪ B2η(α(b)). We extend the curve α (still
calling α the extension) in Ωη \Ω in such a way that it satisfies (H4) in Ωη, and so that it
reaches the boundary of B2η(α(a))\Ω and of B2η(α(b))\Ω splitting both B2η(α(a))\Ω and
B2η(α(b)) \Ω in two connected components. If α is now defined on an interval of the form
[a− δ, b+ δ] with δ = δ(η) > η, and if we set Σδ = α([a− δ, b+ δ]), we prescribe the traces
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u+ and u− on Σδ in such a way that they are Lipschitz continuous and u+ ◦ α = u− ◦ α
on [a − δ, a − η] ∪ [b + η, b + δ]. Finally we take a Lipschitz extension uη of u on the four
connected components of B2η(α(a)) \ Ω \ Σδ and of B2η(α(b)) \ Ω \ Σδ. It turns out that
uη ∈ W 1,∞((B2η(α(a)) ∪ B2η(α(b))) \ Ση;R2

)
, where Ση = α([a − η, b + η]) ⊂ Ωη. Since

the definition of (uη)± is arbitrary, we can assume that

(uη)±(α(t)) = u±(α(a))
(
1− a− t

η

)
for t ∈ [a− η, a],

(uη)±(α(t)) = u±(α(b))
(
1− t− b

η

)
for t ∈ [b, b+ η].

For ε > 0 small enough, we see that Λε := Λ([a− η, b+ η]× [−ε, ε]) ⊂ Ωη. Hence we define
vk as in the proof of Proposition 3.2.10 with Ω replaced by Ωη and u replaced by uη (in
particular, vε = u on Ω \ Λε). Finally, let us fix ρ ∈ (0, η). We can write

ABV (u,Ω) ≤ lim inf
ε→0+

A(vε,Ω)

≤ lim
ε→0+

∫
Ω\Λε

|M(∇u)| dx+ lim inf
ε→0+

∫
Λ([a−ρ,b+ρ]×[−ε,ε])

|M(∇vε)| dx

=

∫
Ω
|M(∇u)| dx+

∫
[a−ρ,b+ρ]×I

|∂tXaff ∧ ∂sXaff | dtds,

where we use that Ω ⊂
(
(Ω \ Λε) ∪ Λ([a− ρ, b+ ρ]× [−ε, ε])

)
for ε > 0 small enough. The

upper bound then follows by the arbitrariness of ρ.

Finally, with straightforward modifications of the previous arguments one can show the
following:

Corollary 3.2.12. Let Ω have C1-boundary, let n ∈ N and αi : [ai, bi]→ Ω, i = 1, . . . , n,
be curves satisfying either (H1)-(H2), or (H4). Assume that Σi := αi([ai, bi]) ⊂ Ω are
mutually disjoint, and let u ∈W 1,∞(Ω \ Σ;R2) satisfy (H3), where Σ := ∪ni=1Σi. Then

ABV (u,Ω) =

∫
Ω
|M(∇u)| dx+

n∑
i=1

∫
[ai,bi]×I

|∂tXaff
(i) ∧ ∂sX

aff
(i) | dtds.

where Xaff
(i) : [ai, bi]× I → R3 is the map Xaff

(i) (t, s) = (t, su+(αi(t)) + (1− s)u−(αi(t))).



Chapter 4

Homogeneous maps

In this chapter we compute ABV for 0-homogeneous maps in BV (Br;R2). We start by
treating a particularly relevant subclass, which are the piecewise constant homogeneous
maps (that we will called n-uple point maps). After computing the corresponding value
of the BV -relaxed area, we construct in Example 4.2.6 a piecewise constant map with
infinite BV -relaxed area, whose minimal lifting current has finite mass. Then, we extend
the tecniques to general homogeneous maps of bounded variation. In order to do that, we
need a preliminar analysis of a sort of planar Plateau problem for self-intersecting curves.
The results of Sections 4.1 and 4.2 are contained in [4], while the ones in Section 4.3 can
be found in [14].

4.1 Planar Plateau-type problem

Let φ : S1 → R2 be a possibly self-intersecting Lipschitz curve. Let us consider, as in [42]
(see also [24]), the following planar Plateau-type problem spanning φ:

P (φ) = inf

{∫
B1

|Jv| dx : v ∈ Lip(B1;R2), v|∂B1
= φ

}
. (4.1.1)

Notice that the class of competitors is non-empty, since it contains the map v(x) =

|x|φ
(

x
|x|

)
for x ̸= 0, and v(0) = 0. We first observe that P is independent of the ra-

dius of the domain of integration. Specifically, for any r > 0, let

φr(y) := φ
(y
r

)
for all y ∈ ∂Br. (4.1.2)

Setting y := rx, y ∈ Br and vr(y) := v(yr ), we have∫
B1

|Jv| dx =

∫
Br

|Jvr|dy ∀v ∈ Lip(B1;R2). (4.1.3)

In particular, for any r > 0,

P (φ) = inf

{∫
Br

|Jv| dx : v ∈ Lip(Br;R2), v|∂Br
= φr

}
= P (φr). (4.1.4)

In the next proposition we show that P (·) is invariant under Lipschitz reparameteriza-
tions of φ.

71
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Proposition 4.1.1 (Invariance). Let φ ∈ Lip(S1;R2) and h be a Lipschitz homeomor-
phism of S1. Then

P (φ ◦ h) = P (φ).

Proof. Since h and the identity map id : S1 → S1 have the same degree, they are homotopic
in S1 by Hopf Theorem (see [36, pag. 51]), namely there exists a Lipschitz map1 K :
[0, 1]× S1 → S1 such that

K(0, ·) = id, K(1, ·) = h.

Define H : [0, 1]× S1 → R2 as H(t, ν) = φ(K(t, ν)). Then, H is Lipschitz and

H(0, ·) = φ, H(1, ·) = φ ◦ h.

Now, suppose vk ∈ Lip(B1;R2) is such that vk = φ on ∂B1 and

lim
k→+∞

∫
B1

|Jvk| dx→ P (φ).

Define the map ṽk : B1 → R2 as

ṽk(x) =


vk(kx) for x ∈ B 1

k
,

H
(
k|x| − 1, x

|x|

)
for x ∈ B 2

k
\B 1

k
,

φ ◦ h
(

x
|x|

)
for x ∈ B1 \B 2

k
.

(4.1.5)

Then ṽk ∈ Lip(B1;R2) and ṽk = φ ◦ h on ∂B1. Moreover, since H and φ ◦ h take values in
φ(S1) which is 1-dimensional, by the area formula and (4.1.3) we have∫

B1

|Jṽk(x)| dx =

∫
B 1

k

|Jvk(kx)| dx =

∫
B1

|Jvk| dx→ P (φ)

as k → +∞. In particular P (φ ◦h) ≤ P (φ). Exchanging the role of φ and φ ◦h, we obtain
the converse inequality.

Lemma 4.1.2. Let φ1, φ2 ∈ Lip(S1;R2). Then

|P (φ1)− P (φ2)| ≤ 2∥φ1 − φ2∥∞
(
∥φ̇1∥1 + ∥φ̇2∥1

)
. (4.1.6)

Proof. Let v ∈ Lip(B1;R2) be such that v = φ2 on S1. We define

w(x) =

v 1
2
(x) = v(2x) if |x| < 1

2 ,

2(1− |x|)φ2

(
x
|x|

)
+ 2

(
|x| − 1

2

)
φ1

(
x
|x|

)
if 1

2 ≤ |x| ≤ 1.
(4.1.7)

Then w ∈ Lip(B1;R2), w(x) = φ2(x/|x|) if x ∈ ∂B 1
2
and w = φ1 on ∂B1. Let us estimate∫

B1\B 1
2

|Jw| dx.

1The construction of a Lipschitz homotopy between h and id can be done at the level of liftings, by
considering the affine interpolation map (as argued in Proposition 2.2.5).
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Writing w in polar coordinates in the annulus B1 \B 1
2
, ρ ∈ (12 , 1), θ ∈ [0, 2π),

w̄(ρ, θ) := w(ρ cos θ, ρ sin θ) = 2(1− ρ)φ̄2(θ) + 2

(
ρ− 1

2

)
φ̄1(θ),

where φ̄i(θ) := φi(cos θ, sin θ), i = 1, 2. Then

|∂ρw̄ ∧ ∂θw̄| = 4

∣∣∣∣(φ̄1(θ)− φ̄2(θ)) ∧
(
(1− ρ) ˙̄φ2(θ) +

(
ρ− 1

2

)
˙̄φ1(θ)

)∣∣∣∣
≤ 4 |φ̄1(θ)− φ̄2(θ)|

∣∣∣∣(1− ρ) ˙̄φ2(θ) +

(
ρ− 1

2

)
˙̄φ1(θ)

∣∣∣∣
≤ 4∥φ1 − φ2∥∞ (| ˙̄φ2(θ)|+ | ˙̄φ1(θ)|) .

Thus, integrating on B1 \B 1
2
,∫

B1\B 1
2

|Jw(x)| dx =

∫ 1

1
2

∫ 2π

0
ρ

∣∣∣∣∂ρw̄ ∧ ∂θw̄ρ
∣∣∣∣ dρdθ

≤ 2∥φ1 − φ2∥∞
∫ 2π

0
(| ˙̄φ2(θ)|+ | ˙̄φ1(θ)|) dθ

= 2∥φ1 − φ2∥∞ (∥φ̇1∥1 + ∥φ̇2∥1) .

(4.1.8)

Hence

P (φ1) ≤
∫
B1

|Jw| dx ≤
∫
B 1

2

|Jv 1
2
| dx+ 2∥φ1 − φ2∥∞ (∥φ̇1∥1 + ∥φ̇2∥1) . (4.1.9)

Since v is arbitrary and (with the notation in (4.1.2)) v 1
2
= (φ2) 1

2
on ∂B 1

2
, using (4.1.4)

with r = 1
2 we can take the infimum on these maps in (4.1.9) and get

P (φ1)− P (φ2) ≤ 2∥φ1 − φ2∥∞ (∥φ̇1∥1 + ∥φ̇2∥1) .

Exchanging the role of φ1 and φ2 we find that also P (φ2) − P (φ1) is bounded by the
right-hand side of the previous expression. This concludes the proof.

Remark 4.1.3. With a similar argument used in the proof of Lemma 4.1.2 it is immediate
to obtain that if [a, b] ⊂ R is a bounded interval and γ1, γ2 : [a, b] → R2 are Lipschitz
curves, then the following holds: Let Φ : [a, b]× [0, 1]→ R2 be the affine interpolation map
Φ(t, s) := sγ1(t) + (1− s)γ2(t). Then, as in (4.1.8),∫

[a,b]×[0,1]
|Φt ∧ Φs| dtds ≤ ∥γ1 − γ2∥∞(∥γ̇1∥1 + ∥γ̇2∥1). (4.1.10)

Using Lemma 4.1.2 we readily obtain the following continuity property for the minimum
of the Plateau-type problem (4.1.1).

Corollary 4.1.4 (Continuity of P ). Let φ ∈ Lip(S1;R2) and suppose that (φk)k ⊂
Lip(S1;R2) is such that

φk → φ uniformly and sup
k∈N
∥φ̇k∥1 < +∞.

Then P (φk)→ P (φ) as k → +∞.
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In what follows, it is convenient to consider for γ ∈ BV (S1;R2) the relaxation

P (γ) := inf

{
lim inf
k→+∞

P (φk) : φk ∈ Lip(S1;R2), φk → γ strictly BV (S1;R2)

}
(4.1.11)

of P with respect to the strict convergence in BV of the boundary datum. It is well
known that the infimum in (4.1.11) is taken on a non-empty class of approximation maps.
Moreover, by (4.1.3), also P is invariant by rescaling, i.e. P (γ) = P (γr).

Lemma 4.1.5. Let φ ∈ Lip(S1;R2). Then P (φ) = P (φ).

Proof. If (φk) ⊂ Lip(S1;R2) is a sequence converging to φ strictly BV (S1;R2), then by
Corollary 1.3.6 φk → φ uniformly on S1 as k → +∞. Moreover, the strict convergence
guarantees that the total variations of φk are equibounded. So, thanks to Corollary 4.1.4,

P (φk)→ P (φ) (4.1.12)

as k → +∞. Since this holds for any sequence (φk) as above, the thesis follows.

Lemma 4.1.6. Let γ ∈ SBV (S1;R2) have a finite number of jump points zi ∈ S1, i =
1, . . . , n. Let γ̃ : S1 → R2 be the Lipschitz map in (3.1.27) (with S1 identified with [0, 2π]).
Then

P (γ) = P (γ̃). (4.1.13)

Proof. Let (φk)k ⊂ Lip(S1;R2) be a sequence converging strictly to γ. Let us consider
a not-relabeled subsequence of (φk)k; by Corollary 3.1.5 there are a further subsequence
(φkj )j and Lipschitz reparametrizations γkj = φkj ◦ hkj ∈ Lip(S1;R2) of φkj such that
γkj → γ̃ ◦ h uniformly as j → +∞, for some Lipschitz homeomorphism h : S1 → S1.
Moreover, since by Lemma 3.1.4(b) the reparametrization maps hkj can be chosen with
uniformly bounded Lipschitz constants, it follows that γkj have uniformly bounded total
variations. Hence it follows from Corollary 4.1.4 that P (γkj )→ P (γ̃ ◦ h) as j → +∞. On
the other hand, by Proposition 4.1.1 we also have P (φkj ) → P (γ̃) as j → +∞. Finally,
since this argument holds for any subsequence of (φk), we conclude that the whole sequence
satisfies P (φk)→ P (γ̃), and therefore P (γ) = P (γ̃).

As a consequence of the argument in the proof of Lemma 4.1.6, we easily infer the
following continuity property:

Corollary 4.1.7. Let γ ∈ SBV (S1;R2) and γ̃ be as in Corollary 3.1.5, and assume that
(φk)k ⊂ Lip(S1;R2) is a sequence converging strictly to γ. Then

lim
k→+∞

P (φk) = P (γ) = P (γ̃).

Furthermore, we can refine the previous corollary as follows:

Corollary 4.1.8. Let γ, γk ∈ SBV (S1;R2), k ≥ 1, be maps as in Corollary 3.1.5. Assume
that (γk) converges to γ strictly BV (S1;R2). Then

lim
k→+∞

P (γk) = P (γ).
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Figure 4.1: The source disc B1(0) and the values {α, β, γ} of u, with infinitely many triple
points.

Proof. By Corollary 4.3.8 and the density of Lip(S1;R2) in BV (S1;R2) with respect to the
strict convergence, for all k ≥ 1 we can find φk ∈ Lip(S1;R2) such that

∥γk − φk∥1 +
∣∣|φ̇k|(S1)− |γ̇k|(S1)

∣∣+ ∣∣P (φk)− P (γk)
∣∣ ≤ 1

k
.

Hence the sequence (φk) converges to γ strictly BV (S1;R2), and by the triangle inequality
and Corollary 4.3.8 we conclude

lim
k→+∞

P (γk) = P (γ).

4.2 Piecewise constant maps

In this section we study the relaxed area (1.3.15) and the relaxed total variation (1.4.5),
on certain piecewise constant maps. We start by exhibiting a BV map taking three values
having infinite relaxed total variation of the Jacobian (and hence infinite BV -relaxed area),
but finite L1-relaxed area.

Example 4.2.1. (BV -relaxed area and L1-relaxed area) Let α, β, γ ∈ R2 be three
non-collinear vectors. Consider the map u : B1(0) ⊂ R2 → {α, β, γ} in Fig. 4.1, obtained
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by the following procedure: divide the source equilateral triangle TA0OB0 in two regions
with a vertical segment connecting A1 and B1, the middle points of the oblique sides of
the triangle; assign the value β and γ on the right and on the left as in the figure, and
repeat this construction on the equilateral triangle TA1OB1 , and then repeat the argument
iteratively on all smaller triangles; finally set u = α in B1(0)\TA0OB0 . In this way we get an
infinite collection of triple points located at {Ai, Bi}i≥1. Then, u ∈ BV (B1(0); {α, β, γ}),
since

|Du|(B1(0)) =

(
1 + 2(1−

+∞∑
i=1

2−2i)

)
|β − α|+ 2

+∞∑
i=1

2−2i|α− γ|+
+∞∑
i=1

2−i|β − γ|

=
7

3
|β − α|+ 2

3
|α− γ|+ |β − γ|.

On the other hand, consider an infinitesimal sequence (ri)i≥1 of radii with 0 < ri < 2−(i+1).
With an argument similar to [3, Theorem 1.3], we have

TV JBV (u,Bri(Ai)) = |Tαβγ |,

|Tαβγ | denoting the Lebesgue measure of the target triangle with vertices α, β, γ, and thus,
for every N ∈ N,

TV JBV (u,B1(0)) ≥ TV JBV (u,∪Ni=1Bri(Ai)) ≥
N∑
i=1

|Tαβγ | = N |Tαβγ |.

Whence

ABV (u,B1(0)) ≥ TV JBV (u,B1(0)) = +∞. (4.2.1)

On the other hand, we claim that

AL1(u,B1(0)) < +∞. (4.2.2)

Indeed, we can construct a sequence (vε) of piecewise constant maps on B1(0), taking values
in {α, β, γ}, with uniformly bounded L1-relaxed area and converging to u in L1(B1(0);R2):
Let ε ∈ (0, 1) and consider the intersection with TA00B0 of a tubular neighbourhood of the
segment AiBi of diameter ε2−(i+1), for every i ∈ N. Then, the map vε is obtained by
modifying u on these strips in the triangle, by assigning the value α. Now, vε is a piecewise
constant map valued in {α, β, γ} without triple points, hence, by Theorem 1.3.2,

AL1(vε, B1(0)) = |B1(0)|+ |Dvε|(B1(0))

≤π +
7

3
|β − α|+ 2

3
|α− γ|+

(
1 +

ε

2

) +∞∑
i=1

2−i(|β − α|+ |α− γ|)

≤π +
23

6
|β − α|+ 13

6
|α− γ|.

Clearly, vε → u in L1(B1(0);R2) as ε→ 0+, so by lower semicontinuity

AL1(u,B1(0)) ≤ π +
23

6
|β − α|+ 13

6
|α− γ| < +∞.

In particular

Dom
(
ABV (·, B1(0))

)
⊊ Dom

(
AL1(·, B1(0))

)
.
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Remark 4.2.2. Following the notation of [40], one can show (4.2.1) also by considering
the measure µJw defined for every w ∈ BV (B1(0);R2) as

⟨µJw, g⟩ =
1

2

∫
Jw

(w1−w2+ − w1+w2−)∂τgdH1 ∀g ∈ C∞
c (B1(0)),

where τ = ν⊥ and ν is the unit normal to Jw, so that Dw Jw = (w+ −w−)⊗ νH1 Jw.
If ABV (w,B1(0)) < +∞, we can consider the minimal lifting current Tw ∈ cart(B1(0);R2)
associated to w (Theorem 1.5.8), whose vertical part is equal to the completely vertical
lifting µv[w] of w. Then, since |µv[w]| is lower semicontinuous with respect to the weak
convergence of measures and |µv[v]|(B1(0)) = TVJ(v,B1(0)) for v smooth (by (1.5.3)), we
get

|µv[w]|(B1(0)× R2) ≤ TVJBV (w,B1(0)).

In particular, if w ∈ BV (B1(0);R2) is piecewise constant, we have

|µJw|(B1(0)) ≤ |µv[w]|(B1(0)× R2) ≤ TVJBV (w,B1(0)), (4.2.3)

where the first inequality is a consequence of [40, Corollary 4.3].
Now, if by contradiction ABV (u,B1(0)) is finite for the map u in Example 4.2.1 we

have

µJu =

+∞∑
i=1

|Tαβγ |(δAi − δBi).

In particular |µJu |(B1(0)) = +∞, and (4.2.1) follows from (4.2.3). In Example 4.2.6, we
construct a piecewise constant map u ∈ BV (B1(0);R2) taking only five values in R2 with
TVJBV (u,B1(0)) = +∞ and µJu = 0. In that case, one can see even that µv[u] = 0, whence
a maximal gap phenomenon occurs between the mass of the current Tu (which is finite and
without a vertical contribution) and ABV (u,B1(0)) (which is infinite as well).

4.2.1 Piecewise constant homogeneous maps

We need some tools that allow us to characterize (and compute in some cases) the relaxed
functionals for piecewise constant homogeneous maps, which we will called briefly n−uple
point maps (n ≥ 3). Thus, for r > 0, we consider maps u : Br := Br(0)→ R2 of the form

u(x) = γ

(
x

|x|

)
for a.e. x ∈ Br, (4.2.4)

where γ : S1 → {α1, . . . , αn} is piecewise constant and takes the (not necessarily distinct)
values α1, . . . , αn ∈ R2 on the arcs C1, . . . , Cn in the order (see Fig. 4.2 for n = 5). So,
u is an n−uple point map with one n−uple junction at the origin. Now, we can consider
the broken line curve γ̃ ⊂ R2 (an example of which is in Fig. 4.2) made of the segments
connecting α1 to α2, α2 to α3 and so on, closing up by connecting αn to α1. The curve γ̃
can be parametrized as in (3.1.27), and the curves γ̃i are constant. Denoting by L(γ) the
length of γ̃, we have

L(γ) =
n∑

i=1

|αi+1−αi| = |γ̇|(S1) = sup

{
m−1∑
i=1

|γ(νi+1)− γ(νi)| : m ∈ N, {ν1, . . . , νm} ⊂ S1
}
,

(4.2.5)
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Figure 4.2: An n-uple point map and the corresponding curve γ, for n = 5.

with the convention αn+1 := α1, Clearly, by definition of u, we have

|Du|(Br) = r|γ̇|(S1) = rL(γ).

Thanks to Lemma 4.1.6, for P (γ) as in (4.1.11) we know that

P (γ) = P (γ̃). (4.2.6)

For a general γ the computation of P (γ) seems not immediate. For the configuration in
Fig. 4.2, we expect it to be the area of the region enclosed by γ̃, with the small internal
quadrilateral counted twice.

Theorem 4.2.3 (Relaxation of TVJ on n-uple point maps). Let {α1, . . . , αn} ⊂ R2,
γ ∈ BV (S1; {α1, . . . , αn}) be a function with a finite number of jump points, and let u be
as in (4.2.4). Then

TVJBV (u,Br) = P (γ).

Proof. Lower bound: Assume that (vk) ⊂ C1(Br;R2) converges to u strictly BV (Br;R2)
and

lim
k→+∞

∫
Br

|Jvk| dx = TVJBV (u,Br).

By Lemma 3.1.3, we can fix ε ∈ (0, r) and a not-relabeled subsequence depending on ε,
such that vk ∂Bε → u ∂Bε strictly BV (∂Bε;R2). Thus, using Corollary 4.3.8 and the
rescaling invariance of (4.1.11), we can estimate

TVJBV (u,Br) ≥ lim inf
k→+∞

∫
Bε

|Jvk| dx ≥ lim inf
k→+∞

P (vk ∂Bε) = P (u ∂Bε) = P (γ).

(4.2.7)

Upper bound: By an argument similar to the one at the beginning of the proof of
Proposition 3.2.5, it will be enough to construct a recovery sequence (uk) ⊂ Lip(Br;R2).
Let γ̃ be as above. We start by building a sequence (γk)k of Lipschitz reparameterizations
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of γ̃ which converges strictly BV (S1;R2) to γ. Let us denote by a1, . . . , an ∈ [0, 2π)
the angular coordinates of the extremal points of C1, . . . , Cn, and assume without loss of
generality 0 = a1 < a2 < · · · < an. Then

n⋃
i=1

[ai, ai+1] = [0, 2π],

with the convention an+1 = 2π. Let (δk)k be an infinitesimal sequence with 0 < δk <
max{|ai+1−ai|, i = 1, . . . , n}, for instance δk = 2

k , k large enough. We define the piecewise
affine map γk : [0, 2π]→ R2 as

γk(t) =

αi if t ∈ [ai + δk/2, ai+1 − δk/2],
ai+1 + δk/2− t

δk
αi +

t− ai+1 + δk/2

δk
αi+1 if t ∈ [ai+1 − δk/2, ai+1 + δk/2],

(4.2.8)
for i = 1, . . . , n.
Then γk → γ strictly BV (S1;R2) (a direct computation shows that |γ̇k|(S1) = |γ̇|(S1)), γk
are uniformly bounded in L∞, and converge almost everywhere to γ. As a consequence,
from Corollary 4.3.8,

P (γk)→ P (γ) as k → +∞. (4.2.9)

Therefore, by (4.1.1) we choose, for all k > 1 large enough, a map vk ∈ Lip(B1;R2) such
that

vk S1 = γk,

∣∣∣∣P (γk)− ∫
B1

|Jvk| dx
∣∣∣∣ ≤ 1

k
. (4.2.10)

Let ck > 0 be the Lipschitz constant of vk. Defining vk,ρ ∈ Lip(Bρ;R2) as vk,ρ(y) := vk(
y
ρ)

for any ρ > 0, it is straightforward that the Lipschitz constant of vk,ρ is ck/ρ.
We now choose an infinitesimal sequence (ρk) ⊂ (0, r) in such a way that limk→+∞ ckρk =

0. As a consequence we get∫
Bρk

|∇vk,ρk | dx ≤ πckρk → 0 as k → +∞. (4.2.11)

We are now in a position to introduce our recovery sequence: We define uk ∈ Lip(Br;R2)
as

uk(x) :=

{
γk

(
x
|x|

)
∀x ∈ Br \Bρk ,

vk,ρk(x) ∀x ∈ Bρk .
(4.2.12)

Using that γk → γ strictly BV (S1;R2) and (4.2.11) we see that uk → u strictly BV (Br;R2).
Finally, since in Br \Bρk the map uk depends only on the angular coordinate, its Jacobian
determinant vanishes in Br \Bρk . Hence

lim inf
k→+∞

∫
Br

|Juk| dx = lim inf
k→+∞

∫
Bρk

|Jvk,ρk | dx = P (γ), (4.2.13)

the convergence being a consequence of (4.1.3), (4.2.10), and (4.2.9).
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As a consequence of Theorem 4.2.3 we deduce:

Theorem 4.2.4 (Relaxation of A on n-uple point maps). Let γ and u be as in
Theorem 4.2.3. Then, for any r > 0, we have

ABV (u,Br) = πr2 + rL(γ) + P (γ). (4.2.14)

Proof. Lower bound: Suppose that vk ∈ C1(Br;R2) is such that

vk → u strictly BV (Br;R2) and lim
k→+∞

A(vk, Br) = lim inf
k→+∞

A(vk, Br).

Now, let ε ∈ (0, r) and write A(vk, Br) = A(vk, Br \ Bε) + A(vk, Bε) ≥ A(vk, Br \ Bε) +∫
Bε
|Jvk| dx, so that, by [1, Theorem 3.7],

lim
k→+∞

A(vk, Br) ≥ lim inf
k→+∞

A(vk, Br \Bε) + lim inf
k→+∞

∫
Bϵ

|Jvk| dx

≥ |Br \Bε|+ r(1− ε)L(γ) + lim inf
k→+∞

∫
Bϵ

|Jvk| dx

≥ |Br \Bε|+ r(1− ε)L(γ) + P (γ),

where in the last line we have applied Theorem 4.2.3 with r replaced by ε. We now pass to
the limit as ε→ 0+ to get the lower bound ABV (u,Br) ≥ πr2 + rL(γ) + P (γ) in (4.2.14).

Upper bound: It is sufficient to consider the sequence (uk)k defined in (4.2.12), for
which

ABV (u,Br) ≤ lim sup
k→+∞

A(uk, B1) ≤ |Br|+ lim
k→+∞

∫
Br

|∇uk| dx+ lim
k→+∞

∫
Br

|Juk| dx

= πr2 + rL(γ) + P (γ).

4.2.2 An example of infinite BV -relaxed area

Now, we are in the position to show an example of a piecewise constant map u ∈ BV (B1;R2)
with infinite relaxed Jacobian total variation but vanishing associated minimal vertical lift-
ing measure µv[u]. This map is constructed in Example 4.2.6, while the Example 4.2.5 is
preparatory.

Example 4.2.5. We want to show here how singular topological phenomena related to
the double-eight curve arise also among piecewise constant maps. In Example 4.3.12 one
can find the computation of the BV -relaxed area for the homogeneous extension u8 of
the double eight map. In particular, as pointed out in [40], a gap phenomenon occurs for
u8 between the minimal vertical lifting measure and the relaxed Jacobian total variation.
We show now that we find such a gap also among piecewise constant maps, by exhibiting
a piecewise constant homogeneous map with vanishing minimal vertical lifting measure
but with finite non-zero TVJ . Namely, we are going to define a map u : B1 → R2

assuming five distinct values, for which the resulting closed curve γ̃ has zero degree, but is
homotopically non-trivial, since it is, in fact, homeomorphic to the double-eight curve. Let
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{α1, α2, α3, α4, α5} ⊂ R2 be the vertices of two equilateral triangles with a common vertex,
say α1 (see Figure 4.3). Fix a partition of S1 in twelve disjoint non-empty arcs C1, . . . , C12

(not necessarily of the same length), with extremal points a1, . . . , a12 in counter-clockwise
order. Then, define γ : S1 → {α1, α2, α3, α4, α5} to be constant on the arcs C1, . . . , C12,
precisely equal to, in the order, α1, α2, α3, α1, α4, α5, α1, α3, α2, α1, α5, α4. Then, the broken
line curve γ̃ runs consecutively the triangles T123 := Tα1α2α3 and T145 := Tα1α4α5 twice,
and every time with different orientation. Define u as in (4.2.4), obtaining a 12-point map.
Now, by applying Theorem 4.2.3 and computing the minimum of the Plateau problem
(4.1.1) for γ̃ as in [42, Theorem 5], we obtain

TVJBV (u,B1) = P (γ) = P (γ̃) = 2min{|T123|, |T145|}. (4.2.15)

Moreover, it is not difficult to see that

µJu = (|T123|+ |T145| − |T123| − |T145|)δ0 = 0.

In this case, we have also µv[u] = 0, indeed we can prove that the minimal lifting current
Tu associated to u is given by

Tu = Gu + S =
12∑
l=1

[[Ĉl]]× [[cl]] +
12∑
l=1

[[0, al]]× [[cl−1, cl]], (4.2.16)

where Ĉl is the circular sector corresponding to Cl and cl is the assigned value of γ on Cl

for l = 1, . . . , 12 (we used the convention c0 = c12). Let us show (4.2.16). One checks that
µji [Tu] = µji [u] for i, j = 1, 2 by proceeding as in Remark 3.2.6. So, it remains to prove that
Tu ∈ cart(B1;R2): it is enough to check that (∂Tu) B1 × R2 = 0. Compute

∂S =
12∑
l=1

∂ ([[0, al]]× [[cl−1, cl]]) =
12∑
l=1

(−[[0]]× [[cl−1, cl]] + [[0, al]]× [[cl]]− [[0, al]]× [[cl−1]]) .

Now, since by convention a13 = a1,

∂Gu =
12∑
l=1

([[0, al+1]]× [[cl]]− [[0, al]]× [[cl]]) = −
12∑
l=1

([[0, al]]× [[cl]]− [[0, al]]× [[cl−1]]) .

Moreover, by the choice of {cl},

12∑
l=1

[[0]]× [[cl−1, cl]] = [[0]]× [[α1, α2]] + [[0]]× [[α2, α3]] + . . .+ [[0]]× [[α4, α1]] = 0.

Therefore, ∂Gu = −∂S.
Notice that the action of Tu against 2-forms with only vertical differentials is 0, which
means that Tu does not have completely vertical part and so µv[u] = 0. Roughly, due
to cancellations in the part of the boundary of Tu in corrispondence to the origin, the
current Tu is not able to detect the hole upon the origin in the graph of u, generated by
the presence of the multiple junction.
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Figure 4.3: The map u and the broken line curve γ̃ of Example 4.2.5.

Example 4.2.6. This example is an adaptation of [39, Theorem 1.3] to the case of piecewise
constant maps. Indeed, we construct a piecewise constant map u, taking only five values
of R2, such that

µv[u] = 0 and TVJBV (u,B1) = +∞.

The idea is to replicate the map of Example 4.2.5 infinitely many times on a sequence
{Di}i∈N ⊂ B1 of disjoint balls, whose measures form an infinitesimal sequence (see Figure
4.4). So, for i ∈ N, set

Di := Bri(xi), with xi :=

−1 + i−1∑
j=0

2−j , 0

 , ri := 2−i−1.

Let {α1, α2, α3, α4, α5} ⊂ R2 and γ : S1 → {α1, α2, α3, α4, α5} be as in Example 4.2.5. Now,
define the map γ̂ : S1 → {α1, α2, α3, α4, α5} in the same way as γ, but with different order
of the values, in a symmetric way with respect to the vertical axis through α1, namely, in
the same arcs C1, . . . , C12, γ̂ is equal to α1, α5, α4, α1, α3, α2, α1, α4, α5, α1, α2, α3. Then,
for i ∈ N, define u|Di

:= u(i) as

u(i)(x) =


γ

(
x− xi
|x− xi|

)
if i is odd,

γ̂

(
x− xi
|x− xi|

)
if i is even.

It remains to define u in B1 \ ∪i∈NDi. Start by considering, for every i ∈ N, the square Qi

that circumscribes Di and extend u(i) to Qi to be constant along horizontal lines. Now,

denote by L
(1)
i and L

(2)
i the vertical left and right sides of ∂Qi, then extend u to the convex

hull of L
(2)
i and L

(1)
i+1 to be constant along straight lines which interpolate pointwise the

two sides. Finally, extend u in the strip that connects L
(1)
1 to ∂B1 to be constant along

horizontal lines and set u = α1 in the rest of B1. (see Figure 4.4). It is not difficult to see
that u ∈ BV (B1;R2), by the choice of the infinitesimal sequence (ri). Thus, assuming by
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Figure 4.4: The sequence {Di} ⊂ B1 of disks of Example 4.2.6.

contradiction that ABV (u,B1) be finite, one can define the current Tu = Gu+S in a similar
way as in Example 4.2.5, that is to say, by setting S to be the trivial affine interpolation
surface on the jump segments of u. One can prove in the same way that Tu is the current
with minimal completely vertical lifting associated to u and µv[u] = 0. In particular, Tu ∈
cart(B1 × R2) and has finite mass. On the other hand,

TVJBV (u,B1) ≥
+∞∑
i=1

TVJBV (u,Di) =
+∞∑
i=1

2min{|Tα1α2α3 |, |Tα1α4α5 |} = +∞.

In particular ABV (u,B1) = +∞ as well.

4.3 General homogeneous maps

In this section, we generalize at once the results in Chapter 2 about vortex-type maps
and in Section 4.2 about piecewise constant homogeneous maps, by considering general
homogeneous maps in BV (Bℓ;R2). The results of this section are contained in [14].

Definition 4.3.1. A map u ∈ BV (Bℓ;R2) is 0-homogeneous if it is of the form

u(x) = γ

(
x

|x|

)
a.e. x ∈ Bℓ (4.3.1)
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for some γ ∈ BV (S1;R2). In this case, we say that u is the 0-homogeneous (or simply
homogeneous) extension of γ on Bℓ.

Notice that, according to Definition 4.3.1, the maps uV and uT are homogeneous, as
well as vortex-type maps (2.2.1) and the maps of the form (4.2.4). The piecewise constant
maps of Examples 4.2.1 and 4.2.6, instead, are not homogeneous.
In order to ensure the consistency of Definition 4.3.1, we shall prove in Proposition 4.3.4
that the homogeneous extension of a map γ ∈ BV (S1;R2) belongs to BV (Bℓ;R2). In the
proof of Lemma 3.1.3 a useful Coarea-type formula is provided:

Lemma 4.3.2. Let u ∈ BV (Bℓ;R2). Then

|Dτu|(Aε,ℓ) =

∫ ℓ

ε
|D(u ∂Br)|(∂Br) dr. (4.3.2)

This formula allows us to define a notion of tangential total variation for u ∈ BV (Bℓ;R2)
on the whole Bℓ, since the right hand side of (4.3.2) is monotone non-increasing and
equibounded w.r.t. ε.

Definition 4.3.3 (Tangential total variation in Bℓ). Let τ and Aε,ℓ as in Definition
3.1.2. We define the tangential total variation of u ∈ BV (Bℓ;R2) as

|Dτu|(Bℓ) := lim
ε→0+

|Dτu|(Aε,ℓ) =

∫ ℓ

0
|D(u ∂Br)|(∂Br) dr. (4.3.3)

Proposition 4.3.4. Let γ ∈ BV (S1;R2) and u be defined as in (4.3.1). Then u ∈
BV (Bℓ;R2) and

|Du|(Bℓ) = ℓ|γ̇|(S1). (4.3.4)

Moreover, ∫
Bℓ

|∇u|dx = ℓ

∫
S1
|γ̇a|dy, |Dsu|(Bℓ) = ℓ|γ̇s|(S1). (4.3.5)

Proof. Since u does not depend on ρ, by (3.1.7), we have |D(u ∂Br)|(∂Br) = |γ̇|(S1). So,
thanks to (4.3.2), in order to prove (4.3.4) it is enough to show that the variation of u is
purely tangential, namely |Du|(Bℓ) = |Dτu|(Bℓ). To this purpose, set ν(x) = x

|x| , x ̸= 0,
and define the measure Dνu := Duν on the annulus Aε,ℓ, i.e.

⟨Dνu, g⟩ =
∫
Aε,ℓ

u1div(g1ν)dx+

∫
Aε,ℓ

u2div(g2ν)dx ∀g ∈ C1
c (Aε,ℓ;R2).

By polar decomposition of vector valued Radon measure, for i = 1, 2 we have

Dui =
Dui

|Dui|
|Dui| =

(
Dui

|Dui|
· ττ + Dui

|Dui|
· νν

)
|Dui| = Dui · ττ +Dui · νν.
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Let us prove that Dui · ν = 0 on Aε,ℓ, for i = 1, 2. Recall that γ̄(θ) := ū(ρ, θ) =
γ(cos θ, sin θ). Let ψ ∈ C1

c (Aε,ℓ), then since divν = 1
|x| in Aε,ℓ, we get

⟨Dui · ν, ψ⟩ =
∫
Aε,ℓ

uidiv(ψν)dx =

∫
Aε,ℓ

uiψdivνdx+

∫
Aε,ℓ

ui∇ψ · νdx

=

∫ ℓ

ε

∫ 2π

0
ρūi(ρ, θ)ψ̄(ρ, θ)

1

ρ
dρdθ +

∫ ℓ

ε

∫ 2π

0
ρūi(ρ, θ)∂νψ̄(ρ, θ)dρdθ

=

∫ ℓ

ε

∫ 2π

0
γ̄i(θ)ψ̄(ρ, θ)dρdθ +

∫ ℓ

ε
γ̄i(θ)

[∫ 2π

0
ρ∂νψ̄(ρ, θ)dρ

]
dθ

=

∫ ℓ

ε

∫ 2π

0
γ̄i(θ)ψ̄(ρ, θ)dρdθ −

∫ ℓ

ε

∫ 2π

0
γ̄i(θ)ψ̄(ρ, θ)dρdθ = 0.

We infer that Du = (Duτ) ⊗ τ on Aε,ℓ. Now, since |(Duτ) ⊗ τ |(Aε,ℓ) ≤ |Dτu|(Aε,ℓ) ≤
|Du|(Aε,ℓ), passing to the limit as ε → 0+, we conclude that |Du|(Bℓ) = |Dτu|(Bℓ) =
ℓ|γ̇|(S1).
Finally, in polar coordinates

∇u(ρ cos θ, ρ sin θ) =
˙̄γa(θ)

ρ
a.e. ρ ∈ (0, ℓ], θ ∈ [0, 2π], (4.3.6)

so that ∫
Bℓ

|∇u|dx =

∫ ℓ

0

∫ 2π

0
ρ
| ˙̄γa(θ)|
ρ

dθdρ = ℓ

∫
S1
|γ̇a|dy

and

|Dsu|(Bℓ) = |Du|(Bℓ)−
∫
Bℓ

|∇u|dx = ℓ|γ̇|(S1)− ℓ
∫
S1
|γ̇a|dy = ℓ|γ̇s|(S1).

4.3.1 Further properties in dimension 1

In order to characterize the BV -relaxed area for u as in (4.3.1), we need to provide a further
improvement of Lemma 3.1.4, namely, when γ is just a function of bounded variation.
To this purpose, suppose that γ ∈ BV ([a, b];R2). Then, it is well known that Jγ is at
most countable. So, let {ti}i∈N be an enumeration2 of Jγ and γ±(ti) be the traces of γ at
ti. We want to associate to γ a unique continuous curve γ̃ which ”completes” the image
of γ by means of segments connecting γ−(ti) to γ+(ti). In particular, we require that γ̃
has the same total variation L of γ and is compatible with the approximation via strict
BV -convergence. Unfortunately, this cannot be done simply by guessing a parametrization
of γ̃ starting from the one of γ, as we did in Lemma 3.1.4, but we need an existence result
by approximation. Precisely we show the following result.

Lemma 4.3.5. Suppose that (γk) ⊂ W 1,1([a, b];R2) is a sequence converging strictly
BV ([a, b];R2) to γ ∈ BV ([a, b];R2). Then there exist:

(a) a curve γ̃ ∈ Lip([a, b];R2),

2If the number of jumps is finite, then {ti} is definitively constant.
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(b) a subsequence (kj) and Lipschitz strictly increasing surjective functions hkj : [a, b]→
[a, b] for any j ∈ N, with supj ∥ḣkj∥∞ < +∞,

such that

lim
j→+∞

γkj ◦ hkj = γ̃ uniformly in [a, b]. (4.3.7)

Moreover, γ̃ does not depend on the approximating sequence γk, in the sense that if
(ηk) ⊂ W 1,1([a, b];R2) is another sequence converging strictly BV ([a, b];R2) to γ, then
the corresponding η̃ ∈ Lip([a, b];R2) coincides with γ̃.

Proof. The lengths Lk of γk and L of γ are given by

Lk =

∫ b

a
|γ̇k| dτ, L = |γ̇|([a, b]).

Since, by assumption, γk → γ strictly BV ([a, b];R2), we have that Lk → L as k → +∞.
For every k ∈ N, define

sk : [a, b]→ [0, L], sk(t) :=
L

Lk + b− a

∫ t

a

(
|γ̇k(τ)|+ 1

)
dτ, (4.3.8)

with Lipschitz inverse αk := s−1
k : [0, L]→ [a, b]. Notice that

α̇k(s) =
1

ṡk(αk(s))
=
Lk + b− a

L
· 1

|γ̇k(αk(s))|+ 1
≤ Lk + b− a

L
≤ C for a.e. s ∈ [0, L],

(4.3.9)

for some constant C > 0 independent of k. Define

γ̄k : [0, L]→ R2, γ̄k(s) := γk(αk(s)) ∀s ∈ [0, L].

Since ∣∣∣∣dγ̄kds (s)

∣∣∣∣ ≤ |γ̇k(αk(s))|
|ṡk(αk(s))|

≤ Lk + b− a
L

≤ C for a.e. s ∈ [0, L],

the sequence (γ̄k) is bounded in W 1,∞([0, L];R2). Thus, there exists a subsequence (kj) ⊂
(k) and γ̄ ∈W 1,∞([0, L];R2) such that

γ̄kj ⇀ γ̄ weakly* in W 1,∞([0, L];R2) and uniformly in [0, L]. (4.3.10)

Then, we conclude by defining γ̃ and hk as the composition of γ̄ and αk with an affine
increasing diffeomorphism ψ : [a, b]→ [0, L].
It remains to show the indipendence of γ̄ from the sequence γk. So, suppose that ηk ∈
W 1,1([a, b];R2) converges to γ strictly BV ([a, b];R2). Let σk : [a, b] → [0, L] be defined as
sk with ηk in place of γk and βk := σ−1

k : [0, L] → [a, b] its (equi-)Lipschitz inverse. As
before, we obtain that there exists (kh) ⊂ (k) and η̄ such that

η̄kh ⇀ η̄ weakly* in W 1,∞([0, L];R2) and uniformly in [0, L].
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Observe that for any open interval J ⊆ [0, L],∫
J
| ˙̄γ|ds ≤ lim inf

k→+∞

∫
J
| ˙̄γk|ds ≤ |J | lim inf

k→+∞

Lk + b− a
L

=
L+ b− a

L
|J |,

and thus

| ˙̄γ| ≤ 1 +
b− a
L

a.e. in [0, L]. (4.3.11)

Now, fix i ∈ N and take any sequence (t±i,j)j ⊂ [a, b] \ Jγ such that t−i,j ↗ t−i and

t+i,j ↘ t+i as j → +∞. By Lemma 1.3.5 and definition of γ±, we have

lim
j→+∞

γkj (t
±
i,j) = γ±(ti). (4.3.12)

Setting

r−i,j :=skj (t
−
i,j) =

L

Lkj + b− a

∫ t−i,j

a

(
|γ̇kj |+ 1

)
dτ,

r+i,j :=skj (t
+
i,j) =

L

Lkj + b− a

∫ t+i,j

a

(
|γ̇kj |+ 1

)
dτ,

(4.3.13)

we have

lim
j→+∞

r−i,j =
L

L+ b− a
|γ̇|([a, ti)) =: s−(ti),

lim
j→+∞

r+i,j =
L

L+ b− a
|γ̇|([a, ti]) =

L

L+ b− a
[
|γ̇|([a, ti)) + |γ+(ti)− γ−(ti)|

]
=: s+(ti).

(4.3.14)
As a consequence of (4.3.10), (4.3.12), and (4.3.14), we get

γ̄(s±(ti))← γ̄kj (r
±
i,j) = γkj (αkj (r

±
i,j)) = γkj (t

±
i,j)→ γ±(ti) as j → +∞.

Therefore the curve γ̄ maps the segment [s−(ti), s
+(ti)] into a curve joining γ−(ti) and

γ+(ti). Now, since s
+(ti)−s−(ti) = L

L+b−a |γ
+(ti)−γ−(ti)|, from (4.3.11) we conclude that

γ̄ coincides with the
(
1 + b−a

L

)
-speed parametrization ℓi of the segment joining γ−(ti) and

γ+(ti) on [s−(ti), s
+(ti)]. Hence we have shown that for every i ∈ N

γkj ◦ αkj → ℓi uniformly in [s−(ti), s
+(ti)] as j → +∞. (4.3.15)

An analogous conclusion holds also for ηkh : indeed, let σkh(t
±
i,h) be as in (4.3.13) but with

ηkh in place of γkj , then it is clear that σkh(t
±
i,h)→ s±(ti) as h→ +∞ and so

ηkh ◦ βkh → ℓi uniformly in [s−(ti), s
+(ti)] as h→ +∞. (4.3.16)

Therefore, η̄ = γ̄ on S = ∪i∈NSi, where Si := [s−(ti), s
+(ti)]. It remains to show that

η̄ = γ̄ on [0, L] \ S.
By (4.3.9), up to extracting a not relabeled subsequence, we can assume that there exists
α ∈W 1,∞([0, L]) such that

αkj → α uniformly in [0, L] as j → +∞ (4.3.17)
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and, for the same reason, there exists β ∈W 1,∞([0, L]) such that

βkh → β uniformly in [0, L] as h→ +∞. (4.3.18)

From Lemma 1.3.5, we deduce that γ̄ = γ ◦α on every compact subset H ⊂ [0, L]\S. But,
since α does not depend on the compact H, we deduce that γ̄ = γ ◦ α on [0, L] \ S. In
the same way, we infer that η̄ = γ ◦ β on [0, L] \ S. Let us show that α = β on [0, L] \ S.
Indeed, notice that by definition of sk,

sk(t)→ s(t) :=
L

L+ b− a
(t− a+ |γ̇|([a, t])) ∀t ∈ [a, b] \ Jγ .

The map s : [a, b] → [0, L] is strictly increasing with jumps at each point of Jγ . Notice
that the traces of s at every ti ∈ Jγ are exactly the numbers s±(ti) in (4.3.14). We claim
that α = s−1 on [0, L] \ S. Indeed, by (4.3.17) we have that for every t ∈ [a, b] \ Jγ

t = αkj (skj (t))→ α(s(t)) as j → +∞,

then α = s−1 on s([a, b] \ Jγ) = [0, L] \ S. In the same way, using (4.3.18) one can prove
that β = s−1 on [0, L] \ S and we conclude the proof.

Remark 4.3.6. From the previous proof, we deduce that the ”completed” curve γ̃ does
not depend on the subsequence of the approximating sequence γk. Moreover, we do not
need to discuss the dependence on the reparametrization hk, because, for our purpose, we
shall consider in the sequel the Plateau-type problem (4.1.1) associated to γk, which is
independent of the reparametrization of the curve.

4.3.2 Relaxation for general homogeneous maps

In this section, we compute the BV -relaxed area for homogeneous maps as in Definition
4.3.1.
First, we want to extend the thesis of Lemma 4.1.6 to the case γ ∈ BV (S1;R2).

Lemma 4.3.7. Let γ ∈ BV (S1;R2) and γ̃ : S1 → R2 be the corresponding Lipschitz curve
of Lemma 4.3.5. Then

P (γ) = P (γ̃). (4.3.19)

Proof. Let (γk)k ⊂ Lip(S1;R2) be a sequence converging strictly to γ. Let us consider a
not-relabeled subsequence of (γk)k; by Lemma 4.3.5 there are a further subsequence (γkj )j
and Lipschitz reparametrizations γ̃kj = γkj ◦ hkj ∈ Lip(S1;R2) of γkj such that γ̃kj → γ̃
uniformly as j → +∞. Moreover, since by Lemma 4.3.5(b) the homeomorphism hkj can
be chosen with uniformly bounded Lipschitz constant, it follows that γ̃kj has uniformly
bounded total variation. Hence it follows from Lemma 4.1.4 that P (γ̃kj ) → P (γ̃) as
j → +∞. Thanks to (4.1.1), we have also P (γkj ) → P (γ̃) as j → +∞. Then, since this
argument holds for any subsequence of (γk), we conclude that the whole sequence satisfies
P (γk) → P (γ̃). Finally, since by Lemma 4.3.5 γ̃ does not depend on the approximating
sequence, we can repeat the previous argument for another sequence (ηk) ⊂ Lip(S1;R2)
converging strictly to γ, obtaining that P (ηk) → P (γ̃). Therefore, we conclude P (γ) =
P (γ̃).
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As a consequence of the argument in the proof of Lemma 4.3.7, we easily infer the
following continuity property:

Corollary 4.3.8. Let γ ∈ BV (S1;R2) and γ̃ be as in Lemma 4.3.5, and assume that
(γk)k ⊂ Lip(S1;R2) is a sequence converging strictly to γ. Then

lim
k→+∞

P (γk) = P (γ) = P (γ̃).

Now we can pass to treat the relaxation of our functionals. To start with, it is worth
to consider the case of homogeneous extension u of a Lipschitz map φ : S1 → R2, namely

u(x) = φ

(
x

|x|

)
∀x ∈ Bℓ \ {(0, 0)}. (4.3.20)

In this case, clearly u ∈ W 1,1(Bℓ;R2) and
∫
Bℓ
|∇u|dx = ℓ

∫
S1 |φ̇|dH

1. The following
result extends the validity of [42, Thm.1] also for the relaxation with respect to the strict
BV -convergence.

Theorem 4.3.9. Suppose that φ : S1 → R2 is Lipschitz continuous and let u be defined
as in (4.3.20). Then

TVJBV (u,Bℓ) = P (φ). (4.3.21)

Proof. Let us show the upper bound inequality. Following the proof of Theorem 1 in [42],
for k ≥ 2, a recovery sequence vk ∈ Lip(Bℓ;R2) is given by

vk(x) =

{
u(x) if |x| > ℓ/k,

(v) ℓ
k
(x) if |x| ≤ ℓ/k, (4.3.22)

where v ∈ Lip(B1;R2) is any map with v = φ on ∂B1 and (v) ℓ
k
(x) := v

(
k
ℓx
)
for x ∈ B ℓ

k
. It

is not difficult to see that vk → u strongly inW 1,1(Bℓ;R2) (and hence strictly BV (Bℓ;R2)).
Moreover, by change of variable∫

Bℓ

|Jvk|dx =

∫
B ℓ

k

|J(v) ℓ
k
|dx =

∫
B1

|Jv|dx ∀k ∈ N. (4.3.23)

Finally, we get

TVJBV (u,Bℓ) ≤ lim inf
k→+∞

∫
Bℓ

|Jvk|dx =

∫
B1

|Jv|dx

for any v ∈ Lip(B1;R2) such that v = φ on ∂B1, so we deduce that TVJBV (u,Bℓ) ≤ P (φ).
Now let us prove the lower bound inequality. Assume that vk ∈ C1(Bℓ;R2) is such that
vk → u strictly BV (B1;R2). Then for almost every ρ < ℓ, there exists a subsequence (vkh)
(depending on ρ) such that its restriction to ∂Bρ converges strictly BV (∂Bρ;R2) to u|∂Bρ

.
So, fix ε < 1 and a not-relabeled subsequence of (vk) such that

vk |∂Bε
→ u|∂Bε

strictly BV (∂Bε;R2). (4.3.24)

Now, define wk : Bℓ → R2 as

wk(x) =


vk(x) if |x| ≤ ε
ℓ− |x|
ℓ− ε

vk

(
ε
x

|x|

)
+
|x| − ε
ℓ− ε

u

(
ε
x

|x|

)
if ε ≤ |x| ≤ ℓ.
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Then wk is Lipschitz and w = u on ∂Bℓ. Moreover, by (4.3.24), the convergence of vk to
u on ∂Bε is also uniform, so we have (as for the proof of (2.2.31) in Proposition 2.2.4)

lim
k→+∞

∫
Bℓ\Bε

|Jwk|dx = 0. (4.3.25)

Finally, since wk = vk in Bε, by (4.3.25) we get

lim inf
k→+∞

∫
Bℓ

|Jvk|dx ≥ lim inf
k→+∞

∫
Bε

|Jvk|dx = lim inf
k→+∞

∫
Bℓ

|Jwk|dx

≥ P (u ∂Bℓ) = P (φℓ) = P (φ),

(4.3.26)

where we used (4.1.4). We conclude by taking the infimum in the left hand side.

Corollary 4.3.10. Let φ and u as in Theorem 4.3.9. Then

ABV (u;Bℓ) =

∫
Bℓ

√
1 + |∇u|2dx+ P (φ). (4.3.27)

Proof. For the lower bound, suppose that vk ∈ C1(Bℓ;R2) is such that vk → u strictly
BV (Bℓ;R2). Now, let ε < ℓ such that (4.3.24) holds, and write A(vk;Bℓ) = A(vk;Bℓ \
Bε) +A(vk;Bε) ≥ A(vk;Bℓ \Bε) +

∫
Bε
|Jvk|dx, so that, by [1, Theorem 3.7],

lim
k→+∞

A(vk;Bℓ) ≥ lim inf
k→+∞

A(vk;Bℓ \Bε) + lim inf
k→+∞

∫
Bϵ

|Jvk|dx

≥
∫
Bℓ\Bε

√
1 + |∇u|2dx+ lim inf

k→+∞

∫
Bϵ

|Jvk|dx.

We now apply (4.3.26) and next pass to the limit as ε → 0+ to get the lower bound in
(4.3.27).

Concerning the proof of the upper bound for (4.3.27), consider the sequence (vk) defined
in (4.3.22), which converges to u in W 1,1(Bℓ;R2). Then, upon extracting a subsequence
such that (∇vk) converges almost everywhere to ∇u, by (4.3.23) and dominated conver-
gence we have, using the inequality

√
1 + a2 + b2 + c2 ≤

√
1 + a2 + b2 + |c| for a, b, c ∈ R,

ABV (u;Bℓ) ≤ lim sup
k→+∞

A(vk;Bℓ) ≤ lim
k→+∞

∫
Bℓ

√
1 + |∇vk|2dx+ lim

k→+∞

∫
Bℓ

|Jvk|dx

=

∫
Bℓ

√
1 + |∇u|2dx+

∫
B1

|Jv|dx,

for any v ∈ Lip(B1;R2) such that v = φ on ∂B1. Passing to the infimum on the right hand
side we obtain the upper bound inequality in (4.3.27).

Remark 4.3.11. We point out that the result of Corollary 4.3.10 is compatible with
Theorem 2.2.3, where φ is valued in S1, treated in Chapter 2. Indeed, one can argue as in
the proof of [42, Theorem 4] to prove that P (φ) = π|degφ| for any φ ∈ Lip(S1;S1).
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Figure 4.5: The double eight curve φ8.

Example 4.3.12 (The double eight curve). A very interesting example is the homogeneous
extension u8 of the so called double eight map φ8 ∈ Lip(S1;R2), defined as φ8 = a·b·a−1·b−1,
where a, b are the loops in Fig. 4.5. This example was discovered by Malý [35] (see
also [25], [23], [39], [42], [22]). Clearly, deg(φ8) = 0, however one can compute as in [42,
Thm. 5] (see also [39, Thm. 1.2]) that

P (φ8) = inf

{∫
B1

|Jv|dx; v ∈ Lip(B1;R2) : v|∂B1
= φ8

}
= 2min{|D1|, |D2|}.

Therefore, as underlined in [40], since the minimal lifting current Tu8 coincides with
the graph current Gu8 , it has no vertical part, while from Theorem 4.3.9 we have that
TVJ(u8;Bℓ) is non-zero. Moreover, |Tu8 | < ABV (u8;Bℓ). In particular, Gu8 is a Cartesian
current, even if the origin is a non-removable singularity for u8. Finally, an interesting
problem would be the study of AL1(u8;Bℓ): since the obstruction generated by φ8 has a
topological nature, we conjecture that AL1(u8;Bℓ) = ABV (u8;Bℓ).

Now, we treat the case γ ∈ BV (S1;R2). We recall that, by Proposition 4.3.4, its
homogeneouos extension u is still BV (Bℓ;R2).

Theorem 4.3.13. Let γ ∈ BV (S1;R2) and u as in (4.3.1). Let γ̃ : S1 → R2 be as in
Lemma 4.3.5. Then

TVJBV (u;Bℓ) = P (γ) = P (γ̃). (4.3.28)

Proof. In order to show the upper bound inequality, consider a Lipschitz sequence φk :
S1 → R2 converging to γ strictly BV (S1;R2) (e.g. a mollifying sequence). Then, by
Lemma 4.3.5, there exists a equi-Lipschitz reparameterization φ̃k of φk that converges to
γ̃ uniformly (up to extracting a subsequence). Set

uk(x) = φk

(
x

|x|

)
∀x ∈ Bℓ \ {(0, 0)}, (4.3.29)
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then uk ∈W 1,1(Bℓ;R2) and uk → u strictly BV (Bℓ;R2), since

∥uk − u∥L1(B1;R2) ≤ ∥φk − γ∥L1(S1;R2) → 0,∫
Bℓ

|∇uk|dx = ℓ

∫
S1
|φ̇k|dH1 → ℓ|γ̇|(S1) = |Du|(Bℓ),

where we used Proposition 4.3.4. Now, by lower semicontinuity of TVJBV (·, Bℓ), Theorem
4.3.9, (4.1.1), and Lemma 4.1.4, we have

TVJBV (u;Bℓ) ≤ lim inf
k→+∞

TVJBV (uk;Bℓ) = lim inf
k→+∞

P (φk) = lim inf
k→+∞

P (φ̃k) = P (γ̃).

Let us prove the lower bound inequality. Assume that vk ∈ C1(Bℓ;R2) is such that vk → u
strictly BV (Bℓ;R2) and

lim
k→+∞

∫
Bℓ

|Jvk|dx = TVJBV (u;Bℓ).

We use Lemma 3.1.3 to fix ε < ℓ and a subsequence (vkj ) ⊂ (vk) such that vkj ∂Bε →
u ∂Bε strictly BV (∂Bε;R2). According to (4.1.2), we have u ∂Bε = γε. So, let γ̃ε be
the Lipschitz curve of Lemma 4.3.5 associated3 to γε. Using Corollary 4.3.8 and (4.1.4),
we conclude

TVJBV (u;Bℓ) ≥ lim inf
j→+∞

∫
Bε

|Jvkj |dx ≥ lim inf
j→+∞

P (vkj ∂Bε) = P (γε) = P (γ̃ε) = P (γ̃).

(4.3.30)

Remark 4.3.14. Setting ũ(x) := γ̃
(

x
|x|

)
, then u ∈ W 1,1(Bℓ;R2). So, by Theorem 4.3.9

and Theorem 4.3.13, we have

TVJBV (ũ;Bℓ) = TVJBV (u;Bℓ). (4.3.31)

We are in the position to state the main result of this section.

Theorem 4.3.15. Let γ ∈ BV (S1;R2) and u as in Definition 4.3.1. Then

ABV (u;Bℓ) =

∫
Bℓ

√
1 + |∇u|2dx+ |Dsu|(Bℓ) + P (γ). (4.3.32)

Proof. For the lower bound, suppose that vk ∈ C1(Bℓ;R2) is such that vk → u strictly
BV (Bℓ;R2). Now, let ε < ℓ such that (4.3.24) holds, and write A(vk;Bℓ) = A(vk;Bℓ \
Bε) +A(vk;Bε) ≥ A(vk;Bℓ \Bε) +

∫
Bε
|Jvk|dx, so that, by [1, Theorem 3.7],

lim
k→+∞

A(vk;Bℓ) ≥ lim inf
k→+∞

A(vk;Bℓ \Bε) + lim inf
k→+∞

∫
Bϵ

|Jvk|dx

≥
∫
Bℓ\Bε

√
1 + |∇u|2dx+ |Dsu|(Bℓ \Bε) + lim inf

k→+∞

∫
Bϵ

|Jvk|dx.

3We identify ∂Bε with [0, 2πε].
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We now apply (4.3.26) and next pass to the limit as ε → 0+ to get the lower bound in
(4.3.32).

Concerning the proof of the upper bound for (4.3.32), consider the sequence (uk) ⊂
W 1,1(Bℓ;R2) defined in (4.3.29), which converges to u strictly BV (Bℓ;R2). Let us prove
that

lim
k→+∞

∫
Bℓ

√
1 + |∇uk|2dx =

∫
Bℓ

√
1 + |∇u|2dx+ |Dsu|(Bℓ). (4.3.33)

In polar coordinates, we get∫
Bℓ

√
1 + |∇uk|2dx =

∫ ℓ

0

∫ 2π

0
ρ

√
1 +
| ˙̄φk(θ)|2
ρ2

dθdρ.

For a fixed ρ ∈ (0, ℓ), consider fρ(ξ) = ρ
√
1 + |ξ|2

ρ2
, ξ ∈ R2. Then, fρ is convex on R2. Now,

if µ ∈M([0, 2π];R2), one can consider the measure fρ(µ) ∈M+([0, 2π]) defined as4

fρ(µ)(A) =

∫
A
ρ

√
1 +
|a(θ)|2
ρ2

dθ + |µs|(A),

for any Borel set A ⊆ [0, 2π], where µa = aL 2 for some a ∈ L1([0, 2π]). By [29, Theorem
4], fρ(·) is continuous w.r.t. the approximation by convolution. In particular, choosing
µ := ˙̄γ ∈M([0, 2π];R2) and A = [0, 2π], for every ρ ∈ (0, ℓ) we have

lim
k→+∞

fρ( ˙̄φk)([0, 2π]) = lim
k→+∞

∫ 2π

0
ρ

√
1 +
| ˙̄φk(θ)|2
ρ2

dθ

=

∫ 2π

0
ρ

√
1 +
| ˙̄γa(θ)|2
ρ2

dθ + |γ̇s|(S1)

= fρ( ˙̄γ)([0, 2π]).

Integrating in (0, ℓ), by dominated convergence we infer

lim
k→+∞

∫
Bℓ

√
1 + |∇uk|2dx = lim

k→+∞

∫ ℓ

0

∫ 2π

0
ρ

√
1 +
| ˙̄φk(θ)|2
ρ2

dθdρ

=

∫ ℓ

0

∫ 2π

0
ρ

√
1 +
| ˙̄γa(θ)|2
ρ2

dθdρ+ ℓ|γ̇s|(S1)

=

∫
Bℓ

√
1 + |∇u|2dx+ |Dsu|(Bℓ),

where we used (4.3.6) and (4.3.5). Therefore, we obtain (4.3.33).
Finally, by lower semicontinuity of ABV (·, Bℓ) and by Corollary 4.3.10, we conclude

ABV (u;Bℓ) ≤ lim inf
k→+∞

ABV (uk;Bℓ) = lim
k→+∞

[∫
Bℓ

√
1 + |∇uk|2dx+ P (φk)

]
=

∫
Bℓ

√
1 + |∇u|2dx+ |Dsu|(Bℓ) + P (γ).

4See Theorem 2’ in [29]: notice that f∗
ρ = | · | for every ρ ∈ (0, ℓ), where f∗

ρ is the recession function
associated to fρ.
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Remark 4.3.16. We point out that, by Lemma 4.3.7, we can write the right hand side of
(4.3.32) by substituting P (γ) with P (γ̃) and get an equivalent expression of ABV (u;Bℓ) in
terms of γ̃. The same observation can be done for TVJBV (u;Bℓ).
Furthermore, we notice that, as a function of the set variable, TVJBV (u; ·) is a finite
positive measure. Precisely, for every open set A ⊂ Bℓ

TVJBV (u;A) = P (γ)δ0(A).

Indeed, if 0 ∈ A then Bε ⊂ A for some ε ∈ (0, ℓ) and we can argue as in (4.3.30). On the
other hand, suppose that 0 /∈ A and consider uk as in (4.3.29). Then, uk |A ∈ Lip(A;R2)
and converges strictly BV (A;R2) to u|A. Since the image of uk has zero Lebesgue measure,

by lower semicontinuity of TVJBV (· ;A), we get that TVJBV (u;A) = 0.
In the same way, one can prove that for every open set A ⊂ Bℓ

ABV (u;A) =

∫
A

√
1 + |∇u|2dx+ |Dsu|(A) + P (γ)δ0(A).

Therefore, also ABV (u; ·) is a measure and (4.3.32) is an integral representation.

Remark 4.3.17 (On the Plateau problem (4.1.1)). Let φ : S1 → R2 be Lipschitz.
From [15, Theorem 1.3], there exists a least area mapping v ∈W 1,p(B1;R2), for some p > 2,
spanning φ, i.e. realizing the infimum of the total variation of the Jacobian determinant
in the class of Sobolev maps in W 1,p(B1;R2) whose trace on ∂B1 is φ. In truth, one can
prove that the least area mapping is Lipschitz, so that the Plateau problem (4.1.1) attains
a minimum. The proof is a consequence of results contained in [16]: interestingly, it seems
that one needs to pass through a more general metric result, concerning spaces with upper
curvature bounds.



Chapter 5

General piecewise Lipschitz maps

This chapter, which is based on results in [4], combines the tools developed in the previous
chapters to compute the BV -relaxed area for an interesting class of maps that we call
piecewise Lipschitz maps, quickly mentioned in the Introduction. As stated in our main
result (Theorem 0.0.4), the relaxed area turns out to be composed by an absolute contin-
uous term and a singular one, that interestingly further splits into two non-trivial pieces,
respectively related to the 1-dimensional and 0-dimensional singularities.

5.1 Networks and piecewise Lipschitz maps

Let Ω ⊂ R2 be a connected bounded open set with boundary of class C1. We say that
a collection {Ω1, . . . ,ΩN} of disjoint nonempty open sets is a Lipschitz partition of Ω if
Ω = ∪Nk=1Ωk and for each k = 1, . . . , N , Ωk is connected and Lipschitz. For a given
Lipschitz partition of Ω we can consider its interface Σ := ∪Nk=1∂Ωk. Also, we can define
the (possibly empty) set of interior junction points {pi}mi=1, i.e. points pi ∈ Ω such that
there exist r > 0 and an integer Ni with 3 ≤ Ni ≤ N , such that Br(pi) ⊂ Ω and Bs(pi) has
nonempty intersection with exactly Ni connected components of Ω, for every s ∈ (0, r].

We shall consider Lipschitz partitions whose interface is a network in the following
sense:

Definition 5.1.1 (Network). The interface Σ of a Lipschitz partition of Ω is a network
if

Σ :=

n⋃
ℓ=1

J ℓ, Jℓ = αℓ(Iℓ), Iℓ = (aℓ, bℓ), (5.1.1)

where the curves αℓ : Iℓ := [aℓ, bℓ]→ Ω, ℓ = 1, . . . , n, satisfy the following properties:

- αℓ is of class C
2, injective with |α̇ℓ| ≡ 1 on Iℓ, and Jℓ ⊂ Ω;

- ℓ1 ̸= ℓ2 ⇒ Jℓ1 ∩ Jℓ2 = ∅;

- αℓ({aℓ, bℓ}) ⊂ {p1, . . . , pm} ∪ ∂Ω for all ℓ = 1, . . . , n such that αℓ(aℓ) ̸= αℓ(bℓ);

- if x ∈ J ℓ ∩ ∂Ω, αℓ is transversal to ∂Ω at x;

95
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- ℓ1 ̸= ℓ2 ⇒ J ℓ1 ∩ J ℓ2 ⊂ {p1, . . . , pm}.

From the last condition it follows that if two curves have endpoints on ∂Ω, then these
points are distinct.

Definition 5.1.2 (Piecewise Lipschitz map). Let {Ωk}Nk=1 be a Lipschitz partition of
Ω whose interface Σ is a network. We say that u ∈ BV (Ω;R2) is a piecewise Lipschitz map
if its jump set Ju coincides with Σ and u Ωk ∈ Lip(Ωk;R2) for any k = 1, . . . , N .

Since u Ωk ∈ Lip(Ωk;R2), the trace of u on ∂Ωk is also Lipschitz. In particular, for
any i ∈ {1, . . . ,m} such that pi ∈ ∂Ωk,

∃ lim
x→pi
x∈Ωk

u(x) =: βki ∈ R2.

Let ρ > 0 be sufficiently small so that Bρ(pi) ⊂ Ω for i ∈ {1, . . . ,m}. Let ℓ ∈ {1, . . . , n} be
such that pi is an endpoint of J ℓ; since αℓ is of class C

2, for ρ small enough the intersection
J ℓ ∩ ∂Bρ(pi) consists either of a single point, or of two points if αℓ(aℓ) = αℓ(bℓ) = pi.
Hence, the map u ∂Bρ(pi) is piecewise Lipschitz and jumps at any point of Σ ∩ ∂Bρ(pi).
In particular, the number of these jump points is, by definition of junction point,

Ni = ♯
(
Σ ∩ ∂Bρ(pi)

)
≥ 3, i = 1, . . . ,m.

For i = 1, . . . ,m, we denote by Ωi
1, . . . ,Ω

i
Ni

the connected components of Ω \ Σ whose
closure contains pi, chosen in counterclockwise order around pi. Since Ωk is Lipschitz for
every k = 1, . . . , N , any Ωi

k has a corner at pi whose aperture is a positive angle θ
k
i ∈ (0, 2π).

Lemma 5.1.3 (Circular slices). Let i ∈ {1, . . . ,m} be fixed and let ρ > 0 be as
above. Then the maps γiρ ∈ BV (S1;R2) defined by γiρ(ν) := u(pi + ρν) converge strictly
BV (S1;R2), as ρ→ 0+, to a piecewise constant map γi : S1 → R2 taking, in counterclock-
wise order, the values β1i , β

2
i , . . . , β

Ni
i on arcs of size θ1i , θ

2
i , . . . , θ

Ni
i , respectively.

The map γi hasNi jumps on S1 whose angular coordinates are denoted by a1i , a
2
i , . . . , a

Ni
i

(where1 aji − a
j−1
i = θji , for j = 1, . . . , Ni + 1).

Proof. It is easy to see that (γiρ) converges to γi almost everywhere on S1 as ρ → 0+.

Moreover, γiρ, for ρ small enough, has exactly Ni jumps at points aji,ρ of amplitude |u+(pi+
ρaji,ρ)−u−(pi+ρa

j
i,ρ)| which tend, by continuity of u in Bρ(pi)\Σ, to |βji−β

j+1
i |. Also, on the

arcs between aji,ρ and a
j+1
i,ρ , |γ̇iρ| ≤ Lρ, where L is the maximum of the Lipschitz constants of

u on the sectors Ωi
k. Hence |γ̇iρ|(S1)→ |γ̇i|(S1) and the thesis follows straightforwardly.

For ℓ = 1, . . . , n, we denote by u±(ℓ) the two traces of u on Jℓ, and consider the affine

interpolation surface Xaff
(ℓ) : [aℓ, bℓ] × I → R3 spanning the graphs of u−(ℓ) and u(ℓ+), given

by:
Xaff

(ℓ)(t, s) = (t, su+(ℓ)(t) + (1− s)u−(ℓ)(t)), (t, s) ∈ [aℓ, bℓ]× I, (5.1.2)

where I := [0, 1]. For all i = 1, . . . ,m we denote by γ̃i the (possibly self intersecting)
Lipschitz curve which parametrizes on S1 the polygon in R2 with vertices βi1, β

i
2, . . . , β

i
Ni
,

in the order.
1With the convention Ni + 1 = 1.
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5.2 Relaxation for general piecewise Lipschitz maps

We are now ready to prove our main result:

Theorem 5.2.1 (Relaxation for general piecewise Lipschitz maps). Let u : Ω→ R2

be piecewise Lipschitz on Ω. Then

ABV (u; Ω) =

∫
Ω\Σ
|M(∇u)| dx+

n∑
ℓ=1

∫
[aℓ,bℓ]×I

|∂tXaff
(ℓ) ∧ ∂sXaff

(ℓ)|dtds+
m∑
i=1

P (γ̃i). (5.2.1)

Proof. Lower bound: Consider a sequence (vk) ⊂ C1(Ω;R2) converging to u strictly
BV (Ω;R2). For any ρ > 0 small enough, we take a family of mutually disjoint balls
Bρ(pi) ⊂ Ω, i = 1, . . . ,m. By Lemma 3.1.3, there exists a subsequence (vkh) ⊂ (vk)
depending on ρ such that for i = 1, . . . ,m

vkh ∂Bρ(pi)→ u ∂Bρ(pi) strictly BV (∂Bρ(pi);R2). (5.2.2)

We may also assume that for i = 1, . . . ,m

lim inf
k→+∞

∫
Bρ(pi)

|Jvk| dx = lim
h→+∞

∫
Bρ(pi)

|Jvkh | dx.

Then

A(vkh ,Ω) = A(vkh ,Ω \ ∪
m
i=1Bρ(pi)) +

m∑
i=1

A(vkh ;Bρ(pi))

≥ A(vkh ,Ω \ ∪
m
i=1Bρ(pi)) +

m∑
i=1

∫
Bρ(pi)

|Jvkh |dx.

By Corollary 3.2.12, we get

lim inf
h→+∞

A(vkh ,Ω \ ∪
m
i=1Bρ(pi))

≥ABV (u,Ω \ ∪mi=1Bρ(pi))

=

∫
Ω\∪m

i=1Bρ(pi)
|M(∇u)|dx+

n∑
ℓ=1

∫
[aρℓ ,b

ρ
ℓ ]×I
|∂tXaff

(ℓ) ∧ ∂sXaff
(ℓ)| dtds

−→
∫
Ω
|M(∇u)|dx+

n∑
ℓ=1

∫
[aℓ,bℓ]×I

|∂tXaff
(ℓ) ∧ ∂sXaff

(ℓ)|dtds as ρ→ 0+,

where (aρℓ ), (b
ρ
ℓ ) ⊂ [aℓ, bℓ] are respectively a decreasing and increasing sequence of numbers

satisfying aρℓ → aℓ and b
ρ
ℓ → bℓ as ρ→ 0+ and αℓ([a

ρ
ℓ , b

ρ
ℓ ]) = αℓ([aℓ, bℓ]) \ ∪mi=1Bρ(pi).

Let us recall that, by Lemma 4.1.6, P (γ̃i) = P (γi), with γi as in Lemma 5.1.3. So, it
remains to show that

lim inf
ρ→0+

lim
h→+∞

∫
Bρ(pi)

|Jvkh | dx ≥ P (γ
i) ∀i = 1, . . . ,m. (5.2.3)
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By definition (4.1.11), using (4.1.4) and (5.2.2), we readily conclude that

lim
h→+∞

∫
Bρ(pi)

|Jvkh | dx ≥ P (γ
i
ρ),

where γiρ is defined in Lemma 5.1.3. Then, since γiρ converge to γi strictly BV (S1;R2) as
ρ→ 0+, (5.2.3) follows, thanks to Lemma 5.1.3 and Corollary 4.1.8.

Upper bound: Fix r > 0 small enough and consider mutually disjoint balls Br(pi) ⊂ Ω,
i = 1, . . . ,m, such that, for every ℓ ∈ {1, . . . , n}, Jℓ ∩ ∂Bs(pi), if nonempty, consists either
of a single point, or of two points if αℓ(aℓ) = αℓ(bℓ) = pi, for every s ∈ (0, r].

Clearly, the difficulty of the proof is concentrated around the junction points pi. The
idea is to modify u on ∪mi=1Br(pi) by constructing a new map ur (see (5.2.7) and (5.2.19)),
which coincides with u out of ∪mi=1Br(pi) and converges to u strictly BV (Ω;R2) as r tends
to 0+. The map ur will be again a piecewise Lipschitz map with the same set {pi} of
junction points, but different jump set Σr, with Σr ∩ Br/2(pi) made of segments, i.e. ur
is of the form (4.2.4) in Br/2(pi). The difficult point will be to provide that Σr is still a
union of (pairwise disjoint up to the endpoints) C2-curves α̂ℓ, in particular that each one
hits ∂Br/2(pi) with vanishing second derivative. At the end, we will apply Theorem 4.2.4
to ur in ∪mi=1Br/2(pi) and Corollary 3.2.12 to ur in Ω \ (∪mi=1Br/2(pi)), and conclude by

lower semicontinuity of ABV (·,Ω).
We start by considering a smooth strictly increasing surjective function ψr : [ r2 ,+∞) →
[0,+∞) with 2

ψr(ρ) = ρ ∀ρ ≥ r, ψr(ρ) =
(
ρ− r

2

)3
in a right neighborhood of

r

2
, |ψ′

r| ≤ C in
(r
2
, r
)

(5.2.4)

with C > 0 independent of r. We define the radial map Φr : R2 \B r
2
(0)→ R2 \ {0} as

Φr(x) = ψr(|x|)
x

|x|
,

whose inverse is Φ−1
r (y) = fr(|y|) y

|y| , where fr := ψ−1
r , and set

ûr(x) := u(pi +Φr(x− pi)) for x ∈ Br(pi) \B r
2
(pi), i = 1, . . . ,m. (5.2.5)

The jump set of ûr in Br(pi) \Br/2(pi) is parametrized by the curves

α̂ℓ := pi +Φ−1
r (αℓ − pi) ∀ℓ = 1, . . . , n. (5.2.6)

Notice carefully that α̂ℓ is parametrized on the same parameter interval of αℓ, but this is
not an arc length parametrization for α̂ℓ. Moreover, thanks to the regularity of Φr, the
map

ur :=

{
u in Ω \ (∪mi=1Br(pi))

ûr in Br(pi) \B r
2
(pi), i = 1, . . . ,m

(5.2.7)

2The exponent must be chosen greater than 2 in order to ensure (5.2.18).
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has jump set Σr which is parametrized by the curves α̂ℓ, whose supports Ĵℓ are pairwise
disjoint and in turn coincide with the ones of αℓ in Ω \ (∪mi=1Br(pi)).

Step 1 : Let us first check that the length of α̂ℓ in ∪mi=1(Br(pi) \Br/2(pi)) is controlled,
more precisely, we will show that for each i and ℓ, the length of α̂ℓ in Br(pi)\Br/2(pi) goes
to 0 as r → 0+. We suppose that Jℓ ∩ ∂Bs(pi), for every s ≤ r, consists of a single point,
because the argument adapts also if αℓ has two arcs exiting from pi, simply by considering
them separately. To this aim, fix i and ℓ and denote αℓ = α, Jℓ = J . Without loss of
generality, assume pi = 0, Br(0) = Br, and suppose that J ∩ Br is parametrized by arc
length on [0, R], with α(0) = 0 and α(R) ∈ ∂Br, where R(r) = R = H1(J ∩ Br). We can
express the gradient of Φ−1

r as follows:

∇Φ−1
r (y) = f ′r(|y|)

y

|y|
⊗ y

|y|
+ fr(|y|)∇

(
y

|y|

)
= f ′r(|y|)

y

|y|
⊗ y

|y|
+
fr(|y|)
|y|

Π(y), (5.2.8)

where

Π(y) := Id− y ⊗ y
|y|2

,

and we used that

∇
(
y

|y|

)
=

1

|y|
Π(y). (5.2.9)

From (5.2.6), we have ˙̂α = ∇Φ−1
r (α)α̇, and using (5.2.8) and |α̇| = 1,

| ˙̂α| ≤ f ′r(|α|) +
fr(|α|)
|α|

|Π(α)α̇| . (5.2.10)

Notice that if r is small, the function t 7→ |α(t)| =: σ(t) is C1 and invertible from [0, R] to

[0, r]. Moreover, σ′(t) = α(t)
|α(t)| · α̇(t)→

α̇(0)
|α̇(0)| · α̇(0) = |α̇(0)| = 1 as t→ 0+. Let us integrate

on [0, R] the term f ′r(|α|): performing the change of variable σ(t) = ρ, we get∫ R

0
f ′r(|α(t)|)dt =

∫ R

0
f ′r (σ(t)) dt =

∫ r

0
f ′r(ρ)

dρ

σ′(σ−1(ρ))
≤ 2

∫ r

0
f ′r(ρ)dρ,

where in the last inequality we used that, for small r, σ′(σ−1(ρ)) ≥ 1
2 for every ρ ∈ [0, r].

Sending r to 0+, we have that
∫ R
0 f ′r(|α(t)|)dt→ 0 by integrability of f ′ near to the origin.

In order to estimate the second term on the right hand side of (5.2.10), we can use a

Taylor expansion of α around 0, writing α(t) = vt+ wt2 + o(t2), with v = α̇(0), w = α̈(0)
2 ,

and limt→0+ o(t
p)/tp = 0. We have

Π(α)α̇ = Π(vt+ wt2 + o(t2))(v + 2wt+ o2(t)) = Π(v + wt+ o1(t))(v + 2wt+ o2(t)),

where o1(t) = o(t2)/t and o2(t) = o(t). Writing v + 2wt + o2(t) = v + wt + o1(t) + wt +
o2(t)− o1(t), we get

Π(α)α̇ = Π(v + wt+ o1(t))(v + wt+ o1(t)) + Π(v + wt+ o1(t))(wt+ o2(t)− o1(t)).
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The first term on the right hand side is 0 and the norm of the second term can be estimated
from above by |w|t + o(t). Now, by definition of arc length parameter, R = H1(sptα ∩
Br(0)) → 0 as r → 0+. Moreover, by Taylor expansion, |α(t)| > t

2 for t small enough.

Therefore, since fr(0) = r
2 , for r small enough we have fr(|α(t)|)

|α(t)| ≤ 2r
t on [0, R]. So, inte-

grating on [0, R] the second term on the right hand side of (5.2.10),∫ R

0

fr(|α(t)|)
|α(t)|

|Π(α(t))α̇(t)| dt ≤
∫ R

0

2r

t
(|w|t+ o(t))dt→ 0 as r → 0+.

Step 2 : Let Ĵ = Ĵl be the support of α̂; let us show that there is a parametrization of

Ĵ ∩ (Br \Br/2) on an interval [0, L], which is of class C2 up to 0 and with vanishing second

derivative at 0. Indeed, set L := H1(Ĵ ∩ (Br \Br/2)) and consider the arc-length parameter
s ∈ [0, L] given by

s(t) =

∫ t

0
|Vr(α(τ))|dτ,

where

Vr(α) := ∇Φ−1
r (α)α̇.

We compute

d2

ds2
α̂(t) =

d

ds

(
Vr(α)

|Vr(α)|

)
= Π(Vr(α))

(
∇2Φ−1

r (α) : (α̇⊗ α̇) +∇Φ−1
r (α)α̈

|Vr(α)|2

)
. (5.2.11)

Here and in what follows, α is evaluated at t = t(s) and α̇ and α̈ denote the first and second
derivative of α with respect to t. The operation : between a tensor T = (Tijk) ∈ R2×2×2

and a matrix M = (Mij) ∈ R2×2 is defined as the vector T : M ∈ R2 with components
(T :M)k = TijkMij for k = 1, 2.
We get ∣∣∣∣ d2ds2 α̂(t)

∣∣∣∣ ≤ ∣∣∣∣Π(Vr(α))(∇2Φ−1
r (α) : (α̇⊗ α̇)
|Vr(α)|2

)∣∣∣∣+ |∇Φ−1
r (α)α̈|
|Vr(α)|2

≤
∣∣∣∣Π(Vr(α))(∇2Φ−1

r (α) : (α̇⊗ α̇)
|Vr(α)|2

)∣∣∣∣+ C
f ′r(|α|) +

fr(|α|)
|α|

|Vr(α)|2
. (5.2.12)

where we have used (5.2.8) and that α̈ is bounded.
The Hessian of Φ−1

r can be computed as

∇2Φ−1
r (y) =f ′′r (|y|)

y

|y|
⊗ y

|y|
⊗ y

|y|
+ f ′r(|y|)∇

(
y

|y|
⊗ y

|y|

)
+

+ f ′r(|y|)
y

|y|
⊗ ∇

(
y

|y|

)
+ fr(|y|)∇2

(
y

|y|

)
=f ′′r (|y|)

y

|y|
⊗ y

|y|
⊗ y

|y|
+ f ′r(|y|)∇

(
y

|y|

)
⊗ y

|y|
+

+ 2f ′r(|y|)
y

|y|
⊗ ∇

(
y

|y|

)
+ fr(|y|)∇

(
∇
(
y

|y|

))
.
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Then, by (5.2.9), we have

∇2Φ−1
r (α) =f ′′r (|α|)

α

|α|
⊗ α

|α|
⊗ α

|α|
+

(
f ′r(|α|)
|α|

− 2
fr(|α|)
|α|2

)
Π(α)⊗ α

|α|

+

(
2
f ′r(|α|)
|α|

− fr(|α|)
|α|2

)
α

|α|
⊗Π(α).

So, for k = 1, 2, we have(
∇2Φ−1

r (α) : (α̇⊗ α̇)
)
k

=f ′′r (|α|)
((

α

|α|
⊗ α

|α|
⊗ α

|α|

)
: (α̇⊗ α̇)

)
k

+

(
f ′r(|α|)
|α|

− 2
fr(|α|)
|α|2

)((
Π(α)⊗ α

|α|

)
: (α̇⊗ α̇)

)
k

(5.2.13)

+

(
2
f ′r(|α|)
|α|

− fr(|α|)
|α|2

)((
α

|α|
⊗Π(α)

)
: (α̇⊗ α̇)

)
k

. (5.2.14)

Notice that, since Π(α) is symmetric,

Π(α)ijαj = 0, Π(α)ijαi = 0, (5.2.15)

where we sum on repeated indeces. So, using (5.2.15) and that, from Taylor expansion,

α̇(t) = v + 2wt+ o(t) = α(t)
t + wt+ o(t), we have((

Π(α)⊗ α

|α|

)
: (α̇⊗ α̇)

)
k

= Π(α)ijα̇iα̇j
αk

|α|
= Π(α)ij

(αi

t
+ wit+ o(t)

)
α̇j
αk

|α|
=

= Π(α)ij (wit+ o(t)) α̇j
αk

|α|
;

((
α

|α|
⊗Π(α)

)
: (α̇⊗ α̇)

)
k

=
αi

|α|
Π(α)jkα̇iα̇j =

αi

|α|
Π(α)jk

(αj

t
+ wjt+ o(t)

)
α̇i

=
αi

|α|
Π(α)jk (wjt+ o(t)) α̇i.

So, the norm of the sum of (5.2.13) and (5.2.14) can be easily estimated by

3

(
f ′r(|α|)
|α|

+
fr(|α|)
|α|2

)
(|w|t+ o(t)) ≤ C

(
f ′r(|α|) +

fr(|α|)
|α|

)
,

where we used that, for t small, |α(t)| ≥ t
2 .

Therefore, (5.2.12) becomes

∣∣∣∣ d2ds2 α̂(t)
∣∣∣∣ ≤ ∣∣f ′′r (|α|)∣∣

∣∣∣∣∣Π(Vr(α))
(

α
|α| ⊗

α
|α| ⊗

α
|α| : (α̇⊗ α̇)

|Vr(α)|2

)∣∣∣∣∣+ C
f ′r(|α|) +

fr(|α|)
|α|

|Vr(α)|2
. (5.2.16)
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Now we treat the first term of the right hand side of (5.2.16). For j = 1, 2, by definition
of Vr(α), using Taylor expansion and (5.2.15), we have

(Vr)j(α) = f ′r(|α|)
αiαj

|α|2
α̇i + fr(|α|)Π(α)ijα̇i

= f ′r(|α|)
αiαj

|α|2
(αi

t
+ wit+ o(t)

)
+ fr(|α|)Π(α)ij

(αi

t
+ wit+ o(t)

)
= f ′r(|α|)

(
αj

t
+
αiαj

|α|2
wit+ o(t)

)
+ fr(|α|)Π(α)ij (wit+ o(t))

= f ′r(|α|)
(αj

t
+ o(t)

)
+ fr(|α|)Oj(t),

(5.2.17)

where in the last equality we used that αiwi = o(t), since viwi = 0 because |α̇| = 1, and we
setted Oj(t) := Π(α)ij(wit+ o(t)), meaning that limt→0+ |Oj(t)|/t < +∞. Then, we get

α = t

(
Vr(α)−O(t)

f ′r(|α|)
+ o(t)

)
.

So,

Π(Vr(α))

α
|α| ⊗

α
|α| ⊗

α
|α| : (α̇⊗ α̇)

|Vr(α)|2
=
αiαj

|α|2
α̇iα̇jΠ(Vr(α))

α
|α|

|Vr(α)|2

=
αiαj

|α|2
α̇iα̇j

t

|α|
Π(Vr(α))

(
Vr(α)−O(t)

f ′
r(|α|)

+ o(t)
)

|Vr(α)|2

=
αiαj

|α|2
α̇iα̇j

t

|α|
Π(Vr(α))

(
O(t)

f ′
r(|α|)

+ o(t)
)

|Vr(α)|2
,

where we used that Π(Vr(α))Vr(α) = 0. For t small, we get∣∣∣∣∣Π(Vr(α))
α
|α| ⊗

α
|α| ⊗

α
|α| : (α̇⊗ α̇)

|Vr(α)|2

∣∣∣∣∣ ≤ 2

O(t)
f ′
r(|α|)

+ o(t)

|Vr(α)|2
.

Finally, from (5.2.16), we obtain∣∣∣∣ d2ds2 α̂(t)
∣∣∣∣ ≤ ∣∣f ′′r (|α|)∣∣ O(t)

f ′
r(|α|)

+ o(t)

|Vr(α)|2
+ C

f ′r(|α|) +
fr(|α|)
|α|

|Vr(α)|2
.

From the definition of fr, we have that fr(|α(t)|) = r
2 + t

1
3 + o(t

1
3 ) for t near to 0. So,

by (5.2.17), we have |Vr(α(t))| ≥ Cf ′r(|α(t)|) = Ct−
2
3 + o(t−

2
3 ). Then, since |f ′′r (|α(t)|)| =

Ct−
5
3 + o(t−

5
3 ), a straightforward check shows that

d2

ds2
α̂(t)→ 0 as t→ 0+. (5.2.18)

We conclude that the curve α̂ is C2 up to 0 with vanishing second derivative, and hence
can be extended on the interval (− r

2 , 0) to a (not relabeled) curve α̂ whose support is a
straight segment connecting α̂(0) to 0 (namely a radius of Br/2(0)). Going back to the
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curves α̂ℓ, we have just proved that we can extend them in Br/2(pi) with C2-regularity
using a segment along a radius, reaching pi. In particular, the new supports of α̂ℓ’s form
a N i-junction point around pi in Br/2(pi), whose circular sectors Ĉi

j (j = 1, . . . , Ni) have

amplitudes θ1i , . . . , θ
Ni
i (according to Lemma 5.1.3). Up to a reparametrization by arc-

length of α̂ℓ, we will suppose that α̂ℓ : [âℓ, b̂ℓ] → R2 have always derivative of modulus
1.

Step 3 : We are ready to extend the map ur in Br/2(pi). We eventually observe that,

from (5.2.7), ur(x) = γi
(
2
r (x− pi)

)
on ∂Br/2(pi) (see Lemma 5.1.3), and hence it is con-

stant on any arc with angular coordinate in (aj−1
i , aji ). Hence we define

ur(x) := γi
(
x− pi
|x− pi|

)
x ∈ B r

2
(pi). (5.2.19)

Now, ur satisfies the hypotheses of Corollary 3.2.12 in Ωr := Ω \ (∪mi=1Br/4(pi)), where all
the curves α̂j satisfy hypotheses (H3), and they run on a straight segment (along a radius
of Br/2(pi)) inside Br/2(pi) \ Br/4(pi). Then we introduce a sequence of Lipschitz maps

ṽk : Ωr → R2 which are defined as in (3.2.42), where, we recall, ε = 1
k , with ur in place of

u and Λ = id; in particular, for k large enough, the trace of ṽk on ∂Br/3(pi) is a piecewise
affine map coinciding with γk in (4.2.8), with βi in place of αi. Thus, if we introduce also
the sequence of Lipschitz maps v̂k : Br/2(pi) → R2 as in (4.2.12) (with Br replaced by
Br/2(pi)) we see that ṽk = v̂k on ∂Br/3(pi). Therefore we define

vrk :=

{
ṽk in Ω \ (∪mi=1Br/3(pi))

v̂k in ∪mi=1 Br/3(pi),
(5.2.20)

and we readily see that vrk → ur strictly BV (Ω;R2).

Since the supports of αℓ and α̂ℓ coincide out of ∪iBr(pi), there exist ârℓ , b̂
r
ℓ ∈ [âℓ, b̂ℓ] and

arℓ , b
r
ℓ ∈ [aℓ, bℓ], with â

r
ℓ < b̂rℓ and arℓ < brℓ , such that

α̂ℓ([â
r
ℓ , b̂

r
ℓ ]) = αℓ([a

r
ℓ , b

r
ℓ ]), α̂ℓ(â

r
ℓ) = αℓ(a

r
ℓ), α̂ℓ(̂b

r
ℓ) = αℓ(b

r
ℓ).

In particular, b̂rℓ − ârℓ = brℓ − arℓ , so up to a translation of the parameter interval of [âℓ, b̂ℓ],

we can suppose ârℓ = arℓ and b̂rℓ = brℓ . Clearly, arℓ → aℓ non increasingly and brℓ → bℓ non
decreasingly as r → 0+.
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In view of Corollary 3.2.12 and Theorem 4.2.4 we conclude

ABV (ur,Ω) ≤ lim
k→+∞

A(vrk,Ω)

=

∫
Ω\(∪m

i=1Br(pi))
|M(∇u)| dx+

n∑
ℓ=1

∫
[âℓ ,̂bℓ]×I

|∂tXaff
ℓ,r ∧ ∂sXaff

ℓ,r | dtds

+

∫
∪m
i=1(Br(pi)\Br/3(pi))

|M(∇ur)| dx+m
πr2

9
+

m∑
i=1

P (γi)

=

∫
Ω\(∪m

i=1Br(pi))
|M(∇u)| dx+

n∑
ℓ=1

∫
[arℓ ,b

r
ℓ ]×I
|∂tXaff

ℓ ∧ ∂sXaff
ℓ | dtds

+

m∑
i=1

P (γi) +

∫
∪m
i=1(Br(pi)\Br/3(pi))

|M(∇ur)| dx

+

n∑
ℓ=1

∫
([â

r/3
ℓ ,arℓ ]∪[b

r
ℓ ,̂b

r/3
ℓ ])×I

|∂tXaff
ℓ,r ∧ ∂sXaff

ℓ,r | dtds

+
r

3

m∑
i=1

Ni∑
j=1

|βji − β
j+1
i |+m

πr2

9
,

(5.2.21)

where for all ℓ = 1, . . . , n we have âℓ ≤ â
r/3
ℓ ≤ arℓ < brℓ ≤ b̂

r/3
ℓ ≤ b̂ℓ, where α̂ℓ(â

r
3
ℓ ) ∈

∂Br/3(pi), α̂ℓ(̂b
r
3
ℓ ) ∈ ∂Br/3(pj) for some i, j ∈ {1, . . . ,m}, unless one of them belongs to

∂Ω, and where Xaff
ℓ,r is defined as Xaff

ℓ with ur replacing u.
Now, since by (5.2.4) |ψ′

r| ≤ C, ur is still a piecewise Lipschitz map on Ω, hence, by
Step 1, the last four terms in (5.2.21) are negligible as r → 0+. We then conclude, provided
that ur → u strictly BV (Ω;R2), that

ABV (u,Ω) ≤ lim inf
r→0+

ABV (ur,Ω)

≤
∫
Ω
|M(∇u)| dx+

n∑
ℓ=1

∫
[aℓ,bℓ]×I

|∂tXaff
ℓ ∧ ∂sXaff

ℓ | dtds+
m∑
i=1

P (γi),

that is the thesis. In order to check that ur → u strictly BV (Ω;R2) it is sufficient to
observe that u = ur outside ∪mi=1Br(pi) and that

lim sup
r→0+

|Dur|(∪mi=1Br(pi))

≤ lim sup
r→0+

lim sup
k→+∞

∫
∪m
i=1Br(pi)

√
1 + |∇vrk|2 dx

≤ lim sup
r→0+

lim
k→+∞

A(vrk;∪mi=1Br(pi))

= lim sup
r→0+

(∫
∪m
i=1(Br(pi)\Br/3(pi))

|M(∇ur)| dx+m
πr2

9

+

n∑
ℓ=1

∫
([â

r/3
ℓ ,ârℓ ]∪[̂b

r
ℓ ,̂b

r/3
ℓ ])×I

|∂tXaff
ℓ,r ∧ ∂sXaff

ℓ,r | dtds+
r

3

m∑
i=1

Ni∑
j=1

|αi
j − αi

j+1|
)
= 0.

The proof is complete.



Chapter 6

Open problems

In this final chapter we briefly collect some open questions and further directions to explore.
We start with the BV -relaxed area and the problem of proving its subaddivity, that we
expect to be true at least in dimension 2 and codimension 2. Next, we present some
problems related to the L1-relaxed area, trying to formulate and motivate some conjectures.

6.1 On the subaddivity of ABV (u; ·)
Besides a satisfying characterization of Dom(ABV (· ; Ω)), the main question still left open
from our analysis is whether, for u ∈ BV (Ω;R2), the set function ABV (u; ·) is subadditive,
and if it gives rise to a measure. The relevant examples in the previous chapters and
the existence of a unique minimal lifting current for u ∈ Dom(ABV (· ; Ω)) give hope to a
positive answer.
A possible strategy could be to use a technique from the context of Γ-convergence, the so
called fundamental estimate (see [19, Chapter 18]), in order to exploit the slicing properties
of strict convergence. More in details, assume that u ∈ BV (Ω;R2) is such thatABV (u; Ω) <
+∞ and let A′, A′′, B ⊂ Ω be open sets, with A′ ⊂⊂ A′′. Set S = (A′′ \ A′) ∩ B and fix
recovery sequences (vk) for ABV (u;A

′′) and (uk) for ABV (u;B). We would like to prove
an estimate like this: for every ε > 0, there exist M = M(ε,A′, A′′, B) > 0 and a cut off
function φk between A′ and A′′, such that

A
(
φkvk + (1− φk)uk;A

′ ∪B
)

≤ (1 + ε)
(
A(vk;A′′) +A(uk, B)

)
+ ε

(
∥uk∥L1(S;R2) + ∥vk∥L1(S;R2) +

∫
S
|∇uk|dx+

∫
S
|∇vk|dx+ 1

)
+M

(
∥uk − vk∥L1(S;R2) +

∣∣∣∣∫
S
|∇vk|dx−

∫
S
|∇uk|dx

∣∣∣∣) .
Notice that as k → +∞, ε→ 0+, and A′ ↗ A′′, this inequality would imply

ABV (u;A
′′ ∪B) ≤ ABV (u;A

′′) +ABV (u;B).

However, it seems hard to control the contribution of the Jacobian determinant of the
interpolation map φkuk + (1− φk)vk on the strip S. More specifically, it is not restrictive

105
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to assume that A′ ∩ B, S and B \ A′′ are disjoint, pairwise adjacent rectangles. Let
S = [−δ, δ] × [−h, h] and set φ(t) := 0 if t < −δ, φ(t) := t−δ

2δ , φ(t) := 1 if t > δ. Define
wk(t, s) = φ(t)uk(t, s) + (1 − φ(t))vk(t, s), then wk → u strictly BV (A′ ∪ B;R2). For
simplicity, let us consider just TVJ : if we compute the expression of Jwk, we end up with

Jwk =φ′(u1k − v1k)[φ∂su2k + (1− φ)∂sv2k] + φ′(u2k − v2k)[φ∂su1k + (1− φ)∂sv1k]
+ φ2Juk + (1− φ)2Jvk + φ(1− φ)[∂tu1k∂sv2k + ∂tv

1
k∂su

2
k − ∂tu2k∂sv1k − ∂tu1k∂tv2k]

and most of the terms are difficult to treat under the only assumption of strict convergence.
However, under the further assumption that u ∈ W 1,1(Ω;R2), we can define in a slightly
different way the sequence (wk) and the situation simplifies a lot. Indeed, we can assume
that u {t = ±δ} are continuous and uk {t = ±δ}, vk {t = ±δ} → u {t = ±δ} strictly
BV . Set v {t = ±δ} := v±δ. Define wk(t, s) = φ(t)vδk(s) + (1− φ(t))u−δ

k (s), then

Jwk = φ′(u−δ,1
k − vδ,1k )[φ∂su

−δ,2
k +(1−φ)∂svδ,2k ] +φ′(u−δ,2

k − vδ,2k )[φ∂su
−δ,1
k +(1−φ)∂svδ,1k ].

Unfortunately, for any δ = δk → 0, the properties of strict convergence on the slices
{t = ±δk} are not enough to control

∫
S |Jwk| with an o(δk). The core issue is to figure

out how to use at the level of slices that u ∈ Dom(ABV (· ; Ω)). Another issue would
be to remove the assumption u ∈ W 1,1: we do not have directly uniform convergence
on slices, but only at the level of reparametrizations, so the question is how to glue the
reparametrizations of uk and vk on slices with the “true” sequences uk and vk. For the
moment, we have no clue about how to proceed.

Another possibility, unless it does not lead to the same issues, is to consider a sort of
countably subadditive envelope of ABV (u; ·), namely, the set function defined by

ABV (u;A) := inf

{ ∞∑
i=1

ABV (u;Ai); Ai open, A =
∞⋃
i=1

Ai

}
∀A ⊂ Ω open. (6.1.1)

The idea of this “double relaxation” goes back to the groundbreaking lecture by De Giorgi
in [20], where he defines it for the L1-relaxed area, in order to replace it with a measure.
Indeed, the set function defined in (6.1.1) is clearly a measure, and so the goal is to prove

that ABV (u;A) = ABV (u;A) for every open set A ⊂ Ω.
Of course, the most ambitious strategy remains to prove directly an integral representation
formula for ABV (u; Ω) for a generic u ∈ Dom(ABV (· ; Ω)). In order to apply what we have
obtained so far, one can begin with proving some kind of density result in BV for the
class of piecewise Lipschitz maps of Chapter 5 with respect to the strict convergence (we
are thinking in the direction of [34], for instance). If one were able to pass to the limit
in (5.2.1) and ends up again with an integral formula, then this should provide an upper
bound for ABV (u; Ω), that one could conjecture to be optimal.
Concerning the case of higher dimension and codimension, we have less explicit examples
and so, we are not able to guess whether the BV -relaxed area could be subadditive. We
have also less arguments in favour, since in higher dimension we loose the inheritance of
strict convergence on 2-dimensional slices, while in higher codimension we do not have
uniqueness of the minimal lifting current (see [40]).
After all, we can say that the idea of studying the functional ABV significantly simplified
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the analysis and enabled us to compute it for relevant classes of singular maps, but, on
the other hand, the story is far from being to an end, and many efforts are still required
to completely understand it.

6.2 Some extension to higher dimension and codimension

In Theorem 4.3.15 of Chapter 4 we computed the explicit expression of ABV for homoge-
neous maps valued in R2. We believe that a similar result holds true also for homogeneous
maps valued in Rm. More explicitely, if γ ∈ BV (S1;Rm) and u is its homogeneous extension
on Bℓ, then we conjecture that

ABV (u;Bℓ) =

∫
Bℓ

√
1 + |∇u|2dx+ |Dsu|(Bℓ) + Pm(γ),

where Pm(γ) is the relaxation of the (singular) Plateau problem in Rm defined as

Pm(φ) = inf

{∫
B1

|∂x1v ∧ ∂x2v|dx; v ∈ Lip(B1;Rm) : v|∂B1
= φ

}
for φ ∈ Lip(S1;Rm). Indeed, Pm(·) should have the same fundamental features as P (·),
namely the invariance by rescaling and the continuity property with respect to the strict
convergence. Moreover, one can define also in this case the ”completed” curve γ̃ associated
to γ and should be able to prove that Pm(γ) = Pm(γ̃).
Another possible extension can be consider for Theorem 2.3.6 in the case of maps u ∈
W 1,1(Ω;S1), where Ω is an open bounded set of Rn, n ≥ 3. Indeed, for maps with finite
relaxed energy, we expect the singularities to be detected by the distributional Jacobian
determinant, that lives in a set of codimension two. These issues are contained in some
work in progress.

6.3 On the L1-relaxed area

Although the focus of this thesis is the BV -relaxed area, it is worth to briefly mention some
challenging problems concerning the L1-relaxed area, on which we started to work. First,
we recall that one of the main motivations to study the functional AL1(· ; Ω) is the approach
to the Plateau problem in codimension 2. A possible formulation, with Dirichlet boundary
conditions, can be the following: Let Ω ⊂ R2 an open bounded set with C1-boundary and
φ ∈ L1(Ω;R2), then consider (compare [28])

inf
{
AL1(u; Ω);u ∈ BV (Ω;R2) : u = φ on ∂Ω

}
. (6.3.1)

Of course, the analysis of the L1-relaxed area is preliminary to address the problem (6.3.1).

6.3.1 Perturbated vortex

Let φ ∈ C∞
c (Bℓ \ {(0, 0)}) and let u : Bℓ :→ S1 be a vortex with perturbation φ, i.e. in

complex coordinates u(ρ, θ) = ei(θ+φ(ρ,θ)) for ρ ∈ (0, ℓ], θ ∈ [0, 2π). Following some ideas
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in [5], we conjecture that the singular contribution of AL1(u;Bℓ) is the result of an area-
minimizing problem among all catenoids having a curve as a constraint, and among all
curves connecting the origin to ∂Bℓ. The choice of a minimizing path must highly depend
on φ. Moreover, its existence and regularity properties are not clear, in general. Typically,
the lack of symmetry of this problem should represent a relevant issue.

6.3.2 Double vortex

Let u : Bℓ → S1 be the double vortex map, i.e. a vortex with degree and multiplicity
equal to 2. In complex coordinates, u(ρ, θ) = e2iθ for ρ ∈ (0, ℓ], θ ∈ [0, 2π). We conjecture
that the singular contribution of AL1(u;Bℓ) is the solution of a non-standard Plateau
problem, whose minimal profile looks like a double (half) catenoid departing from the
circular hole in the graph upon the origin and attaching to the boundary of the cartesian
domain (compare [6]). The bigger catenoid has a constrained segment connecting the origin
to the boundary of the domain, and partial free boundary, while the smaller one seems
to be a standard catenoid, which should coincide with the bigger one on part of the free
boundary. More explicitely, let1 R2ℓ = (0, 2ℓ)× (−1, 1) and consider

H = {h : [0, 2ℓ]→ [−1, 1] convex, h(0) = h(2ℓ) = 1},
K = {k : [0, 2ℓ]→ [−1, 1] concave, k(0) = k(2ℓ) = −1}.

Notice that H and K could contain discontinuous maps: for instance the map h = −1
on (0, 2ℓ), with h = 1 at 0 and 2ℓ, belongs to H. For a map v : [0, 2ℓ] → R, denote by
UGv = {(x, y) ∈ R2ℓ : y > v(x)} and SGv = {(x, y) ∈ R2ℓ : y < v(x)}. Define the spaces

Fh = {f ∈ BV (R2ℓ) : f = 0 on UGh},
Gh,k = {g ∈ BV (R2ℓ) : f = 0 on UGh ∪ SGk}.

Now we want to minimize the functional

W (f, g, h, k) = AL1(f,R2ℓ)+AL1(g,R2ℓ)+

∫
∂R2ℓ

|f−φ|dH1+

∫
∂R2ℓ

|g−φ|dH1−|UGh|−|SGk|

where φ(x, y) =
√

1− y2 for (x, y) ∈ R2ℓ, among all functions f ∈ Fh, g ∈ Gh,k, h ∈ H,
k ∈ K, with the condition h ≥ k in [0, 2ℓ]. Then we conjecture that

AL1(u;Bℓ) =

∫
Bℓ

√
1 + |∇u|2dx+ inf

f,g,h,k
W. (6.3.2)

For large values of ℓ, this double (half) catenoid must degenerate in four half unit disks,
recovering the result in Theorem 2.2.3, which is compatible with the vortex case.
The proof of the lower bound in (6.3.2) is probably very complicated, but at least we can
exploit the symmetries of the problem.
Moreover, we believe that the same can be conjectured for a vortex with generic degree d,
by constructing a d-ple catenoid, with the small inner catenoid covered (d− 1) times.

1We are doubling the length of the radius and cutting the surface in half, so that the area does not
change (see [6]).
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6.3.3 Multipole I

Let u : R2 → S1 be a multipole map, i.e. u ∈W 1,1
loc (R

2;S1) with a finite number of singular
points xi, i = 1, . . . , N (as in (2.1.9), Chapter 2). Assume also that deg(u) has constant
sign around each xi (in other words, if di is the degree of u around xi, then either di > 0
for every i or di < 0 for every i.) We conjecture that if ℓ is large enough, then

AL1(u;Bℓ) =

∫
Bℓ

√
1 + |∇u|2dx+ π

N∑
i=1

|di|. (6.3.3)

Notice that the right hand side coincides with ABV (u;Bℓ), by Theorem 2.3.6. Roughly,
the fact that ℓ is large should prevent the interaction of each pole with the boundary
of Ω (compare [1, Lemma 5.2]), so that one cannot construct a di-ple catenoid like in
Subsection 6.3.2. Moreover, since the degree has the same sign at each xi, we do not
expect any interaction between the poles either. Therefore, the relaxed area functional
should ”localize” around xi and the only way to fill the hole generated by the cavitation
must be the trivial one, with a unit disk of multiplicity |di|.
We believe that a similar formula holds true also in higher dimension, i.e. for u : Rn →
Sn−1, u ∈W 1,n−1

loc (Rn;Sn−1) with the same properties as before, motivated also by the fact
that the proof of [1, Lemma 5.2] is valid in every dimension.
Of course, since the configuration of the poles is arbitrary, we cannot expect to have any
symmetry property at our disposal.

6.3.4 Multipole II

We expect the same behaviour as in (6.3.3) also if we relax the hypotheses on the degrees,
but we add the condition of ”well separated” poles: Let u : R2 → S1 be a multipole map
with a finite number of singular points {xi}i=1,...,N . Let Ω ⊂ R2 be an open bounded
set containing xi for every i. Then we conjecture that there exists r0 > 0 such that, if
mini,j=1,...,N dist(xi, xj) ≥ r0 and dist(xi, ∂Ω) ≥ r0, then

AL1(u; Ω) =

∫
Ω

√
1 + |∇u|2dx+ π

N∑
i=1

|di|.

Again, the argument should generalize in every dimension.

6.3.5 Multipole III

If we omit both the hypotheses on well separation between the poles and between each pole
and the boundary of the domain, and we do not assume anything on the degree at each
singularity, then the poles are free to interact together and with the boundary of Ω. In this
case, the situation is more involved, but we think that an optimal profile of the minimal
surfaces filling the holes should always be made by catenoids like in Subsection 6.3.2, with
the corresponding degree, which are constrained to the minimal connection path between
the xi’s. This path could connect xi also to ∂Ω, generating a ”virtual” pole of opposite
degree at ∂Ω (see [12]).
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6.3.6 Symmetric quadruple point

Let u : Bℓ → {α1, α2, α3, α4} be the symmetric quadruple point map, as in Remark 2.4.3
for n = 4. We expect a result similar to [8] in the expression of the L1-relaxed area, but
it is not clear which is the boundary datum of the 4 Plateau problems entagled at the
target plane. In fact, we have at least 2 possibilities: one is the path made by the two
diagonals of the square Pα1α2α3α4 (that is rotationally symmetric), the second path one
of the two Steiner graphs, which have of course minimal length (but it is not rotationally
symmetric). We do not know which is the most convenient datum in terms of area surface
in the corresponding Plateau problem, but we believe that at least if ℓ is small enough, the
Steiner graph is the best candidate.
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[34] J. Kristensen and F. Rindler. Piecewise affine approximations for functions of
bounded variation, Numer. Math. 132 (2016), 329–346.
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