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Abstract

We consider the gravity water waves system with a periodic one-dimensional in-
terface in infinite depth and give a rigorous proof of a conjecture of Dyachenko-
Zakharov [16] concerning the approximate integrability of these equations. More
precisely, we prove a rigorous reduction of the water waves equations to its in-
tegrable Birkhoff normal form up to order . As a consequence, we also obtain
a long-time stability result: periodic perturbations of a flat interface that are ini-
tially of size remain regular and small up to times of order . This time scale
is expected to be optimal. © 2022 The Authors. Communications on Pure and
Applied Mathematics published by Wiley Periodicals LLC.
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1 Introduction
We consider an incompressible and irrotational perfect fluid, under the action of

gravity, occupying at time a two-dimensional domain with infinite depth, periodic
in the horizontal variable, given by

(1.1) D
where is a regular enough function. The velocity field in the time-dependent
domain D is the gradient of a harmonic function , called the velocity potential.
The time evolution of the fluid is determined by a system of equations for the two
functions , . Following Zakharov [36], given

and the restriction of the velocity potential at
the top boundary, one can recover as the unique solution of the elliptic
problem

(1.2) in D as on

The variables then satisfy the gravity water waves system

(1.3)

where is the Dirichlet-Neumann operator

(1.4)

and is the outward unit normal at the free interface . Without loss of
generality, we set the gravity constant to .

It was first observed by Zakharov [36] that (1.3) is the Hamiltonian system

(1.5)
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where denotes the -gradient, with Hamiltonian

(1.6)

given by the sum of the kinetic and potential energy of the fluid. Note that the
mass is a prime integral of (1.3) and, with no loss of generality, we can fix
it to zero by shifting the -coordinate. Moreover, (1.3) is invariant under spatial
translations and Noether’s theorem implies that the momentum
is a prime integral of (1.5).

Let , , be the Sobolev spaces of -periodic functions
of . It is natural to consider in the subspace of zero average functions

, and in the standard homogeneous Sobolev space .1 Moreover,
since the space averages ,
evolve according to the decoupled equations2 , ,
we may restrict, with no loss of generality, to the invariant subspace with

.
The main result of this paper (Theorem 1.1) proves a conjecture of Dyachenko-

Zakharov [16], supported by Craig-Worfolk [12] on the approximate integrability
of the water waves system (1.3). More precisely, we prove that (1.3) can be conju-
gated, via a bounded and invertible transformation in a neighborhood of the origin,
to its Hamiltonian Birkhoff normal form, up to order . This latter—in the PDE
literature sometimes referred to as the “resonant system”—was formally computed
in [12,16] (see also [11]) and, remarkably, shown to be integrable. Despite several
attempts, the formal approach in [12, 16] has never been translated into a rigorous
result. The proof we give in this paper is actually based on a completely different
approach to the Birkhoff normal form reduction, which we describe at the end of
this introduction. As a consequence of Theorem 1.1, we also obtain a long-time
stability result (Theorem 1.2): periodic perturbations that are initially -close to the
flat equilibrium lead to solutions that remain regular and small for times of order

. This time scale is expected to be optimal. These results have been announced
in [8].

While in recent years several results have been obtained for quasilinear equa-
tions with initial data that decay sufficiently fast at infinity, fewer results are avail-
able in the periodic setting. In this context, the achievement of Birkhoff normal
forms reductions is a key step to provide an accurate description of the long-term
dynamics of evolution PDEs like (1.3). We also remark that the stability result in
Theorem 1.2 is obtained by completely different mechanisms compared to most

1 The spaces and are isometric. Thus we will conveniently identify with a zero
average function.

2 Since the domain D has infinite depth, if solves (1.2), then ,
, solves the same problem in D assuming the Dirichlet datum at the free boundary

. Therefore and where denotes
the kinetic energy.
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recent works; see, for example, [21,23,26,34], which obtain a shorter stability
time in the absence of cubic resonances (see (1.25)). Indeed, we deduce Theorem
1.2 by the complete conjugation of the water waves equations (1.3) to its integrable
Birkhoff normal form.

1.1 Main results
We denote the horizontal and vertical components of the velocity field at the free

interface by

(1.7)

and the “good unknown” of Alinhac

(1.8) BW

as introduced in [3] (see Definition 2.4 for the definition of the paradifferential
operator BW).

To state our first main result concerning the rigorous reduction to Birkhoff nor-
mal form of the system (1.3), let us assume that, for large enough and some

, we have a classical solution

(1.9)

of the Cauchy problem for (1.3) with the initial height satisfying

(1.10)

The existence of such a solution for small enough is guaranteed by the local well-
posedness theory (see, for example, Theorem 1.3) under the regularity assumption

where we denote

(1.11)

Defining the complex scalar unknown

(1.12) i

we deduce, by (1.9), that , and solves an equation of
the form i where is a fully nonlinear
vector field that contains up to first-order derivatives of . Moreover, since the
zero average condition (1.10) is preserved by the flow of (1.3), it follows that

(1.13)

This is our first main result.
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M. BERTI, R. FEOLA, AND F. PUSATERI1420  BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 5

THEOREM 1.1 (Birkhoff normal form). Let be defined as in (1.12), with as in
(1.8), for solution of (1.3) satisfying (1.9)–(1.10). There exist
and such that, if

(1.14) sup

then there exist a bounded and invertible transformation B B of , which
depends (nonlinearly) on , and a constant such that

(1.15) B L B L

and the variable B satisfies the equation

(1.16) i X

where

(1) the Hamiltonian has the form

(1.17)

with

(1.18)

sign sign

where denotes the th Fourier coefficient of the function .

(2) X X is a quartic nonlinear term satisfying, for some
, the “energy estimate”

(1.19) Re X

The main point of Theorem 1.1 is the construction of the bounded and invert-
ible transformation B in (1.15) which recasts the water waves system (1.3)
into the equation (1.16)–(1.19). Theorem 1.1 rigorously relates the flow of the
full water waves system (1.3) to the flow of the system (1.16), which is made by
the explicit Hamiltonian term i plus remainders of higher homogeneity.
These remainders are under full control thanks to the energy estimates (1.19). The
Hamiltonian is integrable, as observed in [12, 16], and its flow preserves all
the Sobolev norms; see Theorem 1.4. Thus, relying on Theorem 1.1, we can prove
the following result:
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BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 14216 M. BERTI, R. FEOLA, AND F. PUSATERI

THEOREM 1.2 (Long-time existence). There exists3 such that, for all
, there is such that, for any initial data satisfying (recall (1.11))

(1.20)

where , are defined by (1.7), the following
holds: there exist constants and , and a unique classical solution

of the water waves system (1.3) with initial con-
dition with

(1.21)

satisfying

(1.22)

sup

Let us briefly describe some of the key points of the above results:

(1) To our knowledge, Theorem 1.2 is the first normal form existence re-
sult for dispersive PDEs with a quadratic nonlinearity in the absence of external
parameters (and excluding equations admitting conserved quantities that control
high Sobolev norms). One of the main difficulties is that (1.3) presents a fam-
ily of nontrivial quartic resonances, the Benjamin-Feir resonances (1.27), which
are potentially a strong obstruction to controlling the dynamics for times of order

. For parameter-depending PDEs with external parameters one can avoid such
nontrivial resonances by modulating the dispersion relation, cf. paragraph “Param-
eters” below Theorem 1.4.

(2) The stability time in Theorem 1.2 is expected to be optimal in
view of the presence of quintic resonances as exhibited by Craig-Worfolk [12] and
Dyachenko-Lvov-Zakharov [15]. In other words, one cannot expect a stability time

for all initial data.

(3) We develop a general method to justify the formal/heuristic calculations of
the Hamiltonian Birkhoff normal form of any Hamiltonian PDE. Applying several
nonlinear flow conjugation maps (generated by paradifferential or smoothing op-
erators) we transform (1.3) in Poincaré-Birkhoff normal form (see (1.29)–(1.30)),
which is not a priori explicit. Then, a key step in the proof of Theorem 1.1 is a nor-
mal form uniqueness argument to identify the cubic Poincaré-Birkhoff resonant
system with the Hamiltonian equations associated to the Hamiltonian com-
puted by a formal expansion in [11,12,15,16] (see (1.17)–(1.18)). The uniqueness

3 We did not try to optimize the regularity index . With a more careful analysis one could likely
pick some . In any case, the Sobolev regularity is an unimportant aspect in the study of the
long-time behavior of classical solutions to quasilinear problems.
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of the normal form is based on the absence of cubic resonances. An inspiration
for this identification argument is the famous Moser’s indirect proof of the conver-
gence of the Lindsted power series to the KAM quasi-periodic solutions [30].

We also make a couple of technical comments about the rigorous conjugation of
(1.3) to its cubic Poincaré-Birkhoff normal form.

Besides the resonant interactions, one also needs to pay attention to near
resonances, which can prevent the boundedness of Poincaré-Birkhoff nor-
mal form transformations. We overcome this issue by performing an iter-
ative reduction of the water waves equations (1.3) to constant integrable
coefficients, modulo smoothing remainders; see (1.28). In this process
we identify and exploit specific algebraic cancellations of (1.3) in infinite
depth.

Since the dispersion relation is sublinear, our reduction procedure
substantially differs from the recent work of Berti-Delort [6], where the
dispersion relation is superlinear. Moreover, in contrast to [6] we
have to deal with nontrivial resonances (the Benjamin-Feir resonances) that
we cannot eliminate modulating the surface tension parameter as in [6],
and we do not restrict to even initial data. However, we still employ the
paradifferential framework of [6] as it readily provides us with a convenient
paralinearization of the Dirichlet-Neumann operator (1.4).

We have chosen to formulate the long-time existence result of Therem 1.2 using
the original symplectic variables as well as the velocity components
in (1.7) consistently with the following local existence result.

THEOREM 1.3 (Local existence [1]). Let and consider such that
is in ; see (1.11).

Then there exists loc such that the Cauchy problem for (1.3) with initial
data has a unique solution loc
with loc . Moreover, denoting by the maximal time
of existence of , if, for some ,

(1.23) sup

then and sup .

Theorem 1.3 is essentially the local existence result [1, theorem 1.2], stated in
the case of the torus , for a fluid in infinite depth. The result is based on en-
ergy methods for hyperbolic symmetrizable quasi-linear systems, which are the
same in and in . By time reversibility, the solutions of (1.3) are defined in
a symmetric interval . In agreement with Theorem 1.3, at any time the
solution of Theorem 1.2 belongs to the same space as the initial
datum (see (1.20)), but in (1.22) we control only a weaker norm of the solution.
This is a well-known phenomenon of the pure gravity water waves equations (see,
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for instance, [1, 2]): in the variables the Sobolev regularity of the solution
is preserved along the flow, but there is a loss of derivatives in passing to the un-
knowns . The weaker bound (1.22) is still more than sufficient to apply the
continuation criterion of Theorem 1.3.

1.2 Some literature, the Dyachenko-Zakharov conjecture, and some ideas of
the proof

The local well-posedness of the water waves and free boundary Euler equations
has been addressed by many authors (see, for example, [1, 10, 31, 33]), and it is
presently well understood; we refer to the review [27, sec. 2] for an extensive list
of references. In particular, for smooth enough initial data that are of size , the
solutions exist and stay regular for times of order . When the horizontal variable

, for sufficiently small and spatially localized initial data, it is possible to
construct global-in-time solutions exploiting the dispersive properties of the flow.
Results for (1.3) have been proved in [2, 22, 24, 32, 34] and in [20, 35] for the -D
case. We refer again to [27] and to the introduction of [14], for a more detailed
presentation of these results.

Long-time existence on tori. When the horizontal variable , there are
no dispersive effects that control solutions for long times, and a tool to extend the
lifespan of solutions is normal form theory. To explain the idea, let us consider a
generic evolution equation of the form

(1.24) i

where is a real Fourier multiplier, and is a quadratic nonlinearity that
depends on and their derivatives in a quasi-linear way. In the case of (1.3)
the dispersion relation is . An energy estimate for (1.24) of the form

, where , allows the construction of
local solutions on time scales of . In order to prove existence for times of

one can try to obtain a quartic energy inequality of the form
. For (1.3) inequalities of this type have been proven in [2, 21, 24,

34]; see also [23,26] for capillary waves, and [7] for gravity-capillary water waves
(relying on methods developed in this paper). Although some delicate analysis is
needed due to the quasilinearity of the PDE, the possibility of proving such quartic
energy estimates ultimately relies on the absence of 3-waves resonances, that is,
nonzero integers solving, for some ,

(1.25)

The Dyachenko-Zakharov conjecture. In order to extend the lifespan of solutions
of (1.3) up to times of order one may try to obtain a quintic energy estimate
like . At a formal level, this would be possible in the
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absence of nontrivial 4-waves resonances, namely integer solutions of

(1.26)

which do not appear in pairs with corresponding opposite signs. This property is
not satisfied by the gravity water waves system (1.3). Indeed, as shown in [16],
there are many solutions to (1.26). For example, if ,
in addition to the trivial solutions , there is the two-
parameter family of solutions, called Benjamin-Feir resonances,

(1.27)

We then perform a diagonalization of the paralinearized system (3.7) up to smooth-
ing remainders, obtaining system (3.33); see Proposition 3.10.

Applying a purely formal reduction to Birkhoff normal form up to order , the
trivial resonances give rise to benign integrable monomials of the form ,
whereas the Benjamin-Feir resonances could give nonintegrable monomials of the
form c.c. We refer to Section 6.1 for
more details. A striking property proved in [16] (see also [11, 12]), is that the
coefficients of the formal Birkhoff Hamiltonian that are supported on (1.27) are
actually zero. In particular, one has the following:

THEOREM 1.4 (Formal integrability at order 4 [11, 12, 15, 16]). There exists a for-
mal transformation such that the truncation of at order of homogeneity
is given by as in (1.18). Moreover, is integrable (can be written in
action-angle variables as (6.18)) and possesses the actions , , as
prime integrals. In particular, its flow preserves all Sobolev norms.

This result is a purely formal calculation, and no actual relation is established
between the flow of (which is well-posed for short times) and that of
or . This is the goal of Theorem 1.1. Before describing some ideas for the
proof of Theorem 1.1 we recall some other normal form results when the dispersion
relation in (1.24) depends on additional parameters.

Parameters. Under suitable nondegeneracy conditions one could prove that, for
most values of the parameters, there are no -waves resonances, that is, integer
solutions of , , except the trivial resonances.
In this direction we mention the normal form results [5, 13] for Hamiltonian semi-
linear, resp., quasi-linear, Klein-Gordon equations. For -D, resp., 2-D, gravity-
capillary water waves, the first , resp., , existence result was proved
in [6], resp., [28], for almost all values of the surface tension. See also [19] for fully
nonlinear -D Schrödinger equations with an external convolution potential used
as a parameter. We finally mention that time quasi-periodic, even in , solutions
have been constructed in [9], resp., [4], for -D gravity-capillary, resp., gravity,
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water waves using the surface tension, resp., the depth, as a parameter. We remark
that a key point of Theorems 1.1 and 1.2 is the absence of external parameters.

1.3 Ideas of the proof of Theorem 1.1.
Step 1. Diagonalization up to smoothing remainders.

We begin our analysis by paralinearizing the water waves system (1.3), ex-

pressed in the complex variable introduced in (1.12); see Propositions

3.1 and 3.3.
Step 2. Reduction to constant, integrable coefficients and Poincaré-Birkhoff nor-

mal forms. In Section 4 we reduce all the paradifferential operators in the diago-
nalized system (3.33) to constant-in- coefficients, which are “integrable” in the
sense of Definition 4.1, up to smoothing remainders of homogeneity and , and
higher-order “admissible” contributions satisfying energy estimates of the form
(1.19) (see Proposition 4.4). The most delicate reductions concern the highest-
order fully nonlinear transport term i BW and the quasilinear dispersive
term i BW in the right-hand side of (3.33).

Let us briefly describe how to deal with the transport term. At the highest order,
system (3.33) looks like i BW where V
V and the functions V V are, respectively, linear and quadratic in . In
Sections 4.1 and 4.1 we construct a bounded and invertible map as the flow of
the paradifferential operator i BW where

and

is a real-valued function to be determined. Here , are functions
respectively linear and quadratic in . Setting we obtain

i BW V where V is a real
function, quadratic in V , and “ ” denote paradifferential operators of order
less than , or admissible terms satisfying (1.19). Then we look for solving

V where is constant-in- .
However, in general, one can only obtain

V

V V i
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where V are some coefficients depending on the function . We then

verify the essential4 cancellation V , thus obtaining

i BW

Note that this equation reads, in Fourier,
i

up to higher-order admissible terms, where the cubic vector field contains only
Poincaré-Birkhoff resonant cubic monomials, namely of the form (1.30), which
are integrable, i.e., of the special form .

Similar arguments allow us to reduce to constant coefficients—and in Poincaré-
Birkhoff normal form—the modified dispersive term i a and all other
lower-order operators. We then obtain a system of the form

i X(1.28)

where is a constant-coefficient integrable symbol of order , a very
regular nonlinear term, and X an admissible remainder satisfying (1.19). Note
that the cubic integrable vector field in (1.28) is already
in Poincaré-Birkhoff normal form.

Step 3. Poincaré-Birkhoff transformations and normal form identification.
In Section 5 we apply transformations to eliminate all nonresonant quadratic and

cubic nonlinear terms in . Here, potential losses from small divisors created
by near-resonances (see Proposition 5.3) are compensated by the smoothing prop-
erties of . We then obtain a new system that is in Poincaré-Birkhoff normal form
(Proposition 5.2)

i res X(1.29)
res i(1.30)

At this stage we do not know if the equation (1.29)–(1.30) is Hamiltonian since
we have performed nonsymplectic transformations. This is why we call (1.29)–
(1.30) the cubic Poincaré-Birkhoff normal form of (1.3), and not its (Hamiltonian)

4 While we do verify explicitly several key cancellations, some, but not all, of them can be derived
by the following invariance properties: (i) the water waves vector field in the right-hand side
of (1.3) is reversible with respect to the involution

i.e., . (ii) maps even functions into even functions.
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Birkhoff normal form. The coefficients are in principle computable, but
their explicit expression is definitively very involved. Then, the last main step in
Section 6.2 is an identification argument to prove that the cubic Poincaré-Birkhoff
terms in (1.29)–(1.30) are uniquely determined and coincide with the Hamiltonian
system generated by the fourth-order Birkhoff normal form Hamiltonian in
(1.18), namely

res i

The uniqueness of the normal form is based on the absence of cubic resonances. A
related argument in the context of linear KAM norm form is given in [17].

2 Functional Setting and Paradifferential Calculus
In this section we introduce our notation and recall several results on paradif-

ferential calculus, mostly following chapter 3 of [6]. We find convenient the use
of this setup to obtain our initial paralinearization of the water waves equations
(1.3) with multilinear expansions, as stated in Proposition 3.1, and several tools for
conjugations via paradifferential flows, which are contained in Appendix A.2.

Given an interval symmetric with respect to and we define
the space

endowed with the norm

(2.1) sup where

We denote by the space of functions in
such that . Given we set

(2.2) sup

With similar meaning we denote . We expand a -periodic
function , with zero average in (which is identified with in the homoge-
neous space), in Fourier series as

(2.3)
i

i

We also use the notation and . For
we denote by the orthogonal projector from to the

subspace spanned by i i , i.e.,
i i

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22041 by A

m
it B

ansal - W
iley , W

iley O
nline L

ibrary on [02/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 10970312, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22041 by Sissa Scuola Internazionale, W

iley O
nline L

ibrary on [08/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



M. BERTI, R. FEOLA, AND F. PUSATERI1428  BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 13

and we also denote by the corresponding projector in . If U
is a -tuple of functions, , we set

(2.4) U

We deal with vector fields that satisfy the -translation invariance property

(2.5) where

Paradifferential operators. We first give the definition of the classes of symbols
that we are going to use, collecting Definitions , , and in [6].

DEFINITION 2.1 (CLASSES OF SYMBOLS). Let , with ,
in , .

(i) -homogeneous symbols. We denote by the space of symmetric -
linear maps from to the space of functions of

, U U , satisfying the following. There is
and, for any , there is such that

(2.6) U

for any U in , and
.

Moreover, we assume that, if for some ,
we have , then there exists a choice of
signs such that . This condition is
automatically satisfied by requiring the translation invariance property

(2.7) U U

For we denote by the space of constant coefficients symbols
that satisfy (2.6) with , and the right-hand side replaced

by .
(ii) Non-homogeneous symbols. Let . We denote by the

space of functions defined for
for some large enough , with complex values such that for any

and any , there are , , and for
any and any , with

(2.8)

(iii) Symbols. We denote by the space of functions
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such that there are homogeneous symbols for
and a nonhomogeneous symbol such that

(2.9)

We denote by M the space of matrices whose entries
are symbols in .

Remark 2.2. The property (2.7) means that the dependence with respect to the vari-
able of the symbol U enters only through the function U . It implies
the more general assumption made in [6]: if ,
then there is a choice of signs such that . We
mention this condition to be consistent with the notation of [6].

Note that

(2.10)

U

Throughout this paper we will systematically use the following expansions, which
are a consequence of (2.7) and . If a , then

(2.11) a a i

for some a , and if a , then

(2.12)

a a
i

a
i

for some a with . In the sequel for simplicity we may
also write a instead of a .

We also define the following classes of functions in analogy with our classes of
symbols.
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DEFINITION 2.3 (Functions). Fix , with , with
, . We denote by F , resp., F , F , the subspace

of , resp., , , made of those symbols that are independent of
. We write F , resp., F , F , to denote functions in F , resp.,

F , F , which are real-valued.

Note that functions a F , a F expanded as in (2.11), (2.12) are real-
valued if and only if

a a a a a a(2.13)

Paradifferential quantization. Given we consider smooth functions
and , even with respect to each of their

arguments, satisfying, for some ,

supp for

supp for

For we set . We assume also that

and

A function satisfying the above condition is where is a
function in having a small enough support and equal to in a neighbor-
hood of .

DEFINITION 2.4 (Bony-Weyl quantization). If a is a symbol in , resp., in
, we define its Weyl quantization as the operator acting on a -periodic

function (written as in (2.3)) as

(2.14)
i

where is the th-Fourier coefficient of the -periodic function .
We set, using notation (2.4),

U U

i

where in the last equality stands for the Fourier transform with respect to the
-variable. Then we define the Bony-Weyl quantization of as

(2.15) BW U U BW
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If is a symbol in , that we decompose as in (2.9), we define its
Bony-Weyl quantization

BW BW BW

By the translation invariance property (2.7), we have
BW

BW(2.16)

The operator BW acts on homogeneous spaces of functions; see Proposi-
tion 2.6.

The action of BW on homogeneous spaces only depends on the values of
the symbol (or U ) for . Therefore, we may
identify two symbols and if they agree for .
In particular, whenever we encounter a symbol that is not smooth at , such
as, for example, for , or sign , we will consider its
smoothed out version , where C is an even and positive cutoff
function satisfying

(2.17) if if

If is a homogeneous symbol, the two definitions of quantization in (2.15), differ
by a smoothing operator that we introduce in Definition 2.5 below.

Definition 2.4 is independent of the cutoff functions , up to smoothing
operators that we define below (see definition in [6]). Given

we denote by max the second largest among the integers
.

DEFINITION 2.5. Let , , , , , and .

(i) -homogeneous smoothing operators. We denote by R the space of
-linear maps from the space to the

space symmetric in , of the form

that satisfy the following. There are , such that

U
max

max

for any U , any ,
any vector , any . Moreover, if

(2.18)
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then there is a choice of signs such that
. In addition, we require the translation invariance property

(2.19) U U
(ii) Nonhomogeneous smoothing operators. We denote by R the

space of maps defined on

for some

which are linear in the variable and such that the following holds true.
For any there exist a constant and such that for
any , any ,
any , and any , we have

(2.20)

(iii) Smoothing operators. We denote by R the space of maps
that may be written as

for some in R , , and in R .

We denote by R M the space of matrices whose entries
are in R .

If is in R , then is in R , i.e., (2.20)
holds with .

If R , , then the composition operator is
in R .

The next proposition states boundedness properties on Sobolev spaces of the
paradifferential operators (see proposition 3.8 in [6]).

PROPOSITION 2.6 (Action of paradifferential operator). Let , , ,
. Then:

(i) There is such that for any symbol , there is a constant
, depending only on and on (2.6) with such that for any U

(2.21) BW U
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for , while for (2.21) holds by replacing the right-hand side with
.

(ii) There is such that for any symbol there is a constant
, depending only on , , and (2.8) with , , such that, for

any , any ,
BW

L

If with and , then BW is in
R .

Below we deal with classes of operators without keeping track of the number of
lost derivatives in a precise way (see definition 3.9 in [6]). The class M denotes
multilinear maps that lose derivatives and are -homogeneous in , while the
class M contains nonhomogeneous maps that lose derivatives, vanish at
degree at least in , and are -times differentiable in .

DEFINITION 2.7. Let , with , , with ,
and .

(i) -homogeneous maps. We denote by M the space of -linear maps
from the space to the space ,

which are symmetric in , are of the form
, and satisfy the following. There is a such

that

U

for any U , any ,
any vector , and any . More-
over, the properties (2.18)–(2.19) hold.

(ii) Nonhomogeneous maps. We denote by M the space of functions
defined on

for some that are linear in the variable and such that the fol-
lowing holds true. For any there exist a constant and

such that for any , any
, any , and any , we have

is bounded by the right-hand side of (2.20).
(iii) Maps. We denote by M the space of maps

that may be written as
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for some in M , , and in M . Finally,
we set

M M M M

and M M .

We denote by M M the space of matrices whose
entries are maps in the class M . We also set M
M M M .

If is in M , , then is in M .

If for , then the map BW is

in M for some .

Any R defines an element of M for some
.

If M and M , then the map

is in M .

If M and M , then the map

is in M .

Note that, given M , the property (2.19) implies that

(2.22)

i

i

for some coefficients with and .

Composition theorems. Let where

i and are similarly defined.

DEFINITION 2.8. [Asymptotic expansion of composition symbol ] Let ,
be in , , . Consider and

. For in we define, for , the symbol

(2.23)

#

i

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22041 by A

m
it B

ansal - W
iley , W

iley O
nline L

ibrary on [02/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 10970312, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22041 by Sissa Scuola Internazionale, W

iley O
nline L

ibrary on [08/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 143520 M. BERTI, R. FEOLA, AND F. PUSATERI

modulo symbols in .

By (2.10) the symbol # belongs to .
We have the expansion

#
i

up to a symbol in , where denotes
the Poisson bracket.

Note that the terms of even (resp., odd) rank in the asymptotic expansion (2.23)
in the Weyl quantization are symmetric (resp., antisymmetric) in . Conse-
quently, the terms of even rank vanish in the symbol of the commutator BW

BW .

PROPOSITION 2.9. [Composition of Bony-Weyl operators] Let ,
be in , , . Consider and .
Then

BW BW BW #

is a nonhomogeneous smoothing remainder in R .

PROOF. See propositions 3.12 and 3.15 in [6]. The homogeneous components
of the symbols and satisfy (2.7). Using (2.16) and (2.23) one can check that
the homogeneous components of satisfy (2.19). �

PROPOSITION 2.10. [Compositions] Let ,
with , , , and . Let ,

R , and M . Then

(i) BW , BW are in
R .

(ii) is a smoothing operator in R .

(iii) If R , then belongs to

R

(iv) Let , . Then the symbol

is in . If F then F .
Moreover if then .

(v)
BW BW

where and is in
R .
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PROOF. See propositions 3.16, 3.17, and 3.18 in [6]. The translation invariance
properties for the composed operators and symbols in items (i)–(v) follow as in the
proof of Proposition 2.9. �

Real-to-real operators. Given a linear operator acting on (it may be a
smoothing operator in R or a map in M ) we associate the linear
operator defined by the relation

(2.24)

We say that a matrix of operators acting in is real-to-real, if it has the form

(2.25)

Note that
if is a real-to-real matrix of operators, for , then we have

If a matrix of symbols , in some class M , has the
form

then the matrix of operators BW is real-to-real.
Notation.

To simplify the notation, we will often omit the dependence on the time
from the symbols, smoothing remainders, and maps. Moreover, given a

symbol in we may omit to write its dependence on when this
does not cause confusion.
Since in the rest of the paper we only need to control expansions in degrees
of homogeneity of symbols, smoothing operators and maps, up to cubic
terms , we fix once and for all . We will omit the dependence
on and in the class of symbols, writing , instead of

, and similarly for smoothing operators and maps.
means where is a constant depending on

.

3 Paralinearization and Block Diagonalization
3.1 Complex form of the water waves equations

Following [1, 2], we begin by writing the water waves system (1.3) using the
good-unknown BW ; see (1.7)–(1.8). The water waves
equations (1.3), written in the new coordinates

(3.1) G BW

assume the following paralinearized form derived in [6]:

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22041 by A

m
it B

ansal - W
iley , W

iley O
nline L

ibrary on [02/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 10970312, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22041 by Sissa Scuola Internazionale, W

iley O
nline L

ibrary on [08/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 143722 M. BERTI, R. FEOLA, AND F. PUSATERI

PROPOSITION 3.1. [Water-waves equations in variables] Let
with . Let and . There exists such that, for any

, for all small enough, if solves (1.3), then

(3.2)
BW i BW

BW i BW

(3.3)

where the functions defined in (1.7) are in F , the symbol
belongs to , and the smoothing operators , , , are in R .
The vector field in the right-hand side of (3.2)–(3.3) is -translation invariant, i.e.,
(2.5) holds.

PROOF. The proof follows by the computations in [6] in the absence of capil-
larity, specified in the case of infinite depth, in particular by propositions 7.5 and
7.6 and chapter 8.2 in [6]. The right-hand side in (3.2) is the paralinearization of
the Dirichlet-Neumann operator in [6]. The approach in [6] does not make use of
a variational method to study the Dirichlet-Neumann boundary value problem as
in [1, 3], but uses a paradifferential parametrix à la Boutet de Monvel, introducing
classes of para-Poisson operators whose symbols have a decomposition in multi-
linear terms. Moreover, , where is the translation
operator in (2.5). Hence the functions satisfy the property (2.7), and the map
G in (3.1) satisfies G G. In conclusion, the whole vector field in the
r.h.s. of (3.2)–(3.3) satisfies the -invariance property, and the smoothing remain-
ders satisfy (2.19) by difference. �

In Section 3.1 we will provide explicit expansions for the symbols of nonnega-
tive order in (3.2)–(3.3) in linear and quadratic degrees of homogeneity.

Remark 3.2. [Expansion of the Dirichlet-Neumann operator]
(i) Substituting (3.1) in the right-hand side of (3.2), which is equal to ,

we have, using the remarks under Definition. 2.7 and the fact that
F is linear in , that is a map in M and

(3.4)

for some maps M , M , and M .
(ii) The Dirichlet-Neumann operator admits a Taylor expansion (see, e.g., for-

mula (2.5) of [11]) of the form

(3.5) i

(3.6)
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and where collects all the terms with homogeneity in greater than .
The notation above , resp. , means the composition
operator , resp., , of the Fourier multiplier

and the multiplication operator for the function . We then see that the
quadratic and cubic components of the expansions (3.5) and (3.4) coincide,
namely, and . It follows that is in M .

We now write the equations (3.2)–(3.3) in terms of the complex variable de-
fined in (1.12).

PROPOSITION 3.3 (Water-waves equations in complex variables). Let
and . There exists such that, for any , for all
small enough, if solves (3.2)–(3.3) and with defined in (1.12)
belongs to , then solves

BW i i
(3.7)

where

(3.8)

(3.9)

(3.10)

is a matrix of symbols in M , and is a matrix of smooth-
ing operators belonging to R M . The vector field in the right-hand
side of (3.7) is -invariant and it is real-to-real according to (2.25).

PROOF. We first rewrite (3.2)–(3.3) as the system

(3.11) BW i

i

where R M and the function is in F .
We now symmetrize (3.11) at the highest order, applying the change of variable

(3.12)

The conjugated system is, by Propositions 2.9 and 2.10,
(3.13)

BW # i

i
#

for a new smoothing remainder in R M . Recalling (2.23) we
expand in decreasing orders the symbols in (3.13).
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DIAGONAL SYMBOLS. Up to a symbol in we have (using Proposition 2.9
and formula (2.23))

# i # i

OFF-DIAGONAL SYMBOLS. Up to a symbol in we get (using Proposition
2.9 and formula (2.23)) # # (recall that is
in ) and, up to a symbol in , we have # #

. The expansions above imply that the system (3.13) has the form

(3.14) BW i

i

where is a matrix of symbols in M and is in R
M .

Finally, we write (3.14) in the complex variable (1.12) (recall (3.12)), and we
deduce (3.7) with matrices as in (3.8), (3.9), (3.10), and a new matrix of symbols

in M and a new smoothing operator in R
M , renaming as . Finally, since the Fourier multiplier transformation
(1.12) trivially commutes with the translation operators , the water waves vector
field in (3.7) is -invariant as the water waves vector field (3.2)–(3.3). �

In some instances we will write the water waves system (3.7) as

(3.15) i M

where M is a real-to-real matrix of maps in M M for some
; see the remarks after Definition 2.7. We will also write system (3.15) in

Fourier basis as

(3.16) i i

where is the quadratic component of the water waves vector
field and collects all the cubic terms (the second equation of (3.15) for
is just the complex conjugated of the one for ). Using the -invariance property,
the vector field can be expanded as

(3.17)

i

i

with coefficients in . We provide the explicit expression of i in
Lemma 3.9.
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Homogeneity expansions
By the expansion of the Dirichlet-Neumann operator in Remark 3.2, we get the

quadratic approximation of the water waves equations (1.3),

(3.18)

up to functions in F . In this section, using this expansion, we compute explic-
itly the quadratic vector field i in (3.16), and the homogeneous expansions
up to cubic terms of the functions and appearing in (3.8)–(3.10). We write

V V V V F V F(3.19)

a a a a F a F(3.20)

In the following it is useful to note that the relation (1.12) has inverse

(3.21)
i

LEMMA 3.4. [Expansion of ] The function defined in (1.7) admits the expan-
sion

(3.22) BW V

where V is a function in F . Thus, in the complex variable in (1.12), (3.21),
we have

V
i

(3.23)

V
i

BW

i

(3.24)

PROOF. By (1.7) and using the expansion (3.5), we deduce up to a
quadratic function in F . As a consequence, by (1.7) and (3.1), we have

BW

BW

up to a function in F . Since plus a quadratic function in F (see
(3.1)) we get (3.22). �

LEMMA 3.5. [Expansion of ] Let be the function defined in (1.7). Then

(3.25)

plus a cubic function in F .
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PROOF. Recalling (1.7), and using (3.5), we have to compute the expansion of

(3.26)

plus a cubic function in F . For the first term in (3.26) we use the “shape
derivative” formula (see [29])

(3.27) lim

where is in (1.7). Then, using (3.26), (3.27), and (3.18), we obtain,
after simplification,

(3.28)

plus a cubic function F . Since and plus a quadratic
function in F , we have that (3.28) implies (3.25). �

We now expand the function that appears in (3.9).

LEMMA 3.6 (Expansion of ). We have

plus a cubic function in F .

PROOF. By (3.22) and (1.7) we have that
plus a cubic function in F . Hence (3.25) implies the lemma. �

We Fourier develop the functions a V , a V , as in (2.11), (2.12).

LEMMA 3.7. [Coefficients of V and V ] The coefficients of V and V in (3.23)–
(3.24) are, for any

(3.29) V V V V

PROOF. It follows by explicit computation using (3.23), (3.24), recalling (2.3),
and using Definition 2.4 of the Bony-Weyl quantitation (and (2.14)). �

We now compute the coefficients of the linear and quadratic component of in
(3.9).

LEMMA 3.8. [Coefficients of a and a ] The coefficients of a and a in (3.20)
satisfy

(3.30) a a a
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PROOF. It follows by the explicit expression in Lemma 3.6 and passing to the
variables in (1.12). �

It turns out that a , but we do not use this information in the
paper.

LEMMA 3.9 (Quadratic water waves vector field i ). The coefficients
defined in (3.17) of the quadratic water waves vector field i in

(3.16) satisfy

(3.31)

PROOF. It follows by direct computatiup to ons using equations (3.18), passing
to the variables defined in (1.12) and recalling that, by (1.7) and (3.5), we have
the approximate identity BW . �

3.2 Block-diagonalization
The goal of this section is to transform the water waves system (3.7) into the sys-

tem (3.33) below, which is block-diagonal in the variables modulo a smooth-
ing operator .

PROPOSITION 3.10 (Block-diagonalization). Let and .
There exists such that, for any , for all small enough,
and any solution of (3.7), the following holds:

(i) there is a map diag , , satisfying, for some

diag diag(3.32)

for any and any in ,
;

(ii) the function diag solves the system

BW

(3.33)

where is a symbol of the form

(3.34) i i

where is a function that is in F , is a symbol in

, and is a real-to-real matrix of smoothing operators in

R M . The function has the expansion

(3.35) a a a a a a F
where a and a are defined in (3.20).
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Proposition 3.10 is proved by applying a sequence a transformations that iteratively
block-diagonalize (3.7) in decreasing orders. In Section 3.2 we block-diagonalize
(3.7) at the order , and in Section 3.2 we perform the block-diagonalization
until the negative order .

Block-Diagonalization at order
In this subsection we aim to diagonalize the matrix of symbols

in (3.7), up to a matrix of symbols of order . We apply a parametrix argument con-
jugating the system (3.7) with a paradifferential operator whose principal matrix
symbol is

(3.36)

where

(3.37)

are the eigenvalues of . We have

(3.38) det

and

(3.39)
F

LEMMA 3.11. There exists a function in F such that the flow

(3.40)
BW Id

has the form

(3.41)
BW

R M

Moreover, if solves (3.7), then the function

(3.42)

solves the system

(3.43) BW
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where is the symbol in (3.34) with defined in (3.39), a matrix
of symbols

(3.44)

and a real-to-real matrix of smoothing operators in R M .
Moreover, the function has the expansion (3.35).

PROOF. Formulæ (3.41) follow by reasoning as in proposition and corollary
in [18]. We conjugate (3.7) with the flow using formula (A.2)

in Lemma A.1. By Proposition 2.10 we deduce that, if solves (3.7), then
(3.41) BW BW

BW BW i i BW

up to a matrix of smoothing operators in R M acting on . More-
over, Proposition 2.9 implies that

(3.45) BW # # i i #

up to terms in R M . By (3.36), (3.38) we have #
because differentiating we get

.
By (3.8), using symbolic calculus and (see (3.38)), we obtain the

exact expansion

# i # i

By (3.39) we have # i # i modulo a

matrix of symbols M . Moreover, recalling (3.10), we have the

paraproduct expansion # # and finally, since
is in M we deduce # # M . The
discussion above imply (3.43), (3.44), with a remainder in R
M , renaming as . Finally, by (3.39), (3.37) and (3.20) we get the
expansion (3.35). �

Block-Diagonalization at negative orders
The aim of this subsection is to block-diagonalize the system (3.43) (which is

yet block-diagonal at the orders and ) into (3.33).

LEMMA 3.12. For , there are
paradifferential operators of the form

Y BW BW(3.46)
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where is the symbol defined in Lemma 3.11, is a matrix of symbols
of the form

(3.47)

a real-to-real matrix of smoothing operators in R M
such that, if , , solves

(3.48) Y

then

(3.49)

where is the flow at time of

(3.50) i BW Id

with
i

i

i

(3.51)

and defined in (2.17) satisfies a system of the form (3.48) with instead of .

PROOF. The proof proceeds by induction.
Initialization. System (3.43) is (3.48) for where the paradifferential

operator Y has the form (3.46) with the matrix of symbols defined in
Lemma 3.11.

Iteration. We now argue by induction. Suppose that solves system (3.48)
with operators Y of the form (3.46)–(3.47) and smoothing operators
in R M . Let us study the system solved by the function
defined in (3.49). Note that the symbols of the matrix defined in (3.51) have
negative order for any . By formula (A.2) the conjugated system has the
form

(3.52) BW Y

up to a smoothing operator in R M .
Moreover, the operator admits the Lie expansion in (A.4)

specified for A BW . We recall (see (2.23)) that

# #
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up to a symbol in .
By Proposition 2.9 we have that Adi BW i BW is a paradifferen-

tial operator with symbol in M plus a smoothing remainder
in R M . As a consequence, we deduce, for ,

Adi BW i BW BW

M

and R M . By taking large enough with respect to ,
we get that is a paradifferential operator with symbol in

M

plus a smoothing operator in R M . We now want to apply the
expansion (A.3) with A BW and Y in order to study the
second summand in (3.52). We claim that

(3.53)
Y

BW Y BW i Y

plus a paradifferential operator with symbol in M and a smooth-
ing operator belonging to R M . We first give the expansion of

BW i Y using the expression of Y in (3.46). We have

(3.54)

BW i BW

BW

i

up to a symbol in M . Moreover, since is a matrix of
symbols of order , for , resp., for (see (3.47)), we have that

BW i BW belongs to M for and to

M for up to a smoothing operator in R M .
It follows that the off-diagonal symbols of order in (3.53) are of the form

with

(3.55)
(3.54)

i

By the definition of in (2.17) and the remark under Definition 2.6, the operator
BW is in R M for any . Moreover,
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by the choice of in (3.51), we have that

i

This implies that i BW Y is a paradifferential operator with symbol

in M plus a remainder in R M . Now, using
Proposition 2.9, we deduce, for ,

Adi BW Y BW M

where is in R M . Using formula (A.3) with large enough
and the estimates of flow in (3.50) (see Lemma A.2) one obtains the claim in (3.53).
We conclude that (3.49) solves a system of the form 3.46–(3.48) with
. �

Proof of Proposition 3.10. For we define

(3.56) diag

where the maps and , are defined respectively
in (3.42), (3.49). The bound (3.32) follows by Lemma A.2. Lemmata 3.11, 3.12
imply that if solves (3.7) then the function diag
solves the system (3.48) with which is (3.33) with and

BW

which is a smoothing operator in R M by the remark below
Proposition 2.6. The expansion (3.35) is proved in Lemma 3.11. �

4 Reductions to Constant Integrable Coefficients
The aim of this section is to conjugate (3.33) to a system in which the symbols

of the paradifferential operators are constant in the spatial variable and are “in-
tegrable" according to Definition 4.1 below, up to symbols which are “admissible”
according to Definition 4.2.

DEFINITION 4.1 (Integrable symbol ). A homogeneous symbol in is inte-
grable if it is independent of and it has the form

(4.1)

DEFINITION 4.2 (Admissible symbol ). A nonhomogeneous symbol in
is admissible if it has the form

(4.2) i i
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with real-valued functions in F and a symbol
in . A matrix of symbols H in M is admissible if it has
the form

(4.3) H

for a scalar admissible symbol .

The relevance of Definition 4.2 is explained in the next remark.

Remark 4.3. An equation of the form BW , where
is an admissible symbol in , admits an energy estimate of

the form

for ; see Lemma 6.4. For this reason vector fields of this form are
“admissible” to prove existence of solutions up to times .

The main result of this section is the following.

PROPOSITION 4.4 (Integrability of water waves at cubic degree up to smoothing
remainders). Fix arbitrary and . There exists
such that, for any , for all small enough, and any solution

of (3.7), there is a family of nonlinear maps F , , such
that the function F solves the system

(4.4) i BW iD H R

where is defined in (3.15) and
The symbol D has the form

D
D

D
(4.5)

with an integrable symbol D (see Definition 4.1).
The matrix of symbols H M is admissible (see Defini-
tion 4.2).
R is a real-to-real matrix of smoothing operators in R
M for some .
The family of transformations has the form

(4.6) F F

with F real-to-real, bounded, and invertible, and there is a constant
such that, , for any
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one has

F F
(4.7)

uniformly in .

The proof of Proposition 4.4 above is divided into several steps in Sections 4.1–
4.3 below. We combine these steps in Section 4.4.

4.1 Integrability at order
By Proposition 3.10 we have obtained, writing only the first line of the system

(3.33)–(3.34),

BW i i
(4.8)

where is a matrix of smoothing operators in R with
and . The second component of system (3.33) is the complex

conjugated of the first one. Expanding in degrees of homogeneity the symbol

r r r r r r

recalling (3.19) and item (ii) in Proposition 3.10, we rewrite (4.8) as

(4.9)
BW i V V i a a r r

where is an admissible symbol according to Definition 4.2.

Elimination of the linear symbol of the transport
The goal of this subsection is to eliminate the transport operator BW iV

in (4.9). With this aim we conjugate the equation (4.9) under the flow

(4.10)
i BW

Id

where is a real-valued function in F of the same form as V , i.e.,

(4.11) i i

The function is real if a condition like (2.13) holds, i.e.,

(4.12)
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The flow of the transport equation (4.10) is well-posed by Lemma A.2. We intro-
duce the new variable

(4.13)

where the operator is defined as in (2.24).

LEMMA 4.5. Define F in (4.11) with coefficients

(4.14)
V

i
i V

i
i

and . Then, if solves (4.9), the function defined in (4.13)
solves

BW iV i a r r
(4.15)

where

V F and its coefficients (according to the expansion (2.12)) satisfy

(4.16) V V

a F and its coefficients satisfy

(4.17) a

r , r , is an admissible symbol, and
R .

Note that the procedure that eliminates the linear term of the transport in (4.15),
that is, the contribution with degree of homogeneity to the coefficient of , au-
tomatically also eliminates the contribution with degree of homogeneity to the
coefficient of the symbol of order .

PROOF OF LEMMA 4.5. Conjugation under the flow in (4.10). We use Lem-
mata A.4 and A.5.

Step 1. We apply Lemma A.5 with in F F by the fourth remark in
(2.10). Then

BW i

where i is an admissible symbol in and belongs to
R .
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Step 2. We apply Lemma A.4 with i . Thus by (A.14)–(A.17) we
deduce

BW i
BW i V V i V V

where is an admissible symbol and belongs to R .

Step 3. Using Lemma A.4 (see (A.16), (A.17)) we have the expansion

BW i a a

BW i a a a a

where , is an admissible symbol, and is in

R .

Step 4. By Lemma A.4 the conjugated operator

BW r r

BW r r

where r , r , a new admissible symbol , and a

smoothing remainder in R .

Step 5. Since also the conjugated operator of is
a smoothing remainder, in conclusion, we get that if solves (4.9), then defined
in (4.13) satisfies

(4.18)

i BW V V V V

i BW a

a a a

BW r r BW

where r , r , is admissible according to
Definition 4.2, and is a matrix of smoothing operators in R
(renaming ).
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Choice of . Recall that the coefficients defined in (4.14) satisfy (4.12) and
the function is real. Using (3.16) we get

(4.19) i i i i h h

where h , h are defined as

(4.20) h i i i i

with or . By (4.19) and (4.14) we deduce that

(4.21) V h h

By (4.12) the functions h and h are real. Moreover h F and h F
by item (iv) of Proposition 2.10 and the fact that
for some in M , see (3.15).

The new equation. From (4.21) and the first line of (4.18) we deduce that V
in (4.15) is given by

(4.22) V h V V

having used V F . By the second line of (4.18) we deduce that

a in (4.15) is given by

(4.23) a a a a F

having noted that the function a by (3.30) and (4.14).
Let us prove (4.16). By (4.22) we have

V h V

i V V
(4.24)

The coefficients h associated to h defined in (4.20) are

h i i

with defined by (3.16)–(3.17). We claim that

(4.25) h h

The first identity in (4.25) is trivial since the coefficients in (4.14) are zero for
. To prove the second identity in (4.25) we compute by (4.20) and (3.31)

h i in view of (4.14). By (4.24), (4.25),

(4.14), and (3.29) we get V and V .
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To conclude we prove (4.17). From (4.23) we calculate

a a i a i a

i a a

where are defined in (4.14).
By (3.35) we have a a a a so that, using (3.30),

we calculate a . Furthermore, one can check directly using the

formulas (3.30) and (4.14), that a . �

Reduction of the quadratic symbol of the transport
The aim of this section is to reduce the transport operator i BW V

in (4.15) into the “integrable” one i BW where is the function,
constant in , defined in (4.5). To do this we conjugate the equation (4.15) under
the flow of the transport equation

(4.26) i BW Id

where is defined as in (4.10) in terms of a real-valued function F .
The flow in (4.26) is well-posed by Lemma A.2. We then define the new variable

(4.27)

where is defined as in (2.24).

LEMMA 4.6. Define F with coefficients for ,

(4.28)

V

i

V

i

and , , , where V is the real-valued function
defined in Lemma 4.5. If solves (4.15), then the function in (4.27) solves

BW i i a r r
(4.29)

where
F is the integrable function defined in (4.5);

a F satisfies

(4.30) a a a
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r is the same symbol in (4.15), and r ;
is admissible, and is a matrix of smoothing

operators in R .

PROOF. The function is real-valued since the coefficients V of the

real function V in (4.22) satisfy (2.13). In order to conjugate (4.15) under the
map in (4.27) we apply Lemmata A.4 and A.5. By (A.17) and (A.20), and since

is quadratic in , the only quadratic contributions are BW i
i BW , implying

(4.31)
BW i V i i a

r r

where r is a symbol in , is a new admissible symbol, and
is a matrix of smoothing operators in R (by renaming ). By

the choice of in (4.28), using (3.16), reasoning as in the proof of Lemma 4.5,
and using (4.16) we have

(4.32) V

with defined in (4.5) and where is in F . System (4.31) and (4.32)

imply (4.29) where a is the function defined in (4.30). Recalling (4.17) we
deduce that a . �

4.2 Integrability at order 1/2 and 0

The first aim of this section is to reduce the operator i BW a
in (4.29) to an integrable one. It actually turns out that, thanks to (4.30), we reduce
it to the Fourier multiplier i ; see (4.45). This is done in two steps. In 4.2 we
apply a transformation that is a paradifferential “semi-Fourier integral operator,”
generated as the flow of (4.33). Then, in Section 4.2 we apply the paradifferential
version of a torus diffeomorphism that is “almost” time independent; see (4.41)–
(4.42). Eventually we deal with the operators of order in Section 4.2.

Elimination of the time dependence at order up to
We conjugate (4.29) under the flow

(4.33) i BW Id

where F is a real-valued function. We set

(4.34)

where is defined as in (2.24).
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LEMMA 4.7. Define F with coefficients

a

i

a

i

(4.35)

and , , , where a is defined in (4.30). If
solves (4.29), then

(4.36)
BW i i a ib sign

r r

where

(4.37) a a i b

r is the same symbol in (4.15), r , is admissi-
ble, and is a matrix of smoothing operators in R . Moreover,

(4.38) b b

PROOF. By (4.35) and (2.13) we deduce that is a real function. To conjugate
system (4.29) we apply Lemmata A.6 and A.7 with and . The
only new contributions at quadratic degree of homogeneity and positive order are

BW i and i BW . Then we have

BW i i a

i sign r r

where r , the symbol is admissible and is a
matrix of smoothing operators in R . By (4.35) and (3.16) we have

(4.39) ia i i a a i

up to a function in F . The conjugation of the remainder in
(4.29) is another smoothing operator. In conclusion, (4.39) and the vanishing of the
coefficients (4.30) imply (4.36)–(4.37). Finally, (4.38) follows from b

i i . �
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Elimination of the -dependence at order up to
The aim of this section is to cancel out the operator

(4.40) i BW a i

arising by the nonintegrable part of the function a in (4.37). Note that the
symbol in (4.40) is a prime integral up to cubic terms . We conjugate (4.36)
under the flow

(4.41) i BW Id

where is defined as in (4.10) in terms of a real-valued function F
of the same form of the symbol in (4.40), i.e.,

(4.42) i

The flow in (4.41) is well-posed by Lemma A.2. We set

(4.43)

where is defined as in (2.24).

LEMMA 4.8. Define the function F as in (4.42) with coefficients

(4.44)
a

i
If solves (4.36), then

BW i i ib sign r r

(4.45)

where the symbols b , r , r are the same as in equation (4.36), the sym-
bol is admissible, and is a matrix of smoothing
operators in R .

PROOF. In order to conjugate (4.36) we apply Lemmata A.4 and A.5. The con-
tribution coming from the conjugation of is i BW plus a para-
differential operator with symbol i (see (A.20)), which
is admissible, and a smoothing remainder in R . One has i

i . Hence, recalling (3.16), we have

(4.46)
i
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because and where, arguing as in the proof of Lemma 4.5, is a
function in F . This implies that the function is in F and therefore
i is an admissible symbol.

Lemma A.4 implies that the conjugation of the spatial operator in (4.36) is a
paradifferential operator with symbol

(4.47) i i a i ib sign r r

plus a symbol in , an admissible symbol and a smoothing operator in the

class R . Note that i i and that this equals

a i in view of the definitions of in (4.42) and (4.44), and of a in
(4.37). It follows that the symbol in (4.47) reduces to

i i ib sign r r

We have therefore obtained (4.45) (after slightly redefining ) as desired. �

Integrability at order
Our aim here is to eliminate in (4.45) the zeroth-order paradifferential operator
BW ib sign . We conjugate (4.45) with the flow

(4.48) BW i sign Id

where F is a real-valued function. We introduce the variable

(4.49)

where is defined as in (2.24).

LEMMA 4.9. Define F (of the form (2.12)) with

b

i

b

i

(4.50)

and , , . If solves (4.45), then

(4.51)
BW i i r r

where r , r , the symbol is admissible, and
is a matrix of smoothing operators in R .
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PROOF. To conjugate (4.45) we apply Lemmata A.6 and A.7. By (4.50) we get
BW i b sign i BW b sign

up to symbols with degree of homogeneity greater than , and where

b b b i (4.38)

The lemma is proved. �

In the following subsection we will be dealing with negative order operators,
and will not need additional algebraic information about the coefficients and their
vanishing.

4.3 Integrability at negative orders

In this section we algorithmically reduce the linear and quadratic symbols r
r of order in (4.51) into an integrable , plus an admissible symbol.

PROPOSITION 4.10. For any , there exist

integrable symbols p (Definition 4.1), symbols q
with , admissible symbols in , and a

matrix of smoothing operators in R ,
bounded maps , , defined as the compositions of three
flows generated by paradifferential operators with symbols of order
(see (4.68) and (4.55), (4.59) and (4.65))

such that: if solves

(4.52)
BW i i p q

then the first component of the vector defined by

(4.53)

solves an equation of the form (4.52) with instead of .

The proof proceeds by induction.
Initialization. Note that equation (4.51) has the form (4.52) with , denot-

ing , p , q r r , and renaming the

admissible symbol in (4.51) and the smoothing operator .

We remark that the integrable corrections p in (4.52) (initially p ) are
generated by the reductions on quadratic symbols made in Lemma 4.12 below.

Iteration. The aim of the iterative procedure is to cancel out the symbol q up
to a symbol of order . This is done in two steps.
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Step 1. Elimination of the linear symbols of negative order. We expand the
symbol q q q with q , . In order to eliminate

the operator BW q in (4.52) we conjugate it by the flow

(4.54) BW Id

where is a symbol in . The flow (4.54) is well-posed because

the order of is negative. We introduce the new variable

A
(4.55)

where the map is defined as in (2.24).

LEMMA 4.11. Define with coefficients

(4.56)
q

i
q

i

If solves (4.52), then

(4.57)

BW i i p q

k k BW

where p is the same of (4.52), q , k ,

k , is admissible and is a matrix
of smoothing operators in R .

PROOF. In order to conjugate (4.52) we apply Lemmata A.6 and A.7. The only
contributions at homogeneity degree and order are given by

BW q

up to smoothing remainders. From the time contribution, a symbol that has homo-
geneity 2 and order less than or equal to appears (see the term in
(A.26) of Lemma A.7). By (4.56) and (3.16) we have that

q q q q q
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and we set q q q , and absorb q in the admissible symbol . The
contributions in (4.57) at order less than or equal to , and homogeneity
come from the conjugation of i . In particular, by formula (A.24), we can set
k i sign and get (4.57) with some k in . �

Step 2. Reduction of the quadratic symbols of negative order. We now cancel
out the symbol q in (4.57), up to an integrable one and a lower-order symbol.
We use two different transformations.
ELIMINATION OF THE TIME DEPENDENCE UP TO . We consider the flow
generated by

(4.58) BW Id

where is a symbol in . We introduce the new variable

A
(4.59)

where the map is defined as in (2.24).

LEMMA 4.12. Let be a symbol in of the form (2.12) with
coefficients

q

i

q

i

(4.60)

If solves (4.57), then

(4.61)

BW i i p

BW q q i

BW k k

where k , k , the symbol is admis-
sible, and is a matrix of smoothing operators in R .

PROOF. In order to conjugate (4.57) we apply Lemmata A.6 and A.7. The
contributions at order and degree are given by BW q .
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All the other contributions have homogeneity greater than or equal to and are
admissible. By the choice of in (4.60) we have

q q q i

up to a symbol in . �

ELIMINATION OF THE -DEPENDENCE UP TO . In order to eliminate the
nonintegrable symbol

(4.62) q i

in (4.61) we follow the same strategy used in Section 4.2. We conjugate (4.61) by
the flow

(4.63) i BW Id

where is a symbol in of the same form (4.62), i.e.,

(4.64) i

We introduce the new variable

A
(4.65)

where the map is defined as in (2.24).

LEMMA 4.13. Define in as in (4.64) with coefficients

(4.66) sign q

If solves (4.61), then

BW i i p

q(4.67)

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22041 by A

m
it B

ansal - W
iley , W

iley O
nline L

ibrary on [02/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

 10970312, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22041 by Sissa Scuola Internazionale, W

iley O
nline L

ibrary on [08/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



M. BERTI, R. FEOLA, AND F. PUSATERI1462  BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 47

where p is an integrable symbol in , q is in

, the symbol is admissible, and is a
matrix of smoothing operators in R .

PROOF. Reasoning as in (4.46), we have up to a cubic

symbol in . In order to conjugate (4.61) we apply Lemmata A.6–A.7.
The contributions with homogeneity and order are

BW i
sign

q q i

Then, by the choice of in (4.64), (4.66), we have that (4.67) follows with the

new integrable symbol p p q

and a symbol q in where . �

Lemmata 4.11, 4.12, 4.13 imply Proposition 4.10 by defining the map

(4.68) A A A

where A , for , are defined, resp., in (4.55), (4.59), and (4.65).

4.4 Proof of Proposition 4.4
We set

(4.69) F diag

and F F as in (4.6), where diag is defined in Proposition

3.10, the maps , are given, resp., in (4.13), (4.27), (4.34),
(4.43), (4.49), and where ,

, are defined in (4.68). Then, by the construction in Sections 4.1–4.3,
we have that F solves the system (4.52) with , which
has the form (4.4) with D p , H , and
R . The bounds (4.7) follow since F is the composition of
maps constructed using Lemma A.2 (see bounds (A.10)).

5 Poincaré-Birkhoff Normal Forms
The aim of this section is to eliminate all the terms of the system (4.4) up to

cubic degree of homogeneity that are not yet in Poincaré-Birkhoff normal form.
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Such terms appear only in the smoothing remainder R that we write as

R R R R R R M(5.1)

R
R R

R R

R R R R

(5.2)

for and . The third identity in (5.2) means that the matrix of
operators R is real-to-real (see (2.25)). For any we expand

(5.3) R R R R R

where R R , R R with , are the homo-
geneous smoothing operators

R R i(5.4)

with entries

R r(5.5)

for suitable scalar coefficients r , and

(5.6) R R i

with entries

(5.7)

R

r

and suitable scalar coefficients r .

DEFINITION 5.1 (Poincaré-Birkhoff Resonant smoothing operator). Let R be
a real-to-real smoothing operator in R M with and scalar coeffi-
cients r defined as in (5.7). We denote by Rres the real-to-real

smoothing operator in R M with coefficients

(5.8)

Rres

r
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where we recall that .

In Sections 5.2 and 5.2 we will reduce the remainder R in (5.1) to its Poincaré-
Birkhoff resonant component. The key result of this section is the following.

PROPOSITION 5.2 (Poincaré-Birkhoff normal form of the water waves at cubic
degree). There exists such that, for all , , there
exists such that, for any , for all small enough, and
any solution of the water waves system (3.7), there is a nonlinear
map F , , of the form

(5.9) F C

where C is a real-to-real, bounded, and invertible operator such that
F solves

(5.10) i i BW D Rres X

where:
is the diagonal matrix of Fourier multipliers defined in (3.15), and

D is the diagonal matrix of integrable symbols M defined
in (4.5);
the smoothing operator Rres R M is Poincaré-Birkhoff
resonant (Definition 5.1);
X has the form

(5.11) X BW H R

where H M is an admissible matrix of sym-
bols (Definition 4.2) and R is a matrix of real-to-real smoothing
operators in R M .

Furthermore, the map F defined in (5.9) satisfies the following proper-
ties:

(i) There is a constant depending on , , and such that, for ,

(5.12)
C C

for any , and uniformly in .

(ii) The function F satisfies

(5.13)

(iii) The map F admits an expansion as

F
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where is in M M , the maps are in M
M , and is in M M with estimates uniform in

.

In the following subsection we provide lower bounds on the “small divisors”
that appear in the Poincaré-Birkhoff reduction procedure. Then, in Section 5.2, we
prove Proposition 5.2.

5.1 Cubic and quartic wave interactions
We study in this section the cubic and quartic resonances among the linear fre-

quencies .

PROPOSITION 5.3 (Nonresonance conditions). There are constants c and
such that
(cubic resonances) for any and satisfying

we have

(5.14) c

(quartic resonances) For any and
such that

(5.15)

we have

cmax
(5.16)

PROOF. We first consider the cubic and then the quartic resonances.
PROOF OF (5.14). If , then the bound (5.14) is trivial. Assume

and . By we have that and
therefore

since . The bound (5.14) in the case and is the same.
PROOF OF (5.16). The case is trivial. Assume

and . We have

The first (momentum) condition in (5.15) implies that
and hence (5.16) follows (actually with ). It remains the case that
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and ; i.e., we have to prove that the phase

(5.17)

satisfies (5.16). Note that the first (momentum) equality in (5.15) becomes

(5.18)

Let max and assume, without loss of generality, that
and (the phase (5.17) is symmetric in ). We consider

different cases.

Case a. Assume that . Then by (5.17) we have that

Since , then is a nonzero integer and we get (5.16). Thus in the
sequel we suppose

(5.19)

Case b. Assume that . Then by (5.17), (5.19) we get

which implies (5.16). Thus in the sequel we suppose, in addition to (5.19), that

(5.20)

The case is not possible. Indeed, if , then (5.18) implies
by (5.20), which is in contradiction with . Hence

from now on we assume that

(5.21)

Case c1. Assume that all the frequencies have all the same sign, i.e.,
. In this case, by (5.17)–(5.18), we get

Since we have , and therefore (5.16) follows.

Case c2. Assume now that two frequencies are positive and two are negative,
i.e., . The momentum condition (5.18) becomes

and, since , then contradicting (5.21).
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Case c3. Assume that three frequencies have the same sign and one has the
opposite sign. By (5.18) and (5.21) we then have ,

. Hence by (5.17) we get

(5.22)
(5.18)

If , then (5.22) implies the bound (5.16). If instead ,
we reason as follows. Note that

in particular . Then we rationalize again (5.22) to obtain
where

Since , then is a nonzero integer and so . Moreover,
, for some constant , and (5.16) follows. �

5.2 Poincaré-Birkhoff reductions
The proof of Proposition 5.2 is divided into two steps: in the first (Section 5.2)

we eliminate all the quadratic terms in (4.4); in the second one (Section 5.2) we
eliminate all the nonresonant cubic terms.

Elimination of the quadratic vector field
In this section we cancel out the smoothing term R in (5.1) of system (4.4).

We conjugate (4.4) with the flow

(5.23) B Q B B Id

with Q R M of the same form of R in (5.2)–(5.5), to be
determined. We introduce the new variable B .

LEMMA 5.4 (First Poincaré-Birkhoff step). Assume that Q R M
solves the homological equation

(5.24) Q i Q i R

Then

(5.25)
i BW iD H

R R
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where is defined in (3.15), D in (4.5), H is an admissible symbol in
M , and R R M , R R

M , with as in (3.15).

PROOF. To conjugate (4.4) we apply Lemma A.1 with Q iA . By
(A.3) with we have

(5.26)

iB B

i Q i

B Q Q i B

Using that Q belongs to R M and applying Proposition 2.10, and
Lemma A.3, the term in (5.26) is a smoothing operator in R M .
Similarly we obtain

(5.27) iB BW D B i BW D

up to a term in R M , and

(5.28)
B BW H R R R B

BW H R

up to a matrix of smoothing operators in R M . Next we consider
the contribution coming from the conjugation of . Applying formula (A.4) with

, we get

(5.29)
B B Q Q Q

B Q Q Q B

Recalling (3.15) we have Q Q i M Q i up
to a term in R M , where we used item (iii) of Proposition 2.10.

By the fact that Q i is in R M we have that the second line
(5.29) belongs to R M . In conclusion, by (5.26), (5.27), (5.28),
(5.29) and the assumption that Q solves (5.24) we deduce (5.25). �

Notation. Given we denote max and max ,
resp., the second largest and the largest among .

The following lemma is deduced by the definition of smoothing homogeneous
operators in Definition 2.5.
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LEMMA 5.5. An operator R of the form (5.2)–(5.5) is in R M if
and only if, for some ,

(5.30) r
max

max

An operator R of the form (5.2)–(5.3) as in (5.6)–(5.7) belongs to R
M if and only if, for some ,

(5.31)
r

max
max

We now solve the homological equation (5.24).

LEMMA 5.6 (First homological equation). The operator Q of the form (5.2)–(5.5)
with coefficients

(5.32) q
r

i

with , solves the homological equation (5.24) and Q
is in R M .

PROOF. First note that the coefficients in (5.32) are well-defined since

for any , , by Proposition 5.3. Moreover, by (5.14) and
Lemma 5.5 we have

q max max

and therefore the operator Q is in R M .
Next, recalling (5.2) and (3.15), the homological equation (5.24) amounts to the

equations, ,

Q i Q i i Q R

and expanding Q as in (5.3)–(5.5) with entries

(5.33) Q q

to the equations, for any , ,

Q i Q i i

R
(5.34)
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By (5.33) and (3.15) we have

Q i q i

Then one checks that (5.34) is solved by the coefficients q in (5.32). �

Elimination of the cubic vector field
In this section we reduce to Poincaré-Birkhoff normal form the smoothing term

R R M in (5.25). We conjugate (5.25) with the flow

(5.35) B Q B B Id

where Q is a matrix of smoothing operators in R M of
the same form of R to be determined. We introduce the new variable

B .

Notation. Given the operator Q in (5.35), we denote by Q i the oper-
ator of the form (5.2), (5.3), (5.6)–(5.7) with coefficients defined as

Q i

q i i(5.36)

LEMMA 5.7 (Second Poincaré-Birkhoff step). Assume that

Q R M
solves the homological equation

(5.37) Q i Q i R R res

Then
i BW iD H

R res R
(5.38)

where is defined in (3.15) and D in (4.5), H is an admissible symbol in
M , R res is a Poincaré-Birkhoff resonant smoothing operator

(cf. Definition 5.1) in R M , and R is a matrix of smoothing

operators in R M with as in (3.15).

PROOF. To conjugate system (5.25) we apply Lemma A.1 with Q iA .
Applying formula (A.3) with , the fact that Q is a smoothing operator
in R M , Proposition 2.10, and Lemma A.3, we have that

B i B i Q i
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plus a smoothing operator in R M . Similarly, the conjugate of
BW iD H R R remains the same up to a smoothing

operator in R M .
Next we consider the contribution coming from the conjugation of . First,

note that, using equation (3.15), Q Q Q i (defined
in (5.36)) up to a smoothing operator in R M . The operator

Q i is in R M . Then, applying formula (A.4) with
we have B B Q i up to a smoothing operator in

R M .
In conclusion, Q i Q i R collects all the noninte-

grable terms quadratic in in the transformed system. Since Q solves (5.37) we
conclude that solves (5.38). �

We now solve the homological equation (5.37).

LEMMA 5.8 (Second homological equation). The operator Q of the form (5.2)–
(5.3), (5.6)–(5.7) with coefficients

(5.39)

q

r

i

with , , satisfying ,
solves the homological equation (5.37). We have that Q is in R
M .

PROOF. First note that the coefficients in (5.39) are well-defined thanks to Propo-
sition 5.3, in particular (5.16), and satisfy, using also ,

(5.40)
q r max

max
max

with , because r are the coefficients of a remainder in

R M , and so they satisfy the bound (5.31) with . The es-
timate (5.40) and Lemma 5.5 imply that Q belongs to the class R
M .

Next, the homological equation (5.37) amounts to, for any ,

(5.41)
Q i Q i i

R R
res
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for any . Recalling (5.36) and (5.8), the left-hand side of (5.41) is
given by

q i r

for , , and . Thus,
recalling Definition 5.1, the operator Q with coefficients q defined
in (5.39) solves the homological equation (5.37). �

We can now prove the main result of this section.

PROOF OF PROPOSITION 5.2. Let be the function given by Proposition 4.4.
We define B where B B B , ,
and B , , are the flow maps defined, resp., in (5.23), (5.35) (see also
Lemmata 5.4, and 5.7). Then solves (recall (5.38))

(5.42) i BW iD H Rres R

where and D are defined, resp., in (3.15) and (4.5), the operator Rres

R res in R M (being the loss in (3.15)), H
M is admissible, and R is in R M where

the constant is defined by Proposition 5.3. We define F C

B F as in (5.9) where F in (4.6). By Lemma A.3 the maps B ,
satisfy the bounds (A.13), (A.11) and recall that F satisfies (4.7).

Then C satisfies (5.12) and (5.13). By Lemmata A.2 and A.3 applied, resp.,
to F and B , we have that the map F admits a multilinear expansion
like (A.12), implying item (iii) of Proposition 5.2. Moreover,

(5.43)
F M

where M M M
Then, substituting (5.43) in (5.42), we obtain (5.10)–(5.11) with

H i D D M H(5.44)

R Rres Rres M R(5.45)

Since the integrable symbol D in (4.5) is homogeneous of degree and
Rres R M , we have that the quadratic terms in the r.h.s. of
(5.44) and (5.45) cancel out. Then, by (5.43) and items (iii) and (iv) of Proposition
2.10, we deduce that H M is an admissible symbol

and R R M where . �

6 Long Time Existence
The system

(6.1) i i BW D Rres
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obtained retaining only the vector fields in (5.10) up to degree of homogeneity,
is in Poincaré-Birkhoff normal form. In Section 6.2 we will actually prove that
this is uniquely determined and that (6.1) coincides with the Hamiltonian system
generated by the fourth-order Birkhoff normal form Hamiltonian computed
by a formal expansion in [11, 12, 15, 16]; see Section 6.1. Such normal form is
integrable and its corresponding Hamiltonian system preserves all Sobolev norms;
see Theorem 1.4. The key new relevant information in Proposition 5.2 is that the
quartic remainder in (5.11) satisfies energy estimates (see Lemma 6.4). This allows
us to prove in Section 6.3 energy estimates for the whole system (5.10) and thus
the long time existence result of Theorem 1.2.

6.1 The formal Birkhoff normal form
We introduce, as in formula (2.7) in [11], the complex symplectic variable

(6.2)

i
i

i

Compare this formula with (1.12) and recall that, in view of (1.13), we may disre-
gard the zero frequency in what follows. In the new complex variables , a
vector field becomes

(6.3)

The push-forward acts naturally on the commutator of nonlinear vector fields (A.32),
namely � � � � � �

The Poisson bracket assumes the form

i

Given a Hamiltonian we denote by the same Hamiltonian
expressed in terms of the complex variables . The associated Hamiltonian
vector field is

(6.4)
i i

i i

which we also identify, using the standard vector field notation, with

(6.5) i

Note that, if is the Hamiltonian vector field of in the real variables, then,
using (6.3), we have

(6.6)
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and

(6.7) � �

We now describe the formal Birkhoff normal form procedure performed in [11,
12, 15, 16]. One first expands the water waves Hamiltonian (1.6), written in the
complex variables , in degrees of homogeneity

(6.8)

where

(6.9)

(6.10)

(6.11)

can be explicitly computed, and collects all the monomials of homogeneity
greater or equal .

Step 1. ELIMINATION OF THE CUBIC HAMILTONIAN. One looks for a sym-
plectic transformation as the (formal) time flow generated by a cubic real
Hamiltonian of the form (6.10). A Lie expansion gives

(6.12)

up to terms of quintic degree. The cohomological equation

(6.13)

has a unique solution since

i

and the system

(6.14)

has no integer solutions; see Proposition 5.3. Hence, defining as the solution
of (6.13), the Hamiltonian in (6.12) reduces to

quintic terms
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Step 2. NORMALIZATION OF THE QUARTIC HAMILTONIAN. Similarly, one
can find a symplectic transformation , defined as the (formal) time flow
generated by a real quartic Hamiltonian of the form (6.11) such that

(6.15) ker quintic terms

where, given a quartic monomial satisfying
, we define

(6.16)

ker

if
otherwise

The fourth-order formal Birkhoff normal form Hamiltonian in (6.15), that is,

(6.17)
ker

has been computed explicitly in [11, 12, 15, 16], and it is completely integrable.
In [12] this is expressed as

(6.18)

with actions

(6.19)

where denote the Fourier coefficients of defined in (6.2). The Hamiltonian
is given by (1.17)–(1.18) with replaced by . Note in particular that
are prime integrals, as stated in Theorem 1.4.

Remark 6.1 (Comparison with (6.1)). By a direct calculation, the Hamiltonian
equations associated to can be written in the form

(6.20) i
i

R

where and R is a smoothing vector field satisfying R
, for any . For a sequence we denoted

. Note that the second term in the right-hand side in
(6.20) exactly correspondence to the paradifferential transport in (5.10) and (4.5).
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Moreover, (6.20) does not contain paradifferential operators at nonnegative orders,
in agreement with the cubic Poincaré-Birkhoff normal form (6.1).

6.2 Normal form identification
In Sections 3–5 we have transformed the water waves system (1.3) into (5.10),

whose cubic component (6.1) is in Poincaré-Birkhoff normal form. All the conju-
gation maps that we have used have an expansion in homogeneous components up
to degree . In this section we identify the cubic monomials left in the Poincaré-
Birkhoff normal form (6.1). The main result is the following.

PROPOSITION 6.2 (Identification of normal forms). The cubic vector field compo-
nent in (5.10), i.e.,

(6.21) XRes i BW D Rres

coincides with the Hamiltonian vector field :

(6.22) XRes
ker

where the Hamiltonians , , are defined in (6.10) and (6.11), is
the unique solution of (6.13), and ker is defined in (6.16).

The rest of the section is devoted to the proof of Proposition 6.2, which is based
on a uniqueness argument for the Poincaré-Birkhoff normal form up to quartic re-
mainders. The idea is the following. We first expand the water waves Hamiltonian
vector field in (1.3), (1.5) in degrees of homogeneity

(6.23)
where

and collects the higher-order terms and , ,
see (6.8). Then, we express the transformed system (5.10), obtained conjugating
(1.3) via the good-unknown transformation G in (3.1) and F in Proposition 5.2,
by a Lie commutator expansion up to terms of homogeneity at least . See Lemma
A.10. Then, after some algebraic manipulation, we obtain (6.33). Since the adjoint
operator is injective and surjective, we then obtain the identity (6.35),
and can eventually deduce (6.22).

Notation. We use the Lie expansion (A.33) induced by a time-dependent vector
field , which contains quadratic and cubic terms. Given a homogeneous vector
field , we denote by the induced (formal) push-forward

(6.24) � � � � �� � �

where � � is the nonlinear commutator defined in (A.32).
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Step 1. THE GOOD UNKNOWN CHANGE OF VARIABLE G IN (3.1)] We first
provide the Lie expansion up to degree 4 of the vector field in (3.2)–(3.3), which
is obtained by transforming the water waves vector field in (6.23)
under the nonlinear map G in (3.1).

We first note that G where

BW

Since is a function in F we have, using the remarks under Defini-
tion 2.7, that the map has the form (A.27) in which denotes the real
variables , plus a map in M M . By Lemma A.9 we regard the
inverse of the map G , obtained approximating G up to quartic remainders as the
(formal) time one flow of a nonautonomous vector field of the form

(6.25) S S where S S

where M M and M M . By (6.23)–
(6.25), we get

(6.26)

�S �(6.27)

�S � �S �S �� �S �(6.28)

COMPLEX COORDINATES IN (6.2). In the complex coordinates (6.2), the vector
field (6.26) reads, recalling the notation (6.3),

(6.29)

where is the linear Hamiltonian vector field

i

Step 2. THE TRANSFORMATION F IN PROPOSITION 5.2. We consider the
nonlinear map F which retains only the terms of the map F F
up to quartic remainders. The approximate inverse of the map F provided by
Lemma A.8, can be regarded, by Lemma A.9, as the (formal) approximate time-
one flow of a nonautonomous vector field T T where T

, T , for some in M M and
M M . We transform the system obtained retaining only the components

in (6.29). By (6.24) we get

(6.30)
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�
T

�
�
T

� �
T

�
T

�� �
T

�

and, recalling the expressions of in (6.27), the quadratic and the cubic
components of the vector field (6.30) are given by

�
S T

�
(6.31)

�
S T

� �
S T

�
S T

��
��
S T S

�
S T

�(6.32)

where, to obtain the (6.32), we also used the Jacobi identity.

Step 3. IDENTIFICATION OF QUADRATIC AND CUBIC VECTOR FIELDS. The
vector field in (6.30) is the vector field in the right-
hand side of (6.1), up to quartic remainders. Thus, recalling the expression of the
quadratic, resp. cubic, vector field in (6.31), resp. (6.32), the expansion (6.23),
formula (6.6), and the definition of XRes in (6.21), we have the identification order
by order:

i
�
S T

�
XRes(6.33)

QUADRATIC VECTOR FIELDS. Since solves (6.13), by (6.7), we have

(6.34) � �

Subtracting the second identity in (6.33) and (6.34), and since , we
deduce

�
S T

�

Since the adjoint operator Ad acting on quadratic monomial

vector fields satisfying the momentum conservation property

is injective and surjective (indeed we have that � �
i and the system (6.14) has no solutions),

we obtain

(6.35) S T

CUBIC VECTOR FIELDS. The vector field XRes defined in (6.21) is in Poincaré-
Birkhoff normal form, since the symbol D is integrable (Definition 4.1) and
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Rres is Birkhoff resonant (Definition 5.1). Therefore, defining the linear opera-
tor ker acting on a cubic monomial vector field as

(6.36)

ker

if

otherwise

we have

(6.37) ker XRes XRes

From the expression for
� �

we deduce that, for any cubic
vector field ,

(6.38) ker
� �

We can then calculate

XRes
(6.37)

ker XRes

(6.33) (6.32) (6.38)
ker

�
S T

� �
S T

�
S T

��

6.35 (6.23)
ker

� � � � ��

(6.6) (6.7) (6.13)
ker

(6.36) (6.16)

ker

which is (6.22); the second identity follows by the definition of in (6.17).

6.3 Energy estimate and proof of Theorem 1.1
We first prove the following lemma.

LEMMA 6.3. Let . There is such that, for any , for all
small enough, if belongs to and solves (3.7), then there

is a constant such that

(6.39)

In particular, we deduce that the norm defined in (2.1) is equivalent to
the norm for a solution of (3.7).

PROOF. For the estimate (6.39) is trivial. We are going to estimate
by (3.7). Since the matrix of symbols i i

in (3.7) belongs to M and the
smoothing operator is in R M , applying Proposition 2.6(ii)
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(with , ), the estimate (2.20) for (with , , ),
and recalling (2.1), we deduce, for large enough,

(6.40)

Evaluating (6.40) at and since is small, we get

This and (6.40) imply (6.39) for , for any . Differentiating in the
system (3.7) and arguing by induction on , one can similarly obtain (6.39) for any

. �

We now prove the following energy estimate.

LEMMA 6.4 (Energy estimate). Under the same assumptions as Proposition 5.2
the vector field X X X in (5.11) satisfies, for any

, the energy estimate

(6.41) Re X

PROOF. By (5.11) and (4.3), we have that

X BW R

where is an admissible symbol as in (4.2) that we write

(6.42)
i i

and R denotes the first row of R . Then the left-hand side of (6.41) is
equal to

BW(6.43)

BW

Re BW(6.44)

Re R

Since and R is a matrix of smoothing operators in
R , the Cauchy-Schwarz inequality, Proposition 2.6, and (2.20) imply that

(6.45) (6.44)
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Since the symbol has positive order we write the quantity in (6.43) as

H H H
H

(6.46)

where H BW and H BW is its ad-
joint with respect to the -scalar product. Recalling (6.42) and that the functions

, are real, we have

(6.47) H H BW

Furthermore, by Proposition 2.9 and the remark after the proof of proposition 3.12
in [6], the commutators H , H are paradifferential operators
with symbol in , up to a bounded operator in L with operator
norm bounded by . Then, applying Proposition 2.6 we get

H H
(6.48)

In conclusion, by (6.45)–(6.48), and using Lemma 6.3 and by (5.13), we deduce

Re X

proving the estimate (6.41). �

We can now prove Theorem 1.1.

PROOF OF THEOREM 1.1. By (1.14), the function , where is the
variable defined in (1.12) and in (1.8), belongs to the ball (recall
(2.2)) with and . By Proposition 3.3 the function
solves system (3.7). Then we apply the Poincaré-Birkhoff proposition 5.2 with

. The map F C in (5.9)
transforms the water waves system (3.7) into (5.10), which, thanks to Proposition
6.2, is expressed in terms of the Dyachenko-Zakharov Hamiltonian in (1.17),
as X . Renaming and recalling (6.4), the first
component of the above system is the equation (1.16), denoting B the first
component of C . The bound (1.15) follows by (5.12) with and

, and Lemma 6.3. The energy estimate (1.19) is proved in Lemma 6.4. �

6.4 Proof of Theorem 1.2
The next bootstrap Proposition 6.5 is the main ingredient for the proof of the

long time existence Theorem 1.2. Proposition 6.5 is a consequence of Theorem
1.1 and the integrability of the fourth-order Hamiltonian in (1.18). By time
reversibility we may, without loss of generality, look only at positive times .
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PROPOSITION 6.5 (Main bootstrap). Fix the constants as in Theorem 1.1
and let the function be defined as in (1.12), with in (1.8)
and the solution of (1.3) satisfying (1.9), (1.10). The function satisfies
(1.13). Then there exists such that, for any , if

(6.49) sup

then we have the improved bound

(6.50) sup

PROOF. In view of (6.49) the smallness condition (1.14) holds and we can apply
Theorem 1.1 obtaining the new variable B satisfying the equation (1.16)–
(1.19). The integrability of in Theorem 1.4 gives

Re i

From this, (1.16), and (1.19) we obtain the energy estimate

(6.51)

Using (1.15) and (6.49) we deduce that, for all ,

(6.51)

for some . Then, by the a priori assumption (6.49) we get, for all
,

(6.52)

The desired conclusion (6.50) on the norms follows by Lemma 6.3,
(6.52), and recalling that , choosing small enough depending
on . �

We now prove the long time existence Theorem 1.2, by Theorem 1.1 and Propo-
sition 6.5.

Step 1. LOCAL EXISTENCE AND PRELIMINARY ESTIMATES. Let . By
the assumption (1.20), Theorem 1.3 guarantees the existence of a time loc and
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a unique classical solution loc of (1.3),
with initial data as in (1.20) such that

(6.53) sup
loc

We now show that for any , if for some large enough, and
is small enough, then the time derivatives , satisfy, for

all loc ,

(6.54)

One argues by induction on . For the second estimate in (6.54) is (6.53).
Assume that (6.54) holds for any , . By differentiating
in the water waves system (1.3) we get, for any ,

(6.55) F
where F is an analytic function vanishing at the origin. Then, using that is
expressed from the side of (3.2), Proposition 2.6, (2.20), and the inductive hypoth-
esis, we get

This implies, in view of the first equation in (6.55), that is bounded as in (6.54).
To estimate we use the second equation in (6.55), the inductive estimates for

, , and the previous bound on .

Step 2. A PRIORI ESTIMATE FOR THE BASIC DIAGONAL COMPLEX VARI-
ABLE. We now look at the complex variable defined in (1.12) and (1.8). Since
the function is in F (Proposition 3.1), we deduce, applying Proposi-
tion 2.6 for large enough, that loc , and so

loc with . Moreover, using (1.20), (6.53)–(6.54), we
estimate, for , ,

(1.12) (1.8) Prop 2.6 (6.54)

for any loc . In conclusion, there is such that
(6.56)

sup
loc

Step 3. BOOTSTRAP ARGUMENT AND CONTINUATION CRITERION. With
given by Theorem 1.1, and by Proposition 6.5, we choose in (1.20)

small enough so that, for , we have , where is the
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constant in (6.56). Moreover, we take large enough in such a way that (6.56)
hold with given by Theorem 1.1. Hence the first two assumptions in (6.49) hold
with max on the time interval loc . Then Proposition 6.5 and
a standard bootstrap argument guarantees that can be extended up to a time

consistently with (1.21), and that

(6.57) sup

Finally, we prove that the solution of (1.3) satisfies (1.22) and that
takes values in for all . Expressing in terms of as in (3.21),
we deduce by (6.57) that

(6.58) sup

Then, by (1.8), (6.58), and Proposition 2.6, using (3.2) for , we estimate

sup sup

The estimates above imply (1.22) and, in particular, that

sup

thus guaranteeing (1.23), for , on the time interval . The continua-
tion criterion in Theorem 1.3 implies that the solution is in

for .

Appendix: Flows and Conjugations
In this appendix we study the conjugation rules of a vector field under flow

maps.

A.1 Conjugation rules
We first give this simple lemma that we use in sections 3.2 and 5.

LEMMA A.1. For consider a system with in
M M and let be the flow of

(A.1) iA Id

where A A is in R M . Under the change of variable
, the new system becomes

(A.2)
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The operator is in M M and, setting AdiA
iA , it admits the Lie expansion

AdiA(A.3)

AdiA

AdiA i A(A.4)

AdiA i A

PROOF. The expression (A.2) follows by an explicit computation. In order to
prove (A.3) note that the vector field satisfies
the Heisenberg equation iA with . We also have

AdiA . Then (A.3) follows by a Taylor expansion.
To prove (A.4) we reason as follows. We have that

(A.5)

Using the expansion (A.3) with and (A.5) we get (A.4). By Taylor-
expanding using (A.1), we derive that Id is in M
M . The translation invariance property (2.19) of the homogeneous compo-
nents of follows since the generator A satisfies (2.19). Then, the oper-
ator in (A.2) belongs to M M by Proposition 2.10 and
the remarks after Definition 2.7. Let us justify the translation invariance property
of the homogeneous components of . Denoting by the sum of its
homogeneous components of degree less than or equal to 2 we get, for any ,

, and so .
Then we deduce using the translation invari-
ance of . By composition we deduce that the homogeneous components of

in (A.2) satisfy (2.19). �

In the next subsection we analyze how paradifferential operators change under
the flow maps generated by paradifferential operators.

A.2 Conjugation of paradifferential operators via flows
We consider the flow equation

(A.6) i BW Id
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where is a symbol assuming one of the following forms:

F(A.7)

F(A.8)

(A.9)

Note that (A.6) with as in (A.7) is a paradifferential transport equation. This is
used in Section 4.1 and Section 4.2. Flows with as in (A.8) are used in Section
4.2 and with as in (A.9) in Section 4.2 and Section 4.3.

LEMMA A.2 (Linear flows generated by a paradifferential operator). Assume that
has the form (A.7) or (A.8) or (A.9). Then, there is and such that,

for any , for any , the equation (A.6) has a
unique solution satisfying the following:

(i) the linear map is invertible and, for some ,
,

(A.10)

(A.11)

for any and uniformly in .

(ii) The map admits an expansion in multilinear maps as Id
M , . More precisely, there are in M and and

in M (independent of ) such that

(A.12)

where is in M with estimates uniform in .
The same result holds for a matrix-valued system B ,

Id, where B BW and is a matrix of
symbols in M .

PROOF. See lemma 3.22 in [6]. The property (2.19) of the flow map de-
fined by (A.6) follows by the fact that the homogeneous components of the symbol

satisfy (2.7). �

The proof of the next lemma follows by standard theory of Banach space ODEs.

LEMMA A.3 (Linear flows generated by a smoothing operator). Assume that A
in (A.1) is a smoothing operator in R M for some . Then,
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there is , such that, for any , for any , the
equation (A.1) has a unique solution satisfying, for some ,

(A.13)

for any , , and uniformly in .
Moreover, satisfies a bound like (A.11) and (ii) of Lemma A.2.

We now provide the conjugation rules of a paradifferential operator under the
flow in (A.6). We first give the result in the case when has the form
(A.7); i.e., (A.6) is a transport equation.

LEMMA A.4 (Conjugation of a paradifferential operator under transport flow). Let
be the flow of (A.6) given by Lemma A.2 with as in (A.7)

and . Consider the diffeomorphism of given by
Let be a symbol in for some ,

, , , and . If is large enough and small enough, then
there is a symbol in such that

(A.14) BW BW

where is a smoothing remainder in R . Moreover, admits an
expansion as

(A.15)

where

(A.16)

and is a symbol in . In addition, if ,

then .

Furthermore, the symbol in (A.16) admits an expansion in degrees of ho-
mogeneity as

(A.17)

up to a symbol in which is real-valued as if is real-valued.

PROOF. Formulas (A.14)–(A.16) are proved in [6, theorem 3.27] (with homo-
geneity degree ), and it is shown that the symbol

and solves the transport equation

(A.18)
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The claim that, if , then follows because in for-
mula (3.5.37) of [6], the symbol . Finally, we deduce (A.17) by a Taylor
expansion in using (A.18) (note that and have degree of homogeneity
in ). Since the homogeneous components of satisfy the invariance con-
dition (2.7), the flow satisfies (2.19), and so the left-hand side in (A.14).
The proof shows that the symbol in (A.15) satisfies (2.7), and therefore the
remainder in (A.14) satisfies (2.19) by difference. �

LEMMA A.5 (Conjugation of under transport flow). Let be the flow of
(A.6) given by Lemma A.2 with as in (A.7). Then

(A.19) i BW

where is a function in F and is a smoothing operator in
R . In addition, the function admits the expansion in degrees of

homogeneity

(A.20) F

PROOF. By the proof of proposition 3.28 of [6] (see formulæ (A.5) and (3.5.55)
in [6]) the operator solves

(A.21) i BW i BW

We claim that the solution of (A.21) is, up to smoothing remainders,
BW , where the symbol solves the forced transport equa-

tion

(A.22)
i

Indeed, the solution of (A.22) is

(A.23) i

where and is the solution of the character-
istic Hamiltonian system

with initial condition Id. Note that where

where is the inverse diffeomorphism of (see lemma
3.21 in [6]). Then is linear in ; hence also in (A.23) is linear
in . Since both and are linear in we deduce that the
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commutator i BW BW is given, up to smoothing
operators, by BW . Moreover, by lemma 3.23 in [6],

is in with estimates uniform in . Then
(A.19) follows by setting i . Finally, we deduce (A.20) by
a Taylor expansion in of the symbol , using (A.22). The function

satisfies the translation invariance property (2.7) as . As in Lemma A.1
the operator in (A.19) is translation invariant, and
satisfies the property (2.19) by difference. �

We now provide the conjugation of a paradifferential operator under the flow
in (A.6) if has the form (A.8) or (A.9).

LEMMA A.6 (Conjugation of a paradifferential operator). Let be the flow of
(A.6) given by Lemma A.2 with symbol in with , of

the form (A.8) or (A.9). Let be a symbol in for some ,
, , , and . Then

(A.24)

BW

BW

where , , , and
R . In addition, if is real, then also the symbols ,

, are real-valued as well.

PROOF. The result follows by a Lie expansion. Using (A.3) we have, for ,

(A.25)

BW

BW BW i BW Ad BW i
BW

Ad BW i
BW

Ad BW i
BW

By Propositions 2.9, 2.10 replacing the smoothing index by some chosen below
large enough, we get

Ad BW i
BW BW i BW

BW

up to a smoothing operator in R . Moreover,

Ad BW i
BW BW
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up to a smoothing operator in R . By induction, for we have

Ad BW i
BW BW

up to a smoothing operator in R . We choose in such a way that
and so that the operator BW belongs

to R . The integral Taylor remainder in (A.25) belongs to R as well;
see lemma 5.6 in [6]. Then we choose large enough so that
and the remainders are -smoothing. By the third remark under Definition 2.8 we
deduce that if is real, then the symbol of BW i BW is real,
and so are real-valued as well. �

LEMMA A.7 (Conjugation of ). Let be the flow of (A.6) with symbol
in with , of the form (A.8) or (A.9). Then

i BW BW
(A.26)

where , and R .

PROOF. The result follows by using the Lie expansion (A.4) and arguing as in
Lemma A.6. �

A.3 Lie expansions of vector fields up to quartic degree
In this subsection the variable may denote both the couple of complex vari-

ables or the real variables .

LEMMA A.8 (Inverse of F up to ). Consider a map F ,
, of the form

(A.27) F

where is in M M and the maps are in M
M . Then there is a family of maps G of the form

(A.28) G

where is in M M such that

(A.29)
G F

F G

where is a polynomial in and finitely many monomials
for maps M M , .
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PROOF. Set F and substitute iteratively twice the expansion (A.27)
to express as a function of , up to terms of higher homogeneity (using the last
two remarks under Definition 2.7). �

We regard the map G in (A.28) as the formal flow of a non-
autonomous vector field up a remainder of degree of homogeneity 4; see
(A.30).

LEMMA A.9. Consider a map F as in (A.27) and let G be its approx-
imate inverse as in (A.28) up to quartic remainders. Then

(A.30) G G G

where is a vector field of the form

(A.31)

where is a map in M M and in M M , and
is a polynomial in and finitely many monomials for maps

M M , .

PROOF. It follows by explicit computation differentiating (A.28), using the ex-
pansions (A.27), (A.28), and the last two remarks under Definition 2.7. �

Given polynomials vector fields and we define the nonlinear com-
mutator

(A.32) � �
Under the same notation of Lemmata A.8, A.9, we have the following result.

LEMMA A.10 (Lie expansion). Consider a vector field of the form
for some map where is in M

M , is in M M , and in M M . Consider a
transformation F as in (A.27) and let be the vector field of the form
(A.31) such that (A.30) holds true. Then, if solves , the function

F solves
(A.33)

� � � � �� � �

up to terms of degree of homogeneity greater than or equal to .

PROOF. In order to find the quadratic and cubic components of the transformed
system, it is sufficient to write F , , and the first identity in
(A.29) as G . Then, differentiating with the first
identity in (A.29) we obtain, up to a quartic term,

(A.34) G G Id
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where for suitable maps in
M M and in M M ; recall (A.28). Applying
in (A.34) the “pseudo-inverse"

G Id

and since we have plus a quadratic term in , we deduce that, up to a
quartic term,

G G
The left-hand side of this formula can be expanded in Taylor at up to degree
, obtaining, using (A.30), the usual Lie formula

(A.35) � � � � �� � �

up to terms of degree . Evaluating (A.35) at we get (A.33). �
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