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Neural-network architectures have been increasingly used to represent quantum many-body wave
functions. These networks require a large number of variational parameters and are challenging to
optimize using traditional methods, as gradient descent. Stochastic reconfiguration (SR) has been
effective with a limited number of parameters, but becomes impractical beyond a few thousand
parameters. Here, we leverage a simple linear algebra identity to show that SR can be employed even
in the deep learning scenario. We demonstrate the effectiveness of our method by optimizing a Deep
Transformer architecture with 3 × 105 parameters, achieving state-of-the-art ground-state energy in
the J1–J2 Heisenberg model at J2/J1 = 0.5 on the 10 × 10 square lattice, a challenging benchmark in
highly-frustrated magnetism. This work marks a significant step forward in the scalability and
efficiency of SR for neural-network quantum states, making them a promising method to investigate
unknown quantum phases of matter, where other methods struggle.

Deep learning has become crucial in many research fields, with neural
networks being the key to achieve impressive results.Well-known examples
include deep convolutional neural networks (CNNs) for image
recognition1,2 and Deep Transformers for language-related tasks3–5. The
success of deep networks comes from two ingredients: architectures with a
large number of parameters (often in the billions), which allow for great
flexibility, and training these networks on large amounts of data. However,
to successfully train these largemodels in practice, one needs to navigate the
complicated and highly non-convex landscape associated with this exten-
sive parameter space.

The most used methods rely on stochastic gradient descent (SGD),
where the gradient of the loss function is estimated froma randomly selected
subset of the training data. Over the years, variations of traditional SGD,
such as Adam6 or AdamW7, have proven highly effective, leading to more
accurate results. In the late 1990s, Amari et al.8,9 suggested to use the
knowledge of the geometric structure of the parameter space to adjust the
gradient direction for non-convex landscapes, defining the concept of
natural gradients. In the same years, Sorella10,11 proposed a similar method,
now known as stochastic reconfiguration (SR), to enhance the optimization
of variational functions in quantum many-body systems. Importantly, this
latter approach typically outperforms othermethods such as SGDorAdam,
leading to significantly lower variational energies. The main idea of SR is to
exploit information about the curvature of the loss landscape, thus

improving the convergence speed in landscapes which are steep in some
directions and shallow in others12. For physically inspired wave functions
(e.g., Jastrow-Slater13 or Gutzwiller-projected states14) the original SR for-
mulation is a highly efficient method since there are few variational para-
meters, typically from O(10) to O(102).

Over the past few years, neural networks have been extensively used as
powerful variationalAnsätze for studying interacting spinmodels15, and the
number of parameters has increased significantly. Starting with simple
restricted Boltzmann machines (RBMs)15–20, more complicated archi-
tectures as CNNs21–23 and recurrent neural networks24–27 have been intro-
duced to handle challenging systems. In particular, Deep CNNs28–31 have
proven to be highly accurate for two-dimensional models, outdoing
methods as density-matrix renormalization group (DMRG) approaches32

and Gutzwiller-projected states14. These deep learning models have great
performances when the number of parameters is large. However, a sig-
nificant bottleneck ariseswhen employing the original formulation of SR for
optimization, as it is based on the inversion of amatrix of sizeP × P, whereP
denotes the number of parameters. Consequently, this approach becomes
computationally infeasible as the parameter count exceedsO(104), primarily
due to the constraints imposed by the limited memory capacity of current-
generation GPUs.

Recently, Chen and Heyl30 made a step forward in the optimization
procedure by introducing an alternative method, dubbed MinSR, to train
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neural-network quantum states. MinSR does not require inverting the
originalP × Pmatrix but instead amuch smallerM ×M one, whereM is the
number of configurations used to estimate the SRmatrix. This is convenient
in the deep learning setup where P≫M. Most importantly, this procedure
avoids allocating theP × Pmatrix, reducing thememory cost. However, this
formulation is obtainedbyminimizing the Fubini-Studydistancewith an ad
hoc constraint. In thiswork,wefirst use a simple relation from linear algebra
to show, in a transparent way, that SR can be rewritten exactly in a form
which involves inverting a small M ×M matrix (in the case of real-valued
wave functions and a 2M × 2M matrix for complex-valued ones) and that
only a standard regularization of the SRmatrix is required. Then, we exploit
our technique to optimize a Deep Vision Transformer (Deep ViT) model,
which has demonstrated exceptional accuracy in describing quantum spin
systems in one and two spatial dimensions33–36. Using almost 3 × 105 var-
iational parameters, we are able to achieve state-of-the-art ground-state
energy in the most paradigmatic example of quantum many-body spin
model, the J1–J2 Heisenberg model on square lattice:

Ĥ ¼ J1
X
hi;ji

Ŝi � Ŝj þ J2
X
hhi;jii

Ŝi � Ŝj ð1Þ

where Ŝi ¼ ðSxi ; Syi ; Szi Þ is the S = 1/2 spin operator at site i and J1 and J2 are
nearest- and next-nearest-neighbour antiferromagnetic couplings, respec-
tively. Its ground-state properties have been the subject ofmany studies over
the years, often with conflicting results14,32,37. In particular, several works
focused on the highly frustrated regime, which turns out to be challenging
for numerical methods14,16,21–23,28–32,37–42 and for this reason it is widely
recognized as the benchmark model for validating new approaches. Here,
we will focus on the particularly challenging case with J2/J1 = 0.5 on the
10 × 10 cluster, where the exact solution is not known.

Within variational methods, one of the main difficulties comes from
the fact that the sign structure of the ground state is not known for J2/J1 > 0.
Indeed, theMarshall sign rule43 gives the correct signs (for every cluster size)
only when J2 = 0. However, in order to stabilize the optimizations, many
previous works imposed the Marshall sign rule as a first approximation for
the sign structure (see Marshall prior in Table 1). By contrast, within the
present approach, we do not need to use any prior knowledge of the signs,
thus defining a very general and flexible variational Ansatz.

In the following, we first show the alternative SR formulation, then
discuss the Deep Transformer architecture, recently introduced by some

of us33,34 as a variational state, and finally present the results obtained by
combining the two techniques on the J1–J2 Heisenberg model.

Results
Stochastic reconfiguration
Finding the ground state of a quantum systemwith the variational principle
involves minimizing the variational energy Eθ ¼ hΨθjĤjΨθi=hΨθjΨθi,
where ∣Ψθ

�
is a variational state parametrized through a vector θ of P real

parameters; in case of complex parameters, we can treat their real and
imaginary parts separately44. For a system of N 1/2-spins, ∣Ψθ

�
can be

expanded in the computational basis ∣Ψθ

� ¼P
fσgΨθðσÞ∣σi, where

Ψθ(σ) = 〈σ∣Ψθ〉 is a map from spin configurations of the Hilbert space,
f∣σi ¼ ∣σz1; σz2; � � � ; σzN

�
; σzi ¼ ± 1g, to complex numbers. In a gradient-

based optimization approach, the fundamental ingredient is the evaluation
of the gradient of the loss, which in this case is the variational energy, with
respect to the parameters θα for α = 1,…, P. This gradient can be expressed
as a correlation function44

Fα ¼ �
∂Eθ

∂θα
¼ �2< hðĤ � hĤiÞðÔα � hÔαiÞi

� �
; ð2Þ

which involves the diagonal operator Ôα defined as Oα(σ) = ∂Log[Ψθ(σ)]/
∂θα. The expectation values 〈…〉 are computed with respect to the varia-
tional state. The SRupdates10,20,44 are constructed according to the geometric
structure of the landscape:

δθ ¼ τ Sþ λIP
� ��1

F ; ð3Þ

where τ is the learning rate and λ is a regularization parameter to ensure the
invertibility of the Smatrix. Thematrix S has shape P × P and it is defined in
terms of the Ôα operators

44

Sα;β ¼ < hðÔα � hÔαiÞ
yðÔβ � hÔβiÞi

h i
: ð4Þ

Eq. (3) defines the standard formulation of the SR, which involves the
inversion of a P × Pmatrix, being the bottleneck of this approach when the
number of parameters is larger than O(104). To address this problem, we
start reformulating Eq. (3) in a more convenient way. For a given sample of
M spin configurations {σi} (sampled according to ∣Ψθ(σ)∣2), the stochastic

Table 1 | Ground-state energy on the 10 × 10 square lattice at J2/J1 = 0.5

Energy per site Wave function # parameters Marshall prior Reference Year

−0.48941(1) MLP 893994 Not available 42 2023

−0.494757(12) CNN Not available No 23 2020

−0.4947359(1) Shallow CNN 11009 Not available 22 2018

−0.49516(1) Deep CNN 7676 Yes 21 2019

−0.495502(1) PEPS+Deep CNN 3531 No 41 2021

−0.495530 DMRG 8192 SU(2) states No 32 2014

−0.495627(6) aCNN 6538 Yes 40 2023

−0.49575(3) RBM-fermionic 2000 Yes 16 2019

−0.49586(4) CNN 10952 Yes 39 2023

−0.4968(4) RBM (p = 1) Not available Yes 38 2022

−0.49717(1) Deep CNN 106529 Yes 29 2022

−0.497437(7) GCNN 67548 No 28 2023

−0.497468(1) Deep CNN 421953 Yes 31 2022

−0.4975490(2) VMC (p = 2) 5 Yes 14 2013

−0.497627(1) Deep CNN 146320 Yes 30 2023

−0.497629(1) RBM+ PP 13132 Yes 37 2021

−0.497634(1) Deep ViT 267720 No Present work 2023
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estimate of Fα can be obtained as:

�Fα ¼ �<
2
M

XM
i¼1
½ELi � �EL��½Oαi � �Oα�

" #
: ð5Þ

Here, ELi ¼ hσ ijĤjΨθi=hσ ijΨθi defines the local energy for the config-
uration ∣σi

�
andOαi =Oα(σi); in addition, �EL and �Oα denote sample means.

Throughout this work, we adopt the convention of using latin and greek
indices to run over configurations and parameters, respectively. Equiva-
lently, Eq. (4) can be stochastically estimated as

�Sα;β ¼ <
1
M

XM
i¼1

Oαi � �Oα

� ��
Oβi � �Oβ

h i" #
: ð6Þ

To simplify further, we introduce Yαi ¼ ðOαi � �OαÞ=
ffiffiffiffiffi
M
p

and
εi ¼ �2½ELi � �EL��=

ffiffiffiffiffi
M
p

, allowing us to express Eq. (5) inmatrix notation
as �F ¼ <½Yε� and Eq. (4) as �S ¼ <½YYy�. Writing Y =YR+ iYI we obtain:

�S ¼ YRY
T
R þ YIY

T
I ¼ XXT ð7Þ

where X ¼ Concat ðYR;YIÞ 2 RP × 2M , the concatenation being along the
last axis. Furthermore, using ε = εR+ iεI, the gradient of the energy can be
recast as

�F ¼ YRεR � YIεI ¼ Xf ; ð8Þ

with f ¼ Concat ðεR;�εIÞ 2 R2M . Then, the update of the parameters in
Eq. (3) can be written as

δθ ¼ τðXXT þ λIPÞ
�1
Xf : ð9Þ

This reformulationof theSRupdates isacrucial step,whichallows theuseof the
well-known push-through identity ðABþ λInÞ�1A ¼ AðBAþ λImÞ�145,46,
whereA andB are respectivelymatriceswith dimensionsn×m andm× n (see
“Methods” for a derivation). As a result, Eq. (9) can be rewritten as

δθ ¼ τXðXTX þ λI2MÞ
�1
f : ð10Þ

This derivation is our first result: it shows, in a simple and transparent way,
how to exactly perform the SRwith the inversion of a 2M × 2Mmatrix and,
therefore, without allocating a P × P matrix. We emphasize that the last
formulation is very useful in the typical deep learning setup, where P≫M.
Employing Eq. (10) instead of Eq. (9) proves to bemore efficient in terms of
both computational complexity and memory usage. The required opera-
tions for this new formulation are O(M2P)+O(M3) instead of O(P3), and
thememory usage is onlyO(MP) instead ofO(P2). For deepneural networks
withnl layers thememoryusage canbe further reduced roughly toO(MP/nl)
(see ref. 47).We developed amemory-efficient implementation of SR that is
optimized for deployment onamulti-nodeGPUcluster, ensuring scalability
and practicality for real-world applications (see “Methods”). Other
methods, based on iterative solvers, require O(nMP) operations, where n
is the number of steps needed to solve the linear problem in Eq. (3).
However, this number increases significantly for ill-conditioned matrices
(the matrix S has a number of zero eigenvalues equal to P−M), leading to
many non-parallelizable iteration steps and consequently higher computa-
tional costs48.Our proof also highlights that thediagonal-shift regularization
of the S matrix in parameter space [see Eq. (3)] is equivalent to the
same diagonal shift in sample space [see Eq. (10)]. Furthermore, it would
be interesting to explore the applicability of regularization schemes
with parameter-dependent diagonal shifts in the sample space28,49.
In contrast, for the MinSR update30, a pseudo-inverse regularization is
applied in order to truncate the effect of vanishing singular values
during inversion.

The variational wave function
The architecture of the variational state employed in this work is based on
the DeepViT introduced and described in detail in ref. 34. In the DeepViT,
the input configuration σ of shape L × L is initially split into b × b square
patches, which are then linearly projected in ad-dimensional vector space in
order to obtain an input sequence of L2/b2 vectors, i.e., ðx1; . . . ; xL2=b2 Þ with
xi 2 Rd . This sequence is then processed by an encoder block employing
Multi-Head Factored Attention (MHFA) mechanism33,50–52. This produces
another output sequence of vectors ðA1; . . . ;AL2=b2 Þ withAi 2 Rd and can
be formally implemented as follows:

Ai;p ¼
Xd
q¼1

Wp;q

XL2=b2
j¼1

αμðqÞi;j

Xd
r¼1

Vq;rxj;r ; ð11Þ

where μ(q) = ⌈q h/d⌉ select the correct attention weights of the corre-
sponding head, being h the total number of heads. The matrix V 2 Rd × d

linearly transforms each input vector identically and independently. Instead,
the attention matrices αμ 2 RL2=b2 × L2=b2 combine the different input vec-
tors and the linear transformationW 2 Rd × d mixes the representations of
the different heads.

Due to the global receptive field of the attention mechanism, its com-
putational complexity scalesquadraticallywithrespect to the lengthof the input
sequence. Note that in the standard dot product self-attention3, the attention
weightsαi,j are function of the inputs, while in the factored case employed here,
the attention weights are input-independent variational parameters. This
choice is the only custom modification that we employ with respect to the
standard Vision Transformer architecture53, which is also supported by
numerical simulations and analytical arguments suggesting that queries and
keys donot improve the performance in these problems52. Finally, the resulting
vectors Ai are processed by a two layers fully connected network (FFN) with
hidden size 2d and ReLu activation function. Skip connections and pre-layer
normalization are implemented as described in refs. 34,54. Generally, a total of
nl such blocks are stacked together to obtain a Deep Transformer. This
architecture operates on an input sequence, yielding another sequence of
vectors ðy1; . . . ; yL2=b2 Þ, where each yi 2 Rd . At the end, a complex-valued
fully connected output layer, with log½coshð�Þ� as activation function, is applied
to z=∑iyi to produce a single number Log[Ψθ(σ)] and predict both the
modulus and the phase of the input configuration (refer to Algorithm 1 in
“Methods” for a pseudocode of the neural-network architecture).

To enforce translational symmetry, we define the attention weights as
αμi;j ¼ αμi�j, thereby ensuring translational symmetry among patches. This

choice reduces the computational cost during the restoration of the full
translational symmetry through quantum number projection39,55. Specifically,
only a summation involving b2 terms is required. Under the specific
assumptionof translationally invariantattentionweights, the factoredattention
mechanism can be technically implemented as a convolutional layer with d
input channels, d output channels and a very specific choice of the convolu-

tional kernel: Kp;r;k ¼
Pd

q¼1Wp;qα
μðqÞ
k

Pd
r¼1Vq;r 2 Rd × d × L2=b2 . However,

it is well-established that weight sharing and low-rank factorizations in
learnable tensors within neural networks can lead to significantly different
learning dynamics and, consequently, different final solutions56–58. Other
symmetries of the Hamiltonian in Eq. (1) [rotations, reflections (C4v point
group) and spin parity] can also be restored within quantum number pro-
jection. As a result, the symmetrized wave function reads:

~ΨθðσÞ ¼
Xb2�1
i¼0

X7
j¼0

ΨθðTiRjσÞ þ Ψθð�TiRjσÞ
h i

: ð12Þ

In the last equation, Ti and Rj are the translation and the rotation/reflection
operators, respectively. Furthermore, due to the SU(2) spin symmetry of the
J1–J2 Heisenberg model, the total magnetization is also conserved and the
MonteCarlo sampling (see “Methods”) canbe limited in the Sz = 0 sector for
the ground-state search.
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Numerical calculations
Our objective is to approximate the ground state of the J1–J2 Heisenberg
model in the highly frustrated point J2/J1 = 0.5 on the 10 × 10 square lattice.
We use the formulation of the SR in Eq. (10) to optimize a variational wave
functionparametrized throughaDeepViT, as discussed above.The result in
Table 1 is achieved with the symmetrized Deep ViT in Eq. (12) using b = 2,
nl = 8 layers, embedding dimension d = 72, and h = 12 heads per layer. This
variational state has in total 267,720 real parameters (the complex-valued
parameters of the output layer are treated as couples of independent real-
valued parameters). Regarding the optimization protocol, we choose the
learning rate τ = 0.03 (with cosine decay annealing) and the number of
samples isfixed tobeM = 6000.Weemphasize that usingEq. (9) to optimize
this number of parameters would be infeasible on available GPUs: the
memory requirement would be more than O(103) gigabytes, one order of
magnitude bigger than the highest availablememory capacity. Instead, with
the formulation of Eq. (10), the memory requirement can be easily handled
by available GPUs (see “Methods”). The simulations took 4 days on twenty
A100 GPUs. Remarkably, as illustrated in Table 1, we are able to obtain the
state-of-the-art ground-state energy using an architecture solely based on
neural networks, without using any other regularization than the diagonal
shift reported in Eq. (10), fixed to λ = 10−4. We stress that a completely
unbiased simulation, without assuming any prior for the sign structure, is
performed, in contrast to other cases where theMarshall sign rule is used to
stabilize the optimization21,29–31,37 (see Table 1). Furthermore, we verified
with numerical simulations that the final results are not affected by the
Marshall prior. This is an important point since a simple sign prior is not
available for the majority of the models (e.g., the Heisenberg model on the
triangular or Kagome lattices). We would like also to mention that the
definition of a suitable architecture is fundamental to take advantage of
having a large number of parameters. Indeed, while a stable simulationwith
a simple regularization scheme (only definedby afinite valueofλ) is possible
within the Deep ViT wave function, other architectures require more
sophisticated regularizations. For example, to optimize Deep GCNNs it is
necessary to add a temperature-dependent term to the loss function28 or, for
Deep CNNs, a process of variance reduction and reweighting30 helps in
escaping local minima. We also point out that physically inspired wave
functions, as the Gutzwiller-projected states14, which give a remarkable
result with only a few parameters, are not always equally accurate in
other cases.

In Fig. 1we showa typicalDeepViToptimization on the 10 × 10 lattice
at J2/J1 = 0.5. First, we optimize the Transformer having translational
invariance among patches (blue curve). Then, starting from the previously
optimized parameters, we restore sequentially the full translational invar-
iance (green curve), rotational symmetry (orange curve) and lastly, reflec-
tions and spin parity symmetry (red curve). Whenever a new symmetry is
restored, the energy reliably decreases55. We stress that our optimization
process, which combines the SR formulation of Eq. (10) with a real-valued
Deep ViT followed by a complex-valued fully connected output layer34, is
highly stable and insensitive to the initial seed, ensuring consistent results
across multiple optimization runs.

Discussion
We have introduced a formulation of the SR that excels in scenarios where
the number of parameters (P) significantly outweighs the number of sam-
ples (M) used for stochastic estimations. Exploiting this approach, we
attained the state-of-the-art ground-state energy for the J1–J2 Heisenberg
model at J2/J1 = 0.5, on a 10 × 10 square lattice, optimizing a Deep ViT with
P = 267,720 parameters and using onlyM = 6000 samples. It is essential to
note that this achievement highlights the remarkable capability of deep
learning in performing exceptionally well even with a limited sample size
relative to the overall parameter count. This also challenges the common
belief that a large amount of Monte Carlo samples are required to find the
solution in the exponentially large Hilbert space and for precise SR
optimizations31.

Our results have important ramifications for investigating the physical
properties of challenging quantum many-body problems, where the use of
the SR is crucial to obtain accurate results. The use of large-scale neural-
network quantum states can open new opportunities in approximating
ground states of quantum spin Hamiltonians, where other methods fail.
Additionally, making minor modifications to the equations describing
parameter updates within the SR framework [see Eq. (10)] enables us to
describe the unitary time evolution of quantum many-body systems
according to the time-dependent variational principle44,59,60. Extending our
approach to address time-dependent problems stands as a promising ave-
nue for future works. Furthermore, this formulation of the SR can be a key
tool for obtaining accurate results also in quantum chemistry, especially for
systems that suffer from the sign problem61. Typically, in this case, the
standard strategy is to takeM > 10 × P44, whichmaybe unnecessary for deep
learning-based approaches.

Methods
Linear algebra identity
The key point of the method is the transformation from Eq. (9) to Eq. (10),
which uses the matrix identity

ðABþ λInÞ�1A ¼ AðBAþ λImÞ�1 ; ð13Þ

whereA and B are n ×m andm × nmatrices, respectively. This identity can
be proved starting from

Im ¼ ðBAþ λImÞðBAþ λImÞ�1 ; ð14Þ

then, multiplying from the left by A, we get

A ¼ AðBAþ λImÞðBAþ λImÞ�1 ; ð15Þ

and exploiting the fact that AIm ¼ InA, we obtain

A ¼ ðABþ λInÞAðBAþ λImÞ�1 : ð16Þ

At the end, multiplying from the left by ðABþ λInÞ�1, we recover Eq. (13).

Fig. 1 | Variational energy optimization.Optimization of the Deep ViT with patch
size b = 2, nl = 8 layers, embedding dimension d = 72 and h = 12 heads per layer, on
the J1–J2 Heisenberg model at J2/J1 = 0.5 on the 10 × 10 square lattice. The first 200
optimization steps are not shown for better readability. Inset: first and last 200
optimization steps when recovering sequentially the full translational (green curve),
rotational (orange curve), and reflections and parity (red curve) symmetries. The
total number of steps after restoring the symmetries is 5000 for translations, 5000 for
rotations, and 4000 for reflections and parity. The mean energy obtained without
quantum number projection is also reported for comparison (blue dashed line).
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The identity in Eq. (13) is also used in the kernel trick, which is at the
basis of kernel methods which have applications in many areas of machine
learning62, including many-body quantum systems63.

Distributed SR computation
The algorithm proposed in Eq. (10) can be efficiently distributed, both in
terms of computational operations andmemory, across multiple GPUs. To
illustrate this, we consider for simplicity the case of a real-valued wave
function, where X =YR≡ Y. Given a numberM of configurations, they can
be distributed across nG GPUs, facilitating parallel simulation of Markov
chains. In this way, on the gth GPU, the elements i∈ [gM/nG, (g+ 1)M/nG)
of the vector f are obtained, along with the columns i∈ [gM/nG, (g+ 1)
M/nG) of thematrixX, whichwe indicate usingX[:,g]. To efficiently applyEq.
(10), we employ the message passing interface (MPI) alltoall collective
operation to transpose X, yielding the sub-matrix X[g,:] on gth GPU. This
sub-matrix comprises the rows elements in [gP/nG, (g+ 1)P/nG) of the
original matrix X (see Fig. 2). Consequently, we can express:

XTX ¼
XnG�1
g¼0

XT
½g;:�X½g;:� : ð17Þ

The innerproducts canbe computed inparallel oneachGPU,while the
outer sum is performed using the MPI primitive reduce with the sum
operation. The master GPU performs the inversion, computes the vector
t ¼ ðXTX þ λI2MÞ�1f , and then scatters it across the other GPUs. Finally,
after transposing again the matrix X with the MPI alltoall operation, the
parameter update can be computed as follows:

δθ ¼ τ
XnG�1
g¼0

X½:;g�tg : ð18Þ

This procedure significantly reduces the memory requirement per GPU to
O(MP/nG), enabling the optimization of an arbitrary number of parameters
using the SR approach. In Fig. 3, we report the memory usage and the
computational time per optimization step.

Systematic energy improvement
Here, we discuss the impact of the number of samplesM and parameters P
on the variational energy of the ViT wave function, showing the results in
Fig. 4. In the right panel, we show the variational energy as a function of the
number of parameters for a fixed number of layers nl = 8, performing the
optimizations with M = 6000 samples. The number of parameters is

increased by enlarging the width of each layer. In particular, we take the
following architectures: (h = 10, d = 40), (h = 10, d = 60), (h = 12, d = 72),
and (h = 14, d = 140) with P = 85400, 187100, 267720, and 994,700 para-
meters, respectively. A similar analysis for a fixed width but varying the
number of layers is discussed in ref. 34. Instead, in the left panel, we fix an
architecture (h = 12, d = 72) with nl = 8 and increase the number of samples
M up to 104. Both analyses are performed without restoring the symmetries
by quantum number projection; for comparison, we report in the left panel
the energy obtained after restoring the symmetries [see Eq. (12)]. The latter
one coincideswith theViTwave functionused to obtain the energy reported
in Table 1. We point out that the energy curves depicted in Fig. 4 are
obtained fromunbiased simulations,without theutilizationofMarshall sign
prior. The final value of the energy, as well as the convergence to it, are
qualitatively similar regardless of its inclusion.

Details on the Transformer architecture
In this section, we provide a pseudocode (see Algorithm 1) describing the
steps for the implementation of the Vision Transformer architecture

Fig. 2 | Message passing interface (MPI) alltoall
operation. Graphical representation of MPI alltoall
operation to transpose the X matrix distributed
across multiple GPUs. For example, GPU:0 initially
contains sub-matricesA0,A1,A2,A3, while following
the transposition, GPU:0 contains sub-matrices A0,
B0, C0, D0.

Fig. 3 | Memory and time usage.Memory usage in gigabytes (a) and computational
time per optimization step in seconds (b) as a function of the number of GPUs. The
reported values are related to a ViT architecture with h = 12, d = 72, nl = 8, fully
symmetrized [see Eq. (12)] and optimized with M = 6000 samples.
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employed in this work and described in the “Results” section. In particular,
we emphasize that skip connections and layer normalization are imple-
mented as described in ref. 54.

Algorithm 1. Vision Transformer wave function
1: Input configuration σ∈ {−1, 1}L×L

2: Patch and Embed: X  ðx1; . . . xL2=b2 Þ 2 RL2=b2 × d

3: for i = 1, nl do
4: X  X þ MHFAðLayerNorm(X )Þ
5: X  X þ FFNðLayerNorm(X )Þ
6: end for
7: ðy1; . . . yL2=b2 Þ  LayerNorm ðX Þ
8: z  Pd

i¼1yi
9: Log ½ΨθðσÞ�  

Pd
α¼1gðbα þ wα � zÞ

Monte Carlo sampling
The expectation value of an operator Â on a given variational state ∣Ψθ

�
can

be computed as

hÂi ¼ hΨθjÂjΨθi
hΨθjΨθi

¼
X
fσg

PθðσÞALðσÞ ; ð19Þ

where Pθ(σ)∝ ∣Ψθ(σ)∣2 andALðσÞ ¼ hσjÂjΨθi=hσjΨθi is the so-called local
estimator of Â

ALðσÞ ¼
X
fσ0 g
hσjÂjσ 0iΨθðσ 0Þ

ΨθðσÞ
: ð20Þ

For any local operator (e.g., the Hamiltonian) the matrix hσjÂjσ 0i is sparse,
then the calculation of AL(σ) is at most polynomial in the number of spins.
Furthermore, if it is possible to efficiently generate a sample of configura-
tions {σ1, σ2, …, σM} from the distribution Pθ(σ) (e.g., by performing a
Markov chainMonteCarlo), thenEq. (19) can be used to obtain a stochastic
estimation of the expectation value

�A ¼ 1
M

XM
i¼1

ALðσ iÞ ; ð21Þ

where �A≈hÂi and the accuracy of the estimation is controlled by a statistical
error which scales as Oð1= ffiffiffiffiffi

M
p Þ.

Note added to the proof.During the revision process, we became aware
of an updated version of Ref. 30 where a variational energy per site of
-0.4976921(4) has been obtained.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The variational quantumMonte Carlo and the Deep ViT architecture were
implemented in JAX64. The parallel implementation of the stochastic
reconfiguration was implemented using mpi4jax65, and it is available on
NetKet48, under the name of VMC_SRt. The ViT architecture will be made
available from the authors upon reasonable request.
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