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Dynamics of charge fluctuations from asymmetric initial states
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Conserved-charge densities are very special observables in quantum many-body systems as, by construction,
they encode information about the dynamics. Therefore, their evolution is expected to be of much simpler
interpretation than that of generic observables and to return universal information on the state of the system
at any given time. Here, we study the dynamics of the fluctuations of conserved U (1) charges in systems that are
prepared in charge-asymmetric initial states. We characterize the charge fluctuations in a given subsystem using
the full-counting statistics of the truncated charge and the quantum entanglement between the subsystem and the
rest resolved to the symmetry sectors of the charge. We show that, even though the initial states considered are
homogeneous in space, the charge fluctuations generate an effective inhomogeneity due to the charge-asymmetric
nature of the initial states. We use this observation to map the problem into that of charge fluctuations on
inhomogeneous, charge-symmetric states and treat it using a recently developed space-time duality approach.
Specializing the treatment to interacting integrable systems we combine the space-time duality approach with
generalized hydrodynamics to find explicit predictions.
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I. INTRODUCTION

Finding an efficient description for the nonequilibrium
dynamics of interacting quantum matter is one of the main
challenges of modern theoretical physics [1–6]. Even though
this problem has been at the center of attention since the
inception of quantum mechanics [7], and with the turn of the
millennium it has become amenable to experimental investi-
gations [8], it remains to date largely open. Indeed, apart from
a few remarkable special cases [9–14], an efficient description
for the finite-time dynamics of quantum matter prepared in
an out-of-equilibrium state has not yet been found. The only
regime that can be efficiently described in generic systems
is the quasistationary regime emerging at late times, where
quantum matter behaves as a classical fluid [15–19].

Recently, a remarkable breakthrough came from exploit-
ing a duality between space and time [20,21] (see also
Refs. [9,22–27] for related approaches). In essence, the idea
is to describe the finite-time dynamics of a system in terms
of the “space-dynamics” of the “dual system” obtained ex-
changing the roles of space and time in its path integral. In
this way the far from equilibrium regime of a large system is
mapped into the quasistationary regime of its dual counterpart.
This approach works naturally for one-dimensional systems
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(although one can imagine to extend it to higher dimensions
by exchanging the roles of time and one particular spatial
dimension) and leads to predictions for the time evolution
of “universal” properties of the system such as entangle-
ment among subsystems [21] and fluctuations of conserved
U(1) charges [20]. This approach is particularly powerful for
interacting-integrable systems treatable via thermodynamic
Bethe ansatz (TBA) [28,29], where the predictions can be ef-
ficiently evaluated by solving few suitable integral equations.

Up to now, however, the space-time duality approach has
been able to capture the dynamics of charge fluctuations only
when the initial state has no charge fluctuations within a
subsystem. This constraint poses serious limitations on the
observable physics: The fluctuation of the charge in a certain
region can only originate at the region’s boundary rather than
throughout its bulk as it happens for asymmetric initial states.
The physics of charge fluctuations emerging from asymmetric
initial states is consequently much richer and, in a sense, much
more “out-of-equilibrium”. For instance, a natural question
that one can study in this setting is to what extent the sym-
metry is broken by the initial state and whether or not it gets
restored at large times [30,31].

Here, we propose a significant extension of the space-time
duality approach that is able to solve this problem. Our key
observation is that measuring the evolution of charge fluc-
tuations from states that are spatially homogeneous but not
charge symmetric makes the problem effectively spatially in-
homogeneous. This suggests it can be treated combining the
space-time duality approach with generalized hydrodynamics
[32,33], the nowadays standard theory for inhomogeneous
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quenches [19]. In the following we show that this intuition can
be made precise and find closed-form predictions for the dy-
namics of the full counting statistics of the conserved charge
and the growth of entanglement resolved to each symmetry
sector. In particular, this allows us to provide a closed-form
prediction for the evolution of the so-called “entanglement
asymmetry” [30], which characterizes the restoration of the
symmetry at late times. To the best of our knowledge,
the one presented here is the first analytical characterization
of the dynamics of charge fluctuations in the presence of
interactions and for generic initial states.

An interesting highlight of our approach is to connect
full counting statistics of conserved charges after quantum
quenches to current fluctuations on nonequilibrium steady
states. The latter are attracting increasing attention [34–43]
as they give a characterization of nonequilibrium steady
states that is directly accessible in current experimental se-
tups, see, e.g., Ref. [44]. In particular, we show that the
space-time duality approach recovers the results found via
the so-called ballistic fluctuation formalism [34,35]. Differ-
ently from the latter, however, it is immediately applicable
to multireplica quantities and can be used to character-
ize the interplay between charge fluctuations and quantum
entanglement.

In the following two subsections we define more precisely
the observables of interest and present our main results.

A. Observables of interest

The main objective of this paper is to characterize the
fluctuations of a U (1) charge, Q, within a finite-spatial region,
A, of a quantum many-body system out of equilibrium. A
natural quantity to consider is then the full counting statistics
(FCS) [45–53]

Zβ (A, t ) = tr[eβQAρA(t )], β ∈ R, (1)

where QA is the charge truncated to the region A and ρA(t ) =
trĀ[ρ(t )] is the density matrix at time t reduced to A at time t
(Ā denotes the complement of A).

We focus on the standard case where a system is brought
out of equilibrium by means of a quantum quench protocol,
i.e., the state at time t > 0 is taken to be

ρ(t ) = U t |�0〉〈�0|U−t , (2)

where U is the time-evolution operator and the initial state
|�0〉 is not one of its eigenstates [54]. In addition, here we
mainly consider the generic situation in which |�0〉 is not an
eigenstate of the charge Q, i.e., we admit

[ρA(t ), QA] �= 0. (3)

The FCS encodes all the charge fluctuations in a single replica
of the system. Indeed, upon taking derivatives of Eq. (1) with
respect to β we find all the moments of the charge

∂n
βZβ (A, t )|β=0 = tr

[
Qn

AρA(t )
]
. (4)

To characterize more general “multireplica fluctuations” one
can introduce a richer family of observables dubbed charged

moments [30,31,55–57]

Zβ(A, t ) = tr

⎡⎣ n∏
j=1

(eβ j QAρA(t ))

⎤⎦,

β = [β1 β2 · · · βn], n ∈ N, β j ∈ R, (5)

where the product of noncommuting operators should be in-
terpreted from left to right, i.e.,

n∏
j=1

(eβ j QAρA(t )) = eβ1QAρA(t ) · · · eβnQAρA(t ). (6)

Charged moments return information about the interplay
between charge fluctuations within the region A and the
entanglement between A and the rest of the system. They
characterize regular Rényi entropies

S(n)
A (t ) = log tr

[
ρn

A(t )
]

1 − n
= log Z0(A, t )

1 − n
, (7)

as well as Rényi entropies of the reduced density matrix pro-
jected to a given charge sector [55–57]. Indeed, defining

ρA,q(t ) = �qρA(t )�q, (8)

where �q = ∫ π

−π

dβ

2π
eiβ(QA−q) is the projector to the sector of

charge q ∈ Z [58], we find

S(n)
A,q(t ) = log tr

[
ρn

A,q(t )
]

1 − n

= 1

1 − n
log

n∏
j=1

∫ π

−π

dβ j

2π
Ziβ(A, t )e−iq

∑
j β j . (9)

Here iβ denotes the vector β multiplied by the imaginary
unit. To lighten notation n is not explicitly reported in the
right-hand side (rhs) of Eq. (7): the subscript in Z0 refers to
the n-dimensional vector 0 = [0, 0, . . . , 0].

Importantly, the Rényi entropies (9) characterize the
symmetry-resolved entanglement only when the reduced
density matrix is block diagonal with respect to the charge in
the subsystem, i.e., when |�0〉 is an eigenstate of the charge.
Whenever this is not the case, the charged moments (5) can
be used to investigate the interplay between the breaking of
the symmetry in the initial state and how this evolves in time.
Indeed, they specify the so-called entanglement asymmetry
[30,31]. The latter, typically denoted by �SA(t ), is defined
as a relative entropy between two related reduced density
matrices, i.e.,

�SA(t ) = tr[ρA(t )( log ρA(t ) − log ρA,Q(t ))]

= S(ρA,Q(t )) − S(ρA(t )). (10)

Here S(ρ) = −tr[ρ log ρ] is the von Neumann entropy, ρA(t )
is the reduced density matrix of the subsystem A, while

ρA,Q(t ) =
∑

q

�qρA(t )�q (11)

is this density matrix projected to a block diagonal form.
From its definition as a relative entropy one can immediately
observe that �SA(t ) � 0 (see e.g., Ref. [59]) with equality
attained only when ρA(t ) commutes with QA. Thus, the
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asymmetry quantifies how much the symmetry is broken
by the initial state and allows one to determine if and on
what time scales it is restored at large times. There are other
ways in which one could quantify such information, for
example one might use the distance between reduced density
matrices. The entanglement asymmetry, however, packages
this information in a very convenient and accessible fashion.
Indeed, �SA(t ) has already been used to illuminate a number
of exotic phenomena including counter intuitive relaxation
dynamics known as the Mpemba effect [30] and the lack of
symmetry restoration in spin chains [31].

Equation (10) can be expressed in terms of the charged
moments via a replica trick

�SA(t ) = lim
n→1

1

1 − n

[
log tr

[
ρn

A,Q(t )
]− log tr

[
ρn

A(t )
]]

. (12)

For N � n � 2 the second term on the rhs is written in terms
of the charged moments using Eq. (7), while a simple calcula-
tion reveals that the first is given by

tr
[
ρn

A,Q(t )
] =
∫ π

−π

dβ

(2π )n−1
Ziβ(A, t )δp

⎛⎝ n∑
j=1

β j

⎞⎠, (13)

where δp(x) ≡∑q∈Z e−iqx/2π is the 2π -periodic delta func-
tion. Computing these functions, continuing the replica index
n to real values, and taking n → 1 then gives the entanglement
asymmetry.

B. Summary of main results

Throughout this paper we shall derive several results on the
fluctuations of U (1) conserved charges in far from equilib-
rium quantum systems. These range from universal properties
for generic systems to specific predictions for integrable mod-
els as well as applications of these to the quantities of interest
discussed above. In this section we briefly present and discuss
some of the most significant of these results with the details
of their derivation presented in the succeeding sections and
appendices.

Our results are obtained building on the space-time duality
approach of Refs. [20,21]. The latter is based on the obser-
vation, put forward in Ref. [21], that during the evolution
of a quantum state there exists a regime—referred to as the
“nonequilibrium regime”—where generalized purities [i.e.,
traces of integer powers ρA(t )] can be mapped onto gener-
alized purities of a dual system that is instead at equilibrium.
Specifically, Ref. [21] showed that for 1 	 t 	 |A| we have

tr
[
ρn

A(t )
] 
 tr

[
ρ̃n

st,t

]2
, n ∈ N, (14)

where ρ̃st,t is loosely speaking the stationary state of the dual
system and 
 means that the equality holds at the leading
order. More precisely, the dual system arises from exchang-
ing the roles of space and time in the original system and
its dynamics are not generically unitary. Instead, they are
determined by a quantum channel whose boundary action is
set by the initial state of the time evolution. This means that
generically its evolution has two different stationary states, or
fixed points, a left and a right one: ρ̃st,t is the (normalized)
product of them. The second power on the rhs of Eq. (14)
comes from the fact that one gets two equivalent contributions

from each of the boundaries between A and Ā (two in our
setting). If one considers open boundary conditions and A
starting from the edge, there is only one boundary between
A and Ā and the power of 2 does not appear.

Reference [20] widened the scope of this observation by
showing that the same conclusion applies for the FCS in
systems with conserved U (1) charges evolving from a state
with no charge fluctuations inside A. Namely, for 1 	 t 	 |A|
one has

Zβ (A, t ) = tr[eβQAρA(t )] 
 tr[eβQ̃t ρ̃st,t ]tr[e
−βQ̃t ρ̃st,t ], (15)

where Q̃t is the conserved U (1) charge of the dual system [it is
always present if the original system is U (1) invariant]. Once
again, each of the terms on the rhs is the contribution of one
boundary between A and Ā. The result continues to hold for
ρA(t ) �→ ρn

A(t ).
Here we consider the more challenging case of systems

with a U (1) charge evolving from a state that is not an eigen-
state of the charge. Remarkably, we find that, with appropriate
modifications, an equation similar to Eq. (15) applies also in
this case. Specifically, for 1 	 t 	 |A| we obtain

Zβ (A, t )

Zβ (A, 0)

 tr[eβQ̃t ρ̃st,t (β, 0)]tr[e−βQ̃t ρ̃st,t (0, β )], (16)

together with the appropriate generalization for higher
charged moments. Here ρ̃st,t (β1, β2) is again the product of
left and right fixed points of the space-evolving quantum chan-
nel; however, in this case the channels have twisted boundary
conditions parameterised by β1 and β2. For instance ρ̃st,t (0, β )
is obtained by multiplying the left fixed point of the space-
evolution with no twist and the right fixed point of the space
evolution with twist β. Interestingly, and this is our second
main result, we find that ρ̃st,t (β1, β2) can be characterized by
solving a standard bipartitioning protocol, i.e., the quantum
quench problem where the two halves of the system are pre-
pared in different homogeneous states and, from t = 0, the
whole system is let to evolve with a homogeneous Hamil-
tonian [17,60,61]. This special kind of quench provides a
controlled model for inhomogeneous settings and has been
studied intensely over the last few years [17–19,32,33].

More precisely, we argue

tr[eβQ̃t ρ̃st,t (β1, β2)]
t↔x←→ tr[eβQAρst,A(β1, β2)]. (17)

Here
t↔x←→ denotes a space-time swap, i.e., an exchange of

space and time, and ρst (β1, β2) is the stationary state reached
by the region around x = 0 after a bipartitioning protocol from
the initial state

ρ0(β1, β2) = eβ1QL ρst,L ⊗ eβ2QRρst,R, (18)

where R/L denote quantities reduced to the left/right half
of the system and ρst is the stationary state describing local
observables after a quench from |�0〉. Combined together,
our results establish an interesting connection between charge
fluctuations from charge-asymmetric but homogeneous initial
states and bipartitioning protocols.

Similarly to what is shown in Refs. [20,21] for the cases of
Eqs. (14) and (15), Eq. (16) can be used to determine some
general properties of charge fluctuations by making physical
assumptions on ρ̃st,t (β1, β2). For example, if this state has an
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extensive cumulant generating function (the logarithm of the
FCS) then Eq. (16) implies that the FCS of the original system
decays exponentially in time in the nonequilibrium regime. In
cases where the rhs of Eq. (17) can actually be computed;
however, our results lead to explicit predictions for charge
fluctuations in the nonequilibrium regime. We emphasize that
this is a very powerful statement as the rhs of Eq. (17) is
entirely written in terms of equilibrium quantities.

As a nontrivial example where the latter strategy can be
successfully applied we consider interacting integrable mod-
els, wherein the charged moments in the stationary states of
the time evolution can be be calculated using the method of
thermodynamic Bethe ansatz (TBA), see Sec. III A for a full
review. In these systems the space-time swap can be conve-
niently performed in Fourier space, i.e., by exchanging the
roles of energy and momentum of their quasiparticles. More-
over, ρst (β1, β2) can be characterized using the techniques of
generalised hydrodynamics (GHD) [32,33]. As a result, for a
generic integrable model, with M quasiparticle species labeled
by a species index m and rapidity λ we find

lim
t→∞

1

t
log tr[ρ̃st,t (β, 0)eβQ̃t ]

=
∫ β

0
du
∑

m

∫
dλ qmρ̃ (u)

m (λ), (19)

where qm is the bare charge associated to each quasiparticle
and ρ̃ (u)

m (λ) is the distribution of occupied quasiparticles of
species m in the stationary state of the space evolution cor-
responding to the value of β = u. This latter function can be
determined exactly in terms of a set of TBA equations and
combining this with (16) gives an exact expression for the
FCS in the nonequilibrium regime. In Sec. IV this prediction
is tested against independent analytical derivations in the case
of noninteracting systems and the quantum cellular automaton
Rule 54, and against tensor-network-based numerical simula-
tions in the XXZ model.

Equation (19) makes quantitative the aforementioned con-
nection between charge fluctuations from asymmetric but
homogeneous initial states and bipartitioning protocols. Once
again, similar expressions can be written for the higher Rényi
charged moments. Although they are more complex the key
ingredient in their derivation is the use of the space-time
swapped stationary state obtained from the GHD solution of
an inhomogeneous quench.

These observations on the form of the charged moments
and the explicit formulas in the case of TBA integrable models
can then be used to understand the behavior of the physical
observables of interest. In particular, the probability distribu-
tion for measuring a charge q, different from the expectation
value, q = 〈QA〉 + �q, inside A at time t 	 |A| is given by the
Fourier transform of the FCS, Ziβ (A, t ). This can be computed
using a saddle point approximation provided �q 	 |A| with
the result

P(�q, t ) 
 1√
2πD(t )

e− �q2

2D(t ) , (20)

where

D(t ) = 2
∑

m

∫
dλ (|A| − t |vm(λ)|)Xm(λ), (21)

and Xm(λ), vm(λ) are the charge susceptibility and veloc-
ity of a quasiparticle of species m with rapidity λ each of
which can be explicitly determined. This expression provides
a transparent physical interpretation of the evolution of charge
probability distribution: it is determined by the ballistic propa-
gation of pairs of quasiparticles throughout the system, which
transport and disperse charge fluctuations, encoded in Xm(λ)
as they propagate.

Similarly, we obtain an explicit formula for the entangle-
ment asymmetry in the nonequilibrium regime

�SA(t ) = 1

2
+ 1

2
log πχ (t ),

χ (t ) =
∑

m

∫
dλ (|A| − 2t |vm(λ)|)Xm(λ). (22)

The similarity between the expressions for D(t ) and χ (t )
thus allows one assign some physical intuition to the highly
complicated �SA(t ) based upon the more readily under-
standable charge probability distribution. Accordingly, the
interplay between the restoration of the broken symmetry and
the spreading of entanglement can be studied in detail.

Having presented our main results and some of their ap-
plications we now turn to their derivation in the remainder of
the paper, which is laid out as follows. In Sec. II, we explain
the main ideas of the space-time duality approach: First, in
Sec. II A, we introduce a class of many-body systems in
discrete space-time—brickwork quantum circuits [62–65]—
where the space-time duality is most easily implemented.
Then, in Sec. II B, we illustrate the space-time duality ap-
proach in brickwork quantum circuits. Finally, in Sec. II C,
we argue that our results can directly be extended to locally
interacting systems in continuous time. In Sec. III we special-
ize the treatment to integrable systems and derive closed-form
expressions for the asymptotic dynamics of full counting
statistics (FCS) in the language of TBA, which are extensively
tested in Sec. IV. In Sec. V we use our results to produce ex-
plicit predictions for the entanglement asymmetry and charge
probability distribution in interacting integrable systems and
discuss their key physical features. Finally, Sec. VI contains
our conclusions.

II. SPACE-TIME DUALITY APPROACH
TO CHARGE FLUCTUATIONS

Having introduced the necessary concepts in the previous
section, we are now in a position to explain how to character-
ize the charge fluctuations by means of the space-time duality.

In essence, the approach is based on two observations:
(i) For large t , the charge moments take two different

asymptotic forms depending on whether or not t is larger
than the size of A (both are taken to be large compared to
microscopic scales).

(ii) These two forms are mapped into each other upon
performing a formal swap of space and time.

This means that if one can access one of the two regimes
analytically, then they can use (ii) to access the other. As we
discuss in Sec. III, this is the case for integrable systems.

For the sake of clarity we proceed to illustrate these two ob-
servations focusing on the FCS (1) in a class of systems where
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space and time are treated on equal footings. Namely, we con-
sider the so-called brickwork quantum circuits [62–65], where
interactions are instantaneous in time and local in space, and
where space and time are both discrete. We then generalize
the treatment to generic charged moments and argue that the
same ideas continue to apply for systems in continuous time.
Before proceeding, however, we provide a brief self contained
introduction to brickwork quantum circuits.

A. Brickwork quantum circuits

Brickwork quantum circuits are systems of 2L qudits, i.e.,
quantum systems with d � 2 internal states, where the time
evolution is generated by the unitary operator

U = UeUo, Ue = U ⊗L, Uo = �2LU ⊗L�
†
2L. (23)

Here the “local gate” U acts on two (neighboring) qudits and
�x is a periodic one-site shift in a lattice of x sites, and,
for simplicity, we have assumed U to be time independent
and invariant under two-site shifts. We emphasize that (23)
generates strictly causal dynamics: there is a strict maximal
speed for the propagation of information.

The physical properties of the time evolution are en-
tirely determined by the local gate and, by varying it, one
can observe a very rich spectrum of dynamical behaviors
[9,11,62,63,66–79] and spectral correlations [23,26,64,80–
86]. In particular, for our purposes it is important to stress that
there exist choices of U making the quantum circuit Yang-
Baxter integrable [87–94] and treatable via thermodynamic
Bethe ansatz [95]. In fact, one can define an integrable brick-
work quantum circuit corresponding to each fundamental spin
model with Hamiltonian of range 2 (see, e.g., Sec. 11 in
Ref. [87]).

Besides their inherent importance, brickwork quantum
circuits are also used as computationally efficient approx-
imations of locally interacting systems in continuous time
[96,97]—both in the context of classical [98] and quantum
[99–101] simulation. Indeed, considering local gates of the
form

U = e−iτh, (24)

where h = h† is some d2 × d2 Hermitian matrix acting on two
sites. Performing the so-called Trotter limit

lim
Tr

: τ → 0, t → ∞, τ t = t = fixed, (25)

one has

lim
Tr

U t = exp

⎡⎣−it
∑

x∈ZL/2

hx

⎤⎦, (26)

where we labeled sites by half-integer numbers from −L to
L and we introduced the operator hx acting as the matrix h
at sites x and x + 1/2 and as the identity elsewhere. In this
limit the evolution of a quantum circuit reproduces the one
generated by the Hamiltonian

H =
∑

x∈ZL/2

hx, (27)

up to time t. In Sec. II C we argue that considering this limit
one can apply our results to continuous time.

FIG. 1. Diagrammatic representation of the time-evolved state
|�t 〉, with t = 3, and L = 9. The grey box denotes the time-evolution
operator U defined in (23), which is repeatedly applied on |�0〉
to give |�t 〉. The initial state |�0〉 is assumed to be expressed as
a product of pairs [cf. (33)]. We assume periodic boundary condi-
tions in space, which we will for simplicity not explicitly represent
graphically.

After being prepared in the state |�0〉 at time t = 0 the state
of the system at a (discrete) time t is given by

|�t 〉 = U t |�0〉. (28)

We introduce the diagrammatic representation

(29)

where different legs act on different spatial sites, and the
matrix elements of U are given as

(30)

Transposition is given by flipping the gate upside down, i.e.,

(31)

The matrix multiplication is represented by joining legs and
goes from bottom to top, which, for example, gives the follow-
ing diagrammatic representation for the unitarity condition

(32)

where the free horizontal legs represent the identity operator
1 ∈ Cd . Using these conventions, Eq. (28) can be depicted
as in Fig. 1. In the figure we conveniently considered dimer-
product initial states of the form

|�0〉 = |ψ0〉⊗L , |ψ0〉 =
d∑

i, j=1

mi j |i, j〉, (33)

where {|i〉} is a basis of the Hilbert space of a single qudit
and m is an arbitrary d × d matrix fulfilling tr[mm†] = 1 to
ensure normalization. The single two-site state |ψ0〉 can be
represented graphically as

(34)

These states are particularly convenient for our purposes, as
they have low entanglement and their physical properties are
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controlled by a single small matrix m, therefore we will from
now on consider initial states of this form. In particular, in our
treatment of Sec. III we will eventually restrict ourselves to a
subset of possible m, which generates the so-called integrable
initial states [102–107] (see Sec. III).

To study the dynamics of the charged moments, we focus
on circuits with U (1) charges of the form

Q =
∑

x∈ZL/2

qx, (35)

where the operator qx acts as the d × d matrix q at site x and
as the identity elsewhere. Without loss of generality we can
take q to be traceless.

Because of the ultralocal nature of the charge and the strict
causal structure of the time evolution, in a quantum circuit
the conservation of Q is implemented locally. Namely, as we
show in Appendix A, the conservation of charge implies that
q and U satisfy the relation

(eβq ⊗ eβq )U = U (eβq ⊗ eβq ), ∀β ∈ R, (36)

which can be represented diagrammatically as

(37)

As shown in Appendix B, this relation can be used to find the
following explicit expression for the current associated to the
charge Q

jx(t ) =
{

qx(t ) x + t ∈ Z
−qx(t ) x + t ∈ Z + 1

2
, (38)

where we adopted the Heisenberg picture

O(t ) = U−t OU t , O
(
t + 1

2

) = U−tU−1
o OUoU

t . (39)

B. Space-time duality in discrete time

We begin to illustrate the space-time duality approach by
noting that, because of the generic phenomenon of local re-
laxation [1–3,15,16,18,19], in the limit of infinite times and
fixed A, the FCS in Eq. (1) becomes stationary. Namely

lim
t→∞ Zβ (A, t ) = tr[eβQAρst,A], (40)

where ρst,A is a stationary state of U that can generically be
expressed as a generalized Gibbs ensemble [15]. This implies
that FCS can be thought of as the ratio of two partition
functions and their logarithms are generically extensive in the
size of A. Therefore, we can capture their bulk features by
considering the following limit:

dβ : = lim
|A|→∞

lim
t→∞

log Zβ (A, t )

|A|
= lim

|A|→∞
1

|A| log tr[eβQAρst,A], (41)

so that

Zβ (A, t ) 
 e|A|dβ , t � |A| � 1. (42)

Here we used that, by continuity, the limit (41) describes the
leading order in the asymptotic regime. Here |A| denotes the
size of A, which we conveniently define as the number of its

sites divided by two. On the other hand, for |A| � t � 1,
the FCS is observed to decay exponentially in time, with a
possible prefactor �

|A|
β [20,21,30,57] (to be specified later).

This behavior can be captured by defining

sβ := lim
t→∞ lim

|A|→∞
log Zβ (A, t ) − |A| log �β

t
, (43)

such that

Zβ (A, t ) 
 �
|A|
β etsβ , 1 	 t 	 |A|. (44)

The asymptotic forms (42) and (44) are those anticipated in (i)
and, for obvious reasons, we refer to the two regimes in which
they hold as “equilibrium” and “nonequilibrium” respectively.

To explain (ii) we now rewrite the rate (43) in a form that is
similar to the second line of (41) but where the roles of space
and time are swapped. We begin by formulating the FCS in
terms of the evolution in space. This can be done by exploiting
the fact that in quantum circuits the dynamics is discrete both
in space and in time, therefore we can straightforwardly ex-
press Zβ (A, t ) as a trace of powers of space-transfer matrices
acting column to column [10,21–24,108–111]. The latter are
given in terms of space-evolution operator Ũ , obtained from
U by a reshuffle of its indices as

(45)

Note that a transpose of the gate Ũ is obtained by left-right
reflection, i.e.,

(46)

and in general Ũ T does not coincide with Ũ T .
Transfer matrices W̃β ∈ End(Ht ⊗ Ht ) act on two copies

of the “temporal chain” of 2t + 1 qudits, Ht = Cd ⊗(2t+1), and
are given as

W̃t,β = 1

�β

⎛⎝ d−1∑
s1,s2=0

|s1〉〈s2| ⊗ Ũ ⊗t ⊗ Ũ †
⊗t ⊗ |s1〉〈s2|

⎞⎠
× (Ũ ⊗t ⊗ (eβqT

meβq ) ⊗ m∗ ⊗ Ũ †
⊗t)

. (47)

Here m is the d × d matrix defining the initial state [cf. (33)],
and the normalization factor �β is the expectation value of
eβQ in the initial state

�β = 〈ψ0|eβq ⊗ eβq|ψ0〉. (48)

See the rhs of Fig. 2 for a diagrammatic representation.
The conservation of Q, given by Eqs. (36) and (37), also

implies

(eβq ⊗ 1)U (e−βq ⊗ 1) = (1 ⊗ e−βq )U (1 ⊗ eβq), (49)

or equivalently

(e−βq ⊗ eβqT
)Ũ = Ũ (eβqT ⊗ e−βq ), (50)

expressed diagrammatically as

(51)
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FIG. 2. Diagrammatic representation of Zβ (A, t ) for t = 2. The diagram on the left follows directly from the definition (1), by plugging
in the state (28) (see Fig. 1). The rhs is obtained by applying the conservation of Q [cf. (36) and (49)]. The diagram on the right can be
equivalently represented by contracting in space, as given in (47), with the transfer matrices W̃t,β , and eβQ̃t highlighted in gray. The transfer
matrices act on Ht ⊗ Ht , with Ht being the Hilbert space of 2t + 1 qudits. Note that we are implicitly assuming periodic boundary conditions
in space, which are not explicitly shown for clarity (i.e., the open legs on the left are connected to the open legs on the right).

Repeatedly using this relation [together with (36)], one can
show that the FCS can be represented in terms of the transfer-
matrix (47) as

Zβ (A, t ) = �
|A|
β tr
[
W̃ |Ā|

t,0 (eβQ̃t ⊗ 1)W̃ |A|
t,β (e−βQ̃t ⊗ 1)

]
, (52)

which is depicted in the rhs of Fig. 2. Here, Q̃t is the space-
time swapped analog of Q, i.e., the U(1) charge of the space
evolution, and is given by

Q̃t =
∑
τ∈Zt

qτ − qT
τ+ 1

2
. (53)

The form (52) is completely equivalent to the original ex-
pression and in general provides no immediate advantage.
However, as shown explicitly in Appendix C, unitarity and
locality imply that large powers of the transfer matrix factorize
into a rank-one object, and therefore, whenever |A|, |Ā| > 2t ,
the FCS splits into the product of the contributions from the
two edges between the subsystem A and the rest

Zβ (A, t ) = �
|A|
β tr[eβQ̃t ρ̃st,t (β, 0)]tr[e−βQ̃t ρ̃st,t (0, β )]. (54)

Here ρ̃st,t (β1, β2) is given as (see Fig. 3)

ρ̃st,t (β1, β2) = rt,β1
r†

t,0l†
t,0lt,β2

, (55)

FIG. 3. Diagrammatic representation of ρst,t (β1, β2)|t=2 (up to
the scalar prefactor), as given by Eqs. (55) and (56). The values of β

implied in the red circles [cf. (37)] are indicated by the underbraces.
Note that β = 0 gives the identity operator and therefore there are no
red circles in the central part corresponding to L0,t , R0,t .

with

rt,β = 1

�t
β

t−1∏
τ=0

[
(1⊗(2τ+1) ⊗ Ũ ⊗(t−τ ) )

× (1⊗(2τ+2) ⊗ Ũ ⊗(t−τ−1) ⊗ (eβqT
meβq

))]
,

lt,β = 1

�t+1
β

t−1∏
τ=0

[(
1⊗(2t−2τ ) ⊗ Ũ ⊗τ ⊗ (eβqT

meβq
))

× (1⊗(2t−2τ−1) ⊗ Ũ ⊗(τ+1)
)](

Ũ ⊗t ⊗ (eβqT
meβq

))
. (56)

Note that here the terms in the product do not commute, but
rather they are assumed to be multiplied from left to right with
increasing τ .

Mathematically ρ̃st,t (β1, β2) is the product of the right
fixed point of W̃t,β1 and the left fixed point of W̃t,β2 . From
the physical point of view it can be understood as the space-
evolution analog of ρst. Indeed, the latter is the fixed point
(both left and right) of the time evolution. Moreover, by
comparing with the expression for a stationary FCS given in
Eq. (40) we see that each one of the traces in Eq. (54) can be
interpreted as the stationary FCS for the system of temporal
lattice. Therefore, Eq. (54) can be interpreted as the statement
that the FCS in the nonequilibrium regime can be written as
the product of two stationary FCS for the system on the time
lattice. The fact that we have the product of two of them
is due to the fact that there are two boundaries between A
and Ā. Consistently, in the case of a single boundary (e.g.,
for open boundary conditions and A at the edge) one finds a
single stationary FCS on the rhs of Eq. (54) (see, e.g., Sec. 5
in the Supplemental Material of Ref. [13]). Using this rela-
tion to connect nonequilibrium properties of the system with
stationary properties of its space-time swapped counterpart
is the main idea of the space-time duality approach. Due to
its the instrumental role in this approach we refer to Eq. (54)
as the the fundamental identity of space time duality.

Besides being conceptually intriguing, relating out-of-
equilibrium properties to equilibrium ones is of great practical
utility as the latter are much easier to study. In particular, this
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observation can be used in two different directions [20,21]:
(A) Invoke general properties of equilibrium states to in-
fer qualitative features of the FCS in generic systems; (B)
Find quantitative predictions whenever ρ̃st,t (β1, β2) can be
accessed.

As an example of (A), one can argue that the slope sβ

defined in Eq. (43) should generically strictly be smaller than
zero, which follows from the extensivity and positivity of
the free energy of equilibrium states. This implies that the
FCS in nonequilibrium regime should in general decay ex-
ponentially (even though there are known examples where the
temporal free energy is sub-extensive and the slope vanishes
[112–114]). As shown in Ref. [20], other examples are ob-
tained by plugging the representation in Eq. (54) back into
Eq. (9) to infer general features of the symmetry resolved
entanglement entropies such as the presence of a delay time
for activation for symmetric initial states or the logarithmic
growth of number entropy.

Instead, to obtain the quantitative predictions (B) we pro-
ceed as follows. We identify a stationary state ρst,A(β1, β2)
of the system on the spatial lattice that corresponds to
ρ̃st,t (β1, β2) upon swapping space and time, we compute its
FCS analytically, and then exchange the roles of space and
time to obtain an expression for the terms in the rhs of
Eq. (54). The agreement of the quantitative predictions ob-
tained in this way with exact analytical and numerical results
(cf. Sec. IV), constitutes the main justification for this ap-
proach.

The procedure outlined requires two main ingredients:
(1) an analytic expression for ρst,A(β1, β2); (2) an analytic
expression for its FCS. To secure (2) we consider interacting
integrable models treatable by TBA. Indeed, as we review in
Sec. III, in these systems the FCS of any stationary state can
be accessed analytically. Determining ρst,A(β1, β2), instead, is
a nontrivial task that so far has only been achieved in special
cases [20,21]. Here we solve this problem in the general case
beginning from the following observation.

Observation. The expectation value on ρ̃st,t (β1, β2) of any
product operator on the temporal lattice can be written as the
expectation value of a time-ordered product over a deformed
initial state.

More precisely, denoting a local operator at position τ of
the time lattice as [115]

ãτ =
{
1⊗2τ ⊗ a ⊗ 1⊗2t−2τ , τ ∈ Z,

1⊗2τ ⊗ aT ⊗ 1⊗2t−2τ , τ ∈ Z + 1
2 ,

(57)

we can rewrite an expectation value of a string of operators
ã( j) on the time lattice as

tr
[
ρ̃st,t (β1, β2)ã(0)

0 · · · ã(2t )
t

]
=
〈
�0

∣∣a(0)
0 (0) · · · a(2t )

0 (t )eβ1QL+β2QR
∣∣�0
〉

〈�0|eβ1QL+β2QR |�0〉 , (58)

where the two sides of the equation are the restatement of
the same expectation value as viewed in terms of space-
and time-evolution respectively. Here a( j)

x (t ) are operators at
position x of the space lattice evolved in time according to
the Heisenberg picture [cf. Eq. (39)], superscripts ( j) label
different operators, and we introduced U(1) charges on the

left- and right-half chains

QL =
∑

x∈ZL/2/2

q−x−1/2, QR =
∑

x∈ZL/2/2

qx, Q = QL + QR. (59)

Equation (58) follows from a direct application of the defini-
tion of ρ̃st,t (β1, β2) in Eq. (55). Using Eq. (58) we obtain

lim
t→∞ tr

[
ρ̃st,t (β1, β2)ã(1)

2t−τ · · · ã(τ )
2t

]
= tr
[
ρ∗(β1, β2)a(1)

0 (0) · · · a(τ )
τ (0)

]
, ∀a j, (60)

where we introduced the state ρ∗(β1, β2) such that

lim
t→∞ lim

L→∞
〈�0|U−tOU t eβ1QL+β2QR |�0〉

〈�0|eβ1QL+β2QR |�0〉
= lim

L→∞
tr[ρ∗(β1, β2)O], (61)

for every local observable O. Reasoning as in the case of
bipartitioning quench protocols, see, e.g., Ref. [19], we con-
clude that ρ∗(β1, β2) is a stationary state of the time-evolution
operator U . In particular, for integrable models it can be ex-
plicitly determined using generalized hydrodynamics [32,33].
Since Eq. (60) holds for every local operator a j , we con-
clude that ρ̃st,t (β1, β2) is the space-time swap correspondent
of ρ∗(β1, β2). Therefore we set

ρst,A(β1, β2) = trĀ[ρ∗(β1, β2)]. (62)

This equation fully specifies ρst,A(β1, β2) for any initial state
and represents the first main result of this paper. Before using
it to find explicit predictions, however, we employ it to make
another general observation. As special case of Eq. (58), one
has

tr[ρ̃st,t (β1, β2)eβQ̃t ]

= 〈�0|eβ j0( 1
2 ) · · · eβ j0(t )eβ1QL+β2QR |�0〉

〈�0|eβ1QL+β2QR |�0〉 , (63)

where jx is the current associated to the U(1) charge Q
[cf. Eq. (38)]. This expression corresponds to the expecta-
tion value of the time ordered exponential of the current
in x = 0 integrated in time from 0 to t multiplied by
exp(β1QL + β2QR). As shown in Appendix D, assuming local
relaxation Eq. (63) gives

lim
t→∞

1

t
log tr[ρ̃st,t (β1, β2)eβQ̃t ]

= lim
t→∞

1

t
log tr[ρst (β1, β2)eβ j0( 1

2 ) · · · eβ j0(t )]. (64)

The quantity on the rhs of this equation is precisely the scaled
cumulant generating function of the current in x = 0 in the
nonequilibrium steady state ρst,A(β1, β2). Therefore, we can
establish a direct link between our paper and the recent litera-
ture on current fluctuations on nonequilibrium steady states
[34–42,44]: The FCS (1) in the nonequilibrium regime is
given by the product of the FCS of the currents at the two
boundaries of the subsystem A. The current FCS are evaluated
in the stationary states ρst,A(β, 0) and ρst,A(0, β ), which are
nonequilibrium steady states whenever the initial state is not
an eigenstate of the charge.
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FIG. 4. Diagrammatic representation of Zβ(A, t ), as defined in (69). The same diagram can be alternatively generated by the repeated
application of tensor products of space-transfer matrices W̃t,0 and W̃t,β j , denoted by grey boxes in the diagram. The transfer matrices in Ā are
coupling together the top and bottom part of each of the three copies, while the transfer matrices acting on A are connecting the bottom part
of each copy with the top half of the preceding one. This is accounted for by introducing the operator Pσ that permutes the 2n replicas (2 for
each of the n copies above), which allows the expression in terms of powers of transfer matrices, as shown in Eq. (70). Note that the boundary
conditions in space are assumed to be periodic.

1. Duality for higher charged moments

The above discussion can be straightforwardly generalized
to the case of more general charged moments (5). We can
again define the stationary density

dβ := lim
|A|→∞

lim
t→∞

log Zβ(A, t )

|A|

= lim
|A|→∞

1

|A| log tr

⎡⎣ n∏
j=1

(eβ j QAρst,A)

⎤⎦, (65)

and the asymptotic slope

sβ := lim
t→∞ lim

|A|→∞
log Zβ(A, t ) − |A| log �β

t
. (66)

Using these definitions we can write the leading-order form of
the charged moments as

Zβ(A, t ) 

{

�
|A|
β

etsβ , 1 	 t 	 |A|,
e|A|dβ , 1 	 |A| 	 t,

(67)

where �β is determined by Zβ(A, 0) = �
|A|
β

�β =
n∏

j=1

〈ψ0|eβ j q ⊗ eβ j q|ψ0〉 =
n∏

j=1

�β j . (68)

As in the case of FCS, the slope sβ can be put in a form dual
to (65). To see this, we start by expressing Zβ(A, t ) in terms of
the time-evolved state |�t 〉 as

Zβ(A, t ) = trA

⎡⎣ n∏
j=1

(trĀ[eβ j QA |�t 〉〈�t |])
⎤⎦, (69)

where we denoted by Ā the complement of A, and used that
eβQA acts as the identity in Ā. Representing Zβ(A, t ) in terms

of space transfer matrix (47) we obtain the following expres-
sion:

Zβ(A, t ) = �
|A|
β

tr

[
P †

σ

(
n⊗

j=1

W̃ |Ā|
t,0

)
Pσ

×
(

n⊗
j=1

(eβ j Q̃t ⊗ 1)W̃ |A|
t,β j

(e−β j Q̃t ⊗ 1)

)]
, (70)

where the tensor product the operator Pσ implements the
permutation

σ =
(

1 2 3 4 · · · 2n − 1 2n

2n − 1 2 1 4 · · · 2n − 3 2n

)
, (71)

on the replicas. Intuitively, this permutation arises because the
indices pertaining respectively to the subsystem A and the rest
of the system Ā are contracted in a different way because of
the partial trace in (5) inducing a modification of the space
transfer matrix, see Fig. 4 for a diagrammatic illustration.

Whenever |A|, |Ā| � 2t locality and unitarity of the inter-
actions again imply that the expression factorizes into two
contributions so that we obtain the analog of Eq. (54) as

Zβ(A, t ) = �
|A|
β

tr

⎡⎣ n∏
j=1

eβ j Q̃t ρ̃st,t (β j, 0)

⎤⎦
× tr

⎡⎣ n∏
j=1

ρ̃st,t (0, β j )e
−β j Q̃t

⎤⎦. (72)

We see that each of the two traces on the rhs is the space-time
swapped version of that appearing in Eq. (65) with the only
difference that each replica is in an a priori different stationary
state.
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C. Trotter limit

Let us conclude this general discussion by remarking on
the generality of Eq. (72). To arrive at that expression, we
assumed the dynamics to be given in terms of a brickwork
quantum circuit, but we expect it to hold also for Hamiltonian
dynamics, which can be accessed via the Trotter limit in
Eq. (25). When this limit is performed naively, however, the
rescaling of space and time means that Eq. (72) only holds for
|A| = ∞. Therefore, we need to refine our argument to show
that it holds in a nontrivial regime.

To do this let us assume the dynamics is generated by
a Hamiltonian H with a local two-site density, which we
approximate with a quantum circuit obtained by using two-
site unitary gates Uτ [cf. (24)] with the label τ denoting the
time step. Then, as long as |A| > 2t , Eq. (72) holds. Here we
conveniently express it as follows:

log

[
Zβ,τ (A, t )

�
|A|
β

]
= log

[
Z (L)

β,τ
(t )
]+ log

[
Z (R)

β,τ
(t )
]
. (73)

For a fixed value of τ , we can use the fact that both the contri-
butions on the rhs are independent of the size of the subsystem
A. Therefore, they are the same as the charged moments in a
system of size 2L (with sites labeled between −L and L) with
open boundary conditions, and when the subsystem A is the
right/left half of the chain

Z (L)
β,τ

(t ) = lim
L→∞

tr
[∏n

j=1 eβ j Q[0,L]ρ[0,L]
]

�L
β

,

Z (R)
β,τ

(t ) = lim
L→∞

tr
[∏n

j=1 eβ j Q[−L,0]ρ[−L,0]
]

�L
β

. (74)

These two contributions have a well-defined Trotter limit,

log
[
Z (r)

β
(t)
] = lim

τ→0, t→∞
t=τ t

τ log
[
Z (r)

β,τ
(t )
]
. (75)

What remains to be argued is that for a nonzero value of t/A,
the sum of these contributions is equal to the Trotter limit of
the left-hand side (lhs) of Eq. (73), i.e.,

log

[
Zβ(A, t)

�
|A|
β

]
= lim

τ→0, t→∞
t=τ t

τ log

[
Zβ,τ (A, t )

�
|A|
β

]
. (76)

This is ensured by assuming that H fulfils the Lieb-Robinson
bound [116]: there exists a velocity vLB > 0 so that the local
perturbations to the initial state at the position x + d , |d| >

vLBt will give corrections exponentially small in |d| − vLBt

to the local properties of the state at time t and position
x. Intuitively, this implies that as long as |A| > 2vLBt, the
information from one edge of the subsystem cannot propagate
far enough to change the local properties of the state at the
other edge, and the charged moments (up to exponentially
small corrections) decouple into the two contributions

log

[
Zβ(A, t)

�
|A|
β

]
= log

[
Z (L)

β
(t)
]+ log

[
Z (R)

β
(t)
]
. (77)

III. INTEGRABLE SYSTEMS

Let us now specialize the treatment of the previous sec-
tion to the case of TBA-integrable systems. As we will briefly
review, in these systems one can explicitly evaluate Eq. (41),
as well as all other thermodynamic quantities, in terms of the
solution of suitable integral equations. Here we want to argue
that a similar treatment can also be performed for Eq. (43),
giving access to the charged moments in the nonequilibrium
regime.

Our discussion proceeds as follows. In Sec. III A we recall
a number of basic facts concerning integrable systems and
their TBA description. In Sec. III B we argue that the TBA
description can also be applied to the system on the temporal
lattice and derive the relevant equations. Finally, in Sec. III C
we report our closed-form predictions for the charged mo-
ments in the equilibrium and nonequilibrium regime.

Note that, since the Bethe Ansatz solution has the same
structure for both for integrable circuits and integrable Hamil-
tonians [87,92] we assume that the TBA treatment is the same.
This assumption has been verified explicitly in Ref. [95] for
the case of the XXZ chain.

A. Thermodynamics via Bethe Ansatz

An integrable model possesses an extensive number of
quasilocal conserved charges {Q(k)}k=0,1,.... One can intu-
itively think of quasilocality as the property of having an
exponentially localized density, see, however, Ref. [117] for
a more precise definition. From now on, we focus on the
standard case where {Q(k)} commute and we specify the U(1)
charge Q to be the first one in the tower, i.e., Q(0) = Q.

Because of the constraints on the scattering imposed by the
conservation laws, integrable models admit stable quasiparti-
cle excitations [28]. More precisely, one can write a basis of
scattering states

|λ〉 = ∣∣ λ(1)
1 , . . . , λ

(1)
M1

; . . . ; λ(Ns )
1 , . . . , λ

(Ns )
MNs

〉
, (78)

which are simultaneous eigenstates of all the conserved
charges. Namely,

Q(k) |λ〉 =
Ns∑

m=1

Mm∑
j=1

q(k)
m

(
λ

(m)
j

)|λ〉. (79)

Here λ
(m)
j are real rapidities (fulfilling appropriate quanti-

zation conditions when the system is confined to a finite
volume), the superscript m = 1, . . . , Ns labels different quasi-
particle species, and q(k)

m (λ) are the quasiparticle charges.
Particularly important for our purposes are the quasiparticle
energy εm(λ), momentum pm(λ), and U (1) charge qm (rapid-
ity independent). Note that one can always parameterize the
dispersion relation such that

p′
m(λ) > 0. (80)

We emphasize that here we describe the states in terms
of rapidities, rather than regular momenta, as this allows
for a comprehensive treatment of all TBA-integrable models
[28,29].

The quasiparticles scatter nontrivially but elastically. We
denote by Sml (λ,μ) the S matrix between quasiparticles of
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species m and l with rapidities λ and μ and define the scatter-
ing phase shift as

Tml (λ,μ) = 1

2π i
∂λ log Sml (λ,μ). (81)

A stationary state of the system is specified by a set of
quasiparticles. In the thermodynamic limit the latter is char-
acterized by a set of distribution functions in rapidity space
ρm(λ), where m runs from one to Ns: the number of species
of quasiparticles. It is also convenient to introduce the dis-
tribution of unoccupied quasiparticles, ρh

m(λ), as well as the
distribution of available “momentum slots”

ρt
m(λ) = ρm(λ) + ρh

m(λ), (82)

and the filling function

ϑm(λ) = ρm(λ)

ρm(λ) + ρh
m(λ)

∈ [0, 1]. (83)

These distributions are not independent: they are related to
each other through the thermodynamic Bethe-Takahashi equa-
tions, a set of coupled integral equations arising from the
quantization conditions for the system at finite size. In our
notation they read as

ρt
m(λ) = p′

m(λ)

2π
− (T ∗ ρ)m(λ), (84)

where we introduced the short-hand notation ∗ and � to denote
the generalized convolution over the second and first parame-
ter respectively,

( f ∗ g)m(λ) =
∑

l

∫
dμ fml (λ,μ)gl (μ),

( f � g)m(λ) =
∑

l

∫
dμ flm(μ, λ)gl (μ). (85)

Equation (84) has to be combined with one specifying either
ρm(μ) or ϑm(λ) to fully characterize the state. For instance,
the filling functions describing the GGE

ρst,L = e−∑k μkQ(k)

tr
[
e−∑k μkQ(k)

] , (86)

where {μ( j)
m } chemical potentials, are determined via the gen-

eralized TBA equations [118]

log ηm(λ) = dm(λ) +
(

T � log

[
1 + 1

η

])
m

(λ), (87)

where we defined

ηm(λ) = 1 − ϑm(λ)

ϑm(λ)
, dm(λ) =

∑
k

μkq(k)
m (λ). (88)

If ρst,L is the stationary state reached after a quench from an
integrable initial state |�0〉, an explicit form of dm(λ) can be
found by computing the overlaps between the |�0〉 and the
scattering states |λ〉 [119,120]. The free energy of the GGE in
Eq. (86) is expressed in terms of ϑm(λ) as follows:

1

L
log tr

[
e−∑k μkQ(k)]

=
∑

m

∫
dλ

2π
p′

m(λ) log

[
1 + 1

ηm(λ)

]
. (89)

Here, without loss of generality, we assumed that the con-
served charges annihilate the state without quasiparticles.

The functions q(k)
m (λ) describe the bare properties of the

quasiparticles. At finite density it is useful to also introduce
their effective counter parts, q(k)

eff,m(λ), which account for the
effects of the interactions. Given a bare function bm(λ), its ef-
fective version is obtained by solving of the following integral
equations:

beff,m(λ) = bm(λ) − (T � beff ϑ )m(λ). (90)

In particular, at finite density one can express the velocity of
the quasiparticles in terms of effective quantities as [121]

vm(λ) = (ε′
m(λ))eff

(p′
m(λ))eff

. (91)

We conclude this brief survey by recalling that the TBA
formalism can be used to characterize the FCS of Q(0) = Q in
(i) stationary states like the GGE in Eq. (86); (ii) integrable
nonequilibrium states like our initial state |�0〉. Indeed, using
Eq. (89) one finds (see Appendix F 1)

lim
L→∞

log tr[ρst,LeβQ]

L
=
∑

m

∫
dλ

2π
p′

m(λ)K(β )
m (λ), (92)

where we defined

K(β )
m (μ) = log

[
ηm(μ) + e−w

(β )
m (μ)

1 + ηm(μ)

]
,

w(β )
m (λ) = −βqm + (T � K(β ) )m(λ), (93)

and the eta function ηm(λ) is the one describing the state
ρst,L. Analogously, using the TBA treatment of the diagonal
ensemble (see, e.g., Ref. [122]) we find

lim
L→∞

log 〈�0|eβQ|�0〉
L

=
∑

m

∫
dλ

4π
p′

m(λ)K(2β )
m (λ), (94)

where now ηm in K(2β )
m are the eta functions of the stationary

state reached after a quench from |�0〉. Note that, to ease
the notation, in the following we suppress the dependence on
rapidity and species index whenever is not ambiguous to do
so.

In fact, as we discuss in Appendix E, the expression in
Eqs. (92) and (93) is not suitable for our space-time swap and
one has to consider the following rewriting:

lim
L→∞

log tr[ρst,LeβQ]

L

=
∫ β

0
du
∑

m

∫
dλ

2π
p′

m(λ)ϑ (u)
m (λ)qeff,m[ϑ (u)](λ), (95)

ϑ (u)
m = 1

1 + ηmew
(u)
m

, (96)

∂βw(u)
m = −sgn[ρt

m[ϑ (u)]]qeff,m[ϑ (u)], w(0)
m = 0, (97)

where ρt
m[ϑ] and qeff,m[ϑ] are the total number of momentum

slots and the effective charges in the state described by the set
of filling functions ϑ := {ϑm}m [cf. (90)]. Indeed, although
one can directly show that Eqs. (92), (93), and (95)–(97)
are identical (see Appendix F 1) their space-time swapped
counterparts differ. In Appendix E we show that the one in
Eqs. (95)–(97) is the correct expression to use for the swap.
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B. Thermodynamics on the temporal lattice

Our basic observation is that in an integrable quantum
circuit also the space evolution is written in terms of integrable
local gates [123–129]. This observation can be extended to
Hamiltonian systems via a suitable discretization of the time
evolution—in fact, it is the main premise of the well es-
tablished quantum transfer matrix approach [127–129]. As a
consequence, as long as one chooses appropriate boundary
conditions for the temporal lattice (i.e., appropriate initial
states for the space evolution), the space transfer matrix re-
mains Bethe Ansatz solvable [87,127].

Here we implement integrable boundary conditions on
the time lattice by considering integrable initial states [102].
Therefore, we assume ρ̃st,t (β1, β2) to be diagonal in a scat-
tering basis analogous to that in Eq. (78) but defined on the
temporal lattice. Let us denote it by {|λ̃〉} and call q̃(k)

m (λ)
the associated charges. The scattering matrix for this sys-
tem coincides with the one for the system on the spatial
lattice.

Following the TBA treatment described above, to fully
specify the thermodynamics of the system we then need two
ingredients:

(i) Filling functions ϑ̃m(β1, β2) for ρ̃st,t (β1, β2);
(ii) Dispersion relation ( p̃m(λ), ε̃m(λ)) for all quasiparti-

cles on the temporal lattice.
Both these ingredients can be found by using Eq. (60).

We begin by considering the aforementioned equation in the
special case

a(2t ) = a, a( j �=2t ) = 1, (98)

which gives

lim
t→∞ tr[ρ̃st,t (β1, β2)ãt ] = tr[ρst (β1, β2)a0], (99)

for all local operators a. Expanding in the scattering basis this
gives

lim
t→∞

∑
〈λ̃|

〈λ̃|ρ̃st,t (β1, β2)|λ̃〉〈λ̃|ã0|λ̃〉

= lim
L→∞

∑
|λ〉

〈λ|ρst,L(β1, β2)|λ〉〈λ|a0|λ〉, (100)

where, to write a symmetric expression, in the second line we
explicitly reported the L dependence of ρst and considered the
thermodynamic limit. Analogously, choosing

a(2t−2�) = a, a(2t ) = b, a( j �=2t,2t−2�) = 1, (101)

in Eq. (60) we find

lim
t→∞ tr[ρ̃st,t (β1, β2)ãt−�b̃t ] = tr[ρst (β1, β2)a0b0(�)]. (102)

Expanding again in the eigenbasis we obtain

lim
t→∞

∑
|λ̃1〉,|λ̃2〉

〈λ̃1|ρ̃st,t (β1, β2)|λ̃1〉〈λ̃1|ã0|λ̃2〉

× 〈λ̃2|b̃0|λ̃1〉ei[P̃λ1 −P̃λ2 ]�

= lim
L→∞

∑
|λ1〉,|λ2〉

〈λ1|ρst,L(β1, β2)|λ1〉〈λ1|a0|λ2〉〈λ2|b0|λ1〉

× ei[Eλ1 −Eλ2 ]�, (103)

where

Eλ =
Ns∑

m=1

Mm∑
j=1

εm
(
λ

(m)
j

)
, P̃λ =

Ns∑
m=1

Mm∑
j=1

p̃m
(
λ

(m)
j

)
. (104)

Since the same argument can be repeated for an arbitrary
number of operators we argue that the only possible solution
is

〈λ̃|ρ̃st,t (β1, β2)|λ̃〉 = 〈λ|ρst,L(β1, β2)|λ〉, (105)

p̃m(λ) = εm(λ), (106)

〈λ̃|ã0|μ̃〉 = 〈λ|a0|μ〉. (107)

Writing the analog of (58) where the operators ã are evolved
in space in the Heisenberg picture and repeating the above
argument we also find

ε̃m(λ) = pm(λ). (108)

The relations (106) and (108) are very natural. Since the basis
{|λ̃〉} describes scattering states for the system on the temporal
lattice they have a swapped dispersion relation with respect of
the states in {|λ̃〉}. This represents a swap of space and time
in momentum space. The relation (105), on the other hand,
implies that ρ̃st,t (β1, β2) and ρst,L(β1, β2) are described by
the same filling functions. Specifically, a direct application of
generalized hydrodynamics [32,33] gives

ϑ̃m(β1, β2)

= ϑm�(vm)

ϑm + (1 − ϑm)x(2β1 )
m

+ ϑm�(−vm)

ϑm + (1 − ϑm)x(2β2 )
m

, (109)

where ϑm are the filling functions of ρst, vm(λ) are the veloci-
ties of the excitations on the state with filling ϑm(β1, β2), x(β )

m
is the solution of Eq. (93) with ηm = (1 − ϑm)/ϑm and �(x)
is the Heaviside function. This equation, together with (106)
and (108), addresses (i) and (ii).

C. Closed-form predictions

The TBA formalism discussed in the previous subsections
can be combined with the space-time duality to character-
ize the leading order behavior of the charged moments, i.e.,
Eqs. (41), (43), (65), (66), and (68). This represents the second
main result of this paper.

We begin considering the simple full counting statistics
(FCS). A prediction for dβ in Eq. (41) and log �β [cf. (44)] is
found immediately by using Eqs. (92) and (93), and Eq. (94)
respectively. Instead, the slope in Eq. (43) can be written as

sβ = s(R)
β + s(L)

β , (110)

where we defined

s(L)
β = lim

t→∞
1

t
tr[eβQ̃t ρ̃st,t (β, 0)], (111)

s(R)
β = lim

t→∞
1

t
tr[e−βQ̃t ρ̃st,t (0, β )]. (112)

An explicit prediction for these quantities is found by con-
sidering the equilibrium FCS in Eqs. (95) and (97), swapping
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space and time, and using Eqs. (106), (108), and (109). This
gives

lim
t→∞

1

t
log tr[ρ̃st,t (β1, β2)eβQ̃t ]

=
∫ β

0
du
∑

m

∫
dλ

2π
ε′

m(λ)ϑ̃ (u)
m (λ)qeff,m[ϑ̃ (u)](λ), (113)

ϑ̃ (u)
m = 1

1 + ηm(β1, β2)ew̃
(u)
m

, (114)

∂uw̃
(u)
m = −sgn

[
ρt

mvm
[
ϑ̃ (u)

m

]]
qeff,m[ϑ̃ (u)], w̃(0)

m = 0, (115)

where we used that—since Q has an equally spaced
spectrum—the single-particle eigenvalues of Q̃ and Q̃T coin-
cide with the one of Q. Namely q̃ = q ⇒ q̃eff,m. In agreement
with Eq. (64), this expression coincides with the full-counting
statistics of the integrated current computed in Ref. [35] when
evaluated on the nonequilibrium steady state ρst (β1, β2).

We stress that, differently from Eqs. (95)–(97), one cannot
generically compute analytically the u integral in Eqs. (113)–
(115). This can only be done when

sgn
[
ρt

mvm[ϑ̃ (u)
m

]] = sgn
[
ρt

mvm
[
ϑ̃ (0)

m

]]
, ∀u. (116)

The resulting simplified expressions obtained in this case are
reported in Appendix F 3. Note that, since Eq. (116) holds for
the cases studied in Refs. [20,21], the expressions reported
in the Appendix recover the results of the aforementioned
references while Eqs. (113)–(115) generalize them.

Considering now the general charged moments in
Eqs. (65), (66), and (68), we introduce the following gener-
alized FCS:

fβ = lim
L→∞

1

L
log tr

⎡⎣ n∏
j=1

eβ j Qρst, j

⎤⎦, (117)

where ρst, j are, a priori different, stationary states of the form
(86). As shown in Appendix F 2, fβ can be computed in TBA
and, in particular, it can be brought to the following space-
time-swap amenable form analogous to Eqs. (95)–(97),

fβ =
∫ β

0
du
∑

m

∫
dλ

2π
p′

m(λ)ϑ (u)
n,m(λ)qeff,m[ϑ (u)

n ](λ)

+
∑

m

∫
dλ

2π
p′

m(λ)K(0)
n,m(λ). (118)

Here we introduced

β :=
n∑

j=1

β j, (119)

and

K(u)
n,m = sgn

[
ρt

m

[
ϑ (u)

n

]]
log

[∏n
j=1 η j,m + e−w(u)

n,m∏n
j=1(1 + η j,m)

]
, (120)

ϑ (u)
n,m = 1

1 +∏ j η j,mew
(u)
n,m

, (121)

∂uw
(u)
n,m = −sgn

[
ρt

m

[
ϑ (u)

n

]]
qeff,m

[
ϑ (u)

n

]
, (122)

while η j,m are the eta functions of ρst, j . Finally, w(0)
n fulfils

sgn
[
ρt

m

[
ϑ (0)

n

]]
w(0)

n,m(λ) = (T � K(0) )m(λ). (123)

The density of charged moments in Eq. (65) can be obtained
from Eq. (117) by specializing it to the case ρst, j = ρst. In fact,
as shown in Appendix F 2, using

sgn
[
ρt

m

[
ϑ (u)

n

]] = 1, (124)

one can simplify it to a form analogous to Eqs. (92) and (93)
that does not involve an integral over u.

On the other hand, the slope in Eq. (66) can be written as

sβ = s(R)
β

+ s(L)
β

, (125)

where we defined

s(L)
β

= lim
t→∞

1

t
tr

⎡⎣ n∏
j=1

eβ j Q̃t ρ̃st,t (β j, 0)

⎤⎦, (126)

s(R)
β

= lim
t→∞

1

t
tr

⎡⎣ n∏
j=1

ρ̃st,t (0, β j )e
−β j Q̃t

⎤⎦. (127)

These two contributions can be obtained from Eqs. (118)–
(122) by swapping space and time with the help of Eqs. (106)
and (108), and using the filling functions defined in Eq. (109).
The final result reads as follows:

s(r)
β

=
∫ ±β

0
du
∑

m

∫
dλ

2π
ε′

m(λ)ϑ̃ (r,u)
n,m (λ)qeff,m[ϑ̃ (r,u)

n ](λ)

+
∑

m

∫
dλ

2π
ε′

m(λ)L(r,0)
n,m (λ), (128)

with the choice +β, −β in the integration limit corresponding
to r = L, r = R respectively. We also introduced

L(r,u)
n,m = sgn

[
ρt

mvm
[
ϑ̃ (r,u)

n

]]
log

[∏n
j=1 η

(r)
j,m + e−w̃(u)

n,m∏n
j=1

(
1 + η

(r)
j,m

) ], (129)

ϑ̃ (r,u)
n,m = 1[∏n

j=1 η
(r)
j,m

]
ew̃

(u)
n,m + 1

, (130)

∂uw̃
(u)
n,m = −sgn[ρt

mvm[ϑ̃ (r,u)
n ]]qeff,m

[
ϑ̃ (r,u)

n

]
, (131)

where w̃(0)
n fulfils

sgn
[
ρt

mvm
[
ϑ̃ (r,u)

n

]]
w̃(0)

n,m(λ) = (T � L(r,0))m(λ), (132)

and η
(r)
j are the eta functions of ρ̃st,t (β j, 0) and ρ̃st,t (0, β j )

respectively obtained from (109),

η
(r)
j,m =

{
ηm(0, β j ), r = L,

ηm(β j, 0), r = R.
(133)

As in the case of Eqs. (113)–(115), the u integral in these equa-
tions can be analytically performed only when the condition
(116) holds. See Appendix F 3 for the simplified expressions
applying in the latter case.

Finally, using Eq. (94) we find the following TBA predic-
tion for the prefactor in Eq. (68),

log �β =
n∑

j=1

∑
m

∫
dλ

p′
m(λ)

4π
K(2β j )

m (λ), (134)

where K(β ) is defined in Eq. (93).
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IV. NUMERICAL AND ANALYTICAL TESTS

In this section we perform explicit checks on our pre-
dictions for charged moments in TBA integrable models.
Specifically, in Sec. IV A we compare them against exact an-
alytical results in free theories and in Sec. IV B against exact
results in an interacting, yet analytically tractable, integrable
model: the quantum cellular automaton Rule 54. Lastly, in
Sec. IV C we compare them against numerical simulations in
the XXZ model.

A. Free theories

To begin we test our prediction in a free fermionic
model by comparing with an explicit calculation of the FCS,
Zβ (A, t ). Specifically we consider the system described by the
Hamiltonian

H =
∑

p

ε(p)c†
pcp, (135)

where c†
p and cp are canonical fermionic creation and anni-

hilation operators and ε(p) is the single-particle energy. The
model has a U (1) charge, the fermion number

N =
∑

p

c†
pcp, (136)

whose FCS we calculate. In this system there is only a single-
quasiparticle species and, for simplicity, we take its rapidity to
coincide with the momentum, λ = p, and denote the velocity
by v = ε′. Moreover since there are no interactions the scatter-
ing kernel vanishes: Tml = 0. As a result, there is no dressing
of quasiparticle properties, which in particular implies that
the sign of the velocity does not change, and the u-integral
in Eq. (128) can be explicitly performed (cf. Appendix F 3).

We shall quench the system from an initial state, which is
not an eigenstate of N , namely the squeezed state

|�0〉 = e
∑

p>0 K (p)c†
pc†

−p |0〉, (137)

where |0〉 is the vacuum state cp |0〉 = 0. K (p) is some
arbitrary, odd, real-valued function whose explicit form is
unimportant for what follows. We note that this type of initial
state is the free fermionic version of an integrable initial state
in interacting integrable field theories [130], and, therefore, it
is a natural choice here. This setup is the minimal one in which
to check the predictions of the space-time duality approach
(higher order charged moments and multiple U (1) symmetries
can be included through generalizations of the calculations be-
low). We proceed by first formulating the prediction explicitly
and then comparing it to an alternative calculation.

The occupation function is a conserved quantity and it can
be straightforwardly calculated in the initial state

ϑ (p) = 〈�0| c†
pcp |�0〉

〈�0 |ψ0〉 = K2(p)

1 + K2(p)
. (138)

For the equilibrium regime this is the only information re-
quired and upon inserting this into (92) and (93) we have that
log x(β ) = −β and accordingly

dβ =
∫

d p

2π
log [1 − ϑ (p) + ϑ (p)eβ]. (139)

In the nonequilibrium regime we require the spacetime-
swapped occupation functions, which we obtain from (130),

ϑ̃ (L,β )(p) = ϑ (p)�(v) + ϑ (p)�(−v)

ϑ (p) + (1 − ϑ (p))e−2β
, (140)

ϑ̃ (R,β )(p) = ϑ (p)�(−v) + ϑ (p)�(v)

ϑ (p) + (1 − ϑ (p))e−2β
. (141)

Additionally, Eqs. (131) and (132) give w(β )
m = −βsgn[ε′].

Combining these together [cf. Eqs. (125) and (128)] we have

sβ =
∫

d p

2π
|ε′| log

[
(1 − ϑ (p) + ϑ (p)eβ )2

1 − ϑ (p) + ϑ (p)e2β

]
. (142)

Lastly we need the initial value, which using (134) is

�β =
∫

d p

4π
log [1 − ϑ (p) + ϑ (p)e2β ]. (143)

Equations (139), (142), and (143) form the space-time duality
prediction for the FCS in the equilibrium and nonequilibrium
regimes respectively.

To test these we should calculate the FCS using an al-
ternative method. The noninteracting nature of the problem
and the particular initial state we have chosen facilitate this.
We use the fact that both the operator eβNA and the initial
state are Gaussian, which allows us to calculate charged mo-
ments using the two point correlation function along with
the algebra of Gaussian matrices and the multidimensional
stationary phase approximation [131,132]. Leaving the details
to Appendix G the final result for the full time dynamics is

log
Zβ (A, t )

|A| =
∫

d p

4π
log [1 − ϑ (p) + ϑ (p)e2β ]

+
∫

d p

4π
min(1, 2|ε′|ζ )

× log

[
(1 − ϑ (p) + ϑ (p)eβ )2

1 − ϑ (p) + ϑ (p)e2β

]
, (144)

where ζ = t/|A|. Taking the two limits |A|, t → ∞ in differ-
ent orders gives us the expressions in Eqs. (139), (142), and
(143) confirming our prediction in the case of free models.

B. Rule 54

The second nontrivial check of our formula is the compar-
ison with an exact result obtained for a deterministic cellular
automaton “Rule 54” [133]. This is an interacting TBA in-
tegrable model [134,135], which is simple enough to allow
for a number of exact results on nonequilibrium quantities
[12–14,134,136–145] (see also a recent review [146]). In par-
ticular, Refs. [13,14] introduced a family of solvable initial
states, from which the dynamics of local observables [14], and
entanglement [12], can be exactly described.

As shown in Ref. [147], also the dynamics of charged
moments can be calculated exactly for two simple charges:
the total number of particles, and the particle current. Here
we will focus on the former, since solvable initial states,
parametrized by ϑ ∈ (0, 1), are not symmetric under it. For
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this case Ref. [147] gives the slope sβ = s(L)
β

+ s(R)
β

as

s(L)
β

= s(R)
β

= log λβ − log �β, (145)

where λβ is the largest solution to a cubic equation,

λ3
β = (λβ(1 − ϑ )n + ϑneβ�β )2, (146)

and �β is

�β =
n∏

j=1

(1 − ϑ + e2β j ϑ ). (147)

Note that we again use the shorthand notation

β =
n∑

j=1

β j . (148)

To compare this result with the prediction, we first note
that the stationary state reached by this quench obeys the
TBA description introduced in [134]: the model exhibits two
species of quasiparticles, denoted by a subscript μ ∈ {+,−},
and there is no rapidity dependence,

ε′
μ = μ, p′

μ = 1, Tμν = μν. (149)

The dressed velocities in a state with filling functions ϑ± are

v± = ± 1

1 + 2ϑ∓
, (150)

which in particular means that the sign of the dressed velocity
is equal to ν regardless of the underlying state. As a result,
sgn[ρt

mvm[ϑ̃ (β )
m ]] appearing in the conjectured formula has a

trivial β dependence,

sgn
[
ρt

νvν

[
ϑ̃ (r,β )

]] = ν. (151)

This implies that in Eqs. (128) and (131) the integral over u
can be performed explicitly (cf. Appendix F 3), and we can
start with expressions (F27)—(F29). Specializing them to the
TBA description of Rule 54 we obtain

s(r)
β

= L(r,β )
n,+ − L(r,β )

n,− , (152)

L(r,β )
n,ν = ν log

⎡⎣∏n
j=1 η

(r)
j,ν + e−w̃

(r,β )
n,ν∏n

j=1

(
1 + η

(r)
j,ν

)
⎤⎦, (153)

w̃(r,β )
n,ν = ∓νβ + L(r,β )

n,+ − L(r,β )
n,− , (154)

where r ∈ {L, R} denotes the contribution of the left or right
edge, and −β, +β correspond to taking r = L and r = R
respectively. Here we also used that the charge Q is the total
number of particles, which gives

q+ = q− = 1. (155)

Combining (152)–(154) gives us a general nonlinear
equation for the slope with (so far) unspecified filling

functions,

s(r)
β

= log

⎡⎣e∓β
∏n

j=1 η
(r)
j,+ + e−s(r)

β∏n
j=1

(
1 + η

(r)
j,+
)
⎤⎦

+ log

⎡⎣e±β
∏n

j=1 η
(r)
j,− + e−s(r)

β∏n
j=1

(
1 + η

(r)
j,−
)
⎤⎦, (156)

where [as in (154)] for r = L we select the top sign (i.e., −β

and +β respectively), while for r = R we take the bottom one
(+β and −β respectively).

To finally connect this expression with the exact result, we
need to specify η

(r)
j,ν . For the quench protocol under consider-

ation, the stationary filling functions read as [12,14]

ϑ+ = ϑ− = ϑ, (157)

which lead to the following noninteracting form for the quan-
tities in Eq. (93):

x(u)
ν = e−u, K(u)

ν = (1 − ϑ ) + ϑeu, ν ∈ {+,−}. (158)

Equation (133) then gives

η
(L)
j,+ = η

(R)
j,− = 1 − ϑ

ϑ
, η

(L)
j,− = η

(R)
j,+ = e−2β j

1 − ϑ

ϑ
. (159)

Inserting these into Eq. (156) yields the following equation
for s(r)

β
:

s(r)
β

= 2 log
[
(1 − ϑ )n + ϑneβe−s(r)

β

]− log �β, (160)

which precisely reproduces the exact expression in
Eqs. (145)–(147).

C. XXZ

In our final round of checks we consider a paradigmatic
example of interacting integrable model: the anisotropic XXZ
spin-1/2 chain. Having already performed explicit analytic
checks in the preceding sections, here we shall instead com-
pare the space-time duality prediction to exact numerics using
matrix product state (MPS) based algorithms. Once again we
consider the dynamics of the model when quenched from an
integrable initial state.

The Hamiltonian is given by

H =
2L∑
j=1

σ x
j σ

x
j+1 + σ

y
j σ

y
j+1 + �σ z

j σ
z
j+1, (161)

where σ
x,y,z
j are spin-1/2 operators acting on site j, � is the

anisotropy parameter, which we set to be >1, and we assume
periodic boundary conditions σ

x,y,z
2L+1 = σ

x,y,z
1 . Our U (1) charge

will be the z-component of the spin

QA = Sz
A =
∑
j∈A

σ z
j . (162)

A simple family of integrable initial states for this model
takes the form of two-site product states. We focus
on states, which are not eigenstates of Sz namely the
tilted ferromagnetic state |↗↗, θ〉 and the tilted Néel
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FIG. 5. Logarithmic slope of the FCS Zβ (A, t ) after a quench in the XXZ model with � = 4, starting from the tilted ferromagnetic state as
in Eq. (163). Symbols are the iTEBD data computed with |A| = 50, straight lines are the asymptotic predictions.

state |↗↙, θ〉,
|↗↗, θ〉 = ei θ

2

∑2L
j=1 σ̂ x

j ⊗ j=L |↑〉2 j−1 |↑〉2 j, (163)

|↗↙, θ〉 = ei θ
2

∑2L
j=1 σ̂ x

j ⊗ j=L |↑〉2 j−1 |↓〉2 j . (164)

For vanishing tilt the former state becomes stationary while
the latter has been considered already in [20]. Being integrable
initial states the long time steady state can be determined
exactly in terms of its occupation functions ϑm(λ). Moreover
in these cases exact analytic expressions are available to de-
scribe not only the occupation functions but also the rapidity
distributions ρm(λ), ρh

m(λ).
The spectrum of the model consists of an infinite number

of stable quasiparticle types (also known as strings) labeled by
the index m ∈ N and characterized by a rapidity λ ∈ [−π, π ].
Their single-particle energy, momentum, and magnetization
are expressed through the set of functions

am(λ) = 1

π

sinh (mγ )

cos (2λ) − cosh (mη)
, (165)

where we have introduced the parameter γ = acosh(�). In
terms of these we have that the energy and momentum are

εm(λ) = −π sinh (γ )am(λ), p′
m(λ) = 2πam(λ) (166)

and also the magnetization is qm = m. The scattering kernel
is an even function of the rapidity difference Tnm(λ,μ) →
Tnm(λ − μ), and is symmetric in the species index Tmn(λ) =
Tnm(λ). For m � n it is given by

Tmn(λ) = 2
n−1∑
l=1

a|m−n|+2l (λ) + am+n(λ) + am−n(λ). (167)

Inserting these expressions into Eqs. (118) and (128) we ob-
tain the result for the charged moments in the gapped XXZ.
The resulting coupled integral equations can then integrated
numerically by truncating the system at a large but finite
string number and then proceeding using an iterative Fourier
transform scheme.

To compare with the TBA results we perform numeri-
cal simulations of the quench dynamics in the system using
tensor-network based algorithms. The infinite matrix product
state (iMPS) representation of the evolved state allows an easy
diagonal representation of the semi-infinite reduced density
matrix. From that representation, it is easy to compute

Fβ(A, t ) ≡ tr

⎡⎣ n∏
j=1

(
eβ j S

z
Aρ[0,∞](t )

)⎤⎦, (168)

with reasonable accuracy. The asymptotic behavior of this
quantity can be easily related to the correspondent charged
moments Zβ(A, t ) in Eq. (5) (see the Supplemental Material
of Ref. [20]). By increasing the auxiliary dimension of our
simulations up to χmax = 1024, we are able to reach a max-
imum time tmax 
 12. In Figs. 5 and 6 we present the time
evolution of the full counting statistics for quenches in the
XXZ model toward the gapped phase (� = 4) starting from
tilted ferromagnetic or Néel state. Note that, in the case of
initial tilted antiferromagnetic states (164) and whenever the
subsystem A contains an even number of lattice site, thanks
to the symmetry under

∏
j σ

x
j , the FCS is an even function of

β, i.e., Z−β (A, t ) = Zβ (A, t ). This is not the case in general
for the initial ferromagnetic tilted states (163), except for
θ = π/2 since |↗↗, π/2〉 is eigenstate of

∏
j σ

y
j .

Therefore, for the specific case θ = π/3, to highlight the
breaking of the β → −β invariance, we also show some
representative negative values of β in the inset of the right
panel of Fig. 5. In general, the time-dependent logarithmic
slope is approaching the predicted stationary value sooner for
|β| smaller. Moreover, the quenches from the Néel state are
relaxing relatively faster than those from the ferromagnetic
states.

We went beyond the simple full counting statistics by
evaluating the second charged moment with β = [β,−β]. In
Figs. 7 and 8 we show some representative curves for the
same quenches in the XXZ model as before. Even though
the data are in fair agreement with the asymptotic theoretical
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FIG. 6. Same as in Fig. 5 after a quench starting from the tilted Néel state as in Eq. (164).

predictions, the accessible time window is not sufficient to
discriminate predictions for different values β.

V. APPLICATIONS

So far we have established that the space-time duality
approach gives access to the dynamics of charged moments
also in the presence of interactions and, furthermore, we pre-
sented closed-form expressions for TBA integrable models. In
this section we apply these results to the calculation of two
physically relevant quantities: the entanglement asymmetry
[cf. Eq. (10)] and the charge probability distribution.

A. Entanglement asymmetry

As discussed in Sec. I A, the entanglement asymmetry is
expressed in terms of the charged moments via a replica trick.
In particular, to explicitly determine it, one has to evaluate
the integral in Eq. (13). Here we compute the leading order
behavior of that integral by means of the saddle point approx-
imation. We begin by recalling Eq. (72) and noting that, since

at leading order ρ̃st,t (β1, β2) commutes with Q̃t , the quantity

1

t
log Ziβ(A, t ) = |A|

t
�iβ + siβ, (169)

is invariant under any permutation of β j and also any shift
β j → β j + mπ for integer m [148]. Therefore, the saddle
points of the β j integrals are fixed to occur at β j = 0 mod(π )
for all j. After integrating over the delta function this leaves
2n−1 saddle points, which all give equal contribution. We
can explicitly check this by computing ∂β j log Ziβ(A, t ) using

the fact that, after first fixing βn = −∑n−1
j β j via the delta

function, the space-time swapped occupation functions (130)
obey

∂β j ϑ̃
(r,0)
n,m

∣∣
β=0 = 0. (170)

Moreover, we also note that

∂β j ∂βk log Ziβ(A, t )|β=0 = 1
2∂2

β j
log Ziβ(A, t )|β=0, (171)

which again results from the gauge fixing through the delta
function. This means that the determinant of the Hessian

FIG. 7. Logarithmic slope of the second charged moment Z[β,−β](A, t ) after a quench in the XXZ model with � = 4, starting from the
tilted ferromagnetic state as in Eq. (163). Symbols are the iTEBD data computed with |A| = 50, straight lines are the asymptotic predictions.
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FIG. 8. Same as in Fig. 7 after a quench starting from the tilted Néel state as in Eq. (164).

matrix at the saddle points can be easily computed. Combin-
ing these facts along with the expression for the Rényi entropy
(7) and taking the replica limit we arrive at an exact expres-
sion for the entanglement asymmetry in the nonequilibrium
regime. The result reads as

�SA(t ) = 1
2 + 1

2 log πχ (t ), (172)

where 1 	 t 	 |A|, and we introduced

χ (t ) = lim
n→1

∂2
β j

log Zβ(A, t )|β=0 (173)

=
∑

m

∫
dλρm(1 − ϑm)q2

eff,m(|A| − 2t |vm|). (174)

From this compact expression we can gain some intuition
about the behavior of the entanglement asymmetry. The
extensive term in (174) can be recognized as the charge
susceptibility in the initial state. As per the remit of the
asymmetry, we expect that this should be greater for states,
which are further from being symmetric. For example, charge
eigenstates exhibit no fluctuations whereas approaching a
condensation transition a system exhibits a divergent suscep-
tibility. At finite times we see that (174) decreases following
the expectation that under time evolution the state becomes
more symmetric. Moreover, the rate at which this happens
coincides with twice the Drude self weight [16]. The latter
is related to the fluctuations of the time integrated current
associated to QA at a specific point in space (more precisely it
is its second cumulant). Thus the following picture of the en-
tanglement asymmetry in the nonequilibrium regime emerges:
The subsystem experiences charge fluctuations throughout its
bulk and their strength, quantified through the susceptibility,
characterize how far the system is from being symmetric. At
finite times these fluctuations are reduced by the transport of
charge through the boundaries of the subsystem with the rate
at which this happens being determined by the fluctuations of
the charge current at the boundaries given by the Drude self
weight.

The condition that �SA(t ) � 0 sets a limit on the applica-
bility of our calculation as do the requirements of the saddle
point approximation. Therefore, questions regarding symme-
try restoration require us to go beyond the nonequilibrium

regime and study the full dynamics, which is beyond the scope
of the current paper but will be addressed elsewhere [149].

B. Charge probability distribution

Whilst the higher charged moments provide nuanced in-
formation on the physics of nonequilibrium systems the most
immediately useful quantity remains the simplest of these, the
full counting statistics. Its utility is evident from the fact that
its Fourier transform is the charge probability distribution,

P(q, t ) =
∫ π

−π

dβ

2π
e−iβqZiβ (A, t ), (175)

which gives the probability that a measurement of Q inside
A at time t returns the value q. We can calculate this integral
also by the saddle point approximation, whereupon we find
that the saddle point occurs at β = −iβ∗,

q = ∂β[log �β + tsβ]β=β∗ . (176)

Expanding this for small β∗ we obtain the saddle point condi-
tion for charges close to the initial value,

�q = q − 〈QA〉, 〈QA〉 = ∂β log �β |β=0. (177)

Using this as the saddle point we arrive at

P(�q, t ) 
 1√
2πD(t )

e− �q2

2D(t ) (178)

where

D(t ) = 2
∑

m

∫
dλ q2

eff,mρm(1 − ϑm)[|A| − t |vm(λ)|]. (179)

Thus the charge probability distribution for small �q is ap-
proximately normal distributed with variance D(t ).

Some comments on this expression are in order. First,
unlike the case for the charge moments of a system quenched
from a symmetric state there is no time delay [57]. In the sym-
metric case since there are initially no charge fluctuations, it
takes a finite time for systems with a maximal velocity to build
up the fluctuations of charge necessary for a nonzero charged
moment. In this case since the initial state is not symmetric,
charge fluctuations are present at any time and no time delay
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occurs. Second, the variance is similar in form to χ (t ), which
governs the entanglement asymmetry. In the initial state the
variance of the probability distribution is the charge suscepti-
bility while at finite time the fluctuations should decrease via
the spreading of charge through the boundaries, which again
is determined by the Drude self weight. Note, however, the
coefficients of these two terms differ from the asymmetry,
which results in a different long time behavior. Third, while
the expression for the asymmetry is exact in the thermody-
namic limit, this is not the case for (178). Although at small
�q, P(�q, t ) is normal, there are corrections to this and all
higher cumulants are nonvanishing leading to breakdown of
(178) for large deviations.

VI. CONCLUSIONS

Nonequilibrium quantum systems remain relatively poorly
understood in comparison to systems, which are at, or close
to, equilibrium. In part this can be attributed to the inherently
more complex nature of the former but also due the dearth
of widely applicable techniques like those which can be used
in the latter. In this paper we have presented, in great detail,
the space-time duality approach to nonequilibrium systems.
This method facilitates a far greater understanding of such
systems via a mapping of the nonequilibrium system to a
dual one which is at equilibrium. Therefore one can apply
the extensive toolkit and intuition of equilibrium physics to
a nonequilibrium setting.

We have concentrated in this paper on a certain class of
physically motivated quantities, the charged moments, which
allow one to study among other things the spreading of en-
tanglement, the fluctuations of conserved U (1) charges and
the interplay between symmetry and relaxation to a steady
state. Using the setting of brickwork quantum circuits we
have shown quite generally that the quench dynamics of the
charged moments can be understood using the equilibrium
properties of a dual system, which evolves in the space-like
rather than time-like direction. Directly from this observation
one can infer many nontrivial properties of the charge mo-
ments in general but also in certain systems derive explicit
predictions for the dynamics.

In Eqs. (118) and (125) we have presented explicit formu-
las for the dynamics of the charge moments in TBA integrable
systems, which are quenched from arbitrary integrable initial
states. This extends previous study to encompass initial states,
which are not symmetric with respect to the charge and which
has necessitated a bridging of the space-time duality approach
with the theory of generalized hydrodynamics. These expres-
sions represent the first complete and exact analytic analysis
of the finite-time dynamics of charge fluctuations in the pres-
ence of interactions. We tested them against exact analytic
results in the case of free models and the Rule 54 cellular
automaton and against numerical simulations of the XXZ spin
chain. They were then used to study symmetry restoration in
interacting models via the entanglement asymmetry for the
first time.

While in this paper we have concentrated on the charged
moments for a U (1) conserved charge in one dimension, the
space-time duality approach is much more widely applicable.
Indeed, one could also consider the dynamics of non-Abelian

charges using the same approach as an example. Moreover, it
is not too difficult to see that the same underlying reasoning
could be applied to the calculation of quantities other than the
charged moments. In particular the study of the correlation
functions after a quantum quench is an immediate prospect. In
this respect, our paper complements recent progress in ballis-
tic macroscopic fluctuation theory [36] by providing a general
theory to understand many-body systems out of equilibrium.
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APPENDIX A: PROOF OF EQ. (36)

We start by rewriting the conservation of Q, UQU† = Q,
as

UoeβQU†
o = U†

e eβQUe, (A1)

which holds for any β ∈ C. By performing partial trace of the
above relation over all but two consecutive sites x and x +
1/2, we obtain

Ueβq ⊗ eβqU † = a ⊗ b, (A2)

where a, b ∈ End(Cd ) are one-site operators

a = 1

tr[eβq]
tr1(U †eβq ⊗ eβqU ),

b = 1

tr[eβq]
tr2(U †eβq ⊗ eβqU ), (A3)

where tr1 and tr2 denote respectively traces over the first and
second qudit. Note that that (A2) follows because Uo acts as a
product over the bipartition {x, x + 1/2} ∪ {x, x + 1/2} while
Ue does not.

Using now again (A1) with (A2) we obtain

U †eβq ⊗ eβqU = b ⊗ a. (A4)

The Hermiticity of q implies that eβq is normal, and
therefore—using (A2) and (A4)—also a and b are normal,
which means that all the operators eβq, a, and b are diagonaliz-
able (i.e., unitarily similar to appropriate diagonal operators).
The spectra of the lhs and rhs have to be the same,

Spect(eβq ⊗ eβq) = Spect(a ⊗ b), (A5)

which—up to a trivial rescaling by a constant—can only be
fulfilled if

Spect(eβq) = Spect(a) = Spect(b). (A6)

Thus, there exist unitary transformations v,w ∈ End(Cd )
such that

a = veβqv†, b = weβqw†. (A7)
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This allows us to introduce

U (o) = v† ⊗ w† U, U (e) = U w ⊗ v, (A8)

in terms of which (A2), and (A4) are rewritten as

U (o)eβq ⊗ eβq = eβq ⊗ eβq U (o),

U (e)eβq ⊗ eβq = eβq ⊗ eβq U (e), (A9)

which is a version of Eq. (36) where even and odd time steps
are implemented by different unitary gates. The transforma-
tion

Ue = U ⊗L �→ U (e) ⊗L
,

Uo = �2LU ⊗L�
†
2L �→ �2L U (o) ⊗L

�
†
2L, (A10)

preserves the full time-evolution operator U and is therefore a
gauge transformation. In other words, by redefining the local
operator on even and odd time-steps as shown above, all the
local gates satisfy Eq. (36), and the full time evolution is
unchanged.

In Sec. II we assume U (e) = U (o) = U for simplicity. How-
ever, since the specific form of the gates is never used, we
could repeat the full reasoning and arrive to the same result
also taking U (e) �= U (o) (albeit with additional complications
to the notation). Therefore we decided to restrict the discus-
sion to the simplified case.

APPENDIX B: CURRENT OF A U (1) CHARGE
IN A QUANTUM CIRCUIT

To obtain the form of the current given in (38) we utilize the
continuity equation for the charge on the space lattice, which
can be used as a defining equation for the current operator. In
quantum circuits, using the definition of Heisenberg evolution
(39), this is given by

qx(t + 1) + q
x+ 1

2
(t + 1) − qx(t ) − q

x+ 1
2

(t )

= jx+1
(
t + 1

2

)− jx
(
t + 1

2

)+ jx+1(t ) − jx(t ). (B1)

Just like the standard continuity equation this equation is just
a restatement of the conservation of the charge, which is
obtained by summing (B1) over x. Note that there is a “gauge
ambiguity” associated to this process: one can write many
equivalent continuity equations for a given conservation law
[16].

On the lhs of (B1) we have the total change in charge on
the sites x and x + 1/2 between time steps t and t + 1. On
the rhs we have the total time integrated current, which passes
into and out of these sites in one time step. Note that on the
rhs the current operators are defined on time lattice at t and
t + 1/2 and the boundaries in space are x and x + 1 while
on the lhs the situation is reversed which highlights the equal
footing time and space have in a brickwork quantum circuit.

Recalling now that Eq. (36) (see also Appendix A) implies

qx(t + 1) + q
x+ 1

2
(t + 1) = qx

(
t + 1

2

)+ q
x+ 1

2

(
t + 1

2

)
, (B2)

qx+1(t ) + q
x+ 1

2
(t ) = qx+1

(
t + 1

2

)+ q
x+ 1

2

(
t + 1

2

)
, (B3)

one can verify that the current operator fulfilling (B1) can be
written as in Eq. (38).

APPENDIX C: PROOF EQ. (54)

In this Appendix we derive explicitly Eq. (54) from
Eq. (52). We begin by invoking the following Lemma

Lemma. For all x � 2t + 1 one has

W̃ x
t,β = |Rt,β〉〈Rt,β |Lt,β (C1)

where we introduced the states in Ht ⊗ Ht

〈Lt,β | = A0,βA1,β · · ·At−1,βAt,β , (C2)

|Rt,β〉 = Bt,βBt−1,β · · ·B1,βB0,β , (C3)

the rectangular matrices

At�1,β = 1

d

⎡⎣ d−1∑
s,r=0

〈s, r| ⊗ 1⊗(2t−1) ⊗ 〈s, r|
⎤⎦W̃t,β , (C4)

A0,β = 1

d

(
d−1∑
s=0

〈s, s|
)
W̃0,β , (C5)

Bt�1,β = 1

d
W̃t,β

⎡⎣ d−1∑
s,r=0

|s, r〉 ⊗ 1⊗(2t−1) ⊗ |s, r〉
⎤⎦, (C6)

B0,β = W̃0,β

(
d−1∑
s=0

|s, s〉
)

, (C7)

and set

W̃0,β = 1

�β

d−1∑
s,r=0

|s〉〈r| ⊗ |s〉〈r|((eβqT
meβq ) ⊗ m∗) (C8)

= B0,βA0,β . (C9)

As per their definition At,β maps from Ht−1 ⊗ Ht−1 to
Ht ⊗ Ht and Bt,β from Ht ⊗ Ht to Ht−1 ⊗ Ht−1. This lemma
is readily proven graphically using the unitarity relations (32)
(see e.g., the Supplemental Material of Ref. [110]). In Sec. C 1
we present an equivalent algebraic proof.

Substituting now Eq. (C1) in Eq. (52) we find

Zβ (A, t ) = �
|A|
β 〈Lt,0|eβQ̃t ⊗ 1|Rt,β〉

× 〈Lt,β |e−βQ̃t ⊗ 1|Rt,0〉, |A| � 2t, (C10)

where Q̃t is defined in Eq. (53). Finally, we map the states
〈Lt,β | , |Rt,β〉 ∈ Ht ⊗ Ht into operators Lt,β , Rt,β ∈ End(Ht )
using the correspondence〈
s2t+1 · · · s1|Rt,β |r2t+1 · · · r1

〉 = 〈s2t+1 · · · s1r1 · · · r2t+1|Rt,β〉,〈
s2t+1 · · · s1|Lt,β |r2t+1 · · · r1

〉 = 〈s2t+1 · · · s1r1 · · · r2t+1|Lt,β〉,
to rewrite (C10) as

Zβ (A, t ) = �
|A|
β tr[eβQ̃t Rt,βL†

t,0]tr[e−βQ̃t Rt,0L†
t,β]. (C11)

Finally, Eq. (54) follows by observing

Lt,β = l†
t,β lt,0, Rt,β = rt,βr†

t,0, (C12)

where lt,β and rt,β are defined in Eq. (56).
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1. Proof of the lemma

To prove the lemma we begin by observing that, because
U is unitary, Ũ fulfils[

d−1∑
s=0

〈s| ⊗ 1⊗x ⊗ 〈s|
]

Ũ ⊗ O ⊗ Ũ †

[
d−1∑
r=0

|r〉 ⊗ 1⊗x ⊗ |r〉
]

=
d−1∑

s,r=0

|r〉〈s| ⊗ O ⊗ |r〉〈s|, (C13)

for any operator O with support on x � 0 qudits. Next we note
that using (C13) and the definitions (47) and (C4)–(C7) of
W̃t,β ,At,β , and Bt,β one can readily establish the following
relations:

At,βW̃t,β = W̃t−1,βAt,β , (C14)

W̃t,βBt,β = Bt,βW̃t−1,β , (C15)

W̃t,βW̃t,β = Bt,βAt,β . (C16)

Using the latter we find

W̃ x>2
t,β = Bt,βAt,βW̃

x−2
t,β

= Bt,βBt−1,βAt−1,βAt,βW̃
x−4

t,β

...

= Bt,β · · ·Bt+1−�x/2�,β

× W̃ mod(x,2)
t−�x/2�,βAt+1−�x/2�,β · · ·At,β , (C17)

and W̃ 2
t,β = Bt,βAt,β . Equation (C1) follows by observing

W̃ y
0,β = B0,βA0,β , y � 1. (C18)

APPENDIX D: EQUIVALENCE BETWEEN THE FCS
OF THE CHARGE AND CURRENT

In this Appendix we use local relaxation to prove Eq. (64).
We begin by defining

ft (β ) := 1

t
log tr[ρ̃st,t (β1, β2)eβQ̃t ], (D1)

and computing its first derivative with respect to β. This gives

f ′
t (0) = 1

t

∑
τ∈Zt /2

〈 j0(τ )〉, (D2)

where we introduced the shorthand notation

〈A〉 = 〈�0|Aeβ1QL+β2QR |�0〉. (D3)

Splitting the sum in Eq. (D2) as

f ′
t (0) = 1

t

�tα�∑
τ=0

〈 j0(τ )〉 + 1

t

t∑
τ=�tα�+1

〈 j0(τ )〉, α < 1, (D4)

we have that∣∣∣∣∣∣ f ′
t (0) − 1

t

t∑
τ=�tα�+1

〈 j0(τ )〉
∣∣∣∣∣∣

= 1

t

∣∣∣∣∣∣
�tα�∑
τ=0

〈 j0(τ )〉
∣∣∣∣∣∣ � 1

t

�tα�∑
τ=0

|〈 j0(τ )〉| � O(tα−1), (D5)

where we used

|〈 j0(τ )〉| � ‖ j0‖∞‖eβ1QL+β2QR‖∞ = O(1). (D6)

Finally, we invoke local relaxation to claim

〈 j0(τ )〉 → tr[ρst (β1, β2) j0], τ � tα. (D7)

Putting all together we get

f ′(0) = lim
t→∞ f ′

t (0) = tr[ρst j0]. (D8)

Proceeding analogously we have

f ′′
t (0) = 1

t

∑
τ1�τ2∈Zt /2

(〈 j0(τ1) j0(τ2)〉 − 〈 j0(τ1)〉〈 j0(τ2)〉), (D9)

which gives

f ′′(0) = lim
t→∞ f ′′

t (0) =
∞∑

τ=0

(tr[ρst j0 j0(τ )]− tr[ρst j0]2), (D10)

where we could again reduce the summation over τ1 to τ1 � tα

because each term is a connected correlation and therefore it
is O(t0). This treatment generalizes to all derivatives of finite
order. Therefore, assuming that the expansion of Eq. (D1)
around β = 0 converges, we find Eq. (64).

APPENDIX E: EQUILIBRIUM FCS ON
THE TEMPORAL LATTICE

The expression in Eqs. (92) and (93) for the equilibrium
FCS cannot hold for the temporal lattice. To see this let us
assume that it holds and plug in the defining relations in
Eqs. (106), (108), and (109). The result reads as

f (β ) := lim
t→∞

1

t
log tr[ρ̃st,t (β1, β2)eβQ̃t ]

=
∑

m

∫
dλ

2π
p̃′

m log

[
η̃(β1,β2 )

m + e−w̃
(β )
m

1 + η̃
(β1,β2 )
m

]

=
∑

m

∫
dλ

2π
ε′

m log

[
η(β1,β2 )

m + e−w̃
(β )
m

1 + η
(β1,β2 )
m

]
, (E1)

with

η(β1,β2 ) = 1 − ϑ (β1,β2 )

ϑ (β1,β2 )
, (E2)

and

w̃(β ) = −βq + T � log

[
η(β1,β2 ) + e−w̃(β )

1 + η(β1,β2 )

]
. (E3)

Specializing this relation to β1 = β2 = 0 and to a reflection
symmetric integrable model we have that η(β1,β2 )

m (λ) are even
functions of the rapidity while ε′

m(λ) are odd. This means that
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Eq. (E1) gives identically 0, contradicting known exact results
[20,21,30,57].

This unphysical result is due to an arbitrariness in the
starting expression (92): since p′

m(λ) > 0 one can add terms
involving sgn[p′] or sgn[ρt ] to Eq. (93) without changing
it. Adding these terms, however, does change the swapped
expression. Using a crossing symmetry argument, Ref. [21]
proposed the following gauge fixing:

log

[
η + e−w̃(β )

1 + η

]
�→ κ̃ log

[
η + ew̃(β )

1 + η

]
,

w̃(β ) �→ κ̃w̃(β ), (E4)

where κ̃m(λ) is an appropriate sign function [to lighten the
notation we drop the dependence on β1,2 until the end of the
subsection]. In fact, Ref. [21] also showed that in the case of
β = 0 and even ηm(λ) one should choose

κ̃m(λ) = sgn[ε′
m(λ)] = sgn

[
v(0)

m (λ)
] = sgn

[
v(β )

m (λ)
]
. (E5)

Here we denote by v(β )
m (λ) the dressed velocity in the state

with filling function

ϑ̃ (β )
m (λ) = 1

ηm(λ)ew̃
(β )
m (λ) + 1

. (E6)

Whenever ηm(λ) are not even, however, there is an ambiguity
in the choice of κ̃ , as sgn[ε′] �= sgn[v] �= sgn[v(β )]. This is
exactly the case that we have to consider here.

To fix this ambiguity we consider the first two derivatives
of f (β ) with respect to β (β1 and β2 are kept fixed as we
are considering arbitrary states). A standard TBA calculation
gives

f ′(β ) =
∑

m

∫
dλ

2π
ε′

mϑ̃ (β )
m qeff,m[ϑ̃ (β )],

f ′′(β ) =
∑

m

∫
dλ

2π
κ̃mv(β )

m ρm[ϑ̃ (β )]

× (1 − ϑ̃ (β )
m

)
q2

eff,m[ϑ̃ (β )], (E7)

where ρ[ϑ] and qeff [ϑ] are root density and effective charge
[cf. Eq. (90)] in the state described by the filling functions ϑ .
Note that in computing the derivatives in Eq. (E7) we used

∂β (κ̃w̃(β ) ) = κ̃∂βw̃(β ) = −qeff [ϑ̃
(β )], (E8)

and we assumed κ̃ to be independent of β and, therefore, we
excluded the choice κ̃ = sgn[v(β )]; we will come back to this
point after Eq. (E11).

At the same time, recalling Eqs. (D8)–(D10) and express-
ing them in TBA [16,150] we have

f ′(0) =
∑

m

∫
dλ

2π
ε′

mϑmqeff,m[ϑ],

f ′′(0) =
∑

m

∫
dλ

2π
|vm|ρm[ϑ](1 − ϑm)q2

eff,m[ϑ]. (E9)

We see that the second derivative agrees with (E7) for β = 0
only if we chose κ̃ = sgn[v(0)]. This leads to

f (β ) =
∑

m

∫
dλ

2π
ε′

m(λ)L(β )
m (λ), (E10)

with

L(β ) = κ̃ log

[
η + e−w̃(β )

1 + η

]
,

κ̃w̃(β ) = −βq + T � L(β ). (E11)

In fact, we also have another option. We can assume κ̃ (β ) =
sgn[v(β )] and reproduce the first of (E9) by replacing f (β )
with the integral of the first of (E7), i.e.,

f (β ) =
∫ β

0
du
∑

m

∫
dλ

2π
ε′

mϑ̃ (u)
m qeff,m

[
ϑ̃ (u)

m

]
. (E12)

This choice also reproduces the second of (E9) upon replacing
w̃(β ) in (E6) by by the integral of its derivative [obtained from
Eq. (E8) for β-independent κ̃ (0)]. Namely

w̃(β ) = −
∫ β

0
du κ̃ (u)qeff [ϑ̃

(u)]. (E13)

Note that in writing (E12) and (E13) we used

f (0) = 0, w̃(0) = 0. (E14)

The form (E6), (E12), and (E13) ensures that Eqs. (E7) give
the expectation value of current and Drude self-weight for any
value of β, rather than only for β = 0.

Importantly, we stress that performing the inverse replace-
ment

ε′
m �→ p′

m, (E15)

both (E10) and (E11), and (E12) and (E13) reduce to (92) and
(93).

To choose among the two expressions we a further consis-
tency check. We use Eq. (64) and impose that f (β ) computed
via space-time swap should coincide with that computed in
Ref. [35] via the ballistic fluctuation formalism. A direct com-
parison shows that the prediction [(E12) and (E13)] agrees
exactly with the findings of the aforementioned reference {cf.
Eqs. (15) and (24) of Ref. [35]}. Therefore, we conclude that
before performing the space-time swap in Eqs. (92) and (93)
should be rewritten as in Eqs. (95)–(97), which coincides with
(E6), (E12), and (E13) under the swap.

APPENDIX F: DETAILS ON THE TBA DESCRIPTION

1. TBA expressions for the equilibrium FCS

To find Eq. (92) we write the lhs as the ratio of two partition
functions and evaluates their logarithm using (89). Explicitly
we have

lim
L→∞

log tr[ρst,LeβQ]

L

= lim
L→∞

log tr[e−∑k μkQ(k)+βQ] − log tr[e−∑k μkQ(k)
]

L
. (F1)

Upon applying (89) we find

lim
L→∞

log tr[ρst,LeβQ]

L

=
∑

m

∫
dλ

2π
p′

m(λ) log

[
1+ η(β )

m (λ)−1

1+ ηm(λ)−1

]
, (F2)
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where η(β )
m (λ) fulfils (87) with dm(λ) �→ dm(λ) − βq. This

expression can be brought to the form [(92) and (93)] by
setting

ew(β ) = η(β )

η
. (F3)

Finally, noting that

κ (β ) : = sgn[ρt [ϑ (β )]] = 1, (F4)

∂β (κ (β )w(β ) ) = κ (β )∂βw(β ) = −qeff [ϑ
(β )], (F5)

we have

∂βK(β ) = ϑ (β )qeff [ϑ
(β )], (F6)

where ϑ (β ) is defined in Eq. (96). Therefore, we can write

K(β ) =
∫ β

0
du ϑ (u)qeff [ϑ

(u)], (F7)

where we used

w(0) = 0 ⇒ K(0) = 0. (F8)

Equation (F7) proves the equality between Eqs. (92) and (93)
and (95)–(97).

2. TBA expressions for the equilibrium charged moments

Proceeding as in Appendix F 1 we have

lim
L→∞

1

L
log tr

⎡⎣ n∏
j=1

eβ j Qρst, j

⎤⎦
=
∑

m

∫
dλ

2π
p′

m(λ) log

[
1 + η(β )

m (μ)−1∏
j (1 + η j,m(μ)−1)

]
, (F9)

where η j fulfils (87) with

d �→ d j (F10)

while η(β ) fulfils the same equation with

d �→
∑

j

d j − βq. (F11)

Setting

ew
(β )
n = η(β )∏

j η j
, (F12)

we then have

lim
L→∞

1

L
log tr

⎡⎣ n∏
j=1

eβ j Qρst, j

⎤⎦
=
∑

m

∫
dλ

2π
p′

m(λ) log

⎡⎣∏ j η j,m(λ) + e−w
(β )
n,m (λ)∏

j (1 + η j,m(λ))

⎤⎦, (F13)

with

κ (β )
n w(β )

n + βq = T � log

⎡⎣∏ j η j + e−w
(β )
n∏

j (1 + η j )

⎤⎦, (F14)

κ (β )
n = sgn

[
ρt
[
ϑ (β )

n

]] = 1, (F15)

ϑ (β )
n = 1

1 + ew
(β )
n
∏

j η j

. (F16)

Using now

∂β

(
κ (β )

n w(β )
n

) = κ (β )
n ∂βw(β )

n = −qeff
[
ϑ (β )

n

]
, (F17)

we find

lim
L→∞

1

L
log tr

⎡⎣ n∏
j=1

eβ j Qρst, j

⎤⎦
=
∫ β

0
du
∑

m

∫
dλ

2π
p′

mϑ (u)
n,mqeff,m

[
ϑ (u)

n,m

]
+
∑

m

∫
dλ

2π
p′

mκ (0)
n,m log

[∏
j η j,m + e−w(0)

n,m∏
j (1 + η j,m)

]
, (F18)

and

κ (0)
n w(0)

n = T � log

[∏
j η j + e−w(0)

n∏
j (1 + η j )

]
. (F19)

3. Simplified form of the slope under the condition (116)

Whenever the condition (116) holds we can explicitly in-
tegrate Eqs. (113) and (115). To this end we note that in this
case Eq. (115) can be rewritten as

∂u(κ̃ (u)w̃(u) ) = κ̃ (u)∂uw̃
(u) = −qeff [ϑ̃

(u)], (F20)

where we introduced the shorthand notation

κ̃ (u) = sgn[ρtv[ϑ̃ (u)]] = sgn[ρtv[ϑ̃ (0)]] = κ̃ (0). (F21)

We now recall that qeff,m[ϑ (u)](λ) fulfils Eq. (90) with
bm(λ) = qm. Integrating the latter equation in u ∈ [0, β] we
find

κ̃ (β )w̃(β ) = −βq +
∫ β

0
du T � (ϑ̃ (u)qeff [ϑ̃

(u)]). (F22)

Defining now L(u) as

L(u) = κ̃ (u) log

[
η(β1, β2) + e−w̃(β )

η(β1, β2) + 1

]
, (F23)

we note that

∂uL(u) = ϑ̃ (u)qeff [ϑ̃
(u)], (F24)

and therefore the integral over du in (F22) gives the integral
equation for w̃(β ),

κ̃ (β )w̃(β ) = −βq + T � L(β ). (F25)

Moreover, this also allows us to perform the integral in
Eq. (113) and we finally find

lim
t→∞

log tr[ρ̃st,t (β1, β2)eβQ̃t ]

t
=
∑

m

∫
dλ

2π
ε′

mL(β )
m (λ). (F26)
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Similarly, one can show that the same simplification ap-
plies for Eqs. (128) and (132). The final result reads as

s(r)
β

=
∑

m

∫
dλ

2π
ε′

mL(r,β )
n,m , (F27)

L(r,u)
n = κ̃ (0)

n log

⎡⎣∏n
j=1 η

(r)
j + e−w̃

(r,β )
n∏n

j=1

(
1 + η

(r)
j

)
⎤⎦, (F28)

κ̃ (0)
n w̃(r,β )

n = ∓βq + T � L(r,β )
n , (F29)

where the top (bottom) choice in the ∓β corresponds to r = L
(r = R).

APPENDIX G: FCS IN A FREE MODEL

Here we derive the result (144) through the two point
correlation functions of the model. We start by introducing
cx = (cx, c†

x ) where cx = ∫ d p e−ipxcp/2π . The relevant two
point function is

�A(t ) = 2 tr[ρA(t )c†
xcy] − δx,y

=
∫

d p

2π
eip(x−y)[apσ

z + bp(σ+e−2iε(p)t + H.c.)], (G1)

where

ap = (K2 − 1)/(K2 + 1), (G2)

bp = 2K/(1 + K2), (G3)

σ± = 1
2 [σ x ± iσ y], (G4)

with σ x,y,z being Pauli matrices. It is also necessary to express
eβNA through its two point function by treating it as a density
matrix ρN = eβNA/tr[eβNA ] so that

�N = 2 tr[ρN c†
xcy] − δx,y = tanh (β/2) σ zδx,y. (G5)

Using the algebra of Gaussian matrices we can express the
charged moment as [132]

Zβ (A, t ) = tr[eβNA ]

√
det

[
1

2
(1 + �A(t )�N )

]
. (G6)

Taking the log and expanding the resulting expression as a
power series gives

log Zβ (A, t ) = −
∞∑

n=1

(− tanh (β/2))n

n
tr[(�̄A(t ))n]

+ |A| log

[
1 + eβ

2

]
, (G7)

with �̄A(t ) = �A(t )σz. The trace over the powers of �̄A(t ) can
then be evaluated using the multidimensional stationary phase
approximation [131] resulting in

tr[(�̄A(t ))n] = L
∫

d p

2π
min(1, 2|ε′|ζ )2an

p

+ L
∫

d p

2π

(
1 − min(1, 2|ε′|ζ )

)
[(ap + ibp)n

+ (ap − ibp)n], (G8)

where min(1, 2|ε′|ζ ) is the characteristic function counting
the number of quasiparticle pairs shared between A and its
compliment and ζ = t/|A|. Inserting this into (G7) and per-
forming the sum we arrive at the stated result.
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