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Abstract: We consider the discrete defocusing nonlinear Schrödinger equation in its
integrable version, which is called defocusing Ablowitz–Ladik lattice.We consider peri-
odic boundary conditions with period N and initial data sampled according to the Gener-
alized Gibbs ensemble. In this setting, the Lax matrix of the Ablowitz–Ladik lattice is a
random CMV-periodic matrix and it is related to the Killip-Nenciu Circular β-ensemble
at high-temperature. We obtain the generalized free energy of the Ablowitz–Ladik lat-
tice and the density of states of the random Lax matrix by establishing a mapping to
the one-dimensional log-gas. For the Gibbs measure related to the Hamiltonian of the
Ablowitz–Ladik flow, we obtain the density of states via a particular solution of the
double-confluent Heun equation.

1. Introduction

The defocusing Ablowitz–Ladik (AL) lattice for the complex functions α j (t), j ∈ Z

and t ∈ R, is the system of nonlinear equations

i α̇ j = −(α j+1 + α j−1 − 2α j ) + |α j |2(α j−1 + α j+1) , (1)

where α̇ j = dα j

dt
. We assume N -periodic boundary conditions α j+N = α j , for all

j ∈ Z. The AL lattice was introduced by Ablowitz and Ladik [1,2] as the spatial
integrable discretization of the defocusing cubic nonlinear Schrödinger Equation (NLS)
for the complex function ψ(x, t), x ∈ S1 and t ∈ R:

i∂tψ(x, t) = −∂2x ψ(x, t) + 2|ψ(x, t)|2ψ(x, t). (2)

The cubic NLS equation was proved to be integrable by Zakharov and Shabat [70].
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It is straightforward to verify that the quantity

K (0) :=
N∏

j=1

(
1 − |α j |2

)
, (3)

is a constant of motion for the AL lattice, namely
d

dt
K (0) = 0. This implies that if

|α j (0)| < 1 for all j ∈ Z, then |α j (t)| < 1 for all t > 0. We chose the N -dimensional
disc DN as the phase space of the AL lattice, here D = {z ∈ C | |z| < 1}. On D

N we
introduce the symplectic form [23,30]

ω = i
N∑

j=1

1

ρ2
j

dα j ∧ dα j , ρ j =
√
1 − |α j |2. (4)

The corresponding Poisson bracket is defined for functions f, g ∈ C∞(DN ) as

{ f, g} = i
N∑

j=1

ρ2
j

(
∂ f

∂α j

∂g

∂α j
− ∂ f

∂α j

∂g

∂α j

)
. (5)

The phase shift α j (t) → e−2i tα j (t) transforms the AL lattice into the equation

i α̇ j = −ρ2
j (α j+1 + α j−1), ρ j =

√
1 − |α j |2, (6)

which we call the reduced AL equation. We remark that the quantity −2 ln(K (0)) is the
generator of the shift α j (t) → e−2i tα j (t), while H1 = K (1) + K (1) with

K (1) := −
N∑

j=1

α jα j+1, (7)

generates the flow (6). The AL equations (1) have the Hamiltonian structure

α̇ j = {α j , HAL}, HAL(α j , α j ) = −2 ln(K (0)) + K (1) + K (1). (8)

Integrability. As we have already said, the AL lattice was discovered by Ablowitz and
Ladik by discretizing the 2 × 2 Zakharov-Shabat Lax pair [1] of the cubic nonlinear
Schrödinger equation. For a comprehensive review see [3]. The integrability of the
Ablowitz–Ladik system has also been proved by constructing a bi-Hamiltonian structure
[9,23]. A techniques to calculate the τ -function correlators has been introduced in [15].

Using the connection between orthogonal polynomials on the unit circle and the AL
lattice, Nenciu and Simon [54,59] constructed a new Lax pair for the AL lattice that
sometimes is referred to as the big Lax pair and which put the AL equation on the same
foot as the Toda lattice. The link between orthogonal and biorthogonal polynomials on
the unit circle and the Ablowitz-Ladik hierarchy (see also [4], [43]) is the analogue of
the celebrated link between the Toda hierarchy and orthogonal polynomials on the real
line (see e.g. [19]). This link was also generalized to the non-commutative case [14] (see
also [16]). Generalization of this construction to other integrable equations has been
considered in [55].
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To construct the big Lax pair, we follow [54,59] and we double the size of the chain
according to the periodic boundary conditions, thus we consider a chain of 2N particles
α1, . . . , α2N such that α j = α j+N for j = 1, . . . , N . Define the 2 × 2 unitary matrix
	 j

	 j =
(

α j ρ j
ρ j −α j

)
, j = 1, . . . , 2N , (9)

and the 2N × 2N matrices

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

−α2N ρ2N
	2

	4
. . .

	2N−2
ρ2N α2N

⎞

⎟⎟⎟⎟⎟⎟⎠
, L =

⎛

⎜⎜⎝

	1
	3

. . .

	2N−1

⎞

⎟⎟⎠ . (10)

Now let us define the unitary Lax matrix

E = LM , (11)

that has the structure of a 5-band diagonal matrix
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .
. . .

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix E is a periodic CMV matrix (after Cantero Morales and Velsquez [17]). The
N -periodic reduced AL Eq. (6) is equivalent to the following Lax equation for the matrix
E :

Ė = i
[
E, E+ + (E+)†

]
, (12)

where † stands for hermitian conjugate and

E+
j,k =

⎧
⎪⎨

⎪⎩

1
2E j, j j = k
E j,k k = j + 1 mod 2N or k = j + 2 mod 2N
0 otherwise.

(13)

We observe that (E+)† + (E†)+ = E† and [E, E†] = 0 because E is unitary. Therefore,
one can write the Eq. (12) in the equivalent form

Ė = i
[
E, E+ − (E†)+

]
. (14)
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The formulation (12) implies that the quantities

K (
) = Tr
(
E

)

2
, 
 = 1, . . . , N − 1, (15)

are constants of motion for the defocusing AL system. For example

K (1) = −
N∑

j=1

α jα j+1, K (2) =
N∑

j=1

[(α jα j+1)
2 − 2α jα j+2ρ

2
j+1] .

Furthermore, K (0), K (1), . . . , K (N−1) are functionally independent and in involution,
showing that the N -periodic AL system is integrable [1,3,54].

Remark 1. The quantity 2�(K (1)) generates the reduces AL Eq. (6), while the quantity
−2�(K (1)) generates the flow

α̇ j = (1 − |α j |2)(α j+1 − α j ),

which is called Schur flow. The Schur flow emerges in [2] as a spatial discretization of
the defocusing modified Korteweg–de Vries equation

∂t f − 6 f ∂x f + ∂3x f = 0.

For the integration of the Schur flow and its relation to orthogonal polynomial on the
unit circle see [32,60].

Generalized Gibbs ensemble for the Ablowitz–Ladik lattice. The symplectic form ω

in (4) induces onDN the volume formdvol = 1

K (0)
d2α, with d2α =∏N

j=1(idα j ∧dα j ).

We observe that
∫
D

N dvol = ∞, however, we can define the Gibbs measure with respect
to the Hamiltonian HAL in (8) [68]:

1

Zβ

e− β
2 HALdvol = 1

Zβ

eβ�(K (1))
N∏

j=1

(1 − |α j |2)β−1d2α, β > 0, (16)

where Zβ = ∫
D

N eβ�(K (1))
∏N

j=1(1 − |α j |2)β−1d2α < ∞ is the normalizing constant.
The above probability measure is clearly invariant under the Hamiltonian flow α j (0) →
α j (t) associated to the Ablowitz–Ladik Eq. (1).

Since the Ablowitz–Ladik lattice posses several conserved quantities (15), one can
introduce a Generalized Gibbs Ensemble on the phase space DN in the following way.
Fix N 	 κ ≤ N − 1 and let us define

V (z) =
κ∑

m=1

ηm�(zm) , (17)

where ηm ∈ R are called chemical potentials. Then

Tr (V (E)) =
κ∑

m=1

ηm(K (m) + K (m)),
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where K (m) are the AL conserved quantities (15). The finite volume Generalized Gibbs
measure can be written as:

dPAL(α1, . . . , αN ) = 1

Z AL
N (V, β)

N∏

j=1

(
1 − |α j |2

)β−1
exp (−Tr (V (E))) d2α , (18)

where Z AL
N (V, β) is the partition function of the system:

Z AL
N (V, β) =

∫

DN

N∏

j=1

(
1 − |α j |2

)β−1
exp (−Tr (V (E))) d2α . (19)

Choosing the initial data of the Ablowitz–Ladik lattice according to the Generalized
Gibbs measure (18), the Lax matrix E turns into a random matrix. In [51] Mendl and
Sphon study the dynamic of the Ablowitz–Ladik lattice at non-zero temperature. They
study numerically correlation functions and in particular, introducing the density δ j =
�(α j+1α j ), they study the density-density correlation function

E
[
δ j (t)δ1(0)

]− E
[
δ j (t)
]
E [δ1(0)] ,

where E [·] is the expectation with respect to Gibbs measure (16). They showed numer-
ically that density-density time correlations in thermal equilibrium have symmetrically
located peaks, which travel in opposite directions at constant speed, broaden ballistically
and decay as 1/tγ when t → ∞, where the scaling exponent γ is approximately equal
to one. This behaviour is believed to be typical of integrable nonlinear systems.

More quantitative results have been obtained for linear (integrable) systems and for
the Toda lattice. It was shown in [34] that the fastest peaks of the correlation functions of
harmonic oscillators with short range interactions have a Airy type scaling. Regarding
nonlinear integrable systems in [61] Spohn was able to connect the Gibbs ensemble of
the Toda lattice to the Dumitriu-Edelman β-ensemble [21]. In this way, the generalized
Gibbs free energy of the Toda chain turns out to be related to the β-ensembles of random
matrix theory in themean-field regime [7,22]. The behaviour of the correlation functions
of the Toda chains has been derived by applying the theory of generalized hydrodynamic
[20,62].Wemention also the recent work [36], where the authors derive a large deviation
principle for the mean density of states for the Generalized Gibbs measure of the Toda
lattice.

2. Statement of the Results

In this manuscript we derive the mean density of states μ
β
AL of the random Lax matrix E

sampled according to generalized Gibbs measure (18) and we determine the free energy
of the AL generalized Gibbs ensemble

FAL(V, β) = lim
N→∞

1

N
log Z AL

N (V, β).

This is achieved by connecting the generalized Gibbs ensemble of the Ablowitz–Ladik
lattice to the Killip-Nenciu [42] matrix Circular β-ensemble at high-temperature inves-
tigated by Hardy and Lambert [37]. Further connections between discrete integrable
systems with Gibbs measure initial data and classes of random matrices has been ex-
plored in [33]. For connections between integrable PDEs and random objects see [6].
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Let M(T) be the space of probability measures on the torus T = [−π, π ] and for
μ ∈ M(T) let us consider the functional

F (V,β)(μ) = 2
∫

T

V (θ)μ(θ)dθ − β

∫ ∫

T×T

ln sin

( |θ − φ|
2

)
μ(θ)μ(φ)dθdφ

+
∫

T

ln (μ(θ)) μ(θ)dθ + ln(2π) .

(20)

Remark 2. Here and below, we make an abuse of notation by denoting the potential
V (z) = V (eiθ ) simply by V (θ).

For sufficiently regular potential V (θ), the functional (20) has a unique minimizer
μ

β
H T (dθ) = μ

β
H T (θ)dθ , [58], that describes the density of states of the Circular β-

ensemble at high-temperature [37]. For finite β and smooth potentials V (θ), it has been
shown by Hardy and Lambert in [37] that the minimizer μ

β
H T (dθ) has a smooth density

and its support is the whole torus T.

Theorem 1 (First Main theorem). Consider β > 0 and a smooth potential V as in (17)
on the unit circle T. The mean density of states μ

β
AL(dθ) := μ

β
AL(θ)dθ of the Ablowitz–

Ladik Lax matrix E in (11) endowed with the probability (18) is absolutely continuous
with respect to the Lebesgue measure and takes the form

μ
β
AL(θ) = ∂β

(
βμ

β
H T (θ)

)
a.e., (21)

where μ
β
H T is the unique minimizer of the functional (20).

To prove the above theorem we derive a relation (see Proposition 8) between the
free energy of the β-ensembles at high-temperature, namely the minimum value of the
minimizer (20)

FH T (V, β) := F (V,β)(μ
β
H T ),

and the free energy FAL(V, β) of the AL lattice:

FAL(V, β) = ∂β (βFH T (V, β)) + ln(2).

Such relation is obtained via transfer operator techniques.
The particular case V (θ) = 2η cos θ corresponds to the free energy associated to

the AL Eq. (1), and we show that the minimizer of the functional (20) is obtained via a
particular solution of the Double Confluent Heun (DCH) equation.

Theorem 2 (Second main theorem). Fix β > 0 and let V (θ) = η cos θ , where η is
a real parameter. There exists ε > 0 such that for all η ∈ (−ε, ε), the minimizer
μ

β
H T (dθ) = μ

β
H T (θ)dθ of the functional (20) takes the form

μ
β
H T (θ) = 1

2π
+

1

πβ
�
(

zv′(z)
v(z)

)
∣∣z=eiθ

, (22)
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where v(z) is the unique solution (up to a multiplicative non-zero constant) of the Double
Confluent Heun (DCH) equation

z2v′′(z) +
(
−η + z(β + 1) + ηz2

)
v′(z) + ηβ(z + λ)v(z) = 0 (23)

analytic for |z| ≤ r with r ≥ 1. Such solution is differentiable in the parameter η and
β. The parameter λ = λ(η, β) in (23) is determined for η ∈ (−ε, ε) by the solution of
the equation

λ(R1)11 +
η

β + 1
(R1)21 = 0, (24)

with the condition λ(η = 0, β) = 0. In the above expression (R1) jk is the jk entry of
the matrix R1 which is defined by the infinite product

R1 = M1M2 . . . Mk . . . , Mk =
(
1 + λβη

k(k+β)
η2

k(k+β+1)
1 0

)
.

We remark that the solution of the double confluent Heun equation has generically
an essential singularity at z = 0 and z = ∞, and one needs to tune the accessory
parameter λ to obtain an analytic solution, for a review see [57]. In our derivation
of (23) the parameter λ coincides with the first moment of the measure μ(θ), namely
λ = ∫

T
μ(θ)eiθ dθ . It is a transcendental function of β and η and it is related to the

Painlevé III Eq. [24,47].

Remark 3. Under the change of variable

v(z) = exp

(
−η

2

(
z +

1

z

))
z− β+1

2 f (z) ,

the DCH Eq. (23) takes the form of a Schrödinger equation

f ′′(z) + q(z) f (z) = 0,

with potential q(z) singular at the origin

q(z) = 1

z2

(
η
β − 1

2

(
z +

1

z

)
− η2

4

(z2 − 1)2

z2
− 1

4
(β2 + 4β + 3) + ηβλ

)
.

Remark 4. For the case V = 0 it was shown in [37] that the minimizer of the functional
(42) is the uniformmeasure on the circle, while for the case V (θ) = βV (θ) and β → ∞
the minimizer of (20) was considered in [49]. The particular case V (θ) → βη cos θ and
β → ∞ has first been considered by Gross–Witten [35] and Baik–Deift–Johansson
[11]. The measure (22) in Theorem 2 generalizes the result of Gross and Witten [35]
and Baik–Deift–Johansson [11] to the high-temperature regime (see Remark 9).

This manuscript is organized as follows. In Sect. 3 we introduce the Circular β

ensemble and its high-temperature limit. Then we review results in the literature on
Circular β ensemble and we derive some technical results needed to prove our main
theorems. In Sect. 4 we prove our first main theorem, namely Theorem 1 and in Sect. 5
we prove Theorem 2. Finally, the most technical parts of our arguments are deferred to
the appendices.
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3. Circular β Ensemble at High-Temperature

The Circular Ensemble at temperature β̃−1 is a system of N identical particles on the
one-dimensional torus T = [−π, π ] with distribution

dPβ̃ (θ1, . . . , θN ) = 1

ZC β̃E
N

∏

1≤ j<
≤N

|eiθ
 − eiθ j |β̃dθ , dθ = dθ1 . . . dθN , (25)

where ZC β̃E
N > 0 is the norming constant, or partition function of the system. For

β̃ = 1, 2, 4 Dyson observed that the above measure corresponds to the eigenvalue
distribution of circular orthogonal ensemble (COE), circular unitary ensemble (CUE)
and circular symplectic ensemble (CSE) of randommatrix ensembles (see e.g. [25,50]).
For general β̃ > 0, Killip and Nenciu proved that the Circular β Ensemble can be
associated to the eigenvalue distribution of a random sparse matrix, the so-called CMV
matrix, after Cantero, Moral, Velázquez [17]. To state their result, we need the following
definition.

Definition 1. A complex random variable X with values on the unit disk D is �ν-
distributed (ν > 1) if

E [ f (X)] = ν − 1

2π

∫

D

f (z)(1 − |z|2) ν−3
2 d2z . (26)

for any measurable function f : D → C. When ν = 1, �1 is the uniform distribution
on the unit circle S1.

We recall that for N 	 ν ≥ 2, such measure has the following geometrical interpre-
tation: if u = (u1, u2, . . . , uν+1) is chosen at random according to the surface measure
on the unit sphere Sν in R

ν+1, then u1 + iu2 is �ν−distributed. We can now state the
result of Killip-Nenciu.

Theorem 3 (cf. [42] Theorem 1). Consider the block diagonal N × N matrices

M = diag (	1, 	3, 	5 . . . , ) and L = diag (	0, 	2, 	4, . . .) , (27)

where the block 	 j , j = 1, . . . , N − 1, takes the form

	 j =
(

α j ρ j
ρ j −α j

)
, ρ j =

√
1 − |α j |2, (28)

while 	0 = (1) and 	N = (αN ) are 1 × 1 matrices. Define the N × N sparse matrix

E = L M, (29)

and suppose that the entries α j are independent complex random variables with α j ∼
�β̃(N− j)+1 for 1 ≤ j ≤ N − 1 and αN is uniformly distributed on the unit circle.
Then the eigenvalues of E are distributed according to the Circular Ensemble (25) at
temperature β̃−1.
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We observe that each of the matrices 	 j is unitary, and so are the matrices L and
M . As a result, the eigenvalues of E clearly lie on the unit circle. The matrix E is a
5-diagonal unitary matrix that takes the form

E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ᾱ1 ρ1ᾱ2 ρ1ρ2
ρ1 −α1ᾱ2 −α1ρ2

ρ2 ᾱ3 −α2 ᾱ3 ρ3ᾱ4 ρ3ρ4
ρ2ρ3 −α2ρ3 −α3ᾱ4 −α3ρ4

.
.
.

.
.
.

.
.
.

.
.
.

ρN−3ᾱN−2 −αN−3ᾱN−2 ρN−2 ᾱN−1 ρN−2ρN−1
ρN−3ρN−2 −αN−3ρN−2 −αN−2 ᾱN−1 −αN−2ρN−1

ᾱN ρN−1 −αN−1ᾱN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We are interested in the probability distribution (25) when

• We add an external field, namely dθi → e−2V (θi )dθi with V : T → R a smooth
potential;

• We consider the limit β̃ → 0 and N → ∞ in such a way that β̃N = 2β, β > 0.
Since β̃ is interpreted as the inverse of the temperature, such limit is called high-
temperature regime.

With the above changes, we arrive to the probability distribution of theCircular ensemble
at high-temperature, and with an external potential:

dPV
β (θ1, . . . , θN ) = 1

ZH T
N (V, β)

∏

1≤ j<
≤N

|eiθ
 − eiθ j | 2βN e−2
∑N

j=1 V (θ j )dθ , (30)

where ZH T
N (V, β) is the partition function of the system. Also in this case, we can

associate to the above probability distribution a random CMVmatrix. The lemma below
has probably already appeared in the literature, but for completeness we provide the
proof.

Lemma 4. Let E be the CMV matrix (29). Consider the block 2N × 2N matrix

Ẽ = diag(E, E) , (31)

whose entries are distributed according to

dP(α1, . . . , αN )= 1

Z H T
N (V, β)

N−1∏

j=1

(
1−|α j |2

)β
(
1− j

N

)
−1

e−Tr(V (Ẽ))
N−1∏

j=1

d2α j
dαN

iαN
.

(32)

Then the eigenvalues of Ẽ are all double, they lie on the unit circle and are distributed
according to (30).
Moreover

Z H T
N (V, β) = 21−N

�
(

β
N

)N

�(β)
ZH T

N (V, β) , (33)

where ZH T
N (V, β) is the norming constant of the probability distribution (30) and

Z H T
N (V, β) is the norming constant of the probability distribution (32).
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Proof. First, we notice that the eigenvalues of Ẽ are all double, since it is a block diagonal
matrix with two identical blocks.

We consider the change of variables αN → eiϕ , thus (32) becomes:

dP(α1, . . . , αN−1, ϕ) =
∏N−1

j=1

(
1 − |α j |2

)β
(
1− j

N

)
−1

e−Tr(V (Ẽ))
∏N−1

j=1 d2α jdϕ

Z H T
N (V, β)

.

(34)

Now, let eiθ1 , . . . , eiθN be the eigenvalues of theCMVmatrix E endowedwithprobability
(32), and let q1, . . . , qN be the entries of the first row of the unitary matrix Q such that
Q†�Q = E where � = Diag(eiθ1 , . . . , eiθN ) and

∑N
k=1 |qk |2 = 1. We introduce the

variable γ j = |q j |2 for j = 1, . . . , N , then from [42] (Lemma 4.1, and relation (4.14)
in Proposition 4.2) we have

|�(eiθ )|2
N∏

j=1

γ j =
N−1∏

j=1

(
1 − |α j |2

)(N− j)
, (35)

∣∣∣∣
∂ (α1, . . . , αN−1, ϕ)

∂(θ, γ )

∣∣∣∣ = 21−N

∏N−1
j=1

(
1 − |α j |2

)

∏N
j=1 γ j

, (36)

here γ = (γ1, . . . , γN−1), and �(eiθ ) = ∏ j<


(
eiθ j − eiθ


)
. Applying the previous

equalities to (34) we derive

dP(α1, . . . , αN−1, ϕ)) = e−Tr(V (Ẽ))

Z H T
N (V, β)

dϕ
N−1∏

j=1

(
1 − |α j |2

)β
(
1− j

N

)
−1

dα jdα j

(36)= 1

Z H T
N (V, β)

21−N

∏N
j=1 γ j

N−1∏

j=1

(
1 − |α j |2

)β
(
1− j

N

)

e−2
∑N

j=1 V (eiθ j )dθdγ

(35)= 1

Z H T
N (V, β)

21−N |�(eiθ )| 2βN
N∏

j=1

γ
β
N −1

j e−2
∑

j V (eiθ j )dθdγ .

(37)

Thus, we deduce the relation

Z H T
N (V, β) = 21−NZH T

N (V, β)

∫

�

N∏

j=1

γ
β
N −1

j dγ1 . . . dγN−1 , (38)

here � is the simplex
∑N

j=1 γ j = 1. The above integral is a well-known Dirichlet
integral that can be computed explicitly (see [42, Lemma 4.4])

∫

�

N∏

j=1

γ
β
N −1dγ1 . . . dγN−1 =

�
(

β
N

)N

�(β)
, (39)

proving (33). ��
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Let eiθ1 , . . . , eiθN be the double eigenvalues of the CMV Matrix Ẽ in (31), whose
entries are distributed according to (34). The empirical measure is the randomprobability
measure

μN = 1

N

N∑

j=1

δ
eiθ j . (40)

The mean density of state μ
β
H T is defined as the non-random probability measure such

that
∫

T

f (θ)μ
β
H T (dθ) = lim

N→∞E

[∫

T

f (θ)μN (dθ)

]
, (41)

for all continuous function f on the torus T, and the expected value is taken with respect
to (32). In order to discuss the large N limit ofμN wehave to introduce several quantities.
Let M(T) be the set of probability measures on the one-dimensional torus T and for
μ ∈ M(T) we consider the logarithmic energy [58]

E(μ) :=
∫ ∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣
−1

μ(dθ)μ(dφ) .

We define the relative entropy K (μ|μ0) of μ with respect to μ0(dθ) = dθ

2π
as

K (μ|μ0) :=
∫

T

log

(
μ

μ0

)
μ(dθ),

when μ is absolutely continuous with respect to μ0 and otherwise K (μ|μ0) := +∞.
The relevant functional is

F (V,β)(μ) := βE(μ) + K (μ|μ0) + 2
∫

T

V (θ)μ(dθ).

When F (V,β)(μ) is finite, it follows that μ is absolutely continuous with respect to the
Lebesgue measure μ0 and we can write μ(dθ) = μ(θ)dθ . We denote by Cn,1(T) with
n = 0, 1, 2, . . . the space of n-times differentiable functions whose n-derivative is also
Lipschitz continuous.

The following result describes the limiting measure μ
β
H T in (41) for the circular

β-ensembles at high temperature.

Theorem 5 (cf. [37, Proposition 2.1 and 2.5]). Let M(T) be the set of probability
measures on the one-dimensional torus and V : T → R be a measurable and bounded
function. For any β > 0 consider the functional F (V,β) : M(T) → [0,∞]

F (V,β)(μ) = 2
∫

T

V (θ)μ(θ)dθ + βE(μ) +
∫

T

ln (μ(θ)) μ(θ)dθ + ln(2π) . (42)

Then

(a) The functional F (V,β)(μ) has a unique minimizer μ
β
H T (dθ) = μ

β
H T (θ)dθ in M(T);
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(b) μ
β
H T is absolutely continuous with respect to the Lebesgue measure and there is

0 < δ < 1 such that

δ ≤ μ
β
H T (θ)

2π
≤ δ−1, a.e. ;

(c) If V = 0, then μ
β
H T (dθ) = 1

2π dθ ;

(d) If V ∈ Cm,1(T), then μ
β
H T ∈ Cm,1(T);

(e) The empirical measure μN in (40) converges weakly and almost surely to the measure
μ

β
H T as N → ∞.

From the above theorem when the potential V is at least C2,1(T) the minimizer of
the functional F (V,β) is characterized by the Euler-Lagrange equations

δF (V,β)

δμ
= 2V (θ) − 2β

∫

T

ln sin

( |θ − φ|
2

)
μ(φ)dφ + lnμ(θ) + 1 = C(V, β) (43)

where C(V, β) is a constant in θ . Below we derive further properties of the minimizer
μ

β
H T following [36].

Lemma 6. For any V (z) as in (17), any β > 0 the following holds

(a) The map β → inf
(
F (V,β)(μ)

)
is Lipschitz;

(b) The maps t → inf
(
F (V+t�(zm),β)(μ)

)
, t → inf

(
F (V+t�(zm ),β)(μ)

)
are Lipschitz;

(c) Let D be the distance on M(T) given by

D(μ,μ′) =
(

−
∫ ∫

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣ (μ − μ′)(dθ)(μ − μ′)(dφ)

)1/2

=
√√√√
∑

k≥1

1

k

∣∣μ̂k − μ̂′
k

∣∣2 ,

(44)

where μ̂k = ∫
T

eikθμ(dθ), and we recall that ̂log(|x |) =∑k≥1 k−1 in distributional
sense.
Then for any ε > 0 there exists a finite constant Cε such that for all β, β ′ > ε

D(μ
β
H T , μ

β ′
H T ) ≤ Cε

∣∣β − β ′∣∣ . (45)

Remark 5. For a real valued function f ∈ L2(T) with derivative in L2(T) we define

|| f || 1
2

=
√∑

k≥1 k| f̂k |2 < ∞. So, for any measure ν with zero mass we deduce that

∣∣∣∣
∫

T

f (θ)ν(dθ)

∣∣∣∣
2

=
∣∣∣∣∣∣

∑

k �=0

f̂k ν̂k

∣∣∣∣∣∣

2

=
∣∣∣∣∣∣

∑

k �=0

√|k| f̂k
ν̂k√|k|

∣∣∣∣∣∣

2

≤
∣∣∣∣∣∣

∑

k �=0

|k|| f̂k |2
∣∣∣∣∣∣

∣∣∣∣∣∣

∑

k �=0

|̂νk |2
|k|

∣∣∣∣∣∣

≤ 4|| f ||21
2

D(ν, 0)2 (46)

where in the first inequality we use Cauchy-Schwartz inequality and in the second one
we plug in (44).

Combining (45) and (46) we conclude that for any real valued function f with finite
|| f || 1

2
norm, the map β → ∫

T
f dμβ

H T (dθ) is Lipschitz for β > 0. As a consequence,

the moments of μ
β
H T are almost surely differentiable with respect to β.
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Proof of Lemma 6. The proof follows the lines of the corresponding one in [36]. To
prove points a) and b) we exploit the same ideas, thus we restrict to point a).

For all β > β ′ > 0 we have

F (V,β)(μ
β
H T ) ≤ F (V,β)(μ

β ′
H T ) = F (V,β ′)(μβ ′

H T ) + (β − β ′)E(μ
β ′
H T )

and

F (V,β ′)(μβ ′
H T ) ≤ F (V,β ′)(μβ

H T ) = F (V,β)(μ
β
H T ) + (β ′ − β)E(μ

β
H T ) , (47)

so that

(β − β ′)E(μ
β
H T ) ≤ F (V,β)(μ

β
H T ) − F (V,β ′)(μβ ′

H T ) ≤ (β − β ′)E(μ
β ′
H T ) . (48)

Since E(μ
β
H T ), and E(μ

β ′
H T ) are finite we obtain the claim.

We now move to the proof of point c). Setting �μ = μ
β
H T − μ

β ′
H T we deduce that

0 ≥ F (V,β)(μ
β
H T ) − F (V,β)(μ

β ′
H T )

= 2
∫

T

V (θ)�μ(dθ) − 2β
∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣μ
β ′
H T (dθ)�μ(dφ)

− β

∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣�μ(dθ)�μ(dφ) +
∫

T

ln(μβ
H T (θ))μ

β
H T (dθ)

−
∫

T

ln(μβ ′
H T (θ))μ

β ′
H T (dθ)

=
∫

T

ln

(
μ

β
H T (θ)

μ
β ′
H T (θ)

)
μ

β
H T (dθ) + 2(β ′ − β)

∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣μ
β ′
H T (dθ)�μ(dφ)

− β

∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣�μ(dθ)�μ(dφ) ,

(49)

where in the second identity we used (43). Since
∫
T
ln

(
μ

β
H T (θ)

μ
β′
H T (θ)

)
μ

β
H T (dθ) ≤ 0 by

Jensen’s inequality, we deduce that

βD
(
μ

β
H T , μ

β ′
H T

)2 ≤ 2(β − β ′)
∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣μ
β ′
H T (dθ)�μ(dφ) . (50)

Following [36], we introduce a new probability measure ν ∈ M(T) in the previous
expression, so that

βD
(
μ

β ′
H T , μ

β ′
H T

)2 ≤ 2(β − β ′)
∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣
(
μ

β ′
H T − ν

)
(dθ)�μ(dφ)

+ 2(β − β ′)
∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣ ν(dθ)�μ(dφ) .

(51)

We chose ν in such a way that the function gν(φ) = ∫
T
ln
∣∣∣sin
(

θ−φ
2

)∣∣∣ ν(dθ) is in L2(T)

with derivative in L2(T). With this choice of ν and applying (46) we conclude that there
exists a constant c such that

∣∣∣∣
∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣ ν(dθ)�μ(dφ)

∣∣∣∣ ≤ cD(μ
β
H T , μ

β ′
H T ) . (52)
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Next, taking the Fourier transform and apply again the Cauchy-Schwartz inequality as
in (46) we obtain

∣∣∣∣
∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣
(
μ

β ′
H T − ν

)
(dθ)�μ(dφ)

∣∣∣∣ =
∣∣∣∣∣∣

∑

k≥1

1

k

̂(
μ

β ′
H T − ν

)

k
�̂μk

∣∣∣∣∣∣

≤ D(μ
β ′
H T , ν)D(μ

β ′
H T , μ

β
H T ) ,

(53)

since D(μ
β ′
H T , ν) is bounded. Combining (51), (52) and (53) we conclude that there

exists a constant c0 such that

D(μ
β
H T , μ

β ′
H T ) ≤ c0

β
(β − β ′) , (54)

from which (45) follows. ��
For convenience, we define FH T (V, β) as the value of the functional at theminimizer,

namely

FH T (V, β) := F (V,β)(μ
β
H T ). (55)

The quantity FH T (V, β) is referred to as free energy of the Circular β ensemble at
high-temperature. It is a standard result that (see e.g. [29])

FH T (V, β) = − lim
N→∞

1

N
logZH T

N (V, β) , (56)

where the partition functionZH T
N (V, β) of the Circular β ensemble at high-temperature

is defined in (30).

Remark 6. Wenotice that from (33) and (56)wecan alsoobtain the free energy FH T (V, β)

from the partition function Z H T
N (V, β) of the CMV matrix ensemble (32), namely:

FH T (V, β) = − lim
N→∞

ln(Z H T
N (V, β))

N
− ln(2) . (57)

The literature related to the high-temperature regime of the classical β-ensembles is
quite broad. For completeness, we mention some of the results in the field. In [7,8,22,
27,37,65,66] the authors explicitly computed the mean density of states for the classical
Gaussian, Laguerre, Jacobi, andCircularβ ensemble at high-temperature. In [7,8,27,37]
the densities of states are computed as a solution of some particular ordinary differential
equations. On the other hand, in [22,65,66] the density of states is constructing from the
moment generating functions. Several authors [12,45,52,53,67] investigated the local
fluctuations of the eigenvalues, and they observed that in this regime they are described by
a Poisson process. In particular, in [45] Lambert studied the local fluctuations for general
Gibbs ensembles on N -dimensional manifolds, moreover he also studied the asymptotic
behaviour of themaximum eigenvalue for the classical β ensembles at high-temperature.
In [26,27] the loop equations for the classical β-ensembles at high-temperature are
studied, in particular in [26] a duality between high and low temperature is uncovered.
There are also results for a Coulomb gas at high temperature in two dimensions [5].
It is worth mentioning also the work [48], where some new tridiagonal random matrix
ensembles related to the classical β one at high-temperature are defined.
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4. Proof of Theorem 1

The probability distribution (18) of generalized Gibbs ensemble of the Ablowitz–Ladik
lattice is very close to the probability distribution (32) of the Circular β ensemble at
high-temperature with an external source. Indeed, the only difference between the two
ensembles is the exponent of the terms

(
1 − |α j |

)
in the probability distributions (18)

and (32) and the fact that the random matrix of the Ablowitz–Ladik lattice is a rank
2 perturbation of the random matrix of the circular β-ensemble. Our first main result
contained in Theorem 1 relates the mean density of states of the random Lax matrix E
of the Ablowitz–Ladik lattice to the mean density of states of the randommatrix E from
the Circular β ensemble at high-temperature.

To prove the result, we use the moment matching technique and the following lemma.

Lemma 7 ([10, Lemma B.1 – B.2]). Let dσ, dσ ′ be two measures defined on T, with
the same moment sequence {u(
)}
≥0. If

lim

→∞ inf

(u(2
))
1
2




< ∞ , (58)

then dσ = dσ ′.

Next we define the free energy of the generalized Gibbs ensemble of the Ablowitz–
Ladik lattice at temperature β−1 and in an external field V as:

FAL(V, β) = − lim
N→∞

1

N
ln Z AL

N (V, β) , (59)

where the partition function Z AL
N (V, β) is defined in (19). The next proposition shows

that the free energy FAL(V, β) of the Generalized Gibbs ensemble of the Ablowitz–
Ladik lattice and the free energy FH T (V, β) in (56) of the Circular β ensemble at
high-temperature are related. This fact allows us to calculate the moments of the mean
density of states of the CMV matrix E in (29) and of the Lax matrix E in (11).

Proposition 8. The free energy FAL(V, β) in (59) of the AL lattice and the free energy
FH T (V, β) in (56) of the Circular β ensemble at high-temperature are analytic with
respect to β > 0, and are related by

∂β (βFH T (V, β)) + ln(2) = FAL(V, β). (60)

The moments of the density of states μ
β
AL of the Lax matrix E in (11) endowed with the

probability measure (18) and the moments of the density of states μH T of the Circular β

ensemble in the high-temperature regime (32) are related to the free energies FAL(V, β)

and FH T (V, β) by

�
∫

T

eiθmμ
β
AL(dθ) = ∂t FAL

(
V +

t

2
�(zm), β

)

|t=0

,

�
∫

T

eiθmμ
β
H T (dθ) = ∂t FH T

(
V +

t

2
�(zm), β

)

|t=0

,

(61)

and analogously for the imaginary part of the moments taking care of using the potential
V + t

2�(zm).
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Since the proof of this proposition is rather technical, we postpone it to Appendix A.
We are now ready to prove the first main Theorem 1.

Proof of Theorem 1. First, we define cn(β) := ∫ eiθnμ
β
AL(dθ),

dn(β) := ∫ eiθnμ
β
H T (dθ). Since the eigenvalues of E lie on the unit circle, we deduce

the following chain of inequalities:

|cn(β)| = lim
N→∞

∣∣E
[
Tr(En)

]∣∣
2N

≤ lim
N→∞

E
[|Tr(En)|]
2N

≤ 1 , (62)

where the expectation in made according to the Gibbs measure. Thus, from Lemma 7,
we obtain that the measure μ

β
AL(dθ) is uniquely characterized by its moments.

Next, from Proposition 8 and Remark 5 we obtain the relation

cn(β) = ∂β (βdn(β)) a.e (63)

between the moments of the measures μ
β
AL(θ) and μ

β
H T (θ) respectively.

This, together with (63) and Remark 5 implies

μ
β
AL(θ) = ∂β

(
βμ

β
H T (θ)

)
a.e. . (64)

��
Our nextmain result provides an explicit expression of themean density of statesμH T (θ)

for the potential V (z) = η�(z). This generalizes the result by Gross and Witten [35]
and Baik-Deift-Johansson [11] obtained for finite temperature to the high-temperature
regime.

5. Proof of Theorem 2

The proof of Theorem 2 consists of mainly two parts: we first derive from the variational
equations with respect to the functional F (V,β), the double confluent Heun equation
(23). Then we show that such equation admits an analytic solution in any compact
sets of the complex plane containing the origin. From Theorem 5 we know that the
density μ

β
H T is characterized as the unique minimizer of the functional (42). We follow

the ideas developed in [7,8,18,27] to find this minimizer explicitly. We consider the
Euler-Lagrange equation of the functional (42), namely

δF (V,β)

δμ
= 2V (θ) − 2β

∫

T

ln sin

( |θ − φ|
2

)
μ(φ)dφ + lnμ(θ) = C(V, β) , a.e.

(65)

where the equation holds almost everywhere, C(V, β) is a constant depending on the
potential and β, but not on the variable θ . Differentiating the Euler-Lagrange equation
(65) at the minimizerμβ

H T (θ)with respect to θ we obtain the following integral equation
(see [37, Proposition 2.5]):

∂θμ
β
H T (θ) + μ

β
H T (θ)[2∂θ (V (θ)) + βHμ

β
H T (θ)] = 0 , (66)
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where H is the Hilbert transform defined on L2(T) as

Hμ
β
H T (θ) = −p.v.

∫

T

cot

(
θ − φ

2

)
μ

β
H T (φ)dφ (67)

and p.v. is the Cauchy principal value, that is the limit as ε → 0 of the integral on the
torus T restricted to the domain |eiθ − eiφ | > ε. We notice that the Hilbert transformH
is diagonal on the bases of exponential {einθ }n∈Z, meaning that

Heinθ = 2π isgn(n)einθ , (68)

where sgn(·) is the sign function with the convention that sgn(0) = 0.

Setting eiθ = z and eiφ = w, we recognize the Riesz–Herglotz kernel
z + w

z − w
ex-

pressed as

z + w

z − w
= −i cot

(
θ − φ

2

)
.

Therefore
∫

T

cot

(
θ − φ

2

)
μ(φ)dφ = i + 2

∫

S1

μ(φ)|eiφ=wdw

z − w
,

where S1 is the anticlockwise oriented circle, and we used the normalization condi-
tion
∫
T

μ(φ)dφ = 1. In the following, in order to simplify the notation, we indicate
μ(φ)|eiφ=w just as μ(w). We can recast (66) in the form

z∂zμ(z) + μ(z)

[
2z∂z V (z) − β + 2iβp.v.

∫

S1
μ(w)

dw

z − w

]
= 0 . (69)

For z ∈ C\S1 let us define

G(z) :=
∫

S1
μ(w)

dw

w − z
= i

2
− 1

2

∫

T

cot

(
θ − φ

2

)
μ(φ)dφ , (70)

and for z ∈ S1 let G±(z) = limz̃→z G (̃z) for z̃ inside and outside the unit circle
respectively. Then by (69)

G±(z) = ±π iμ(z) + p.v.
∫

S1
μ(w)

dw

w − z

= ±π iμ(z) +
i

2
− 2i z∂z V (z)

2β
− i z∂zμ(z)

2βμ(z)
.

(71)

This implies that for z ∈ S1 one has

G+(z) + G−(z) = i − 2i z∂z V (z)

β
− i z∂zμ(z)

βμ(z)
, (72)

G+(z) − G−(z) = 2π iμ(z) . (73)

Multiplying the two previous expressions, one obtains:

G+(z)
2 − G−(z)2 = 2π iμ(z)

(
i − 2i z∂z V (z)

β
− zi∂zμ(z)

βμ(z)

)
. (74)
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In order to proceed we have to specify the potential V (z), in our case we will consider

V (z) = η

2

(
z +

1

z

)
. (75)

Applying the Sokhtoski-Plemelj formula [28] to the above boundary value problem, one
obtains

G2(z) = i
∫

S1

μ(w)

w − z
dw − iη

β

∫

S1

(w − w) μ(w)

w − z
dw − i

β

∫

S1

w∂wμ(w)

w − z
dw . (76)

The second term in the r.h.s. of the above expression gives
∫

S1

(w − w)μ(w)

w − z
dw =

∫

S1

w ± z

w − z
μ(w)dw +

1

z

∫

S1
μ(w)

(
− 1

w − z
+

1

w

)
dw

=
(

zG(z) + iλ − G(z)

z
+

i

z

)
,

(77)

where we have defined

λ := −i
∫

S1
μ(w)dw, λ ∈ R. (78)

The third term in the r.h.s. of (76) gives
∫

S1

w∂wμ(w)

w − z
dw =

∫

S1
∂wμ(w)dw + z

∫

S1

∂wμ(w)

w − z
dw

= z
∫

S1

μ(w)

(w − z)2
dw = z∂zG(z),

(79)

where in these last relations we use the results of Theorem 5 about the regularity of μ.
Now we can rewrite (76) as

G2(z) = iG(z) − iη

β

(
zG(z) + iλ − G(z)

z
+

i

z

)
− i z∂zG(z)

β
. (80)

Remark 7. In the above ODE, the parameter λ = λ(η, β) depends via (78) implicitly on
the function G(z). Our strategy to solve the above equation is to consider λ as a free
parameter that is uniquely fixed by the analytic properties of the function G(z).

We can now turn the non-linear first order ODE (80) into a linear second order ODE
through the substitution

G(z) = i +
i zv′(z)
βv(z)

, (81)

getting:

z2v′′(z) +
(
−η + z(β + 1) + ηz2

)
v′(z) + ηβ(z + λ)v(z) = 0 , (82)

which is the DCH equation in (23). The solutions to this equation have generically
essential singularities at z = 0 and z = ∞ and the local description near the singularities
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depends on the parameter η and β. Indeed we have that the two fundamental solutions
near z = 0 have the following asymptotic behaviour

v
(0)
1 (z) = eη(z+ 1

z )z1−βκ1(η, β, λ; z), −3π

2
< arg(ηz) <

3π

2
, (83)

v
(0)
2 (z) = κ2(η, β, λ, z), −π

2
< arg(ηz) <

5π

2
, (84)

where κ j (η, β, λ; z), j = 1, 2, are asymptotic series in a neighbourhood of z = 0. The
quantity λ is usually referred to as accessory parameter. Since G(z) is analytic in the
unit disk, continuous up to the boundary, and G(0) = i , we deduce that

v(z) = v0 exp

[
−i
∫ z

0
β

G(s) − i

s
ds

]
, v0 �= 0,

has to be analytic in the unit disk. For this reason we seek for a solution v(z) of the
DCH equation that is analytic in the unit disk and such that v(z) −−→

z→0
v0, where v0 is a

nonzero constant.

Construction of the analytic solution of equation (82). Of the fundamental solutions
(83) and (84) of Eq. (82) only the solution (84) has a chance of being analytic near z = 0.
This occurs if we are able to make the asymptotic series defined by κ2(η, β, λ, z), into
a convergent series. We look for a solution of (82) in the form of a convergent power
series

v(z) =
∞∑

k=0

ak zk, (85)

where ak = ak(η, β, λ). This implies the following recurrence relations for the coeffi-
cients {ak}k∈N

η(a0λβ − a1) = 0 , (86)

ak(k
2 + kβ + λβη) + η(k − 1 + β)ak−1 − η(k + 1)ak+1 = 0 , k > 0 , (87)

where we have the freedom to chose λ and a0. Generically, the above recurrence relation
for the coefficients {ak}k∈N gives a divergent series in (85). To obtain a convergent series,
we follow the ideas in [13,64].

We start by considering the 2 × 2 matrices R(s)
k defined as

R(s)
k = Mk Mk+1 . . . Ms, s ≥ k, Mk =

(
1 + λβη

k(k+β)
η2

k(k+β+1)
1 0

)
, (88)

which satisfy the recurrence relation R(s)
k = R(s−1)

k Ms . The next lemma shows that the

limit of R(s)
k as s → ∞ exists.

Lemma 9. Let R(s)
k be the matrix defined in (88). Then the limit of R(s)

k as s → ∞ exists
and

Rk := lim
s→∞ R(s)

k . (89)
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The matrices Rk, k ≥ 1 satisfy the descending recurrence relation:

Rk = Mk Rk+1 k ≥ 1 . (90)

Furthermore each entry of the matrix Rk = Rk(β, η, λ) is differentiable with respect to
the parameters β, η, and λ.

Since the proof of this lemma is rather technical, we defer it to appendix B. Further, let
us define the following function:

ξ(η, β, λ) := (λ η
β+1
)

R1

(
1
0

)
. (91)

We are now ready to prove the following result that will give us a necessary condition
to fix the value of λ.

Proposition 10. For the values of λ such that

ξ(η, β, λ) = 0, (92)

where ξ(η, β, λ) is defined in (91), the Double Confluent Heun equation (82) admits a
non-zero solution v = v(z, η, β) defined by the series (85) that is uniformly convergent
in |z| ≤ r with r ≥ 1. The corresponding coefficients {ak}k∈N of the Taylor expansion
(85) are given by the relation

a0 = 1

β

(
1 0
)

R1

(
1
0

)
, (93)

ak = (−1)k ηk

k!(k + β)

(
0 1
)

Rk

(
1
0

)
, k ≥ 1 , (94)

where the matrices Rk are defined in (89). For each λ satisfying (92), the solution v(z)
of the DCH equation (82), analytic at zero is unique up to a multiplicative factor.

Proof. First, we show that choosing ak according to (93)–(94) we obtain a solution of
the recurrence (87). We notice that due to the recurrence relation for the matrices Rk
(90), we have that:

(
0 1
)

Rk

(
1
0

)
= (1 0

)
Rk+1

(
1
0

)
. (95)

Thus, applying the previous equation and (93)–(94), we can recast (87) as:
[
(−1)k−1 ηk

(k − 1)!
(
1 0
)

Rk + (−η)k k(k + β) + ηλβ

k!(k + β)

(
1 0
)

Rk+1

+(−1)k ηk+2

k!(k + 1 + β)

(
0 1
)

Rk+1

](
1
0

)

= (−η)k

(k − 1)!
[
− (1 0

)
Rk +
(
1 + λβη

k(k+β)
η2

k(k+1+β)

)
Rk+1

](1
0

)
= 0 ,

(96)

where in the last equality we have enforced (90). Next we can rewrite (86) in terms of
the matrix R1 exploiting (93)–(94), namely

0 = (λ η
β+1
)

R1

(
1
0

)
= ξ(η, β, λ) , (97)
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which is exactly (91). Since the entries of the matrices Rk are uniformly bounded, the
solution v(z) = ∑k≥0 ak zk with ak as in (94), defines a uniformly convergent Taylor
series in |z| < r for any r ≥ 0 and in particular for any r > 1.

To show that the solution analytic at z = 0 is unique up to a constant, we consider the
Wronkstian W (v, ṽ)(z) of two independent solution v and ṽ of the Double Confluent
Heun equation (82), namely

W (v, ṽ)(z) = e−η(z+ 1
z )z−(β+1)(v′(z)ṽ(z) − v(z)ṽ′(z)).

Since W ′(v, ṽ)(z) = 0, it follows that W (v, ṽ)(z) = C a constant. If by contradiction
we suppose that there are two analytic solutions at z = 0, then from the above relation
we obtain

e−ηz(v′(z)ṽ(z) − v(z)ṽ′(z)) = Ce
η
z zβ+1 .

When η �= 0 the left-hand side of the above equation is analytic and the right-hand side
is not, that is clearly a contradiction. When η = 0 then (82) becomes:

z2v′′(z) + z(β + 1)v′(z) = 0 . (98)

The above equation has two independent solutions, one is the constant solution, which
is analytic, the other one is v(z) = Cz−β which is not analytic since β > 0. ��
Remark 8. We observe that the Eq. (92) does not uniquely determine λ. Indeed, as it is
shown in Fig. 1 the function ξ(η, β, λ) may have several zeros for given η and β.

Choice of the parameter λ. We will now prove that the parameter λ is uniquely de-
termined in a neighbourhood of η = 0 by requiring that the solution v = v(z, η, β)

depends continuously on the parameter η.

Lemma 11. There exists an ε > 0 such that for all η ∈ (−ε, ε) and β > 0 there is a
unique λ = λ(η, β) such that ξ(η, β, λ(η, β)) = 0.

Proof. When η = 0 the matrix R j =
(
1 0
1 0

)
so that the only solution of the equation

(92) ξ(η = 0, β, λ) = 0 is λ = 0. To show the existence of the solution (92) for
λ = λ(η, β) near η = 0, we use the implicit function theorem. We have to show that
∂λξ(η, β, λ)|(0,β,0) �= 0. For this purpose, we need to evaluate

∂λ (Mk)(η=0,λ=0) =
(
0 0
0 0

)
,

where Mk is defined in (89). This equation implies that

∂λ(ξ(η, β, λ))|(0,β,0) = (1 0
) (1 0

1 0

)(
1
0

)
= 1.

Thus we can apply the implicit function theorem, and we obtain the claim. ��
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Fig. 1. Plots of ξ(η, β, λ) for various values of η, β

We conclude the proof of Theorem 2. When η = 0 the only analytic solution of DCH
equation is v(z) = c, c ∈ C\{0}. In this case, in principle λ is undetermined. However,
from Theorem 5 the minimizer μ

β
H T of (42) is the uniform measure on the circle and

therefore from equation 78 one has λ = 0. From Lemma 11 when η ∈ (−ε, ε), there
exists a unique λ(η, β) that satisfies equation (92) and such that λ(η = 0, β) = 0 and
therefore by Proposition 10 we obtain for η ∈ (−ε, ε), the unique solution v(z, η, β)

of the DCH equation analytic in any compact set |z| ≤ r , with r > 0 and in particular
when r = 1. Because of lemma 9 the solution v(z, η, β) is differentiable with respect
to the parameters η and β.

We remark that v(z) �= 0 on the unit disc D because of the relation (81) between the
analytic function G(z) and v(z) and the uniqueness of the minimizer μ

β
H T and of the

analytic solution v(z) of (82).

To complete our proof of Theorem 2 we recover the explicit expression of μ
β
H T (θ)

from G(z) and v(z) using the Poisson representation formula (see for example [59,
Chapter 1]):

μ
β
H T (θ) = − 1

2π
− �(iG(eiθ ))

πβ
= 1

2π
+

1

πβ
�
(

zv′(z)
v(z)

∣∣∣∣
z=eiθ

)
. (99)

��
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Fig. 2. The mean density of states μ
β
H T for different parameters

In Fig. 2 we plotted the density of states of the Circular β ensemble in the high-
temperature regime with potential V (z) = η�(z). To produce this picture and Fig. 1,
we used extensively the NumPy [38], and matplotlib [39] libraries.

Remark 9. The Gross–Witten [35] and Baik-Deift-Johannson [11] solution is obtained
by making the substitution η → βη and β → ∞ in Eq. (42) which gives the functional

F (η)(μ) :=
∫ ∫

T×T

ln

∣∣∣∣sin
(

θ − φ

2

)∣∣∣∣
−1

μ(dθ)μ(dφ) + 2η
∫

T

cos(θ)μ(dθ).

The minimizer is μ(θ) = 1
2π (1 − 2η cos θ) with 0 ≤ 2η ≤ 1. In this case the first

moment λ = −η.

Added note. Independently, H. Spohn [63] discovered the connection between the
Ablowitz–Ladik lattice and the circular β ensemble at high-temperature. He also cal-
culated Generalized Gibbs Ensemble averaged field and currents and the associated
hydrodynamic equations.
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Appendix A Proof of Proposition 8

First, we prove the relation between the free energies (60) namely:

∂β(βFH T (V, β)) + ln(2) = FAL(V, β) , (A1)

and we show that FH T (V, β) is analytic with respect to β > 0.
From Remark 6, the above expression is equivalent to:

∂β

(
β lim

N→∞
ln(Z H T

N (V, β))

N

)
= lim

N→∞
ln(Z AL

N (V, β))

N
. (A2)

To prove this relation, we will use the so-called transfer operator technique [41,44,56].
We are considering a potential of the form Tr(V (E)) as in (17) which is of finite range K ,
meaning that it can be expressed as a sum of local quantities, i.e. depending on a finite
number 2K of variables, with K independent of N [54]. For example, if V (z) = �(z),
thenTr(E) = −2

∑N
j=1 �(α jα j+1) and in this case the range is K = 1. Let N = K M+L

with M, L ∈ N and L < K . We split the coordinates (α1, . . . , αN ) into M blocks of
length K and a reminder of length L , and we define the vector α̃ j of length K as

α̃ j = (αK ( j−1)+1, αK ( j−1)+2, . . . , αK j ).

In this notation,

(α1, . . . , αN ) = (

K M︷ ︸︸ ︷
α̃1, . . . , α̃M ,

L︷ ︸︸ ︷
αK M+1, . . . , αN ),

Tr(V (E)) =
M−1∑


=1

W (̃α
, α̃
+1) + W (̃αM ,

L︷ ︸︸ ︷
αK M+1, . . . , αK M+L ,

K−L︷ ︸︸ ︷
α1, . . . , αK−L)

+ W1(

L︷ ︸︸ ︷
αK M+1, . . . , αK M+L , α̃1),

(A3)

where W : D
K × D

K → R and W1 : D
L × D

K → R are continuous functions. The
last two terms in the above expression are different from the others since we may have
an off-set of length L , due to periodicity. In the case V (z) = �(z), then W (α1, α2) =
−2�(α1α2), there is no off-set and W1 = 0.
For convenience, we define

α̃M+1 = (αK M+1, . . . , αK M+L , α1, . . . , αK−L).

We can now rewrite Z AL
N (V, β) in (19) as

Z AL
N (V, β) =

∫

DN

N∏

j=1

(
1 − |α j |2

)β−1

http://creativecommons.org/licenses/by/4.0/
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× exp

(
−

M∑


=1

W (̃α
, α̃
+1)−W1(αK M+1, . . . , αK M+L , α̃1)

)
d2α .

(A4)

We are now in position to apply the transfer operator technique to compute this partition
function. On L2(DK ) we introduce the scalar product

( f, g) =
∫

DK
f (z)g(z)dz , (A5)

where z = (z1, . . . , zK ). This scalar product induces a norm on L2(D) and also a norm
on bounded operators T : L2(DK ) → L2(DK ) as

||T || := sup
f : || f ||2=1

||T f ||2 , (A6)

where || f ||2 is the standard L2 norm.
Let ζ = (ζ1, . . . , . . . ζ2K ) with ζK+ j = ζ j > 0 for j = 1, . . . , K . We define the

continuous family of transfer operators Tζ : L2(DK ) → L2(DK ) as

(Tζ f )(̃α2) =
∫

DK
f (̃α1)

2K∏

j=1

(
1 − |α j |2

) ζ j −1
2

exp (−W (̃α1, α̃2)) d
2α̃1 . (A7)

We observe that Tζ is an integral operator whose kernel
∏2K

j=1

(
1 − |α j |2

) ζ j −1
2 exp

(−W (̃α1, α̃2)) belongs to L2(DK ×D
K ), and therefore Tζ is an Hilbert-Schimdt opera-

tor. We conclude that there exists a complete set of normalized eigenfunctions {ψ j } j≥1
with eigenvalues {λ j } j≥1 numbered so that {|λ j |} j≥1 is a non-increasing sequence such
that:

(Tζ ψ j )(z, V, ζ ) = λ j (V, ζ )ψ j (z, V, ζ ) , (A8)
∞∑

n=1

ψn(z, V, ζ )ψn(z′, V, ζ ) = δz(z′) , (A9)

where δz(·) is the Dirac delta function at z ∈ D
K .

For clearness, we collect a series of properties that the operator Tζ fulfils:

(a)
∑∞

j=1 |λ j (V, ζ )|2 < ∞ and Tζ is compact, since it is Hilbert-Schimdt (see [40,
Chapter V.2.4]);

(b) The eigenvalue λ1(ζ , V ) is simple, positive and λ1(ζ , V ) > |λn(ζ , V )| for all n ≥ 2
(see [69, Theorem 137.4]);

(c) The eigenvalue λ1(ζ , V ) and its eigenfunction ψ1(z, ζ , V ) are analytic functions of
the parameters ζ , and for any real polynomial P there exists an ε > 0 such that the
maps t → λ1(ζ , V + t P), t → ψ1(z, ζ , V + t P) are analytic for |t | < ε (see [40,
Chapter VII, Theorem 1.8]).
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We artificially rewrite Z AL
N (V, β) in (A4) as

Z AL
N (V, β) =

∫

DN+K

δα̃1(γ )

K∏


=1

[(
1 − |γ
|2

) (
1 − |α
|2

)] β−1
2

N∏


=K+1

(
1 − |α
|2

)β−1

× exp

(
−

M−1∑


=1

W (̃α
, α̃
+1) − W (̃αM , αK M+1, . . . , αN , γ1, . . . , γK−L)

)

× exp (−W1(αK M+1, . . . , αK M+L , γ ))

N∏

j=1

d2α jd
2γ , (A10)

where γ = (γ1, . . . , γK ) and γ ∈ D
K .

We can use (A9) with ζ = β =
2K︷ ︸︸ ︷

(β, . . . , β) to rewrite the previous equation as:

Z AL
N (V, β) =

∫

DN+K

∞∑

n=1

ψn(γ , V,β)ψn(α̃1, V,β)

×
K∏


=1

[(
1 − |γ
|2

) (
1 − |α
|2

)] β−1
2

N∏


=K+1

(
1 − |α
|2

)β−1

× exp

(
−

M−1∑


=1

W (α̃
, α̃
+1) − W (α̃M , αK M+1, . . . , αN , γ1, . . . , γK−L )

)

× exp (−W1(αK M+1, . . . , αK M+L , γ )) d2αd2γ

=
∞∑

n=1

∫

DN
ψn(γ , V,β)(Tβψn)(α̃2)

2K∏


=K+1

(
1 − |α
|2

) β−1
2

N∏


=2K+1

(
1 − |α
|2

)β−1

× exp

(
−

M−1∑


=2

W (α̃
, α̃
+1) − W (α̃M , αK M+1, . . . , αN , γ1, . . . , γK−L )

)

× exp (−W1(αK M+1, . . . , αK M+L , γ ))

K∏


=1

d2γ


(
1 − |γ
|2

) β−1
2

N∏


=K+1

d2α


=
∞∑

n=1

λn(V,β)

∫

DN
ψn(γ , V,β)ψn(α̃2, V,β)

2K∏


=K+1

(
1 − |α
|2

) β−1
2

N∏


=2K+1

(
1 − |α
|2

)β−1
exp

(
−

M−1∑


=2

W (α̃
, α̃
+1)

)

× exp (−W (α̃M , αK M+1, . . . , αN , γ1, . . . , γK−L ))

× exp (−W1(αK M+1, . . . , αK M+L , γ ))

K∏


=1

d2γ


(
1 − |γ
|2

) β−1
2

N∏


=K+1

d2α
 .

(A11)
In the above integral, from the first to the second relationwe identify the integral operator

Tβ where β =
2K︷ ︸︸ ︷

(β, . . . , β). We repeatedly apply Tβ and (A8) another M − 2 times to
the above integral, to obtain:
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Z AL
N (V, β) =

∞∑

n=1

(λn(V,β))M−1Rn, (A12)

Rn =
∫

D2K+L
ψn(γ , V,β)ψn (̃αM , V,β)

K∏


=1

d2γ


(
1 − |γ
|2

) β−1
2

M K∏


=(M−1)K+1

(
1 − |α
|2

) β−1
2

N∏


=M K+1

(
1 − |α
|2

)β−1

× exp (−W (̃αM , αK M+1, . . . , αN , γ1, . . . , γK−L))

× exp (−W1(αK M+1, . . . , αK M+L , γ ))

N∏


=(M−1)K+1

d2α
. (A13)

The modulus of the reminder |Rn| in (A13) can be easily bounded from above and below
by two constants C1, C2 > 0 independent of N , therefore we conclude from (A12) that

FAL(V, β) = − lim
N→∞

1

N
ln
(

Z AL
N (V, β)

)
= − 1

K
ln (λ1(V,β)) . (A14)

Since λ1(V,β) is analytic for β > 0, see [40, Chapter VII, Theorem 1.8], and strictly
positive, see [69, Theorem 137.4], we conclude that FAL(V, β) is analytic with respect
to β.
We can apply the same procedure to the partition function Z H T

N (V, β) in (32). Also in
this case the potential Tr(V (Ẽ)) with V as in (17) and the matrix Ẽ as in (31) is of
finite range K , meaning that it can be expressed as a sum of local quantities [54]. More
precisely, assuming N = K M + L with L < K and M, N , L ∈ N we have

Tr(V (Ẽ)) =
M−1∑


=1

W (̃α
, α̃
+1) + W (

K−1︷ ︸︸ ︷
0, . . . , 0,−1, α̃1)

+ W (̃αM , αK M+1, . . . , αN︸ ︷︷ ︸
L

, 0, . . . , 0︸ ︷︷ ︸
K−L

) .

(A15)

For example for V (z) = z2 + z̄2 one has K = 2 and N = 2M + L where L = 0, 1,
depending on the parity of N . The vector α̃
 takes the form α̃
 = (α2
−1, α2
) for

 = 1, . . . , M . In this notation, we can rewrite the potential as

Tr(V (Ẽ)) =
M−1∑


=1

W (̃α
, α̃
+1) + W (̃αM , δL ,1αN , 0) + 2�(α2
1 + 2ᾱ2ρ

2
1 )︸ ︷︷ ︸

=W (0,−1,α1,α2)

,

(A16)

where in this case

W (̃α
, α̃
+1) = 2�
1∑

s=0

(α2
−1+s ᾱ2
+s)
2 − 4�

1∑

s=0

α2
−1+s ᾱ2
+1+sρ
2
2
+s

and δL ,1 is equal to zero for L �= 1.
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Using (A15) the partition function can be written in the form

Z H T
N (V, β) =

∫

DN−1×S1

dαN

iαN

N−1∏

j=1

d2α j

(
1 − |α j |2

)β
(
1− j

N

)
−1

× exp

⎛

⎝−
M−1∑


=1

W (̃α
, α̃
+1) − W (̃αM , αK M+1, . . . , αN ,

K−L︷ ︸︸ ︷
0, . . . , 0)

⎞

⎠

× exp

⎛

⎝−W (

K−1︷ ︸︸ ︷
0, . . . , 0,−1, α̃1)

⎞

⎠ . (A17)

Wewant to apply the same technique as in the previous case, but we have to pay attention
to one important detail: in this situation, the eigenvalues and the eigenfunctions of the
transfer operators will be dependent on the block number. Indeed, in this case, the
exponents of (1 − |α j |2) are not identical, but they depend on the index j as in (A17).
For this reason, we define

ζ (1) = β

2K︷ ︸︸ ︷(
1 − 1

N
, 1 − 2

N
. . . , 1 − K

N
, 1 − 1

N
, 1 − 2

N
, . . . , 1 − K

N

)
,

and

ζ ( j) = ζ (1) − β
j − 1

N
K , j = 1, . . . , M − 1 ,

where the vector K has entries K j = K for j = 1, . . . , 2K . For K integer and K < N
we introduce the multiplication operator MK : L2(DK ) → L2(DK ) defined as

(MK f )(α) =
K∏

j=1

(
1 − |α j |2

)− Kβ
2N

f (α).

Remark 10. We notice that, for β ∈ R
+, K ∈ N and N ∈ N big enough, the function

∏K
j=1

(
1 − |α j |2

)− Kβ
2N ∈ L2(DK ). Since we are considering the limit N → ∞, and

β, K independent from N , we always assume that this condition holds.

We observe that M−K = (MK )−1 and the operators Tζ ( j) : L2(DK ) → L2(DK )

defined in (A7) satisfy the relation

Tζ ( j+1) = MKTζ ( j)MK , j = 1, . . . , M − 1. (A18)

We recall that the operators Tζ ( j) are compact, furthermore, we notice that MKTζ ( j) is
also compact since it is Hilbert–Schmidt [40].
Let us define the K (M − 1)-dimensional vector ζ M = (ζ (M−1), . . . , ζ (1)) and the
operator T̃M,ζ M

: L2(DK ) → L2(DK ) as

T̃M,ζ M
= MKTζ (M−1)MKTζ (M−2)MK · · ·MKTζ (1) , (A19)

we notice that it is a compact operator, since allMKTζ ( j) are Hilbert–Schmidt.
We will now prove the following technical result:
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Proposition 12. Let T̃M,ζ M
as in (A19) and Z H T

N as in (A17) then:

lim
N→∞

1

N
ln

(
Z H T

N

Tr(T̃M,ζ M
)

)
= 0 , (A20)

here by Tr(T̃M,ζ M
) we indicate the standard trace on L2.

Proof. We will estimate both Z H T
N , and Tr(T̃M,ζ M

) from above and below, then com-
bining these estimates we will obtain (A20). We start with Z H T

N .

Z H T
N =

∫

DN−1×S1

dαN

iαN

⎡

⎣
N−1∏

j=1

d2α j

(
1 − |α j |2

)β
(
1− j

N

)
−1

⎤

⎦

× exp

⎛

⎝−
M−1∑


=1

W (̃α
, α̃
+1) − W (̃αM , αK M+1, . . . , αN ,

K−L︷ ︸︸ ︷
0, . . . , 0)

⎞

⎠

× exp

⎛

⎝−W (

K−1︷ ︸︸ ︷
0, . . . , 0,−1, α̃1)

⎞

⎠ . (A21)

We can bound the first and the last three terms in the above exponential with two positive
constants C(V, β) and c(V, β), independent of N , such that

c(V, β) ≤ exp

⎛

⎝−W (̃α1, α̃2) − W (̃αM−1, α̃M ) − W (̃αM , αK M+1, . . . , αN ,

K−L︷ ︸︸ ︷
0, . . . , 0)

⎞

⎠

× exp

⎛

⎝−W (

K−1︷ ︸︸ ︷
0, . . . , 0,−1, α̃1)

⎞

⎠ ≤ C(V, β) (A22)

where in the exponents each α j ∈ D. From the previous inequalities, we deduce that the
integral

∫

DN−1×S1

dαN

iαN

⎡

⎣
N−1∏

j=1

d2α j

(
1 − |α j |2

)β
(
1− j

N

)
−1

⎤

⎦ exp

(
−

M−2∑


=2

W (̃α
, α̃
+1)

)
(A23)

is bounded from above by Z H T
N /c(V, β) and from below by Z H T

N /C(V, β). We can
explicitly integrate in α j for j = 1, . . . , K and j = (M − 1)K + 1, . . . , N using the
formula

∫

D

(
1 − |z|2

)t−1
d2z = π t−1 , (A24)
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obtaining that there are two constants C1(V, β) and c1(V, β) depending on V, β, K and
L but not on N , such that

Z H T
N ≤ C1(V, β)N K+L−1

∫

D(M−2)K

⎡

⎣
(M−1)K∏

j=K+1

d2α j

(
1 − |α j |2

)β
(
1− j

N

)
−1

⎤

⎦

× exp

(
−

M−2∑


=2

W (̃α
, α̃
+1)

)
,

(A25)

and

Z H T
N ≥ c1(V, β)N K+L−1

∫

D(M−2)K

⎡

⎣
(M−1)K∏

j=K+1

d2α j

(
1 − |α j |2

)β
(
1− j

N

)
−1

⎤

⎦

× exp

(
−

M−2∑


=2

W (̃α
, α̃
+1)

)
. (A26)

We can proceed analogously to estimate the trace of T̃M,ζ M
:

Tr(T̃M,ζ M
) =

∫

D(M−1)K

K∏

j=1

(
1 − |α j |2

) β
2

(
1− j

N

)
− 1

2
K∏

j=1

(
1 − |α j |2

) β
2

(
1− (M−1)K+ j

N

)
− 1

2

×
(M−1)K∏

j=K+1

(
1 − |α j |2

)β
(
1− j

N

)
−1

× exp

⎛

⎝−
M−2∑

j=1

W (̃α j , α̃ j+1) − W (̃αM−1, α̃1)

⎞

⎠×
(M−1)K∏

j=1

d2α j .

(A27)

As before, we notice that there exist two positive constants C̃(V, β), and c̃(V, β), inde-
pendent of N , such that

c̃(V, β) < exp (−W (̃α1, α̃2) − W (̃αM−1, α̃1)) < C̃(V, β) (A28)

when α1,α2,αM−1 ∈ DK . From these inequalities, we deduce that the integral

∫

D(M−1)K

K∏

j=1

(
1 − |α j |2

) β
2

(
1− j

N

)
− 1

2
K∏

j=1

(
1 − |α j |2

) β
2

(
1− (M−1)K+ j

N

)
− 1

2

×
(M−1)K∏

j=K+1

(
1 − |α j |2

)β
(
1− j

N

)
−1

exp

⎛

⎝−
M−2∑

j=2

W (̃α j , α̃ j+1)

⎞

⎠
(M−1)K∏

j=1

d2α j

(A29)
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is bounded from above by Tr(T̃M,ζ M
)/̃c(V, β) and from below by Tr(T̃M,ζ M

)/C̃(V, β).
Using (A24) we can now explicitly integrate in α j for j = 1, . . . , K the above integral
obtaining the following inequalities

Tr(T̃M,ζ M
) ≤ C̃1(V, β)

∫

D(M−2)K

⎡

⎣
(M−1)K∏

j=K+1

d2α j

(
1 − |α j |2

)β
(
1− j

N

)
−1

⎤

⎦

× exp

(
−

M−2∑


=2

W (̃α
, α̃
+1)

)
, (A30)

Tr(T̃M,ζ M
) ≥ c̃1(V, β)

∫

D(M−2)K

⎡

⎣
(M−1)K∏

j=K+1

d2α j

(
1 − |α j |2

)β
(
1− j

N

)
−1

⎤

⎦

× exp

(
−

M−2∑


=2

W (̃α
, α̃
+1)

)
, (A31)

where C̃1(V, β), and c̃1(V, β) are positive constants depending on V, β, K and L but
not on N . Combining (A25)–(A26)–(A30)–(A31) we deduce (A20). ��
Applying the previous proposition, we can express the Free energy of the Circular β

ensemble in the high-temperature regime in terms of Tr(T̃M ):

FH T (V, β) = − lim
N→∞

1

N
ln
(

Z H T
N

)

= − lim
N→∞

1

N

(
ln

(
Z H T

N

Tr(T̃M,ζ M
)

)
+ ln(Tr(T̃M,ζ M

))

)

= − lim
N→∞

ln(Tr(T̃M,ζ M
))

N
, (A32)

where in the last equality we used Proposition 12.
As a final step, we have to understand the behaviour of Tr(T̃M,ζ M

), and for this purpose
we need to carefully analyse the compact operators Tζ ( j) .

Let {ψn(z, V, ζ ( j))}n≥1 be the eigenfunctions of Tζ ( j) with corresponding eigenvalues

{λn(V, ζ ( j))}n≥1 and |λ1(V, ζ ( j))| ≥ |λ2(V, ζ ( j))| ≥ . . . . From a generalized ver-
sion of Jentzsch’s Theorem (see [69, Theorem 137.4]), we deduce that |λn(V, ζ ( j))| <

λ1(V, ζ ( j)) for all n ≥ 2.
We are now in the position to prove the following proposition.

Proposition 13. Let {ψn(z, V, ζ ( j))}∞n=1 be the eigenfunctions of the operator Tζ ( j) in

(A7) with corresponding eigenvalues {λn(V, ζ ( j))}∞n=1. Consider the operator T̃M,ζ M
in

(A19), then there are constants d, a j , c j , j = 1, . . . , M − 1 uniformly bounded in N,
and so in M, such that :
(
ψ1(z,V,ζ (1)), T̃M,ζ M

ψ1(z,V,ζ (1))
)=∏M−1

j=1 λ1(V, ζ ( j))
(
1+

a j
N +O

(
1

N2

))
, (A33)

∣∣∑

≥2

(
ψ
(z,V,ζ (1)), T̃M,ζ M

ψ
(z,V,ζ (1))
)∣∣≤d

∏M−1
j=3 λ1(V,ζ ( j))

(
1+

c j
N +O

(
1

N2

))

(A34)
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Proof. To simplify the notation, we will drop the V dependence of the eigenvalues
λn(V, ζ ( j)), and of the eigenfunctions ψn(z, V, ζ ( j)).
We will prove (A33) by induction on M . For M = 2, we have that T̃M,ζ M

= MKTζ (1) ,
so we have to compute:
(

ψ1(z, ζ (1)),MKTζ (1)ψ1(z, ζ (1))

)
= λ1(ζ

(1))
(
ψ1(z, ζ (1)),MK ψ1(z, ζ (1))

)

= λ1(ζ
(1))

⎛

⎝ψ1(z, ζ (1)),

K∏

j=1

(1 − |z j |2)− Kβ
2N ψ1(z, ζ (1))

⎞

⎠

= λ1(ζ
(1))

(
ψ1(z, ζ (1)),

(
1 +

ã1(z)
N

+ O

(
1

N 2

))
ψ1(z, ζ (1))

)

= λ1(ζ
(1))

(
1 +

a1
N

+ O

(
1

N 2

))
,

(A35)

where the function ã1(z) is the first term of the expansion of
∏K

j=1(1 − |z j |2)− Kβ
2N

in powers of 1/N and the constant a1 = (ψ1(z, ζ (1)), ã1(z)ψ1(z, ζ (1))
)
is uniformly

bounded in N . So the first inductive step is proved.
For general M , we define the vector ζ M−1 = (ζ (M−1), . . . , ζ (2)) so that

T̃M,ζ M
= T̃M−1,ζ M−1

MKTζ (1) .

Using the above relation we obtain
(
ψ1(z, ζ (1)), T̃M,ζ M

ψ1(z, ζ (1))
)

=
(
ψ1(z, ζ (1)), T̃M−1,ζ M−1

MKTζ (1)ψ1(z, ζ (1))
)

= λ1(ζ
(1))
(
ψ1(z, ζ (1)), T̃M−1,ζ M−1

MK ψ1(z, ζ (1))
)

.

(A36)

Thanks to [40, Chapter VII, Theorem 1.8], we know that the eigenfunctions ψ1(z, ζ ( j))

and the eigenvalues λ1(ζ
( j)) are analytic functions of the parameter ζ ( j), so, for N big

enough, there exists a function ξ1(z) ∈ L2(DK ) independent of N such that:

ψ1(z, ζ (1)) = ψ1(z, ζ (2))

(
1 +

ξ1(z)
N

+ O

(
1

N 2

))
(A37)

and a constant c j such that

λ1(ζ
( j+1)) = λ1(ζ

( j))

(
1 +

c j

N
+ O

(
1

N 2

))
. (A38)

Using (A37) and the expansion of the function defining the operatorMK we can expand
(A36) as:
(
ψ1(z, ζ (1)), T̃M−1,ζ M−1

MKTζ (1)ψ1(z, ζ (1))
)

= λ1(ζ
(1))
(
ψ1(z, ζ (2)), T̃M−1,ζ M−1

ψ1(z, ζ (2))
)

+
λ1(ζ

(1))

N

(
ψ1(z, ζ (2)), T̃M−1,ζ M−1

ψ1(z, ζ (2))

(
ã1(z) + ξ1(z) + O

(
1

N

)))
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+
λ1(ζ

(1))

N

(
ψ1(z, ζ (2))

(
ξ1(z) + O

(
1

N

))
, T̃M−1,ζ M−1

ψ1(z, ζ (2))

)
. (A39)

To bound the last two terms in the above relation, we use (A18) and (A38) so that

∣∣∣
∣∣∣MKTζ ( j)

∣∣∣
∣∣∣ =
∣∣∣
∣∣∣Tζ ( j+1)M−1

K

∣∣∣
∣∣∣ ≤ λ1(ζ

( j+1)) = λ1(ζ
( j))

(
1 +

c j

N
+ O

(
1

N 2

))

(A40)

for j = 2, . . . , M − 1, here in the first inequality we use the fact that ||M−1
K || = 1.

Using (A40) we can bound the second term in the r.h.s of (A39) by

∣∣∣∣

(
ψ1(z, ζ (2)),MKTζ (M−1)MK . . .MKTζ (2)ψ1(z, ζ (2))

(
ã1(z) + ξ1(z) + O

(
1

N

)))∣∣∣∣

≤
∣∣∣
∣∣∣ψ1(z, ζ (2))

∣∣∣
∣∣∣
2

∣∣∣∣

∣∣∣∣ψ1(z, ζ (2))

(
ã1(z) + ξ1(z) + O

(
1

N

))∣∣∣∣

∣∣∣∣
2

×
∣∣∣
∣∣∣MKTζ (M−1)MK . . .MKTζ (2)

∣∣∣
∣∣∣

≤ c
M−1∏

j=2

∣∣∣
∣∣∣MKTζ ( j)

∣∣∣
∣∣∣ ≤ c

M∏

j=3

λ1(ζ
( j)) ≤ c

M−1∏

j=2

λ1(ζ
( j))

(
1 +

c j

N
+ O

(
1

N 2

))
,

(A41)

for some constant c uniformly bounded in N . An analogous inequality can be obtained
for the second term in (A39). Thus, applying the induction to the first term in the r.h.s.
of (A39), we deduce (A33).
We move to the proof of (A34). Applying (A33), we can estimate (A34) as

∣∣∣∣
∑


≥2

(
ψ
(z, ζ (1)), T̃M,ζ M

ψ
(z, ζ (1))

)∣∣∣∣

=
∣∣∣∣∣∣

∑


≥2

(
ψ
(z, ζ (1)), T̃M,ζ M

ψ
(z, ζ (1))
)

±
(
ψ1(z, ζ (1)), T̃M,ζ M

ψ1(z, ζ (1))
)
∣∣∣∣∣∣

≤
M−1∏

j=1

λ1(ζ
( j))

(
1 +

a j

N
+ O

(
1

N 2

))
+ |Tr(T̃M,ζ M

)| . (A42)

Regarding the second term in the r.h.s of the above expression we claim that there exists
a constant c such that

|Tr(T̃M,ζ M
)| ≤ c

M−1∏

j=3

λ1(ζ
( j))

(
1 +

c j

N
+ O

(
1

N 2

))
. (A43)

To derive the above inequality first, we consider the operator T2,1 = MKTζ (2)MKTζ (1) ,
it is a compact operator and it is trace class since it is the composition of two different
Hilbert–Schmidt operators. Let {̃λn}n≥1 be its eigenvalues numbered in such a way
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that {|̃λn|}n≥1 is a non increasing sequence and let {ϕn(z)}n≥1 be the corresponding
eigenfunctions. Then

|Tr(T̃M,ζ M
)| =
∣∣∣∣∣∣

∑

n≥1

(
ϕn,MKTζ (M−1) . . .MKTζ (3)T2,1ϕn

)
∣∣∣∣∣∣

≤
∑

n≥1

|̃λn|
∣∣∣
(
ϕn,MKTζ (M−1) . . .MKTζ (3)ϕn

)∣∣∣

≤
∣∣∣
∣∣∣MKTζ (M−1)MK . . .MKTζ (3)

∣∣∣
∣∣∣
∑

n≥1

|̃λn| .

(A44)

Since T2,1 is trace class, it is a classical result that [31]
∑

n≥1

|̃λn| ≤
∑

n≥1

sn := ||T2,1||Trace , (A45)

where {sn}n≥1 are the singular values of the operator T2,1. Furthermore, since T2,1 is the
composition of two Hilbert–Schmidt operators, we have the following inequality

||T2,1||Trace ≤ ||MKTζ (2) ||HS||MKTζ (1) ||HS ≤ c̃ , (A46)

where ||·||HS is theHilbert–Schmidt norm and c̃ is a positive constant uniformly bounded
in N . Thus, applying the previous chain of inequalities and the same argument as in
(A41), we deduce that

|Tr(T̃M,ζ M
)| ≤ c

M−1∏

j=3

λ1(ζ
( j))

(
1 +

c j

N
+ O

(
1

N 2

))
, (A47)

so we conclude our proof. ��
Applying Proposition (13) to (A32) we obtain that:

FH T (V, β) = − lim
N→∞

1

N
ln
(
Tr(T̃M,ζ M

)
) =

− lim
N→∞

1

N
ln

⎛

⎝
∑

n≥1

(
ψn(z, V, ζ (1)), T̃M,ζ M

ψn(z, V, ζ (1))
)
⎞

⎠

= − lim
N→∞

[
1

N
ln

⎛

⎝
M−1∏

j=1

λ1(V, ζ ( j))

(
1 +

a j

N
+ O

(
1

N 2

))⎞

⎠

+
1

N
ln

⎛

⎝1 +
∑


≥2

(
ψ
(z, V, ζ (1)), T̃M,ζ M

ψ
(z, V, ζ (1))
)

∏M−1
j=1 λ1(V, ζ ( j))

(
1 +

a j
N + O

(
1

N2

))

⎞

⎠
]

,

(A48)

applying the inequality (A34) of Proposition (13), we deduce that the last term in the
above relation goes to zero as N → ∞ and we obtain that

FH T (V, β) = − lim
N→∞

1

N
ln

⎛

⎝
M−1∏

j=1

λ1(V, ζ ( j))

⎞

⎠ . (A49)
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Since λ1(V, ζ ( j)) is positive and an analytic function of the parameter ζ ( j), we approx-

imate the vector ζ ( j) with the vector (1 − j K
N )

2K︷ ︸︸ ︷
(β, β, . . . β) = (1 − j K

N )β and deduce

that λ1(V, ζ ( j)) = λ1

(
V,β
(
1 − j K

N

))
+ O(N−1). Therefore, we can rewrite (A48)

as

FH T (V, β) = − lim
N→∞

1

N

M−1∑

j=1

ln

(
λ1

(
V,β

(
1 − j K

N

)))
=

− 1

K

∫ 1

0
ln (λ1 (V,βx)) dx .

(A50)

This, combinedwith (A14), leads to (A1).Moreover, as a consequence of the last relation,
we deduce that FH T (V, β) is analytic in β for β > 0.
We notice that the proof of Proposition 8 is heavily based on the assumption that the

potential V that we are considering is of finite range, otherwise our approach would not
work.
We now prove the moments relations (61). For this purpose we have to prove the

relations
∫

T

cos(θm)μ
β
H T (dθ) = ∂t FH T

(
V +

t

2
�(zm), β

)

|t=0

, (A51)

∫

T

cos(θm)μ
β
AL(dθ) = ∂t FAL

(
V +

t

2
�(zm), β

)

|t=0

. (A52)

Analogous relation can be written for the imaginary part of the moments. We focus
on (A51). From Remark 6, we know that FH T (V, β) = F (V ;β)(μ

β
H T (θ)), where the

functionalF (V,β) is defined in (42) and μ
β
H T (θ) is the density of states of the Circular β

ensemble at high-temperature.Wewrite the Euler-Lagrange equation for this functional,
getting that μβ

H T (θ) satisfies:

2V (θ) − 2β
∫

T

ln

(
sin

( |θ − γ |
2

))
μ

β
H T (γ )dγ + ln(μβ

H T (θ)) + C(V, β) = 0 ,

(A53)

where C(V, β) is a constant not depending on θ .
Now let us consider the functional corresponding to the potential Ṽ (θ) = V (θ) +

t
2 cos(mθ):

F(V (θ)+ t
2 cos(mθ),β)(μ) = 2

∫

T

V (θ)μ(θ)dθ + t
∫

T

cos(mθ)μ(θ)dθ

+
∫

T

ln (μ(θ)) μ(θ)dθ

−β

∫ ∫

T×T

ln sin

( |θ − γ |
2

)
μ(θ)μ(γ )dθdγ + ln(2π) .

(A54)
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Also this functional has a unique minimizer that we denote by μ(t)(θ), with μ(0)(θ) =
μ

β
H T (θ). Evaluating the above functional at μ(t)(θ), and computing its derivative at

t = 0, we deduce the following relation:

∂tF(V (θ)+ t
2 cos(mθ),β)(μ(t))|t=0

= 2
∫

T

V (θ)∂tμ
(t)(θ)|t=0dθ +

∫

T

cos(mθ)μ
β
H T (θ)dθ

− 2β
∫ ∫

T×T

ln sin

( |θ − γ |
2

)
μ

β
H T (γ )∂tμ

(t)(θ)|t=0dθdγ

+
∫

T

ln
(
μ

β
H T (θ)

)
∂tμ

(t)(θ)|t=0dθ . (A55)

Testing (A53) against ∂tμ
(t)(θ)|t=0 we obtain

2
∫
T

V (θ)∂tμ
(t)(θ)|t=0dθ − 2β

∫ ∫
T×T

ln sin
( |θ−γ |

2

)
μ

β
H T (γ )∂tμ

(t)(θ)|t=0dθdγ

+
∫
T
ln
(
μ

β
H T (θ)

)
∂tμ

(t)(θ)|t=0dθ = 0 , (A56)

where we have used
∫
T

∂tμ
(t)(θ)dθ = 0. Thus, we can simplify (A55) as :

∂tF(V (θ)+ t
2 cos(mθ),β)(μ)|t=0 =

∫

T

cos(mθ)μ
β
H T (θ)dθ , (A57)

which is equivalent to (A51).
To complete the proof of Proposition 8 we have to show that (A52) holds. From the

definition of mean density of states (41) we obtain that:

∫

T

cos(mθ)μ
β
AL(dθ) = lim

N→∞
E
[�(Tr(Em))

]

2N

= − lim
N→∞

∂t

(
Z (AL)

N

(
V + t

2�(zm), β
))

|t=0

N Z (AL)
N (V, β)

,

(A58)

where the expected value is taken with respect to the generalized Gibbs ensemble of the
Ablowitz–Ladik lattice. A similar equation holds for the imaginary part of the moment.
Let’s focus on the numerator, first we notice that we can assume that�(zm) and V to have
the same range K . The more general case can be treated in the same way. Differentiating
the partition function we obtain

∂t

(
Z (AL)

N

(
V +

t

2
�(zm), β

))

|t=0

= 1

2

∫

DN
�(Tr(Em))

N∏

j=1

(
1 − |α j |2

)β−1

× exp

(
−

M∑


=1

W (̃α
, α̃
+1)−W1(αK M+1, . . . , αK M+L , α̃1)

)
d2α .

(A59)
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Due to the structure of the measure and of the Lax matrix E , we deduce that there exist
two smooth functions g : DK × D

K → R and g1 : D
L × D

K → R such that

∂t

(
Z (AL)

N

(
V +

t

2
�(zm), β

))

|t=0

=
∫

DN
d2α

N∏

j=1

(
1 − |α j |2

)β−1

×
[

M∑


=1

g(̃α
, α̃
+1) + g1(αK M+1, . . . , αK M+L , α̃1)

]

× exp

(
−

M∑


=1

W (̃α
, α̃
+1)−W1(αK M+1, . . . , αK M+L , α̃1)

)
d2α .

(A60)

Proceeding as in the proof of Proposition 13, defining the operator T (t)
β

as

T (t)
β

= Tβet g, (A61)

for N big enough, (A60) is asymptotic to

∂t

(
Z (AL)

N

(
V +

t

2
�(zm), β

))

|t=0

∼ MTr
(
∂t (T (t)

β
)|t=0T M−2

β

)
. (A62)

Following the same reasoning as in the previous proof, in view of the analyticity of
λ1(V,β), we deduce that the previous equation is asymptotic to

∂t

(
Z (AL)

N

(
V +

t

2
�(zm), β

))

|t=0

∼ Mλ1(V,β)M−2∂tλ1(V + t/2�(zm),β)|t=0 .

(A63)

Exploiting (A12)-(A14) and (A63), we can rewrite (A58) as:

lim
N→∞

∂t

(
Z (AL)

N

(
V + t

2�(zm), β
))

|t=0

N Z (AL)
N (V, β)

= lim
N→∞

Mλ1(V,β)M−2∂tλ1
(
V + t

2�(zm),β
)
|t=0

N
∑∞


=1 λM−1

 (V, β)

=
∂tλ1
((

V + t
2�(zm), β

))
|t=0

Kλ1(V, β)

= −∂t

(
FAL

(
V +

t

2
�(zm), β

))

|t=0

.

(A64)

Thus, we have completed the proof of Proposition 8. ��
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Appendix B Proof of Lemma 11

We prove (89) for k = 1 and the cases k > 1 easily follow. For convenience we consider
the more general case of (λ, η, β) ∈ C × C × {z ∈ C|� z > 0}.
Let us define R(s)

1 =
(

fs hs
ps qs

)
where s ≥ 1. If follows from (88) that

(
fs hs
ps qs

)
=
(

fs−1 hs−1
ps−1 qs−1

)(
1 + λβη

s(s+β)
η2

s(s+β+1)
1 0

)
, s > 1. (B65)

Note that in the case η = 0 the lemma is trivially satisfied. We will show that all the

sequences { fs, hs, ps, qs}s≥1 converge as s → ∞, moreover hs, qs
s→∞−−−→ 0. First of

all, we notice that hs = η2 fs−1
s(s+β+1) and qs = η2 ps−1

s(s+β+1) , thus the convergence to zero of
these two sequences follows from the convergence of ps and fs as s → ∞. Moreover,
the terms of the sequences { fs, ps}s≥1 obey to the 3-terms recurrence:

fs =
(
1 +

λβη

s(s + β)

)
fs−1 +

η2

(s − 1)(s + β)
fs−2 , (B66)

and the same holds for ps in place of fs . Thus, we have just to prove that the sequence
{ fs}s≥1 converges. We assume that (λ, η, β) ∈ � where � ⊂ C×C×{z ∈ C|� z > 0}
is a compact set. With this assumption we can give a bound to | fs | from above as:

| fs | ≤
(
1 +

2η2 + |λβη|
s(s + β)

)
max (| fs−1|, | fs−2|) . (B67)

Inductively, we deduce that there exists a constant C = C(�) such that:

| fs | ≤ C
s∏


=1

(
1 +

2η2 + |λβη|

(
 + β)

)
≤ C

∞∏


=1

(
1 +

2η2 + |λβη|

(
 + β)

)
. (B68)

Furthermore, the infinite product on the right-hand side of (B68) is convergent by a
classical result, see for example [46, Chapter XIII, Lemma 1], this implies that the
sequence { fs}s≥1 is uniformly bounded. Moreover, we have that:

| fs+1 − fs | ≤ | fsλβη|
(s + 1)(s + 1 + β)

+
η2| fs−1|

s(s − 1 + β)
≤ C̃

η2 + |λβη|
s(s − 1 + β)

, (B69)

for some constant C̃ > 0 that depends on the compact set �. This last equation implies
that the sequence { fs}s≥1 is a Cauchy sequence, thus it is convergent. So we get the
claim (88). The claim (90) easily follows from (88).
Regarding the differentiability in the parameters λ, η and β, it follows from (B66) that

fs = fs(λ, η, β) is analytic in�. Since fs(λ, η, β) → f (λ, η, β) as s → ∞ uniformly,
then by Weierstrasse convergence theorem, f (λ, η, β) is analytic in �. ��
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