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Preface

In this thesis, we delve into the unique properties of long-range interacting quantum sys-
tems. The research presented here is the culmination of a three-year PhD project, which
contributes to the excitingly growing interest in long-range quantum systems. This interdis-
ciplinary field bridges various research communities, including condensed matter physics,
statistical physics, and quantum information theory.

The contribution of the present thesis is two-fold. From the fundamental side we probe
the universal properties of long-range interacting quantum systems establishing a reach
phenomenology which have no counter part in systems with local interactions. From the
applicative point of view we identify some features which may be useful in the context of
quantum technological applications, leading to several advantages with respect to standard
local systems. Our transversal point of view, based on our statistical physics background,
allowed us to bridge together many different subjects ranging from the out-of-equilibrium
dynamics of many-body quantum systems to the theory of entanglement and quantum
information. Moreover, we have explored for the first time the idea to obtain a thermo-
dynamic advantage, coming from the presence of long-range couplings, in the context of
quantum thermodynamics. Last but not least, during the PhD program, we had the op-
portunity to access the IBM superconducting quantum processors, this allowed us to go
beyond theoretical predictions pursuing quantum simulation experiments directly on the
physical hardware. The Thesis is organized as follows.

Chapter 1 is intended to summarize some known features of long-range interacting
quantum systems. Section 1.1 presents the scope of the thesis and provides theoretical and
experimental motivations for considering these systems as promising platforms for quan-
tum technological applications. Section 1.2 introduces the distinction between weak and
strong long-range interactions and discusses the peculiar spectral properties of long-range
Hamiltonians. Section 1.3 reviews the current state of the art of experimental research
in quantum computing and simulations, highlighting the pros and cons of various physical
platforms, with a focus on atomic, molecular, and optical systems that allow for long-range
couplings. Sections 1.4 and 1.5 detail the equilibrium and dynamical properties of two pro-
totypical long-range models: the long-range quantum Ising chain and the long-range Kitaev
chain.

Chapter 2 introduces and justifies the effective dimension approach to studying the
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critical behavior of long-range systems. Section 2.1, reviews the derivation of the effective
dimension relation using scaling theory and demonstrates its validity at leading order in a
perturbative renormalization group (RG) analysis around the Gaussian fixed point. Section
2.2 applies known perturbative RG results to derive an explicit formula for the effective
dimension, valid up to corrections of order O(ε3). Section 2.3 presents a modern approach
based on functional RG techniques, extending the effective dimension approximation be-
yond one-loop corrections by incorporating wavefunction renormalization effects. Section
2.4, compares the effective dimension approach predictions with numerical data from the
conformal bootstrap for the two-dimensional Ising model with long-range interactions,
demonstrating high accuracy.

Chapter 3 explores the quantum thermodynamics of long-range systems. Sections 3.1
and 3.2 introduce the field of quantum thermodynamics and the concept of quantum work
statistics. Section 3.3 determines conditions under which long-range interactions reduce
energy losses due to defect generation during non-adiabatic evolution, emphasizing their
robustness against dynamic excitations compared to local systems. These findings are
applied in Section 3.4 to optimize the performance of a finite-time quantum Otto cycle
with a working substance featuring long-range couplings.

Chapter 4 presents results on Floquet physics in long-range systems. Section 4.1 in-
troduces Discrete Floquet Time Crystals (DFTCs), a nonequilibrium many-body phase
characterized by the breaking of discrete time translation symmetry and persistent oscil-
lations of an order parameter. Section 4.2 introduces the long-range kicked quantum Ising
chain as a prototypical model for studying Floquet-driven long-range systems. Section 4.3
explores the generation of DFTCs in clean systems with strong long-range interactions
and introduces a novel order parameter for detecting these phases. This tool is applied
to characterize the out-of-equilibrium phase diagram of the long-range kicked Ising model,
revealing a rich landscape with self-similar fractal boundaries. Section 4.4 presents re-
sults from digital quantum simulations addressing qubit connectivity limitations in noisy
intermediate-scale quantum devices, demonstrating how to implement couplings among
physically disconnected qubits. This section also includes quantum simulation results on
IBM superconducting quantum processors, benchmarking the prethermal stabilization of
discrete Floquet time crystalline response with increasing interaction range.

Chapter 5 studies the behavior of the ground state entanglement entropy for Kitaev
chains with long-range hopping and pairing couplings that decay as a power law of the dis-
tance. Sections 5.1 and 5.2 introduce the framework for the study of entanglement in many
body quantum systems and review the main techniques for the analytic calculation of the
entanglement scaling in lattice quadratic fermionic models. Sections 5.3 and 5.4 provide
analytical and numerical characterizations of the ground state entanglement asymptotic
growth in the large subsystem size limit, in the weak and strong long-range regimes re-
spectively. This analysis reveals a rich phenomenology due to the model non-local nature.
Notably, in the strong long-range regime, the system ground state can exhibit logarith-
mic, fractal, or volume-law entanglement scaling, depending on the values of the relevant
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parameters.
The Thesis concludes with a summary of the main findings and potential future research

directions in Chapter 6.
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Chapter 1

Long-range interacting quantum
systems

1.1 Why long-range interactions?

The interest for long-range physics has steadily risen in recent years, driven by continuous
advancements in experimental techniques for controlling and manipulating atomic, molecu-
lar, and optical (AMO) systems [16]. Specifically, experimental platforms such as Rydberg
atoms [17], dipolar quantum gases [18], polar molecules [19], quantum gases coupled to
optical cavities [20, 21], and trapped ions [22, 23, 24] have successfully realized ensembles
of long-range interacting quantum particles.

These systems are powerful tools for quantum computing and quantum simulation be-
cause they enable the realization of highly entangled dynamical states [25, 26, 27]. Long-
range interactions are crucial in these technological applications, as their collective nature
leads to metastable states and novel forms of dynamical scaling not observed in systems
with only local interactions. The physics of long-range interacting atomic assemblies pro-
vides a route to circumventing constraints such as thermalization and fast decoherence,
making them promising candidates for efficient quantum technologies.

Two core questions emerge from this perspective:

1. What novel phenomena, induced by long-range couplings, display many-
body quantum correlations and may serve as proper tool for quantum
information?

2. Which regimes are most suitable for exploiting the stability of long-range
systems against external perturbations and their resilience against fast
thermalization?

These questions are the main motivation of the work presented in this Thesis. We ad-
dress them by investigating the unique properties of long-range interacting quantum sys-
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14 CHAPTER 1. LONG-RANGE INTERACTING QUANTUM SYSTEMS

tems, focusing on identifying potential advantages that harness the presence of long-range
coupling to enhance their utility for quantum technological applications. Additionally, we
explore the universal behavior of these non-local systems near quantum critical points,
aiming to isolate universal features applicable to a wide range of experimentally relevant
long-range systems, regardless of the microscopic details of the model. To this end, we
employ the effective dimension framework, which is introduced and justified in Chapter 2.

We focus on three main aspects of long-range systems that lead to explicit advantages
over their local counterparts:

• Quantum Thermodynamics: One primary goal of quantum thermodynamics is
developing efficient microscopic thermodynamic machines operating in the quantum
regime. A significant limitation of such devices is the unavoidable trade-off between
power and efficiency in finite-time thermodynamic cycles. Long-range systems sta-
bility against external perturbations reduces energy losses due to defect generation
during non-adiabatic evolution, crucial for enhancing the power-to-efficiency ratio of
quantum thermal devices. The quantum thermodynamics of long-range systems and
its application to optimizing a finite-time quantum thermal cycle are discussed in
Chapter 3.

• Stabilization of out-of-equilibrium phases: The efficacy of quantum techno-
logical applications depends on the ability to preserve systems out-of-equilibrium,
avoiding the detrimental effects of thermalization, which lead to the loss of locally
stored quantum information. Long-range systems can host long-lived quasi-stationary
states with lifetimes diverging with system size, making them promising candidates
for this purpose. Specifically, in periodically (Floquet) driven many-body quantum
systems, long-range interactions allow the stabilization of Discrete Floquet Time
Crystals (DFTCs), which are nonequilibrium many-body phases exhibiting a unique
form of spatiotemporal order. The discrete time translation symmetry of the Flo-
quet driving is broken, and an order parameter displays persistent oscillations with a
period that is an integer multiple of the driving period. The Floquet physics of long-
range interacting quantum systems is analyzed in Chapter 4 from both theoretical
and quantum simulation perspectives.

• Highly entangled states: A crucial feature for systems used in quantum tech-
nologies is the ability to host highly entangled states. However, the ground state
of local Hamiltonians is constrained by the entanglement area law. Long-range cou-
plings overcome this limitation, allowing for violations of the area law even outside
criticality. In Chapter 5, we provide a comprehensive analytical and numerical char-
acterization of the asymptotic growth of ground state entanglement in the large sub-
system size limit. The truly non-local nature of the model leads to an extremely rich
phenomenology, with the ground state potentially exhibiting logarithmic, fractal, or
volume-law entanglement scaling, depending on the relevant parameters.
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1.2 Main features of long-range systems

1.2.1 Weak and Strong long-range regimes

A physical system is said to be long-range when the coupling matrix Jij decays as a power
law of the distance r = |i− j| between the microscopic components:

Jij ∝ r−α/Nα, with α > 0, Nα =
n∑

j=1

j−α, (1.1)

where the factor Nα is introduced to ensure that the internal energy remains extensive
[28]. In a d dimensional system, depending on the value of the decay exponent α, three
different regimes can be identified:

• The strong long range regime (0 < α < d): The system energy is non-additive,
and standard thermodynamics is not strictly valid [29, 30].

• The weak long range regime (d < α < α∗): In this regime, thermodynamics
is well-defined, but long-range interactions significantly affect phase transitions and
the universal scaling near classical and quantum critical points [31, 32, 33, 34]. The
threshold value α∗ depends on the specific model and phenomenon considered.

• Short-range regime (α > α∗): The system’s behavior mimics that of nearest-
neighbor interactions.

1.2.2 The long-range spectrum

As a first minimal model of long-range quantum system we consider a generic system
of particles hopping on a one-dimensional (d = 1) lattice with long-range translational
invariant hopping amplitudes and possibly interacting among each other. This model is
described by the Hamiltonian

Ĥ = −
N∑

i=1

N/2−1∑

i=1

tr

(
â†i âi+r + h.c.

)
+ µ

N∑

i=1

â†i âi + Ĥint. (1.2)

where the â†i (âi) are the creation (annihilation) operators for quantum particles at site i
of the chain and N is the total number of sites. The nature of the particles (bosons or
fermions) and the specific form of the interaction Hamiltonian Ĥint are not crucial at this
stage. The long-range hopping amplitudes are defined as in Eq. (1.1).

In general, the spectrum of the interacting Hamiltonian in Eq. (1.2) can be obtained by
means of perturbation theory [35]. Then, we start by diagonalizing the noninteracting part.
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Assuming periodic boundary conditions, the spectrum of the noninteracting Hamiltonian
is

εα(k) = µ− fα(k), (1.3)

where

fα(k) =
1

Nα

N/2−1∑

r=1

cos(kr)

rα
, (1.4)

is the Fourier transform of the hopping amplitudes tr. The periodic boundary conditions
impose the usual restriction on the momentum k ≡ kn = 2πn/N with n ∈ Z and n =
⌊−N/2⌋, . . . ⌊N/2⌋ (the lattice spacing has been set to 1).

As we will see throughout this manuscript, the behavior of fα(k) for different values of
α, plays a crucial role in the physics of long-range quantum systems, therefore it is worth
spending this Section to characterize its peculiar behavior.

First of all we notice that the Kac normalization Nα scales differently with the system
size N ≫ 1 depending on α:

Nα ≈





N1−α/cα if α < 1

lnN if α = 1

ζ(α) if α > 1

, (1.5)

where cα = (1 − α)21−α and ζ(x) is the Riemann zeta function.

As long as we are in the weak long-range regime α > 1, the Kac scaling is finite in the
N → ∞ limit. Accordingly the calculation proceeds similarly to the nearest-neighbor case,
allowing the thermodynamic limit of Eq. (1.4) to be taken safely, substituting the discrete
momentum values kn with the continuous variable k ∈ [−π, π). Therefore, the spectrum
of the Hamiltonian for α > 1 becomes continuous and fα(k) reads [36]

fα(k) ≈ 1

ζ(α)

[
Liα(eik) + Liα(e−ik)

]
(1.6)

where Lix(z) =
∑∞

n=1 z
n/nx is the polylogarithm [37].

While the specific choice of the lattice type may influence the detailed form of fα(k),
the physics of long-range interacting systems is typically affected only by its asymptotic
behavior at low energy. In particular, we are interested in the low k modes of the single
particle spectrum, which determine the dispersion relation of the long-range system. This
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is obtained by taking the Taylor expansion of Eq. 1.6 around k = 0 leading to [36]

fα(k) = 1 + sin
(απ

2

) Γ(1 − α)

ζ(α)
|k|α−1 + O(k2) if 1 < α < 3, (1.7)

fα(k) = 1 +
2 ln(k) − 3

4ζ(3)
k2 + O(k3) if α = 3, (1.8)

fα(k) = 1 − ζ(α− 2)

2ζ(α)
k2 + O(kα−1) if α > 3. (1.9)

Then, at the gapless point µ = 1, we find the α dependent dispersion relation εα(k) ≈
|k|α−1, as long as α < 3, while we retrieve the standard dispersion relation for a nearest
neighbor tight binding model εα(k) ≈ |k|2 when α > 3. Once the dispersion relation is
known we can compute the low energy density of states as

g(ε) =

∫ π

−π

dk

2π
δ(ε− εα(k)) ≈

{
gαε

1
α−1

−1 1 < α < 3

ε−1/2 α > 3
, (1.10)

with gα = (sin (απ/2) Γ(1 − α)ζ(α))−1/(α−1)/(α − 1). This result can be compared with
the standard power-law scaling of the density of states in a local system, leading to the
definition of the spectral dimension [38, 39]

g(ε) ≈ εds/2−1. (1.11)

This is the first example of the dimensional correspondence relating the behavior of a
long-range system in d = 1 dimensions to that of a local system in an effective fractional
dimension

deff = ds =

{
2/(α− 1) if 1 < α < 3

1 if α > 3
. (1.12)

The threshold at which short-range physics is recovered, in this case α∗ = 3, corresponds
to the value of α at which the effective dimension matches the actual spatial dimension of
the system.

As we will explore in the following sections of this manuscript, this identification, which
naturally arises from the fundamental spectral properties of long-range systems, proves
to be a powerful tool for investigating and interpreting the universal properties of these
systems (see Chapter 2).

The situation changes dramatically in the strong long-range regime α < 1. Indeed, as
shown in Eq. (1.5), the Kac normalization factor Nα diverges at large N ensuring energy ex-
tensivity. Accordingly, the thermodynamic limit of Eq. (1.4) must be carefully considered.
To this aim, it is convenient to write Eq. (1.4) explicitly for large N as

lim
N→∞

1

Nα

N/2−1∑

r=1

cos(kr)

rα
≈ cα
N

N/2∑

r=1

cos(2πn r
N )

(r/N)α
. (1.13)
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Due to the 1/N scaling of the discrete momenta on the lattice, the summation depends
only on the variable r/N . Therefore, for N → ∞, we can take the continuum limit by
transforming the sum over r into an integral with respect to s = r/N , leading to

fα(n) = lim
N→∞

fα(k) =

∫ 1/2

0
ds

cos(2πns)

sα
. (1.14)

Despite its simplicity, the result in Eq. (1.14) has profound physical implications: it demon-
strates that the spectrum of a quantum system with long-range harmonic couplings remains
discrete even as N → ∞. Specifically, for α < 1 , the gap between neighboring eigenvalues
εn+1−εn, labeled by the consecutive momenta kn, kn+1 in Eq. (1.4), does not vanish in the
thermodynamic limit, as it would for α > 1. Consequently, the energy eigenvalues depend
only on the integer index n ∈ Z rather than on the continuous momentum k:

εn = µ− fα(n). (1.15)

Notably, for α = 0, we find that fα(n) → δn,0, leading to a fully degenerate discrete
spectrum as described by Eq. (1.15): εn = µ for n ̸= 0 and εn = µ − 1 for n = 0.
Additionally, it is important to observe that the energies εn are not densely distributed.
Instead, each energy eigenvalue is isolated, with the only accumulation point occurring at
the maximum energy maxn εn = µ. This follows from the Riemann–Lebesgue lemma [40],
which implies

lim
n→∞

fα(n) = 0. (1.16)

The core result in Eq. (1.14) remains robust regardless of the nature of the particles
(bosons or fermions) or most interaction terms Ĥint. This claim can be substantiated by
examining the perturbative corrections to the eigenvalues of the Hamiltonian induced by
the interaction term Ĥint

δEn = ⟨ψn| Ĥint |ψn⟩ +
∑

n̸=n′

| ⟨ψn| Ĥint |ψ′
n⟩ |

En − En′
+ . . . (1.17)

Here, |ψn⟩ are the symmetric (or antisymmetric) products of the single-particle eigenstates
|kn⟩ of the periodic chain, and En represents their energy. As long as the system is finite, the
spectrum can be safely assumed to be discrete and nondegenerate, making the perturbative
results a good approximation for the spectrum of Ĥ under weak perturbations.

Conventionally, one might expect perturbative arguments to break down in the ther-
modynamic limit due to divergent contributions near critical points. However, this is not
the case for strongly long-range systems, where the long-range nature of the couplings
suppresses strong fluctuations [41]. Consequently, the discreteness of the noninteracting
spectrum persists in the thermodynamic limit, and the perturbative contributions on the
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right-hand side of Eq. (1.17), should not develop any divergence. Therefore, the discrete-
ness of the spectrum, is expected to persist in most interacting Hamiltonians. One of the
main consequences of discreteness is the suppression of strong interaction contributions
in perturbation theory. Thus, the physics of thermodynamically large long-range systems
resembles the one of a finite bounded Hamiltonian more closely than that of short-range
many-body systems.

Summarizing, the shape of fα(k) shrinks from fα→∞(k) = cos(k) (for α → ∞) to
fα→0(k) = δk,0, becoming increasingly singular at k = 0 as α is decreased. Moreover,
in the strong long-range regime (0 < α < d), we find that the excitation spectrum takes
discrete values also in the thermodynamic limit N → ∞ and that fα(k) squeezes towards
a delta function as N → ∞ with a speed N−(1−α) for α < 1 and 1/ lnN for α = 1. This
phenomenon can be explained by the slow decay of interactions with spatial distance, which
results in the system behaving like a permutationally invariant system over finite length
scales. Consequently, observables cannot distinguish finite wavelengths, and only modes
with extensive wavelengths kn ∝ 1/N , have a significant impact on physical properties. As
α increases beyond d, all modes k ̸= 0 eventually become activated.

1.2.3 Universality of weak long-range systems

The presence of non-local interactions J(r) ∝ r−α may alter the standard picture provided
by the Mermin-Wagner theorem [42] allowing for transition at dimensions smaller than
the lower critical one for local systems [43], as observed in various experiments [44, 45].
Depending on the parameter α three regimes can be identified: (i) for α ≤ αmf , where αmf

can be calculated in the mean-field approximation, the mean-field approximation correctly
describes the universal behavior; (ii) for αmf < α ≤ α∗ the system exhibits peculiar long-
range critical exponents; (iii) for α > α∗ the critical behavior corresponds to the nearest-
neighbors (α→ ∞) one.

The effective dimension approach provides an intriguing framework for interpreting
these findings. This concept suggests that the critical properties of a long-range model
in dimension d with a power-law exponent α can be deduced from those of a short-range
model in an effective fractional dimension deff . A relation linking this effective dimension
to d and α can be determined through general renormalization group arguments leading
to [46]

deff =
d(p− ηSR(deff))

α− d
, (1.18)

where p is the power of the low-energy dispersion relation of the short-range single particle
spectrum.

A key advantage of the effective dimension approach is its ability to reproduce be-
haviors both within and beyond the mean-field approximation range by varying a single
parameter [46]. Moreover, although Eq. (1.18) is not exact for non-Gaussian fixed points,
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it serves as a highly accurate approximation. It offers an efficient means to estimate criti-
cal exponents with minimal error, achieving an accuracy higher than 97% for equilibrium
critical exponents when compared to precise numerical estimates.

In Chapter 2 we provide a detailed introduction to the effective dimension framework
from a renormalization group perspective and we justify the validity of the approximation
leading to the dimensional correspondence in Eq. (1.18).

1.3 Experimental quantum simulation platforms

From the experimental side several platforms exist with the possibility to implement long-
range couplings. In particular, in this Section we briefly summarize the current state of
experimental setups for quantum technological applications with a specific focus on the
physical systems which naturally host long-range interactions.

In the past decade various platforms have successfully implemented universal quantum
gates and precise readouts, meeting the Di Vincenzo criteria [47]. Ongoing hardware and
fabrication developments have facilitated qubit integration, enabling prototype demonstra-
tions in quantum computing, including analog/digital quantum simulation, quantum error
correction (QEC), fault-tolerant quantum operations, and quantum algorithms.

Google’s first claim of quantum supremacy, demonstrated by randomized circuit sam-
pling on their 53-qubit Sycamore processor [48], stands as a pivotal moment in this journey.
Followed by other ”quantum advantage” experiments, spanning superconducting systems
[49, 50] and photon-based approaches [51, 52, 53]. Quantum annealing in commercialized
quantum machines, such as D-Wave annealing machines [54] and photonic boson sampling
circuits [51, 52, 53], have propelled the industrialization of quantum computing. Functional
quantum simulators [55, 56] addressing preliminary problems in quantum chemistry [57]
and condensed matter physics [58], stand as additional noteworthy achievements. More-
over, several experimental platforms have been explored for quantum computing, including
trapped ions [60, 61, 62, 63], neutral Rydberg atoms [64, 65, 66], coherent photons [67, 52],
nuclear spins in molecules [68, 69], NV centers [70, 71], semiconductor quantum dots [72],
and superconducting qubits [73, 74, 75]. Each platform has distinct advantages and draw-
backs [59]. Figure 1.1, shows a schematic representation of different paltforms for quantum
computing. Here, we will focus on only three of them which are more suited for many-
body quantum simulation: superconducting qubits (Fig. 1.1a), trapped ions (Fig. 1.1b) and
Rydberg atoms (Fig. 1.1e).

Superconducting qubits are relatively easy to fabricate and can be densely packed, al-
lowing for the construction of large-scale quantum computers. This makes them a promis-
ing platform for scaling up quantum computing applications [75]. Moreover, they can
be manipulated using a wide range of microwave frequencies, making them versatile and
flexible for implementing various quantum gates [73]. The number of quantum simula-
tions implemented on noisy superconducting devices has steadily risen in recent years,



1.3. EXPERIMENTAL QUANTUM SIMULATION PLATFORMS 21

a  53-qubit  superconducting  quantum  processor  [13],
which is further strengthened with a 66-qubit processor
[128].  Offering  scalable  high-fidelity  control  and  config-
urable  interactions,  superconducting  circuits  have
become a versatile playground for quantum computational
tasks [125, 128, 138–141], quantum simulation [142–150],
quantum  annealing  [19, 151],  quantum  chemistry
[152–155],  exotic  many-body  physics  [156–161],  new
regimes for light–matter interaction [162–165], quantum
sensing  [166, 167]  and  studying  biological  processes
[168].

Some facts about superconducting qubits are summa-
rized  in Fig.  2(a),  and  a  list  of  excellent  reviews  on
superconducting  qubits  can  be  found  in  Refs.  [169,
173–190]. The charge carriers in superconductors, known

Ic

CJ

LJ = Φ0/(2π)Ic cosφ
Φ0 = h/(2e) φ

as Cooper pairs, can flow without dissipation, a desirable
feature for preserving quantum coherence of a macroscopic
system. More importantly, non-trivial quantum properties
emerge from the integration of a special superconducting
circuit element, the Josephson junction, which is usually
in  the  form  of  a  sandwich  structure  consisting  of  two
superconducting  electrodes  separated  by  a  nanometer-
thick  insulating  layer  [Fig.  3(a)];  Cooper  pairs  can
tunnel through the insulating barrier with a supercurrent
no  larger  than  the  critical  current  of  the  junction
which depends on the material, thickness, and size [191,
192]. From a circuit point of view, a Josephson junction
can  be  modeled  as  a  native  capacitor  in  parallel
with  a  nonlinear  inductor ,  where

 is the superconducting flux quantum and  is

 

F1 F2

Fig. 2  Schematic summary of different types of quantum bits (top half) and their corresponding pros and cons. (bottom
half).  ( ) is the one-qubit (two-qubit) gate fidelity.
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Figure 1.1: Schematic representation of different platforms for quantum computing: a)
superconducting qubits, b) trapped ions, c) electron or hole spins in semiconductor (silicon)
quantum dot, d) NV centers, e) Rydberg atoms, f) nuclear spins in molecules, g) photons
h) topological quantum computing (physical system not found yet). Figure adapted from
Ref. [59].

also thanks to the possibility to easily access these machines from remote, for example
through the python based Qiskit package [76] which allows access to IBM quantum ma-
chines. A significant challenge for superconducting devices lies in their limited connectivity,
since superconducting qubits are typically arranged in a one or two-dimensional grid with
nearest-neighbor couplings, making them often unsuitable to target long-range enabled
phenomena. In principle, to overcome this limitation, one could harness the universality of
native gates for implementing couplings among physically disconnected qubits. However,
this approach comes at the expense of increased circuit depth, subsequently amplifying
the noise that impacts the raw quantum simulation results (see Section 4.4). To efficiently
pursue this strategy, there is a critical need for enhanced noise mitigation techniques [77].
These techniques are essential to consider the influence of noise and subsequently eliminate
its detrimental effects from the experimental data.

Trapped-ion systems, which involve laser-cooled atomic ions confined in ultra-high vac-
uum setups, provide an excellent degree of isolation from external noise sources. These
systems encode high-fidelity qubits in stable pairs of electronic energy levels for each ion,
resulting in long coherence times [78] and the possibility to be initialized and measured
with extremely high fidelity [79]. Quantum processors built upon ion-based platforms
have demonstrated efficient manipulation capabilities, handling dozens of qubits effectively
[80, 81]. The prowess of ion-based systems has been exemplified in small-scale imple-
mentations of quantum algorithms, showcasing achievements such as Shor’s algorithm
and Grover’s search algorithm [82, 83]. Furthermore, ion-based quantum simulators have
successfully reached up to 53 qubits, enabling exploration into novel aspects of complex
many-body quantum spin models [24]. Notably, trapped ions qubits exhibit long-range
phonon-mediated interactions, with the coupling matrix decay, denoted as Jij , following a
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System α Comments

Trapped ions systems ∼ 0-3 Phonon mediated interactions
Dipolar Gases 3 Anisotropic interactions

Single-mode cavity QED systems 0 Cavity photons mediated interactions

Table 1.1: Table listing different applications where systems are governed by long-range
interactions. Table adapted from Ref. [16].

power law of the distance r = |i − j|: Jij ∝ r−α. In this perspective, trapped ions are an
extremely versatile tool as they allow the simulation of the entire 0 ≲ α ≲ 3 range.

Neutral atom arrays have emerged as a promising platform for quantum computing and
particularly for quantum simulation [17]. Controlled interactions between atomic qubits
are mediated by the long-range dipole-dipole interactions via Rydberg states. The inher-
ent property of long-range Rydberg interactions enables the creation of specific quantum
Hamiltonians, fostering straightforward analog quantum simulations. This distinctive fea-
ture, intrinsic to the atoms, plays a crucial role in entanglement generation within the
simulator. The scalability of this model, demonstrated through experiments involving
hundreds of atoms [66, 84, 85], establishes Rydberg atom arrays as a robust and versatile
tool, capable to simulate complex phases of matter such as topological spin liquids [86].

Finally, quantum gases in cavities can be used to engineer all-to-all interacting, fully-
connected models [87, 21], such as the Lipkin-Meshov-Glick model [88] or the Hamiltonian
Mean Field model [89, 90]. Such systems are formed by neutral Bose-Einstein condensates
inside an optical cavity and illuminated by a transverse standing-wave laser field, far-
detuned from the atomic resonance so that the condensate behaves as a dielectric medium.
By tuning the frequency of the cavity frequency, the atoms of the condensate effectively
interact by scattering photons in the cavity mode and back. As such photons are delocalized
over the cavity mode, this interaction is flat.

1.4 The quantum Ising chain with long-range interactions

All the experimental platforms described in the previous section, under suitable approxi-
mations, can be described in terms of a long-range spin Hamiltonian

Ĥ = −1

2

∑

µ,i ̸=j
Jµij σ̂

µ
i σ̂

µ
j −

∑

i

h · σ̂i, (1.19)

where the indices i, j run over the n sites of a d-dimensional lattice and σ̂µi represents the
µ ∈ {x, y, z} components of a spin-1/2 operator, i.e. σ = (σ̂x, σ̂y, σ̂z) [21, 24, 91]. While
the coupling matrices Jµij can, in principle, be engineered to depend on the index µ. In
this thesis we will focus on the case in which Jy,zij = 0, Jxij = Jij and hx,y = 0, hz = h,
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namely the long-range quantum Ising model in a transverse field. Moreover, we consider
the long-range coupling matrix introduced in Sec. 1.2.1, i.e., Jij ∝ |i− j|−α.

For ferromagnetic interactions Ji,j ≥ 0 the system has an equilibrium zero-temperature
phase transition for small enough |h|, associated with the spontaneous breaking of its Z2

spin-inversion symmetry of the x-component. The longitudinal magnetization mx = ⟨σ̂xj ⟩
undergoes an abrupt change from mx = 0 in the unique paramagnetic ground state for
|h| > hc to mx = ±m(h) ̸= 0 in the two degenerate ferromagnetic ground states for
|h| < hc.

1.4.1 Equilibrium properties

Let us start analysing this model from the strong long-range regime, with α < d. For
simplicity, we first consider the case of a completely flat interaction with α = 0. In this
case the Hamiltonian can be more conveniently written in terms of the total spin operators

Sµ =
∑

i

σµi , µ = x, y, z, (1.20)

and Ŝ = (Ŝx, Ŝy, Ŝz), leading to the so called Lipking-Meshkov-Glick (LMG) Hamiltonian

Ĥ0 = −S
2
x

N
+ hSz (1.21)

This expression highlights that the α = 0 Hamiltonian is a function of a single degree of
freedom: the collective spin. All other non-collective spin modes are frozen. The collective

spin magnitude Ŝ
2

= Ŝ2
x + Ŝ2

y + Ŝ2
z = S(S + 1), with S = N/2, N/2 − 1, . . . , 0 or 1/2,

is conserved [S2, Ĥ0] = 0. Moreover, it is crucial to notice that for all states with a spin
magnitude S which grows with N , the thermodynamic limit N → ∞ is equivalent to a
semiclassical limit. Indeed, the rescaled spin satisfies commutation relations of the form
[92]

[
Ŝµ
S
,
Ŝν
S

]
=

i

S
ϵµνρ

Ŝρ
S

(1.22)

Thus, the system has an effective Planck constant ℏeff = 1/S and the limit N → ∞ realizes
a classical limit with a continuous spin ⟨Ŝ⟩/S → Scl of (conserved) length 1.

The absolute ground state minimizes energy across all sectors, for ferromagnetic in-
teractions the ground state is realized for maximal collective spin polarization, S = N/2.
Moreover, as N → ∞, the ground state expectation values ⟨Ŝ⟩/S of the collective spin
components converge to the minimum point S∗

cl of the classical Hamiltonian Hcl on the
unit sphere [92].
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It is convenient to define a rotated reference frame adapted to the ground state polar-
ization, i.e., such that S∗

cl is aligned in the new z-direction. Using spherical coordinates we
can parametrize the rotation of the total spin coordinate frame as



Ŝx
Ŝy
Ŝz


 =




cos θ cosϕ − sinϕ sin θ cosϕ
cos θ sinϕ cosϕ sin θ sinϕ
− sin θ 0 cos θ






Σ̂x

Σ̂y

Σ̂z


 . (1.23)

In particular the rotated coordinate frame is aligned with the equilibrium magnetization
frame of the model by choosing

θ =

{
0 if h > hc

arctan(h) if h < hc
, ϕ = 0 (1.24)

We are now in the position to consider the leading order quantum corrections to this
classical limit. For this purpose we introduce the Holstein-Primakoff expansion, which
shall be valid around the ground state of the LMG Hamiltonian. The expansion consists
in expressing the rotated spin operator in terms of the variables of a quantum harmonic
oscillator, i.e.,

Σ̂x

N
=

x̂√
2N

+ O(N−3/2) =
1√
2N

(â† + â) + O(N−3/2), (1.25a)

Σ̂y

N
=

p̂√
2N

+ O(N−3/2) =
i√
2N

(â† − â) + O(N−3/2), (1.25b)

Σ̂z

N
=

1

2
− x̂2 + p̂2 − 1

N
+ O(N−2) =

1

2
− â†â

N
+ O(N−2), (1.25c)

where x̂, p̂ are fictitious position and momentum operators of an effective quantum har-
monic oscillator that describes the quantum fluctuations of the rotated total spin operator
in the proximity of the LMG ground state, while â† and â are the corresponding bosonic
creation and annihilation operators, respectively.

In this way, using (1.25) to represent the LMG Hamiltonian , we obtain the following
1/N -expansion

Ĥ0

N
≈ E0 +

Ê1√
N

+
Ê2
N

(1.26)

where, under this approximation, all the higher-order terms in 1/N are neglected, and El,
with l = 0, 1, 2 depend on h, θ and ϕ. Then, choosing θ and ϕ as in Eq. (1.24) we obtain
[93]

E0 =

{
−h if h > hc

−1+h2

2 if h < hc
, Ê1 = 0, Ê2 =

p̂2

2m
+
m

2
ω2x̂2 + δe, (1.27)
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where

m =

{
1/2h if h > hc

1/2 if h < hc
, ω =

{
4h(h− 1) if h > hc

4(1 − h2) if h < hc
, δe =

{
h− 1/2 if h > hc

1/2 if h < hc
.

(1.28)

As a result, the leading-order contribution of the LMG Hamiltonian to quantum fluctua-
tions around the ground state, in terms of the Holstein-Primakoff expansion, is the term
E2 which has the form of a harmonic oscillator with mass m(h) and frequency ω(h). This
can be diagonalized in terms of the creation and annihilation operators

b̂ =

√
mω

2

(
x̂+

i

mω
p̂

)
, b̂† =

√
mω

2

(
x̂− i

mω
p̂

)
, (1.29)

leading to the following form for the LMG Hamiltonian

Ĥ0 ≈ NE0(h) + δe(h) + ω(h)b̂†b̂. (1.30)

where E0(h) is the thermodynamic mean-field energy density, δe(h) is a constant mean-field
shift, while the quantum fluctuations are described by the quadratic harmonic oscillator
term whose frequency is the gap ω(h).

To study the finite α corrections corrections, we need to separate the contributions for
α = 0 and α ̸= 0:

H = Hα=0 + Vα. (1.31)

Next, we introduce the Fourier transform of the spin operators

S̃µk =
∑

j

eikjσµj , µ = x, y, z, S̃±
k = σx ± iσy. (1.32)

This leads to the expressions

Vα = − J

4N

∑

k ̸=0

fα(k)
[
S+
k S

−
−k + S−

k S
+
−k + S+

k S
+
−k + S−

k S
−
−k
]
, (1.33)

where the coupligns are given by the function fα(k), whose peculiar properties have been
analyzed in detail in Section 1.2.2. In particular, fα(k = 0) = 1 by construction, moreover
as α approaches 0 the couplings fα(k) decrease, and H reduces to a Hamiltonian describing
a single collective degree of freedom, H0. When α ̸= 0 spatially modulated interactions
couple the collective spin to all finite-wavelength modes representing spatially non-trivial
spin fluctuations. Moreover, due to the peculiar nature of the couplings fα(k), as we
have seen in Section 1.2.2, as long as α < d long-range interactions preferentially generate
coupling to long-wavelength modes only [94].
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3

(in units where ! = 1). Performing the trace in the σx
i

eigenbasis of H, the diagonal form of ρ(0) implies that
only the diagonal elements of the operator e−iHN tAeiHN t

are required, and it is this crucial ingredient which allows
us to obtain, similar to the calculation in [14], the exact
result

⟨A⟩(t) = ⟨A⟩(0) cos(2ht)
N∏

j=1

cos2[2NN ϵ(j)t]. (9)

In comparison with the original Emch-Radin model, the
important difference here is the explicit N dependence
of the argument of the cosine through the normalization
NN . Regarding the approach to equilibrium, the Larmor
precession cos(2ht) is not relevant and we set h = 0 in the
following. The behavior of (9) is plotted for exponents
α = 2 and α = 1/2 and various system sizes N in Fig.
1, and in all cases the expectation value of A appears
to be decaying in time to the microcanonical ensemble
average ⟨A⟩mic = 0. However, this decay is only appar-
ent, as we can read off from (9) that ⟨A⟩(t) is an almost
periodic function in time for all finite N , and Poincaré re-
currences will therefore occur on much longer time scales
than shown. To possibly observe true equilibration, we
have to invoke, as often in statistical physics, the idealiz-
ing concept of the thermodynamic limit. In this limit, re-
currence times may diverge (typically exponentially) and
an approach to equilibrium may take place. An analysis
of the infinite system dynamics is most rigorously done
in a ∗-algebraic language [15, 16], but it essentially boils
down to discussing the large-N limit of the product in
(9). Similar to Lemma 4 of [15], we obtain the upper
bound

lim
N→∞

|⟨A⟩(t)| ! |⟨A⟩(0)| exp
{
−cN∞t2

}
(10)

where c is a positive constant. For α > 1, the large-N
limit of the normalization N∞ in (6) is strictly positive,
proving a stretched exponential approach of ⟨A⟩ to its
equilibrium value. For the case 0 ! α < 1 of strong long-
range interactions we are particularly interested in, N∞
is zero. The bound in (10), therefore, gives the positive
constant |⟨A⟩(0)| and fails to provide any indication on
whether equilibrium is approached or not. Up to this
point the analysis has been very much along the lines of
earlier work reported in the literature. The main novel
result of the present Letter is to complement the upper
bound (10) by a lower bound on ⟨A⟩ proving and char-
acterizing the divergent equilibration time for 0 ! α < 1
in the large-N limit.

Proposition 1. Consider the Ising-type Hamiltonian
HN defined in (2) with power law decaying interactions
ϵ(j) = j−α with 0 ! α < 1. Consider further an ob-
servable A of the type (7) and an initial state ρ(0) being
diagonal in the σx

i tensor product eigenbasis of the un-
derlying Hilbert space H. Then for the expectation value
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FIG. 1. Time evolution of the expectation value (9) of an
observable A for magnetic field h = 0 and various system
sizes N . Top panel: For α = 2, an apparent decay is observed,
superimposed by oscillations. The N dependence of the time
evolution is so weak that the curves for the various system
sizes cannot be discerned in the plot. The behavior for other
α > 1 is qualitatively similar. Bottom panel: For α = 1/2,
the expectation value again appears to be decaying, but on a
time scale that depends strongly on the system size N (note
the logarithmic scale). Similar behavior is observed for other
values of α between zero and one.

⟨A⟩(t) of A with respect to ρ(t), the following holds true:
For any fixed time τ and some small δ > 0, there is a
finite N0(τ) such that

|⟨A⟩(t) − ⟨A⟩(0)| < δ ∀t < τ , N > N0(τ). (11)

Interpreting this result in terms of an experiment, we
can think of an experimental resolution δ for the mea-
surement of A, and some duration τ of the experiment.
Then the above proposition states that, within the ex-
perimental resolution and for a large enough system, no
deviation of ⟨A⟩(t) from its initial value can be observed
for times t ! τ . In the above sense, ⟨A⟩(t) converges in
the thermodynamic limit to the constant ⟨A⟩(0) which,
in general, is different from the microcanonical ensemble
average ⟨A⟩mic = 0.

Proposition 1 can be proved by constructing, for large
enough N , a lower bound on the product in (9) by means
of an integral approximation. The result can be ex-
pressed in terms of hypergeometric functions and, by
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servable A of the type (7) and an initial state ρ(0) being
diagonal in the σx

i tensor product eigenbasis of the un-
derlying Hilbert space H. Then for the expectation value
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FIG. 1. Time evolution of the expectation value (9) of an
observable A for magnetic field h = 0 and various system
sizes N . Top panel: For α = 2, an apparent decay is observed,
superimposed by oscillations. The N dependence of the time
evolution is so weak that the curves for the various system
sizes cannot be discerned in the plot. The behavior for other
α > 1 is qualitatively similar. Bottom panel: For α = 1/2,
the expectation value again appears to be decaying, but on a
time scale that depends strongly on the system size N (note
the logarithmic scale). Similar behavior is observed for other
values of α between zero and one.

⟨A⟩(t) of A with respect to ρ(t), the following holds true:
For any fixed time τ and some small δ > 0, there is a
finite N0(τ) such that

|⟨A⟩(t) − ⟨A⟩(0)| < δ ∀t < τ , N > N0(τ). (11)

Interpreting this result in terms of an experiment, we
can think of an experimental resolution δ for the mea-
surement of A, and some duration τ of the experiment.
Then the above proposition states that, within the ex-
perimental resolution and for a large enough system, no
deviation of ⟨A⟩(t) from its initial value can be observed
for times t ! τ . In the above sense, ⟨A⟩(t) converges in
the thermodynamic limit to the constant ⟨A⟩(0) which,
in general, is different from the microcanonical ensemble
average ⟨A⟩mic = 0.

Proposition 1 can be proved by constructing, for large
enough N , a lower bound on the product in (9) by means
of an integral approximation. The result can be ex-
pressed in terms of hypergeometric functions and, by

t t

mzmz

(b)(a)

Figure 1.2: Time evolution of the expectation value of the transverse field magnetization
mz for a quench h → 0 of the long-range quantum Ising chain, for different values of α
and of the system size N . (a) α = 2, an apparent decay is observed, superimposed over
oscillations. The N dependence of the time evolution is so weak that the curves for the
various system sizes cannot be discerned in the plot. (b) α = 0.5, the expectation value
again appears to be decaying, but on a time scale that depends strongly on the system size
N (note the logarithmic scale). Figure adapted from Ref. [95].

1.4.2 Dynamical properties

The simplest evolution protocol we can think of for studying the dynamical properties of
the long-range quantum Ising chain is a quench dynanics in which the trasverse magnetic
field is suddenly set to zero h → 0. Then we consider the evolution of the transverse
magnetization

mz(t) = ⟨Ŝz(t)⟩ =
1

N

N∑

j=1

⟨σ̂zj (t)⟩, (1.34)

where ⟨σ̂zj (t)⟩ = ⟨ψ(0)| e−iHh=0tσ̂zj e
iHh=0t |ψ(0)⟩. Then assuming that the initial state is

diagonal in the σ̂zj tensor product eigenbasis we find [95]

mz(t) = mz(0)

N∏

r=1

cos2 (Jrt) = mz(0)

N∏

r=1

cos2
(

Jt

Nαrα

)
, (1.35)

where mz(0) =
∑N

j=1 ⟨ψ(0)| σ̂zj |ψ(0)⟩ /N . The above expression describes a relaxation from
the initial value mz(0) to its equilibrium value limt→∞mz(t) = 0. The time scale for such
relaxation in the thermodynamic limit can be estimated by using the following inequality
[95]

lim
N→∞

|mz(t)| ≤ |mz(0)|e−cNαt2 . (1.36)
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where c is a positive constant. As long as α > 1 the large-N limit of the normalization
Nα is finite and strictly positive (see Eq.(1.5)), proving a stretched exponential approach
of mz to its equilibrium value (see Fig. 1.2 (a)).

On the other hand, in the strong long-range regime 0 < α < 1, because of the divergence
of the factor Nα in the large N limit (see Eq. (1.5)), it can be shown that the timescale
on which the relaxation happens diverges with N , so that in the thermodynamic limit the
system is trapped in a quasi-stationary state (see Fig. 1.2(b) and Ref. [95]).

In general to handle the finite time case, we need to generalize the Holstein–Primakoff
approach introduced in Section 1.4.1, to the non-equilibrium context [92]. When the system
is driven out of equilibrium, the direction of the collective spin configuration (parametrized
by the polar coordinates θ(t) and ϕ(t)) moves along the corresponding classical trajectory
on the unit sphere. We thus let the adapted frame of reference (Σ̂x(t), Σ̂y(t), Σ̂z(t)) in
Eq.(1.23) vary in time, in such a way that the new z-axis follows the instantaneous direction
of the collective spin ⟨Ŝ(t)⟩ [92]. This is achieved through a time-dependent rotation
generated by

V (t) = e−iϕ(t)S
z
e−iθ(t)S

y
. (1.37)

The spin components in this time-dependent frame are governed by the inertial Hamiltonian

H̃(t) = V H(t)V † + iV V †. (1.38)

Holstein-Primakoff transformations are then applied to the individual rotating spins. The
resulting transformed Hamiltonian can be organized as

H̃(t) = H0(t) +H1(t) +H2(t) . . . (1.39)

The leading-order term in the N → ∞ limit, H0(t), describes the classical motion of the
global spin ⟨S(t)⟩. The H1(t) Hamiltonian describes a single harmonic mode corresponding
to the k = 0 leading spin-wave excitation. Finally, the dynamics of finite α corrections is
described, at quadratic order, by the H2(t) Hamiltonian.

1.5 The Kitaev chain with long-range interactions

Another approach for approximating the Hamiltonian in Eq. (1.19) involves using a trun-
cated Jordan–Wigner transformation. Specifically, we apply the standard Jordan–Wigner
mapping of spin variables onto fermionic ones as follows

σ̂zj = 1 − 2ĉ†j ĉj , (1.40a)

σ̂xi = −
[
j−1∏

m=1

(
1 − 2ĉ†mĉm

)](
ĉj + ĉ†j

)
, (1.40b)

σ̂yi = −i
[
j−1∏

m=1

(1 − 2ĉ†mĉm)

](
ĉj − ĉ†j

)
, (1.40c)
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where ĉ†j and ĉj are the fermionic creation and annihilation operators at site j, satisfy-

ing the canonical anticommutation relations {ĉl, ĉj} = 0 and {ĉl, ĉ†j} = δl,j . Applying
this transformation to the Hamiltonian of the long-range quantum Ising chain yields its
fermionic form

Ĥ = −
N∑

j=1

N/2∑

r=1

Jr

(
ĉ†j − ĉj

)


j+r−1∏

l=j+1

(
1 − 2ĉ†l ĉl

)


(
ĉ†j+r + ĉj+r

)

− h
N∑

j=1

(
1 − 2ĉ†j ĉj

)
. (1.41)

This Hamiltonian is not exactly solvable due to the presence of higher-than-quadratic terms
in the fermionic operators. Therefore, we employ the approximation

j+r−1∏

l=j+1

(
1 − 2ĉ†l ĉl

)
= 1, (1.42)

for every r ≥ 2, neglecting the string operators in the first line of Eq. (1.41). This truncated
Jordan-Wigner transformation leads to the quadratic Hamiltonian

ĤLRK = −
N∑

j=1

N/2−1∑

r=1

[
tr ĉ

†
j+r ĉj + ∆r ĉ

†
j+r ĉ

†
j + h.c.

]

− h

N∑

j=1

[
1 − 2ĉ†j ĉj

]
, (1.43)

which we refer to as the long-range Kitaev chain [96, 97, 98]. More generally, we can
allow the hopping and pairing amplitudes tr and ∆r to have different dependencies on the
intersite distance r. Specifically, we choose the generic power law behaviors

tr =
1

Nα1

J

rα1
, ∆r =

1

Nα2

∆

rα2
, (1.44)

with the hopping exponent α1 > 0, the pairing exponent α2 > 0, and the Kac normalization

factor Nα =
∑N/2

r=1 r
−α. The integrable nature of this model makes it amenable to both

analytical and numerical treatment.

1.5.1 Equilibrium properties

The quadratic nature of the Hamiltonian (1.43) allows its exact diagonalization in Fourier
space via the Bogolyubov transformation

ĉk = cos
ϕk
2
γ̂k + sin

ϕk
2
γ̂†−k. (1.45)



1.5. THE KITAEV CHAIN WITH LONG-RANGE INTERACTIONS 29

Here, ĉk represents the momentum space fermionic operators defined as

ĉk =
e−i

π
4√
N

N∑

j=1

eikj ĉj , (1.46)

where k = 2πn/N and n is an integer such that n = −N/2 + 1, . . . , N/2. The Bogoliubov
angles ϕk are defined by the conditions

tanϕk = ∆̃k/(h− t̃k) (1.47)

with the Fourier transforms of the hopping and pairing amplitudes given by

t̃k =
J

Nα1

N/2−1∑

r=1

cos(kr)

rα1
, ∆̃k =

∆

Nα2

N/2−1∑

r=1

cos(kr)

rα2
. (1.48)

Hereafter, we set J = ∆ = 1 as the energy scale and work in units of ℏ = 1. In terms of
the Bogoliubov fermions, the Hamiltonian then takes the diagonal form

ĤLRK =
∑

k

ωk(h)
(
γ̂†kγ̂k − 1/2

)
, (1.49)

with the quasiparticle spectrum

ωk(h) = 2

√
(h− t̃k)2 + ∆̃2

k. (1.50)

Since ωk(h) ≥ 0, the ground state corresponds to the Fock space vacuum for the Bogoliubov
modes, defined by the condition γ̂k|gs⟩ = 0, ∀k. Moreover, the properties of the single
particle spectrum in Eq. (1.50) crucially depend on the values of α1 and α2.

As shown in Section 1.2.2, in the weak long-range case, α1, α2 > 1, when the system size
goes to infinity, we can safely perform a continuum limit in the k variable. In particular,
Eq. (1.48) may be written as

t̃k = Re
[
Liα1(eik)

]
/ζ(α1), ∆̃k = Im

[
Liα2(eik)

]
/ζ(α2), (1.51)

where Liα(z) denotes the polylogarithm function. This leads to a continuum spectrum
ωk characterized, at the critical points, by a dispersion relation that depends on α1 and
α2. In particular, for α1, α2 > 1, the system possesses two different phases separated by
two quantum critical points hc = 1,−1 + 21−α1 , in correspondence of which the dispersion
relation becomes gapless near the critical mode kc = 0, π, respectively [99, 16]. The critical
modes of the spectrum are shown in Fig. 1.3(a) where ω0(π)(blue(red) lines in the plot) is
plotted as a function of h for different values of α1 = α2. The nature of the transition is
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Figure 1.3: (a) Critical modes k = 0, π of the quasiparticle spectrum as a function of the
chemical potential h for different values of α1 = α2, two critical points emerge at h = t̃0, t̃π
where, in the thermodynamic limit, t̃0 = 1 ∀α1, while t̃π = −1 + 21−α1 if α1 > 1, and
t̃π = 0 if 0 < α1 < 1. (b) Phase diagram of the long-range Kitaev chain in the plane
(α1, h), for the pairing decay exponent α2 = α1, α1 is the hopping decay exponent and h
is the chemical potential. The topological order parameter is q = −1 in the topological
phase (blue shaded region) and q = +1 in the trivial phase (red shaded region). The phase
space boundaries correspond to the solid lines h = t̃0 and h = t̃π.

topological and the two topological phases can be distinguished by the value of the bulk
topological invariant [100]

w =

∮
dϕk
2π

=

{
1 if h ∈ [−1 + 21−α1 , 1]

0 otherwise
. (1.52)

Moreover, in the nontrivial phase with w = 1, the ground state is doubly degenerate, and
can support Majorana edge modes [101].

In the strong long-range regime 0 < α1, α2 < 1 the scenario is more involved. Indeed,
as shown in Section 1.2.2, in this case, the hopping and pairing amplitudes t̃k, ∆̃k, remain
discrete also in the thermodynamic limit and they are labeled by the integer n, reading

lim
N→∞

t̃k = cα1

∫ 1/2

0
ds

cos(2πns)

sα1
= t̃n, (1.53)

lim
N→∞

∆̃k = cα2

∫ 1/2

0
ds

sin(2πns)

sα2
= ∆̃n, (1.54)

with cα = (1 − α)21−α. Therefore, the presence of long-range couplings leads to a discrete

spectrum ωk → ωn = 2
√

(h− t̃n)2 + ∆̃2
n also at N → ∞. The persistence of the discrete
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spectrum in the thermodynamic limit does not allow us to define a continuous theory
and hinders the conventional definition of quantum critical points in the Kitaev chain.
In particular, the winding number in Eq. (1.52) is ill-defined as a consequence of the
discontinuity in the Bogolyubov angle distribution [100]. Yet, the transition can still be
characterized by the quantity

q = sign[(h− t̃0)(h− t̃π)] =

{
1 if h ∈ [t̃π, t̃0]

−1 otherwise
. (1.55)

This quantity has proven to be a good topological invariant in cases in which the winding
number turns out to be ill-defined [100, 102]. Then, also in the strong long-range regime, the
behavior of the order parameter q is still consistent with a change of phase at the critical
points h = t̃0, t̃π [103]. However, as shown in [104], the bulk boundary correspondence
turns out to be weakened by the presence of strong long-range couplings. Consequently,
the change of q at the critical points is not guaranteed to be in one-to-one correspondence
with the appearance of boundary topological edge states. Nevertheless, we expect bulk
properties to remain consistent with a change of phase. Figure 1.3(b) shows the model
phase diagram as characterized by the value of q = ±1 as a function of the chemical
potential h and of the hopping power law decay exponent α1. Two quantum critical lines
appear when varying the α1 parameter. In particular, we notice that the location of the
critical point corresponding to ω0 = 0 is fixed to h = t̃0 = 1 for any value of α1 (blue bold
line in Fig. 1.3(b)). On the contrary, the critical point corresponding to ωπ = 0 (red bold
line in Fig. 1.3(b)) is α1 dependent with two different behaviors in the weak and strong
long-range regimes, in particular in the thermodynamic limit we find

lim
N→∞

t̃π =

{
−1 + 21−α1 if α1 ≥ 1

0 if 0 < α1 < 1
. (1.56)

Finally, the mean-field case with α1 = α2 = 0 needs to be treated separately. Indeed,
in this case, the spectrum becomes strongly degenerate and this may alter the nature of
the ground state. In particular, for completely flat couplings the sums in Eq. (1.48) can
be exactly computed and, in the thermodynamic, they read

t̃n(α1 = 0) = δn,0, ∆̃n(α2 = 0) =
1 + (−1)n+1

πn
. (1.57)

Accordingly, the single-particle spectrum becomes

ω0
n =





2|h| if |n| even

2
√
h2 + 4/(πn)2 if |n| odd

2|h− 1| if n = 0

, (1.58)
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where we have introduced the shortcut notation ω0
n = ωn(α1 = 0, α2 = 0). It follows that

an extensive number of single-particle energy levels corresponding to all the even modes
become degenerate. In particular, when the chemical potential is zero h = 0 all the even
modes become zero modes since at this point we have ω0

2n(h = 0) = 0, ω0
2n+1(h = 0) =

2/|πn| and ω0
0(h = 0) = 1. This fact deeply affects the nature of the many-body ground

state which is no more given by the Bogoliubov vacuum, on the contrary, it allows for
a finite population of Bogoliubov fermions in an extensive number of zero modes. More
precisely, the ground state for α1,2 = 0 and h = 0 is given by a generic superposition of
the form

|gs⟩α=0,h=0 =

N0∑

n0=0

Cn0 |n0⟩, (1.59)

where n0 is the number of fermions occupying the N0 available zero modes. This ground
state is highly degenerate indeed each |n0⟩ state can be realized in

(
N0

n0

)
ways, leading to

the exponential degeneracy

Deg[|gs⟩α=0,h=0] =

N0∑

n0=0

(
N0

n0

)
= 2N0 . (1.60)

As a concluding remark for this section, we stress the importance of the Kac scaling
in the stabilization of the topological order in the strong long-range regime. Indeed, had
we considered not properly rescaled couplings, the presence of long-range hopping α1 < 1
would have moved the critical point to hc = O(N1−α1) → ∞, thus destroying the transition.

1.5.2 Dynamical properties

In general, the unitary evolution generated by ĤLRK(h(t)) is such that it only mixes the

states |0k, 0−k⟩ and |1k, 1−k⟩, where |1k⟩ = ĉ†k|0k⟩, for each value of k. Consequently, the
dynamics of the Kitaev chain can be exactly described by N independent evolution equa-
tions, each restricted to the two-dimensional subspace associated with the corresponding
k-mode [105]. These can be cast into a matrix evolution for the Bogoliubov coefficients
uk,vk:

i
d

dt

(
uk
vk

)
= Hk(t)

(
uk
vk

)
, (1.61)

with Hk = (h(t) − tk)σ
z
k + ∆kσ

x
k , where σ

(a)
k , a = x, y, z are the sigma Pauli operators.

As a first example, we consider a sudden quench dynamics in which h abruptly changes
from hi ≫ 1 to hf < 1 in a long-range Kitaev chain with α = α1 = α2. In this case
Eq. (1.61) can be solved analytically leading to
(
uk(t)
vk(t)

)
=

(
cos(ωkt) − i cos(ϕk) sin(ωkt) i sin(ϕk) sin(ωkt)

i sin(ϕk) sin(ωkt) cos(ωkt) + i cos(ϕk) sin(ωkt)

)(
uk(0)
vk(0)

)
(1.62)
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where the ϕk are the Bogoliubov angles diagonalizing the final Hamiltonian.
As for the case of the quantum Ising chain, we study the dynamics of the transverse

magnetization, which is related to the density of fermionic excitations produced during the
dynamics as

mz = 1 − 2

N

N∑

j=1

⟨ĉ†j ĉj⟩. (1.63)

As long as α > 1, the time evolution of mz is consistent with the expectations for an inte-
grable system. At t = 0 the observable has its initial value and, then, rapidly equilibrates
to a different constant expectation, which is maintained along the entire dynamics apart
from a few rapid time fluctuations appearing at the Poincaré recurrence times. The fluctu-
ations become increasingly more uncommon as the system approaches the thermodynamic
limit, in agreement with the expected divergence of the recurrence times (See Fig. 1.4 (a)
and (b)).

The picture is radically altered in the α < 1 case (See Fig. 1.4 (c) and (d)). At
intermediate system sizes the qualitative features remain similar to the α > 1 case, with
the transverse magnetization rapidly moving from its initial value mz(0) ≈ 1 to a different
long-time expectation, around which it steadily oscillates. However, as the system size
is increased the discrepancy with the traditional case is noticed. At larger N the large-
time magnetization value tends to steadily grow, approaching the initial value mz = 1.
Moreover, the timescales of the oscillatory fluctuations are not altered by the increase in
the system size, but rather manifest at almost equal time intervals at all sizes, consistent
with the existence of finite recurrence times in the long-range systems at α < d. These
observations are consistent with the presence of quasi stationary states in the long-range
Kitaev chain and are analogous to the picture obtained in the long-range Ising Hamiltonian
in Section 1.4.2.

Another example in which the system dynamics is analytically solvable is the case of
a linear driving of the form h(t) = 1 − vt. In this case Eq. (1.61) can be mapped onto a
Landau-Zener-Stückelberg-Majorana (LZSM) problem [106, 107, 108, 109, 105] by means
of the transformation t′ = ∆k(tk − h+ vt)/v, leading to

i
d

dt′

(
uk
vk

)
=

(
−Ωkt

′ 1
1 Ωkt

′

)(
uk
vk

)
, (1.64)

where Ωk = δ/∆2
k. The exact general solution of Eq. (1.64) can be written in terms of

Weber (or parabolic cylinder) D-functions Dν(z), (see Ref. [105]), leading to

vk(t
′) = aD−s−1(−iz) + bD−s−1(iz), (1.65)

uk(t
′) =

(
Ωkt

′ − 2i
∂

∂t′

)
vk(t

′), (1.66)
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Figure 1.4: Transverse magnetization mz(t) after a quench in the long-range Kitaev chain
with hi > 1 and hf < 1, for different values of α and of the system size N . (a) α≫ 3 , (b)
α = 1.75, (c) α = 0.9, (d) α = 0.4. Figure adapted from Ref. [103].

with s = (4iΩk)
−1, z =

√
Ωkt

′eiπ/4, and a, b arbitrary complex parameters to be fixed by
the initial conditions uk(ti), vk(ti). Accordingly, the solution of Eq. (1.61) reads

|ψ(t)⟩ =
∏

k

|ψk(t)⟩, (1.67)

|ψk(t)⟩ = uk(t)|0k, 0−k⟩ + vk(t)|1k, 1−k⟩, (1.68)

where uk(t) = uk(t
′(t)), vk(t) = vk(t

′(t)).
We can introduce the instantaneous eigenstates of the two-level Hamiltonians Hk(t) at

time t, given by

|ϕ±k (t)⟩ = ūk(h(t))|0k, 0−k⟩ ± v̄k(h(t))|1k, 1−k⟩, (1.69)

with ūk(h) = cos(ϕk(h)/2), v̄k(h) = sin(ϕk(h)/2), where ϕk(h) = arctan(∆k/(h − tk))
is the Bogoliubov angle for a chemical potential h = h(t). The non-adiabatic transition
probabilities then read

pk(t) = 1 − |⟨ϕ±k (t)|ψk(t)⟩|2

= 1 − |ūk(h(t))uk(t) + v̄k(h(t))vk(t)|2. (1.70)

By inserting the expression for uk, vk in Eqs. (1.65), (1.66), in the above expression,
one obtains an analytical expression for pk(t) [110]. This exact solution, however, is rather
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cumbersome. Considering the limit of a slow driving protocol v → 0, with final time
τ = |hf − hi|/v → ∞ allows for a simpler description that captures and better grasp the
relevant physics involved in the dynamics. In this regime, the first non-trivial correction
to pk takes the celebrated LZSM form

pk ≃ exp

(
−π∆2

k

v

)
+ O(v2). (1.71)

See Ref. [111] for its derivation using adiabatic perturbation theory. Although for finite ∆k

the O(v2) contributions is leading, as the transition point is crossed, the physics is domi-
nated by the soft modes with small ∆k. As a consequence, in any relevant thermodynamic
quantity, the O(v2) contribution in the r.h.s. of (1.71) is negligible with respect to the
non-analytic exponential one.





Chapter 2

The effective dimension approach

Before delving into the potential advantages of incorporating long-range interacting systems
in quantum technological setups, we first review some methodological aspects that will
be useful in exploring the universal properties of these systems throughout the thesis.
Specifically, we examine the effective dimension approach (already introduced in Section
1.2.3 of the introduction), which connects the scaling exponents of a critical system in d
spatial dimensions with power-law decaying interactions J(r) ∝ r−α to those of a local
system with finite-range interactions in an effective fractal dimension deff . This method
simplifies the study of long-range models by leveraging known results from their local
counterparts.

Although the validity of this approximation beyond the mean-field level has been de-
bated, in this Chapter we demonstrate that the effective dimension approach, while ap-
proximate for non-Gaussian fixed points, accurately estimates the critical exponents of
long-range models with an accuracy typically exceeding 97%. This result validates the
application of this method in the following chapters and enables a concise overview of the
primary techniques used to investigate the critical properties of long-range systems.

To this end, we review perturbative renormalization group (RG) results, extend the
validity of the approximation using functional RG techniques, and compare our findings
with precise numerical data from conformal bootstrap for the two-dimensional Ising model
with long-range interactions.

2.1 Effective dimension and scaling theory

We begin our analysis by showing how the effective dimension relation in Eq. (1.18) can
be obtained using scaling theory. Our prototypical model belongs to the family of classical

37
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O(N)-symmetric spin models, characterized by the Hamiltonian

H = −1

2

∑

i ̸=j
Ji,jSi · Sj , (2.1)

where Si is an N -component spin vector with unit modulus, Jij > 0 are ferromagnetic
translational invariant couplings, and the indices i and j run over all the sites of any
d-dimensional regular lattice of V sites. Specifically, we consider the case of power law
decaying couplings Ji,j = J/ri,j

α, where ri,j is the distance between two sites. Since in this
Chapter we will be dealing only with weak long-range systems with α > d, it is convenient
to rewrite the power-law exponent as α = d+ σ, with σ > 0.

From a field-theoretic perspective, the Hamiltonian in Eq. (2.1) lies in the same univer-
sality class as the continuous action

S =

∫
ddk

(2π)d
ω(k)|φ(k)|2 + u

∫
ddx|φ(x)|4, (2.2)

where the dispersion relation encodes only the low-energy momentum contribution ω(k) =
aσk

σ +a2k
2 + r and φ is an N -component bosonic field [112]. At a Gaussian level (u = 0),

long-range interactions become relevant for σ < 2, so that, at this level, the threshold of
σ above which the universal properties are the one of the local model is σ∗ = 2. The
corresponding length dimension of the bosonic field is given by

[φ] ∼
{
L−(d−σ)/2 for σ < 2

L−(d−2)/2 for σ > 2
. (2.3)

Accordingly, at criticality, for σ < 2, we find

⟨φ(x)φ(0)⟩ ∼ 1

xd−σ
=

1

xd−2+ηLR
, (2.4)

where ηLR = 2 − σ is the anomalous dimension computed with respect to the canonical
dimension of the local theory. Thus, it quantifies the deviation in the decay of correlations
from those in a local system.

Let us now introduce interactions into our framework as a perturbation to the Gaussian
theory. Considering the quartic term in the action (2.2), we have [φ4] ∼ L−2(d−σ) for
σ < 2, so that the perturbation is irrelevant as long as σ < d/2. Consequently, in this
regime, mean-field results are exact, and for O(N) models the thrashold below which the
universality becomes the mean-field one is σmf = d/2.

To probe values of σ beyond the mean-field region, we can use perturbative RG around
the d = 4, σ = 2 Gaussian fixed point, expanding in terms of ε = d − 2σ. This problem
was addressed in the seminal papers by Fisher and Sak [112, 43]. A key finding from these
studies is that the ∝ kσ|φ(k)|2 term in the action (2.2) does not acquire anomalous scaling.
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This can be intuitively understood, as the perturbative expansion can only generate integer
powers of k2,, leaving the non-analytic ∝ kσ behavior unaffected.

As a consequence, even in the presence of interactions, the scaling dimension of the
long-range kinetic term in the Hamiltonian is given by

∆σ = 2∆φ + σ. (2.5)

However, when interactions are present, the actual scaling of the local theory reads

∆φ = (d− 2 + ηSR)/2, (2.6)

leading to [112]

∆σ = d+ ηSR − ηLR. (2.7)

Thus, the boundary between long-range and local behavior must be identified at the value
σ∗ such that ηLR(σ) = ηSR. By comparing the scaling behaviors of the two interacting
theories, we can justify the effective dimension relation in Eq. (1.18).

To elucidate this, we follow the procedure introduced in Refs. [113, 46] and consider
the general scaling form of the singular part of the free energy density for a long-range
system in d dimensions and a local system in deff dimensions. Equating them, we get

fs =
1

V
ΦLR(V yLR

τ /dτ, V yLR
h /dh, V yLR

u /du)

=
1

V
ΦSR(V ySRτ /deff τ, Ly

SR
h /deffh, V ySRu /deffu), (2.8)

where V is the total number of spins, τ is the reduced temperature, h is the reduced
magnetic field, and u is the coupling of the irrelevant operator that gives the leading
corrections. The exponents yτ , yh, yu are connected to the eigenvalues of the linearized
form of the RG transformation around the critical fixed point. The connection between
long-range and short-range exponents is thus

yLR/d = ySR/deff . (2.9)

Combining this condition with the relations of the ys with the critical exponents, we obtain
[46]

dνLR = deffνSR,
2 − ηLR

d
=

2 − ηSR
deff

γLR = γSR, ωLR/d = ωSR/deff . (2.10)

Interestingly, the critical exponents describing the scaling of global quantities, such as γ,
directly correspond within the two theories, while the finite-size scaling exponents, such as
ν correspond once scaled via the effective dimension.
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Figure 2.1: Effective dimension deff of the long-range O(N) models with N = 1 (blue),
N = 2 (red) and N = 3 (green), plotted as a function of the long-range power law exponent
σ. The results are computed using functional RG (solid lines), perturbative RG (dashed
lines), and at the mean field level (dot dashed line).

To derive Eq. (1.18), we assume that interactions do not shift the Gaussian estimate
of the long-range anomalous dimension ηLR = 2 − σ. This assumption appears to be
exact as it has been confirmed by perturbative arguments at O(ε3) [43], functional RG
studies [114, 115], Monte-Carlo [116, 117] and bootstrap calculations [118]. Combining this
result with the relation between ηLR and ηSR in Eq. (2.10) leads to the dimensional identity
in Eq. (1.18). leads to the dimensional identity in Eq. (1.18). Based on the same argument,
one can derive the analytical expression for the threshold value σ∗, which coincides with
the traditional result first obtained by perturbative RG [112], i.e., σ∗ = 2 − ηSR.

2.2 Perturbative RG approach

Leveraging known perturbative Renormalization Group (RG) results, an explicit formula
for deff can be derived, accurate up to corrections of order O(ε3). Specifically, the epsilon
expansion result from [119] for the η exponent of the local model in dimension deff is given
by

ηdeffSR =
N + 2

2(N + 8)
(4 − deff)2 + O((4 − deff)3). (2.11)

By substituting this expression into Eq. (1.18), we can solve for the effective dimension
d
eff

, yielding two potential solutions. Then, to identify the physical solution for deff , we
impose the correct mean-field threshold σ = d/2 at the upper critical dimension, i.e.,
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deff(σ = d/2) = 4. This condition leads to the explicit expression

deff ≈ 4 − 1

d

N + 8

N + 2

[
σ −

√
σ2 +

(4d2 − 8dσ)(N + 2)

(N + 8)

]
, (2.12)

valid for N and σ values within the range

d/2 ≤ σ ≪ 2d(4 + 2N −
√

3N(N + 2))

N + 8
. (2.13)

For larger σ values, the perturbative expression becomes invalid as Eq. (2.12) becomes
complex, indicating the necessity to consider higher orders in the ε-expansion.

By calculating the critical exponents of the local model in the ε-expansion up to O(ε3)
and employing the relations with the long-range exponents in Eq. (2.10) and the expression
for the effective dimension in Eq. (2.12), we can directly determine the long-range exponents
as functions of σ and d, at the same level of approximation.

We observe that the ε-expansion results provide a good approximation only near σ =
d/2 = 1, which is expected since in this region deff ≈ 4. This is illustrated by the dashed
lines Fig. 2.1. This also corresponds to the validity region of the O(ε3) approximation
determined by Eq. (2.13). Consequently, for these values of σ, the effective dimension
approach provides a straightforward method to generalize ε-expansion results for the SR
model to the long-range case.

Additionally, we note that for continuous theories with N > 1, the mean field results
deff = 2d/σ and νLR = d−σ, which become exact in the N → ∞ limit, perfectly interpolate
between the known exact results in d = 2 and d = 4, see the red and green solid lines in
Fig. 2.1. On the other hand, the Ising case N = 1 (blue solid line in Fig. 2.1) exhibits a
peculiar behavior, reaching deff = 2 for σ = σ∗ = 7/4. This distinct behavior is due to the
discrete symmetry of the Ising model, which results in a finite anomalous dimension even
in d = 2.

2.3 Functional RG approach

The Functional Renormalization Group (FRG) is a modern RG framework that allows for
the derivation of an in principle exact equation for the flow of the effective action, Γk of
the model under study. This framework, pioneered by the seminal works of Wilson [120]
and Polchinski [121], is more conveniently expressed in terms of the Wetterich equation
[122]

∂tΓk =
1

2
Tr

[
∂tRk

Γ(2) +Rk

]
. (2.14)

where t = ln(k/k0), Γ(2) is the second derivative of the effective action with respect to
the order parameters, and Rk(q) is a momentum space regulator function that cuts off
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the infrared divergences caused by slow modes q ≪ k, while leaving the high-momentum
modes q ≫ k almost untouched.

To handle Eq. (2.14), one must project it onto a restricted functional space, parame-
terized by a finite number of functional operators. In this perspective, a convenient ansatz
for the effective action of the long-range interacting O(N) model is given by [114]

Γk[φ] =

∫
ddx[Zk∂

σ
2
µ φi∂

σ
2
µ φi + U(ρ)] (2.15)

where φi is the ith component of φ, ρ = φiφi/2 and the summation over repeated indexes

is assumed. The notation ∂
σ
2
µ indicates that the inverse propagator of the effective action

in Fourier space depends on qσ. Then, introducing the dimensionless variables

Ūk(ρ̄) = k−dUk(ρ), ρ̄ = Zkk
d−σρ, q̄ = k−1q, (2.16)

and defining the generalized Litim cutoff [123] suitable for long-range interactions [114,
124, 33]

Rk(q) = Zk(k
σ − qσ)θ(kσ − qσ), (2.17)

we obtain the following flow equation for the effective potential

∂tŪk = − dŪk(ρ̄) + (d− σ + δη)ρ̄Ū ′
k(ρ̄)

+
σ

2
cd(N − 1)

d+ σ − δη

(d+ σ)(1 + Ū ′
k(ρ̄))

+
σ

2
cd(N − 1)

d+ σ − δη

(d+ σ)(1 + Ū ′
k(ρ̄+ 2ρ̄Ū ′′

k (ρ̄)))
, (2.18)

where c−1
d = (4π)d/2Γ(d/2 + 1) and δη = −∂t lnZk. Allowing the wavefunction renormal-

ization Zk to be a running but field-independent coupling, we find its flow equation to
be

∂tZk = lim
p→0

d

dpσ
∂tΓ

(2)
k (p,−p). (2.19)

However, since the flow equation generates no non-analytic terms in p, from its defini-
tion we find that δη = 0, in agreement with the previously presented Sak’s picture [112].
Consequently, in Eq. (2.18), the δη terms can be omitted.

Also in the functional RG framework, one can establish a mapping, between the long-
range critical exponents in d dimensions and the equivalent local ones at the effective
dimension deff . For the correlation length critical exponent ν, this correspondence is ob-
tained by formulating an eigenvalue equation for the stability of perturbations around
Ūk = Ū∗

k (ρ̄), the fixed point solution of Eq. (2.18). Then by making the substitution

Ūk(ρ̄) = Ū∗
k (ρ̄) + kyūk(ρ̄), (2.20)
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Figure 2.2: The correlation length exponent νLR of the long-range Ising model obtained via
the functional RG approach within the LPA framework, see Eq. (2.18) is compared with
accurate conformal bootstrap (CFT) result. The accuracy of functional RG in reproducing
the CFT data lies within 92%.

one derives a functional equation for the stability matrix exponents ys of the RG flow,
which are related to the correlation length critical exponent by the relation ν−1 = min{y}.

Next, comparing Eq. (2.18), and its stability matrix extension with their local coun-
terparts in deff dimensions [125], and reabsorbing the constant cd into the definition of the
field [126], one reestablishes the dimensional equivalence as given in Eq. (1.18) [114]. This
shows that the dimensional correspondence described by the relations in Eq. (2.10) can be
derived outside the heuristic scaling theory framework of Sec. 2.1, suggesting it is a highly
accurate approximation for the actual critical exponents of the long-range model.

The approximate nature of the effective dimension correspondence becomes evident
when going beyond the ansatz in Eq. (2.15) and including a local kinetic term

Γk[φ] =

∫
ddx[∂

σ
2
µ φi∂

σ
2
µ φi + Zk∂µφi∂µφi + U(ρ)] (2.21)

where the running wave-function renormalization for the non-analytic kinetic term is omit-
ted as it has been shown to be irrelevant. The study of the ansatz (2.21), performed in
Ref. [114], demonstrated that the resulting flow equations are not consistent with the ef-
fective dimension relations, unlike the simpler case of Eq. (2.18). However, the discrepancy
between the numerical values obtained using the two ansatz in Eq. (2.15) and Eq. (2.21) is
quite small, remaining well below 5% for all values of σ, reinforcing the expectation of the
high accuracy of the effective dimension relation [114].

A first confirmation of this expectation comes from comparing the numerical estimate
for νLR obtained through the study of Eq. (2.18) with the (possibly) exact results recently
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obtained via conformal bootstrap [127], as shown in Fig. 2.2. The figure illustrates that de-
spite the rather crude approximation defined by Eq. (2.15), the functional RG results (full
blue circles) effectively capture the trend of the CFT data, with numerical error remaining
within 7%. However, as will be argued in the next section, the effective dimension corre-
spondence actually surpasses the functional RG accuracy when applied to exact numerical
estimates.

2.4 Comparison with exact numerics

On the numerical side, the validation of the Sak’s scenario and the effective dimension
correspondence has sparked a long-standing debate. Early Monte Carlo (MC) studies, using
algorithms specifically designed for long-range interactions [128], supported σ∗ = 2 − ηSR
[116]. However, more recent MC results have challenged Sak’s scenario [129], reporting
σ∗ = 2. Furthermore, MC studies of a percolation model with long-range probabilities
[130] mirrored the findings of Ref. [129] and did not reproduce Sak’s result, although
they did not explicitly discuss it. Additionally, MC results for the Ising model with long-
range interactions in d = 2 presented in Ref. [46] showed the presence of logarithmic
corrections in the correlation function when σ is very close to the σ∗ = 2 − ηSR boundary.
This implies numerical difficulty in extracting reliable results for the critical exponents
with small error bars around σ∗ = 2 − ηSR. While theoretical investigations now almost
unanimously support Sak’s picture [114, 118], a precise estimate of the accuracy of the
effective dimension correspondence remains an open question.

Here, we assess this accuracy by comparing numerically exact estimates for the correla-
tion length exponent of the Ising model. These comparisons are only possible for the Ising
N = 1 case, where conformal bootstrap techniques have recently provided highly accurate
estimates of the scaling dimensions in the long-range case [127]. While the study of the
nearest-neighbour Ising model in generic fractional dimension has been already available
for almost a decade [131].

These data are compared in Fig. 2.3, where the exponent 1/νdeffSR (blue dots) is plotted
as a function of deff and compared with the corresponding long-range exponent in two
dimensions 1/νdLR (red crosses) appropriately rescaled according to Eq. (2.10). While the
match between the curves is not perfect, confirming the approximate nature of the effective
dimension paradigm, the accuracy of the effective dimension approach clearly surpasses
the predictions from previous one-loop arguments. Indeed, as shown in the inset of Fig.
2.3, the ratio dνdLR/deffν

deff
SR is always greater than approximately 0.97, indicating a 97%

accuracy accuracy in the estimates for the long-range exponents obtained using the effective
dimension correspondence, well beyond the accuracy of the functional RG argument used
to derive the effective dimension relation in Sec. 2.3.

It is worth noting that the Ising model (N = 1) is expected to represent the worst-case
scenario for the effective dimension prediction among the O(N) models. Indeed, the cor-
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Figure 2.3: Comparison between the correlation length exponent of the local Ising model in
deff dimension (νdeffSR , blue dots) and that of the long-range Ising model in d = 2 dimensions,
scaled by a factor d/deff (dνdLR/deff , red crosses), plotted as a function of the effective
dimension deff(σ). The numerical data have been obtained through conformal bootstrap
methods as reported in Refs. [131] and [127], respectively. The inset shows the accuracy
of the effective dimension prediction, estimated as the ratio dνdLR/deffν

deff
SR , plotted as a

function of deff .

rections to the effective dimension relation arise due to high-order momentum corrections
to the vertexes of O(N) field theories, which are not parametrized by the ansatz (2.15).
These same vertex corrections cause the emergence of a finite anomalous dimension in local
theories. Thus, the larger the anomalous dimension of a local theory, the lower we estimate
the accuracy of the effective dimension correspondence with its long-range counterpart. As
the Ising model displays the largest anomalous dimension within O(N) field theories, we
expect the effective dimension correspondence to be more accurate as N increases.

2.5 Closing remarks

In summary, the study presented in this Chapter has thoroughly examined the critical
behavior of long-range interacting systems using a combination of perturbative and func-
tional renormalization group (RG) approaches. Our primary objective was to establish
and validate the effective dimension framework, which correlates the critical properties of
long-range models with those of local models in a suitably defined effective dimension deff .

We began by revisiting Sak’s seminal results with perturbative RG techniques, confirm-
ing that the effective dimension approach holds at leading order in perturbation theory.
This approach provides a robust approximation for the critical exponents of long-range
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models, particularly accurate near the mean-field threshold σ = d/2, and remains valid up
to O(ε3) corrections. Our analysis demonstrated that the effective dimension deff and the
corresponding critical exponents can be explicitly computed, offering an efficient method
for estimating the critical properties of long-range systems.

Subsequently, we extended our investigation to functional RG methods, enabling a
more comprehensive treatment beyond the limitations of perturbative expansions. By
deriving flow equations for the effective potential and wavefunction renormalization, we
showed that the effective dimension approach is consistent with functional RG results.
This consistency underscores the reliability of the effective dimension as a predictive tool
for long-range critical phenomena, even when interactions and fluctuations are considered
more rigorously.

Finally, we compared the predictions of the effective dimension approach with exact
numerical data obtained from conformal bootstrap methods for the two-dimensional Ising
model with long-range interactions. The comparison indicated excellent agreement, with
an accuracy greater than 97%.

In conclusion, our study provides strong evidence that the effective dimension approach,
while approximate, offers an accurate and practical framework for estimating critical expo-
nents in long-range interacting models. It effectively bridges the gap between perturbative
RG predictions and exact numerical results, delivering a comprehensive understanding of
the universal features of critical phenomena in systems with long-range interactions.



Chapter 3

Quantum Thermodynamics of
long-range systems

3.1 Quantum thermodynamics

Thermodynamics originated in the nineteenth century from practical concerns, specifically
the need to understand and optimize the operation of thermal machines such as heat
engines and refrigerators. Since then, the performance of these devices has seen significant
advancements to meet the demands of modern technology. These advancements span
a wide range of applications, from fuel-based vehicles and household air conditioners to
the most advanced dilution refrigerators used today [132]. The pursuit of fault-tolerant
quantum computing represents the latest technological frontier, garnering considerable
research attention in recent years [133]. In particular the route towards fault tolerance of
available quantum processors is dictated by the quantum threshold theorem [134, 135, 136],
which states that error correction is feasible even with noisy gates, provided the noise level
remains below a critical threshold.

Cooling quantum hardware to sufficiently low temperatures theoretically enables achiev-
ing this threshold. However, the integration of large classical apparatuses, such as ther-
mal baths, may introduce additional sources of decoherence. Therefore, the development
of microscopic and coherent thermodynamic machines has emerged as a pressing tech-
nological challenge [137]. This challenge has driven research into quantum thermal en-
gines, i.e., heat engines and refrigerators operating directly within the quantum domain
[138]. Extensive theoretical [139, 140, 141, 142, 143, 144, 145, 146] and experimental
[147, 148, 149, 150, 151, 152, 153, 154] studies have been conducted, recently demonstrat-
ing their potential applicability to existing quantum processors [12, 11, 155].

However, these devices are subject to a well-known trade-off between power and effi-
ciency [146]. This trade-off arises from two main factors: the first being the fundamental
constraints imposed by the second law of thermodynamics on irreversible processes, which

47
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implies that the thermodynamic efficiency of a heat engine must be lower than that of a
Carnot engine [156]. Additionally, any practical cycle operates over a finite time, introduc-
ing further losses due to dynamic excitations that dissipate energy, thereby degrading the
device performance. As a result, increasing power typically leads to greater dissipation, ad-
versely affecting efficiency. Various strategies have been proposed to mitigate non-adiabatic
transitions, known as shortcuts to adiabaticity, to address this issue [157, 158, 159, 160].
However, these techniques often involve activating additional driving fields, which incurs
an energetic cost that reduces the actual output of the device [161, 162].

In this section, we explore a novel approach to minimize these adverse effects by em-
ploying a long-range interacting quantum system as the working substance of the engine,
determining the conditions under which the presence of long-range interactions reduces the
energy losses due to defect generation during non-adiabatic evolution.

3.2 Quantum work statistics

A foundamental object in the study of thermodynamic efficiency is the statistics of work
exchanged by a quantum system with an external driving during a non-adiabatic evolution.

The study of quantum work statistics delves into the dynamics of a quantum system
governed by a Hamiltonian H(h), which depends on an external work parameter h. The
system starts in the initial state ρi and a driving protocol modifies the work parameter
from hi to hf . Consequently, the initial and final Hamiltonians are

Hi = H(hi) =
∑

n

ϵin|ϵin⟩⟨ϵin|, Hf = H(hf ) =
∑

m

ϵfm|ϵfm⟩⟨ϵfm|, (3.1)

respectively. Under the influence of external driving, the system evolves unitarily, resulting
in the final state ρf = UρiU

† with

U = T exp

[
−i
∫ τ

0
dtH(ht)

]
, (3.2)

the unitary evolution operator, where T exp denotes the time-ordered exponential. Through-
out this process, the system exchanges energy with the external drive, manifested as work
W , which is a stochastic variable with a probability density given by [163, 164]

P (W ) =
∑

n,m

pn,mδ
(
W − (ϵfm − ϵin)

)
, (3.3)

where pn,m represents the probabilities associated with all the possible energy differences
between the energy levels of the initial and final Hamiltonians. For an initial state that
is incoherent with respect to Hi, i.e., [ρi, Hi] = 0 [7], we have pn,m = pinpn|m, where

pin = Tr[ρi|ϵin⟩⟨ϵin|] is the initial population of the nth energy level, and pn|m = |⟨ϵin|U |ϵfm⟩|2
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denotes the transition probability between the nth and mth energy levels during the unitary
evolution [164].

To analyze the probability P (W ) we may use its moment generating function

G(s) =

∫
dWe−sWP (W ) = Tr

[
U †e−sHfUesHiρi

]
. (3.4)

From which all the moments of the distrubution can be obtained by deriving with respect
to the s variable.

Considering, for example, a linear driving protocol, h(t) = hi − vt, over a time interval
t ∈ [0, τ ] and with a quench rate v = (hi−hf )/τ . We can investigate the system’s response
to different quench velocities v. At this scope we focus on the statistics of irreversible work
Wirr = W − ∆ϵ0, where ∆ϵ0 = ϵf0 − ϵi0 represents the adiabatic work contribution, i.e.,
the difference between final and initial ground state energies. Wirr accounts for the energy
irreversibly dissipated during the evolution due to the dynamic generation of defects in
finite-time dynamics.

In the following we explore two opposite limits: the sudden quench scenario where
v → ∞ (τ → 0) and the slow quench case where v → 0 (τ → ∞).

3.3 Universal quantum work statistics in long-range systems

In this section, we provide a comprehensive characterization of the universal properties of
quantum work statistics in long-range interacting quantum systems subjected to various
external drivings, ranging from a sudden quench to infinitely slow linear driving. We aim
to determine the conditions under which long-range interactions reduce energy losses due
to defect generation during non-adiabatic evolution. To achieve this in a general setup, we
utilize the effective dimension approach, detailed and justified in Chapter 2, to analyze the
universal behavior of systems with long-range interactions. Finally, we apply our findings
to two concrete examples: the long-range quantum Ising chain and the long-range Kitaev
chain.

3.3.1 The sudden quench case

In the sudden quench scenario, and assuming that the system is initially in the ground
state, Eq. (3.4) simplifies to

G(s) = ⟨ϵi0|esHie−sHf |ϵi0⟩ = e−∆ϵ0sZ(s) (3.5)

where Z(s) = ⟨ϵi0|e−(Hf−ϵf0 )|ϵi0⟩. This expression can be interpreted as the partition function
of a d+ 1-dimensional classical system on a film of thickness s, with two boundary states
|ϵi0⟩ and a transverse area Ld [165, 166]. This mapping is schematically illustrated in panels
(a) and (b) of Fig. 3.1 Within this interpretation, the cumulant generating function F =
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Jr ∼ 1/rα

s

Classical LR : d + 1 − dimensional

ξ → ∞
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Critical Quench : m1 → m2 = 0
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Figure 3.1: Schematic representation of the quantum-to-classical mapping for the quantum
work statistics problem in long-range interacting systems. (a) The original quantum model
in d dimensions with power-law decaying couplings, subjected to a sudden quench to the
critical point—transitioning from a massive m1 > 0 initial Hamiltonian to a massless final
Hamiltonian m2 = 0, where mi denotes the mass of the lightest quasiparticle describing
the system’s excitations. (b) The corresponding equilibrium long-range interacting classical
system in d+ 1 dimensions, obtained through the quantum-to-classical mapping. (c) The
local classical system in equilibrium in deff + 1 dimensions, derived in the final step of our
mapping using the effective dimension approach.

− lnG(s) represents the free energy per unit temperature of the corresponding classical
system [165].

Then, as s, increases, the free energy density per unit area f = F/Ld decomposes into

f = sfb + 2fs + fc(s), (3.6)

where fb = ∆ϵ0/L
d and fs = −(ln |⟨ϵf0 |ϵi0⟩|)/Ld can be interpreted as bulk and surface

free energy densities in the corresponding classical system in a film geometry [165, 166].
The term fc(s) is a subleading contribution in the large s limit but is significant in critical
quenches hf = hc as it embodies the critical Casimir effect and exhibits the universal
scaling form [167, 168, 169]:

fc(s) ≈ s−dΘ(s/ξ) for s≫ a, (3.7)

where ξ ≫ a denotes the correlation length and a represents a microscopic length scale.
The scaling function Θ(x) is universal, depending solely on the universality class of the
bulk classical critical point and the surface universality class [170].

Once the scaling behavior of the characteristic function is established, it reveals univer-
sal properties of the work distribution. In particular, we examine the intensive irreversible
work w = (W − ∆ϵ0)/L

d. Our focus lies on the probabilities of large deviation events,
where w is significantly smaller than its mean value ⟨w⟩, indicating proximity to the adia-
batic limit where w = 0. The probability of such large deviations is expected to decrease
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exponentially with system size Ld, i.e.,

P (w) ∝ e−I(w)L
d
, (3.8)

where I(w) is the non-negative rate function, vanishing at w = ⟨w⟩. The quadratic approx-
imation of I(w) around w = ⟨w⟩ reproduces typical Gaussian fluctuations w−⟨w⟩ ∼ 1/

√
N

predicted by the central limit theorem [171, 172, 173].

Additionally, we observe that P (w < 0) = 0, implying I(w < 0) = +∞, and assuming
a bounded spectrum, P (w > wM ) = 0, where wM represents the maximum work that can
be introduced into the system, corresponding to a fully filled spectrum. As L → ∞, the
rate function is obtained through the Legendre-Fenchel transform [171]:

I(w) = − inf
s∈R

{sw − 2fs − fc(s)}. (3.9)

In particular, for a critical quench with ξ → ∞, we obtain

I(w) ≈ 2fs −
d+ 1

d
Θ(0)

(
w

Θ(0)

)d/(d+1)

. (3.10)

Long-range interactions crucially influence the scaling above. Specifically, as detailed in
Chapter 2, if we consider a quantum system in d dimensions whose Hamiltonian contains
a power-law decaying coupling of the form J(r) ∝ 1/rα, the universal properties of the
system at criticality are well captured by considering the short-range version of the model
in a fractal dimension deff , related to α and d by equation (1.18).

This mapping, schematically shown in Fig. 3.1, illustrates how the out-of-equilibrium
work statistics problem in a quantum long-range system in d dimensions (panel (a)) can be
mapped to a classical local problem at equilibrium in a film geometry in dimension deff + 1
(panel (c)).

Thus, the rate function for a long-range system is obtained by simply replacing deff in
Eq.(3.10). Typically, deff ≥ d for any d < α < α∗, indicating that in the large deviation
region, ISR(w) < ILR, meaning that the probability of having w ≪ ⟨w⟩ is larger in the long-
range case. This is a first indication that long-range interaction decrease the irreversible
work performed by the system.

3.3.2 The slow quench case

In the slow quench scenario v → 0, it is useful to express the logarithm of the characteristic
function as a series expansion

lnG(s) =
∞∑

n=1

sn

n!
κn, (3.11)
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where κn is the nth cumulant of the work distribution. By analyzing how these cumulants
scale with the small but finite driving velocity v, we can deduce the universal properties of
the work distribution in this regime.

In particular, we consider a time-dependent Hamiltonian of the form H(λ(t)) which is
slowly driven across a quantum critical point at λ = 0. Adopting the standard assump-
tions of adiabatic perturbation theory [174, 111], we consider the condition that at the
critical point, the energy gap vanishes due to the dispersion relation of low-energy (small
k) modes scaling as ωk = c|k|z, where c is a non-zero constant. Additionally, we apply the
approximation of a low density of quasiparticles excited after the quench in each mode,
i.e., nk ≲ 1 for all k, where nk denotes the occupation number of the kth mode at the end
of the process. Under these conditions, the work performed during the process is given by

W = ∆ϵ0 +
∑

k

ωknk. (3.12)

The probability of having nk excitations in the kth mode is

pnk=0 = 1 − pk, pnk=1 ≈ pk, pnk>2 ≈ 0. (3.13)

Thus, the logarithm of the characteristic function reads [175, 176, 177]

lnG(s) = s∆ϵ0 +
∑

k

ln[1 + pk(e
−sωk − 1)]. (3.14)

Then, expanding lnG(s) in powers of s, the cumulants of work are

κn ≈ δn,1∆ϵ0 +
∑

k

ωnkpk. (3.15)

For small driving velocity v → 0, the scaling of the work cumulants is determined by the
low-energy modes. More precisely, within adiabatic perturbation theory, the excitation
probability of the kth-mode quasiparticle pk is dominated by (assuming that there is no
additional Berry phase) [174, 111, 105]

pk ≈
∣∣∣∣
∫ hf

hi

dh⟨1k(h)|∂h|0k(h)⟩e
i
v

∫ h
hi
dh′ωk(h

′)
∣∣∣∣
2

(3.16)

where |nk(h)⟩ denotes the instantaneous energy eigenstate of mode k of H(h) with occu-
pation number nk. In order to remove the quantity 1/v in the exponential function in the
integral of pk (Eq. (3.16)), we introduce two rescaled quantities, x and y, defined by

h = xv1/(1+νz), k = yvν/(1+νz). (3.17)
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Also following Ref. [111, 105], we introduce the general scaling argument

ωk(h) = |h|νzF (k/|h|ν), (3.18)

⟨1k(h)|∂h|0k(h)⟩ = h−1G(k/|h|ν), (3.19)

where F and G are two model-dependent scaling functions satisfying F (x) ∝ xz and
G(x) ∝ x−1/ν for |x| ≫ 1. This is motivated by dimensional considerations and the
requirement that the spectrum of the high energy modes should be insensitive to h. Thus,
assuming a critical quench with ωk(hf ) ≈ c|k|z, the work cumulants reads

κn ≈ ∆ϵ0δn,1 + cnvθn
∫
ddy

2π
|y|nzf(y), (3.20)

where

θn =
(d+ nz)ν

1 + νz
, (3.21)

and we have introduced the function

f(y) =

∣∣∣∣
∫ xf

xi

dx

x
G(y/|x|ν)e

i
∫ x
xi
dx′|x′|νzF (y/|x′|ν)

∣∣∣∣
2

. (3.22)

Consequently, as long as θn < 2, the scaling of the work cumulants is dominated by the
low energy modes, f(y) is convergent as v → 0, and κn − ∆ϵ0δn,1 ≈ anv

θn . On the other
hand, when θn > 2 the integral is not dominated by the low energy modes and the leading
term comes from the high-energy contribution, which can be approximated by the regular
analytic adiabatic perturbation theory [174, 178, 111], resulting in the quadratic scaling
κn − ∆ϵ0δn,1 ≈ anv

2. Finally, when θn = 2, logarithmic corrections are expected leading
to the scaling κn − ∆ϵ0δn,1 ≈ anv

2 ln v. Summarizing we have that

κn − ∆ϵ0δn,1 ≈





anv
θn θn < 2

anv
2 ln v θn = 2

anv
2 θn > 2

. (3.23)

Also in this case the universal scalings for a long-range interacting system are derived
using the effective dimension approach. The scaling exponent becomes

θn,α =
(d+ nzdLR)νdLR

1 + νdLRz
d
LR

≈ (deff + nzdeffSR )νdeffSR

1 + νdeffSR z
deff
SR

. (3.24)

The approximate sign accounts for minor corrections due to the anomalous dimension in
the frequency dependence of the low-energy propagator of the quantum long-range theory
[1].
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(a) (b) (c)

Figure 3.2: (a) Rate function as a function of the intensive irreversible work w for different
values of α following a sudden critical quench of the long-range Kitaev chain with hi = 21
and hf = 1. Bold lines depict exact numerical results, dashed lines show the quadratic
approximation near the average w ≈ ⟨w⟩, and dot-dashed lines illustrate the universal
scaling in the large deviation limit w ≪ ⟨w⟩. (b)-(c) First and second moments of the
irreversible work distribution as a function of the driving velocity v, for different values of
α during slow linear critical driving of a long-range Kitaev chain with hi = 5 and hf = 1.
Dots represent exact numerical results, while solid lines indicate power law fits of the
numerical data. The system size is N = 1024.

The result in Eq. (3.24) readily provides a means to estimate long-range advantage.
Indeed, if there is a valuea value αadv such that

θn,α >
(d+ nzdSR)νdSR

1 + νdSR
, (3.25)

then, the addition of long-range couplings improves the performance of the slow quench
work protocol by reducing the irreversible work dissipated during the evolution.

3.3.3 Explicit examples of long-range advantage

We now provide few concrete examples where the applicability of the advantage principle
in Eq. (3.25) can be verified explicitly. Firstly, we consider an analytically solvable model,
i.e., the long-range Kitaev chain introduced in Section 1.5 and described by the fermionic
Hamiltonian in Eq.(1.43).

Thanks to the quadratic nature of the model, the cumulant generating function of the
work statistics, as defined in Eq. (3.4), can be computed analytically and reads:

lnG(s) = −s∆ϵ0t+
∑

k>0

ln

[
1 + tan2 δϕke

−2sωk,2

1 + tan2 δϕk

]
(3.26)

where δϕk = ϕfk − ϕik represents the difference between the Bogoliubov angles diagonaliz-
ing the final and initial Hamiltonians, respectively. The bulk free energy density can be
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expressed as

fb =
s∆ϵ0
L

=
s

2L

∑

k>0

(ωk,1 − ωk,2), (3.27)

the surface free energy density as

fs =
1

L

∑

k>0

ln
[
1 + tan2 δϕk

]
, (3.28)

and the critical free energy density as

fc(s) = − 1

L

∑

k>0

ln
[
1 + tan2 δϕke

−2sωk,2
]
. (3.29)

As shown in Section 1.5, in the weak long-range regime (1 < α < 2), the quasiparticle
spectrum is continuous in the thermodynamic limit. Accordingly, in the L → ∞ limit,
the sums over Fourier modes k can be approximated by integrals. The critical free energy
density can then be written as

fc(s) = −
∫ π

0

dk

2π
ln
[
1 + tan2 δϕke

−2sωk,2
]
. (3.30)

To explore the large deviation region of the work distribution where w ≪ ⟨w⟩, we consider
the limit s → ∞. In this limit, the integral in Eq. (3.29) is dominated by the low-energy
modes near k ≈ 0. Then, expanding the spectrum around k ≈ 0, for 1 < α < 2, we obtain

fc(s) ≈ −
∫ π

0

dk

2π
ln

[
1 + tan2

(
π(α− 1)

4

)
e−2sCαkα−1

]
, (3.31)

where Cα = 2|Γ(1 − α)/ζ(α)|. By changing variables to y = 2sCαk
α−1 we get

fc(s) ≈ − 1

s1/(α−1)

1

2π(2Cα)1/(α−1)

∫ 2Cαπα−1s

0
dyy

1
α−1

−1 ln

[
1 + tan2

(
π(α− 1)

4

)
e−y
]

(3.32)

This integral converges and in the limit s→ ∞ can be carried out explicitly, yielding

fc(s) ≈
Γ
(

1
α−1

)
Li1+ 1

α−1

(
− tan2

(
π(α−1)

4

))

2π(2Cα)1/(α−1)
s−

1
α−1 , (3.33)

where Lix(z) =
∑∞

n=1 z
n/nx is the polylogarithm function. Comparing this with the effec-

tive dimension prediction fc(s) ≈ Θ(0)s−deff , we identify

Θ(0) = −
Γ
(

1
α−1

)
Li1+ 1

α−1

(
− tan2

(
π(α−1)

4

))

2π(2Cα)1/(α−1)
, deff =

1

α− 1
, (3.34)
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which matches the effective dimension predicted by Eq. (1.18).

Then, performing the Legendre transform explicitly, we derive the rate function

I(w) = 2fs,α − αKα

(
w

Kα

) 1
α

= 2fs,α − deff + 1

deff
Kα

(
w

Kα

) deff
deff+1

, (3.35)

where we have introduced the α dependent factor

Kα = deffΘ(0) = −
Γ
(

1
α−1

)
Li1+ 1

α−1

(
− tan2

(
π(α−1)

4

))

2π(α− 1)(2Cα)1/(α−1)
. (3.36)

Next, we consider the regime of an infinitely slow linear quench with h(t) = hi − vt,
t ∈ [0, (hi−hf )/v] and v → 0. Here, it is useful to express the cumulant generating function
G(s) in terms of the excitation probabilities pk of each Fourier mode during the dynamics,
leading to

lnG(s) = −s∆ϵ0 + L

∫ π

0

dk

2π
ln
[
1 + pk(e

−2sωk,2 − 1)
]

(3.37)

Expanding the logarithm in powers of pk(e
−2sωk,2 − 1), we get

lnG(s) = −s∆ϵ0 + L

∞∑

n=1

(−1)n+1

n

∫ π

0

dk

2π
pnk
(
e−2sωk,2 − 1

)n
, (3.38)

where the series converges as long as |pk(e−2sωf
k − 1)| < 1.

As shown in Section 1.5 in the limit of a slow driving protocol v → 0, the first non-
trivial correction to pk takes the form of Eq. (1.71). Then, inserting this expression into
the integral in Eq. (3.38), we obtain

f(s) = − 1

L
(lnG(s) + s∆ϵ0) ≈ −

∞∑

n=1

(−1)n+1

n

∫ π

0

dk

2π
e−

nπ∆2
k

v
(
e−2sωk,2 − 1

)n
. (3.39)

Due to the exponential decay of pk, only low-energy modes can get excited. Therefore, the
integral is dominated by the contributions at small Fourier modes k and we can replace
the expressions for ∆k and ωk,2 with their expansions around k = 0. Consequently, for a
critical quench with h2 = 1 and 1 < α < 2 we obtain

f(s) ≈ −
∞∑

n=1

(−1)n+1

n

∫ π

0

dk

2π
e−

nπB2
α

v
k2α−2

(
e−2sCαkα−1 − 1

)n
, (3.40)
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Figure 3.3: Scaling exponents for the first two cumulants, κ1 (blue) and κ2 (red) , of the
irreversible work statistics with respect to the driving velocity v, plotted as a function of α.
The left panel shows results for a slow quench of the long-range Ising model, while the right
panel displays results for the long-range Kitaev chain. In the long-range Ising case, dots
represent numerical data obtained by combining the effective dimension prediction with
precise numerical estimates of the short-range Ising critical exponents in the effective fractal
dimension deff . For the long-range Kitaev chain, dots indicate the exponents obtained by
fitting the exact numerical data for the work cumulants as a function of v with a power law
function. Horizontal dashed lines represent the short-range values of the scaling exponents,
and the gray vertical dashed line marks the value of α = α∗, above which the short-range
results apply.
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where Bα = cos(απ/2)Γ(1 − α)/ζ(α). Then, performing the change of variable y2 =
k2α−2nπB2

α/v, we have

f(s) ≈ − 1

2π(α− 1)

(
v

πBα

) 1
2(α−1)

×
∞∑

n=1

(−1)n+1

n

∫ πα−1|Bα|
√

π
v

0
dyy

1
α−1

−1e−y
2n
(
e−2sCα

Bα

√
v
π
y − 1

)n
. (3.41)

Finally, keeping only the leading order contributions as v → 0 we find

f(s) ≈ 1

2π(α− 1)

(
v

πBα

) 1
2(α−1)

∞∑

n=1

1

n

∫ ∞

0
dyyn+

1
α−1

−1e−y
2n

(
2s
Cα
Bα

)n ( v
π

)n
2

(3.42)

=

∞∑

n=1

fn,α(s)v
1

2(α−1)
+n

2 . (3.43)

This gives us the scaling of the nth cumulant

κn ∝ v
1

2(α−1)
+n

2 . (3.44)

As expected, also this scaling is in agreement with the effective dimension prediction with
deff = 1/(α− 1).

Finally, as a second example, we consider the long-range quantum Ising chain which, as
shown in Section 1.4 is an interacting and experimentally relevant model. In this case, the
scaling exponents for the work cumulants θn in the slow quench scenario can be approxi-
mated by inserting precise numerical estimates for the critical exponents of the short-range
Ising model in deff dimension [131] into the effective dimension prediction of Eq. (3.24). The
resulting θn for the first two cumulants n = 1, 2 are plotted as a function of α in Fig. 3.3(b)
and compared with their corresponding shor-range values (horizontal dashed lines). No-
tably, in this interacting example, the first two cumulants of the work statistics satisfy the
long-range advantage condition (3.25) as long as α < α∗, with α∗ ≈ 3−ηSR(deff = 1) = 2.75.

3.4 Application to quantum heat-engines

With the results from Section 3.3 in our hands, we are now equipped to design a quan-
tum thermal cycle that leverages the presence of long-range interactions in its working
substance. Specifically, we focus on the paradigmatic example of the long-range Kitaev
chain undergoing a quantum Otto cycle. We identify several advantages arising from the
presence of long-range interactions:

1. Enhanced adiabatic optimal performance: In the limit of an infinitely slow
cycle, we observe enhanced optimal performances of the device in its most useful
operation modes: the heat-engine mode and the refrigerator mode.
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Figure 3.4: Schematic representation of the quantum Otto cycle.

2. Reduction in Nonadiabatic Losses: In a finite-time cycle involving the crossing
of a quantum critical point, selecting a long-range interacting working substance leads
to a significant reduction in nonadiabatic energy losses compared to its short-range
counterpart. This aligns with the general results presented in Section 3.3.

3.4.1 The quantum Otto cycle

The quantum Otto cycle,[145, 146, 13] consists of the following four strokes (see Fig. 3.4):

• First stroke: unitary decrease of h (1 → 2). Initially, the system is in thermal
equilibrium with a hot reservoir at temperature T1 = 1/β1 and h = h1. The system
is decoupled from the bath and undergoes a unitary evolution where the driving
parameter h changes from h1 to h2.

• Second stroke: thermalization at fixed h (2 → 3). The driving parameter is
kept fixed at h = h2, and the system is coupled to a thermal bath at temperature
T2 = 1/β2, allowing it to reach thermal equilibrium.

• Third stroke: unitary increase of h (3 → 4). The system undergoes another
unitary evolution that brings the chemical potential back to its initial value h2 → h1.

• Fourth stroke: thermalization at fixed h (4 → 1) the system at fixed h = h1 is
coupled again to the hot bath, reaching equilibrium at temperature T1 and completing
the cycle.
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At each stage, the system’s state and corresponding average energy are given by

ρ1 = e−β1H1/Z1, E1 = Trρ1H1, (3.45a)

ρ2 = Uρ1U
†, E2 = Trρ2H2, (3.45b)

ρ3 = e−β2H2/Z2, E3 = Trρ3H2, (3.45c)

ρ4 = Ũρ3Ũ
†, E4 = Trρ4H1, (3.45d)

where Hi = H(hi), Zi = Tre−βiHi i = 1, 2, U and Ũ are the unitary evolution operators
associated to the first and the third stroke respectively. As in the previous Section also
here we assume, for simplicity, a linear time dependence of the driving parameter during
the unitary strokes. Then the driving protocol corresponding to the first step 1 → 2 can
be written as

h(t) = h1 − vt for t ∈ [0, τ ], (3.46)

where v = (h1 − h2)/τ is the sweep rate. The driving protocol during the third step of the
cycle 3 → 4 is given by h̃(t) = h(τ − t), for t ∈ [0, τ ]. The corresponding unitary evolutions
are then

U = T exp

[
−i
∫ τ

0
dtH[h(t)]

]
, (3.47)

Ũ = T exp

[
−i
∫ τ

0
dtH[h̃(t)]

]
, (3.48)

where T exp denotes the time-ordered exponential. During the second and fourth strokes,
the system interacts only with the baths, reaching thermal equilibrium. While long-
range interacting systems are known to evade thermalization allowing for quasistationary
states [90, 103], it can be shown that thermal equilibrium is safely reachable when α1, α2 > 1
[179]. Then, all the thermodynamic quantities can be computed using the equilibrium pop-
ulations for the Fourier modes. For the example of the long-range Kitaev chain these are
simply given by the Fermi-Dirac distribution, of the Bogoliubov fermions diagonalizing
the chain, at an inverse temperature βi and with the dispersion relation ωk,i = ωk(hi) of
Eq. (1.50), for i = 1, 2, reading

⟨γ†kγk⟩ = f(ωk,i) =
1

1 + eβiωk,i
. (3.49)

Then, in this case, the internal energy is given by

Ei =
∑

k

ωk,i

(
⟨γ†kγk⟩ − 1/2

)
= −

∑

k>0

ωk,i tanh

(
βωk,i

2

)
.
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Since during the second and the fourth strokes the external driving is switched off and
the system interacts only with the baths, then energy is exchanged with them only in the
form of heat

Q1 = E3 − E2 (3.50)

Q2 = E1 − E4. (3.51)

Then, according to the first law of thermodynamics, the work done over the cycle is

W = Q1 +Q2. (3.52)

The average energy exchanges Q1,Q2 and W fully characterize the cycle’s operation. De-
pending on the signs of Q1, Q2 and W , our engine may operate in any of the following four
modes

[E] : Q1 ≥ 0, Q2 ≤ 0,W ≥ 0; (3.53a)

[R] : Q1 ≤ 0, Q2 ≥ 0,W ≤ 0; (3.53b)

[A] : Q1 ≥ 0, Q2 ≤ 0,W ≤ 0; (3.53c)

[H] : Q1 ≤ 0, Q2 ≤ 0,W ≤ 0; (3.53d)

where [E] denotes energy extraction (heat engine), [R] denotes refrigerator, [A] denotes
thermal accelerator, and [H] denotes heater [15, 13].

In the case of the long-range Kitaev chain the energy exchanges take the form

Q1 = −
∑

k>0

ω1,k (f2,k + f1,k(2pk − 1)) , (3.54a)

Q2 = −
∑

k>0

ω2,k (f1,k + f2,k(2pk − 1)) , (3.54b)

W = Q1 +Q2, (3.54c)

where pk, are the nonadiabatic transition probabilities during the unitary stroke of the
cycle, and we have introduced the shortcut notation fi,k = tanh(βiωi,k), for i = 1, 2.

3.4.2 Adiabatic cycle

Let us now analyze the case of an infinitely slow cycle, i.e., the limit v → 0. This regime
is usually referred to as adiabatic, since the unitary evolution is sufficiently slow for the
adiabatic theorem to hold, preventing transitions between the instantaneous eigenstates of
the Hamiltonian, and leading to pk ≈ 0. The adiabatic approximation breaks down as the
energy gap closes. Strictly speaking, however, this happens only in the thermodynamic
limit N → ∞. Accordingly, for any finite N , one can choose the driving time scale such
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Figure 3.5: Operation mode diagram illustrating regions in the parameter space of β1/β2
and h2/h1, corresponding to different operation modes. Distinct colors represent different
operation modes: blue for the refrigerator [R], green for the heat engine [E], yellow for the
thermal accelerator [A], and red for the heater [H]. White lines denote the boundaries of
the operation mode regions for a working substance composed of identical and independent
qubits (3.57). Panel (a) depicts the nearest neighbor case with α → ∞, while panel (b)
shows the long-range case with α = 1.5. The system size is fixed at N = 200, with initial
temperature T1 = 100, and initial value of the driving parameter h1 = 2.
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that the adiabatic approximation is justified, allowing us to set pk ≈ 0 in Eqs. (3.54)
obtaining

Q1 =
∑

k>0

ω1,k (f2,k − f1,k) , (3.55a)

Q2 = −
∑

k>0

ω2,k (f2,k − f1,k) , (3.55b)

W =
∑

k>0

(ω1,k − ω2,k) (f2,k − f1,k) . (3.55c)

Figure 3.5 illustrates the regions of parameters β2 and h2, for fixed values of β1 and h1,
corresponding to the different operation modes defined in Eq. (3.53). Panel (a) shows
the nearest neighbor case corresponding to the α → ∞ limit, while panel (b) shows the
long-range case with α = 1.5.

To highlight the effects of long-range couplings, these plots are compared with the
regions obtained when the long-range Kitaev chain is replaced by N identical and inde-
pendent single qubits. Each qubit has a frequency given by the average spectrum of the
corresponding fermionic chain over all Fourier modes:

ω̄ =
1

N

∑

k

ωk. (3.56)

The boundaries of the regions for the independent qubits case are depicted as white lines
in Fig. 3.5 and offer a rough estimation for the engine operation mode. In this scenario,
where only one level-spacing is present, the region boundaries can be derived using the
results from Ref. [13] for the operation modes of a single qubit:

[E] :
β1
β2

≤ ω̄2

ω̄1
≤ 1, (3.57a)

[R] :
ω̄2

ω̄1
≤ β1
β2
, (3.57b)

[A] :
ω̄2

ω̄1
≥ 1, (3.57c)

where ω̄1,2 corresponds to Eq. (3.56) for h = h1,2 respectively, and we have assumed,
without loss of generality, β1 ≤ β2.

Note that conditions (3.57) rule out the possibility of a single qubit acting as a heater
([H]). Therefore, this regime cannot be well described within the mean-spacing approxima-
tion in the adiabatic limit. On the other hand, in the region h2/h1 > 0, where the heater
phase is absent, the operation mode phase diagram is well reproduced by the mean-spacing
approximation, see Eq. (3.57), regardless of the value of α.

By comparing the two diagrams in Fig. 3.5, we observe that the heater region in the
long-range case (panel (b)) is significantly reduced compared to the nearest neighbor case
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Figure 3.6: Work output (panel a) and engine efficiency (panel b), plotted as a function
of h2/h1, for different values of h1 corresponding to different colors. Exact values (3.55c)
are represented as scatter plots with different markers (one for each value of h1), while
bold lines refer to the approximated result of Eq. (3.59). The system size is N = 200, the
temperatures of the baths are fixed to T1 = 100, T2 = 0.01.

(panel (a)). Additionally, operation mode regions shapes are closer to the identical and
independent qubits even in the h2/h1 < 0 region. Moreover, the [R] (refrigeration) and [E]
(engine) regimes, which are the most relevant to technological applications, are enhanced
and become prevalent across the entire parameter region |h2/h1| < 1. In the following, we
focus on optimizing these two regimes within the parameter space, identifying the advan-
tages that arise from the presence of long-range couplings compared to the corresponding
local systems.

3.4.3 Heat Engine operation mode

The purpose of a heat engine is to harness the energy flow from a hot reservoir to a cold
one, extracting useful energy in the form of work. Thus, optimizing the performance of a
device operating in the [E] mode involves maximizing the work output. Another estimator
of the engine performance is the heat engine efficiency, defined as the ratio between the
energy gained as work and the heat extracted from the hot reservoir:

η[E] =
W

Q1
= 1 +

Q2

Q1
. (3.58)

According to the second law of thermodynamics, this efficiency is always less than the
Carnot efficiency ηC[E] = 1 − T2/T1 [156]. The functioning of a heat engine is naturally
boosted when the temperature difference between the reservoirs is large, favoring energy



3.4. APPLICATION TO QUANTUM HEAT-ENGINES 65

−1.0 −0.5 0.0 0.5 1.0
h2/h1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

W
/N

(a)

α = 1

α = 1.5

α = 2

α = 2.5

α = 5

−1.0 −0.5 0.0 0.5 1.0
h2/h1

0.0

0.2

0.4

0.6

0.8

η [
E

]/
η
C [E

]

(b)

α = 1

α = 1.5

α = 2

α = 2.5

α = 5

Figure 3.7: Work output (panel a) and engine efficiency (panel b), plotted as a function
of h2/h1, for different values of α1 = α2 = α corresponding to different colors. Exact
values (3.55c) are represented as scatter plots with different markers (one for each value of
α), while bold lines correspond to the approximate result of Eq. (3.59). The system size
is N = 200, the temperatures of the baths are fixed to T1 = 100, T2 = 0.01 and the initial
chemical potential value is h1 = 2.

flow and consequently the work extraction. Indeed, in this regime, the Carnot efficiency gets
close to unity. This basic physical intuition leads us to focus on the region of parameters
where T2 ≪ T1 as the most interesting for the [E] operation. Specifically, we consider
T2 ≪ ω̄(h) ≪ T1, with ω̄(h) playing the role of a typical energy scale of the system. Thus,
the working substance is near the ground state when in equilibrium with the cold bath and
near the maximally mixed state when in equilibrium with the hot bath. This leads to the
following expression for the work extracted

W ≃W0 ≡ N(ω̄1 − ω̄2)/2, (3.59)

which is fully determined by the average level spacing ω̄i, i = 1, 2 for h = h1,2. It follows
that the optimal work output is reached for the values of h1, h2 that respectively maximise
and minimise the function ω̄(h) in Eq. 3.56, namely

Wmax ≃W0,max =
N

2
(max

h
[ω̄] − min

h
[ω̄]), (3.60)

where the optimization has to be performed over the values of h compatible with the
approximation (3.59), i.e., such that T2 ≪ ω̄(h) ≪ T1. Within the same approximation,
the heat engine efficiency reads

η[E] ≃ η0[E] ≡ 1 − ω̄2

ω̄1
≤ 1 − minh[ω̄]

maxh[ω̄]
(3.61)
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Figure 3.8: Average level spacing (3.56), as a function of the chemical potential h. Different
colors correspond to different values of α. The system size is N = 500.

Remarkably, this choice of h1 and h2 allows to maximize both the work output and the
cycle efficiency. In Fig. 3.6(a) and (b) the exact work output W , and the exact engine
efficiency η[E] respectively (scatter plots) are compared with W0 and η0[E] (solid lines) for
different values of h1, h2 and with T1 = 100, T2 = 0.01 and α = 1.5. We notice that the
approximation W ≃ W0 breaks down for large values of h1, when ω̄(h1) becomes of the
same order of T1, while η0[E] remains a good estimate of η[E] even in this regime. Finally,
let us notice that, regardless of the validity of the approximation, the maxima of η[E] and
W are actually close.

In Fig. 3.7 we plot W and η[E] against h2/h1, for different values of α, showing that they
grow as the range of the interaction increases (α decreases), signaling a clear advantage
of the long-range regime. This advantage can be traced back to the properties of the
spectrum of the system, encoded in the average level spacing ω̄. In fact, the minimum of
ω̄(h2), which corresponds to the maximum of both W0 and η0[E], is affected by the presence
of long-range interactions as shown in Fig. 3.8.

3.4.4 Refrigerator operation mode

In the typical situation in which a quantum refrigerator operates we may expect the two
temperatures to be pretty similar T2 ≲ T1, since we can imagine that also the baths are
embedded in the same quantum hardware of the working substance. Additionally, to ensure
the system operates deeply within the quantum regime, the temperatures involved in the
cycle should be much smaller than the system’s energy scale, specifically T2 ≲ T1 ≪ ω̄.
Under these assumptions, the heat extracted from the cold reservoir can be expressed as
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Figure 3.9: Heat extracted from the cold reservoir Q2, as a function of h2/h1. Scatter
plots indicate the exact values (3.55b), bold lines indicate the approximated result (3.62).
Different colors correspond to different values of α1 = α2 = α. The baths temperatures
are fixed to T1 = 0.1, T2 ≃ 0.099.

follows

Q2 ≃
∑

k>0

ω2,ke
−β2ω2,k

[
1 − tanh

(
β2ω2,k − β1ω1,k

2

)]
. (3.62)

Since the above expression is positive definite, we can conclude that within the considered
approximation the Otto cycle always operates as a refrigerator. However, far from the
quantum critical points, the heat extracted from the cold reservoir can be approximated
as

Q2 ≃ N min
k

[ω2,k]e
−β2 mink[ω2,k]. (3.63)

ndicating that Q2 exhibits an exponentially decaying behavior as T2 → 0. On the other
hand, as h2 becomes close to hc(α) the spectrum is no longer gapped, so the above con-
siderations do not apply. Instead in this regime, the main contribution to Q2 comes from
the soft modes, resulting in a power law decay in T2

Q2 ≃ NK(α)T
1+1/z
2 , (3.64)

where K(α) is an α dependent prefactor, and z is the dynamical critical exponent which,
in general, depends on α. Specifically, as detailed in Section 1.5, at the h2 = 1 critical
point of the long-range Kitaev chain we have

z =

{
α− 1 for α < 2

2 for α > 2,
(3.65)
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while for the h2 = −1 + 2α−1 critical point z = 1.

Since close to the h2 = 1 critical point 1/z grows indefinitely as α → 1, the presence
of long-range interactions does not result in any advantage at low temperatures. However,
near the h2 = −1+2α−1 critical point, z does not depend on α. In this scenario, the factor
K(α) can indeed provide an advantage. This is confirmed by the data shown in Fig.,3.9,
where Q2/N is plotted as a function of h2 for different values of α and temperatures
T1 = 0.1 and T2 = 0.099. The figure clearly demonstrates an advantage as the range of the
interaction increases.

The distinct low-temperature scalings in Eq. (3.64) result in peaks in Q2 at h2/h1 =
hc(α)/h1, indicating enhanced cooling capability at quantum criticality, as illustrated in
Fig. 3.9. This effect is amplified by the presence of long-range interactions, leading to
progressively larger peaks as α → 1, thereby showing a long-range advantage in the most
significant regime, i.e., refrigerator operation. It is noteworthy that while the heat engine
configuration is optimized by a long-range interacting machine operating close to the h2 = 1
critical point, the refrigerator operates optimally in the vicinity of the h2 = −1 + 21−α

critical point.

3.4.5 Finite time cycle

Finally, we consider the finite-time performance of the device. Specifically, we examine
a linear driving protocol for the unitary step of the cycle, characterized by the driving
velocity v (see Eq. (3.46)), which we choose to be small but finite. In this case, the general
results of Section 3.3.2 apply, allowing us to identify the origin of the long-range advantage
in the reduction of nonadiabatic energy losses generated during the finite-time dynamics.

Before delving into the role of long-range couplings in finite-time performances, let us
first consider a single mode and the corresponding two-level system formed by |0k, 0−k⟩ and
|1k, 1−k⟩. It is known [13] that when pk > 0, a region in parameter space corresponding to
the heater [H] appears and becomes the only possible regime when pk ≥ 1/2, as in this case
the energy exchanges become negative definite. This behavior occurs for the long-range
Kitaev chain as well if the driving is so fast that pk > 1/2 for all values of k.

Moreover, for any finite-time driving, the presence of finite transition probabilities pk
hinders engine performance by enhancing the irreversible character of the cycle. This can
be demonstrated by explicitly computing the entropy production of the cycle, defined as
Σ = β1Q1+β2Q2 in the finite-time case. The second law of thermodynamics, in the form of
the Clausius inequality, constrains this quantity to be non-positive (Σ ≤ 0), with equality
holding only if the cycle is perfectly reversible. Therefore, we can view Σ as an indicator
of the cycle’s irreversibility, reflecting how close the device performance is to the optimal
Carnot bound. Interestingly, in our case, the entropy production can be written as the
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Figure 3.10: Nonadiabatic work loss ratio as a function of the driving velocity δ, for different
values of α1 = α2 = α, corresponding to different colors and markers. Scatter plots indicate
the exact numerical values while bold lines indicate the approximated result (3.69). The
cycle parameters h = 2, h2 = 0, T1 = 100, T2 = 0.01. The system size is N = 500.

sum of two contributions: Σ = Σ0 + Σv. The first term, given by

Σ0 =
∑

k>0

(β1ω1,k − β2ω2,k) [f2,k − f1,k] , (3.66)

is present even in the infinitely slow cycle and is unavoidable, as it is due to the intrinsic
irreversibility of the two thermalization strokes of the cycle. Thus, Σ0 = 0 only at the
Carnot point, where all energy exchanges are null (Q1 = Q2 = W = 0). On the other
hand, the second contribution, given by

Σv =
∑

k>0

[β1ω1,kf2,k − β2ω2,kf1,k] (1 − Pk), (3.67)

is present only when the unitary strokes are performed at a finite velocity. Notably, each
term in the sum of Eq. (3.67) is proportional to the nonadiabatic transition probability
1−Pk, explicitly showing that these provide an additional source of irreversibility, resulting
in poorer efficiency in finite-time cycles.

With these concepts in mind, we are now ready to consider the finite-time performance
of two relevant operation modes: the heat engine ([E]) and the refrigerator ([R]).

For the [E] operation mode, we examine the nonadiabatic work losses, i.e., the difference
between the adiabatic work W0 extracted in an infinitely slow cycle and the work W
extracted in a more realistic finite-time scenario. This difference can be expressed as [180]

W0 −W =
∑

k>0

[2ω1,kf2,k + 2ω2,kf1,k] pk (3.68)
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In the optimal regime for the heat engine (T2 ≪ ω̄ ≪ T1), this becomes

W0 −W ≃ 2
∑

k>0

ω1,kpk. (3.69)

This expression matches the one obtained in Eq. (3.15) for the irreversible work in slow
quench dynamics, derived through completely general arguments. Since ω1,k remains finite
as k → 0, the above expression leads to the scaling with v → 0,

W0 −W ∝ vθ, (3.70)

where

θ =

{
(2α− 2)−1 for α ≤ 2,

1/2 for α > 2.
(3.71)

Thus, if the system is sufficiently long-range (α < 2), then θLR = 1/(2α − 2) > θSR =
1/2. This observation indicates that in the limit of a slow cycle (v → 0), dynamical
excitations are suppressed in the presence of long-range interactions. This long-range
advantage mitigates one of the main limitations of quantum thermal devices: the trade-off
between power and efficiency. Figure 3.10 shows the nonadiabatic work loss ratio 1−W/W0

as a function of v, for different values of α. We notice that, excellent agreement is found
between the exact numerical data (scatter plots) and the approximated result (3.69) we
used to extract the universal scaling in Eq. (3.70). Moreover, as predicted, work losses are
significantly reduced when α < 2.

Finally, a similar reasoning applies to the refrigerator [R] in its most realistic tem-
perature setting T2 ≲ T1 ≪ ω̄. As discussed in Sec. 3.4.4, in this case, the relevant
quantity to be optimized is the heat extracted from the cold reservoir Q2. As discussed
in Sec. 3.4.4, the relevant quantity to be optimized is the heat extracted from the cold
reservoir, Q2. Considering the difference between the adiabatic cooling capability Q2,0 and
the heat extracted in a finite-time cycle, for the temperature range T2 ≲ T1 ≪ ω̄, we have

Q2,0 −Q2 ≃ 2
∑

k>0

ω2,kpk. (3.72)

To determine the scaling of this quantity for a slow cycle (v → 0), we must distinguish
whether h2 is critical or not. In the non-critical case, we find the same result as in Eq. (3.70).
Instead, for h2 = 1 the dynamical scaling is affected by the presence of soft modes in ω2,k

as well, and we obtain the scaling of Eq. (3.44). We find then the two different scaling
behaviors

Q2,0 −Q2 ∝
{
δθ h2 ̸= 1

δθ+
1
2 h2 = 1

, (3.73)

In any case, we conclude that the presence of long-range couplings leads to an advantage
for cooling capability in finite-time cycles as well.
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3.5 Closing remarks

In this Chapter, we have explored the robustness of long-range interacting quantum sys-
tems against dynamic excitation generation during non-adiabatic dynamics, compared to
short-range systems. By examining the universal behavior of quantum work statistics,
we identified conditions under which long-range interactions reduce energy losses during
non-adiabatic evolution, which is crucial for improving the efficiency and power output of
quantum engines, especially in finite-time quantum thermal cycles.

Specifically, in the sudden quench scenario, we demonstrated that the work statistics
in a quantum system can be mapped to a classical problem on a slab geometry in a higher
effective dimension deff +1. This mapping reveals a higher probability of observing reduced
irreversible work in long-range systems compared to systems with short-range interactions,
confirming that long-range interactions effectively decrease non-adiabatic energy losses dur-
ing rapid quenches.

Moreover, for slow driving protocols, we derived the scaling behavior of the cumulants of
the work distribution. The effective dimension approach accurately predicts these scalings,
showing that long-range systems exhibit a distinct advantage in reducing non-adiabatic
excitations over a broad range of interaction exponents α. We identified a critical range of
α values where the scaling exponents θn exceed those of short range systems, highlighting
the long-range advantage.

Our general findings were substantiated through two prototypical examples: the long-
range Kitaev chain and the long-range quantum Ising chain. In the Kitaev chain, we
analytically computed the work statistics, demonstrating excellent agreement with our
effective dimension predictions. For the Ising chain, numerical estimates of critical expo-
nents validated the long-range advantage condition across the significant range of values
α ∈ [d/2, α∗], where long-range interactions actually play a role in affecting the system’s
universal properties.

We further investigated the performance of a quantum thermal machine consisting
of a chain of fermions with power-law decaying interactions undergoing a quantum Otto
cycle. By exactly computing the energy exchanged during the cycle, we provided a detailed
characterization of the device, identifying the most useful operation modes for quantum
technological applications, namely the heat-engine and refrigerator modes. Focusing on
these two modes, we examined the role of long-range interactions in optimizing device
performance, detecting several sources of long-range advantage compared to the nearest-
neighbor case. Remarkably, these results demonstrate high thermodynamic efficiency even
when operating at finite power.

Overall, our comprehensive characterization of the quantum thermodynamics of long-
range systems provides a robust framework for understanding their enhanced performance
in quantum thermodynamic cycles. These insights pave the way for developing more effi-
cient quantum thermal engines leveraging the unique properties of long-range interactions.





Chapter 4

Floquet Physics in long-range
systems

4.1 Discrete Floquet time crystals

The efficacy of technological application of quantum mechanics, such as reliable quan-
tum communication [181], high-precision quantum metrology [182], and fault-tolerant quan-
tum computation [133], depends on the capability of preserving systems out-of-equilibrium,
evading the detrimental effects of thermalization, which naturally leads to the loss of lo-
cally stored quantum information. Accordingly, much theoretical and experimental effort
has been devoted to the study of out-of-equilibrium phenomena [178, 183, 184, 185] includ-
ing, among the others, thermalization of isolated quantum many-body systems [186, 187,
188, 189], dynamical phase transitions [190, 191, 192, 193, 194] and, finally, the celebrated
Discrete Floquet Time Crystals (DFTC).

The concept of spontaneous breaking of continuous time-translational symmetry in
quantum many-body systems was first brought to broad attention in Ref. [195]. Shortly
thereafter, it was established that such non-equilibrium phases are impossible in equi-
librium settings [196, 197]. However, discrete time-translational symmetry, achievable in
periodically (Floquet) driven systems, can indeed be spontaneously broken [198, 199, 200].
This phenomenon is referred to as DFTC, where the discrete time-translation symmetry
inherent in the periodically driven Hamiltonian H(t) = H(t+ T ) is spontaneously broken.
Consequently, expectation values of relevant observables exhibit oscillations with a period
that is an integer multiple of T . Several experimental observations of DFTCs have been
reported in the past decade [201, 202, 203, 204].

Following Ref. [205] we say that a DFTC phase exists if, for a class of states |ψ⟩ with
short-ranged connected correlations [199], there always exists an observable Ô, such that

73
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the time-evolved expectation value in the thermodynamic limit N → ∞,

O(t) = lim
N→∞

⟨Ψ(t)|Ô|Ψ(t)⟩, (4.1)

satisfies the following conditions [205]:

1. Time-translation symmetry breaking: O(t + T ) ̸= O(t), although H(t) =
H(t + T ). This is equivalent to have long-range correlated Floquet eigenstates of
the propagator UF = U(t+ T, t) [199].

2. Rigidity: O(t) must display periodic oscillations, with some period τ , in a finite and
connected region of the Hamiltonian parameters space.

3. Persistence: in the large system size limit N → ∞, the oscillations of O(t) must
persist for infinitely long time.

These criteria cannot be met by a generic local many-body quantum system due to the
external driving, which typically induces relaxation towards an infinite-temperature state,
thereby hindering long-lived oscillations. To protect ordering against relaxation, a mecha-
nism is required to control the impact of dynamically generated excitations.

Prethermal stability can be maintained through long-range interactions, which are
known to produce metastable states with lifetimes that increase as the system size ap-
proaches the thermodynamic limit [206, 95, 103]. Then, it is natural that the investigation
of DFTCs in clean systems has been primarily focused on long-range interacting models
where the robustness of collective oscillations in presence of periodic drive is guaranteed.
More precisely, stable DFTC phases can only be found for α < d [205, 207, 208, 209],
while for α > d, the lifetime of oscillations is expected to be finite in the N → ∞ limit
[210, 211, 212].

4.2 The long-range kicked quantum Ising chain

The kicked Ising spin chain is a prototypical model for studying Floquet-driven quantum
systems and has been extensively analyzed from a theoretical perspective [205, 213, 212,
210, 4]. Specifically, we consider a time-dependent version of the long-range quantum Ising
Hamiltonian introduced in Eq. (1.19), where the time dependence arises from a periodically
driven transverse magnetic field h(t) with period T . The driving field is expressed as

h(t) = ψ
∞∑

n=1

δ(t− nT ). (4.2)

Additionally, for later purposes, we also consider a generalized version of the model where
the spins interact with their first R neighbors. Initially, we will focus on the truly long-
range case with R = N (see Section 4.3), while the finite R case will be considered for
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quantum simulation applications (see Section 4.4). The system Hamiltonian is then given
by

H(t) = −
N∑

j=1

R∑

r=1

Jrσ̂
x
j σ̂

x
j+r + h(t)

N−1∑

j=0

σ̂zj , (4.3)

The effect of the impulsive magnetic field applied at integer multiples of the driving period
t = nT is to impose a global rotation of each spin by an angle 2ψ along the z-axis.
Accordingly, the Floquet dynamics is obtained by periodically intertwining the evolution
generated by the Ising Hamiltonian at zero transverse field

V =
N∏

j=1

R∏

r=1

eiTJrσ̂
x
j σ̂

x
j+r , (4.4)

with the instantaneous kick operator,

Kψ =
N∏

j=1

e−iψσ̂
z
j . (4.5)

The resulting evolution operator for a single step of the Floquet protocol is

UF = KψV. (4.6)

The system is initialized at t = 0 in the fully polarized state with positive magnetization
along the ẑ direction: |ψ(0)⟩ = |. . . ↑↑↑ . . .⟩, where |↑⟩ and |↓⟩ denote the eigenstates of
the σx Pauli matrix with eigenvalues +1 and −1, respectively. In the quantum simula-
tion context, these eigenstates will correspond to the computational basis of the quantum
processor, with the convention |↑⟩ = |0⟩ and |↓⟩ = |1⟩.

The simplest realization of time-crystalline spatiotemporal order is achieved by setting
the kick operator Kψ to rotate each spin by an angle π around the z-axis. In this scenario,
the kick operator reads =

Kπ/2 =
N∏

j=1

e−i
π
2
σ̂z
j =

N∏

j=1

σ̂zj . (4.7)

Consequently, the time-evolved state after n kicks, |ψ(n)⟩ = UnF |ψ(0)⟩, shows a sequence
of perfect transitions between the | . . . ↑↑↑ . . . ⟩ and | . . . ↓↓↓ . . . ⟩ states, resulting in a
persistent non-vanishing order parameter in both space and time. The order parameter is
given by

mx(n) = ⟨ψ(n)|σ̂xj |ψ(n)⟩ = (−1)n, (4.8)
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This represents the simplest example of a subharmonic response, where the period of the
order parameter evolution is twice the period of the Floquet driving. However, this behavior
relies on the finely tuned choice of the kick angle 2ψ = π. To observe a proper discrete
time-crystalline phase, the spatiotemporal order must remain stable under sufficiently weak
perturbations of the Hamiltonian parameters, ψ = π/2 + ϵ, in the thermodynamic limit
N → ∞.

4.3 The strong long-range regime

In this section, we focus on the truly long-range case where the system exhibits all-to-
all connectivity, i.e., R = N . Our attention will be directed towards the strong long-
range regime characterized by 0 < α < d, where stable DFTC phases can exist in the
thermodynamic limit.

4.3.1 Mean-field DFTC

First, we consider the mean-field limit with α = 0 and N → ∞, focusing on the evolution
of the components of the system’s magnetization mµ =

∑
j⟨σ̂

µ
j ⟩/N , with µ = x, y, z. Given

the impulsive nature of the magnetic field h(t) in Eq. (4.2), the Floquet propagator can be
expressed as the product of two distinct operators:

UF = e−2iψŜzeiJT Ŝ
2
x/N , (4.9)

where we utilize the global spin operators defined in Eq. (1.20). The kick term e−2iψŜz in
Eq. (4.9) acts on the observable m = (mx,my,mz) as a rotation around the z-axis. The
other term describes the evolution over one period T of m induced by the mean-field Ising
Hamiltonian. The Heisenberg equations of motion corresponding to this evolution for the
operators Ŝa are: 




d

dt
Ŝx = 0 ,

d

dt
Ŝy =

J

N

(
ŜxŜz + ŜzŜx

)
,

d

dt
Ŝz = − J

N

(
ŜxŜy + ŜyŜx

)
.

(4.10)

Due to the mean-field nature of the problem, spin–spin correlations can be neglected in the
thermodynamic limit N → ∞ [214], meaning that ⟨ŜaŜb⟩ ≃ ⟨Ŝa⟩⟨Ŝb⟩. Then, by averaging
both sides of Eqs. (4.10), we derive a closed set of equations for the magnetization:





ṁx = 0 ,

ṁy = Jmxmz ,

ṁz = −Jmxmy .

(4.11)
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Consequently, after a time interval T , the vector m undergoes a clockwise rotation around
the x-axis by an angle of JTmx(t). The Z2 symmetry of the model is represented in the
dynamical symmetry ψ → ψ + π/2, mn → Rz(πn)mn in Eq. (4.11), where Rµ(ξ) denotes
the rotation matrix for an angle ξ around the axis µ = x, y, z. Therefore, with J = 1,
the overall effect of the unitary Floquet evolution operator in (4.9) on the observable m is
described by the mean-field map [214]

mn+1 = f(mn) ≡ Rz(2ψ)Rx(−mx,nT )mn , (4.12)

with m0 = (1, 0, 0).
Given the periodic nature of the drive, the map in Eq. (4.12) exhibits a Hamiltonian

structure, preserving the area of the region on the sphere m2 = 1 traced by the dynamics.
Using polar coordinates along the z-axis m = (sin θ cosϕ, sin θ sinϕ, cos θ), the area element
is expressed as dS = d(cos θ)dϕ. Consequently, the coordinates ϕ and I = cos θ are natural
canonical conjugate variables for the system. Following Ref. [214], the action I can be
interpreted as the z-component of the angular momentum and ϕ as the rotation angle
around the same axis.

Then, in the small period limit T → 0 the map can be rewritten as

In+1 = In ,

ϕn+1 = ϕn + 2ψ ,
(4.13)

with I0 = 0, ψ0 = π/2. This corresponds to the Poincaré map obtained by taking a strobo-
scopic section of the integrable dynamics. Essentially, the motion of the order parameter
mn at vanishing drive periods is quasi-periodic with a period π/ψ. When the kicking period
T is slightly increased, the map in Eq. (4.13) is perturbed, and the system’s behavior follows
the Kolmogorov–Arnold–Moser (KAM) theorem [215, 216, 217]. According to the theorem,
small perturbations of the form in Eq. (4.2) only slightly deform the torus I = const, as
long as the drive frequency is not resonant. Hence, the motion remains quasi-periodic for
drive strengths ψ sufficiently far from rational multiples of π. However, when a resonance
is approached and ψ ≈ ψr = rπ, where r = q/p and p and q are coprime integers, pairs
of elliptic and unstable fixed points emerge in the dynamics due to the Poincaré–Birkhoff
theorem [218].

Then, distinct regions in the phase space (I, ϕ) can be identified based on the action
of the p-iterated map fp(m), which also correspond to different evolutions of mn. Quasi-
periodic behavior persists for initial conditions (I0, ϕ0) sufficiently distant from the fixed
points, where rotation dynamics occur with ϕ periodically spanning the interval [0, 2π].
Conversely, when the initial conditions (I0, ϕ0) are near the fixed points, a libration dy-
namics arises, with ϕ oscillating around a finite value. As a result, successive map iterations
do not significantly alter the magnetization value, with mn+p ≈ mn, indicating a DFTC
phase. Finally, the boundary between the DFTC and quasi-periodic regimes is occupied
by chaotic regions, which expand and eventually dominate the regular regions at large T .
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Figure 4.1: Color plot of the overlap | ⟨Ωθ,ψ|ηm⟩ |2 between the spin coherent state |Ωθ,ϕ⟩
and different Floquet eigenstates |ηm⟩, corresponding to different phases, for N = 800,
ψ = π/2 + 0.01, T = 1 (left) and T = 10 (right). While in the chaotic phase (right panel)
the eigenstate has no structure, the eigenstate (b) (left panel), which correspond to the
DFTC phase with p = 4, clearly exhibits the structure of a Bloch wave-function localized
around the Z4 symmetric wells. The eigenstate (b) (left panel) has maximum overlap with
the spin coherent state corresponding to the initial conditions cos θ = 0, ψ = π/2. Initial
conditions localized around the eigenstates (a) and (c) (left panel) instead correspond to
a quasi-periodic phase.

4.3.2 Finite-size and finite-range effects

The semiclassical analysis discussed above becomes exact in the thermodynamic limit, but
it is also important to examine finite-size effects to validate the large-N picture. For finite
N , the modulus of the total spin Ŝ of the system is conserved, restricting the dynamics
to the subspace of constant Ŝ2 = S(S + 1), where S = N/2. This allows for relatively
straightforward exact diagonalization up to large sizes (N = 800) [219, 205]. To visualize
the eigenstates in this subspace, we introduce the spin coherent states [220]:

|Ω(θ, ϕ)⟩ = e−in·S |⇑⟩ , (4.14)

where |⇑⟩ is the eigenstate corresponding to the maximum projection of the spin along the
z direction and n = (sin θ cosϕ, sin θ sinϕ, cos θ). The overlap between different coherent
states at finite N is

| ⟨Ω(θ, ϕ)|Ω(θ + ∆θ, ϕ+ ∆ϕ)⟩ | =

(
sin

∆θ

2
e−i∆ϕ

)2S

, (4.15)

which vanishes in the N → ∞ limit due to the exponent S. However, for any finite N ,
the states in Eq. (4.14) form an overcomplete basis for the Hilbert space. The dynamics
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can then be characterized by estimating the projection | ⟨Ω(θ, ϕ)|ηm⟩ |2 for various Floquet
eigenstates |ηm⟩, i.e., eigenstates of the unitary Floquet operator (4.9).

Examples of overlaps | ⟨Ω(θ, ϕ)|ηm⟩ |2 for different eigenstates |ηm⟩ are plotted in Fig.
4.1 as a function of ϕ and cos θ. In the p = 4 DFTC phase, the Floquet eigenstates
are clearly localized around four Z4 symmetric points (Fig. 4.1, left panel, curve (b)),
whereas this localization is absent in the quasi-periodic phase (left panel, curves (a) and
(c) in Fig. 4.1). In the chaotic phase, no recognizable pattern emerges (right panel of
Fig. 4.1). This behavior can be explained semi-classically: near a resonance, the Floquet
evolution resembles hopping between p adjacent wells in the classical phase space, causing
the Floquet eigenstates to form a superposition of tight-binding Bloch wavefunctions:

⟨Ω(θ, ϕ)|ηm⟩ =

p−1∑

k=0

e2iπk/pWm(I, ϕ− kψr), (4.16)

where Wm(I, ϕ− kψr) are wavefunctions connected by the Floquet propagator:

UFWm(I, ϕ− kψr) = eiβmWm(I, ϕ− (k + 1)ψr). (4.17)

Notably, given the initial conditions chosen in this study, in the N → ∞ limit, the only
eigenstate contributing to the dynamics will be the one with a non-zero overlap with the
point θ = 0, ϕ = 0, which can correspond to each of the three phases.

The inclusion of quantum fluctuations due to a finite value of α or additional local
couplings does not significantly alter the overall picture. Indeed, The structure of the
low-T DFTC region with p = 2 generally remains robust against quantum fluctuations.
On the other hand, sufficiently high values of α enhance the chaotic phase, leading to the
disruption of the DFTC phases with p > 2 for large enough values of the drive period T ,
see Fig. 4.2(b).

4.3.3 The order parameter

The dynamical phase diagram of various high-order DFTC phases reveals intricate self-
similar and fractal structures, where regular phases are intertwined with chaotic and quasi-
periodic regions. To capture these properties and achieve a comprehensive characterization
of DFTC phases, irrespective of their order, we introduce a novel order parameter ζ. The
key is to consider different values of the kick amplitude, ψ,ψ + δψ, corresponding to two
nearby initial conditions in the phase space. Then, the order parameter is defined as

ζ2 =
1

nmax

nmax∑

n=0

(mx,n(ψ + δψ) −mx,n(ψ))2 (4.18)

In both the DFTC and quasi-periodic phases, the evolution is not chaotic, causing the
two trajectories to diverge polynomially over time. As a consequence expanding Eq. (4.18)
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Figure 4.2: Panel (a): Color plot of the order parameter ζ as a function of the kick
amplitude ψ and the period of the drive T , saturated at the value ζ =

√
2/3, with nmax =

300 and δψ = 1.6 · 10−3, for the mean field case with α = 0 and N → ∞. Panel (b): same
as (a) but for α = 0.5.

for small deviations δψ yields

ζ2 ∼ ℓ

nmax

nmax∑

n=0

δψ2n2 ∼ ℓ(δψnmax)2, (4.19)

where ℓ depends on the the average distance between two randomly chosen points of the
two nearby trajectories. The value ζ in these phases is not universal as it depends on
the value of (nmaxδψ). Accordingly, the value of nmax must be sufficiently large so that
the rightmost term in Eq. (4.19) remains O(1), i.e., nmax → ∞ as δψ → 0. However, the
value of ℓ undergoes a discontinuous jump between the libration regime (corresponding to
a DFTC phase) and the rotation one (corresponding to a quasi-periodic phase). Indeed,
close to the fixed point of the iterated map the micro-motion becomes negligible and ζ → 0,
signaling the emergence of the pure time-crystalline regime. This discontinuity in ℓ leads
to a discontinuity in ζ, which may be observed in the numerical distribution of ζ as shown
in the occurrence histogram in Fig. 4.3. Indeed, in the DFTC phase, the order parameter
distribution peaks sharply around ζ = 0, but becomes negligible for ζ ≳ 0.2. The quasi-
periodic phase is indicated by a peak at ζ ∼ 0.36, disconnected from the DFTC peak at
ζ = 0.

On the other hand, in the chaotic phase, trajectories diverge exponentially, losing the
memory of the initial condition after a time-scale nmax ∼ − log(δψ). In this scenario,
mx,n(ψ) and mx,n(ψ + δψ) can be assumed to be drawn from a set of equally distributed
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Figure 4.3: Histogram of the occurrence P(ζ) of the values of ζ within the parameter region
of Fig. 4.2, normalized to one. The gap between the DFTC phase, ζ ≲ 0.2 (and peaked
around ζ = 0), and the quasi-periodic one, ζ ≳ 0.36, is apparent. On the right, the profile
of the Gaussian distribution around ζ =

√
2/3, characteristic of the chaotic phase.

random variables with zero mean. Consequently, according to the central limit theorem,
ζ2 is distributed as a Gaussian around the mean value

⟨ζ2⟩ = 2⟨m2
x⟩ (4.20)

with a variance O(n−1
max). For an isotropic system one can easily derive the peak value for

the distribution, since |m|2 = 1, we have

⟨m2
x⟩ =

1

3
⟨|m2|⟩ =

1

3
, (4.21)

so that ⟨ζ2⟩ = 2/3. The corresponding Gaussian peak centered around ζ =
√

2/3 is evident
in the histogram in Fig.,(4.3).

Thus, the order parameter ζ can be used to detect higher-order DFTC phases in clean
long-range systems, leveraging the connection between DFTCs and the Poincaré–Birkhoff
theorem [218], which holds rigorously in the mean-field limit. The phase diagram obtained
through numerical characterization of the order parameter (see Fig. 4.2) reproduces and
expands upon the known properties of the DFTC phases in the thermodynamic limit
[205, 212].

The symmetry of the phase diagram around the ψ = π/4 axis arises from the dynamical
Z2 symmetry, a notable feature that would remain undetectable with a p-dependent order
parameter. At low values of T , the quasi-periodic phase dominates (pink area ζ ≈ 0.4),
while small islands of the DFTC phases emerge around specific values of ψ, corresponding
to rational multiples of π (black areas ζ ≈ 0). Initially, the size of these islands increases
with increasing T and, as they approach each other, chaos emerges along their boundaries
(yellow area ζ ≈

√
2/3). Ultimately, all islands associated with DFTC of order p > 2

are engulfed by the chaotic phase, with the largest (central) one corresponding to p = 4
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surviving the longest. Interestingly, at certain values of the driving period, we observe a
revival of the higher-order DFTC phases, particularly pronounced for p = 4 (small, arrow
shaped, black area at high T for in Fig. 4.2(a)).

The boundary between the chaotic and DFTC phases is not smooth; instead, it exhibits
self-similar patterns that repeat at increasingly smaller scales. The emergence of this fractal
scaling in the boundaries of time-crystalline phases draws a direct analogy with similar
phenomena in traditional critical systems, such as percolation, self-avoiding random walks,
and the Potts model [221, 222], where a rigorous connection between conformal invariance
and stochastic evolution has been established [223, 224]. Moreover, as noted in Ref. [209],
the formation of DFTC islands can be understood within the framework of area-preserving
maps [225], specifically linked to the existence of Arnold tongues [226, 227].

4.4 Quantum simulation with tunable interaction range

Thanks to the flexibility of modern quantum processors, the number of quantum simu-
lations implemented on noisy superconducting devices has steadily risen in recent years.
The remote accessibility of these machines has facilitated the benchmarking of numer-
ous phenomena that were previously unconfirmed or scarcely experimentally corroborated
[228, 229, 230, 231, 232, 233, 12, 11, 8]. On the other hand, the performance of supercon-
ducting NISQ devices is limited by the presence of various sources of noise and decoherence.
The impact of these factors grows with the depth and complexity of the quantum circuit
realized, which restricts the investigation of non-local effects and complex geometries. One
primary limitation of superconducting NISQ devices is their extremely limited connectiv-
ity. Superconducting qubits are typically arranged in a one- or two-dimensional grid with
nearest-neighbor connectivity, making it challenging to implement quantum algorithms
that require long-range interactions [133].

In this section, we investigate the possibility of reproducing the dynamics of sys-
tems with couplings beyond nearest neighbors on superconducting quantum hardware.
To achieve this, we utilize the universality of the quantum processor native gates to im-
plement couplings among physically unconnected qubits. While the depth of the resulting
quantum circuit increases with the effective range of the interaction, we show that careful
consideration of gate noise, measurement errors, and statistical errors enables the removal
of their effects from the raw results. Therefore our quantum simulation addresses one of
the significant limitations of superconducting quantum processors, namely, device connec-
tivity. It reveals that non-trivial physics involving couplings beyond nearest neighbors can
be extracted after the impact of noise is properly taken into account in the theoretical
model and consequently mitigated from the experimental data.
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4.4.1 Stabilization of the DFTC response by increasing the interaction
range

Due to the limited connectivity of IBM superconducting devices, it is not feasible to imple-
ment the dynamics of a truly fully connected system as described in Section 4.3. Therefore,
we are not able to observe the DFTC phase stabilized by strong long-range interactions.
Nonetheless, we can perform the quantum simulation of the kicked quantum Ising chain
in Eq. (4.3), with a finite and, in principle, tunable interaction range R. The quantum cir-
cuit structure utilized by IBM quantum computers is well-suited for implementing discrete
Floquet driving protocols [234], making it a natural choice for such applications [229].

Our focus is on the stabilization of discrete DFTC response as the interaction range
increases. Indeed, for any finite R and in the absence of disorder, the system magnetization
exhibits an exponential decay with the number of Floquet steps n:

mx(n) ∝ (−1)ne−nγϵ,R . (4.22)

However, since for kick amplitude ψ = π/2 the magnetization has a trivial period doubling,
then the decay rate γϵ,R approaches zero as the perfect kick case is approached, i.e., for
ϵ → 0. Moreover, as shown in Ref. [210], γϵ,R is deeply affected by the interaction range.
In the small ϵ limit, we have that

γϵ,R ≈ ϵ2R+1. (4.23)

Therefore, increasing the interaction range exponentially enhances the order parameter
lifetime. This difference in decay rate should already be apparent when comparing the
nearest-neighbor R = 1 and the next-to-nearest neighbor R = 2 cases.

The scope of our quantum simulation is to validate this phenomenon, which heavily
depends on the interaction range, using a nearest-neighbor connected superconducting
quantum processor.

4.4.2 Quantum circuit implementation of the Floquet dynamics

Specifically, in our quantum simulation we utilize the ibmq mumbai 27-qubit processor,
whose topology is depicted in Fig. 4.4(a). Our quantum circuit is optimized using the
available connectivity and native gates of the device, including the controlled-NOT gate
(CNOT), the identity gate ID, rotations along the z axis RZ , the NOT gate X, and the
SX =

√
X gate.

The Floquet unitary evolution operator at stroboscopic times t = nT can be obtained
by applying the unitary operator corresponding to each Floquet step UF , n times, i.e.,
U(nT ) = (UF )n. Importantly, no Trotter approximation is required, which is a significant
advantage of discrete Floquet drivings [234]. The kicked Floquet protocol of interest can be
further decomposed into the successive application of the kick operator Kψ and the Ising
evolution operator V (see Eq. (4.6)). The former can be expressed in terms of single-qubit
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Figure 4.4: Quantum circuit implementation of Floquet dynamics with varying interaction
range. (a) Topology of the ibmq mumbai quantum processor. Black links represents the
physical connections among the qubits on the quantum hardware, blue and red links rep-
resent the nearest neighbors R = 1 and next-to-nearest neighbor R = 2 Ising interactions
we effectively implemented among physically unconnected qubits during our quantum sim-
ulation. (b) Quantum circuit implementing a single Floquet step for a kicked Ising model
with R range interactions. (c) Quantum gate implementation of nearest-neighbor Ising
interaction among qubit j and j+ 1. (d) Quantum gate implementation of next-to-nearest
neighbor Ising interaction among qubit j and j + 2. (e) Quantum gate implementation of
r-neighbor Ising interaction among qubit j and j + r.
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gates, corresponding to local rotations along the x-axis, and the latter can be written as a
product of mutually commuting unitaries that connect pairs of qubits at progressively larger
distances as the interaction range is increased, i.e., Kψ =

∏N
i=1RX,i(2ψ) and V =

∏R
r=1 Vr,

respectively.

The quantum circuit corresponding to a single Floquet step is shown in Fig. 4.4(b),
where blue gates represent nearest-neighbor Ising interactions Vj,j+1, red gates represent
Ising interactions beyond nearest neighbors Vj,j+r, and green gates represent the final kick
rotation Kψ applied equally to each qubit. As shown in Fig. 4.4(c), the unitary operator
associated with nearest-neighbor Ising interactions can be decomposed in terms of the
elementary gates as

Vj,j+1 = eiTJ1ZjZj+1

= CNOTj,j+1RZ(2J1T )CNOTj,j+1. (4.24)

On the other hand, the limited processor connectivity does not allow for a simple decom-
position of r-range Ising interactions. The idea to overcome this limitation is to exchange
the qubit states by applying a sequence of SWAP gates among the couples of physically
connected qubits that lie between j and j + r. By doing so, the initial state of qubit
qj+r is effectively encoded in qubit qj+1. Specifically, we achieve this by applying the gate
sequence

Sr =

r−1∏

l=1

SWAPj+l,j+l+1. (4.25)

Next, we apply Vj,j+1 on the two connected qubits qj+1 and qj . Finally, we need to bring
back the state encoded in qubit qj+1 to the r-neighbor qubit qj+r. This is achieved by

applying the inverse sequence of SWAP gates S†
r . Summarizing, we obtain the quantum

circuit identity shown in Fig. 4.4(e), reading

Vj,j+r = S†
rVj,j+1Sr

= S†
rCNOTj,j+1RZ(2J1T )CNOTj,j+1Sr. (4.26)

This allows us to realize the desired tunable-range interactions among physically uncon-
nected qubits. However, there is a trade-off: implementing these interactions requires
inserting 2(r − 1) additional SWAP gates into the quantum circuit. Since each two-qubit
gate typically introduces noise, it is crucial to optimize our quantum circuit for each Floquet
step of the dynamics (as depicted in Fig. 4.4(b)).

Moreover, we need to mitigate the effects of noise as the interaction range increases.
These issues are addressed in the following sections.
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Figure 4.5: Quantum circuit optimization techniques using circuit identities. (a) Can-
cellation of CNOT gates in adjacent Vj,j+1 and SWAP gates. (b) Rearrangement of the
quantum circuit to implement Ising interactions with r = 1, . . . , R ranges while maximizing
the number of adjacent Vj,j+1 and SWAP gates.

4.4.3 Quantum circuit optimization

Optimizing the number of operations in the quantum circuit for implementing Floquet
dynamics is crucial, as each additional quantum gate increases noise, leading to rapid mag-
netization decay. Since two-qubit gates are particularly error-prone, we focus on reducing
their number in our circuits.

First, we estimate the number of operations needed to implement the quantum circuit
shown in Fig. 4.4(b) using the native gates of the ibmq mumbai processor, without any
optimization.

Regarding single-qubit gates, only the rotations around the X axis, corresponding to
the Floquet driving kicks, need to be decomposed into native gates. This can be done
efficiently as follows

RX(ψ) = RZ(π/2)
√
XRZ(ψ)

√
XRZ(5π/2). (4.27)

Thus, each kick requires five additional single-qubit gates, resulting in a total of Q1q,R =
2R + 5 gates. The only native two-qubit gate available is the CNOT gate. To estimate
Q2q,R, we count the number of CNOT gates involved in the hardware implementation of
each Floquet step. As shown in Fig. 4.4(c), each nearest-neighbor Ising interaction is
implemented using two CNOT gates. Additionally, each SWAP gate is realized using three
CNOT gates, as it can be decomposed as

SWAPj,j+1 = CNOTj,j+1CNOTj+1,jCNOTj,j+1. (4.28)

Moreover, each r-range interaction is implemented by adding 2(r − 1) SWAP gates to the
nearest-neighbor interaction. Therefore, each r-range interaction gate requires 2 + 6(r− 1)
CNOT gates for implementation. For interactions with ranges r = 1, . . . , R, the longest
path, determining the circuit depth, contains r non-parallelizable copies of each r-range
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operation for r > 1 and two copies for r = 1. Summing up all the contributions, we obtain

Q2q,R =
R∑

r>1

(2 + 6r(r − 1)) + 4 = 2R3 + 2. (4.29)

Notably, as shown in Fig. 4.5(a), each time we have a sequence Vj,j+1SWAPj,j+l, we can
use the fact that CNOT2 = I to eliminate two adjacent CNOT gates. To systematically
exploit this, we rearrange our quantum circuit using the circuit identity in Fig. 4.5(b).
Here, we utilize the properties [Vj,j+l, Vj,j+r] = 0 for all l, r, and [Vj,j+1, SWAPj,j+l] = 0
to maximize the number of adjacent Vj,j+1SWAPj,j+l, thereby increasing the number of
cancelable CNOT gates.

For a circuit implementing a sequence of Ising interactions of ranges r = 1, . . . R, we
can cancel up to 2(R− 1) CNOT gates. The depth of each subcircuit of this form is then
given by

2R+ 6(R− 1) − 2(R− 1) = 6R− 4. (4.30)

To realize a kicked Ising model with interaction range up to R in a chain of N qubits,
we divide the N qubits into subsets of size 2R that can be processed in parallel. To
compute the circuit depth, which refers to the number of operations in the longest path,
we focus on one subset at a time. Each subset contains R subcircuits with interaction
ranges r = 1, . . . , R, following the form shown in Fig. 4.5(b). The depth of each of these
subcircuits is 6R−4. The remaining R subcircuits include interactions of range r = 1, . . . , l,
where l varies from l = 1 to l = R− 1, corresponding to a depth of 6l − 4 for each circuit.
By summing up all the contributions, we obtain the optimized number of CNOT gates as

Q2q,R = R(6R− 4) +
R−1∑

l=1

(6l − 4)

= 9R2 − 11R+ 4. (4.31)

Finally, we observe that the last sequence of SWAP gates in the circuit shown in Fig.
4.5(b) is only necessary if we need to apply different gates on different qubits afterward.
If this is not the case, we can simply substitute the SWAP gates with a relabeling of the
qubit numbers, which must be taken into account when reading the final measurement
outcomes. This allows us to eliminate (R − 1) SWAP gates and 3(R − 1) CNOT gates in
the last subcircuit of this form. Therefore, we obtain

Q2q,R = 9R2 − 14R+ 7. (4.32)

As a final remark, for large values of maximum range R and hence large circuit com-
plexity, additional simplifications may be possible by using optimized relabelings of the
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Figure 4.6: Modulus of the magnetization |mz| as a function of the stroboscopic times
n for nearest neighbor R = 1 (blue points) and next-to-nearest neighbor R = 2 (red
points) Ising interactions. Triangles represent the raw experimental data measured on our
quantum simulation of the ibmq mumbai quantum processor, which involves N = 18 qubits
undergoing a kicked Ising dynamics with kick angle ψ = π/2+ϵ with ϵ = 0.2. Square points
and the corresponding error bars represent the estimators for the average magnetization and
its statistical error E(mz) ± 2σ(mz), obtained through statistical bootstrapping. Dashed
lines represent the best fit of the data with an exponential decay.

qubit numbers during the evolution, which can increase the number of parallelizable oper-
ations. However, such optimization is circuit and range dependent and can only be carried
out numerically or in an approximate manner. For the case of R = 2 considered in our
quantum simulation, we can claim that our circuit is optimal with respect to the number
of CNOT gates involved.

4.4.4 The role of noise and statistical errors

The analysis of the raw experimental data clearly shows that the decay of magnetization is
primarily driven by noise, as illustrated in Fig. 4.6. This figure presents the absolute value
of the average magnetization |mz| over stroboscopic time n for nearest-neighbor (R = 1, in
blue) and next-to-nearest-neighbor (R = 2, in red) interactions. The raw experimental data
(triangles in Fig. 4.6) were obtained by running multiple repetitions of the quantum circuit
corresponding to a single Floquet step UF , as shown in Fig. 4.4(b), on the ibmq mumbai
quantum processor using N = 18 qubits.

At the end of each quantum evolution, a projective measurement of each qubit in the
Z basis was performed. To collect sufficient statistics, the experiments for each value of
n and R were repeated with a sample size N = 213, allowing us to compute the sample
average ⟨Zi⟩ over the measurement outcomes. The spatial average of the magnetization
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over different sites of the processor was then computed as

mz =
1

N

N∑

i=1

⟨Zi⟩, (4.33)

where N = 18 in our case.
In an ideal scenario, we would estimate the statistical error by repeating the quan-

tum experiments multiple times to obtain a comprehensive understanding of the ”true”
magnetization distribution to evaluate the sample mean E(mz) and standard deviation
σ(mz). However, this approach is impractical due to the significant time required for each
magnetization estimate. Instead, we conduct the experiment only once and generate re-
sampled measurement data from the empirical distribution using bootstrapping, a widely
used statistical technique. This method makes the statistical analysis very convenient, and
it is then becoming a common practice to estimate the statistical errors in digital quantum
simulations [235].

Let us assume we perform an N -shot quantum experiment and obtain a collection of N
outcomes. Each measurement outcome is represented as a string of 0s and 1s, denoted as
Z1,a . . . ZN,a, where Zi = 0, 1, N is the number of measured qubits, and the index a labels
the different outcomes (a = 1, . . . ,N ). The magnetization associated with each string can
be computed by averaging over the qubits as follows:

mz,a =
1

N

N∑

i=1

Zi,a. (4.34)

This gives us the set of magnetization values mz,a with a = 1, . . . ,N . We define the
empirical magnetization distribution P1(mz,a) as the histogram of themz,a set. The average
over this empirical distribution, denoted as mz, corresponds to the experimentally obtained
quantum expectation value on the final state of the system and can be expressed as

mz =
1

N

N∑

i=1

⟨Zi⟩ =
N∑

a=1

P1(mz,a)mz,a. (4.35)

The bootstrapping approach involves resampling from the empirical measurement distri-
bution P1(mz,a). We sample elements from the set mz,a (or, equivalently, from the set of
strings {Z1,a . . . ZN,a}) N times to create a new set of measurement outcomes, and from
this, a new empirical distribution P2(mz,a). We repeat this process as many times as pos-
sible given the available computational resources, say M repetitions, to obtain a set of
distributions P1, P2, . . . , PM . From each of these distributions, we can compute the aver-
age mb

z with b = 1, . . . ,M , and from the histogram of the set of averages, we obtain their
distribution Π(mb

z). Since each resampling is independent, the distribution of averages
should tend to a Gaussian in the large M limit, according to the central limit theorem.
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Figure 4.7: Bootstrap distribution of averages obtained by resampling M = 1000 times
the measured data of three quantum simulations with range R = 1, noise scale s = 1.4,
and different numbers of Floquet steps n = 0, 5, 8. The number of bins considered in each
histogram is 100.

Accordingly, we can define our estimator for mz and its statistical error as the average of
the Π(mb

z) distribution,

E(mz) =

M∑

b=1

Π(mb
z)m

b
z, (4.36)

and its standard deviation,

σ(mz) =

√√√√
M∑

b=1

Π(mb
z)(m

b
z − E(mz))2. (4.37)

This method enables us to obtain error bars in Figs. 4.6 and 4.8 as E(mz) ± 2σ(mz).
Figure 4.7 shows, as an example, the distributions Π(mb

z) obtained through M = 1000
resamples of the measured data of three quantum simulations with range R = 1, noise
scale s = 1.4, and number of Floquet steps n = 0, 5, 8, respectively. These are compared
with Gaussian distributions with the same mean and standard deviation, finding good
agreement. We notice that, as expected, the mean E(mz) is smaller for a larger number of
Floquet steps n, signaling the magnetization exponential decay. Moreover, distributions at
later stroboscopic times become broader, signaling the growth of the statistical error due
to the fact that we are trying to sample a quantity which is exponentially decaying with n.

The results for the statistical averages E(mz(n)) are represented by squares in Fig.
4.6, while two standard deviations, 2σ(mz(n)), serve as statistical errors and are depicted
as error bars in the plots. Notably, we observe that the statistical error increases with
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the number of Floquet steps involved in the dynamics n. This can be explained by a
simple statistical argument: we are sampling a quantity, the modulus of the magnetization
|mz|, which exponentially decreases with n. Consequently, the resolution with which we
can estimate this quantity deteriorates as mz approaches the value mz ∼ e−γn ∼ 1/

√
N ,

i.e., the statistical uncertainty due to the finite sample size increases as we approach the
stroboscopic time n ∼ (1/2γ) lnN .

The decay of magnetization with stroboscopic time n can be described by an expo-
nential fit |E(mz(n))| = ae−bn, obtained using a weighted least squares regression method.
This method accounts for points with high statistical uncertainty by penalizing them in
the extrapolation. The resulting exponential decay is depicted as a dashed line in Fig. 4.6,
showing a rapid decline with increasing n. Notably, the decay rate is more pronounced for
next-to-nearest neighbor interactions (R = 2) compared to nearest neighbor interactions
(R = 1). This discrepancy can be attributed to the fact that the quantum circuit imple-
menting next-to-nearest neighbor interactions involves more gates, leading to larger noise
effects.

4.4.5 Noise mitigation and final results

In order to effectively simulate the desired physical phenomena, it is therefore crucial to
account for and mitigate the detrimental effects of noise. Real-world quantum hardware
is susceptible to various sources of errors, such as noisy gates, environmental decoherence,
and spurious time dependence of circuit parameters. To explicitly model these errors, a
common approach is to consider one- and two-qubit depolarizing channels that act on the
system’s state ρ. Specifically, after each single-qubit gate acting on qubit i, the single-qubit
channel Φ1q

i is applied, while after each two-qubit gate on bond (i, j), the two-qubit channel

Φ2q
i,j is applied. These channels are defined as [236, 234]

Φ1q
i (ρ) = (1 − p1)ρ+

p1
3

(XiρXi + YiρYi + ZiρZi) (4.38)

Φ2q
i,j(ρ) = (1 − p2)ρ+

p2
15

3∑

α,β=1

(σα,iσβ,jρσα,iσα,j), (4.39)

where σ1,i = Xi, σ2,i = Yi, and σ3,i = Zi are the Pauli matrices for qubit i, and σα,i and σβ,j
are the corresponding matrices for qubits i and j, respectively. By studying the dynamics
of the Zi operators under these depolarizing channels, we can estimate the magnetization
decay rate induced by the noisy gates.

To isolate the effect of noise, we consider the case of perfect kick dynamics with ϵ = 0.
Under this condition, Zi is invariant under the two-qubit Ising interaction gates and simply
acquires a minus sign under the π rotation around the x-axis. However, after each two-qubit
gate, Zi decays under Φ2q

i,j as

Φ2q
i,j(Zi) = (1 − 16p2/15)Zi, (4.40)
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and after each single-qubit gate as

Φ1q
i (Zi) = (1 − 4p1/3)Zi. (4.41)

Overall, Zi decays to −e−γdepZi, over one noisy Floquet step with perfect kicks, with γdep
given by

γdep,R = − ln[(1 − 16p2/15)Q2q,R(1 − 4p1/3)Q1q,R ], (4.42)

where Q2q,R and Q1q,R are the number of two-qubit and single-qubit gates involved in a
Floquet step quantum circuit with R-neighbor interactions. As shown in Sec. 4.4.3, for
the specific case of the kicked Ising model considered in our quantum simulations, the
quantum circuits corresponding to R = 1, 2 Floquet steps can be optimized, reducing
the number of two-qubit native gates, involved in the quantum circuit longest path, to
Q2q,R = 9R2 − 14R+ 7. In particular for R = 1, 2 we have

Q2q,R =

{
4 R = 1

15 R = 2
, Q1q,R =

{
7 R = 1

9 R = 2
. (4.43)

Another source of noise arises from the finite decoherence time T1 of the qubits, which
introduces an additional time scale contributing to the magnetization decay. Taking into
account all the contributions, we can estimate the decay rate of magnetization for a Floquet
step with imperfect kicks of an angle ψ = π/2 + ϵ to be approximately given by

Γ1,R ≈ γdep,R + τR/T1 + γϵ,R, (4.44)

where τR represents the time required to practically implement the Floquet step on the
quantum hardware. This can be estimated as

τR = Q1q,Rτ1q + Q2q,Rτ2q + τm, (4.45)

where τ1q and τ2q denote the time needed to execute each single-qubit and two-qubit gate,
respectively, while τm represents the readout time required for measurements.

A third source of errors arises from readout errors, which can be modeled as a stochastic
process where the outcome of a qubit-state measurement (in the Z computational basis) is
randomly flipped with a probability of pm away from its correct value [234]. Specifically, if
we define the probability that qubit i points up (down) at time n as Π± = ⟨(1±Zi(n))/2⟩,
then the result of the noisy measurement process is Zi = ±1, with a probability of Π̃±(n) =
Π±(1 − pm) + Π∓pm. Accordingly, the estimate for the expectation value of Zi becomes

Π̃+ − Π̃− = (1 − 2pm)(Π+ − Π−)

= (1 − 2pm)⟨Zi(n)⟩. (4.46)
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Hence, averaging over positions yields m̃z = (1 − 2pm)mz, i.e., a damping by a time-
independent and range-independent overall prefactor Cm = (1 − 2pm).

The inclusion of noise in our model provides a compelling explanation for the rapid
exponential decay of magnetization, as observed in Fig. 4.6. Moreover, by inserting the
estimated values of the parameters p1, p2, τ , and T1, which were extracted from the cali-
bration data provided by IBM, we find that the calculated decay rate is in good agreement
with that obtained from fitting the experimental data with a stroboscopic time dependence
of the form predicted by our theoretical model,

|mz(n)| = Cme
−nΓ1,R . (4.47)

This understanding of the noise effect justifies our exploration of the possibility of mitigat-
ing it through a technique called zero noise extrapolation (ZNE).

ZNE is a well-studied error mitigation method in the literature [77, 237, 238, 235]. It
is a powerful technique that allows for the estimation of noiseless expectation values of
observables from a series of measurements obtained at different levels of noise. The ZNE
process involves two steps: intentional scaling of noise and extrapolation to the noiseless
limit. In the first step, the target circuit is executed at varying error rates denoted by
s, with expectation values estimated for the original circuit (s = 1) as well as circuits at
increased error rates (s > 1). Then, in the second step, a function, motivated by physical
arguments, is fitted to these expectation values and used to extrapolate to error rate s = 0,
providing an error-mitigated estimate.

There are various methods to increase the error rate s. Examples in the literature
include pulse stretching [77] or, at a gate level, unitary folding [237, 239]. In our imple-
mentation of ZNE, we increase s using a local unitary folding technique. This technique
involves increasing the number of operations by applying a mapping U → UU †U to indi-
vidual gates of the circuit. Specifically, the unitary gates to be folded are randomly chosen
from the set of gates composing the circuit in such a way that the circuit depth is ap-
proximately increased by the desired factor s. This random selection helps to ensure that
the circuit is exposed to a variety of gate sequences and interactions, allowing for a more
comprehensive study of the circuit’s behavior under different noise conditions. In our case,
for each noise scale s, we extract the magnetization decay rate from the measured data.
Our noise model then allows us to theoretically estimate the decay rate at noise scale s as

Γs,R ≈ s(γdep,R + τR/T1) + γϵ,R. (4.48)

Accordingly, a linear fit of the measured decay rates with respect to the parameter s enables
us to separate the contribution coming from the noise, γnoise = γdep,R + τR/T1, from γϵ,R,
which represents the decay rate due to the internal system thermalization that destroys
the time crystalline order at finite ϵ, and should be stabilized by the presence of longer-
range interactions. More precisely, γϵ,R is obtained as the zero noise extrapolation of the
decay rate in (4.48), γϵ,R ≈ Γs=0,R. The results of this procedure are shown in Fig. 4.8,
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Figure 4.8: Decay rate of magnetization as a function of noise scale s for R = 1 (blue points)
and R = 2 (red points). Error bars represent two standard deviations σ(mz) estimated
through statistical bootstrapping. Dashed lines indicate the best linear fit obtained using
weighted least squares regression. Empty points are excluded from the fitting data.

where the measured decay rate is plotted as a function of the noise scale s. To estimate
Γs,R and its uncertainty δΓs,R, we first estimate the magnetization as a function of the
stroboscopic time n at different values of s and R from the measured data, along with the
corresponding statistical uncertainty from the standard deviation obtained through the
statistical bootstrap method, E(mz) ± 2σ(mz). Then, the decay rate and its uncertainty
are obtained through the exponential fit

|E(mz) ± 2σ(mz)| = (Cm ± δCm)e−n(Γs,R±δΓs,R). (4.49)

In particular, the exponential fit is performed using weighted least squares regression, and
the last two points with R = 2 and s > 1.5 are excluded from the fitting data (empty points
in Fig. 4.8). This exclusion is justified by the fact that the decay rate for these points
falls within the range of 0.2 < Γs>1.5 < 0.8, and thus, the magnetization can be reliably
estimated only for stroboscopic times n < n∗ ≈ (1/2γ) lnN , where 6 < n∗ < 22. Therefore,
not all the time steps 1 < n < 16 considered in the exponential fit of mz(n) from which we
extracted this decay rate are within the reach of our statistical resolution. The difficulty
of establishing a reliable bootstrap-estimated value confirms this phenomenon, as shown
in Fig. 4.8, where the statistical error bars for these points are significantly larger than
those for the other points, indicating the challenge of obtaining a trustworthy value for the
magnetization in this regime. Despite the failure of the bootstrap procedure, we include
these data as empty points in the plot for completeness, noting that the corresponding
error bars are sufficiently large that the resulting fit is still compatible with these unreliable
values within ±2σ(mz).
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Remarkably, upon extrapolation to the zero noise limit, the decay rate of the R = 2
case is found to be smaller than that in the nearest neighbors case R = 1. Specifically, we
obtain

Γ0,2 ± δΓ0,2 < Γ0,1 ± δΓ0,1. (4.50)

Most significantly, we find that the decay rate analytically predicted from the theoretical
model, γϵ,R ≈ ϵ2R+1, is compatible with the extrapolated values within the estimated
uncertainty, i.e.,

γϵ,R ∈ [Γ0,R − δΓ0,R,Γ0,R + δΓ0,R], (4.51)

indicating that the extrapolated decay rate is consistent with the theoretical expectations
within the statistical uncertainty δΓ0,R, which has been estimated by extrapolating δΓs,R
to s = 0.

4.5 Closing remarks

In the first part of this chapter, we introduced a novel order parameter ζ capable of unam-
biguously detecting higher-order Discrete Floquet Time-Crystals (DFTCs) in clean long-
range systems. Using the kicked long-range Ising model as a paradigmatic example, we
derived a new phase diagram featuring self-similar structures with non-integer, fractal di-
mensions. We quantitatively explained this phenomenon through an effective Hamiltonian
map with renormalized couplings. While our theoretical picture becomes exact at α = 0
and N = ∞, we verified its robustness for finite size and finite α.

In the second part of the chapter, we demonstrated the potential of superconducting
quantum hardware for advancing digital quantum simulation by implementing quantum
dynamics in systems with couplings beyond nearest neighbors. Leveraging the universality
of native gates in quantum processors, we successfully implemented couplings among phys-
ically disconnected qubits and mitigated the effects of gate noise, measurement errors, and
statistical errors from the raw results. Our focus was on stabilizing the discrete Floquet
time-crystalline response as the interaction range is increased, which we implemented on
IBM quantum superconducting processors.

Our quantum simulation has demonstrated the potential of IBM superconducting plat-
forms for simulating quantum systems with couplings beyond nearest neighbors and has
provided valuable insights into the fundamental physics of long-range systems. Our error
mitigation approach effectively removed the effects of noise and measurement errors, and
the mitigated data aligned well with theoretical expectations. This work opens new avenues
for studying quantum systems with long-range interactions and paves the way for further
advancements in digital quantum simulation on superconducting quantum hardware.





Chapter 5

Entanglement in long-range
systems

5.1 Entanglement in many-body quantum systems

One of the most important features a system should have to be a good candidate for
quantum technologies is the capability of hosting highly entangled states in its spectrum.
Indeed, this crucial property is essential for performing tasks that are classically impossible
or very inefficient [240]. More precisely, entanglement is the key factor that allows quan-
tum computation to surpass classical computation, providing the computational speed-up
in quantum algorithms compared to those based on classical physics processes [236]. More-
over, entanglement is crucial for many quantum technological applications such as quantum
teleportation [241], quantum cryptography [181] , and quantum metrology [182].

A set of key quantities for characterizing entanglement is provided by the entanglement
Rényi entropies. To define these, one divides a given system into two subsystems A and
B (the complement of A), determines the reduced density matrix of a subsystem (say, of
A) ρA by tracing out the degrees of freedom of B, and then computes its Rényi entropies:
Sν = ln Tr[ρνA]/(1 − ν) [242]. One of the most fundamental properties of entanglement
Rényi entropies is their behavior with the size of the subsystem considered. The celebrated
area law [243, 244] states that entanglement typically grows with the boundary of the
subsystem considered. For a system in d dimensions and a subsystem of size L having
volume ∼ Ld and area ∼ Ld−1, the entanglement entropy of the subsystem scales as ∼ Ld−1.
In particular, the area law has been proven to hold in the ground state of one-dimensional
systems with a mass gap and short-range couplings when the subsystem size is much
larger than the correlation length [245]. At a quantum critical point, where the correlation
length diverges, the area law is violated by a logarithmic term proportional to the central
charge of the conformal field theory (CFT) that describes the low-energy spectrum of the
model [246, 247, 248, 249, 250, 251]. These observations originally motivated the study of

97
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entanglement due to its similarity to black hole entropy [252, 243], eventually revealing its
important role in high-energy physics [253, 254, 255, 256] as well as in the investigation of
condensed matter systems [257, 258, 259].

The previous discussion becomes more complex for systems with long-range couplings
[260, 261]. Indeed the prominent collective character of such non-local systems promotes
entanglement spreading and leads to novel forms of equilibrium and dynamical scaling,
which are not observed in traditional systems with local interactions [262, 263, 264, 265,
266]. In particular, the anomalous scaling of entanglement in the presence of long-range
couplings has recently attracted great interest in the context of the so-called measurement-
induced transitions [267, 268, 269, 270, 271, 272, 273]. In these scenarios, the dynamical
generation of entanglement is weakened by the presence of local measurements applied
randomly during the system evolution. Specifically, if the measurement rate is high enough,
the steady-state entanglement saturates to an area law value independent of the subsystem
size, provided only nearest neighbor interactions are present [274]. On the other hand, in
the presence of long-range couplings, subvolume law scalings [274, 275, 276, 277, 278], also
referred to as fractal entanglement phases [279, 280], appear.

These intriguing dynamical phenomena lack a clear equilibrium counterpart, indicating
that their origin is directly tied to the presence of long-range interactions. The entangle-
ment properties of the ground state of a fermionic chain with long-range pairing couplings
and nearest-neighbor hopping amplitudes have been comprehensively characterized in Refs.
[281, 97, 282, 283, 284]. These studies reported standard logarithmic violations of the area
law in the weak long-range regime. Moreover, an anomalous logarithmic growth was ob-
served even when the mass gap is non-zero, associated with the divergence of unnormalized
couplings in the strong long-range regime characterized by a power law decay exponent
smaller than the system dimension.

On the other hand, Refs. [285, 286] investigated a model of fermions with strong
long-range hopping amplitudes and no pairing, discovering a volume law entanglement
scaling. Additionally, the entanglement properties of the Sachdev-Ye-Kitaev (SYK) model
[287, 288], a fully connected fermionic model with random interactions, have been exten-
sively studied [289]. Also in this case, the eigenstates of the SYK Hamiltonian display
a volume law entanglement scaling, with the coefficient computed numerically using ex-
act diagonalization techniques [290, 291] and analytically via the eigenstate thermalization
hypothesis [292] or a path-integral approach exact in the large-N limit [293, 294]. Fi-
nally, also in long-range bosonic systems [295, 296] and in fully connected spin systems
[297, 298, 299, 300, 301] only logarithmic violations of the area law were reported.

Despite the extensive amount of literature on the topic summarized above, none of
the considered long-range models display a fractal entanglement scaling at equilibrium
unless additional ingredients, such as modifications of the couplings which violate time
translational symmetry or the presence of a fractal Fermi surface [285], are introduced.

In this Chapter, we demonstrate that a subvolume law, similar to the one observed
in measurement-induced transitions with long-range interactions [274], can also appear at
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equilibrium under certain conditions.
To substantiate our claim, we examine the ground state entanglement scaling in the

prototypical long-range Kitaev chain model introduced in Section 1.5. This model, while
simple enough for analytic calculations, hosts an extremely rich phenomenology. Using
the well-known Fisher-Hartwig expansion approach [302, 303], we analytically determine
the leading order dependence of the ground state entanglement on the subsystem size L
in the scaling limit of an infinite chain N → ∞ and infinite subsystem L → ∞ with fixed
l = L/N , for different values of the available parameters.

In particular, in the weak long-range regime, the system exhibits standard logarithmic
deviations from the entanglement area law at quantum critical points. However, in the
case of equal long-range hopping and pairing (α = α1 = α2), the coefficients of these
logarithmic divergences show a nontrivial dependence on the power law decay exponent
α which is incompatible with the standard scaling predicted, for short-range systems, by
critical conformal field theory [247, 246].

In the strong long-range regime, the system becomes genuinely non-additive, displaying
logarithmic deviations from the area law even away from criticality. Most notably, when
the system’s chemical potential is zero, the Hamiltonian lacks local terms, resulting in a
highly degenerate ground state and a subvolume law entanglement scaling S ∼ L1−2α.

5.2 Entanglement scaling in free fermionic systems

5.2.1 Rényi entropies and the correlation matrix

We begin our analysis by reviewing the techniques used to study the entanglement scaling
of generic quadratic fermionic models. Specifically, we consider a bipartition of a generic
quadratic fermionic chain into two subsystems, A and B, where A is a continuous interval
of chain sites of length L and B is its complementary set, see Fig. 5.1. Given the Hilbert
spaces HA and HB associated to A and B, respectively, the total Hilbert space of the
system is H = HA ⊗ HB. If the total system is in a pure state |ψ⟩, then the reduced
density matrix, describing the state of subsystem A(B) is obtained by taking the partial
trace with respect to HA(B): ρA(B) = TrA(B)|ψ⟩⟨ψ|.

The amount of entanglement between the two subsystems can be characterized by the
Rényi entropies of A, defined as

Sν,L(A) =
1

1 − ν
ln Tr[ρνA], (5.1)

where ν ≥ 1. These entropies provide an accurate measure of the entanglement in a
bipartite system in a pure state [242]. In particular, the limit ν → 1 corresponds to the
well-known Von Neumann or entanglement entropy

SL(A) = S1,L(A) = −Tr[ρA ln ρA]. (5.2)
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Figure 5.1: Schematic representation of a bipartition of a long-range Kitaev chain with
periodic boundary conditions in two subsystems A andB of length L andN−L respectively.

Our main goal is to study the Rényi entanglement entropy for the ground state of the
Hamiltonian discussed in Section 1.5. In particular, we aim to determine how Sν,L(A)
depends on the subsystem size L in the scaling limit N → ∞, L→ ∞ with fixed l = L/N
particularly focusing on the effects of long-range hopping and pairing couplings in the
Hamiltonian.

This task is facilitated by the fact that the long-range Kitaev chain Hamiltonian in
Eq. (1.43) is quadratic, meaning that all its eigenstates satisfy the Wick decomposition
theorem [249, 304]. Consequently, the reduced density matrix can be derived from the
two-point correlation functions. To this end, we introduce the 2N × 2N correlation matrix
V, which is a block matrix with each 2 × 2 block defined as

Vij =

(
δij − 2⟨c†jci⟩ 2⟨cicj⟩

2⟨c†ic
†
j⟩ 2⟨c†icj⟩ − δij

)
, (5.3)

where i and j range from 1 to N . Then, it can be shown [249, 304] that the Rényi entropies
can be expressed in terms of V as

Sν,L(A) =
1

2(ν − 1)
Tr ln

[(
I + V

2

)ν
+

(
I− V

2

)ν]
. (5.4)

It is important to note that from a computational perspective, this formula offers a sig-
nificant simplification. The problem complexity is reduced from the diagonalization of a
reduced density matrix of size 2L×2L to the diagonalization of the correlation matrix (5.3)
of size 2L× 2L. This reduction enables the analysis of much larger subsystem sizes L.
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5.2.2 Matrix symbol of the correlation matrix

From the analytic side, it is useful to write Eq. (5.4) as an integral in the complex plane
along a contour C surrounding the eigenvalues vj ∈ [−1, 1] of V. Applying Cauchy’s residue
theorem to perform the integral, we obtain [305, 306]

Sν,L(A) = lim
ϵ→0+

∮

C
sν(1 + ϵ, z)

d lnDL(z)

dz
dz, (5.5)

where we have introduced the function

sν(x, y) =
1

1 − ν
ln

[(
x+ y

2

)ν
+

(
x− y

2

)ν]
, (5.6)

and the determinant

DL(z) = det(zI− V). (5.7)

Due to the translational invariance of the Hamiltonian (1.43) and the choice of subsystem
A, which consists of contiguous sites, the Fourier transform of the correlation matrix Vlj
can be expressed as

Vlj =
1

N

∑

k

Gke
ik(l−j), (5.8)

where we have introduced the two dimensional matrix symbol Gk.
Starting from the definition of the correlation matrix of a stationary state |ψ⟩, and

passing to the Fourier basis, we obtain

Gk = 2⟨ψ|
(
ĉk
ĉ†−k

)(
ĉ†k ĉ−k

)
|ψ⟩ − I. (5.9)

Using the Bogoliubov transformation
(
γ̂k
γ̂†−k

)
= Uk

(
ĉk
ĉ†−k

)
, Uk =

(
cosϕk/2 i sinϕk/2

−i sinϕk/2 − cosϕk/2

)
, (5.10)

we can express the symbol in terms of the Bogoliubov fermionic operators as

Gk = 2U †
k⟨ψ|

(
γ̂k
γ̂†−k

)(
γ̂†k γ̂−k

)
|ψ⟩Uk − I. (5.11)

We now compute the expectation value in a stationary state associated to the fermionic
populations of the Bogoliubov modes fk = ⟨γ̂†kγ̂k⟩, which for a generic state satisfy the
condition 0 ≤ fk ≤ 1, so that

2⟨ψ|
(
γ̂k
γ̂†−k

)(
γ̂†k γ̂−k

)
|ψ⟩ − I =

(
1 − 2fk 0

0 2fk − 1

)
. (5.12)
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Finally, substituting this expectation value into Eq. (5.11) and using the definition of the
Bogoliubov angles tan θk = ∆̃k/(h− t̃k) we obtain

Gk = (1 − (fk + f−k))

[
2(h− t̃k)

ωk
σz −

2∆̃k

ωk
σy

]
− (fk − f−k)I, (5.13)

where σa, with a = x, y, z, are the Pauli sigma matrices, I is the 2 × 2 identity.

5.2.3 The Fisher-Hartwig expansion

Using the techniques introduced in Refs. [249, 304] we can determine the asymptotic
behavior of the Toeplitz determinant DL(z), as L → ∞. This is achieved by applying the
Szegő-Widom theorem [307, 308] and an extension of the Fisher-Hartwig conjecture [302,
303] to non-scalar symbols [282, 283]. The leading-order contributions to the logarithm of
DL(z) in the L→ ∞ limit are given by

lnDL(z) =
L

2π

∫ π

−π
dk ln det(zI−Gk)

+ lnL
∑

p

bp(z) + O(1), (5.14)

where the coefficients bp(z) of the logarithmic contribution are associated with the discon-
tinuities of Gk. Specifically, if there is a discontinuity at some k = p, this means that

G+
p = lim

k→p+
Gk ̸= lim

k→p−
Gk = G−

p , (5.15)

then the corresponding coefficient can be computed as [283]

bp(z) =
1

4π2
Tr[ln(zI−G−

p )(zI−G+
p )−1]2. (5.16)

Inserting Eq. (5.14) into the integral for the Rényi entropy (5.5) one obtains

Sν,L =
1

1 − ν

∑

k

ln [(1 − fk)
ν + fνk ] +Bν lnL+ O(1), (5.17)

where the coefficient of the logarithmic contribution can be computed as

Bν =
∑

p

lim
ϵ→0+

∮

C
sν(1 + ϵ, z)

dbp(z)

dz
dz. (5.18)

As shown in Section 1.5, whenever α1,2 > 0 or α1 = α2 = 0 and h ̸= 0, the many-body
ground state of the system is the Bogoliubov vacuum with fk = 0 ∀k, therefore we are
left with a leading order contribution given by a constant term O(1) corresponding to
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the standard area law in the one-dimensional case, or a logarithmic contribution which is
associated to the discontinuity of the correlation matrix symbol Gk. On the other hand
in the specific case α1 = α2 = 0 and h = 0 the many-body ground state becomes highly
degenerate allowing for a finite fermionic population fk ̸= 0 for an extensive number of
Bogoliubov modes, i.e., all the even modes. As a consequence, the first term in Eq. (5.17)
becomes the leading contribution to the large L entanglement scaling corresponding to a
volume law behavior Sν,L(α1,2 = 0, h = 0) ≈ L.

Summarizing, the machinery introduced in this Section allows us to compute the leading
order contribution to the scaling of Rényi entropies with the subsystem size by simply
analyzing the continuity properties of the matrix symbol Gk in the different regimes.

5.2.4 Computation of the Fisher-Hartwig expansion coefficients

The general form of the matrix symbol in Eq. (5.11) can be used to compute the different
terms in the Fisher-Hartwig expansion of the Rényi entropies for large subsystem size. For
this purpose, it is useful to rewrite Gk as

Gk = ak [cosϕkσz + sinϕkσy] + bkI, (5.19)

where we have introduced the coefficients ak = 1 − (fk + f−k) and bk = f−k − fk and the
angle ϕk such that cosϕk = 2(h− t̃k)/ωk and sinϕk = −2∆̃k/ωk.

Let us start from the first term of the expansion in Eq. (5.17) this is obtained by first
computing the determinant

det [zI−Gk] = (z − bk)
2 − a2k, (5.20)

Then, the contribution to first term in the entanglement scaling coming from each k-mode
is obtained from the integral

Sk = lim
ϵ→0+

∮

C

dz

2πi
sν(1 + ϵ, z)

(z − bk)

(z − bk)2 − a2k
(5.21)

=
1

2
[sν(1, bk + ak) + sν(1, bk − ak)]

=
1

2(1 − ν)

[
ln(fνk + (1 − fk)

ν) + ln(fν−k + (1 − f−k)
ν)
]
,

where Cauchy’s residue theorem and the expression (5.6) for sν(x, y) have been used.
Finally, summing over all the modes and using the k → −k symmetry we obtain

∑

k

Sk =
1

1 − ν

∑

k

ln(fνk + (1 − fk)
ν). (5.22)

The logarithmic contribution to the entanglement scaling can be computed by con-
sidering the discontinuity coefficients. Here, we present their calculation in the general
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bn + an cos δϕn bn + anbn − an cos δϕnbn − an

1 + ϵ−1 − ϵ

Figure 5.2: Contour of integration and cuts of the integrand in Eq. (5.26). The cuts from
±(1 + ϵ) to the infinity correspond to dsν(1 + ϵ, z)/dz while the cuts inside the contour,
[bn − an, bn − an cos δϕ] and [bn + an cos δϕ, bn + an, ], are due to the other factor of the
integrand.

situation in which Gk is discontinuous at a generic mode k = 2πn/N . We start from the
definition (5.16) of the bk coefficients corresponding to each discontinuity. First of all, we
consider the matrix

Mk = (zI−G−
k )(zI−G+

k )−1, (5.23)

where G±
k = limp→k± Gp. The eigenvalues µ±k (z) of this matrix can be written in the form

µ±k (z) =




√
(bk − z)2 − a2k cos2(δϕk/2) ± ak sin(δϕk/2)

√
(bk − z)2 − a2k




2

, (5.24)

with δϕk = ϕ+k − ϕ−k . Notice also that we have µ+k (z) = 1/µ−k (z), therefore

bk(z) =
1

2π2
(
lnµ+k (z)

)2
(5.25)

=
2

π2


ln




√
(bk − z)2 − a2k cos2(δϕk/2) + ak sin(δϕk/2)

√
(bk − z)2 − a2k





2

,

From this expression we compute the coefficient B
(k)
ν of the contribution of this disconti-

nuity to the logarithmic term of the Rényi entropy. For this purpose we plug bk(z) into
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the contour integral for Sν,L then, performing an integration by parts, we obtain

B(k)
ν = lim

ϵ→0+

∮

C

dz

2πi
sν(1 + ϵ, z)

dbk(z)

dz
(5.26)

= − lim
ϵ→0+

∮

C

dz

2π3i

dsν(1 + ϵ, z)

dz


ln




√
(bk − z)2 − a2k cos2(δϕk/2) + ak sin(δϕk/2)

√
(bk − z)2 − a2k





2

.

The integral over the contour C depicted in Fig. 5.2 can be divided into two integrals along
curves enclosing respectively the cuts [bk−ak, bk−ak cos δϕk] and [bk +ak, bk +ak cos δϕk],
which in turn can be reduced to two real integrals by performing the integration along the
cuts taking into account the change in the phase of the logarithm when we go around the
branch points bk ± ak and bk ± ak cos δϕk. On the other hand, we notice that for integer
ν > 1, dsν/dz is a meromorphic function with poles located at the points of the imaginary
axis [282, 283]

zl = i tan
π(2l − 1)

2ν
, l = 1, . . . , ν, l ̸= 1 + ν

2
, (5.27)

and that the other factor of the integrand is analytic in the whole region outside the contour
C. We can send this contour to infinity and reduce the calculation of Bν to the computation
of the corresponding residues. In this way, we obtain the explicit expression

B(k)
ν =

1

ν − 1

ν∑

l=1


ln




√
(bk − zl)2 − a2k cos2(δϕk/2) + ak sin(δϕk/2)

√
(bk − zl)2 − a2k





2

. (5.28)

5.3 Entanglement scaling in the weak long-range regime

In this section, we analyze the entanglement scaling for the ground state of a long-range
Kitaev chain in the weak long-range regime, characterized by 1 < α1, α2 < 2. As detailed
in Section 1.5, in this regime, the quasiparticle spectrum is continuous in the thermody-
namic limit, and the ground state is always the Bogoliubov vacuum with zero fermionic
populations (fk = 0, ∀k). Consequently, the first term in the Fisher-Hartwig expansion
(5.17) vanishes, and the leading-order contribution to the entanglement scaling arises from
the logarithmic term associated with the matrix symbol discontinuity.

Within the weak long-range regime, we can distinguish three scenarios: α1 > α2,
α1 < α2 and α1 = α2 = α. To proceed, we must identify the locations of the jumps in
Gk and compute the corresponding lateral limits in these different cases. Possible sources
of discontinuities for Gk include the discontinuities or zeros of the spectrum ωk(h), which
occur at the two quantum critical points of the model h = 1,−1 + 21−α1 , where the
spectrum becomes gapless at the soft modes k = 0, π, respectively. Specifically, Gk has no
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discontinuities when h ̸= 1,−1+21−α1 , since in these cases, the lateral limits at the critical
modes are

G±
0 = lim

k→0±
Gk = sgn(h− 1)σz, (5.29)

G±
π = lim

k→π±
Gk = sgn(h+ 1 − 21−α1)σz. (5.30)

This results in a constant scaling of the entanglement entropy Sν,L = O(1) with the subsys-
tem size when the system is not at quantum criticality, manifesting the standard area law for
one-dimensional gapped systems [243, 244]. However, quantum criticality leads to logarith-
mic deviations from the area law. In particular specializing the general formula in Eq.(5.28)
to the discontinuity arising at the two quantum critical points h = hc = 1,−1 + 21−α1 in
correspondence of the critical modes k = kc = 0, π, we obtain the logarithmic scaling with
coefficient

B(kc)
ν =

1

ν − 1

ν∑

l=1

[
ln

(√
|zl|2 + cos2(δϕkc/2) − i sin(δϕkc/2)√

|zl|2 − 1

)]2

=
1

ν − 1

ν∑

l=1

[
arctan

(
sin(δϕkc/2)√

|zl|2 + cos2(δϕkc/2)

)]2
, (5.31)

where in the last step we have used the identity arctan(x) = i[ln(i + x) − ln(i − x)]/2 in
order to make the expression of the coefficient explicitly real. The value of δϕkc depends
on the critical point considered and the relative order of the power law decaying exponents
α1 and α2.

Let us start with the critical point at h = 1, where the spectrum has an α1,2 dependent
dispersion relation. In particular, near k = 0 , we have the following expansions for t̃k and
∆̃k [36]

t̃k = 1 + sin(α1)
Γ(1 − α1)

ζ(α1)
|k|α1−1 +O(k2), (5.32)

∆̃k = cos(α2)
Γ(1 − α2)

ζ(α2)
sgn(k)|k|α2−1 +O(k), (5.33)

with Γ(x) and ζ(x) the Gamma and the Riemann zeta functions [37], respectively. Conse-
quently, the single-particle spectrum takes the form [11]

ωk =

{
|h− 1| + O(|k|α−1) if h ̸= 1

C(α)|k|α−1 + O(k2α−2) if h = 1
, (5.34)

where α = min{α1, α2}, and we have introduced the constant prefactor

C(α) =





| sin(α1π/2)Γ(1 − α1)/ζ(α1)| if α1 < α2

|Γ(1 − α)/ζ(α)| if α1 = α2

| cos(α2π/2)Γ(1 − α2)/ζ(α2)| if α1 > α2

. (5.35)
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This leads to the different lateral limits

G±
0 =





−A(α1)σz if α1 < α2

− sin(απ/2)σz ± cos(απ/2)σy if α1 = α2

±B(α2)σy if α1 > α2

, (5.36)

where A(α) = sin(απ/2)Γ(1 − α)/ζ(α), and B(α) = cos(απ/2)Γ(1 − α)/ζ(α). Moreover,
the jump in the Bogoliubov angle at the critical mode read

δϕ0 =





0 if α1 < α2

π(1 − α) if α1 = α2 = α

π if α1 > α2.

(5.37)

Leading to the logarithmic coefficients

B0
ν(h = 1) =





0 if α1 < α2

1
ν−1

∑ν
l=1

[
arctan

(
cos(απ/2)√

|zl|2+sin2(απ/2)

)]2
if α1 = α2 = α

ν+1
12ν if α1 > α2

, (5.38)

with zk,ν = i tan(π(2k − 1)/2ν).
When the power-law decay of the hopping amplitude is slower than that of the pairing,

no discontinuity is present, leading to a constant entanglement entropy.
In the case α1 > α2, we have a discontinuity in the symbol, with commuting lateral

limits. Inserting the expression for G±
0 in Eq. (5.16) we obtain the logarithmic scaling

Sν,L =
ν + 1

12ν
lnL+ O(1). (5.39)

This logarithmic scaling is analogous to the one obtained for a conformal field theory with
central charge c = 1/2 [247]. This result align with earlier studies [282, 97] that investigated
the entanglement scaling in a Kitaev chain with long-range pairing and nearest-neighbor
hopping (α1 → ∞). Here, we show that this scaling persists for finite α1 as long as α1 > α2.
Figure 5.3(b) shows the numerical check of the scaling behavior of the entanglement entropy
SL = S1,L for α1 > α2 and h = 1. We obtain an excellent agreement once the subleading
corrections are taken into account. In particular, we need to subtract from the numerical
data the finite size corrections of the form

SL − 1

6
lnL = c1 + c2L

−c3 , (5.40)

where the ci = ci(α1, α2, h), i = 1, 2, 3, coefficients can be estimated from a fit with the
numerical data.
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Figure 5.3: Numerical check of the entanglement scaling as a function of the subsystem
size L at the quantum critical point with chemical potential h = 1 for different values of
couplings power law decay exponents 1 < α1, α2. a) Entanglement entropy (ν = 1), with
α1 = 1.5 and α2 = 1.8, blue squares represent the numerical data while the black solid
line is a fit of a constant and a subleading contribution c1 + c2L

−c3 . b) Entanglement
entropy (ν = 1), with α1 = 1.8 and α2 = 1.5, blue squares represents the numerical data,
the black solid line correspond to the curve (1/6)) lnL, red dots have been obtained from
the numerics by subtracting the fit of the subleading corrections of the form c1 + c2L

−c3 .
c) Rényi-2 entropy (ν = 2) with α1 = α2 = 1.5, blues squares represents the numerics,
the black solid line represents the curve B2,α lnL, red dots are obtained subtracting the
subleading corrections to the numerical data as in panel b).
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Figure 5.4: Numerical check of the entanglement scaling as a function of the subsystem size
L at the quantum critical point with chemical potential h = −1+21−α1 for different values
of couplings power law decay exponents: a) α1 = 1.5, α2 = 1.8, b) α1 = 1.8, α2 = 1.5, c)
α1 = α2 = 1.5. As in Fig.5.3, blue squares represents the numerical data, the black solid
line represents our analytical prediction for the scaling in the L ≫ 1 limit, red dots are
obtained from the numerics by subtracting the subleading corrections.
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The most interesting case corresponds to the condition α1 = α2 = α which, as previ-
ously stated, is related to the long-range interacting quantum Ising chain. In this regime
the matrix symbol Gk, hosts non-commuting lateral limits as k → 0± (see Eq. (5.36)).
This leads to the non-trivial dependence of the logarithmic contribution coefficient on α,
leading the logarithmic scaling behavior of the Rényi entropy

Sν,L = Bν,α lnL+ O(1), (5.41)

where

Bν,α =
1

π2(ν − 1)

ν∑

k=1

arctan2


 cos(απ/2)√

sin2(απ/2) + |zk,ν |2


 , (5.42)

with zk,ν = i tan(π(2k − 1)/2ν). In particular, for ν = 2, 3, the sum in the previous
expression reduces to

B2,α =
2

π2
arctan2

[
cos(απ/2)√

sin2(απ/2) + 1

]
, (5.43)

B3,α =
1

π2
arctan2

[
cos(απ/2)√

sin2(απ/2) + 1/3

]
. (5.44)

This analytical scaling of S2,ν at h = 1 and for α1 = α2 = α is compared with the
numerical result in Fig. 5.3(c). Also in this case, a good agreement is found once the
subleading corrections (5.40) are taken into account.

We note that the expression for the scaling coefficients in Eq. (5.42) is valid only for
integers ν > 1. Indeed, in this case dsν/dz is a meromorphic function with poles located
on the imaginary axis. This allows us to evaluate the integral in (5.5) by summing over
the residues at these poles (see Section 5.2.4). On the other hand, for ν = 1, we have that

dsν=1(1 + ϵ, z)

dz
= ln

(
1 + ϵ− z

1 + ϵ+ z

)
, (5.45)

which has two branch cuts from ±(1 + ϵ) to infinity (see Section 5.2.4). Therefore, to
evaluate the integral in Eq. (5.5) for ν = 1, we perform the integration along these cuts
and take into account the change in the phase of the logarithm when we go around the
branch points. This reduces the integral to two real integrals, which we may evaluate
numerically. In the case where α1 = α2 = α and h = 1, the integrand still depends on α
even for ν = 1, so we can still expect the coefficient for the logarithmic divergence of the
von Neumann entropy S1,L to have a nontrivial α dependence. It is important to observe
that at variance with the α1 ̸= α2 cases, the scaling coefficient Bν,α cannot be written in
the form

Bν,α ̸= Bν,CFT =
ν + 1

6ν
c, (5.46)
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Figure 5.5: a) Coefficient Bν,α of the logarithmic scaling of the ν-Rényi entropy as a
function of the power law decay exponent α = α1 = α2, for ν = 2 (green solid line) and
ν = 3 (purple solid line). The dashed lines correspond to the short-range values of the
coefficients which are matched by the long-range ones for α = 2. b) effective central charge,
obtained as ceff = 6νBν,α/(ν + 1), as a function of α for ν = 2, 3. The black dashed line
represents the central charge for nearest neighbor couplings c = 1/2.

where c is the central charge of some conformal field theory describing the model at the
quantum critical point. This observation supports our previous claim that the case α1 = α2

is special and, somehow, closer to the one of a strongly interacting system such as the long-
range Ising model. Indeed, while the case α1 ̸= α2 continues to obey the r.h.s. of Eq. (5.46)
and, so, is more likely to be described by a CFT, the case 1 < α1 = α2 < 2 goes beyond this
description as the scaling of the ground state entanglement at the critical point cannot be
related to the universal properties of a conformal field theory. A similar result is expected
for the Ising model in a transverse field, where the inclusion of long-range interactions is
expected to increase the effective dimension of the model (see Chapter 2) and, so, disrupt
any CFT description.

Figure 5.5(a) shows the coefficients Bν,α for ν = 2, 3 as a function of α ∈ [1, 2], we
notice that the value of the logarithmic scaling coefficients starts from zero at α = 1 and
then grows with α reaching the short-range value for α = 2. Moreover, Fig. 5.5(b) shows
the α dependence of the effective central charge defined as ceff(α) = 6νBν,α/(ν + 1) as a
function of α. We notice that, apart from the extrema ceff(1) = 0 and ceff(2) = 1/2, the
effective charge also depends on the Rényi entropy order ν, thus confirming the fact that
it cannot be considered as the proper central charge of a conformal field theory. These
results are in agreement with the findings of Ref. [309], where the breakdown of conformal
symmetry in a long-range fermionic chain was established.

Finally, we consider the critical point h = −1 + 21−α1 . In this case, the power of the
dispersion relation near the soft mode k = π is not affected by the presence of long-range
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couplings. More precisely, in this case the Taylor expansions around the critical mode
k = π are derived from the expansions at k = 0, by using the following property of the
polylogarithm

Liα(zeiπ) = 21−αLiα(z2) − Liα(z). (5.47)

Applying this property to the definitions of t̃k and ∆̃k, we obtain

t̃k = 21−α1 t̃2(k−π) − t̃k−π (5.48)

∆̃k = 21−α2 ˜∆2(k−π) − ˜∆k−π. (5.49)

The Taylor expansion of t̃k and ∆̃k around k = π follows by applying the expansion around
k′ = 0 to tk′ and ∆k′ with k′ = 2(k − π) and k′ = k − π, respectively, leading to

t̃k = −1 + 21−α1 − (23−α1 − 1)ζ(α1 − 2)

2ζ(α1)
(π − k)2

+ O((π − k)3), (5.50)

∆̃k =
(1 − 22−α2)ζ(α2 − 1)

ζ(α2)
(π − k) + O((π − k)3). (5.51)

This leads to the α1,2-independent dispersion relation

ωk =

{
|h+ 1 − 21−α1 | + O((k − π)2) if h ̸= −1 + 21−α1

K(α2)|π − k| + O((k − π)3) if h = −1 + 21−α1
, (5.52)

where K(α2) = (1 − 22−α2)ζ(α2 − 1)/ζ(α2), ∀α1, α2 > 1.
Accordingly, also the symbol discontinuity is independent of the value of α1,2, in par-

ticular, we find

G±
π = lim

k→π±
Gk = ±σy, ∀α1, α2 > 1. (5.53)

This leads to a logarithmic contribution coefficient

bπ(z) =
1

2π2

(
ln

(
z + 1

z − 1

))2

. (5.54)

The corresponding scaling of the entanglement entropy is then the one obtained in Eq. (5.39),
which is equivalent to the entanglement scaling in the nearest neighbor Kitaev chain, at
a quantum critical point characterized by a conformal field theory with central charge
c = 1/2. Figure 5.4 shows the entanglement scaling behavior at the non-homogeneous
critical point h = −1 + 21−α1 with α1 < α2 (Fig. 5.4(a)), α1 > α2 (Fig. 5.4(b)) and
α1 = α2 (Fig. 5.4(c)). Also in this case a nice agreement with the theoretical prediction
in the thermodynamic limit is found once finite size corrections are taken into account.

The results for the entanglement scaling with the subsystem size at different critical
points and for different values of the α1, α2 parameters within the weak long-range regime
considered in this section (1 < α1, α2 < 2) are summarized in Table 5.1.
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1 < α1 < α2 < 2 1 < α2 < α1 < 2 1 < α2 = α1 < 2

h = 1 Sν,L = O(1) Sν,L ≈ ν+1
12ν lnL Sν,L ≈ Bν,α lnL

h = −1 + 21−α1 Sν,L ≈ ν+1
12ν lnL Sν,L ≈ ν+1

12ν lnL Sν,L ≈ ν+1
12ν lnL

Table 5.1: Summary of entanglement scaling results at different quantum critical points
and for various values of α1 and α2 in the weak long-range regime. The symbol ≈ denotes
equality up to subleading O(1) corrections.

5.4 Entanglement scaling in the strong long-range regime

The scenario in the strong long-range regime is more complex. Previous studies on fermionic
systems with strong long-range pairing interactions [97, 282, 283] have reported logarithmic
violations of the entanglement area law even when the system is not at criticality. In those
cases, the noncritical logarithmic scaling of the ground state entanglement was linked to
divergences in the long-range couplings, as no Kac scaling was introduced in the model
Hamiltonian. This led to the belief that such anomalous scalings were trivially related to
the loss of system extensivity.

However, as shown in Section 1.5, introducing the Kac normalization into the Hamil-
tonian allows for the definition of a model with strong long-range interactions while still
preserving energy extensivity. In particular, when the Kac scaling is introduced, the cou-
pling divergences for α1, α2 < 1 are canceled, and the associated symbol discontinuities
are eliminated. However, an infinite number of new nontrivial discontinuities arise due
to the fact that the spectrum becomes discrete also in the thermodynamic limit. Specifi-
cally, the symbol Gk becomes formally discontinuous at each k = 2πn/N . Indeed, in the
thermodynamic limit, Gk is given by

lim
N→∞

Gk = Gn =
2(h− t̃n)

ωn
σz −

2∆̃n

ωn
σy. (5.55)

Then it can be labeled by a discrete integer number n, while the k variable becomes
continuous. In practical terms, any real physical implementation of the model is finite.
Therefore, the continuum limit as N → ∞ implies that the difference between two con-
secutive k values is O(N−1). In the strong long-range case, this difference leads to a finite
jump in the spectrum ωn, which remains discrete in the thermodynamic limit, resulting in
a discontinuity of the matrix symbol Gk for any k, irrespective of the chemical potential h.

For any α1,2 > 0 or α1 = α2 = 0 with h ̸= 0, the many-body ground state remains the
Bogoliubov vacuum. Thus, the lateral limits corresponding to k± = 2πn/N, 2π(n + 1)/N
are

G±
k =

{
Gn+1 = cosϕn+1σz + sinϕn+1σy

Gn = cosϕnσz + sinϕnσy
, (5.56)
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where the angles ϕn are defined by

cosϕn =
2(h− t̃n)

ωn
, sinϕn =

−2∆̃n

ωn
. (5.57)

Following the analytic procedure introduced in Section 5.2.4, we derive the logarithmic
scaling of the ground state Rényi entropies for any value of h:

Sν,L = Bν(h) lnL+ O(1), (5.58)

where the coefficient Bν(h) depends on ν, α1, α2, and h. This coefficient is the sum of
contributions from N discontinuities of the symbol, expressed as

Bν(h) =

N/2∑

n=−N/2+1

B(n)
ν (h), (5.59)

with each contribution B
(n)
ν (h) derived using Eq. (5.28), and reading

B(n)
ν (h) =

1

π2(ν − 1)

ν∑

l=1

arctan2

[
sin((ϕn+1 − ϕn)/2)√

cos2((ϕn+1 − ϕn)/2) + |zl|2

]
. (5.60)

where |zl|2 = tan2(π(2l − 1)/2ν), with l = 1, . . . , ν and l ̸= (1 + ν)/2. Specifically, for
ν = 2, the sum simplifies to

B
(n)
2 (h) =

2

π2

[
arctan

√
ωn+1ωn − (h− t̃n+1)(h− t̃n) − ∆̃n+1∆̃n

3ωn+1ωn + (h− t̃n+1)(h− t̃n) + ∆̃n+1∆̃n

]2
. (5.61)

The most interesting scenario arises when the hopping and pairing amplitudes are
equally long-range, i.e., when α1 = α2 = α, while we expect only minor differences to
appear when α1 ̸= α2, as long as they are both smaller than the system dimension (here
d = 1). Thus, for simplicity, we will focus on the case α1 = α2 = α in our analysis of the
strong long-range regime.

Figure 5.6(a) illustrates B2(h) as a function of the chemical potential h for different
values of α1 = α2 = α. Notably, for any non-zero value of the chemical potential (h ̸= 0)
and any positive α, the scaling coefficient remains B2(h ̸= 0) = O(1), indicating a loga-
rithmic violation of the area law even away from the quantum critical points. Additionally,
two singularities appear at the quantum critical points h = t̃0, t̃π = 1, 0. Specifically, there
is a discontinuity at h = 1 and a divergence with subsystem size at h = 0, resulting in a
subvolume law entanglement scaling.

These facts can be understood as follows. The spectrum is labeled by the discrete
index n leading to a finite gap between the ground state and the first excited levels which
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Figure 5.6: a) Rényi-2 scaling coefficient B2,α as a function of the chemical potential h
for different values of the power law decay coefficient 0 < α = α1 = α2 < 1. The red
and blue vertical lines correspond to the h = 1 and h = 0 critical points, respectively. b)
Numerical check for the entanglement subvolume law scaling at h = 0 for different values
of 0 < α < 1, plotted as a function of the logarithm of the subsystem size lnL. Scattered
points correspond to the numerical data while solid lines represent our prediction B2,α lnL.

are associated with discontinuities of the symbol. However, for n ≫ 1 all the modes
accumulate around ω∞ = 2|h|. This means that an extensive number of single-particle
states is almost degenerate. Consequently, as long as h ̸= 0, we may expect only the first
few modes around n = 0 to provide a significant contribution to the symbol discontinuity
leading to a coefficient Bν(h ̸= 0) = O(1). Accordingly, we may expect many features
of the entanglement scaling coefficients for values of the chemical potential sufficiently far
from the h = 0 point, to be qualitatively reproduced by considering a single discontinuity
approximation in which only the first discontinuity between the n = 0 and the first two
degenerate levels n = ±1 is considered,

Bν(h ̸= 0) ≈ B(0)
ν +B(−1)

ν . (5.62)

To compute these contributions, we need to determine the angles ϕ0 and ϕ±1 as defined by
the conditions in Eq.(5.57). For n = 0 we find that, regardless of α, the angle is given by

cosϕ0 =

{
−1 if h < 1

0 if h > 1
, ϕ0 =

{
π if h < 1

0 if h > 1.
(5.63)

The discontinuity at the quantum critical point h = 1 is due to the fact that at this point
the spectrum becomes gapless for n = 0, which is the source of the discontinuity in the
scaling coefficient observed in Fig. 5.6(a). Although the angles for n = ±1 cannot be
computed exactly in closed form for a generic power law decay exponent, the properties
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Figure 5.7: Comparison between the exact values of the logarithmic scaling coefficients
of the Rényi-2 entropy, and the single discontinuity approximation (dashed lines) results.
The coefficients are plotted as function of the chemical potential h for different values of
the decay exponent α.

t̃n = t̃−n, ωn = ω−n while ∆̃n = −∆̃−n imply that

cosϕn = cosϕ−n sinϕn = − sinϕ−n, (5.64)

leading to ϕn = −ϕ−n. Using these properties in Eq. (5.60), we get

B(0)
ν = B(−1)

ν =
1

π2(ν − 1)

ν∑

l=1

arctan2

[
cos(ϕ1/2)

1 + sin2(ϕ1/2)

]
if h < 1, (5.65)

B(0)
ν = B(−1)

ν =
1

π2(ν − 1)

ν∑

l=1

arctan2

[
sin(ϕ1/2)

1 + cos2(ϕ1/2)

]
if h > 1. (5.66)

Figure 5.7 presents a comparison between the exact logarithmic scaling coefficients of the
Rényi-2 entropy B2, calculated by incorporating contributions from a formally extensive
number of discontinuities (see Eq. (5.60)), and those obtained using the single discontinuity
approximation. The single discontinuity approximation accurately captures the qualitative
behavior of the scaling coefficients for sufficiently high values of α > 0.5 and for chemical
potential values h which are sufficiently far from h = 0. Notably, the approximation
successfully identifies the discontinuity of the coefficients at the quantum critical point
h = 1.

On the other hand, when the chemical potential approaches the h → 0 limit and
for sufficiently small decay exponents α < 1/2, the single discontinuity approximation
becomes inaccurate. In this scenario, the number of relevant discontinuities increases with
the subsystem size, leading to a subvolume law entanglement scaling. This phenomenon
can be understood by examining the h = 0 point. In this case, the spectrum accumulation
point becomes ω∞ = 0. Notably, while at leading order as n → ∞ the spectrum goes to
zero as ωn = O(nα−1), regardless of mode parity, the next-to-leading order corrections vary
depending on whether n is even or odd. By performing a next-to-leading order expansion
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of the terms in B
(m)
2 (see Eq. (5.61)), which corresponds to the discontinuity between the

modes m = 2n and m+ 1 = 2n+ 1, we find

t̃2n+1t̃2n =
s2α

n2−2α
+ O(n2α−3), (5.67)

∆̃2n+1∆̃2n =
c2α

n2−2α
− a2α
n2

+ O(n2α−3), (5.68)

ω2n+1ω2n =
s2α + c2α
n2−2α

+
bα
n2

+ O(n2α−3), (5.69)

where we have introduced the expansion coefficients

sα = sin(απ/2)Γ(2 − α)(2π)α−1,

cα = cos(απ/2)Γ(2 − α)(2π)α−1,

aα = (1 − α)/(2π),

bα = a2α(1/2 − cos2(απ/2)) = a2α cos(απ)/2. (5.70)

Now, inserting the large n expansions of Eqs. (5.67), (5.68) and (5.69) into Eq. (5.61), we
see that the denominator is of order O(n2α−2), while in the numerator the leading order
cancels out and we are left with a contribution of order O(n−2) if α < 1/2 or O(n2α−3) if
α > 1/2. Finally, summing over all modes, we obtain

Bν(h = 0) =
∑

n

B(n)
ν =

{∑
nO(n−2α) = O(L1−2α) α < 1/2∑
nO(n−1) = O(1) α > 1/2

. (5.71)

Accordingly, the leading order contribution to the entanglement Rényi entropy of the sys-
tem ground state at zero chemical potential takes the nontrivial form

Sν,L(h = 0) =

{
O(L1−2α lnL) if α < 1/2

O(lnL) if α > 1/2
. (5.72)

This analytic result matches numerical data in the large L limit. This is illustrated in
Fig. 5.6(b), where the numerical and analytical results for S2,L are plotted as functions of
lnL for different values of α. It is important to notice that approaching the thermodynamic
limit in the h = 0 case the spectrum becomes increasingly more degenerate approaching the
α = 0 case. Thus, for each finite N , there exists a large number of states nearly degenerate
with the ground state, making the estimation of subleading correction scaling technically
challenging.

Finally, in the mean-field case where α1 = α2 = 0 with zero chemical potential h = 0
the quasiparticle spectrum exhibits an extensive number of degenerate zero modes ωn = 0
corresponding to all even modes with n = 2m. As a result, the ground state features a
finite fermionic population in these even modes f2m ̸= 0. The leading order term in the
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entanglement scaling for this case is given by the first term of the Fisher-Hartwig expansion,
which corresponds to the volume law

Sν,L(α = 0, h = 0) =
1

1 − ν

∑

n(even)

ln [(1 − fn)ν + fνn ] + O(lnL). (5.73)

The maximal Rényi entropy is achieved when fn = 1/2 for all even n. In this case,
the logarithmic corrections become zero since in Eq. (5.28) an = bn = 0, and therefore

B
(n)
ν (fn = 1/2) = 0, while the volume law term simplifies to

Smax
ν,L (α = 0, h = 0) = N0 ln 2 + O(1) =

L

2
ln 2 + O(1), (5.74)

where N0 is the number of zero modes, which in this case corresponds to the number of
even modes N0 ≃ L/2 and the subleading corrections are at most of order O(1). It is
noteworthy that the maximal Rényi entropy obtained via the Fisher-Hartwig expansion
corresponds to the maximum possible entropy allowed by the ground state degeneracy

Smax
ν,L (α = 0, h = 0) = ln Deg[|gsα=0,h=0⟩] = N0 ln 2. (5.75)

This indicates that the Fisher-Hartwig result, derived as a large subsystem size expansion,
becomes exact in this maximally entangled case.

The results for the entanglement scaling with subsystem size for different values of h
and α = α1 = α2 within the strong long-range regime (0 < α < 1) are summarized in
Table 5.2.

α = 0 0 < α < 1/2 1/2 < α < 1

h ̸= 0 Sν,L = O(lnL) Sν,L = O(lnL) Sν,L = O(lnL)

h = 0 Sν,L = O(L) Sν,L = O(L1−2α lnL) Sν,L = O(lnL)

Table 5.2: Summary of entanglement scaling results at different quantum critical points
and for various values of α = α1 = α2 in the strong long-range regime.

5.5 Closing remarks

In this Chapter, we have extended the understanding of the peculiar properties of entangle-
ment in quantum systems featuring long-range interactions. Specifically, we investigated
the ground state entanglement scaling of a spinless fermionic chain with long-range hopping
and pairing amplitudes. The simplicity of this model and its non-additive nature allowed
us to unveil a rich and non-trivial phenomenology, characterized both numerically and
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analytically across different parameter regimes, notably the power-law decay exponents of
the hopping and pairing couplings (α1, α2) and the chemical potential (h).

We identified two main regimes: the weak long-range regime (1 < α1, α2 < 2) and the
strong long-range regime (0 < α1, α2 < 1). In the weak long-range regime, the quasipar-
ticle spectrum becomes continuous in the thermodynamic limit, with non-local couplings
modifying the dispersion relation near gapless critical modes. Here, the standard area law
for entanglement scaling is satisfied, apart from logarithmic violations at quantum critical
points h = 1 and h = −1 + 21−α1 . These logarithmic scalings are linked to discontinuities
in the symbol of the block Toeplitz correlation matrix, allowing for exact computation of
their coefficients. Notably, when α1 = α2 = α, the coefficient of the critical logarithmic
divergence at h = 1 exhibits a non-trivial dependence on α.

This coefficient, Bν,α, is non-universal, stemming from the spectrum precise form near
the critical modes rather than solely from the dispersion relation power-law exponent.
Consequently, the critical entanglement scaling deviates from conformal field theory pre-
dictions, highlighting that long-range couplings break conformal symmetry at criticality.

For α1 ̸= α2, the critical entanglement scaling becomes α-independent. When α1 > α2,
with pairing coupling decaying slower than hopping, the entanglement scaling matches that
of a conformal field theory with central charge c = 1/2, consistent with previous results
for long-range pairing and nearest-neighbor hopping Kitaev chains, now extended to any
long-range hopping with α1 > α2. The anisotropy between dominating hopping (α1 < α2)
and dominating pairing (α1 > α2) is a characteristic of the long-range Kitaev chain.

In the strong long-range regime, the quasiparticle spectrum is no longer continuous
in the thermodynamic limit, and the block Toeplitz correlation matrix symbol becomes
discontinuous across the spectrum. Nevertheless, only a few discontinuities significantly
contribute to the entanglement scaling, leading to a logarithmic dependence on subsystem
size even outside criticality. These coefficients were computed analytically for various α1,2

and h values.

The most intriguing scenario occurs at zero chemical potential (h = 0) in the strong
long-range regime, where the coefficient in front of the critical logarithmic entanglement
scaling diverges as a power law of the subsystem size, resulting in a fractal subvolume-law
entanglement scaling (Sν,L ≈ L1−2α lnL for 0 < α = α1 = α2 < 1/2 and ν > 1). This
phenomenon, observed in other complex scenarios, arises here naturally at equilibrium but
requires stronger interactions compared to the dynamical case.

In the mean-field case α = 0, the system presents an extensive number of degener-
ate zero energy modes, leading to an exponentially growing ground state degeneracy and
volume law behavior in entanglement scaling (Sν,L(α = 0) ≈ L).

Our findings demonstrate that long-range couplings significantly enhance entanglement
scaling at equilibrium, positioning long-range interacting quantum systems as promising
candidates for robust quantum computation. However, these enhanced entanglement prop-
erties might not persist out-of-equilibrium, as long-range interactions can suppress the
dynamical spread of entanglement in certain systems.
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These insights pave the way for future research into the equilibrium and dynamical
properties of long-range interacting quantum systems, offering a deeper understanding of
their potential for quantum technological applications.





Chapter 6

Conclusions and outlooks

While each chapter of this thesis presents specific conclusions related to the topics ad-
dressed, this final section provides a brief summary of the main results and a more general
overview of potential areas for further research.

The core focus of this thesis has been the study of the unique properties of long-range
interacting quantum systems, both in and out of equilibrium. The results presented here
demonstrate multiple ways in which long-range interactions can be harnessed for quantum
technological applications. The key advantages of long-range systems include their ability
to evade thermalization and create stable out-of-equilibrium states, their resilience to defect
generation during finite-time external driving, and their collective nature, which facilitates
the generation of high amount of entanglement. These features collectively have the po-
tential to mitigate the costs of quantum control, reduce energy losses, and preserve locally
stored quantum information during dynamic processes, such as quantum simulations or
quantum algorithms.

In Chapter 3, we explored the potential advantages of long-range interactions in the
context of quantum thermodynamics. By analyzing the universal properties of quantum
work statistics in driven long-range systems, we identified conditions under which long-
range interactions reduce energy losses during non-adiabatic evolution. This is crucial for
enhancing the efficiency and power output of quantum heat engines, especially in finite-time
thermal cycles.

We considered two limiting scenarios: sudden and slow driving protocols. In the sudden
quench scenario, we mapped the work statistics in a quantum system to a classical problem
in a higher effective dimension. This revealed that long-range interactions significantly
decrease the irreversible work done during rapid quenches. For slow driving protocols,
we studied the scaling behavior of the cumulants of the work distribution with respect
to the driving velocity v in the v → 0 limit, showing that long-range systems exhibit a
distinct advantage in reducing non-adiabatic excitations over a broad range of interaction
exponents α.

121
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We also investigated the performance of a quantum thermal machine consisting of a
chain of fermions with power-law decaying interactions undergoing a quantum Otto cycle.
We provided a detailed characterization of the device, detecting several sources of long-
range advantage compared to the nearest-neighbor case in the two most useful operation
modes for quantum technological applications: the heat-engine and the refrigerator modes.

In Chapter 4, we examined the potential of long-range interactions to stabilize out-
of-equilibrium phases. Specifically, we focused on Floquet-driven many-body quantum
systems and the stabilization of Discrete Floquet Time Crystals (DFTCs).

The first part of Chapter 4 introduced a novel order parameter ζ capable of unambigu-
ously detecting higher-order DFTCs in clean long-range systems. We used this parameter
to derive a new out-of-equilibrium phase diagram for the kicked long-range Ising model,
featuring self-similar structures with non-integer, fractal dimensions.

In the second part of Chapter 4, we investigated the potential of superconducting quan-
tum hardware to simulate the dynamics of systems with couplings beyond nearest neigh-
bors. Leveraging the universality of native gates in quantum processors, we successfully
implemented couplings among physically disconnected qubits and mitigated the effects of
gate noise, measurement errors, and statistical errors. This allowed us to benchmark the
stabilization discrete Floquet time-crystalline response in a periodically driven quantum
spin chain as the interaction range increased, using IBM superconducting processors.

Finally, in Chapter 5, we explored the potential of quantum Hamiltonians with long-
range couplings to host highly entangled ground states, overcoming the limitations imposed
by the entanglement area law for local systems.

Specifically, we investigated the ground state entanglement scaling of a spinless fermionic
chain with long-range hopping and pairing amplitudes, unveiling a rich phenomenology. In
the weak long-range regime, the standard area law for entanglement scaling is satisfied,
with logarithmic violations at quantum critical points h = 1 and h = −1 + 21−α1 . No-
tably, when α1 = α2 = α, the coefficient of the critical logarithmic divergence at h = 1
exhibits a non-trivial dependence on α, which is not compatible with results obtained from
any conformal field theory, highlighting that long-range couplings explicitly break critical
conformal symmetry.

In the strong long-range regime, we observed logarithmic entanglement scaling even
outside criticality for every h ̸= 0. The most intriguing scenario occurs at zero chemical
potential (h = 0) where the coefficient in front of the critical logarithmic entanglement
scaling diverges as a power law of the subsystem size, resulting in a subvolume-law entan-
glement scaling.

In the mean-field case α = 0, the system presents an extensive number of degenerate
zero energy modes, leading to an exponentially growing ground state degeneracy and a
volume law behavior in entanglement scaling.

Given the findings presented in this thesis, and the fact that many atomic, molecu-
lar, and optical (AMO) platforms, the most promising candidates for quantum computing,
naturally exhibit long-range couplings, a critical question arises: Are we fully harnessing
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the potential of existing quantum processors? Considering that these processors inher-
ently support long-range couplings, it is worth exploring whether quantum algorithms
that explicitly incorporate and exploit this property could significantly reduce the required
number of qubits. Despite their instrumental role in the achievements of current quantum
processors, long-range interactions have yet to be fully leveraged in the design of quantum
algorithms and simulations. This untapped potential offers a unique opportunity for in-
novation and advancement in the field. For example, in the context of search algorithms,
long-range quantum walks are known to boost search times. However, many open ques-
tions remain regarding the advantages of long-range couplings in such setups, necessitating
deeper investigation. Furthermore, the presence of long-range couplings could prove bene-
ficial for generic quantum control tasks, such as quantum state preparation. The enhanced
robustness against non-adiabatic transitions and defect generation may enable faster state
preparation while maintaining high fidelity with the target state.

In conclusion, the work collected in this thesis highlights the significant potential of
long-range interacting quantum systems and opens up numerous avenues for future re-
search. We hope that these findings will inspire further investigations in this fascinating
field, ultimately contributing to the advancement of quantum technologies.
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Muga. Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adia-
baticity. Phys. Rev. Lett., 104:063002, Feb 2010.

[158] A. del Campo, J. Goold, and M. Paternostro. More bang for your buck: Super-
adiabatic quantum engines. Scientific Reports, 4(1):6208, Aug 2014.

[159] Obinna Abah and Eric Lutz. Energy efficient quantum machines. EPL (Europhysics
Letters), 118(4):40005, may 2017.
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and Piergiulio Tempesta. Generalized isotropic lipkin–meshkov–glick models: ground
state entanglement and quantum entropies. Journal of Statistical Mechanics: Theory
and Experiment, 2016(3):033114, mar 2016.
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