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Abstract
A posteriori error estimates in the L∞(H)- and L2(V)-norms are derived for fully-discrete
space–time methods discretising semilinear parabolic problems; here V ↪→ H ↪→ V∗
denotes a Gelfand triple for an evolution partial differential equation problem. In particular,
an implicit–explicit variable order (hp-version) discontinuous Galerkin timestepping scheme
is employed, in conjunction with conforming finite element discretisation in space. The non-
linear reaction is treated explicitly, while the linear spatial operator is treated implicitly,
allowing for time-marching without the need to solve a nonlinear system per timestep. The
main tool in obtaining these error estimates is a recent space–time reconstruction proposed
in Georgoulis et al. (A posteriori error bounds for fully-discrete hp-discontinuous Galerkin
timesteppingmethods for parabolic problems, Submitted for publication) for linear parabolic
problems, which is now extended to semilinear problems via a non-standard continuation
argument. Some numerical investigations are also included highlighting the optimality of the
proposed a posteriori bounds.
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1 Introduction

Galerkin finite element methods are popular for the numerical solution of various classes
of partial differential equations (PDEs) and related initial/boundary value problems due to
their flexibility and accuracy in dealing with various challenging solution properties and
computational domain geometries. Owing to their variational structure, Galerkin methods
are known to be suitable for mesh adaptivity in an effort to provide sufficient resolution
for localised solution features without the introduction of excessive overhead of numerical
degrees of freedom. Indeed, adaptive finite element methods for complex nonlinear prob-
lems is an active area of research. In their more mathematically justified settings, adaptive
algorithms are driven by rigorous, computable bounds on the error residual, the so-called a
posteriori error bounds.

Nevertheless, the study of nonlinear time-dependent PDE problems continues to neces-
sitate further research, as a number of important challenges are yet still to be addressed. A
central such challenge, in our view, is the development of a posteriori bounds for arbitrary
order explicit and implicit–explicit time-stepping methods for nonlinear evolution PDEs,
especially treating fully-discrete numerical schemes, in an effort to drive adaptive algo-
rithms. Adaptivity is crucial for computational complexity reduction in this context due to
the wealth of potential non-linear features that may appear in the solutions of such PDE
problems (interfaces, pattern formation, travelling waves, etc); we refer to [12] for a recent
directly related application. Indeed, we are aware of an extremely limited number of works
discussing rigorous a posteriori error bounds for explicit time-stepping methods for linear
evolution problems [25,26]. The challenge posed by explicit (or implicit-explicit) timestep-
ping methods in the context of rigorous a posteriori error control is the careful construction
of an “implicit perturbation” of the explicit scheme for which we can construct suitable,
optimal order, reconstructions that, in turn, can be naturally inserted into the original PDE to
construct residuals.

A posteriori error analysis for stationary and evolution problems has been widely inves-
tigated over the last 30 years or so, and significant developments have been achieved, see,
e.g., the treatises [1,51] and the references therein for elliptic problems, the works [11,17–
19,22,27,29,35,36,38,40,42,43,50] for space–discrete or fully-discrete parabolic problems,
or [2,4–6,26,34,41,46] for a posteriori error bounds for time semi-discretisations of evolution
PDEs; the above lists contain the results most relevant to this work from the growing literature
in the area and are, of course, far from constituting a complete bibliographical account.

Discontinuous Galerkin (dG) timestepping for parabolic problems is classical [15,16,23,
31,37,39,45,48]. These methods have received considerable interest in the context of space–
time adaptivity throughout the years, as they offer a variational, arbitrary order timestepping
framework and, crucially, allow for locally variable timestep sizes in different spatial regions
of the computational domain. This is an important attribute towards the aim of full space–
time adaptive numerical methods, which was already recognised in [18,19]. During the last
10 years or so, there has been a revived interest in the derivation of rigorous a posteriori error
bounds for dG timestepping schemes [20,21,24,28,41,46].

Nonlinear reaction–diffusion parabolic problems are abundant in the literature, especially
in the modelling of biological processes and of population dynamics. In such applications, a
variety of norms is often required, especially in the context of model parameter calibration
from real data. Therefore, the availability of a posteriori bounds of the error in various norms,
with different rates of convergence, is desirable to drive space–time adaptive algorithms. To
the best of our knowledge, however, there are no previous results on a posteriori error
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bounds for implicit-explicit high order fully-discrete methods involving dG-timestepping for
nonlinear evolution PDEs. This is in contrast with the increasing number of interesting works
on a posteriori error analyses for low order time-stepping schemes for nonlinear evolution
problems; see, e.g., [8,10,12,17,36,52] and the references therein. At the same time, there
exist only few works on the a posteriori error analysis of high order time-stepping schemes
for time-discrete nonlinear parabolic problems [30,33,34,41,46].

This work is concerned with the derivation of conditional a posteriori error bounds in the
L∞(H)- and L2(V)-norms for fully discrete implicit–explicit (IMEX) methods of variable
order for semilinear parabolic problems; hereV ↪→ H ↪→ V∗ denotes a Gelfand triple setting
for an evolution PDE. Typical examples for which the results presented hold areH = L2(�)

and V = H1
0 (�) or V = H2

0 (�). The nonlinear reaction term is assumed to be locally
Lipschitz and satisfying a growth condition in the spirit of [49]. Such growth conditions allow
for the unified treated also of PDE systems of reaction–diffusion–convection type [9,12].
The time discretisation consists of an hp-version discontinuous Galerkin method treating
implicitly the linear spatial operator, and of an explicit multistep method for the nonlinear
reaction term. This is combined with the standard conforming finite element method used
for the spatial discretisation. The dG-multistep IMEX time discretisation we consider in this
work was introduced in [23], whereby a priori error bounds were proven for the case of
globally Lipschitz nonlinear reactions. To reduce the computational overhead, the nonlinear
reactions are treated explicitly via sufficiently high-order interpolation of solution values
from previous timesteps [23]. Therefore, the solution of one linear system per timestep is
required. The proof combines the recent space–time reconstruction proposed in [28] for
the implicit dG discretisation, along with a suitable implicit perturbation of the explicitly
discretised nonlinear reaction part in the spirit of [25,26]. The treatment of the non-Lipschitz
nonlinearity involves a continuation argument in the spirit of [8–10] along with suitable
Sobolev imbeddings. The resulting a posteriori error bound is of conditional type, i.e., it is
valid subject to an a posteriori smallness condition being satisfied. Such conditional estimates
are typical for strongly nonlinear problems [8–10,12,33], i.e., problems whose nonlinearities
do not satisfy strong monotonicity and/or global Lipschitz conditions. In this work, we use
energy arguments for the proofaposteriori error bounds, as Sobolev imbeddings are sufficient
for control of the nonlinear terms. For the case of blow-up problems an alternative technique
based on Duhamel’s principle combined with L∞-control bootstrapping arguments in the
time variable is also available; we refer to [30,33,34] for time-discrete results in this vein.

Crucially, no a priori Courant-Friedrichs-Lewy (CFL) type conditions (with the respec-
tive often obscure constants involved) will be required for the validity of our a posteriori
error bounds for explicit timestepping methods (cf., also [25,26]). Indeed, for unstable com-
binations of local spatial and temporal meshsizes, the a posteriori estimator remains reliable.
In fact, this remarkable property motivates the study of a posteriori estimation of CFL
constants as a non-standard potential use of rigorous a posteriori error upper bounds for
(implicit–)explicit methods; this will be discussed elsewhere.

The remainder of this work is organised as follows. In Sect. 2 we introduce some notation
and define the space–time scheme. In Sect. 3 we introduce the space–time reconstruction
operators and state the corresponding error bounds. The a posteriori error analysis for fully-
discrete semilinear parabolic equations in L∞(H) and L2(V) norms is presented in Sect. 4.
In Sect. 5 we present a set of numerical examples for both linear and semilinear test problems
investigating the performance of the a posteriori error bounds, while, in the last section, we
draw some conclusions.
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2 Problem Setup and the Numerical Method

2.1 Abstract Setting

For H a real Hilbert space and I = [a, b] ⊂ R, the Bochner space L p(I;H) is defined by
L p(I;H) := {v : I → H such that ‖v‖L p(I;H) < ∞}, with the respective norm given by

‖v‖L p(I;H) :=

⎧
⎪⎨

⎪⎩

( ∫

I
‖v(t)‖p

H dt
)1/p

, for 1 ≤ p < ∞,

ess sup
t∈I

‖v(t)‖H, for p = ∞.

Upon denoting by v′ the (weak) derivative of v with respect to the “time”-variable t ∈ I, we
can also define the Sobolev-Bochner spaces

W 1
p(I;H) := {v, v′ : I → H such that ‖v‖W 1

p(I;H) < ∞},

and ‖v‖W 1
p(I;H) := (‖v‖p

L p(I;H)
+ ‖v′‖p

L p(I;H)

)1/p . When
(H, (·, ·)H

)
is a Hilbert

space with respective inner product, L2(I;H) and H1(I;H) ≡ W 1
2 (I;H) are also

Hilbert spaces endowed with the inner products
∫

I(w(t), v(t))H dt and
∫

I(w(t), v(t))H +
(w′(t), v′(t))H dt , respectively. We may also write Z(α, β;H) instead of Z(I;H) for
Z ∈ {L p,W 1

p}.
Let V ⊂ H another Hilbert space with norm ‖ · ‖V and let V∗ denote its the dual space

defined by the functions z for which the norm

‖z‖V∗ := sup
0 �=v∈V

(z, v)V∗×V
‖v‖V ,

is finite; the spaces V , H and V∗ form a, so-called, Gelfand triple

V ↪→ H ↪→ V∗, (1)

with the duality pairing (·, ·)V∗×V extending the inner product (·, ·)H, in the sense that, for
all u ∈ H and v ∈ V holds (u, v)V∗×V = (u, v)H. The subscript V∗ × V in the duality
pairing will be omitted whenever no confusion is likely to occur. Although we shall work
within the above abstract setting, typical cases include H = L2(�), V = H1

0 (�), giving
V∗ = H−1(�), or V = H2

0 (�), giving V∗ = H−2(�).
We consider the semilinear parabolic initial value problem: find u ∈ H1(0, T ;V∗) ∩

L2(0, T ;V) such that

u′ + Au = f (·, u) for all t ∈ I, u(0) = u0, (2)

for some known function u0 ∈ H, where A : V −→ V∗ is a linear elliptic operator, which
is continuous and coercive with respect to the norm of V . We also define the bilinear form
a : V × V −→ R associated with A by

〈Aw, v〉V∗×V = a(w, v) for all w, v ∈ V, (3)

which inherits the continuity and coercivity properties of A, viz.,

|a(v,w)| ≤ Ccont‖v‖V‖w‖V for all v,w ∈ V, (4)

a(v, v) ≥ Ccoer‖v‖2V for all v ∈ V, (5)

with Ccont, Ccoer positive constants independent of w, v.
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The function f : I × R
d × R → R is smooth and locally Lipschitz-continuous, bounded

in the first two arguments and satisfying the growth condition for the third argument:

| f (t, x, z1) − f (t, x, z2)| ≤ C |z1 − z2|(1 + |z1| + |z2|)r , for r ≥ 0, (6)

for all z1, z2 ∈ R with | · | denoting the Euclidean distance, for a positive constant C ,
uniform with respect to the first two arguments. In what follows, we shall often suppress for
brevity the dependence of f on its first two arguments writing, therefore, f (t, x, w) = f (w).
Generalisations of the above assumptions in the first two arguments are possible in the context
of certain Caratheodory-type conditions, but we refrain from discussing these in the interest
of simplicity of the presentation. Such growth conditions allow for the unified treatment of
PDE systems of reaction–diffusion–convection type [9,12], as in such cases it is either very
difficult or, even impossible to deduce positivity/monotonicity properties from complicated
reaction patterns.We stress, however, that the results proven below hold subject to restrictions
on the range of the exponent r ≥ 0, depending on the particular choices of the triple (1) and
on the dimension of the spatial computational domain � ⊂ R

d .

2.2 Space–Time Galerkin Spaces

Let I = [0, T ] be the time interval with final time T > 0 and, for 0 = t0 < t1 < · · · <

tN = T , consider the partition {In, n = 0, . . . , N } of I into subintervals In := (tn−1, tn] for
n = 1, . . . , N , and I0 := {0},with corresponding timesteps kn := tn−tn−1, n = 1, 2, . . . , N .
We also consider a finite sequence {Vn}Nn=0 of conforming finite element subspaces of V , each
associated with the time subintervals In . To account for mesh-change effects, we also define
the largest common subspace V�

n := Vn−1 ∩ Vn, for all n = 1, . . . , N .
Let H be a Hilbert space. We define

Pr (I;H) := {p : I → H : p(t) =
r∑

i=0

ψi t
i , ψi ∈ H, i = 0, 1 . . . , N },

as the space of H-valued polynomials on I of degree at most r .
We also consider the space-time finite element subspace

Xn := Prn (In;Vn),

for all n = 0, 1 . . . , N with rn denoting the local temporal polynomial degree, which may
vary from one timestep to another.

Collecting the latter for all time-steps, we define the space–time Galerkin space

X ≡ Xr := {v : [0, T ] → V : v|In ∈ Xn, n = 1, . . . , N },
often suppressing the dependence on the polynomial degree vector r := (r1, r2, . . . , rN ) for
brevity.

Moreover, for a piecewise continuous function v : I ⊂ R → H, with the time nodes tn
as possible points of discontinuity, we define the time-jump:

[v]n := v+
n − v−

n ,

where v±
n := limδ→0+ v(tn ± δ), the respective one-sided (right and left) limits for n =

0, 1, . . . , N .
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For every n = 0, 1, . . . , N , we introduce the V∗-projection operator Pn : V∗ → Vn

defined by

(Pnv, χ)H = (v, χ)V∗×V for all χ ∈ Vn, (7)

and the corresponding projection operator P�
n defined by (P�

n v, χ)H = (v, χ)V∗×V for all
χ ∈ V�

n , respectively. Also, we define the elliptic projection operator P̃n : V → Vn by

a(P̃nv,W ) = a(v,W ) for all W ∈ Vn,

with P̃�
n the respective elliptic projection onto V�

n .
For w ∈ H, we define the time lifting operator Ln : H → Prn (In;H), by

∫

In

(Ln(w), v)H dt = (w, v+
n−1)H for all v ∈ Prn (In;H). (8)

If W ⊂ H is a linear subspace of H, we have the property

w ∈ W implies Ln(w) ∈ Prn (In;W); (9)

for more details, we refer to [46].

2.3 Space–Time Finite Element Methods

SetU−
0 := P̃0u0. Then, the fully-discrete implicit time discontinuous and spatially conform-

ing Galerkin approximation of the exact solution u of (2) reads: find U ∈ X such that
∫

In

(U ′, V )H + a(U , V ) dt + ([U ]n−1, V
+
n−1)H =

∫

In

( f (U ), V )H dt (10)

for all V ∈ Xn and for n = 1, . . . , N , where we recall that [U ]n = U+
n −U−

n .
The space-time method (10) is fully implicit in the sense that a nonlinear system of

equations for the numerical degrees of freedom has to be solved to advance one time interval.
Aiming for a linearly implicit method, we follow [23] and we replace f (U ) in (10)

by its linear interpolant in time 	 f (U ), defined so that 	 f (U )|In ∈ P2rn (In,Vn), for
all n = 1, . . . , N , using values of U from previous time intervals Im,m < n only and
extrapolating the resulting interpolant into In . In this case, the solution process will result in
a linear system for U per time-step, giving rise to an implicit–explicit (IMEX) method. Of
course, one can also interpolate on the previous and the current time intervals Im ,m ≤ n. This
case will lead to a nonlinear system of equations for U , although it can be potentially more
easy to implement for certain nonlinearities f . In both cases, the time interpolant 	 f (U )

can be represented on each In as

	 f (U )(t)|In := 	
2rn
n− j f (U )(t) =

n− j∑

l=n− j−2rn

χl(t) f (tl , ·,U−
l ), (11)

where 	λ
n− j , j = 0, 1, is the interpolation operator for polynomials of degree λ at the nodes

tn− j−λ, . . . , tn− j and χl the respective Lagrange basis functions. The corresponding IMEX
space–time scheme reads: set U−

0 := P̃0u0 and find U ∈ X such that
∫

In

(U ′, V )H + a(U , V ) dt + ([U ]n−1, V
+
n−1)H =

∫

In

(	 f (U ), V )H dt (12)
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for all V ∈ Xn , for n = 2r1 + j, . . . , N . Of course, as this is a multistep method, we
can only use it after a certain number of time-steps, depending on the order of the method.
Without potential loss of convergence rate, however,we can consider a few (very small in size)
timesteps with the zeroth order method, i.e., the implicit Euler method with explicit treatment
of the nonlinear reaction, before using (12)with higher order than zero. The interpolant degree
λ = 2rn is required to represent exactly the integrand ( f (U ), V )H = (P f (U ), V )H which
is a product of two polynomials of degree rn each with respect to the time variable. Finally,
for j = 1, we arrive at the IMEX method, while, for j = 0, we retrieve the fully implicit
scheme; for further details we refer to [23]. Note that the values U−

l are known to be points
of superconvergence for the respective time-discrete problem [3,32].

Despite the specific choices discussed above, in what follows, we shall endeavour to be
general with respect to the particular approximation of the nonlinear term. To that end, we
shall refrain from using specific properties of any particular interpolant/extrapolant used in
the proof of the a posteriori error bounds below, in an effort to be versatile in the choice of
linearisation. Indeed, the a posteriori error bounds given below will involve the computable
quantity 	 f (U ) − f (U ).

3 Reconstructions

We now discuss the space-time reconstruction technique proposed in [28] for the respective
linear problem, which is a modification of the concepts of elliptic reconstruction for the
spatial discretisation [35,40] and of the dG-timestepping reconstruction presented first in
[41], and further analysed in the hp-setting in [46].

3.1 Time Reconstruction

The time reconstruction Ŵ ∈ H1(0, T ;H) of a time-discrete function W ∈ Pr (I;H) is
defined for each In , n = 1, . . . , N , by the conditions

Ŵ |In ∈ Prn+1(In;H), n = 1, . . . , N , (13)
∫

In

(Ŵ ′, v)H dt =
∫

In

(W ′, v)H dt + ([W ]n−1, v
+
n−1)H for all v ∈ Prn (In;H), (14)

and

Ŵ+
n−1 =

{
u0, n = 0;
W̃−

n−1, n = 1, . . . , N .
(15)

The time reconstruction Ŵ is well-defined: we have rn +2 unknowns per time interval In and
rn + 1 conditions from (14) and one more condition from (15). It is also unique; we refer to
[41, Lemma 2.1] for a proof of the uniqueness, which also shows that the time reconstruction
is also globally continuous with respect to the time variable.

Equivalently, using the lifting operator (8), we can define Ŵ |In ∈ Prn+1(In;H) on each
time interval In , n = 1, . . . , N , by

Ŵ |In (t) :=
∫ t

tn−1

(W + Ln([W ]n−1) dτ + W−
n−1, (16)

where we recall that W−
0 := u0.
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Proposition 3.1 (Time reconstruction error bounds) Let S ⊆ H with S ∈ {H,V,V∗}, and
� ∈ Prn (In; S), for n = 1, . . . , N. Then, we have the identities:

‖�̂ − �‖L2(In;S) = Kn‖[�]n−1‖S, (17)

with

Kn :=
(

kn(rn + 1)

(2rn + 1)(2rn + 3)

)1/2

,

and

‖�̂ − �‖L∞(In;S) = ‖[�]n−1‖S, (18)

where �̂ is defined from � by (13) and (14).

Proof The proof of (17) first appeared in [41, Lemma 2.2]; the formula for Kn was further
refined to be explicit in the dependence on rn in [46, Theorem 2]. ��

3.2 Elliptic Reconstruction

For each conforming finite element space Vn ⊂ V , we define the respective discrete elliptic
operator An : Vn → Vn to be the unique linear operator such that (AnW , V )H = a(W , V ),
for all V ,W ∈ Vn .

Given U ∈ Xn , n = 0, . . . , N , for t ∈ In , the elliptic reconstruction Ũ ∈ Prn (In;V) of
U is defined as

a(Ũ (t), v) = (AnU (t)+PnÛ
′(t) − Û ′(t), v)H, for all v ∈ V, and t ∈ In, (19)

with Û denoting the time reconstruction of the numerical solution U . The relation (19) can
be written in point-wise form asAŨ (·, t) = AnU (·, t)+PnÛ ′(·, t) − Û ′(·, t), for all t ∈ In .

From the definition of An and from (19), we have

a(Ũ (t),W ) = (AnU (t)+PnÛ
′(t) − Û ′(t),W )H = a(U (t),W ), for all W ∈ Vn, (20)

and, hence, we have

U = P̃nŨ , (21)

at each t ∈ In . That is, U is the elliptic projection of the elliptic reconstruction Ũ . In other
words, U is the approximate solution of the elliptic problem whose exact solution is the
elliptic reconstruction function Ũ . Therefore, a crucial consequence of this construction is
the ability to estimate the difference Ũ − U by a posteriori error estimators for elliptic
problems in various norms available in the literature. As we prefer to keep the exposition
independent of specific choices of a posteriori error bounds for elliptic problems, we opt for
merely postulating their existence.

Assumption 3.2 (Elliptic a posteriori error bounds) Let w ∈ V be the exact solution of the
elliptic problem Aw = g, with respective boundary conditions, and let W ∈ Vh ⊂ V be the
finite element solution of this problem in a finite element space Vh . We assume that there
exist a posteriori error bounds

‖w − W‖S ≤ ES[W , g], (22)

for S ∈ {H,V,V∗}.
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The literature for such elliptic a posteriori error bounds is vast; see, e.g., [1,51] and the
references therein.

In particular, Assumption 3.2 will imply the validity of the estimates

‖Ũ −U‖S ≤ ES[U ,AnU+PnÛ
′ − Û ′], S ∈ {H,V,V∗}, (23)

among other things; see Proposition 4.4 below for details.
Using (14) and (20), the IMEX method (12) can be re-written on In as

∫

In

(Û ′, V )H + a(Ũ , V ) dt =
∫

In

(	 f (U ), V )H dt (24)

for all V ∈ Xn , for n = 1, . . . , N or, equivalently, in strong form as

Û ′ + AŨ = Pn	 f (U ), (25)

noting carefully the cancellation of the terms PnÛ ′ in the course of the calculation.

Remark 3.3 (mesh change error via elliptic reconstruction) The elliptic reconstruction (19)
includes the mesh-change type term PnÛ ′ − Û ′, in contrast to the (standard) elliptic recon-
struction proposed in [35]. In fact, it is the high order counterpart of the elliptic reconstruction
presented in [11, Definition 6.1] for backward Euler timestepping. Indeed, on each In we
have, respectively,

PnÛ
′ − Û ′ = Ln(Pn[U ]n−1 − [U ]n−1) = Ln(U (t−n−1) − PnU (t−n−1)). (26)

By construction [41,46] there exists a polynomial κn of degree rn on In such that
Ln(U (t−n−1) − PnU (t−n−1)) = κn(t)(U (t−n−1) − PnU (t−n−1)),

with

‖κn‖L∞(In) = ‖κn‖L2(In) = rn + 1√
kn

.

4 A Posteriori Error Bounds

Upon defining the space-time reconstruction w := ˆ̃U , i.e., the time-reconstructed elliptic
reconstruction, we begin by decomposing the error as

e := u −U = (u − w) + (w − Ũ ) + (Ũ −U ) = ρ + σ + ε.

Note that σ is the time reconstruction error which can be estimated using Proposition 3.1.
Similarly, ε is the elliptic reconstruction error and, therefore, can be estimated using Assump-
tion 3.2. Thus, it remains to estimate ρ by quantities involving the problem data and/or σ

and ε. To do so, we shall work with energy estimates, in conjunction with a continuation
argument to treat the non-Lipschitzian nonlinear reactions.

4.1 Error Equation

Subtracting (25) from (2), we obtain after elementary manipulations

ρ′ + Aρ = f (u) − Pn	 f (U )−ε̂′ − Aσ, (27)
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on In , for n = 1, . . . , N . For brevity, we set P : [0, T ] → V , defined as P|In = Pn ,
n = 0, . . . , N .

Testing (27) against ρ, integrating in space and in time between 0 to t ∈ Im , for some
m = 1, . . . , N , we deduce

1

2
‖ρ(t)‖2H +

∫ t

0
a(ρ, ρ) dτ =

∫ t

0
( f (u) − P	 f (U ), ρ)H dτ

−
∫ t

0
(Dε̂, ρ)H dτ −

∫ t

0
(Aσ, ρ)V∗×V dτ,

(28)

noticing that ρ(0) = 0 by construction, and upon defining Dz to be the time-wise bro-
ken derivative of a piecewise smooth function z subordinate to the temporal subdivision.
Employing the coercivity (5) and continuity (4) of a, along with standard inequalities, the
last estimate implies

1

2
‖ρ(t)‖2H + (

1 − γ
)
Ccoer

∫ t

0
‖ρ‖2V dτ ≤

∫ t

0
( f (u) − P	 f (U ), ρ)H dτ

+ 1

2γCcoer

∫ t

0

(‖Dε̂‖2V∗ + ‖Aσ‖2V∗
)
dτ,

(29)

for any γ > 0. Selecting now γ = 1/2 in (29), we arrive at

‖ρ(t)‖2H + Ccoer

∫ t

0
‖ρ‖2V dτ ≤ 2

∫ t

0
( f (u) − P	 f (U ), ρ)H dτ + 2

Ccoer

(
‖Dε̂‖2L2(0,t;V∗)

+C2
cont‖σ‖2L2(0,t;V)

)
. (30)

We shall now estimate each term on the right-hand side of (30) separately.

4.2 Estimating the Nonlinear Term

We decompose the integrand in the nonlinear term in (30) as

( f (u) − P	 f (U ), ρ)H ≤ ( f (u) − f (U ), ρ)H + ‖ f (U ) − P	 f (U )‖V∗‖ρ‖V , (31)

with ‖ f (U ) − P	 f (U )‖V∗ measuring how well P	 f (U ) approximates f (U ).
As we shall make use of the Sobolev Imbedding Theorem, we first discuss the specific

choice H = L2(�) and V = H1
0 (�); the case of non-essential boundary conditions also

follows without any technical challenge, although it is omitted here for brevity.

Lemma 4.1 (Estimation of the nonlinear term) If the nonlinear reaction f as in Sect. 2,
satisfying the growth condition (6) with 0 ≤ r < 2 for d = 2, and with 0 ≤ r ≤ 4/3 for
d = 3, we have the bound

∫

�

| f (u) − f (U )||ρ| dx ≤ C‖ρ‖rL2(�)‖∇ρ‖2L2(�) + C(1 + ‖U‖rL∞(�))‖ρ‖2L2(�)

+ C
(‖σ‖rL2(�)‖∇σ‖2L2(�) + ‖ε‖rL2(�)‖∇ε‖2L2(�)

)

+ C(1 + ‖U‖rL∞(�))
(‖σ‖2L2(�) + ‖ε‖2L2(�)

)
.

(32)
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Proof Using the growth condition (6), we have, respectively,
∫

�

| f (u) − f (U )||ρ| dx ≤ C
∫

�

|u −U |(1 + |u|r + |U |r )||ρ| dx

≤ C
∫

�

|u −U |(1 + |u −U |r + |U |r )||ρ| dx

≤ C
∫

�

|u −U |r+1|ρ| dx + C
∫

�

(1 + |U |r )|u −U ||ρ| dx .

(33)

For the first term on the right-hand side of (33) we use the inequality
∫

�

|v|r+1|w| dx = r + 1

r + 2
‖v‖r+2

Lr+2(�) + 1

r + 2
‖w‖r+2

Lr+2(�), (34)

thereby, deducing
∫

�

|u −U |r+1|ρ| dx ≤ C
(
‖ρ‖r+2

Lr+2(�) + ‖σ‖r+2
Lr+2(�) + ‖ε‖r+2

Lr+2(�)

)
. (35)

Recalling the assumption 0 ≤ r < 2, Hölder’s inequality with exponent p = 2/r , (and, thus,
q = 2/(2 − r),) we have

‖ρ‖r+2
Lr+2(�) =

∫

�

|ρ|r |ρ|2 dx ≤ ‖ρ‖rL2(�)‖ρ‖2L4/(2−r)(�)
≤ C‖ρ‖rL2(�)‖∇ρ‖2L2(�), (36)

using the Sobolev Imbedding Theorem ‖ρ‖L4/(2−r)(�) ≤ CS‖∇ρ‖L2(�), with 0 ≤ r < 2
for d = 2 and 0 ≤ r ≤ 4/3 for d = 3. Similarly, we have the same estimate (36), with ρ

replaced by σ and ε.
Now, the second term of (33) can be dealt with as follows

∫

�

(1 + |U |r )|u −U ||ρ| dx ≤
∫

�

(1 + |U |r ) (|ρ|2 + |σ ||ρ| + |ε||ρ|) dx

≤
∫

�

(1 + |U |r )(2|ρ|2 + 1

2
|σ |2 + 1

2
|ε|2) dx

≤
(
1 + ‖U‖rL∞(�)

) ∣
∣
∣
∣ρ‖2L2(�) + 1

2
‖σ‖2L2(�) + 1

2
‖ε‖2L2(�)

)

.

(37)

Combining the above estimates, we arrive at the required bound.
��

To retain the abstract and more compact notation from the previous section, we write (32)
as follows

( f (u) − f (U ), ρ)H ≤ Cnl

(
‖ρ‖rH‖ρ‖2V + G(U )‖ρ‖2H + ‖σ‖rH‖σ‖2V + ‖ε‖rH‖ε‖2V

+ G(U )
(‖σ‖2H + ‖ε‖2H

))
, for r ∈ [0, rmax],

(38)

for some known positive scalar function G and and constant Cnl and we assume its validity
henceforth for any suitable H and V for the given range of exponents r ∈ [0, rmax].

4.3 Continuation Argument

The bound of the nonlinear term (38) still contains norms of ρ on the right-hand side. To
eliminate these, we shall employ a continuation argument in the spirit of [8–10].
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To this end, assuming (38), or using Lemma 4.1, to bound the respective term on the
right-hand side of (30), we arrive at

‖ρ‖2L∞(0,t;H) + Ccoer

2

∫ t

0
‖ρ‖2V dτ ≤ E1(tn) + Cnl

∫ t

0
‖ρ‖rH‖ρ‖2V dτ

+ Cnl

∫ t

0
G(U )‖ρ‖2H dτ,

(39)

where

E1(t) ≡ E1(t,U , σ, ε) := 2C−1
coer

(
‖Dε̂‖2L2(0,t;V∗) + ‖Aσ‖2L2(0,t;V∗) + ‖ f (U ) − P	 f (U )‖2L2(0,t;V∗)

)

+ Cnl

∫ t

0

(
‖σ‖rH‖σ‖2V + ‖ε‖rH‖ε‖2V + G(U )

(‖σ‖2H + ‖ε‖2H
))

dτ.
(40)

Upon observing that

∫ t

0
‖ρ‖rH‖ρ‖2V dτ ≤ ‖ρ‖rL∞(0,t;H)

∫ t

0
‖ρ‖2V dτ

≤
(
‖ρ‖2L∞(0,t;H) +

∫ t

0
‖ρ‖2V dτ

)1+ r
2

≤ max{1, (2C−1
coer)

1+r/2}
(
‖ρ‖2L∞(0,t;H) + Ccoer

2

∫ t

0
‖ρ‖2V dτ

)1+ r
2
,

(41)

we deduce

‖ρ‖2L∞(0,t;H) + Ccoer

2

∫ t

0
‖ρ‖2V dτ ≤ E1(tn) + Cnl

∫ t

0
G(U )‖ρ‖2H dτ

+ C1

(
‖ρ‖2L∞(0,t;H) + Ccoer

2

∫ t

0
‖ρ‖2V dτ

)1+ r
2
,

(42)

for C1 := Cnl max{1, (2C−1
coer)

1+r/2}. For each n = 1, . . . , N , consider the interval

Jn :=
{
t ∈ [0, tn] : ‖ρ‖2L∞(0,t;H) + Ccoer

2

∫ t

0
‖ρ‖2V dτ ≤ 4E1(tn)F(tn,U )

}
,

where we set F(tn,U ) := exp
(
Cnl

∫ tn
0 G(U ) dt

)
, for brevity. We observe that Jn �= ∅ as

‖ρ‖2L∞(0,t;H)
+ Ccoer

2

∫ t
0 ‖ρ‖2V dτ is continuous with respect to t and that it is equal to zero

for t = 0, owing to the property ρ(0) = 0; also, Jn is closed.
Assuming, without loss of generality, that r > 0, (for, otherwise, f in (2) is globally

Lipschitz continuous and, thus, the a posteriori bounds follow by combining the results from
[28] along with a standard Grönwall inequality; see Corollary 4.11 below for details) we set
t� := max Jn > 0.

Suppose that tn > t�, i.e., tn /∈ Jn . Hence, E1(tn) ≥ E1(t�). Therefore, (42) with t = t�

yields

‖ρ‖2L∞(0,t�;H)
+ Ccoer

2

∫ t�

0
‖ρ‖2V dt ≤ E1(tn) + C1

(
4E1(tn)F(tn,U )

)1+ r
2

+ Cnl

∫ t�

0
G(U )‖ρ‖2H dt,

(43)
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and Grönwall inequality, thus, implies

‖ρ‖2L∞(0,t�;H)
+ Ccoer

2

∫ t�

0
‖ρ‖2V dt

≤ F(tn,U )
(
C1

(
4E1(tn)F(tn,U )

)1+ r
2 + E1(tn)

)
,

(44)

since F(tn,U ) ≥ F(t�,U ). Upon assuming that E1(tn) is such that

C1
(
4E1(tn)F(tn,U )

)1+ r
2 ≤ E1(tn), or E1(tn) ≤ C1

−2/r (4F(tn,U )
)− 2+r

r ,

the estimate (44) becomes

‖ρ‖2L∞(0,t�;H)
+ Ccoer

2

∫ t�

0
‖ρ‖2V dt ≤ 2E1(tn)F(tn,U ); (45)

this is a contradiction, as t� was assumed to be the maximum element of Jn . Hence, tn = t�

and, thus, we have already proven the following result.

Lemma 4.2 Assuming the validity of estimate (38), (or, in the special case of H = L2(�)

and V = H1
0 (�), assuming the hypotheses of Lemma 4.1,) the following conditional estimate

holds: provided that

E1(tn) ≤ C1
−2/r (4F(tn,U )

)− 2+r
r , (46)

with E1(tn) as in (40), we have the bound

‖ρ‖2L∞(0,tn;H) + Ccoer

2
‖ρ‖2L2(0,tn;V) ≤ 4F(tn,U )E1(tn). (47)

We observe that the condition (46) in the estimate above is computable, provided that E1(tn)
is computable. With this in mind, we shall bound the norms of σ and ε in E1 by computable
quantities below. Assuming that σ and ε are available, we note that all the remaining con-
stants involved in E1(tn) are either computable or estimable from above. For instance, the
Poincaré/Sobolev imbedding constants for which upper bounds are available for very general
spatial domains �; we refer to [47] and the references therein for explicit formulas and a
detailed discussion.

If E1(tn) is computable, then (47) becomes anaposteriori bound forρ. Triangle inequality,
then, would already yield an a posteriori bound for the error e. Of course, we expect that
E1(tn) decreases arbitrarily as the maximum timestep and spatial meshsize decay and/or
the order of the dG-timestepping increases. We note, finally, that such conditional estimates
are the “a posteriori equivalents” to the standard smallness assumptions on timestep and
meshsize appearing in a priori error bounds for finite elementmethods for nonlinear evolution
problems.

Remark 4.3 Crucially, there is no explicit CLF-type restriction in the statement of Lemma4.2,
despite this being concerned with an IMEX discretisation. Indeed, for unstable combinations
of timesteps and spatial meshsizes, the bound (47) remains valid, provided the condition (60)
is satisfied. It is, therefore, conceivable that (60) holds for CFL-unstable scenarios also; in
such cases, (47) will remain valid, resulting to arbitrarily large right-hand sides, c.f., also
[26].
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4.4 Estimating the Norms of� and of�

Proposition 4.4 (Bounds on norms of ε = Ũ − U ) Given Assumption 3.2, for t ∈ In,
n = 0, 1 . . . , N, we have the bound

‖ε‖S ≤ ηS,n := ES[U ,AnU + PnÛ
′ − Û ′], S ∈ {V,H}, (48)

and

‖Dε̂‖V∗ = ‖ε̂′‖V∗ ≤ ζV∗,n (49)

with

ζV∗,n := EV∗ [U ′,AnU
′ + PnÛ

′′ − Û ′′]
+ rn + 1

kn

(
EV∗ [U+

n−1,AnU
+
n−1 + (PnÛ

′ − Û ′)(t+n−1)]

+ EV∗ [U−
n−1,An−1U

−
n−1 + (PnÛ

′ − Û ′)(t−n−1)]
)
.

Proof The first estimate is obvious from Assumption 3.2.
For the second, we work as follows. The definition of time reconstruction (16) implies

ε̂′ = Ũ ′ −U ′ + Ln([Ũ −U ]n−1).

Now, observing the identity,

a(Ũ ′, v) = (AnU
′ + PnÛ

′′ − Û ′′, v)H, (50)

which is valid for all v ∈ V , we have the Galerkin orthogonality property

a(Ũ ′, V ) = a(U ′, V ) for all V ∈ Vn . (51)

Thus, we can estimate Ũ ′ −U ′ using Assumption (3.2) to deduce

‖Ũ ′ −U ′‖V∗ ≤ EV∗ [U ′,AnU
′ + PnÛ

′′ − Û ′′].
Next, working as in Remark 3.3, we have

Ln([Ũ −U ]n−1) = κn(t)[Ũ −U ]n−1 = κn(t)(Ũ −U )+n−1 − κn(t)(Ũ −U )−n−1.

The result already follows by resorting once more to Assumption 3.2. ��
Proposition 4.5 (Bounds on norms of σ := w − Ũ ) Given Assumption 3.2, for each In, n =
0, 1 . . . , N, we have the bounds

‖σ‖L2(In;S) ≤ KnθS,n,

where

θS,n := ‖[U ]n−1‖S + ES

[
P̃�
n [U ]n−1,AnU

+
n−1

−An−1U
−
n−1+PnÛ

′(t+n−1) − Û ′(t+n−1) − Pn−1Û
′(t−n−1) − Û ′(t−n−1)

]
,

for S ∈ {H,V}, and
‖σ‖L∞(In;H) ≤ θH,n .
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Proof From Proposition 3.1, we have

‖σ‖2L2(In;V) = ‖Û − Ũ‖2L2(In;V) = C2
n‖[Ũ ]n−1‖2V . (52)

Triangle inequality implies ‖[Ũ ]n−1‖V ≤ ‖[ε]n−1‖V + ‖[U ]n−1‖V . To estimate ‖[ε]n−1‖V
we work completely analogously to the proof of Proposition 4.4: we observe the Galerkin
orthogonality

a([Ũ ]n−1, V ) = a([U ]n−1, V ) for all V ∈ V�
n ,

which, together with Assumption 3.2 give rise to the estimate

‖[ε]n−1‖V ≤ EV [P̃�
n [U ]n−1,AnU

+
n−1 − An−1U

−
n−1].

From (18) in Proposition 3.1, we also have

‖σ‖L∞(In;H) = ‖[Ũ ]n−1‖H ≤ ‖[ε]n−1‖H + ‖[U ]n−1‖H,

which, working as above, gives the second estimate. ��
For an alternative bound, we refer to [28, Lemma 4.4].

Remark 4.6 If no mesh modification takes place, i.e., when Vn−1 = Vn , the above estimates
simplify considerably, since we then have

θS,n = ‖[U ]n−1‖S+ES[[U ]n−1,An[U ]n−1].
It is possible to avoid invoking to known a posteriori error bounds for elliptic problems

as per Assumption 3.2 for the estimation of norms of σ . Instead, we can prove directly
alternative bounds upon assuming the existence of standard (possibly rough) approximation
(e.g., Clément, Scott-Zhang or standard interpolation estimates, depending on the choice of
H,V ,) or smoothness estimates (necessary for a duality argument) for lower order norms.
Crucially, the estimates below do not require the computation of P̃�

n .

Proposition 4.7 (Direct bounds on norms of σ = w − Ũ ) Let t ∈ In, n = 0, 1 . . . , N, and
assume that for every v ∈ V , there exists an approximant V ∈ V�

n , such that ‖h−s
V�
n
(v −

V )‖H ≤ Cap‖v‖V , for some s > 0 with hV�
n
a (smooth enough) positive scalar function

representing the local spatial mesh-size of the approximation space V�
n . Then, we have the

estimates

‖Aσ‖2L2(In;V∗) ≤ Ccont‖σ‖2L2(In;V) ≤ CcontK
2
n θ̃2V,n, (53)

with

θ̃V,n := C−2
coer

(
Cap‖hsV�

n
(AnU

+
n−1 − An−1U

−
n−1)‖H + Ccont‖[U ]n−1‖V

+ Cap‖hsV�
n

(
(PnU

−
n−1 −U−

n−1 − κ(t−n−1)(Pn−1U
−
n−2 −U−

n−2)
)‖H

)
.

Let further a subspace of Ṽ of V so that Az ∈ H for z ∈ Ṽ and such that it contains
V�
n . Assume the existence of z ∈ Ṽ , so that z is the solution to the problem a(w, z) =

([Ũ−U ]n−1, w) for allw ∈ V and that ‖z‖Ṽ ≤ Csm‖[Ũ−U ]n−1‖H. Moreover, assume that

for every v ∈ V , there exists an approximant V ∈ V�
n , such that ‖h−s̃

V�
n
(v−V )‖H ≤ C̃ap‖v‖Ṽ ,

for some s̃ > 0. Then, for p ∈ {2,∞}, we have the estimate
‖σ‖2L p(In;H) ≤ K 2/p

n θ̃2H,n, (54)
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with

θ̃H,n := ‖[U ]n−1‖H + C̃apCsm‖hs̃V�
n

(
[(A − A)U ]n−1

+PnU
−
n−1 −U−

n−1 − κ(t−n−1)(Pn−1U
−
n−2 −U−

n−2)
)
‖H.

Proof We observe

a([Ũ ]n−1, V ) = a([U ]n−1, V ) = (AnU
+
n−1 − An−1U

−
n−1, V ) for all V ∈ V�

n , (55)

since both ((PnÛ ′ − Û ′)(t+n−1), V ) = 0 and ((Pn−1Û ′ − Û ′)(t−n−1), V ) = 0 for all V ∈ V�
n .

Also, we have

a([Ũ ]n−1, v) = (AnU
+
n−1 − An−1U

−
n−1 + PnÛ

′(t+n−1) − Û ′(t+n−1)

− Pn−1Û
′(t−n−1) − Û ′(t−n−1), v)H

= (AnU
+
n−1 − An−1U

−
n−1

+ PnU
−
n−1 −U−

n−1 − κ(t−n−1)(Pn−1U
−
n−2 −U−

n−2), v)H
= (AnU

+
n−1 − An−1U

−
n−1, v)H + (PnU

−
n−1

−U−
n−1 − κ(t−n−1)(Pn−1U

−
n−2 −U−

n−2), v − V )H,

for any V ∈ V�
n , upon observing that PnÛ ′(t+n−1) − Û ′(t+n−1) = Pn[U ]n−1 − [U ]n−1 and

Pn−1Û ′(t−n−1) − Û ′(t−n−1) = κ(t−n−1)(Pn−1[U ]n−2 − [U ]n−2), and using the simultaneous
orthogonality of the L2-projection errors against V�

n , respectively. Thus, we conclude the
identity

a([Ũ ]n−1, v) = (AnU
+
n−1 − An−1U

−
n−1, v − V )H + a([U ]n−1, V )

+ (PnU
−
n−1 −U−

n−1 − κ(t−n−1)(Pn−1U
−
n−2 −U−

n−2), v − V )H.
(56)

for any v ∈ V and V ∈ V�
n , by invoking to (55).

Upon observing the (trivial) inequalities Ccoer‖w‖V ≤ ‖Aw‖V∗ ≤ Ccont‖w‖V , for all
w ∈ V , and using Proposition 3.1, we deduce

‖Aσ‖2L2(In;V∗) ≤ Ccont‖σ‖2L2(In;V) = CcontK
2
n‖[Ũ ]n−1‖2V . (57)

Selecting now v = [Ũ ]n−1, in (56), and using the coercivity of a along with standard
arguments, we deduce

Ccoer‖[Ũ ]n−1‖2V ≤ ‖hsV�
n
(AnU

+
n−1

− An−1U
−
n−1)‖H‖h−s

V�
n
(v − V )‖H + Ccont‖[U ]n−1‖V‖[Ũ ]n−1‖V

+ ‖hsV�
n

(
(PnU

−
n−1 −U−

n−1

− κ(t−n−1)(Pn−1U
−
n−2 −U−

n−2)
)‖H‖h−s

V�
n
(v − V )‖H,

from which (53) already follows.
We continue by proving an upper bound for ‖σ‖L p(In;H), for p = {2,∞}. Proposition 3.1

implies

‖σ‖L p(In;H) = K 1/p
n ‖[Ũ ]n−1‖H.
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Employing now the dual problem as per the statement, we have from (56)

‖[Ũ −U ]n−1‖2H = a([Ũ −U ]n−1, z)

= (AnU
+
n−1 − An−1U

−
n−1, z − V )H + a([U ]n−1, V − z)

+ (PnU
−
n−1 −U−

n−1 − κ(t−n−1)(Pn−1U
−
n−2 −U−

n−2), z − V )H
= ([(A − A)U ]n−1 + PnU

−
n−1 −U−

n−1

− κ(t−n−1)(Pn−1U
−
n−2 −U−

n−2), z − V )H, (58)

with A|In := An , n = 1, . . . , N . The result already follows upon invoking to the approxi-
mation and smoothness estimates postulated in the statement:

‖h−s̃
V�
n
(z − V )‖H ≤ C̃ap‖z‖Ṽ ≤ C̃apCsm‖[Ũ −U ]n−1‖H,

and by the triangle inequality ‖[Ũ ]n−1‖H ≤ ‖[Ũ −U ]n−1‖H. + ‖[U ]n−1‖H. ��
The constants appearing in the bounds in Propositions 4.4 and 4.5 (or 4.7) are standard

in the a posteriori error analysis literature, and depend typically on the shape-regularity of
each mesh and on the spatial geometry. It is possible to estimate these constants from above
in typical settings, e.g., when V ≡ H1

0 (�) andH ≡ L2(�) or V ≡ H2
0 (�) andH ≡ L2(�).

We refer, e.g., to [13,14,47] for some results in this direction.
Using Propositions 4.4 and 4.5 we can bound the term E1(tn) given in (40) by E1(tn,U )

defined as

E1(tn,U ) := 2C−1
coer

( ∫ tn

0

(
ζ 2
V∗ + CcontK

2θ2V
)
dτ + ‖ f (U ) − P	 f (U )‖2L2(0,tn;V∗)

)

+ Cnl

n∑

m=1

(
K 2
mθrH,mθ2V,m + max

t∈Im
ηrH,m(t)η2V,m

+ max
t∈Im

G(U (t))
(
K 2
mθ2H,m +

∫

Im
η2H,m dτ

))
.

(59)

with K |In := Kn , ζS |In := ζS,n , and θS |In := θS,n , for n = 1, . . . , N and S ∈ {H,V,V∗}.
We can also use instead the direct bounds on norm of σ from Proposition 4.7, by replacing
θS by θ̃S .

Remark 4.8 We note that an alternative and somewhat simpler a posteriori error analysis for
the L2(V)-norm error only is possible by modifying the space-time reconstruction discussed
above, by considering simply the time-reconstruction for the time-derivative and the elliptic
reconstruction for the spatial terms. This would result to simpler bounds for the L2(V)-norm
and avoids completely the need to introduce the �-projections. The details can be found in
[28]. Crucially, however, this approachwould lead to suboptimal bounds in the L∞(H)-norm.
Thus, we have opted for not presenting this additional error analysis here for L∞(H)-norm
error is typically a quantity of practical interest in this context of semilinear PDEs with
non-Lipschitz growth.

We are now in a position to finalise the a posteriori error analysis.

4.5 Completing the a Posteriori Error Bounds

We are now ready to complete the a posteriori error analysis.
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Theorem 4.9 (L∞(I;H)-norm estimate) Assuming the validity of estimate (38), (or, in the
special case of H = L2(�) and V = H1

0 (�), assuming the hypotheses of Lemma 4.1,) the
following conditional estimate holds: provided that

E1(tn,U ) ≤ C1
−2/r (4F(tn,U )

)− 2+r
r , (60)

for n = 1, . . . , N, with E1(tn,U ) given in (59), we have the a posteriori error bound

‖u −U‖L∞(0,tn;H) ≤ 2
(
F(tn,U )E1(tn,U )

)1/2 + max
i=1,...,n

θH,i + max
t∈[0,tn ]

ηH,n . (61)

Proof We begin by observing that the proof and the statement of Lemma 4.2 holds with
E1(tn,U , σ, ε) replaced by E1(tn,U ). Then, triangle inequality implies

‖e‖L∞(0,tn;H) ≤ 2
(
F(tn,U )E1(tn,U )

)1/2 + ‖σ‖L∞(0,tn;H) + ‖ε‖L∞(0,tn;H).

Propositions 4.4 and 4.5 now already imply the result. ��
Similarly, we have an a posteriori bound in the L2(I;V)-norm.

Theorem 4.10 (L2(I;V)-norm estimate) Assuming the validity of estimate (38), (or, in the
special case of H = L2(�) and V = H1

0 (�), assuming the hypotheses of Lemma 4.1,) the
following conditional estimate holds: provided that (60) holds for n = 1, . . . , N, we have
the a posteriori error bound

‖u −U‖2L2(0,tn;V) ≤ 6

Ccoer

(
4F(tn,U )E1(tn,U ) +

N∑

n=1

(
K 2
n θ2V,n +

∫

In

η2V,n dt
))

, (62)

with E1(tn,U ) given in (59).

Proof The proof follows, again, by triangle inequality, Lemma 4.2 and Propositions 4.4
and 4.5 (or 4.7). ��

Wenow briefly discuss the practical relevance and applicability of the derived conditional-
type a posteriori error estimates. As noted above the constants involved in the condition (60)
are either available or estimable from above. This renders the numerical verification of (60)
practical. A second question is the realisability of the condition (60) within a space-time
adaptive algorithm. Assuming that the algorithm is able to modify the local time-stepping,
(60) will be satisfied if the norms involved in E1(tn) are shown to simply converge to zero
upon spatial and/or temporal refinement. A simple inspection of the terms involved shows
that this is, indeed, the case upon additional regularity assumptions on the exact solution and
on f ; we refer to [23,44] for such a priori error bounds.

The algorithmic details on how one can implement such conditional estimates within
adaptive algorithms is a rich subject in itself and will not be covered here. For instance,
for nonlinearities with sufficiently strong growth, it may be necessary to restart the adaptive
algorithm with smaller space and time discetisation resolutions for the condition to be sat-
isfied. We refer to [10,12], where a number of such algorithms using conditional estimates
and related challenges in their design are presented and discussed in detail.

Finally, we provide the respective result for the simpler case of a globally Lipschitz
nonlinearity, i.e., when r = 0, for completeness. Note that in this case, no smallness condition
is required. The proof follows by inspection of the arguments presented above for r = 0,
upon noting that, in this case, we can simply take C1 = 0 in (42).
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Corollary 4.11 (Case r = 0) Assuming the validity of estimate (38), for r = 0, we have the
a posteriori error bounds

‖u −U‖L∞(0,tn;H) ≤ 2
(
F(tn,U )E1(tn,U )

)1/2 + max
i=1,...,n

θH,i + max
t∈[0,tn ]

ηH,n,

and

‖u −U‖2L2(0,tn;V) ≤ 6

Ccoer

(
4F(tn,U )E1(tn,U ) +

N∑

n=1

(
K 2
n θ2V,n +

∫

In

η2V,n dt
))

.

5 Numerical Experiments

We present a series of numerical experiments aimed at testing the reliability and efficiency
of the a posteriori error bounds derived above. The numerical implementation is based on
the deal.II finite element library [7] and the tests run in the high performance computing
facility ALICE at the University of Leicester.

In the examples below we consider both linear and semilinear parabolic problems. In all
cases, A = �, i.e., the Dirichlet Laplacian, yielding the heat equation with either linear or
nonlinear source terms and H = L2(�), V = H1

0 (�), giving H∗ = H−1(�).
We study the asymptotic behaviour in the L∞(L2)- and L2(H1)-norms of the error and

of the respective estimators by monitoring the evolution of the experimental order of con-
vergence (EOC) over time on a sequence of uniformly refined space meshes indexed by the
mesh size h. In each instance, we fix a constant time step k as some power of h and we also
use fixed polynomial degrees in both space and time. The resulting errors and estimators
are plotted against the corresponding space mesh size h. The EOC of a given sequence of
positive quantities ai defined on a sequence of meshes of step size hi is defined by

EOC(a, i) = log(ai/ai−1)

log(hi/hi−1)
.

We report the EOC relative to the last computed quantities in all figures as an indication of
the asymptotic rate of convergence. We also report the respective effectivity indices, i.e., the
ratio between estimator and error for each instance. The estimator is deemed reliable if the
effectivity is greater than or equal to one and it is most efficient when the effectivity is close
to one.

5.1 Example 1: A Linear Problem

We test the IMEX fully discrete scheme analysed in this work on (2) with I ×� := [0, 1]×
[0, 1]2, f independent of the exact solution u and initial and boundary conditions such that
the exact solution is given by

u(t, x, y) = sin(π t) sin(πx) sin(π y). (63)

The respective a posteriori error bounds when the PDE is linear are given in Corollary 4.11.
We report the results of two tests using different combinations of polynomial orders q and

p in time and space, respectively, denoted as dG(q)–cG(p) scheme.
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Fig. 1 Example 1A. Convergence history for the dG(1)–cG(2) scheme with k = h (left) and k = h3/2 (right)

5.1.1 Example 1A: dG(1)–cG(2) Scheme

Here, we employ quasiuniform biquadratic elements in space (p = 2) and uniform linear
elements in time (q = 1), i.e., the dG(1)–cG(2) scheme. Figure 1 shows the convergence
historywith k = h (left plot) andwith k = h3/2 (right plot) for both the L∞(L2)- and L2(H1)-
norms. In the case k = h, we observe that the L2(H1) estimator provide the required order
of convergence as EOC ≈ 2, in close agreement with the corresponding error; the effectivity
is in between 2.90 and 8.93. Also the L∞(L2) estimator yields the correct rate as EOC ≈ 3,
with effectivity between 47.41 and 63.41.

For the case k = h3/2, we again observe the expected order of convergence of the L2(H1)-
norm error and estimator, while for the L∞(L2)-norm we have an EOC of 4.64 and 4.72,
respectively, corresponding to the convergence rate expected in time, thus indicating that the
time discretisation error dominates in this case. The effectivity is approximately 5.28 and
7.16 for the L2(H1)- and L∞(L2)-norm estimators, respectively.

5.1.2 Example 1B: dG(2)–cG(2) Scheme

Here, we consider two different timestep and space meshsize relationships k = h and k =
h4/3, respectively, for quasiuniform biquadratic elements in space (p = 2) and uniform
quadratic elements in time (q = 2).

The numerical results corresponding to k = h are shown in the left plot of Fig. 2. We
observe that our error estimators provide the expected order of convergence in both the
L2(H1)- and L∞(L2)-norms.

The results obtained with the choice k = h4/3 are reported on the right plot of Fig. 2.
Again we observe an optimal experimental order of convergence as EOC ≈ 2 for both the
L2(H1)-norm estimator and error. The respective experimental order of convergence of the
L∞(L2)-norm estimator and error are EOC ≈ 4, corresponding to the optimal convergence
rate with respect to the timestep size. In both cases, the estimators’ effectivities show little
differences with the corresponding values obtained in Example 1A and are, therefore omitted
for brevity.

123



Journal of Scientific Computing (2020) 82 :26 Page 21 of 24 26

10-2 10-1
10-10

10-8

10-6

10-4

10-2

100

E
rr

o
r 

N
o

rm
s

dG(2)-cG(2)

L (L
2
)-error,  EOC = 3.38

L (L
2
)-estim, EOC = 3.26

L
2
(H1)-error,  EOC = 1.99

L
2
(H1)-estim, EOC = 2.11

10-2 10-1
10-10

10-8

10-6

10-4

10-2

100

E
rr

o
r 

N
o

rm
s

dG(2)-cG(2)

L (L
2
)-error,  EOC = 4.18

L (L
2
)-estim, EOC = 4.06

L
2
(H1)-error,  EOC = 1.99

L
2
(H1)-estim, EOC = 2.02

Fig. 2 Example 1B. Convergence history for the dG(1)–cG(2) scheme with k = h (left) and k = h4/3 (right)

5.2 Example 2: A Nonlinear Problem

On I × � := [0, 1] × [0, 1]2 we consider the semilinear problem (2) with f = −u2 +
f̃ (x, y, t), with f̃ such that the exact solution is given by

u(t, x, y) = sin(π t) sin(πx) sin(π y); (64)

note that we have r = 1 in this case. We test the respective a posteriori error bounds from
Theorems 4.9 and 4.10. We test the dG(1)–cG(2) scheme, by considering the two choices
k = h and k = h3/2 with corresponding numerical results in the left and right plots of Fig. 3,
respectively.

This results are in line with those of the linear example above. In particular, for k = h
we again observe good agreement between the estimators and the corresponding errors, with
EOC ≈ 2 and EOC ≈ 3 for the L2(H1)- and L∞(L2)- quantities, respectively. The results
corresponding to k = h4/3 are also confirming the theoretical asymptotic rate of convergence.
For the L2(H1)-norm estimator and error we have EOC ≈ 2 and, similarly to the linear
problem considered earlier, for the L∞(L2)-norm estimator and error we have EOC ≈ 4.5.
The effectivity index was found to be between 1.07 and 12.18 in all computations.

6 Conclusions

A posteriori error bounds in the L∞(H)- and L2(V)-norms for the hp-version dG timestep-
ping scheme coupled with conforming finite elements in space for semilinear evolution
problems have been derived and tested numerically. The numerical experiments show that
the a posteriori error estimators are optimal, reliable, and efficient. An interesting aspect
of the a posteriori analysis concerning implicit–explicit time stepping methods, is that no a
priori CFL type conditions are required for the validity of the conditional a posteriori error
bounds. Hence, the a posteriori estimators remain reliable even for unstable combinations
of local spatial and temporal mesh sizes.
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Fig. 3 Example 2. Convergence history for the dG(1)–cG(2) scheme with k = h (left) and k = h4/3 (right)
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