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Abstract. We study the lifetime of locally stable states in the Thirring model, which
describes a system of particles whose interactions are long-range. The model exhibits
first-order phase transitions in the canonical ensemble and, therefore, a free energy
barrier separates two free energy minima. The energy of the system diffuses as a result
of thermal fluctuations and we show that its dynamics can be described by means
of a Fokker-Planck equation. Considering an initial state where the energy takes the
value corresponding to one of the minima of the free energy, we can define the lifetime
of the initial state as the mean first-passage time for the system to reach the top of
the free energy barrier between the minima. We use an analytical formula for the
mean first-passage time which is based on the knowledge of the exact free energy of
the model, even at a finite number of particles. This formula shows that the lifetime
of locally stable states increases exponentially in the number of particles, which is a
typical feature of systems with long-range interactions. We also perform Monte Carlo
simulations in the canonical ensemble in order to obtain the probability distribution
of the first-passage time, which turns out to be exponential in time in a long time
limit. The numerically obtained mean first-passage time agrees with the theoretical
prediction. Combining theory and simulations, our work provides a new insight in the
study of metastability in many-body systems with long-range interactions.
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1. Introduction

The study of systems with long-range interactions attracted considerable interest in
recent years [1–5]. Their behavior in the framework of statistical mechanics both in
equilibrium and out-of-equilibrium has been carefully studied. In these systems, the
interaction between two particles slowly decays as r−α at large distances r, with α ≤ d,
d being the dimension of the embedding space. This makes the range of the interactions
comparable to the size of the system even if the size tends to infinity, introducing
interesting features that are absent when the interactions are short-range. Examples
of such systems include plasmas [6], two-dimensional flows [7–11], systems with wave-
particle interactions [12, 13], self-gravitating systems [14–19], long-range Hamiltonian
models [20,21] and simple spin models with mean-field interactions [22, 23].

A salient property of long-range interacting systems is that they are intrinsically
non-additive, leading to the possibility of ensemble inequivalence [15, 16, 19, 22, 24, 25]
and to the emergence of an additional term in the Gibbs-Duhem relation [26–29]. Their
dynamics also presents interesting features, since these systems may remain trapped
in long-lived quasi-stationary states [30–32] before evolving towards equilibrium, and
exhibit non-equilibrium phenomena such as anomalous relaxation and diffusion [33–37].
Interestingly, the relaxation timescale of non-equilibrium quasi-stationary states (which
are stable under Vlasov dynamics) increases algebraically with N , the number of
particles in the system [31, 38, 39]. The scaling of the relaxation time is not algebraic
in N , however, if the system is found initially in a metastable state corresponding to a
local minimum of the free energy, this being the situation that concerns us here.

By considering a Curie-Weiss Ising model in an external magnetic field, it was shown
in [40] that the relaxation time of a metastable state in the canonical ensemble scales
with the exponential of N , which was also verified theoretically and with numerical
simulations in the microcanonical ensemble for a model that describes the motion of
particles with all-to-all interactions in a two-dimensional bounded domain [41]. The
same scaling was obtained for self-gravitating systems in both the microcanonical and
canonical ensemble [42] by using an adaptation of the Kramers formula as well as in
the Keller-Segel model describing bacterial populations that undergo chemotaxis [43].
Since this relaxation time quantifies the lifetime of the metastable state, an important
consequence of the exponential scaling is that such states are robust and, therefore,
cannot be disregarded [42].

Here, we analyze the lifetime of locally stable states near a first-order phase
transition in the Thirring model [15], which is a simplified version of a self-gravitating
gas and a workable example to explore the different phenomena observed in systems
with long-range interactions [44–47]. We recall an analytical formula for the mean
first-passage time depending on the exact free energy of the model which is known
even for a finite number of particles. This formula makes clear that lifetime of locally
stable states, including metastable states, increases exponentially with the number of
particles. By performing Monte Carlo (MC) simulations in the canonical ensemble of
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the Thirring model close to the first-order phase transition, we compute the first-passage
time accounting for the time needed by the system to escape from a local minimum of
free energy and reach the top of the barrier separating the two phases. We not only
retrieve lifetimes of locally stable states increasing exponentially with N on average,
which are identified as the mean first-passage time in our simulations, but we also
sample individual first-passage times and find that their distribution is approximately
exponential in time in the long time limit.

In section 2 we outline the theoretical approach describing the first-passage time
problem in terms of energy diffusion, while in section 3 we define the model for which
this theoretical framework is applied. In section 4 we compare the theory with MC
simulations and, finally, in section 5 we present our conclusions.

2. Energy diffusion and lifetime of locally stable states

Near a first-order phase transition in the canonical ensemble, the free energy exhibits
two local minima which correspond to two locally stable states. To quantify the lifetime
of these states, in section 2.1 we first look for the Fokker-Planck equation describing
the evolution of the energy when the system is in contact with a thermal bath. From
here, in section 2.2 we obtain the mean first-passage time for the system to cross the
free energy barrier separating the two locally stable states, assuming that initially the
system is in one of these states.

2.1. Fokker-Planck equation for the energy

Consider a system with N particles of mass m enclosed in a volume V whose energy E

is given by the Hamiltonian

H =
N∑

i=1

p2
i

2m
+ W (x1, . . . , xN), (1)

where xi and pi are the position and momentum of the i-th particle, respectively,
i = 1, . . . N . Here W (x1, . . . , xN) is the potential energy of the system, which, in
particular, will be considered to arise from long-range interactions. Assuming that the
interaction potential is properly regularized at short distances and N is finite, there
exists a lower bound E∗ for the energy of the system such that E ≥ E∗. In addition,
the number of microstates with energy E ≥ H is

I(E) = 1
h3NN !

∫
d3Nx d3Np Θ(E − H), (2)

where h is a constant and Θ(x) is the step function, whereas the density of states with
energy E is obtained as

g(E) = dI(E)
dE

. (3)

As we will see, I(E) and g(E) are useful to define properties of the system in situations
out of equilibrium.
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Now consider the system in a bath with thermal noise at temperature T . The
equations of motion of the particles are given by

dxi

dt
= pi

m
, (4)

dpi

dt
= − ∂

∂xi

W (x1, . . . , xN) − ζ
pi

m
+ Fp(t), (5)

where ζ is the friction coefficient and Fp(t) is the stochastic force satisfying the
fluctuation-dissipation theorem

⟨Fp(t)Fp(t′)⟩ = 2ζkBTδ(t − t′), (6)
where kB is the Boltzmann constant. From the above Langevin equations, the associated
N -body Fokker-Planck equation for the distribution function PN is [42]

∂PN

∂t
+

N∑
i=1

(
pi

m

∂PN

∂xi

+ Fi
∂PN

∂pi

)
=

N∑
i=1

∂

∂pi

[
ζkBT

∂PN

∂pi

+ ζPN
pi

m

]
, (7)

where

Fi = − ∂

∂xi

W (x1, . . . , xN) (8)

here is the long-range force acting on the i-th particle. We now simplify the problem
and look for an approximate equation for the probability by following the procedure
described in [42]. The distribution function is taken as PN({xi, pi}) = P̄N(E, t) and
is replaced in equation (7), obtaining an equation for P̄N(E, t). This equation is
subsequently averaged over the hypersurface of energy E which removes the dependence
on the coordinates (microcanonical average). Hence, taking the distribution of
energies as P (E, t) = g(E)P̄N(E, t), one arrives at the Fokker-Planck or Smoluchowski
equation [42]

∂

∂t
P (E, t) = ∂

∂E
D(E)

(
∂

∂E
P (E, t) + βP (E, t) ∂

∂E
F (E)

)
, (9)

where β = 1/kBT , F (E) = E − kBT ln g(E) is the free energy‡ for a given energy E,
and the energy diffusion coefficient is given by

D(E) = 3NkBT
ζ

m

I(E)
g(E) . (10)

The equilibrium probability corresponding to the stationary solution of equation (9) is

Peq(E) = 1
Z(β)g(E)e−βE = 1

Z(β)e−βF (E), (11)

where
Z(β) = 1

Λ3NN !

∫
d3Nx e−βW (x1,...,xN ) (12)

is canonical partition function, Λ = h
√

β/2πm being the thermal wavelength.
Equation (9) describes how energy diffuses in time when the system is brought out
of equilibrium.
‡ The function F (E) is actually the free energy of a system in equilibrium when evaluated at a local
minimum (the most probable state). The energy at the minimum is a function of the temperature, so
at this point, in fact, we have F = F (T ).
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2.2. Mean first-passage time

Here we are interested in the characterization of the lifetime of locally stable states in a
system undergoing a first-order phase transition. The evolution of the system through
the free energy barrier separating the two phases can be discerned by using the energy
as the parameter defining the state of the system, and the energy dynamics is precisely
dictated by the Fokker-Planck equation (9). In the situation of interest, we assume that
initially the system has energy EA at a local minimum of free energy and that weak
noise and friction perturb the state of the system. Even for weak noise, the energy of
the system is affected by fluctuations and the system eventually escapes from the free
energy well. For the phase transition to occur, the system must cross a free energy
barrier whose maximum is located at an energy EB. The time it takes for the system
with initial energy EA to reach the top of the barrier for the first time corresponds to a
certain time t. Hence, the lifetime of the locally stable state tlife can be quantified, on
average, by the mean first-passage time τ(EA) = ⟨t⟩, that is

tlife = τ(EA). (13)
The mean first-passage time for the considered situation can be deduced from the

Fokker-Planck equation (9) by taking into account an initial condition for the probability
and suitable boundary conditions [48–51]. Let P (E, t|E0) be the probability density of
finding the system with energy E at time t, given that at t = 0 the energy of the
system was E0 (not necessarily at a local minimum of the free energy). Equation (9)
for P (E, t|E0) can be recast into

∂

∂t
P (E, t|E0) = LEP (E, t|E0) (14)

and solved with the initial condition P (E, 0|E0) = δ(E −E0), where we have introduced
the Fokker-Planck operator

LE = − ∂

∂E
v(E) + ∂

∂E
D(E) ∂

∂E
. (15)

Here the drift is given by

v(E) = −D(E)β ∂

∂E
F (E) = D(E) (βE − β) , (16)

where

βE = ∂

∂E
ln g(E) (17)

is the inverse microcanonical temperature. We observe that the drift is due to the
difference of the temperature of the bath and that corresponding to the isolated system
in equilibrium at the given energy E.

Let us now denote by Ω and ∂Ω the domain of energies for the Fokker-Planck
equation and its boundary, respectively, which will be defined below for the problem at
hand. The survival probability S(E0, t) for the system at time t with initial energy E0

is obtained by integrating the probability density over this domain,

S(E0, t) =
∫

Ω
dE P (E, t|E0). (18)
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The distribution of first-passage times is then given by [48]

ρ(E0, t) = − ∂

∂t
S(E0, t), (19)

in such a way that the mean first-passage time is the first moment of t,

τ(E0) =
∫ ∞

0
dt tρ(E0, t). (20)

Moreover, integrating the above equation by parts and using that S(E0, t) vanishes for
t → ∞ yields

τ(E0) =
∫ ∞

0
dt S(E0, t). (21)

A useful equation to determine τ(E0) can be found by considering the operator
that is adjoint to LE acting on the initial energy E0, given by

L†
E0 = v(E0)

∂

∂E0
+ ∂

∂E0
D(E0)

∂

∂E0
. (22)

Thus, it can be shown that operating with L†
E0 on equation (21) yields [48]

L†
E0τ(E0) = −1, (23)

which must be solved taking into account the appropriate conditions on ∂Ω. An
absorbing boundary condition implies that τ(E0) vanishes for E0 on ∂Ω, while the
derivative ∂E0τ(E0) vanishes for E0 on ∂Ω when a reflecting boundary condition is
imposed [50,52].

We now suppose that the system is initially in the low-energy phase, so that Ω is
defined by the lower bound E∗, the minimum energy that the system can achieve, and
the energy EB where the free energy barrier is located. To compute τ(E0), a reflecting
boundary condition is taken on E∗ and an adsorbing boundary condition is imposed on
EB. Since the adjoint operator (22) can also be written as

L†
E0 = eβF (E0) ∂

∂E0
e−βF (E0)D(E0)

∂

∂E0
, (24)

operating according to (23) and taking into account the boundary conditions leads to

τ(E0) =
∫ EB

E0
dE

eβF (E)

D(E)

∫ E

E∗
dE ′e−βF (E′). (25)

Analogously, for the case in which the system is in the high-energy phase, the domain
of energies is [EB, ∞] and a reflecting boundary condition is taken at infinity. In this
case one finds

τ(E0) =
∫ E0

EB

dE
eβF (E)

D(E)

∫ ∞

E
dE ′e−βF (E′). (26)

Thus, if the initial energy is that of a free energy minimum, E0 = EA, the lifetime
of a locally stable state tlife = τ(EA) is obtained using (25) for the low-energy phase
(EA < EB) and using (26) for the high-energy phase (EB < EA).

A similar result for tlife was obtained in [42] for self-gravitating systems by using an
adaptation of the Kramers formula and explicitly obtaining an approximate expression
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the probability P (E, t). In contrast, the method above does not require finding the
probability. Moreover, by expanding the free energy in powers of E and approximating
the integrals in (25) or (26) by a Gaussian, it is found that [42]

tlife ≃
π
√

C(EA)|C(EB)|
β2D(EB) eβ[F (EB)−F (EA)], (27)

where C(EA) > 0 and C(EB) < 0 are the heat capacities of the system in the locally
stable and unstable states, respectively. Since the height of the free energy barrier
β[F (EB) − F (EA)] scales as N , the lifetime of a locally stable state scales as eN . As
mentioned in the introduction, the same scaling is obtained in [20, 40] for metastable
states from considerations on the magnetization in spin systems.

To apply the method explained above, in the following section we introduce the
Thirring model for which we obtain the lifetime of locally stable states as a function of
the number of particles both theoretically and with MC simulations.

3. Thirring model

We consider a model introduced by Thirring [15] to describe a simplified version of
a self-gravitating system. The model exhibits several interesting properties such as
ensemble inequivalence and, in particular, a first-order phase transition in the canonical
ensemble [44]. It consists of N particles of mass m enclosed in a volume V which has
an internal region of volume Vc defining a “core”. Each particle in the core interacts
equally with all other particles in the core with a constant, attractive potential, while
particles outside this region are free. If for a given configuration the number of particles
in the core is Nc, the total potential energy of the system is

W (Nc) = −νNc(Nc − 1), (28)
where ν > 0 is a coupling constant. When the number of particles is large, the potential
energy behaves as −νN2

c . Here the Hamiltonian H is given by (1) with the potential
energy (28). We now derive for this model all quantities specified in the previous section
needed to compute the lifetime of locally stable states near the phase transition.

The number of microstates with energy H ≤ E, defined in (2), for this model can
be written as [15]

I(E) = A
N∑

Nc=Nmin

(E − W )3N/2 eη(N−Nc)

Nc!(N − Nc)!
, (29)

where A = V N
c (2mπ/h2)3N/2/(3N/2)! and η = ln(V/Vc − 1) represents a reduced

volume. The number of particles Nmin corresponds to the minimum value of Nc such
that E − W > 0, ensuring that the kinetic energy is non-negative. In addition, we
restrict the domain of energies to E ≥ E∗ with the lower bound E∗ = −νN(N − 1)
corresponding to all particles in the core with a vanishing kinetic energy. Taking this
bound into account, we introduce the reduced energy

ε = E − E∗

νN2 ≥ 0, (30)



Lifetime of locally stable states near a phase transition in the Thirring model 8

which remains finite in the large N limit because the potential energy scales as N2. The
number of microstates can then be written as

I(E) = (νN2)3N/2AĨ(ε), (31)

where we have introduced

Ĩ(ε) =
N∑

Nc=Nmin

(ε − w)3N/2 eη(N−Nc)

Nc!(N − Nc)!
(32)

with w = (N + Nc − 1)(N − Nc)/N2. Furthermore, the density of states is given by
g(E) = dI(E)/dE and reads

g(E) = 3
2N(νN2)3N/2−1Ag̃(ε), (33)

where

g̃(ε) =
N∑

Nc=Nmin

(ε − w)3N/2−1 eη(N−Nc)

Nc!(N − Nc)!
. (34)

We also introduce a reduced free energy f(ε) according to F (E) = νN2f(ε)+F∗, where

f(ε) = ε − θ

N
ln g̃(ε), (35)

and we have separated a contribution F∗ = E∗ −kBT ln[3N(νN2)3N/2−1A/2] which does
not depend on ε. In equation (35) we have defined the reduced temperature

θ = kBT

νN
, (36)

which remains finite in the large N limit following the usual scaling in long-range
interacting systems.

The model exhibits first-order phase transitions in the canonical ensemble that
terminate at a critical point defined by ηcp = 2 and θcp = 1/2, and these transitions
occur for η > ηcp and θ < θcp [44]. In figure 1, we show the reduced free energy as a
function of the reduced energy for different number of particles in a typical configuration
studied here. For a fixed reduced volume, we chose the reduced temperature such that
the system is near the phase transition, so in this example η = 3 and θ = 0.33. In figure 1,
the local minimum at low energies corresponds to a “condensed” phase characterized by
a large number of particles in the core, while the minimum at high energies corresponds
to a “dilute” phase. Below we also illustrate the dependence of the phase transitions
with respect to the temperature, see figure 2.

Furthermore, according to (10), the energy diffusion coefficient for this model takes
the form

D(E) = kBT
2ζ

m
νN2q(ε), (37)

where q(ε) = Ĩ(ε)/g̃(ε). Hence, the lifetime tlife = τ(εA) given by equation (25) for the
condensed phase can be written as

tlife

tc

= N
∫ εB

εA

dε
eNf(ε)/θ

θq(ε)

∫ ε

0
dε′e−Nf(ε′)/θ, (38)
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Figure 1. Reduced free energy as a function of the reduced energy for different number
of particles, taking the reduced volume and temperature as η = 3 and θ = 0.33,
respectively.

where εA and εB are the reduced energies corresponding to the minimum and maximum
of the free energy, respectively, and we have introduced the characteristic time

tc = m

2ζ
. (39)

Similarly, using (26) for the dilute phase one has
tlife

tc

= N
∫ εA

εB

dε
eNf(ε)/θ

θq(ε)

∫ ∞

ε
dε′e−Nf(ε′)/θ. (40)

Note that ε, θ, f , and q in expressions (38) and (40) are dimensionless and of order
unity in N . Although in the simulations below we describe finite systems, we take the
number of particles large enough such that the scaling corresponding to the large N

limit is meaningful.

4. Simulations

As explained in the preceding section, the system can be in either a condensed or a
dilute phase. To determine the actual phase in a given configuration, one can measure
the fraction of particles in the core which acts as an order parameter [44,45]. For finite
number of particles, this fraction can be obtained exactly via numerical computation.
One way to proceed involves the canonical partition function (12) which for the Thirring
model can be written as [28]

Z(N, η, θ) =
(

Vc

Λ3

)N N∑
Nc=0

eη(N−Nc)−U(Nc)/θ

Nc!(N − Nc)!
, (41)

where U(Nc) = W (Nc)/N is the potential energy per particle. In view of the above
expression, we identify the probability p(Nc) of finding the system with Nc particles in
the core for given N , η and θ,

p(Nc) = eη(N−Nc)−U(Nc)/θ

Z̃Nc!(N − Nc)!
, (42)
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Figure 2. Averaged fraction of number of particles in the core as a function of the
reduced temperature for η = 3 in (a) and η = 2.5 in (b). Symbols represents the results
of MC simulations and solid lines the exact result obtained from equation (44).

where the normalization constant is given by

Z̃ =
N∑

Nc=0

eη(N−Nc)−U(Nc)/θ

Nc!(N − Nc)!
. (43)

In terms of this probability, the average fraction of particles in the core in equilibrium
configurations reads

⟨Nc⟩
N

=
N∑

Nc=0

Nc

N
p(Nc). (44)

The fraction of particles in the core grows markedly in the condensed phase. In
figure 2, we plot ⟨Nc⟩/N as a function of the temperature for N = 100. An abrupt
change in this fraction is observed at θ close to 0.33 when η = 3 and at θ close to 0.39
for η = 2.5. Obviously ⟨Nc⟩/N is not really discontinuous at these points since the
number of particles is finite, but the jump is clearly sharp and can be considered as a
phase transition. In the same figure we also show ⟨Nc⟩/N obtained with MC simulations
in the canonical ensemble, that we perform throughout this work using the standard
Metropolis algorithm [53]. As can be seen in the figure, the simulations account for the
transitions in accordance with the theory. In addition, if the system is prepared near a
phase transition and the simulation is run without changing the parameters, the system
experiences repeated transitions between the two phases indefinitely. Since the system is
finite, in particular, we highlight that transitions from the locally stable state with lower
free energy to the metastable state with higher free energy can be realized as well [54].
The time it spends in each phase, that is, the lifetime of the state, increases on average
as the number of particles increases. This behavior is exemplified in figure 3. Note
that the jumps do not have a constant frequency; we will show below with simulations
that the underlying distribution describing the lifetime is approximately exponential.
As in the present case, repeated switching between two locally stable states and an
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Figure 3. Transition between the dilute and condensed phases. We show the evolution
of the fraction Nc/N (averaged over a small time window of 103 MC cycles) as a
function of time for different number of particles. Here the reduced volume and
temperature are η = 3 and θ = 0.33, respectively.

exponential distribution of lifetimes were also observed in the stochastic Keller-Segel
model describing chemotaxis [43].

We now focus on the characterization of the lifetime of these states. To perform
the simulations we numerically determine the energies εA and εB at which the free
energy (35) has a local minimum and maximum, respectively, for given θ and η. Since
we chose configurations near the phase transition, there are two different values of εA

corresponding to the condensed and dilute phases. We thus prepare a state with energy
εA, either in the condensed or dilute phase, and measure the number of MC cycles for
which the system reaches the energy εB at the top of the barrier. A MC cycle consists
of N elementary moves and here it defines the unit of time. The time needed by the
system to reach the energy εB starting at εA is the associated first-passage time t. The
lifetime of the state is the average of the first-passage time over several realizations,
tlife = τ(εA), i.e. the first moment of t. In our simulations we take 103 realizations. For
each realization we perform a calibration stage to set the maximum displacement allowed
to the particles, so that the acceptance ratio of MC configurations is fixed at about 50%.
We emphasize that the different measurement runs are performed always starting from
a configuration with energy εA. Furthermore, initial configurations are defined by the
number of particles Nc = NA

c leading to the local minimum of free energy. Since the
energy εA is numerically determined by minimization of the free energy, this number of
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Figure 4. Distribution of first-passage times obtained from 103 realization (left panel)
and lifetimes as a function of the number of particles (right panel). In (a) and (b),
we set η = 3 and θ = 0.33 and fitting the time constant with simulations yields
tc = (65 ± 12) MC cycles. In (c) and (d) we take η = 0.25 and θ = 0.39, while the
obtained value of the time constant is tc = (42 ± 4) MC cycles.

particles follows from the relation

EA = νN2εA − νN(N − 1) = 3
2NkBT − νNA

c (NA
c − 1). (45)

To prepare the initial configurations, we put NA
c particles inside the core with a uniform

random distribution and N − NA
c outside the core randomly distributed as well. We

recall that since interactions are spatially constant in the core, the density of particles
is uniform there for an equilibrium configuration. The densities inside and outside the
core are different in general.

In order to compare the lifetime measured in the simulations with the theory, we
need to determine the characteristic time constant tc appearing on the left-hand side of
equations (38) and (40). To this end, let us denote by Ncycles the average number of MC
cycles measured in the first-passage time problem explained above, for a given N with
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θ and η fixed, either in the condensed or dilute phase. Imposing Ncycles = tlife yields

tc = Ncycles

tlife/tc

, (46)

where tlife/tc in the denominator is given by the right-hand side of equations (38) and
(40) for the condensed and dilute phases, respectively, which can be computed explicitly
by numerical integration. For θ and η fixed, we actually take tc as the average over the
results for different values of N for both the condensed and dilute phases. We highlight
that in the simulations we do not fix an intrinsic time scale but the acceptance ratio of
the MC moves. Thus, with this procedure, it turns out that tc actually depends on θ

and η.
In figure 4, we show the results of the simulations for two different sets of θ and

η, chosen in a way that the system is close to the phase transition. The obtained
results indicate that the lifetime and its standard deviation coincide for a given N

in both the condensed and dilute phases. In agreement with this fact and according
to the histograms in figures 4(a) and 4(c) representing two particular configurations,
the obtained first-passage times approximately follow exponential distributions [55,56].
Solid lines in figures 4(a) and 4(c) describe the fitting of the first-passage time
distribution ρ(εA, t) = λe−λt with the parameter λ = 1/τ(εA) obtained from the
simulations. As discussed in section 2, this distribution and the survival probability
are related through

ρ(εA, t) = − ∂

∂t
S(εA, t). (47)

Thus, simulations indicate that the survival probability is suitably described with an
exponential function of the form

S(εA, t) = e−t/τ(εA), (48)

as can be expected in a long time limit from a well-behaved distribution [57].
We highlight that once tc is fitted as discussed above, theory and simulations are

in very good agreement, as can be appreciated for tlife in figures 4(b) and 4(d). We see
that tlife/tc in figure 4(d) is orders of magnitude smaller than in figure 4(b) for the same
N ; the configuration with η = 2.5 and θ = 0.39 [figure 4(d)] is closer to the critical
point than that with η = 3 and θ = 0.33 [figure 4(b)], so it is easier for the system to
change from one phase to the other. Finally, the scaling of tlife as eN for this model can
be observed in the figures starting at not so large values of N .

5. Summary and conclusions

We have studied the lifetime of locally stable states, including metastable states, in a
long-range interacting system described by the Thirring model [15]. We have found
that the lifetime of these states increases exponentially with the number of particles,
demonstrating, in particular, that metastable states are long-lived.



Lifetime of locally stable states near a phase transition in the Thirring model 14

In the situation we have analyzed, the system is in contact with a thermal bath
and a barrier arising from interactions between the particles separates two free energy
minima characterizing two locally stable states. Due to thermal fluctuations, the energy
of the system diffuses and its dynamics can be described by means of a Fokker-Planck
equation. Assuming that initially the system is at a local minimum of the free energy, we
have calculated the lifetime of these states as the mean first-passage time taken by the
system to reach the top of the barrier. We have performed Monte Carlo simulations in
the canonical ensemble to sample the distribution of first-passage times and the lifetime
as a function of the number of particles in the system, finding very good agreement with
theoretical predictions.

Our results are in accordance with the behavior obtained in other instances of long-
range interacting systems [40–43], suggesting that a lifetime increasing exponentially
with the number of particles is a rather general feature of metastable states in these
systems. This work contributes to the understanding of metastability in systems with
long-range interactions.
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