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Abstract

Single-cell multi-omics assays offer unprecedented opportunities to explore gene
regulation at cellular level. However, high levels of technical noise and data
sparsity frequently lead to a lack of statistical power in correlative analyses,
identifying very few, if any, significant associations between different molecular
layers. Here we propose SCRaPL, a novel computational tool that increases
power by carefully modelling noise in the experimental systems. We show on real
and simulated multi-omics single-cell data sets that SCRaPL achieves higher
sensitivity and better robustness in identifying correlations, while maintaining a
similar level of false positives as standard analyses based on Pearson correlation.

Keywords: sample; article; author

1 Introduction
High throughput single cell assays based on next generation sequencing are rev-

olutionising our understanding of biology, with profound implications both funda-

mental and translational [1]. Single cell technologies avoid the confounding factors

emerging from averaging over potentially heterogeneous cell populations [2], pro-

viding a global map of biological cell-to-cell variability at the molecular level [3].

While single-cell transcriptomic technologies are rapidly reaching maturity, more

recent platforms have emerged that enable simultaneous large scale measurements

of multiple molecular layers within the same cell. Multi-omics assays can now cap-

ture DNA methylation and gene expression [4, 5], gene expression and copy-number

variations [5], and most recently chromatin accessibility along with DNA methy-

lation and gene expression [6] for the same cell. Such platforms have enormous

potential to elucidate the mechanisms of gene regulation in unprecedented detail.

Despite the huge potential for breakthroughs, technical limitations in multi-omics

technologies create formidable statistical challenges in the interpretations of their

results. Single-cell sequencing technologies are notoriously affected by high noise lev-

els, including very strong data sparsity. Such problems are amplified in multi-omics

studies, where multiple independent sources of noise might affect the joint distri-

bution of the measurements. Additionally, challenges with normalization strategies,

batch effects or other latent variables related to cellular processes might further

prevent biological components to emerge clearly from data [7]. As a result, direct

adoption of classical statistical tools to assess associations between different molec-

ular layers (e.g. Pearson’s correlation) routinely leads to underpowered analyses,

which are only able to identify a handful of significant associations [4, 6, 8].
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In this paper, we argue that proper treatment of noise is essential in order to ro-

bustly retrieve significant statistical associations. To do so, we introduce SCRaPL

(Single Cell Regulatory Pattern Learning), a Bayesian hierarchical model to infer

associations between different omics components. The Bayesian hierarchical frame-

work, which has already been extensively used in single-omics single-cell analyses

(e.g. [9, 10]), explicitly and transparently decomposes noise in the data, enabling

efficient extraction of biological signals from technical noise. We demonstrate on

both synthetic and real data sets that SCRaPL is both highly accurate and sensi-

tive, identifying much larger numbers of statistically significant associations than

standard correlation analyses while retaining a good control on false positives.

2 Results
2.1 SCRaPL: Single Cell Regulatory Pattern Learning

Single cell multi-omic assays provide unprecedented opportunities to interrogate

the relationship between different molecular layers with high resolution. We intro-

duce SCRaPL — a Bayesian hierarchical framework for single cell multi-omics data,

inferring cross-layer associations that are robust to technical noise. SCRaPL com-

bines a latent multivariate Gaussian structure with noise models that are tailored

to single cell sequencing data (Figure 1). Here, we focus on the links between RNA

expression and DNA methylation (DNAm), but additional noise models can be

incorporated to accommodate other measurements (e.g. chromatin accessibility).

For gene expression, Poisson noise is coupled with an exponential link function.

This leads to a Poisson-lognormal model, which has been previously used for single

cell RNA sequencing (scRNAseq) data [11]. An over-dispersion captures variability

beyond Poisson noise, leading to the same mean-variance relationship as the nega-

tive binomial model (Methods). If zero inflation is present [12], a zero inflated (ZI)

Poisson noise model can be used [13]. For each gene, evidence of ZI is quantified

via the Deviance Information Criteria (DIC, [14]). Moreover, cell-specific scaling

factors si capture systematic differences across cells. These are inferred using scran

[15] and used as fixed offsets.

Matching DNAm data for each gene is quantified as the number of methylated

CpGs within a pre-specified genomic region (e.g. gene promoter). To model DNAm

data, we use a Binomial noise model which explicitly takes into account the coverage

within the region. A probit link function is then used for the latent Gaussian term.

Associations between molecular layers are quantified using gene-specific latent

correlation parameters ρj . Statistically significant associations are highlighted us-

ing a probabilistic decision rule [16] which controls the expected false discovery rate

(EFDR, [17]). More details about this procedure and the algorithm used for param-

eter inference are provided in the Methods. Moreover, a Matlab implementation is

available at https://github.com/chrmaniatis/SCRaPL.

2.2 Benchmarking SCRaPL using synthetic data

To assess the estimation performance of SCRaPL, we experimented on synthetic

datasets covering scenarios with different numbers of cells and a range of values

in terms of methylation coverage, ZI for the expression data along with different

latent mean and covariance structures (Methods, Section 4.8). Here, we focus on
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Figure 1: Schematic representation for the SCRaPL model.

estimation accuracy for the gene-specific latent correlation parameters ρj , but re-

sults for other model parameters are displayed in Supplementary Figures S3. We

consider a number of simulation scenarios, described in detail in Section 4.8. We

start by considering a situation of perfect model specification (experiments 1-3 in

Section 4.8), in order to assess the identifiability of our model. In this case, we ob-

serve that posterior estimates of correlation tend to be unbiased, with an accuracy

which increases with the number of cells in the data set (Figure 2a). As expected,

the performance degrades with increasing levels of ZI (Figure 2c). However, we did

not observe significant differences across different levels of coverage (Figure 2e). To

probe the importance of prior specification, we generated data where the underlying

correlation values ρj were in an area with low prior mass (experiments 4, 5 and 6

in Section 4.8). In this case, we did observe some bias in our estimates (Supplemen-

tary Figure S4), but the latter diminished with increasing sample sizes. Similarly,

performance diminishes with increasing ZI levels and stays relatively intact across

different coverage levels.

As a final test of more severe model mismatch, we evaluated predictive perfor-

mance in a scenario where we retained the same noise model, but replaced the latent

multivariate Gaussian distribution by expression rates inferred using a variational

auto-encoder (scVI, [18]) that was trained on the scRNAseq data from [4] (Meth-

ods). Despite the model mismatch, we observed good estimating performance for

ρj across a range of simulation parameters (Figures 2b,2d and 2f).

2.3 SCRaPL improves the power to identify associations between methylation and

expression in mouse embryonic stem cells

We next considered a single cell multi-omics dataset generated by the scNMT-seq

protocol [6]. Samples correspond to mouse embryonic stem cells (mESCs) at four

developmental stages (embryonic days 4.5, 5.5, 6.5 and 7.5), which comprise the

exit from pluripotency and primary germ layer [19] (see a brief description in the

Methods). Here, all developmental stages were analysed together as a single group

of samples. For each gene, matched methylation data was derived for protein coding

promoters within 5kbp windows (chromatin accessibility data was also available, but
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Figure 2: Estimation performance for SCRaPL based on synthetic data.

The data generation mechanisms used for each experiment are described in Meth-

ods. Difference between true and the inferred correlation parameters ρj in syn-

thetic data sampled from the model as a function of: (2a) the number of cells

(experiment 1), (2c) the average gene inflation rate πj (experiment 2), (2e) the

average coverage (experiment 3). Difference between true and inferred correla-

tion parameters ρj in synthetic data partly sampled from the model and partly

from a deep generative model described in [18] as a function of: (2b) the number

of cells (experiment 7), (2d) the average gene inflation rate πj (experiment 8),

(2f) the average coverage (experiment 9). Results for the remaining experiments

are provided in Supplementary Figures S2-S6. In all cases, violin plots show the

distribution across genes.

excluded from our analysis). After quality control, the resultant dataset contained

9480 genes and average of 487 cells (Methods).
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As a comparison to the correlation test implemented in SCRaPL, we considered

the Pearson’s correlation test (Methods). The latter has been widely used when

analysing single cell multi-omics data (e.g. [4, 6]), but does not take into account

technical noise. Expression-methylation associations are retrieved as significant by

controlling EFDR and FDR to 10%, respectively. We observe that SCRaPL retrieves

approximately 3 times more associations compared to Pearson’s testing (198 versus

68; see Supplementary Table S1). This is despite the use of a more conservative

correlation threshold γ = 0.205 in SCRaPL (which is calibrated via permutations,

see Methods). To visually assess the results, we use volcano plots: Figure 3a shows a

Bayesian volcano plot (median posterior correlation against the negative logarithm

of the posterior probability in (9)), while Figure 3b is a standard volcano plot show-

ing Pearson correlation versus negative logarithm of the associated p-value. While

a substantial fraction of significant features are shared, there are many features on

which both methods disagree, indicating a qualitative difference between the results

provided by the two methods. We explore those cases in the next sections.
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Figure 3: Bayesian 3a) and frequentist 3b versions of volcano plots for 5kbp

window around TSS for [19] data. SCRaPL correlation and cut-off thresholds for

choosing genes are chosen to be γ = 0.205 and α = 0.765 respective. Each dot

represents a feature and is marked with different color depending the model that

labels it important.

While the ability of SCRaPL to detect larger numbers of associations is certainly

an encouraging feature, it is essential to characterize whether this is due to greater

power, or simply to a greater vulnerability to false positives. Determining empir-

ically the false positive rate is challenging as access to ground truth correlation

values for each gene is impossible. To address these issues, we proceed pragmati-

cally by constructing negative control data sets in which observations of methylation

and expression values for a particular feature in different cells are randomly per-

muted. This will destroy any correlation structure between the two quantities, so

that features detected as significant in negative control data can be considered as

false positives. Here, we constructed 5 negative control datasets. For all negative

controls, SCRaPL and Pearson’s testing only detected a handful of associations,

consistently less than for the original data (Supplementary Table S1). These results

suggest that both methods can detect genuine associations, albeit Pearson’s testing

being less powerful.
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2.4 SCRaPL associations are influenced by methylation coverage and are robust to

outliers.

As seen in Figures 3a and 3b, there is some discrepancy in terms of the associa-

tions detected by both Pearson correlation and SCRaPL. It is therefore natural to

wonder to what extent the signals detected by the two methods are different. From

the modelling perspective, there are two major differences: first, SCRaPL consid-

ers noise models which allow overdispersion and take into account coverage in the

methylation data. This should make SCRaPL associations less vulnerable to out-

lier expression values or to methylation measurements with low coverage. Secondly,

SCRaPL includes zero inflation in its expression model, and can therefore attribute

to dropout some measurements of zero expression should the evidence dictate so.

In the rest of this section, we present some empirical evidence that indeed observed

these benefits in our real data analysis.

We consider the set of associations which are called as significant by at least one

method, and split it into 3 categories: agreement between predictions, association

labeling as significant by SCRaPL, but not Pearson, and vice-versa. We then analyze

these three sets attempting to detect common patterns, discussing some examples

to substantiate our findings.

Features for which Pearson and SCRaPL agree tend to have high number of

observations, high coverage and small number of zeros in case of expression. An

example feature called as significant by both methods is in Figure 6a.

To gain more insight on the factors driving SCRaPL inferences it is interesting

to focus on associations, whose significance differs between the two methods. An

example of an association detected by Pearson but not SCRaPL is in Figure 4b.

As we can see, we have a large fraction of zero expression values with very low

methylation coverage. As a result, SCRaPL, while placing most of the posterior

mass over negative correlation values, cannot confidently exclude the possibility of

no correlation. This example perfectly illustrates that divergences between SCRaPL

and Pearson are often driven not by expected values, but by the fact that SCRaPL

additionally performs uncertainty quantification on its results.

An example of an association deemed significant by SCRaPL, but not by Pearson,

is in Figure 4c. In this case, we tend to have medium to high expression, high number

of observations and good coverage. However, Pearson correlation remains below

detection levels due to observations with low expression. This is an example where

SCRaPL can be particularly beneficial, since the noise model can better capture

potential effect of zero inflation.

To provide a more quantitative, global explanation of the differences between

SCRaPL and Pearson, we regress the absolute difference in inferred correlation

against methylation coverage and percentage of zero counts for each gene across

all cells. The resulting regressions, shown in Figure 4d, demonstrate a weak but

consistent effect of both forms on noise, confirming that differences between the

two methods are more prominent in noisier situations where methylation coverage

is low or sparsity is high.
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Figure 4: Where ρ̄j and ρprs are posterior mean and Pearson correlation for gene

j .Examples that indicate SCRaPL’s behavior compared to Pearson correlation

in micro and macro scale. In all figures apart from 4d the left part is a scatter plot

of feature’s raw data colorcoded by CpG coverage with normalized expression in

the log(1 + x) scale. On the right, we see the posterior for the same feature as

inferred by SCRaPL. (6a)Agreement between SCRaPL and Pearson. (4c) Marked

as important only by SCRaPL. (4b) Marked as important only by Pearson. In

figure 4d we have scatter plots of distance between posterior mean and Pearson

correlation as a function of inflation and coverage

2.5 SCRaPL identifies biologically meaningful epigenetic regulation in early mouse

gastrulation

SCRaPL identified a series of statistical associations between epigenomic and tran-

scriptomic layers by addressing noise specifically encountered in single cell multi-

omics data. Markers with strong correlation were further investigated, using Gene

Set Enrichment Analysis (GSEA) to establish links with biological phenomena ob-

served in early embryogenesis or gene promoter methylation. DAVID [20] identified

a mixture of developmental and house-keeping processes. Among processes tied to

development, we see in utero embryonic development and angiogenesis. Whereas

house-keeping ones include positive regulation of cell proliferation and regulation of

transcription. For more information, the reader is directed in supplementary figure

s13.

Apart from GSEA we looked at gene families like Dnmt and Dppa whose role has

been studied [19, 21, 22] due to their known links to epigenetic regulation embryonic

development respectively. Developmental pluripotency markers like Dppa2, Dppa4
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and Dppa5a presented strong negative regulation between methylation and gene

expression. From the Dna methyltransferases family only Dnmt3l had significant

correlation. For further information please refer to supplementary figures S12-S14.

3 Conclusion
Single cell multi-omics sequencing technologies are rapidly becoming an important

tool to understand epigenetic regulation for individual cells in complex biological

processes, such as early embryo development. However, analysis of such data still

presents a major bottleneck, due to the high-dimensionality, sparsity and heteroge-

neous noise affecting them. In this paper, we argued that the introduction of noise-

aware approaches is fundamental in developing the field of single-cell multi-omics.

We introduced SCRaPL, a Bayesian approach to perform perhaps the most basic

and common multi-omics analysis, the discovery of correlative associations between

different data modalities. By employing dedicated noise models in a latent-Gaussian

framework, SCRaPL achieves more powerful and more robust results than simple

analyses based on Pearson correlation, which is by far the most widespread tool

currently used.

In our analyses, for each gene, matching methylation data was quantified using

pre-defined promoter regions. This appears to be a reasonable demonstration of

the tool; however it should be pointed out that SCRaPL could also be used to

test associations between unannotated regions and expression of specific genes. Ad-

ditionally, while our analyses have concerned associations between expression and

DNA methylation, it is straightforward to extend the method to analyze correla-

tions between different omic modalities, for example chromatin accessibility and

gene expression [10], [23].

The Bayesian hierarchical framework employed by SCRaPL also offers a template

for the application of more complex analysis techniques (such as clustering, dimen-

sionality reduction and network inference) to multi-omics data. In all analyses, we

expect that consistent handling of noise will improve robustness and biological sig-

nificance. However, as with most Bayesian methods, SCRaPL does suffer from a

higher computational burden, particularly when compared with extremely simple

analyses, such as Pearson correlation. Extension of noise-aware Bayesian methods

to different single-cell multi-omics analyses will require the adoption and evaluation

of more efficient computational inference techniques, such as variational inference

[24].

4 Methods
4.1 A Bayesian hierarchical framework for noisy single cell multi-omics data

SCRaPL implements a Bayesian hierarchical approach that is tailored to the data

generated by single cell multi-omic assays. Here, we assume that matched data is

available for two molecular phenotypes, but our formulation is flexible and can be

expanded to include additional layers. A graphical representation for the model

implemented in SCRaPL is provided in Figure 5. As described in Figure 1, the

distribution of a latent vector Xij is used to capture the association across molecular

layers. For each cell i (∈ {1, . . . I}) and gene j (∈ {1, . . . J}), the latter is given by

Xij =

(
Xij1

Xij2

)
|µj ,Σj

ind∼ N
(
µj ,Σj

)
, (1)
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where

µj =

(
µj1

µj2

)
and Σj =

(
σ2
j1 ρjσj1σj2

ρjσj1σj2 σ2
j2

)
. (2)

y
(1)
j,i y

(2)
j,i

x
(1)
j,i , x

(2)
j,i

~mj ~Hj

pj

i = 1 . . .M

j = 1 . . . N

mj∼N (m0,Ψ0)

ρj∼Beta
(
α

(j)
1 ,β

(j)
1

)
σt,j∼IG

(
α

(t)
j

)
,t=1,2

x
(1)
j,i ,x

(2)
j,i |mj ,Hj∼N

(
x
(1)
j,i ,x

(2)
j,i |mj ,Hj

)
y
(1)
j,i | x

(1)
j,i∼Bin

[
Φ
(
x
(1)
j,i

)]
y
(2)
j,i | x

(2)
j,i ,pj∼ZIP

[
exp
(
x
(2)
j,i

)
,pj
]

pj∼Beta(αj ,βj)

Figure 5: Graphical model implemented in SCRaPL

In this formulation, we assume independence across all genes. Moreover, different

noise models are then assigned to each molecular layer based on the properties of

the associated data. In particular, the noise models used by SCRaPL in the context

of RNA expression and DNAm data are described below.

RNA expression noise model. Let Yij1 be a random variable representing the

number of read-counts observed for each cell i and gene j. Conditional on the value

of the latent variable Xij1, we use an exponential link function and assume that

P (Yij1 = yij1 |Xij1 = xij1, si, πj) =

{
(1− πj) (sie

xij1 )yij1 exp (−siexij1 )
yij1! if yij1 > 0,

πj + (1− πj) exp (−siexij1) if yij1 = 0.

(3)

The latter corresponds to a zero-inflated Poisson (ZIP) model, where si (> 0) is a

cell-specific scaling factor that accounts for global differences across cells (e.g. due

to sequencing depth) and πj (∈ [0, 1]) represents a zero-inflation parameter. In

practice, we infer scaling factors si using scran [15] and use them as known offsets.

If πj = 0, (3) reduces to a Poisson model. The need for a zero-inflation component

is a matter of debate for scRNA-seq data [13] and may depend on the experimental

protocol used to generate the data. For each gene, here we quantify the evidence in

favour of zero-inflation using .

DNAm noise model. For each cell i and gene j, let nij be the number of CpG

sites for which DNAm reads were obtained. These capture differences in coverage

across cells and genes. The conditional model for the number of methylated CpG

sites Yij2 is then assumed to follow a binomial distribution such that

P (Yij2 = yij2 |Xij2 = xij2, nij) =

(
nij
yij2

)
(Φ (xij2))

yij2 (1− Φ (xij2))
nij−yij2 , (4)
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where Φ(·) denotes a probit link function.

Parameter interpretation. To aid the interpretation of each model parameter,

mean and variance expressions are derived for the noise models introduced above

after integrating out the distribution of the latent vector Xij (see Supplementary

Section S8). In both cases, µj1 and µj2 control the overall RNA expression and

DNAm values for the population of cells under study. Moreover, σj1 and σj2 capture

the excess of variability (overdispersion) that is observed with respect to the baseline

noise model. Finally, ρj captures the latent correlation between molecular layers.

4.2 Prior specification

A popular prior choice for covariance matrices is the inverse Wishart distribution.

However, this has been shown to bias correlation coefficients depending whether

marginal variances are small or large [25]. In [26] they use a separation strategy to

decouple correlation from marginal variances. Then, one approach is to keep Inverse

gamma for marginal variances and use uniform priors. Our prior specification for Σj

is based on the parametrization introduced in (2), with independent priors assigned

to all gene-specific parameters. Our prior specification is given by

πj
ind∼ Beta(aj , bj), (5)

µj
iid∼ N(m,H), (6)

σj1, σj2
iid∼ Inv-Gamma(c1, c2), (7)

ρj
iid∼ Beta[−1,1](d1, d2). (8)

In (8), the prior for ρj corresponds to a four-parameter Beta distribution, whose

support has been scaled to be [−1, 1].

4.3 Implementation

As the posterior distribution associated to the model above does not have a closed

analytical form, inference is implemented using a mixture of Hamiltonian Monte

Carlo (HMC) [27] and Gibbs Sampler [28]. Apart from latent mean parameters µj
which is sampled with Gbbs, the remaining parameters are sampled using HMC.

HMC updates were implemented and tunned using the tuneSampler Matlab library

[29].

For all the analyses shown in this article, we obtained 1500 samples from this

algorithm and discarded the first 1050 iterations (burn-in) before estimating model

parameters. Convergence is monitored using the Gelman-Rubin criterion [30].

4.4 A probabilistic rule to detect statistically significant associations across layers

SCRaPL identifies genes with statistically significant correlation across molecular

layers (e.g. RNA expression and promoter DNAm) based on the posterior distribu-

tion of gene-specific latent correlation parameters ρj . Our decision rule depends on

whether the posterior mass for |ρj | is concentrated around high values. As in [16],

this is quantified by the following tail posterior probabilities

pj(γ) = P (|ρj | ≥ γ) , (9)
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where γ (> 0) denotes a minimum correlation threshold. If pj(γ) is greater than a

probability threshold α, a statistically significant correlation is reported for gene j.

Suitable values for γ and α could be chosen using different approaches. In princi-

ple, γ can be fixed a priori by the user. Instead, we adopt a data-driven approach

based on the distribution of gene-specific posterior estimates obtained for |ρj | us-

ing negative control datasets ( Supplementary Section S4). Such distribution can

be used to quantify the strength of correlation estimates that can be expected by

chance for a given sample size and sequencing depth. As a default choice, we select

γ to match the 90% quantile of the distribution described above. For a fixed value

of γ, a grid search is used to select α according to a target Expected False Discovery

Rate (EFDR) [17]. The latter is defined as

EFDRα =

∑J
j=1 (1− pj(γ)) I (pj(γ) ≥ α)∑J

j=1 I (pj(γ) ≥ α)
, (10)

where I(A) = 1 if A is true, 0 otherwise. Our default target EFDR is equal to 10%.

4.5 Current approach based on Pearson’s correlation

To date, single cell multi-omics analyses have primarily used the Pearson’s cor-

relation coefficient r to quantify associations between different types of molecular

data (e.g. [4][6]). These estimates are directly derived from the observed data and do

not assume a specific noise model. As the input for this calculation, gene expression

data is typically normalised (e.g. using scran [15]) and subsequently log-transformed

after adding a pseudocount.

Based on these estimates, statistically significant correlations are selected by con-

trasting the hypotheses H0 : r ≤ u and H1 : r ≥ u, for me threshold u. To control

the False Discovery Rate (FDR) across genes, the Benjamini-Hochberg correction

[31] is typically used.

4.6 Comparing between alternative models

SCRaPL is a noise-aware approach designed to deal with different types of multi-

omics data. Dealing with data is achieved by incorporating likelihoods tailored to

data produced by current and future sequencing technologies. With the ongoing

debate on the importance of zero-inflation [13] still open, a natural question that

arises is how to choose models that take into account zero-inflation with others

that do not. In particular, how to decide if Poisson or zero-inflated Poisson is more

appropriate for a specific gene. Since posterior model samples are available, we do

model selection using Deviance Information Criterion (DIC) [14]. DIC is a method

for assessing goodness of fit while penalizing large effective numbers of parameters

between alternative models and it is estimated using 11.

DIC = 2D (θ)−D
(
θ
)
,

D (θ) = −2 log [P (y | θ)] + const.
(11)

Where D (θ) and θ is the expectation of D (θ) and θ respectively wrt. θ. Essentially

DIC assign a score to each alternative with lower DIC values indicating more prefer-

able models. To justify the use of zero-inflation in SCRaPL we fit the zero-inflated
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and the standard Poisson in the methylation/expression 2500kbp promoters of [6].

For around 60% of the genes in the dataset, DIC favors zero inflation.
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Figure 6: Difference between model with and without inflation. The more neg-

ative the difference, the stronger the evidence in favor of the model with zero

inflation is and vice versa. For comparison AIC is also plotted in red.

4.7 Data aggregation

To aggregate methylation/accessibility data from different cells we follow a win-

dow based approach. Reads are mapped using the GRCm38 mouse genome (ac-

cession number GSE56879). For more information, the reader is directed to the

appendix. As we would also like to understand how our window choices affect our

results, especially when looking at enhancer regions where information tends to be

more sparse, we consider multiple windows.

When looking at promoter regions in methylation/expression data in both

datasets, a window of ±2.5kbp worked well.

4.8 Generating synthetic data

The first set of data were generated using SCRaPL’s generative model. We de-

signed three types of experiments to asses estimation performance as a function of

the number of cells, ZI for the expression data and methylation coverage. These

were combined with different types of underlying correlation structure:

• Experiment 1: varying numbers of cells (n ∈ {5, 10, 25, 50, 100, 200}) and

correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).

• Experiment 2: varying ZI rate (ρj ∈ {0.05, 0.10, 0.25, 0.50, 0.75}) and corre-

lation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).
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• Experiment 3: varying methylation coverage (nij sampled from Uniform

distributions with ranges given by [5, 10], [10, 20], [20, 50] and [50, 250]) and

correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).

• Experiment 4: varying numbers of cells (n ∈ {5, 10, 25, 50, 100, 200}) and

constant correlation across genes (ρj = 0.7).

• Experiment 5: varying ZI rate (ρj ∈ {0.05, 0.10, 0.25, 0.50, 0.75}) and con-

stant correlation across genes (ρj = 0.7).

• Experiment 6: varying methylation coverage (nij sampled from Uniform

distributions with ranges given by [5, 10], [10, 20], [20, 50] and [50, 250]) and

constant correlation across genes (ρj = 0.7).

In all cases, latent means and standard deviations were set as µj1 = 1, µj2 = 4,

σj1 = 2 and σj2 = 3. Unless otherwise stated, our simulations were based on:

M = 60 cells, N = 300 genes, 10% ZI rate for the expression data (πj = 0.10) and

an average methylation coverage (nij) equal to 275 across cells and genes.

A second set of experiments was designed to evaluate the performance of SCRaPL

under model mismatch. For this purpose, instead of generating latent expression

values Xij1 from a normal distribution, these were generated using scVI [18] (Sup-

plementary Figures S2-S6). Under this setup, the following experiments were per-

formed:

• Experiment 7: varying numbers of cells (n ∈ {5, 10, 25, 50, 100, 200}) and

correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).

• Experiment 8: varying ZI rate (ρj ∈ {0.05, 0.10, 0.25, 0.50, 0.75}) and corre-

lation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).

• Experiment 9: varying methylation coverage (nij sampled from Uniform

distributions with ranges given by [5, 10], [10, 20], [20, 50] and [50, 250]) and

correlation values sampled from a Beta distribution (ρj ∼ Beta(15, 15)).

• Experiment 10: varying numbers of cells (n ∈ {5, 10, 25, 50, 100, 200}) and

correlation values sampled from a Uniform distribution (ρj ∼ U(−0.8,−0.6)).

• Experiment 11: varying ZI rate (ρj ∈ {0.05, 0.10, 0.25, 0.50, 0.75}) and cor-

relation values sampled from a Uniform distribution (ρj ∼ U(−0.8,−0.6)).

• Experiment 12: varying methylation coverage (nij sampled from Uniform

distributions with ranges given by [5, 10], [10, 20], [20, 50] and [50, 250]) and

correlation values sampled from a Uniform distribution (ρj ∼ U(−0.8,−0.6)).

As before, unless otherwise stated, our simulations were based on: M = 60 cells,

N = 300 genes, 10% ZI rate for the expression data (πj = 0.10) and an average

methylation coverage (nij) equal to 275 across cells and genes.
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