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Non-equilibrium variational cluster perturbation theory:

quench dynamics of the quantum Ising model

Mohammad Zhian Asadzadeh1,2, Michele Fabrizio2, and Enrico Arrigoni1
1 Institute of Theoretical and Computational Physics,
Graz University of Technology, 8010 Graz, Austria

2 International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy

We introduce a variational implementation of cluster perturbation theory (CPT) to address the
dynamics of spin systems driven out of equilibrium. We benchmark the method with the quantum
Ising model subject to a sudden quench of the transverse magnetic field across the transition or
within a phase. We treat both the one-dimensional case, for which an exact solution is available, as
well the two-dimensional one, for which has to resort to numerical results. Comparison with exact
results shows that the approach provides a quite accurate description of the real-time dynamics up
to a characteristic time scale τ that increses with the size of the cluster used for CPT. In addition,
and not surprisingly τ is small for quenches across the equilibrium phase transition, but can be quite
larger for quenches within the ordered or disordered phases.

PACS numbers:

I. INTRODUCTION

The remarkable progresses of experiments on ultracold
atoms trapped in optical lattices1–3 have boosted a great
interest in the nonequilibrium dynamics of closed quan-
tum systems, especially when they are suddenly pushed
across a quantum critical point4,5. A rich theoretical ac-
tivity thus flourished, starting from the paradigmatic ex-
ample of quantum criticality, namely the quantum Ising
model.6–8

Developing suitable tools for handling many-body sys-
tems out of equilibrium is a big challenge that started
some time ago with the pioneering works by Kubo9,
Schwinger10, Kadanoff and Baym11, and Keldysh12. This
effort continued with the work by Wagner13, who uni-
fied the Feynman, Matsubara, and Keldysh perturba-
tion theories into a single and very flexible formalism,
till latest developments related to dynamical mean field
and related cluster-embedding methods (see, e.g.14–25).
We shall in particular be concerned with the very recent
out-of-equilibrium generalization of cluster perturbation
theory (CPT)26,31, which is attractive and conceptually
simple21. In CPT the lattice is divided into small clus-
ters which can be diagonalized exactly. The inter-cluster
terms are then treated within strong-coupling perturba-
tion theory. Its nonequilibrium version allows to inves-
tigate the unitary quantum evolution in the thermody-
namic limit, accounting for non-local correlations on a
length scale defined by the size of the considered cluster.
Besides the simplicity of the formulation, the efficiency
and accuracy of the specific implementation is also of
major importance.
The main purpose of this work is to develop a non-

equilibrium variational implementation of CPT for spin
systems. We test the method on the quantum Ising
model after a sudden quench of the transverse field. Since
the model is exactly solvable in one dimension we have
the possibility to benchmark the approach. We also in-
vestigate the same model in two dimensions where an

exact solution is not available. In this case, we compare
with finite-size exact diagonalization results. We discuss
in detail how to efficiently implement the method so to
allow reaching relatively long simulation times with mod-
erate computational effort.
The paper is organised as follows. In section II the

non-equilibrium Green’s function formalism is briefly pre-
sented. The model we shall study is introduced in sec-
tion III. Section IV describes the CPT method together
with its self-consistent variational improvement. Results
are reported in Sec. V. Section VI is devoted to conclud-
ing remarks.

II. NON-EQUILIBRIUM GREEN’S FUNCTIONS

In this section we briefly outline the non-equilibrium
Green’s function formalism to set up the notations that
we shall use throughout the paper. There is a wide lit-
erature on the subject but in this work we mainly follow
the Kadanoff-Baym-Wagner scheme11,13.
Consider a system initially (at time t0 = 0) at equi-

librium described by a Hamiltonian Heq and tempera-
ture 1/β. At t > t0 a generic time dependent Hamilto-
nian H(t) is switched on. The non-equilibrium formalism
works through averages of time-ordered products of oper-
ators along the Kadanoff-Baym contour11,12,38,39 shown
in Fig. 1. The contour is composed of three branches: it
starts at t0 = 0, runs up to tmax and then back to the
initial time, and finally moves parallel to the imaginary
axis up to τ = −iβ.
Due to the lack of time translation invariance, the non-
equilibrium single-particle Green’s function depends on
two time variables rather than on their difference and is
defined as the contour ordered expectation value

Gi,j(z, z
′) = −i〈TCai(z)a

†
j(z

′)〉 =

= −iθC(z − z′)〈ai(z)a
†
j(z

′)〉 − iθC(z′ − z)〈a†j(z
′)ai(z)〉 ,

(1)
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FIG. 1: The L shaped Kadanoff-Baym contour C . The arrows
indicate the contour ordering. For example, t′ lies ahead of t
in the ordering (t > t′), i.e., operators at t′ are sorted to the
right by the contour ordering

where a†i (ai) are the creation (annihilation) operators for
particles, in the present case bosons, at site i and z, z′ are
variables on the contour C, and can be real or imaginary
depending on the branch of the contour in which they
lay. The time evolution of the operators on the Kadanoff-
baym contour is defined in the Heisenberg picture with
Hamiltonian H(z). T is the time ordering operator and
is defined via the contour step function θC(z − z′). The
averages in Eq. (1) are over the initial equilibrium Hamil-
tonian Heq at temperature 1/β.
The Dyson equation reads

Ĝ = Ĝ0 + Ĝ0 • Σ̂ • Ĝ , (2)

where Ĝ0 is the bare Green’s function and Σ̂ the self-
energy. The product symbol • denotes the matrix multi-
plication in space and the integration over the time vari-
ables along the contour C.
For a given Green’s function Ĝ(z, z′) each variable

z, z′ can lay on one of the three branches of the con-
tour in Fig. 1. This prompts an alternative representa-
tion of Ĝ as a 3 × 3 matrix, as introduced by Wagner13.
Of the 9 matrix elements, only 6 are linearly indepen-
dent, so that after a suitable transformation one is left
with 6 nonzero terms, which are referred to as the re-
tarded (GR), advanced (GA), Keldysh (GK), left-mixing
(G⌉), right-mixing (G⌈) and Matsubara Green’s function
(GM ). They are explicitly given as

GR
i,j(t, t

′) = −iθ(t− t′)〈[ai(t), a
†
j(t

′)]〉 ,

GA
i,j(t, t

′) = GR
j,i(t

′, t)∗ ,

GK
i,j(t, t

′) = −i〈{ai(t), a
†
j(t

′)}〉 ,

G
⌉
i,j(t, τ) = −i〈a†j(τ)ai(t)〉 ,

G
⌈
i,j(τ, t) = −i〈ai(τ)a

†
j(t)〉 ,

GM
i,j(τ, τ

′) = −〈Tτai(τ)aj(τ
′)〉 ,

(3)

where t and t′ are real times and τ, τ ′ ∈ [0,−iβ]. In the
above equations {. . . } and [. . . ] stem for anticommutator
and commutator, respectively.

III. HAMILTONIAN

The Hamiltonian of the Ising model in a transverse
field is given by

H = −J
∑

〈i,j〉

Sx
i S

x
j + h

∑

i

Sz
i , (4)

where 〈i, j〉 means summation over nearest neighbor
spins, and h is the strength of the magnetic field, with
J > 0 and h > 0. In the following we shall work in
units of J = 1. The Hamiltonian of Eq. (4) in one
dimension has an exact solution which is obtained by
a Jordan-Wigner transformation that maps the system
onto a quadratic Hamiltonian for spinless fermions, which
can be exactly solved35,36. On the other hand, in two di-
mensions an exact solution is not available37.

Cluster embedded techniques such as CPT in equi-
librium have been applied to fermionic and bosonic
systems40–44. Out of equilibrium, CPT has been applied
to the fermionic Hubbard model21,22. Here we formulate
nonequilibrium CPT for spin systems, exploiting the
well known equivalence between spin-1/2 operators
are hard-core bosons. We also provide a variational
improvement of it, which allows to treat the ordered
phase.

Specifically, if we assume that spin-up corresponds to
the presence of a hard-core boson, and spin-down to its
absence, the following relationships between spin and bo-
son operators hold4

S+ → a† ,

S− → a ,

Sz → a†a− 1/2 ,

Sx → (a+ a†)/2 ,

(5)

where S+ and S− are raising and lowering spin operators,
respectively.

The Hamiltonian in the bosonic representation then
becomes

H = −
J

4

∑

〈i,j〉

(aiaj + a†ia
†
j + aia

†
j + a†iaj)

+h
∑

i

(a†iai − 1/2) + U
∑

i

ni(ni − 1)

(6)

where the on-site Hubbard-like term enforces the hard-
core constraint when U → ∞, and ni = a†iai. Since
the Hamiltonian contains both normal and anomalous
hopping terms, Green’s functions with anomalous terms
are needed to study the system (see appendix A).
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FIG. 2: Partitioning of a D=1 lattice into clusters with size
Lc = 4. The inter-cluster hopping is denoted by V

IV. METHOD

A. Cluster perturbation theory

Cluster perturbation theory (CPT)26,31 is a simple
quantum cluster method to deal with correlated systems.
In this approach the idea is to embed a finite cluster of
sites, for which a numerically exact solution is affordable,
into the infinite lattice. In practice the starting point is
to partition the original D-dimensional lattice of linear
size L into clusters of linear size Lc with open bound-
aries. Fig. 2 shows an example for a tiling in D = 1 and
Lc = 4. All clusters are considered as supercells that
form a superlattice, each supercell being identified by a
superlattice vector r. The sites within each cluster are in
turn labelled by vectors R. The lattice Hamiltonian H
is thus written as

H = H0 + V , (7)

where H0 corresponds to the cluster Hamiltonian and V
describes the inter-cluster terms. CPT Green’s function
can be obtained by a subsequent expansion in powers of
the inter-cluster hopping. Diagrammatic28,29 and cluster
dual fermion approaches30 provide a systematic expan-
sion in terms of the inter-cluster terms, which then has
to be truncated at some order. Within strong-coupling
perturbation theory26,27 one obtains an expression for the
lattice Green’s function at lowest order

G(ω) = G0(ω)−G0(ω)V G(ω) , (8)

where V is the matrix representation of the inter-cluster
hopping, G0(ω) the exact equilibrium Green’s function
of the cluster and the product is just a matrix multipli-
cation in lattice sites. The Green’s function G0 is di-
agonal in r and identical for all supercells, whereas V
is off-diagonal in r. Because of superlattice translation
invariance, the above equation is simpler in momentum
space. After partial Fourier transform, r → q, the CPT
equation transforms into

G(q, ω) = G0(ω)−G0(ω)V (q)G(q, ω) , (9)

where now G, G0 and V are matrices in the label
R of the sites within each supercell. The CPT is a
conceptually simple method that nevertheless includes
short-range correlations on the scale of cluster size and
therefore requires moderate computational resources.

The idea of CPT can be straightforwardly transferred
to non-equilibrium situation by replacing the equilibrium
frequency-dependent Green’s functions with the contour
ordered ones. The authors of Ref.21 have developed a
non-equilibrium formulation for CPT (NE-CPT) and ex-
amined how the technique works for the Fermi-Hubbard
model. The NE-CPT equation reads as following

Ĝ(q) = Ĝ0 + Ĝ0 • V̂ (q) • Ĝ(q) . (10)

The solution of Eq. (10) provides the non-equilibrium

CPT Green’s function Ĝ(q). In the NE-CPT equation
the product symbol • denotes not only the matrix multi-
plication but also an integration over time variables along
the contour C. Furthermore V̂ (q) = V (q)

⊗

1 where 1 is
a δ-function on the contour, i.e., δ(z′ − z) = 1. In what
follows we shall omit the momentum dependence to sim-
plify notations. The explicit integral form of Eq. (10)
is

Ĝ(z, z′) = Ĝ0(z, z
′) +

∫

C

dz1 Ĝ0(z, z1)V Ĝ(z1, z
′) , (11)

where integration is carried out along the three branches
of the contour C in Fig. 1, i.e.

∫

C

dz1 =

∫ tmax

0

dt−

∫ tmax

0

dt+

∫ −iβ

0

dτ . (12)

The numerical solution of the generic contour equa-
tion (11) requires discretization of the time variable. A

straightforward but not efficient solution for Ĝ involves
a matrix inversion21 where large matrices in discretized
time are used. In this manner reaching long time dynam-
ics is computationally prohibitive. Alternatively, by us-
ing the Kadanoff-Baym equations11,32 one can derive the
same integral equation, Eq. (11, for the components of Ĝ
in the Wagner representation (see Eq. (3)). A practical
application of this approach to non-equilibrium dynam-
ical mean-field theory (NE-DMFT) has been presented
by Tran34. This method takes advantage of the causality
of the integral equations: the properties of the system at
specific time t = t1 do not depend on the information
at t > t1 and so its a priori knowledge is not required
in the calculation. Here we follow this approach but for
spatially inhomogeneous systems. For details of the pro-
cedure and technical issues see Appendix (A)

B. Variational cluster perturbation theory

Within CPT one is free to add an arbitrary single-
particle term −∆ to the cluster Hamiltonian H0 (Eq.
(7)) provided that it is then subtracted perturbatively,
i.e. added to V , such that the Hamiltonian H remains
unchanged. The CPT expansion is now carried out in
the new perturbation V̄ = V + ∆ with the new cluster
Hamiltonian H ′ = H0 − ∆. While ideal exact results
should not depend on ∆, in practice results do depend on
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∆ due to the approximate nature of the CPT expansion.
In this work we shall consider a Z2 symmetry breaking
term

∆ =

Lc
∑

R=1

fR Sx
R =

Lc
∑

R=1

fR
2

(

aR + a†R

)

, (13)

where fR are real variational parameters to be fixed. We
show below that accounting for this variational term is
crucial to describe the ordered phase of quantum Ising
model. The optimum value of the variational param-
eters fR should be determined through a variational
principle16,33,46. Here we shall resort to a simplified
version of the variational procedure introduced in 33,46.
Specifically, we fix the variational parameters within
a self-consistent approach where the inter-cluster term
Sx
i Sx

j is replaced with its mean-field approximation as

Sx
i S

x
j = 〈Sx

i 〉S
x
j + Sx

i 〈S
x
j 〉 − 〈Sx

i 〉〈S
x
j 〉 . (14)

In one dimension, for example, upon tiling the infinite
lattice into clusters of size Lc, the mean-field expression
for the supercell Hamiltonian at equilibrium is

H ′ = −J

Lc−1
∑

R=1

Sx
RS

x
R+1 + h0

Lc
∑

R=1

Sz
R

−fLc
Sx
1 − f1 S

x
Lc

, (15)

where fR = J〈Sx
R〉, R = 1, Lc are the mean-field self-

consistency conditions and, by translational symmetry,
we shall set f1 = fLc

.

Out of equilibrium the variational parameters become
time dependent. The protocol we shall implement is a
sudden quench of the magnetic field from h0 to a different
value h. Therefore the explicit time dependent mean-field
cluster Hamiltonian becomes

H ′(t) = −J

Lc−1
∑

R=1

Sx
RS

x
R+1 + h

Lc
∑

R=1

Sz
R

−fLc
(t)Sx

1 − f1(t)S
x
Lc

, (16)

with the self-consistency condition

fR(t) = fR(t)
∗ = J 〈Ψ(t)|Sx

R|Ψ(t)〉 , (17)

where |Ψ(t)〉 is the time evolved cluster wavefunction. In
order to evaluate the time dependent variational param-
eters fR(t) we expand the latter to linear order

|Ψ(t+∆t)〉 ≈
(

1− iH ′(t)∆t
)

|Ψ(t)〉+O(∆t2) (18)

starting from the initial equilibrium state |Ψ(t = t0)〉. As
a result, the parameters fi(t+∆t) can be taken as

fi(t+∆t) ≈ J〈Ψ(t+∆t)|Sx
i |Ψ(t+∆t)〉 (19)

at each time step.

C. CPT corrections to the order parameter

Due to the presence of anomalous terms linear in cre-
ation and annihilation operators the new perturbation V̄
including ∆ (Eq. 13) is not quadratic in the boson op-
erators and therefore one has to generlaize CPT to deal
with anomalous terms as well- The way to do this (see
Ref.33,46) is to first perform starndard CPT on top of
the cluster Hamiltonian H ′ (Eq. 15) by using just the
quadratic part of V as a perturbation. The CPT correc-
tion to the condensate can be then obtained by using an
expression derived within a so-called pseudoparticle for-
mulation of CPT46 for the Bose-Hubbard model in the
superfluid phase, and, subsequently confirmed more for-
mally within a self-energy functional approach.46 For the
equilibrium case, one obtains

G−1〈A〉 = G
′−1〈A〉′ + F , (20)

where G and 〈A〉 are the CPT corrected Green’s function
and expectation value of the condensate, respectively,
while the terms with prime stands for their cluster values.
The vector F describes the variational parameters f of
Eq. (13). In Eq. (20) the Green’s functions are 2Lc×2Lc

Nambu matrices and the 〈A〉, 〈A〉′ and F are 2Lc Nambu
vectors, namely

〈A〉′ =

































〈a′1〉
.
.
.

〈a′Lc
〉

〈a
′†
1 〉
.
.
.

〈a
′†
Lc
〉

































, 〈A〉 =































〈a1〉
.
.
.

〈aLc
〉

〈a†1〉
.
.
.

〈a†Lc
〉































, 2F =































f1
.
.
.

fLc

f∗
1

.

.

.
f∗
Lc































. (21)

Out of equilibrium it is straightforward to generalize
Eq. (20) to an equation along the contour:

Ĝ−1 • Â = Ĝ
′−1 • Â′ + F̂ , (22)

where the ingredients are now contour functions. Again,
the symbol • represents matrix multiplication in space
and time integration along the contour. We further sim-
plify this expression by multiplying both sides of it by Ĝ
from the left. This leads to

Â = Ĝ • Ĝ
′−1 • Â′ + Ĝ • F̂ , (23)

where we have used the fact that Ĝ • Ĝ−1 = 1. Via the
CPT equation (10) one can further derive the expression

Ĝ • Ĝ
′−1 = 1 + Ĝ • V̂ . (24)

After substituting into Eq. (23), one finally gets the fol-
lowing equation for the condensate including CPT cor-
rection

Â = Â′ + Ĝ • V̂ • Â′ + Ĝ • F̂ . (25)
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We rewrite this equation by expressing the contour inte-
gration explicitly as

Â(z) = Â′(z) +

∫

c

dz̄ Ĝ(z, z̄)
(

V Â′(z̄) + F̂ (z̄)
)

, (26)

where z, z̄ are contour variables (see Fig. 1). By employ-
ing Langreth theorem50 one can break down the contour
integrations into contributions on the real and imaginary
time axes. For the condensate on the real time branch of
the contour we get

A(t) = A′(t) +

∫ t

0

dt̄GR(t, t̄)
(

V A′(t̄) + F (t̄)
)

+

∫ −iβ

0

dτ̄ G⌉(t, τ̄ )
(

V A′(τ̄ ) + F (τ̄ )
)

,

(27)

where we have used GR(t, t′) = θ(t, t′)
(

G>(t, t′) −

G<(t, t′)
)

. Similarly for the condensate on the Matsub-

ara branch we derive

A(τ) = A′(τ) +

∫ −iβ

0

dτ̄ GM (τ, τ̄ )
(

V A′(τ̄ ) + F (τ̄ )
)

.

(28)
We note from Eq. (27) that, in order to evaluate A(t)
within CPT, the mixing Green’s function G⌉ and re-
tarded Green’s function GR have to be determined first.
It is crucial to employ high-order numerical integration
schemes to accurately simulate up to long times. We refer
to Appendix. (A) for more details.

D. Magnetization

The time dependent magnetization is obtained as

Sz(t) =
1

L

∑

q

Lc
∑

R=1

〈

a†R,q(t) aR,q(t)−
1

2

〉

, (29)

where L = NcLc is the total size of the lattice.
〈a†R,q(t) aR,q(t)〉 can be extracted from the lesser com-
ponent of the Green’s function within CPT

〈a†R,q(t) aR,q(t)〉 = i G<
RR,q(t, t) . (30)

Adding the contribution from the condensate, the final
expression for the magnetization is

Sz(t) =
1

L

∑

q

∑

R

i G<
RR,q(t, t)

+
1

Lc

Lc
∑

R=1

(

〈 a†R(t) 〉 〈 aR(t) 〉 −
1

2

)

,

where 〈a†R(t)〉 and 〈aR(t)〉 are elements of the vectorA(t),
see Eq. (27).
For a finite lattice with open boundary conditions, trans-
lation symmetry is lost and therefore the magnetization is
position dependent, more pronounced close to the bound-
aries.
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FIG. 3: Magnetization along the z direction versus magnetic
field for different sites on a lattice of size L = 8 with open
boundary condition. Cluster size in CPT is Lc = 4. Exact
results are also being reported for comparison.

V. RESULTS

In the following we apply the technique discussed in
the previous section for both equilibrium and nonequi-
librium situations. Moreover, by comparing the results
with exact ones in one dimension we asses the accuracy
of the method.

A. Equilibrium results

Before applying the technique out of equilibrium we
investigate its ability to describe the system already in
equilibrium. This is actually a necessary step since the
present non-equilibrium protocol assumes that the sys-
tem is prepared as the ground state of an initial Hamil-
tonian and is then evolved with a different Hamiltonian.
Therefore, an accurate equilibrium state is a prerequisite
for getting a sensible after-quench dynamics. The CPT
method can work directly in the thermodynamic limit,
however, in order to compare with exact results in one
dimension, we shall consider a finite system with linear
size L = 8 with open boundary conditions. In the CPT
method the procedure is thus to divide the system into
two parts, A and B, each one with size Lc = 4, and then
treat the inter-cluster term perturbatively, see Fig. 2.
We first set the anomalous term to zero in the cluster

Hamiltonian, i.e, ∆ = 0 in Eq. (13). In Fig. 3 we display
the magnetization parallel to the magnetic field, 〈Sz〉, for
sites i = 1 to i = 4 compared with exact result. As we
see CPT works well for large values of magnetic field and
reproduces results close to exact ones. By contrast, upon
decreasing h the accuracy decreases. Standard CPT to-
tally fails close to the mean-field critical field (hc = 0.7).
Therefore the standard CPT is unable to correctly de-
scribe the physics for h < 0.7.
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FIG. 4: Left panel: Ground state energy from CPT com-
pared with the exact value for lattice of size L = 8 with open
boundary condition. Right panel: f = J〈Sx

1B〉 = J〈Sx

4A〉

This kind of instability is well known in approaches
based on the bosonic Bogoliubov approximation, such as
the spin-wave approximation. The Green’s function for
free bosons (U = 0 in the Hamiltonian of Eq. (6)) has

two poles at z = ±
√

h2 − J2

4
. It is clear that for h < J/2

the poles move to the imaginary axis, a clear signal of an
instability. The same explanation applies to the interact-
ing Hamiltonian Eq. (6) and to the instability seen in Fig.
3. The poles of the Green’s function become complex for
small values of magnetic field, i.e. for h < 0.7. This is
the region where the hard-core constraint of the bosons
becomes important and the standard CPT fails to satisfy
this condition. We control the location of the poles by
adding the variational term ∆ in Eq. (13) to the cluster
Hamiltonian, which explicitly breaks the Z2 symmetry
and induces the spontaneous breaking of such symmetry
at low fields. After finding self-consistently the optimum
value for the variational parameters we compute the CPT
corrections as explained in the previous section.

In Fig. 4 on the left panel we show the result for the
ground state energy compared with the exact one. The
agreement is quite good in the whole range of magnetic
fields. On the other hand, it is well known that the energy
is a quantity that is not much sensitive to perturbations,
so one could argue that this agreement is not significa-
tive. On the other hand, the right panel shows the value
of the variational parameter f = J〈Sx

1B〉 = J〈Sx
4A〉. This

quantity shows a phase transition at hc = 0.7, below
which 〈Sx〉 acquires a finite value. Strictly speaking such
a phase transition should not occur on a finite size sys-
tem, where 〈Sx〉 must be zero by symmetry, so its emer-
gence is a spurious results that derives from the varia-
tional scheme. In the thermodynamic limit the transition
does instead occur, although the critical field is known to
be hc = 0.5. Nevertheless, by increasing the length Lc of
the cluster up to Lc ≈ 16 we observe a decrease of hc to
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FIG. 5: Magnetization of different sites versus magnetic field
for a lattice of size L = 8 with open boundary condition. The
cluster size in CPT is Lc = 4. Exact results are also reported
for comparison

values close to the exact value. For the time dependent
calculation and for our benchmark, however, we have to
stick to smaller values of Lc ≈ 4. Keeping in mind this
caveat, let us turn to compare other physical observable
different from Sx.
In Fig. 5 we report the z magnetization on the sites

1, 2, 3, 4 compared with the exact value. As we see the
comparison is quite satisfactory. At site i = 1 and for the
whole range of magnetic fields, CPT results are very close
to exact ones especially in the instability region h ≤ 0.5.
Around h = 0.7 the results are less close to the exact
ones mainly for the site i = 4 at the edge of the system.
It is worth mentioning that the hard-core constraint

implies the following relation between expectation values:

〈a†iai〉+ 〈aia
†
i 〉 = 1 . (31)

We found that within the present self-consistent CPT the
expectation value of the above expression slightly devi-
ates from one by about 10−3 on the average, with a max-
imum of the order of 10−2 at h = 0.7 and for the sites at
the edge of the supercell, as shown by the kink around
h = 0.7 in Fig. 5. This is due to the fact that treating
inter-cluster terms perturbatively violates the constraint
within CPT, mainly for the edge sites.

B. Non-equilibrium results

In this section we present results for the real time dy-
namics of the Ising model within the variational cluster
perturbation approach introduced above. To drive the
system out of equilibrium we proceed as follows. We pre-
pare the system at equilibrium for t0 < 0 as the ground
state of Eq. 4 with magnetic field h0 and then we sud-
denly change the magnetic field to a different value h.
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FIG. 6: Time dependence of the magnetization in the z direc-
tion for different sites on a lattice of size L = 8. The cluster
size in CPT is Lc = 4. The magnetic field has been suddenly
changed from h0 = 0.2 to h = 1.2. The exact dynamics is
shown for comparison.

As in equilibrium we use variational NE-CPT in a self-
consistent way as described in section (IV). After find-
ing the time dependent variational parameters for each
time step in the mean-field approximation, we calcu-
late Green’s function and condensate within CPT as de-
scribed in Sec. IV.

To benchmark this idea for the non-equilibrium case we
display in Fig. 6 the real time dynamics of magnetization
for different sites on a lattice of size L = 8 with open
boundary condition at zero temperature. We compare
results obtained exactly with results within CPT for a
cluster size of Lc = 4. We have reported the dynamics
for the case of relatively large quench, from h0 = 0.2 to
h = 1.2, for which the field crosses the phase transition.
As we can see, NE-CPT provides quite good results for
the magnetization compared to the exact one except for
the edge sites where the hopping to the next supercell is
treated perturbatively. At the beginning of the dynamics
NE-CPT is very accurate and the deviation builds up as
time progresses.

We have investigated different types of quenches and
the behavior is qualitatively the same: the dynamics re-
mains close to the exact one at short times and starts
deviating at later times. As mentioned, the largest devi-
ations are found at the edge sites.

In Fig. 7 we report NE-CPT results for the magneti-
zation dynamics after the quench for an infinite lattice.
We display results obtained for different cluster sizes and
different types of quenches. For quenches into the or-
dered phase (see lower left and right panels), NE-CPT
for a cluster of Lc = 6 provides quite accurate results for
the magnetization dynamics up to t ≈ 7 (remember, that
time is in unit of 1/J). For a larger quench from h0 = 1.2
to h = 0.4, crossing the transition point, NE-CPT is able
to reproduce the dynamics only up to a shorter value
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FIG. 7: Time dependence of the magnetization for an infinite
ising chain evaluated within NE-CPT with differnt cluster
sizes Lc compared with exact results for a chain of length
L = 400.

of the time t ≈ 5 (see upper left panel). For quenches
within the disordered phase (quench from h0 = 1.2 to
h = 1.6) NE-CPT results show only a slight deviation
(<∼ 10−3) from the exact one, however with some small
oscillations (see upper right panel). Overall, NE-CPT
results for an infinite system systematically improve by
increasing cluster size Lc. Already for Lc ≈ 6 they repro-
duce quite accurate results for the thermodynamic limit
of a very long chain (L = 400) up to t ≈ 7.
Finally we report the real time quench dynamics of
the magnetization for the two dimensional Ising Model,
which is not exactly solvable. In D = 2 the transverse
field Ising model at zero temperature has an equilib-
rium phase transition at hc ≈ 1.647–49. Within the self-
consistent variational CPT at equilibrium we get instead
hc ≈ 1.9, for the small 2× 2 clusters we are considering.
We note that the accuracy of CPT improves systemat-
ically by increasing the cluster size. We show results
for different types of quenches which are obtained either
within a disordered or a ordered phase or a quench which
crosses the critical field. Here we compare Lanczos ex-
act results obtained for three different lattice sizes with
periodic boundary condition to NE-CPT results using
clusters of size Lc = 2 × 2. We note that the largest
size we can reach to perform real time quench dynamics
within Lanczos at zero temperature is L = 4× 4.

For a small quench in the ordered phase, h0 = 0.2 to
h = 0.4 (Fig. 8 lower left-panel) NE-CPT gives quite
accurate results, as compared with Lanczos exact re-
sults. We observe that magnetization dynamics within
NE-CPT is quite close to the best of the Lanczos for times
up to tmax = 10. We further note that in this case the
Lanczos results already show convergence as a function
of system size so that they can be considered as a good
approximation to the thermodynamic limit for these val-
ues of the parameters. For a larger quench but still in the
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FIG. 8: Dynamics for the magnetization compared to Lanczos
results for different types of quenches in two dimension. NE-
CPT calculation is for an infinite lattice with the cluster size
of Lc = 2× 2.

ordered phase, i.e. h0 = 1.2 to h = 0.4 (top left-panel of
Fig. 8) the NE-CPT results compare well with Lanczos
results up to tmax ≈ 6. For quenches with large mag-
netic fields, i.e. into the disordered phase from h0 = 2.0
to h = 2.5 (top right-panel in Fig. 8) the Lanczos results
have not converged yet, so a comparison is difficult to
assess. Nevertheless, the NE-CPT results quantitatively
agrees with the largest Lanczos system up to t ≈ 2, and
agrees qualitatively, i.e. displays similar oscillations, also
for larger times. The lower right-panel in Fig. 8 shows
the dynamics for a large magnetic quench that crosses
the critical point, i.e. from h0 = 0.2 to h = 2.0. In
this case the NE-CPT seems not to be accurate and is
able to produce reliable dynamics only up to tmax ≈ 2.
We note that in all cases the magnetization stays within
its physical values, |Sz| ≤ 1

2
, except for a quench across

the critical point. With cluster sizes of Lc = 2 × 2 re-
sults are already promising in two dimensions, as long
as one restricts to intermediate times. Furthermore, as
in the D = 1 case, NE-CPT results can be improved by
systematically increasing the cluster size.

VI. SUMMARY

We have introduced a variational formulatiuon of clus-
ter perturbation theory (CPT) to investigate the quan-
tum Ising model in and out of equilibrium at zero tem-
perature. We find that plain CPT in equilibrium can
describe accurately the system in the disordered phase,
h > hc, but looses accuracy while approaching the criti-
cal field hc and finally breaks down in the ordered phase,
h < hc. To describe the system in the broken symme-
try region we developed a variational implementation of
CPT, whereby an anomalous term is added to the cluster
Hamiltonian and subtracted perturbatively. This param-

eter is then optimized within a self-consistent framework.
We find a good agreement with exact results in the equi-
librium case, for example concerning the magnetisation
parallel to the magnetic field and the ground state energy.
Out of equilibrium the time dependent variational pa-

rameter are determined self-consistently for each time
step. We find that this variational NE-CPT provides very
accurate results for the short and intermediate time dy-
namics while getting inaccurate for longer times. Specif-
ically in one dimension, comparing results of this NE-
CPT approximation with exact calculations shows that
clusters of size Lc = 6 provide quite accurate description
of the dynamics up to tmax ≈ 7 for quenches within the
ordered or disordered phases. When the critical point is
crossed, the accuracy is limited to shorter times tmax ≈ 3.
A similar trend emerges also in two dimensions. Here,
there is no exact solution to be compared with, so that
we resort to finite-size Lanczos diagonalization to bench-
mark the method. One should notice, however, that NE-
CPT can directly provide results in the thermodynamic
limit. We highlight that the accuracy of NE-CPT can be
systematically pushed to longer time by increasing the
cluster size, at least up to the largest sizes still reachable
by Lanczos time evolution.
This variational approach shall be considered as a first

step to study hard-core bosons in and out of equilibrium
by a variational CPT method. This idea could be im-
proved and getting more elaborate by considering more
variational terms and/or formulating it within the self-
energy functional theory16.
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Appendix A NUMERICAL SOLUTION OF CPT

EQUATION

A Time propagation

For spatially inhomogeneous systems, the computa-
tional limits are set by the memory requirement for sav-
ing big matrices in two time and spatial degrees of free-
dom. Considering NK time steps on the Keldysh and
NM on the Matsubara for a lattice of size L the required
memory to save the Green’s function is

(2 ∗ L ∗ (2 ∗NK +NM ))2 ∗ 16 bytes (32)
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Therefore, for a NK = 1000, tmax = 10, NM = 2000, β =
10, L = 8 the required memory is 61 Gigabytes. This
example shows that reaching large time or large system
sizes (t >∼ 10J, L >

∼ 6) is prohibitive since the memory re-
quirement is beyond the capabilities of standard available
computational resources. Another issue is the inversion
of the huge matrix in the CPT equation to get the lattice
Green’s function. When the matrix size increases the in-
version process takes longer time and also the numerical
error will increase.
Based on the above facts one has to design a way to avoid
matrix inversion and the storage of huge matrices to fi-
nally be able to reach longer times for the dynamics of
the system.

B Procedure to propagate the CPT equation in

time

In this section, we summarize the procedure to numer-
ically solve the CPT equation by gradually progressing
in time in order to avoid inversion and storage of big ma-
trices. Since this equation is of the Kadanoff-Baym type,
there is a great deal of literature on the subject (see,
e.g.32). For example, the method is used in time depen-
dent dynamical mean-field theory (TDMFT)19,34, where,
however the system is typically translationally invariant.
In our case, where we deal with finite systems, we have
to consider spatial degrees of freedom and, accordingly,
solve a corresponding set of equations for inhomogeneous
system.

Here, we roughly follow the treatment of Ref.34, see
also 32. Here, in addition, we consider the case of an in-
homogenous system. The CPT equation for the Green’s
function Ĝ of the physical system is

Ĝ = Ĝ0 + Ĝ0 • V̂ • Ĝ (33)

Where Ĝ0 is the cluster Green’s function and V̂ = V
⊗

1

is the inter-cluster term. By introducing K̂ = Ĝ0 • V̂ we
rewrite the CPT equation as

Ĝ = Ĝ0 + K̂ • Ĝ (34)

and after writing the contour integration explicitly we
have

Ĝ(z, z′) = Ĝ0(z, z
′) +

∫

C

dz1K̂(z, z1)Ĝ(z1, z
′) (35)

Using Langreth theorem50 we can write the integral
equation for the components of the Green’s function on

the contour. We obtain the following equations:

G< = G<
0 +K< ·GA +KR ·G< +K⌉ ∗G⌈

G> = G>
0 +K> ·GA +KR ·G> +K⌉ ∗G⌈

GR = GR
0 +KR ·GR

GA = GA
0 +KA ·GA

G⌉ = G0 +KR ·G⌉ +K⌉ ∗GM

G⌈ = G
⌈
0 +K⌈ ·GA +KM ∗G⌈

GM = GM
0 +KM ∗GM

(36)

where . means integration over real time and ∗ over imag-
inary time (Matsubara branch).
We are interested in the magnetization which can be cal-
culated from the lesser (G<) Green’s function. To Solve
the equation for G< first we need to calculate GA and
G⌈ within CPT. Furthermore to determine G⌈ we need to
evaluate the Matsubara Green’s function GM which can
be calculated with equilibrium techniques. The cluster
Green’s function Gα

0 , (α =<,R,A,>, ⌈, ⌉) also should be
calculated for an affordable cluster size.
It is also worth to mention that due to the presence of

anomalous terms like aiaj and a†ia
†
j in the Hamiltonian

of Eq. (6) the structure of the Green’s function matrix
also should include anomalous Green’s functions in order
to satisfy the correct equation of motion. Therefore the
Gα, (α =<,R,A,>, ⌈, ⌉), is a matrix in itself with the
following Nambu structure

Gα =

[

gα fα

fα† kα

]

(37)

The definition of the Green’s functions are as follow:
1) Advanced Green function:

gAi,j(t, t
′) = iθ(t′ − t)[〈ai(t)a

†
j(t

′)〉 − 〈a†j(t
′)ai(t)〉]

kAi,j(t, t
′) = iθ(t′ − t)[〈a†i (t)aj(t

′)〉 − 〈aj(t
′)a†i (t)〉]

fA
i,j(t, t

′) = iθ(t′ − t)[〈ai(t)aj(t
′)〉 − 〈aj(t

′)ai(t)〉]

f †A
i,j (t, t

′) = iθ(t′ − t)[〈a†i (t)a
†
j(t

′)〉 − 〈a†j(t
′)a†i (t)〉]

(38)

2) Retarded Green’s function:

gRi,j(t, t
′) = −iθ(t− t′)[〈ai(t)a

†
j(t

′)〉 − 〈a†j(t
′)ai(t)〉]

kRi,j(t, t
′) = −iθ(t− t′)[〈a†i (t)aj(t

′)〉 − 〈aj(t
′)a†i (t)〉]

fR
i,j(t, t

′) = −iθ(t− t′)[〈ai(t)aj(t
′)〉 − 〈aj(t

′)ai(t)〉]

f †R
i,j (t, t

′) = −iθ(t− t′)[〈a†i (t)a
†
j(t

′)〉 − 〈a†j(t
′)a†i (t)〉]

(39)

There is relation between retarded and advanced green’s
function: GR(t, t′) = GA†(t′, t).
3) Lesser Green’s function

g<i,j(t, t
′) = −i〈cj(t

′)†ci(t)〉

f<
i,j(t, t

′) = −i〈cj(t
′)ci(t)〉

f<†
i,j (t, t

′) = −i〈cj(t
′)†ci(t)

†〉

k<i,j(t, t
′) = −i〈cj(t

′)ci(t)
†〉

(40)
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4) Mixing Green’s function:

g
⌈
i,j(τ, t) = −i〈ci(τ)c

†
j(t)〉

f
⌈
i,j(τ, t) = −i〈ci(τ)cj(t)〉

f
⌈†
i,j(τ, t) = −i〈c†i (τ)c

†
j(t)〉

k
⌈
i,j(τ, t) = −i〈c†i (τ)cj(t)〉

g
⌉
i,j(t, τ) = −i〈cj(τ)

†ci(t)〉

f
⌉
i,j(t, τ) = −i〈cj(τ)ci(t)〉

f
⌉†
i,j(t, τ) = −i〈cj(τ)

†ci(t)
†〉

k
⌉
i,j(t, τ) = −i〈cj(τ)ci(t)

†〉

(41)

If we write the integral equation for GA we get (omitting
the spatial indexes):

GA(t, t′) = GA
0 (t, t

′) +

∫

KA(t, t̄)GA(t̄, t′)dt̄

GA(t, t′) = GA
0 (t, t

′) +

∫ t′

t

KA(t, t̄)GA(t̄, t′)dt̄

(42)

To perform the integration, we discretize the time with
equal spacing

ti = i×∆t+ t0, ∆t =
tmax − t0
NK − 1

, (i = 0, 1, ..., NK − 1)

τi = i×∆τ + t0, ∆τ =
−iβ − t0
NM − 1

, (i = 0, 1, ..., NM − 1)

(43)

where NK and NM are the number of time points on the
real and imaginary branch respectively. After approxi-
mating the integral by the trapezoid rule

∫ tb

ta

f(x)dx ≈ ∆t

N−1
∑

i=0

ωif(xi), ∆t =
tb − ta
N − 1

wi =

{

1/2 i = 0, N − 1
1 1 ≤ i ≤ N − 2

(44)

we get

GA(tm, t′n) ≈ GA
0 (tm, t′n) + ∆t̄

n
∑

i=m

wiK
A(tm, t̄i)G

A(t̄i, t
′
n)

GA(tm, t′n) ≈ GA
0 (tm, t′n) + ∆t̄

n
∑

i=m+1

wiK
A(tm, t̄i)G

A(t̄i, t
′
n)

(45)

where KA(tm, tm) = 0 is used. In the equation for GA it
is not possible to gradually propagate in the direction of
time since GA(tm, ∗) depends on later times m + 1, ...n,
in other words this equation is not of the Volterra type51

where the causal structure is evident from the limits of

the integral. To get a Volterra type of equation for the
GA we have to use another form of the CPT equation:

Ĝ = Ĝ0 + Ĝ • V̂ • Ĝ0 (46)

where now K̂ = V̂ • Ĝ0. Proceeding in the same way
as above we derive the following equation in discretized
time for the advanced Green’s function

GA(tm, t′n) ≈ GA
0 (tm, t′n) + ∆t̄

n−1
∑

i=m+1

wiG
A(tm, t̄i)K

A(t̄i, t
′
n)

(47)
We now can gradually proceed in the second index t′n for
a fixed tm.
Similarly for the retarded Green’s function we get

GR(tm1, t
′
m2) ≈ GA

0 (tm1, t
′
m2)+

∆t̄

m1−1
∑

i=m2+1

wiK
R(tm1, t̄i)G

R(t̄i, t
′
m2)

(48)

where we can progress in time by incrementing tm1 for a
fixed t′m2.
For the mixed Green’s function if we use the CPT Eq.
(46) we obtain the following integral equation:

G⌈(τ, t) ≈ G
⌈
0(τ, t) +

∫ t′

0

K⌈(τ, t̄)GA(t̄, t)dt̄+

∫ −iβ

0

KM (τ, τ̄ )G⌈(τ̄ , t)dτ̄

(49)

Since in the convolution including G⌈ the integration over
τ is on the whole Matsubara branch, it is not possible to
gradually proceed in time. So the way out is to choose
the other CPT Eq. (46) to end up in a Volterra type
equation

G⌈(τm1, tm2) ≈ G
⌈
0(τm1, tm2)+

∆t
m2−1
∑

i=0

wiG
⌈(τm1, ti)K

A(ti, tm2)

+∆τ

NM−1
∑

i=0

wiG
M (τm1, τi)K

⌈(τi, tm2) .

(50)

Here one can proceed in tm2 for a fixed τm1. The
full information of the Matsubara Green’s function on
the imaginary axis is necessary to calculate the mixing
Green’s function. This can be done by equilibrium tech-
niques, see appendix B.
Finally for the lesser greens function we have:
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G<(tm1, tm2) ≈ G<
0 (tm1, tm2)+

∆t

m2−1
∑

i=0

wiK
<(tm1, ti)G

A(ti, tm2)

+∆τ

NM−1
∑

i=0

wiK
⌉(tm1, τi)G

⌈(τi, tm2)

+∆t

m1−1
∑

i=0

wiK
R(tm1, ti)G

<(ti, tm2)

(51)

Appendix B CALCULATING EQUILIBRIUM

GREEN’S FUNCTION GM

The CPT equation for GM is not of the Volterra type,
so it is not possible to gradually proceed along the Mat-
subara axes. Fortunately due to the time translation in-
variance of the Green’s function, GM only depend on the
time difference and so one can use Fourier transformation
to go over to the frequency representation. In this way
one still has to do inversion process to get CPT Green’s
function but in this way the dimension reduces to the
size of the lattice.
The Fourier transformations between the Green’s func-
tions are as follow:

G(τ) =
1

β

∞
∑

n=−∞

G(iωn)e
−iωnτ

G(iωn) =

∫ β

0

dτeiωnτG(τ)

(52)

where τ ∈ [0, β]. By using fast Fourier transformation
(FFTW) the above transformation can be carried out

efficiently. When doing the inverse transformation we
truncate the number of Matsubara frequencies. Using N
points equally distributed among positive and negative
frequencies we get the approximation

G(τ) ≈
1

β

N/2−1
∑

n=−N/2

G(iωn)e
−iωnτ = DIFT [G(iωn)]

ωn =
π

β
2n

(53)

This scheme poorly describes G(τ) due to missing contri-
butions from the tail of G(ıω) (ωn → ∞). In practice, it
is not possible to consider an infinite number of frequen-
cies so one should calculate the tail correction directly.
If we look at the asymptotic behavior (ωn → ∞) for the
non-interacting Green’s function we realize

G(iωn) ∼ −
i

ωn
(54)

The asymptotic tail of GA(τ) can be readily calculated
by doing the Fourier transformation. For bosons we get:

GA(τ) = −
2

β

∞
∑

n=0

sin(ωnτ)

ωn
= −

1

2
+

τ

β
(55)

After a little algebra we can collect all contributions at
high imaginary frequencies in the tail of the Green’s func-
tion GT (τ) and write:

G(τ) = DIFT [G(iωn)] +GT (τ)

GT (τ) = −
1

2
+

τ

β
+

2π

β

N/2−1
∑

n=0

sin(ωnτ)

ωn

(56)
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