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Abstract

In this thesis, I leverage the wealth of blood transcriptomic, CSF proteomics, and

clinical data, including UPDRS and UPSIT scores, meticulously refining the data

quality through thorough preprocessing. Employing a progressive feature selection

technique, I pinpoint the most crucial genes, and proteins associated with Parkin-

son’s disease. Subsequently, I deploy a boosting algorithm to construct a diagnostic

framework centered around these identified genes and proteins. Additionally, I con-

duct an in-depth analysis of UPDRS and UPSIT datasets from PPMI, providing

a comprehensive comparison. This holistic approach facilitates a more robust un-

derstanding of Parkinson’s disease, offering insights for enhanced diagnostic and

treatment strategies.

The project is conducted in collaboration with Rita Levi-Montalcini European

Brain Research Institute (EBRI).
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Chapter 1

Introduction

The rising occurrence of Parkinson’s disease and its profound health repercussions

have prompted widespread research endeavors aimed at discovering efficacious treat-

ments and early detection methodologies.

The ever-expanding volume of data associated with this pursuit, especially the

assertive integration of artificial intelligence, particularly machine learning (ML),

marks a noteworthy trend. A plethora of data resources is now accessible, facilitat-

ing in-depth investigations into the progression of the disease. These resources are

instrumental not only in comprehending the disease’s evolution but also in identify-

ing pivotal biomarkers crucial for early diagnosis.

A recent breakthrough in the alpha-synuclein seed amplification assay (αSyn-

SAA) has emerged as a promising avenue for early detection and disease monitoring

[1]. Despite its potential, such diagnostic methods often necessitate invasive proce-

dures and clinical assessments. In contrast, the well-established approach of blood

transcriptomics analysis presents a non-invasive alternative, underscoring its poten-

tial to redefine the landscape of Parkinson’s disease diagnosis.

Over the past decade, the Parkinson’s Progression Markers Initiative (PPMI)

dataset has played a pivotal role in examining the long-term progression of Parkin-

son’s disease [2]. Utilizing ML for analyzing imaging, clinical, genetic, and multi-

omics data from PPMI has proven to be crucial in advancing our understanding.

In this thesis, we delve into the analysis of RNA (Ribonucleic acid) sequencing as a

non-invasive approach to studying Parkinson’s disease. Despite the invasive nature

of obtaining cerebrospinal fluid, we capitalize on available proteomics Cerebrospinal

Fluid (CSF) data from individuals with Parkinson’s disease or healthy subjects at

baseline, treating these datasets separately.

Our exploration has yielded notable results, employing a data glossary alongside

our ML algorithm, particularly in the analysis of RNA-seq data. These findings
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underscore the significance of advanced data processing and ML techniques in ex-

tracting meaningful patterns and insights from complex datasets. Additionally, we

analyzed motor scores, known as UPDRS, as well as the UPSIT dataset. Therefore,

our thesis is structured to discuss data extraction , preprocessing , the boosting

algorithm we used and the metrics to evaluate the result and revealing the result for

rna seq cfs proteomics, updrs as well as upsit. we discuss the strength of each data

and how our algorithm is strutured to obtain the result and what improvement is

left.

This thesis covers data extraction, preprocessing, and algorithm details. We eval-

uate model performance and leverage diverse datasets (RNA-seq, CSF proteomics,

UPDRS, UPSIT). Examining each data source reveals its unique strengths. Finally,

we analyze the results, highlighting achievements and areas for improvement.

Chapter 2 provides a panoramic overview, delving into theoretical background

of subjects. Section 2.1 conducts a comprehensive review of Parkinson’s disease,

unraveling its origins and key features. Section 2.2 navigates the landscape of RNA-

seq technology, explicating its theoretical and practical foundations.The following

section, 2.3, delves into cerebrospinal fluid proteomics, providing a concise overview

of its biological dimensions.

Chapter 3 focuses on data extraction and preprocessing. In section 3.1, we delve

into the intricacies of the Parkinson’s Progression Markers Initiative (PPMI), ex-

ploring its data repository structure and evaluating various datasets. Section 3.1.1

meticulously examines RNA-seq data from PPMI, detailing preprocessing steps,

the criteria adopted for subject filtering, and relevant data empowerment meth-

ods essential for patient diagnosis. Section 3.1.2, mirroring the RNA-seq segment,

encompasses data acquisition, preprocessing pipelines, and empowerment methods.

The final section 3.1.3 briefly outlines the acquisition and preprocessing of UPDRS

and the University of Pennsylvania Smell Identification Test (UPSIT) data.

Chapter 4 delves into the realm of ML algorithms, evaluation metrics, and the

critical role of High-Performance Computing (HPC). The chapter unfolds with 4.1,

which illuminates our ML algorithm, detailing the feature extraction methodology

aimed at optimizing predictive performance. Transitioning to 4.1.1, we delve into

the prowess of two robust ML algorithms, emphasizing their utilization of ensemble

techniques. Subsequently, Section 4.2 we discuss diverse model evaluation metrics,

offering insights to comprehend the obtained results. Lastly, in 4.3, we delve into

the indispensability of High-Performance Computing (HPC) facilities, illustrating

various scenarios where their utilization becomes imperative.

Chapter 5 is dedicated to presenting the results of our study, with each section
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providing a detailed examination of the outcomes using ML evaluation metrics. In

Section 5.1, we conduct an in-depth analysis of the RNA-seq data, elucidating the

performance metrics and insights into the pathology of identified genes, particularly

those associated with mitochondrial functions. Section 5.2 focuses on the evaluation

and results derived from CSF proteomics. The final section, 5.3, presents the ML-

based assessment results for both UPDRS motor scores and UPSIT data, offering a

technical overview of the observed outcomes.

In the final chapter of this thesis 6, we present an overall discussion and outline

potential future directions.

The provision of source code and external data in the author’s GitHub repos-

itory in [3] enhances transparency and encourages collaboration in the scientific

community.
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Chapter 2

Background

In this chapter, firstly in 2.1 we provide a theoretical foundation for grasping Parkin-

son’s disease, covering its definition, symptoms, and how it spreads. We then in 2.2

explain RNA-sequencing technology, shedding light on the origin of data used in our

ML. Finally, in 2.3 we offer a brief introduction to cerebrospinal fluid proteomics,

helping to understand better the nature of data we used in our research.

2.1 Parkinson’s Disease

In 1817, James Parkinson introduced the term “shaking palsy” to characterize what

we now know as Parkinsons disease (PD). PD is a neurodegenerative condition

impacting the central nervous system. It is ranking as the second most prevalent

neurodegenerative disorder following Alzheimer’s disease that affects 2-3% of the

population age ≥65 years old [4]. With the aging population, its prevalence is

expected to rise [5], see figure 2.1. However the trend in Italy shows that there has

been a large decline in the prevalence [6], which requires further investigations, some

suggest that the decreasing trends in Italy might be due to the Mediterranean diet,

which has been demonstrated to be related to reduced risk for PD [7], see figure

2.2. In this figure we can see the current available number of cases of Parkinson’s

disease per 100,000 people, in both sexes. The age followed by the age-standardized

algorithm [8].

In biological point of view, PD manifests through a gradual decline in nerve cells

within the substantia nigra, a specific region in the center of brain, see MRI image

of the brain 2.3, in both healthy subject and early PD. At the time of death, this part

of the brain has lost between 50% and 70% of its neurons compared to people who

do not have the disease [9].This decline results in a shortage of dopamine, a pivotal

neurotransmitter crucial for regulating movement. The primary symptoms of PD
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Figure 2.1: Global prevalence of PD by age and sex, 2016 [5]

Figure 2.2: Italy versus US Parkinson’s disease prevalence 1990-2019
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Figure 2.3: Ultra-High Field MRI : The left shows a healthy individual’s substantia
nigra, while the right displays a Parkinson’s patient [11].

encompass several motor symptoms such as involuntary shaking, known as resting

tremor which is typically observed in the hands or limbs. PD patients appear to have

muscle stiffness referred to as rigidity, impeding smooth and prompt movement, and

bradykinesia, characterized by slowed movement, including reduced blinking and

facial expressions. Individuals with PD also experience postural instability, making

balance maintenance challenging and increasing the risk of falls [10].

Normally, individuals encounter the motor symptoms of Parkinson’s disease (PD)

only when 50% to 70% of dopaminergic neurons have already been depleted [12].

In addition to the primary symptoms mentioned earlier, PD can exert a widespread

impact on various facets of an individual’s life. As the condition advances, cognitive

decline becomes evident, leading to challenges in memory, thinking, and reasoning,

particularly in later stages of the disease. Mental health issues, including depres-

sion, anxiety, and disruptions in sleep patterns, also emerge as significant factors

influencing the overall well-being of those with PD. Speech and swallowing problems

manifest as difficulties in articulation and the ingestion of food, further complicating

daily life. In addition to these motor symptoms, Parkinsons disease can also cause a

loss of sense of smell (anosmia), which often occurs several years before other symp-

toms develop. Additionally, individuals may experience pain and sensory changes,

such as a sensation of burning, tingling, or numbness in the limbs. Fatigue and

sleep difficulties, marked by excessive daytime sleepiness or trouble maintaining a

consistent sleep pattern, further contribute to the multifaceted nature of PD. The

progression of PD is typically gradual, unfolding over the course of years, with initial
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symptoms becoming noticeable in middle or late life.

Parkinson’s disease has an uncertain origin, likely arising from a blend of genetic

and environmental elements. In terms of genetics, certain gene mutations can elevate

the risk, although direct inheritance is uncommon in most cases. Environmental

factors also play a role, with exposure to specific toxins, pesticides 1, and head

injuries potentially contributing to a slight increase in risk. However, the evidence

supporting these connections is not conclusively established.

PD lacks a cure, but treatments aim to manage symptoms and enhance quality of

life. Diagnosis involves a neurological examination, imaging tests, and medication

trials. Medications like levodopa address dopamine deficiency and specific symp-

toms. Deep brain stimulation is a surgical option for advanced cases. Therapies,

including physical, occupational, and speech therapy, play a key role in managing

movement, daily activities, and communication challenges associated with PD.

Continuous research efforts in PD aim to deepen our understanding of the condi-

tion, develop treatments that can modify the disease to slow or halt its progression,

and enhance existing therapies. The goal is not only to grasp the intricacies of

the disease but also to innovate and explore novel approaches that can offer more

effective solutions for individuals affected by Parkinson’s [13, 14].

2.2 RNA-Sequencing

RNA-sequencing, often abbreviated as RNA-Seq, is a technique that uses next-

generation sequencing to reveal the presence and quantity of RNA molecules in a

biological sample. This provides a snapshot of gene expression in the sample, also

known as the transcriptome.The transcriptome refers to the complete set of RNA

molecules, including messenger RNA (mRNA), non-coding RNA, and other RNA

species, expressed in a cell or tissue at a specific point in time. RNA-seq provides

researchers with a detailed snapshot of gene expression patterns, allowing them to

quantify the abundance of different RNA molecules and identify novel transcripts.

In the past, the methods like SAGE or cDNA microarrays was used to cap-

ture these messages and then analyzed them with programming languages like R.

But nowadays, a new technologies called Next-Generation Sequencing (NGS) made

this process much easier and more efficient. NGS has allowed us to understand

the transcriptome in a new and more complex way, and it is become the best tool

for studying gene expression on a large scale. NGS is a powerful molecular biology

1Toxins refer to substances that can be harmful or poisonous to living organisms. These can
include natural substances as well as synthetic chemicals. Pesticides are substances specifically
designed to control or eliminate pests, such as insects, weeds, fungi, or rodents.
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Figure 2.4: RNA-Seq technology process highlights [15]

technique that enables the comprehensive and high-throughput analysis of the entire

transcriptome of an organism. This technology has revolutionized the field of ge-

nomics by offering a more precise and comprehensive understanding of the dynamic

nature of gene expression, uncovering potential biomarkers, and shedding light on

various biological processes.

The RNA-seq process involves several key steps. Initially, RNA is extracted

from the biological sample of interest, such as cells or tissues. The extracted RNA is

then fragmented to obtain smaller, more manageable pieces. Next, the fragmented

RNA is converted into complementary DNA (cDNA) through reverse transcription.

Subsequently, PCR amplification may occur to increase the amount of cDNA avail-

able for sequencing. After amplification, library preparation takes place, where

adaptors are ligated to the ends of the cDNA fragments to facilitate sequencing.

The prepared cDNA libraries are then sequenced using high-throughput sequencing

platforms, such as the Illumina platform. The Illumina platform utilizes sequencing-

by-synthesis technology to generate millions of short sequence reads from the cDNA

fragments. These reads are subsequently aligned to the reference genome or tran-

scriptome to quantify gene expression levels, see figure 2.4.

RNA-seq not only provides information on the abundance of known transcripts

but also enables the discovery of novel transcripts, alternative splicing events, and

non-coding RNAs.

RNA-seq technology offers a comprehensive snapshot of gene expressions, but
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the vast amount of data it produces necessitates the use of advanced computational

tools. These tools are crucial for uncovering subtle molecular patterns concealed

within the broad transcriptomic landscape. The complex and extensive nature of

RNA-Seq datasets poses challenges, demanding sophisticated computational meth-

ods to discern meaningful patterns and enhance our ability to predict diseases [16].

ML algorithms, renowned for their capacity to decipher intricate relationships in

data, are instrumental in utilizing RNA-seq data for diagnostic purposes. They are

adept at identifying nuanced gene expression patterns, pinpointing potential disease

markers, and constructing models to forecast disease progression. The integration of

RNA-seq data and ML not only enriches our comprehension of disease mechanisms

but also paves the way for personalized medicine, customizing treatments to cater

to individual needs.

In this thesis, we utilized the RNA-Seq data from PPMI. After extracting the

data, and apply preprocessing steps described in 3.1.1 we employed a ML algorithm

to construct a predictive model based on the available data in 4.1.

2.3 Cerebrospinal Fluid Proteomics

Cerebrospinal Fluid (CSF) is a clear fluid surrounding the brain and spinal cord,

serving as a protective cushion and facilitating waste removal (refer to Figure 2.5).

It acts as a valuable repository, providing profound insights into brain activities.

Laden with proteins directly sourced from the brain, CSF becomes an invaluable

resource for comprehending brain functions.

The samples utilized in our study were collected from participants in the Parkin-

son’s Progression Markers Initiative (PPMI) between June 2010 and May 2019.

Employing a specialized technology known as SomaScan, proteins in the CSF were

quantified without access to participants’ clinical details. This process employed

modified aptamers called SOMAmers, ensuring reliable results [17]. The collected

CSF undergoes analysis for various markers and proteins, offering potential indica-

tors of neurological conditions, including Parkinson’s disease.

In this thesis, after data extraction and preprocessing in 3.1.2 we apply ML

techniques to discern specific protein patterns in CSF associated with Parkinson’s

disease, delving into the predictive power of CSF proteomics data in 5.2.
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Figure 2.5: CSF, [18]
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Chapter 3

Data Extraction and Preparation

In this chapter, we begin by exploring the PPMI data repository, the primary source

of our data in 3.1. Subsequently, we provide a detailed overview of the data extrac-

tion and preprocessing procedures for RNA-Seq in 3.1.1, CSF in 3.1.2 proteomics,

MDS-UPDRS, and UPSIT datasets in 3.1.3. These preparatory steps ensure the

data is suitably formatted for integration into the ML algorithm discussed in the

following chapter.

3.1 PPMI Data Repository

The Parkinson’s Progression Markers Initiative (PPMI) is established in 2010 [2].

It is a significant research project sponsored by the Michael J. Fox Foundation [14].

It collects samples of DNA, RNA, plasma, serum, blood, urine, saliva, and cells

from volunteers. The goal is to understand how the body changes as Parkinson’s

disease begins and develops. Within PPMI, data is gathered through three distinct

channels: clinical, remote and online. PPMI Clinical conducts in-person clinical

assessments, while PPMI Remote focuses on remote data collection, specifically

targeting the pre-diagnostic phase of PD. On the other hand, PPMI Online relies on

participant self-reports through a web application. Notably, PPMI Online includes

a subset of information also found in the data captured by PPMI Clinical [19], see

figure 3.1. In this thesis, we mainly work on PPMI clinical. In clinical channel, more

than 1,500 volunteers, including those with early-stage PD, people with risk factors,

and healthy volunteers, have taken part from 33 sites in 11 countries including

Italy. They share data and samples for at least five years. It plans to include over

4,000 participants, including 2,000 with early signs, from almost 50 international

locations, PPMI remote and online aim to arrive to 50,000 and 100,000 participant

respectively[20].
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Figure 3.1: PPMI Data Channels

PPMI Clinical participants have been enrolled into one of five cohorts, namely:

• Parkinson’s Disease (PD), i.e., people who have a formal diagnosis of Parkin-

son’s disease.

• Prodromal, i.e., people who are at risk of developing PD based on clinical

features, genetic variants or other biomarkers but have not been formally di-

agnosed. In this thesis, exclude these type of patients.

• Healthy Controls, i.e., people with no neurologic disorder and no first-degree

relative with PD

• SWEDD (Scan without dopaminergic deficit). This is a small legacy cohort

that we exclude.

• Early Imaging is a cohort of participants with a confirmed diagnosis of PD

who were untreated and underwent additional tests including DaTscan and

AV-133 imaging. In this thesis, we exclude them.

In this figure 3.2, we represent proportion of each unique cohort, and in 3.3 we can

see the age distribution of participants.

PPMI is a longitudinal observational study that collects data from participants

at various visits. Here’s an overview of the PPMI participants by visits:

• Baseline (BL): All participants are assessed for their initial status.

• 6-Month Visit (V02): Participants return for a follow-up visit six months after

the baseline.
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Figure 3.2: PPMI clinical participants

• Annual Visits (V04, V06, V08, etc.): Participants are assessed annually, These

visits include comprehensive assessments of both motor and non-motor symp-

toms.

• Intermediate Visits (V05, V07, V09, etc.): These visits occur every six months

between the annual visits.

• Remote Visits (R06, R08, etc.): These visits are conducted remotely and occur

every six months.

The number of participants at each visit varies. Some participants may drop out

of the study, while others continue to participate. The visit schedule is designed to

track the progression of Parkinson’s disease over time. See figure 3.4.

In this thesis, we meticulously examine baseline (BL) visits, each participants ac-

companied by its corresponding diagnosis either Parkinson’s Disease (PD) or Healthy

Control (HC) across various datasets. Subsequent sections delve into comprehensive

discussions on RNA-Seq data, cerebrospinal fluid (CSF) proteomics data, as well as

UPDRS and UPSIT assessments. Detailed insights are provided into the extraction

process and the specific preprocessing criteria we adhere to. All the data analyzed

in this study have been sourced from the Parkinson’s Progression Markers Initiative

(PPMI) repository.

In the subsequent sections, we delve into a detailed discussion of the data col-

lected from individuals diagnosed with Parkinson’s Disease and Healthy Controls
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Figure 3.3: PPMI Age Distributions

during their baseline visit. This data, which includes their diagnoses, will be uti-

lized for supervised ML assessments.
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Figure 3.4: Participants by visit

3.1.1 RNA-Seq Data

In the analysis of RNA sequencing (RNA-seq) data, the quantification of gene ex-

pression hinges on two fundamental components: counts and quants.

• Counts: Represent the raw number of reads aligning to a specific gene, reflect-

ing transcript abundance.

• Quants: Process of estimating gene expression levels based on raw sequencing

data. This involves computational algorithms that transform raw read counts

into meaningful expression values, taking into account factors like gene length

and sequencing depth.

Our thesis utilizes counts to identify differentially expressed genes in Parkinson’s

disease, We provide our result in 5.1.

We retrieved the most recent RNA Sequencing Feature Counts/TPM (IR3/B38/Phases

1-2) data, version 2021-04-02, from the PPMI repository. Subsequently, we con-

structed a table mapping Ensembl Gene IDs to patient numbers (PATNO), en-

compassing 58780 genes and 1530 individuals. This was accomplished by reading,
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organizing, and processing data from multiple files. To optimize the data manipu-

lation process, we leveraged the parallel computing capabilities of Dask a library in

python [21], in particular Dask DataFrame 1.

Upon the construction of the appropriate table, we implemented the following

sequence of filtration and preprocessing steps:

1. Retained only individuals diagnosed as either Healthy Control or Parkinson’s

Disease.

2. Excluded patients with specific gene mutations (SNCA, GBA, LRRK2), par-

ticularly those with CONGBA, CONSNCA, and CONLRRK2 mutations as

identified by the Consensus Committee. These patients exhibit a heightened

risk of developing Parkinson’s disease, more details about these gene mutations

are given in Appendix B.

3. Excluded patients who were on dopaminergic medications at baseline and

prior. These medications include dopamine agonists and monoamine oxidase

inhibitors, both of which are commonly used in the treatment of Parkinson’s

disease. Dopamine agonists mimic the effects of dopamine in the brain, while

monoamine oxidase inhibitors prevent the breakdown of dopamine. This infor-

mation is based on a multiple treatment comparison meta-analysis studying

the comparative effectiveness of dopamine agonists and monoamine oxidase

type-B inhibitors for Parkinson’s disease.

4. Removed duplicated gene IDs, specifically those Ensembl genes with the suffix

PAR Y and their X transcripts.

5. Retained only genes that are either part of the 19393 protein-coding genes or

the 5874 long intergenic non-coding RNAs (lincRNAs) list, as obtained from

the official HGNC repository (date: 31-Jan-2024).

6. Filtered out genes with low expression levels, retaining only those genes that

exhibit more than five counts in at least 10 percent of the individuals.

7. Created factors for diagnosis, sex, clinical center, and RIN using batch factor

information.

8. Performed differential gene expression analysis utilizing the limma package.

1Dask DataFrame is a part of the Dask library and is designed to provide a parallelized and
larger-than-memory alternative to pandas DataFrame
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Figure 3.5: Preprocessed RNA-Seq. Data

9. Normalized factors, computed log2 counts per million, and created a design

matrix with sex correction.

10. Removed batch effects using clinical center, sex, and RIN as covariates.

11. Normalized gene expression data.

After applying various preprocessing steps, we obtained a dataset consisting of 545

individuals and 22,033 genes, as depicted in Figure 3.5.

In the subsequent figure, we present a comparison of numbers of two distinct

groups of individuals that were excluded from our study. This includes those with

gene mutations and those using dopaminergic drugs. The intersection of these sub-

jects is illustrated in Figure 3.6.

In the end, we apply feature scaling to gene expression data, an essential pre-

processing step that normalizes or standardizes numerical our gene expression in a

dataset. This scaler transforms the data by subtracting the mean and dividing by

the standard deviation, ensuring that all genes share a comparable scale. This pre-

vents particular genes from unduly influencing the learning process based on their

original magnitudes. The formula for scaling a feature X is given by:

Xscaled =
X −mean(Xtrain)

std(Xtrain)

Here, Xscaled denotes the scaled gene, X is the original gene, mean(Xtrain) signifies

the mean of the training set for that gene, and std(Xtrain) represents the standard

deviation of the training set for that gene. This process ensures that each gene has a

mean of 0 and a standard deviation of 1 in the training set, maintaining uniformity

across both training and test sets.

18



Figure 3.6: Patients excluded

3.1.2 Proteomics Data

Our analysis utilized proteomics data from the PPMI repository. We focused on ex-

tracting unique protein IDs (represented by SOMA SEQ ID) corresponding to targeted

protein symbols (TARGET GENE SYMBOL). For example, 10000 − 28 3 corresponds to

the ‘CRYBB2‘ protein symbol, which encodes the Beta-crystallin B2 protein in hu-

mans.

These protein IDs, also referenced as TESTNAME in the data, have corresponding

values (TESTVALUE) representing batch-corrected proteomic values for each patient

in the CSF dataset, see Figure 3.7. These TESTVALUE values represent the essential

proteomic data utilized for ML evaluation.

The data is initially scattered across seven files named:

Project 151 pQTL in CSF {#}of 7 Batch Corrected.csv (where # indicates a spe-

cific file number). We combined these files into a single DataFrame containing 803

subjects and 4785 proteins identified by TESTNAME IDs.

To ensure data quality, we excluded patients using dopaminergic drugs or having

specific gene mutations (GBA, LSNCA, and LLRRK2 pathogenic variants) similar

to RNA-Seq that we discussed in 3.1.1 . Following these exclusions and focusing

solely on Parkinson’s disease (PD) subjects and healthy controls (HC), we obtained

a final dataset of 4785 proteins and 555 subjects suitable for ML analysis (see an

example of the final data table in Figure 3.8).
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Figure 3.7: Proteomic gene values and IDs

Figure 3.8: Proteomic Gene Symbols versus Patient Numbers
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3.1.3 MDS-UPDRS and UPSIT Data

The Parkinson’s Progression Markers Initiative offers a wealth of clinical data for

Parkinson’s disease (PD) across various cohorts. However, in this section we only

focus on two important ones, UPDRS and UPSIT.

The Movement Disorder Society-sponsored revision of the Unified Parkinson’s

Disease Rating Scale (MDS-UPDRS) plays a pivotal role in evaluating PD progres-

sion within the PPMI. This comprehensive scale comprises four distinct parts, each

dedicated to assessing different facets of the disease.

• Part I focuses on Non-motor Experiences of Daily Living, encompassing items

that evaluate non-motor symptoms such as sleep disturbances, fatigue, cogni-

tive impairment, mood changes, and urinary problems. While proven useful in

identifying early PD patients with cognitive decline and sleep issues, certain

items may lack sensitivity for subtle changes in early PD stages.

• Part II, known as Motor Experiences of Daily Living, evaluates how PD im-

pacts daily activities like dressing, eating, walking, and hygiene. Research on

PPMI data suggests that Part II scores might not be as sensitive for early

PD patients due to high item thresholds, reflecting more severe disability and

potentially limiting the capture of early motor changes.

• Motor Examination (Part III) involves a clinical assessment by a trained pro-

fessional, covering tremor, rigidity, bradykinesia, posture, gait, and speech.

Part III scores in PPMI demonstrate good sensitivity for tracking motor pro-

gression throughout PD stages, making it a valuable tool for identifying subtle

motor changes even in early PD.

• Part IV, Motor Complications, assesses complications arising from PD medi-

cation, including dyskinesia, wearing off, and freezing of gait. Part IV scores in

PPMI offer insights into the development and severity of motor complications

over time, aiding in treatment response monitoring and identifying patients at

risk for these complications.

While the MDS-UPDRS remains a valuable tool for PD assessment in PPMI, its

effectiveness varies across its parts and disease stages. Part III appears most sensitive

for capturing motor changes, whereas Parts I and II may require adaptations for

early PD evaluation. Therefore, in our study, we combine scores from Parts I, II,

and III to evaluate PD diagnosis, see UPDRS table in 3.9. In Part I, we integrated

patient questionnaires alongside clinical assessments. We focus on baseline data to

assess the predictive power of these scores using ML techniques.
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Figure 3.9: MD-UPDRS Data PPMI

The University of Pennsylvania Smell Identification Test (UPSIT) data is also a

crucial component in neurological studies, particularly in the context of Parkinson’s

disease (PD) research. UPSIT is a standardized test designed to assess an individ-

ual’s ability to identify various odors, serving as an olfactory measure. As olfactory

dysfunction is a common non-motor symptom of PD, UPSIT data is valuable for

investigating the relationship between olfactory impairments and the progression

of PD. We utilize UPSIT scores to analyze the extent of olfactory deficits in PD

patients, potentially aiding in early diagnosis.

In this study, we utilize the complete dataset from the Archived UPSIT data,

comprising 1905 Patient IDs and their corresponding scores for recognizing scents

across four different booklets. Each score represents the recognition (1) or lack

thereof (0) for ten distinct scents in each booklet: UPSITBK1, UPSITBK2, UP-

SITBK3, and UPSITBK4. A visual representation of the dataset is provided in

Figure 3.10.
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Figure 3.10: UPSIT Data PPMI
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Chapter 4

Machine Learning

In this chapter, firstly in 4.1 we explore the different ML pipelines employed across

diverse datasets, each tailored to address specific challenges and optimize perfor-

mance. Initially, we detail our approach for RNA-Seq and proteomics data, where

our focus lies on enhancing the Area Under the Curve (AUC) score using specialized

algorithms. Through iterative feature selection techniques, we refine the ML models

by prioritizing the most important genes and proteins, thereby improving predictive

accuracy. Subsequently, in 4.1.1 we delve into the implementation of AdaBoost and

XGBoost algorithms, renowned for their prowess in boosting predictive accuracy

through ensemble learning. These algorithms are meticulously applied to the vari-

ous datasets, including MD-UPDRS and UPSIT, to uncover insightful patterns and

relationships. Furthermore, in 4.2 we highlight the importance of comprehensive

model evaluation using diverse metrics such as precision-recall curves, ROC curves,

and key performance indicators like accuracy, sensitivity, and specificity. Finally, in

4.3 we emphasize the indispensable role of High-Performance Computing (HPC) in

executing robust computations and optimizing ML models.

4.1 The ML Pipeline

In this section, we delve into the various ML pipelines employed across different

datasets. For RNA-Seq data and proteomics data, our primary focus was on en-

hancing the AUC score using a specific algorithm. Additionally, we utilized another

algorithm for the proteomics dataset to evaluate improvements in other ML scores.

An iterative feature selection approach was implemented for both RNA-Seq gene

and proteomics datasets to refine the performance of the ML models.

Initially, the correlation between features in the original datasets (comprising

22,032 genes or 4,785 proteins) and binarized patients’ diagnosis (0=Healthy Con-
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trol, 1=Parkinson’s Disease) was evaluated by Pearson correlation index. The top

10% of features, displaying the highest absolute correlation indices, were chosen for

subsequent analysis.

In the initial step, a total of 101 ML classification models distinguishing PD vs.

HC were generated. This involved randomly partitioning the whole dataset 101 times

for training (70%) and testing (30%) , ensuring diverse subsets for each iteration. We

deployed a special boosting algorithm (AdaBoost package) with 400 decision trees,

and complexity parameter of 0.00011. The detals about how AdaBoost algorithm

works discussed in 4.1.1. Then, the model with the highest Area Under the Curve

(AUC) was selected.

Features were then prioritized based on their variable importance, and only the

top 50% with the greatest importance were retained for subsequent models. In the

boosting algorithm, the significance of each feature is determined by its contribution

to the classification gain, which is evaluated using the Gini index within each decision

tree. This importance measure is further weighted by the significance of the tree

itself within the model. Specifically, in our model consisting of 400 decision trees,

the feature importance is calculated individually for each tree. Subsequently, the

importance of each feature is averaged across all 400 trees, by a weighted average,

providing a comprehensive assessment of feature relevance within the model.

This process continued iteratively, progressively reducing the number of features

while concurrently enhancing the average AUC. The iteration continued until the

average AUC of the generated models reached an optimal minimum dataset size.

When the number of features dropped below 200, a refinement was introduced.

Specifically, the top 75% of the most important features, rather than 50%, were

selected at each step. This adjustment aimed to further optimize the procedure,

retaining a higher proportion of the most influential features and discarding only

the bottom 25%. When the average AUC started to decrease clearly as in Figure

5.1 following a progressive feature selection, so that the maximum top AUC was

reached, the procedure was stopped. In here 4.1 we can find the flowchart of the ML

algorithm for RNA-Seq dataset which we also can use with CSF proteomics data.

For the proteomics dataset (4786 proteins, 555 patients) initially the features

were examined for their correlation with the binarized patients’ diagnosis using the

Pearson correlation index. The top 50% of features, displaying the highest absolute

correlation indices, were chosen for subsequent analysis. An XGBoost model is

initialized with specific hyperparameters and a seed for reproducibility. The model’s

1The lower the complexity parameter, the more complex the trees become, resulting in an
increase in the number of branches.
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performance is evaluated using Stratified K-Fold cross-validation, where in each fold,

the model is trained, predictions are made on the test set, and several metrics (AUC,

specificity, accuracy, sensitivity) are calculated and stored. Finally, the average and

standard deviation of these metrics across all folds are printed out.

Given the small size of the MD-UPDRS dataset, we refrained from employing

Pearson’s correlation for feature analysis and, instead, employed a default XGBoost

algorithm known for its robust predictive capabilities.

Similarly, for the UPSIT data, which is also constrained by a limited number

of features (only four booklets), we opted out of Pearson’s correlation analysis.

Instead, we constructed a ML pipeline centered around the XGBoost classifier. This

entailed initializing the model with specific hyperparameters and a reproducible seed.

Evaluation was carried out through Stratified K-Fold cross-validation, facilitating

thorough performance assessment across multiple folds. Metrics such as ROC curve,

AUC, Precision-Recall curve, and average precision were meticulously calculated and

logged for each fold.

The comprehensive results for both UPDRS and UPSIT datasets are detailed in

5.3.
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Start

Correlate features with 0-1 Pearson

Select top 10% correlated features

Generate 101 ML models by 70%-30% train-test data partition

Select model with largest AUC

Select top 50% of most important features

< 200 features?

Generate 101 ML models by 70%-30% train-test data partition

Select model with largest AUC

Select top 75% most important features

Average AUC decline?

Stop

No

Yes

No

Yes

Figure 4.1: Workflow for Feature Selection and Model Refinement
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4.1.1 Harnessing the Power of Ensembles

As previously mentioned, we employed both AdaBoost and XGBoost algorithms

in our study. These algorithms, belonging to the ensemble learning family, are

renowned for their ability to enhance predictive accuracy by leveraging the combined

prediction of numerous weak learners. Let’s delve into a brief description of each of

these algorithms.

XGBoost, or eXtreme Gradient Boosting, has gained widespread acclaim for

its efficiency and effectiveness, particularly in handling large datasets with remark-

able speed and scalability. Utilizing a boosting technique, XGBoost sequentially

constructs a series of weak decision trees, as exemplified in Figure 4.2, adapting

subsequent trees to rectify errors made by their predecessors. Its robustness and

capacity to capture intricate relationships have made XGBoost a favorite in various

applications and data science competitions.

XGBoost is a powerful open-source software library providing a regularized gradi-

ent boosting framework for multiple programming languages. As an ensemble learn-

ing method, XGBoost combines the predictions of numerous weak models, typically

decision trees, to create a more potent overall prediction. The iterative construction

of decision trees corrects errors made by preceding ones, with the final prediction

being the sum or weighted of individual tree predictions. The optimization objective

function in XGBoost, defined by [22], is expressed as:

obj(θ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

ω(fk) (4.1)

Here, l(yi, ŷi) represents the loss function (e.g., mean squared error for regres-

sion), ŷi is the predicted value for the i-th instance, and ω(fk) measures the complex-

ity of the tree fk. We utilized XGBoost to analyze the various datasets mentioned

earlier. However, the compelling results obtained from analyzing the proteomics,

UPDRS, and UPSIT data are presented in this thesis.

AdaBoost, or Adaptive Boosting, serves as a versatile ensemble method focused

on enhancing classification accuracy. This algorithm assigns weights to misclassified

data points, enabling subsequent models to prioritize more challenging instances

during their iterative construction. The outcome is a powerful learner that merges

the predictive strengths of numerous less powerful learners. AdaBoost’s effectiveness

shines in scenarios with imbalanced datasets, contributing significantly to its success

in medical research and clinical studies.

For the feature selection in our RNA-Seq data, Gini index was used.

The Gini index is a metric used to evaluate the contribution of each node (fea-
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ture) of the tree to the accuracy of classification. The Gini index for each decision

tree node is computed as the weighted sum of Gini indices of all the child nodes,

where the weights are the proportions of observations of each node. Specifically, the

Gini index of each node is computed by summing the squared probabilities of each

class (e.g., PD for Parkinson’s disease, HC for healthy control) in the node itself.

The sum of the probabilities of the two classes is always equal to 1.0 by definition.

These probabilities represent the proportions of observations classified by that node.

The Gini index is calculated as:

Gini(p) = 1−
2∑

i=1

p2i (4.2)

where pi is the probability of an observation being classified to class i, and i

can take values 1 (PD) and 2 (HC). In other words, p1 represents the probability of

an observation being classified as a Parkinson’s disease case, and p2 represents the

probability of being classified as a healthy control.

In the formula, the probabilities pi are estimated based on the proportion of

samples in each class within a particular node of the tree. The goal of the decision

tree algorithm is to make splits that minimize the impurity in the child nodes. The

Gini index is a measure of this impurity. The lower the Gini index, the purer the

node (i.e., the more it contains instances from a single class). A Gini index of 0

indicates perfect classification for the node, as only one class is present.

In this thesis, we employed AdaBoost for both the RNA-Seq and proteomics

datasets for which the main algorithm is discussed in 4.1.

Both XGBoost and AdaBoost exemplify the considerable potential of ensemble

learning to boost predictive accuracy and handle diverse datasets across various

domains.

29



Figure 4.2: Example of Decision Tree for Diagnostic Class Prediction PD vs HC,
Based on Gene Expression Prediction
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4.2 Diverse Metrics for Model Assessment

In the evaluation of ML models applied to diverse datasets such as RNA-seq, pro-

teomics CSF, UPDRS, and UPSIT data, a comprehensive understanding of various

metrics to evaluate prediction performance is crucial for robust model assessment.

All metrics have values in the range 0.0-1.0.

One commonly employed tool is the precision-recall curve, which illustrates

the trade-off between precision and recall. Precision is the ratio of true positive

predictions to the total predicted positives, while recall is the ratio of true positives

to the total actual positives. Mathematically, precision is given by:

Precision =
True Positives

True Positives + False Positives

And recall is defined as:

Recall =
True Positives

True Positives + False Negatives

The Receiver Operating Characteristic (ROC) curve is another valuable

tool, portraying the true positive rate against the false positive rate. Meanwhile, the

confusion matrix provides a tabular representation of model performance, breaking

down predictions into true positives, true negatives, false positives, and false nega-

tives.

The Area Under the Curve (AUC) score, derived from the ROC curve,

quantifies the model’s ability to discriminate between classes.

Accuracy, a fundamental metric, measures the overall correctness of the model

and is defined as:

Accuracy =
True Positives + True Negatives

Total Population

Sensitivity, also known as recall or true positive rate, gauges the model’s ability

to correctly identify positive instances:

Sensitivity =
True Positives

True Positives + False Negatives

Specificity, on the other hand, assesses the model’s aptitude for identifying

negative instances:

Specificity =
True Negatives

True Negatives + False Positives

Together, these metrics provide a comprehensive framework for evaluating the
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performance of our ML models across diverse datasets, as outlined in Chapter 5.

4.3 The Imperative Role of HPC

The algorithms discussed in 4.1 present opportunities for improvement, largely due

to the inherent complexity of the problem. RNA-Seq data, in particular, poses

challenges due to its large volume of genes. Modifications to the algorithm require

careful consideration, especially given the significant computational demands.

One notable challenge stems from the high dimensionality of feature spaces. As

the number of features increases, so does the RAM memory and CPU time required

proportionally.

In Figure 4.3, we visualize the impact of increasing the number of genes on both

memory usage and CPU time for a single decision tree. In generating this plot, for

each specified number of features, a simple procedure is followed. Three models are

created. Firstly, the elapsed time in seconds from the start of the run is recorded,

and the result is divided by three, yielding the CPU time per model. Subsequently,

the memory usage is noted at the beginning of the run and after generating the three

models. The difference between these memory usage values is calculated and then

divided by three to obtain the RAM memory usage per model.This illustrates the

scale of resources required to handle larger gene sets effectively. Memory usage in-

creases more rapidly than CPU time and more than linearly in log-log scale. In light

of the current state-of-the-art high-end hardware for High-Performance Computing

, this observation emphasizes the importance of optimizing algorithms to efficiently

utilize hardware resources and address the computational demands of processing

RNA-Seq data. Further refinement and optimization of the algorithm is necessary

to enhance its scalability and performance on modern HPC systems.

An essential application of high-performance computing lies in executing robust

computations, notably with cross-validation techniques. While we initially used a

random partition of genes in the RNA-Seq evaluation to enhance the AUC score,

there is a compelling need to reevaluate the model using cross-validation, especially

repeated stratified cross-validation. Given the extensive number of genes that need

to be assessed, coupled with the iterative process of cross-validation that involves

multiple folds and iterations, the computational time and memory requirements are

significantly amplified. High-Performance Computing (HPC) facilities, equipped

with parallel processing capabilities, serve as a crucial solution to these challenges.

In the process of evaluating and optimizing our ML models we conduct numerous

simulations with varying parameters. Leveraging HPC enables swift exploration of
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these options, facilitating faster experimentation and refinement of hyperparameters

to enhance model efficiency.

In boosting models the main parameters to be set are the number of trees (classi-

fiers) and the complexity cp, the latter connected to the tree depth. One of the next

steps will be to use also neural network modelling, for which the number of parame-

ters will significantly increase. In the case of PPMI datasets, a further improvement

of transcritomic-based diagnostic class-prediction model will be to integrate gene

expression data with single nucleotide polymorphisms (SNP) gene variants data,

also provided by the PPMI database. For SNP data the number of features is of

the order of millions and a pruning filtering step will be necessary, discarding highly

correlated features.

Feature importance analysis is a common step of ML pipeline that usually places

a considerable burden on computational resources. This is particularly true in sit-

uations with an extensive number of features. Algorithms tasked with determining

variable importance contribute to increased computational complexity, demanding

powerful computing facilities for accurate and timely assessments.

Conventional computing resources often face limitations in handling large-scale

ML tasks. Extended processing times and potential memory overflow become signifi-

cant concerns. In such cases, HPC solutions emerge as a game-changer. Parallel and

serial optimization, together with GPU computing, the high-speed networks and in-

creased memory capacity offered by HPC facilities, allow us to solve efficiently time

and memory critical problems.
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Figure 4.3: CPU time and memory usage as a function of features, in log-log scale.
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Chapter 5

Results

In this chapter, we delve into the outcomes generated by our ML algorithms as out-

lined in Section 4.1. Initially, we examine the results derived from RNA-Seq analysis,

focusing on the mean evaluation metrics across various gene sets and highlighting

the findings with the highest mean AUC. Subsequently, in Section 5.2, we elaborate

on the outcomes obtained through two distinct algorithms to analyze the proteomic

dataset: one employing Adaboost with progressive protein selection, and the other

utilizing XGBoost while retaining a larger subset of proteins. We thoroughly analyze

the results using diverse metrics. Finally, in Section 5.3, we showcase the results of

our ML endeavors and discuss the predictive prowess they demonstrate.

5.1 RNA-Seq Result

Our findings, with the ML pipeline detailed in 4.1, emphasize the potential of

progressive machine learning (ML) technique with AdaBoost, for the diagnosis of

Parkinson’s disease. This is particularly significant when dealing with extensive

datasets such as RNA-Seq data.

Employing a progressive ML algorithm that selectively discards genes at each

step, see 4.1, we observed intriguing results, as shown for diverse metrics across

different number of gene predictors in Figure 5.1. Specifically, with 148 genes, we

achieved a maximum mean Area Under the ROC Curve (AUC) of 0.852 with a

variability of SD = 0.029, and a single model achieving AUC of 0.926. This suggests

a robust capability of this algorithm to discriminate between Parkinson’s patients

and healthy controls.

In Figure 5.2, we can observe a series of ROC curves generated with these genes,

executed over 101 iterations, where the red curve represents the mean performance.

Furthermore, the highest mean accuracy of 0.785, observed with 111 genes, un-
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Figure 5.1: Performance Metrics of ML Models on the RNA-Seq Dataset

derscores a promising overall classification performance. However, a notable dispar-

ity arises between the maximum mean specificity (0.915) and the maximum mean

sensitivity (0.563).

Our analysis highlights the significant contribution of genes associated with mito-

chondria on enhancing the accuracy of our machine learning model. However, subse-

quent findings suggest that while these genes contribute significantly to the model’s

performance, they may not independently regulate the development of Parkinson’s

Disease.

The Mitochondrion, a vital organelle found in most eukaryotic cells, plays a cru-

cial role in cellular respiration and energy production. It is enclosed by membranes

within the cell’s cytoplasm and is essential for generating adenosine triphosphate

(ATP), a key energy currency in cells. Research suggests a connection between

mitochondrial dysfunction and Parkinson’s disease. Mitochondria serve as energy

sources for dopaminergic neurons in the brain, critical for motor function. Dys-

functional mitochondria may contribute to the loss of dopaminergic neurons in the
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Figure 5.2: ROC Curves for RNA-Seq, 148 Genes

substantia nigra, a region associated with Parkinson’s disease. Addressing mito-

chondrial issues is considered a potential avenue for Parkinson’s disease treatment

[23, 24].

See our gene connections pattern in Figure 5.3. Our result confirms previous

studies on the same pathology. Gene network obtained using the String-DB tool

for protein-protein interaction [25]. The genes belonging to the “Mitochondrion”

Gene Ontology Cellular Component category are highlighted in red. This particular

gene category exhibited statistical significance (p=0.021) in an enrichment analysis

conducted using the hypergeometric distribution (Fisher’s exact test).

In our initial dataset comprising 22,032 genes, we identified 1,535 mitochondrial

genes. While there is a total of 1,665 mitochondrial genes reported in the entire

human genome, as per data provided by The Gene Ontology Consortium [26].

Starting from an expression data matrix of 526 genes, we analyzed them us-

ing the String-DB tool for functional analysis of gene lists. The top ranking gene

category were the Gene Ontology Cellular Compartment and UniProt Keyword ”mi-

tochondrion”, corresponding to 61 genes. To assess the biological relevance of these

mitochondrial genes for classifying Parkinson’s disease versus control subjects, we

built 100 models using only these 61 genes as predictors. However, the performance

was disappointing, with an average AUC (Area Under the Curve) of 0.68 and a

maximum of 0.73. This suggests that these genes are relevant in the model, but
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Figure 5.3: Interaction network of 148 predictors genes, obtained by the StringDB
tool. The genes belonging to the “Mitochondrion” Gene Ontology Cellular Compo-
nent category are highlighted in red.
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Figure 5.4: Our ML obtained gene network for 526 genes. The genes belonging to
the “Mitochondrion” Gene Ontology Cellular Component category are highlighted
in red/blue.
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only in association to many other predictors not necessarily biologically related to

mitochondrial function. Expanding our gene selection to 526 genes results in an

increase in the number of mitochondrial genes. However, this expansion does not

enhance the performance of our machine learning model. Refer to Figure 5.4 for

further details.

These results suggest that while these genes may hold some relevance within the

model, their contribution likely hinges on interactions with other predictors, not

necessarily related to mitochondrial function.
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5.2 Proteomics Result

The outcomes of the application of the ML Adaboost modelling on the proteomics

dataset, as outlined in 5.5, are detailed below. It is evident that the model exhibits

relevant differences between metrics, with Sensitivity generally smaller than other

metrics. In contrast, Specificity consistently demonstrates superior performance.

• Maximum Mean Accuracy: Achieved a peak mean accuracy of 0.788, uti-

lizing a set of 75 protein genes.

• Maximum Mean AUC: Attained a maximum mean AUC of 0.843, once

again leveraging 75 protein genes.

• Maximum Mean Sensitivity: Reached a maximum mean Sensitivity of

0.559, utilizing the same 75 protein genes.

• Maximum Mean Specificity: Demonstrated a maximum mean Specificity

of 0.909, incorporating a set of 135 protein genes.

The accompanying plot illustrates both the absolute maximum and minimum mean

values, with and without standard deviation, facilitating a comprehensive compari-

son.

On the other hand, In our ML analysis with XGBoost and selecting 50% of the

Pearson’s index correlated proteomics data (2392 proteins) from healthy control and

Parkinson’s disease subjects, we obtained promising results. The average area under

the receiver operating characteristic curve (AUC), a key metric in evaluating the

model’s discriminatory power, was found to be 0.826 with a relatively low standard

deviation of ±0.059. This indicates a robust ability of the model to distinguish

between the two groups based on the proteomic features experimentally measured

in CSF samples.

However, it is crucial to delve into the specificities, accuracies, and sensitivities

to gain a comprehensive understanding of the model’s performance. The average

specificity, representing the proportion of true negatives correctly identified, was

0.4175 ± 0.0742. While this value may seem relatively low, it is important to con-

sider the balance between sensitivity and specificity in the context of the specific

research question. In the case of Parkinson’s disease diagnosis, achieving high sen-

sitivity (0.9032 ±0.0393) is often prioritized to minimize false negatives, ensuring

that individuals with the condition are correctly identified.

The average accuracy of 0.7422 ± 0.0451)indicates the overall correctness of

the model’s predictions across both classes. The relatively narrow small standard
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deviation suggests consistency in the model’s performance across different folds of

the cross-validation process.

Table 5.1: Performance Metrics for Each Fold and Averaged Results

Fold AUC Specificity Accuracy Sensitivity

1 0.8293 0.5789 0.8393 0.9730
2 0.8919 0.4737 0.7857 0.9459
3 0.7624 0.3684 0.7321 0.9189
4 0.8478 0.4211 0.7500 0.9189
5 0.6711 0.3333 0.6607 0.8158
6 0.7673 0.4444 0.7455 0.8919
7 0.7778 0.4444 0.7455 0.8919
8 0.7447 0.3333 0.7091 0.8919
9 0.7733 0.3333 0.7091 0.8919
10 0.8258 0.4444 0.7455 0.8919

Average 0.8258 (±0.0587) 0.4175 (±0.0742) 0.7422 (±0.0451) 0.9032 (±0.0393)
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Figure 5.5: Performance Metrics of ML Models on the Proteomics Dataset
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Figure 5.6: UPDRS

5.3 UPDRS and UPSIT Results

Our analysis focused on the motor score, a crucial component of the Unified Parkin-

son’s Disease Rating Scale (UPDRS). We combined data from three UPDRS files,

specifically the sum of the totals from columns NP1R, NP1P, NP2P, and NP3.

These columns likely represent different aspects of motor function, such as rigidity,

bradykinesia, and tremor.

Employing a simple ML algorithm (default XGBoost), we explored the predictive

power of the motor score. Apparently, the resulting Area Under the Curve (AUC)

approached perfection (AUC = 1.0), that is an overfitting. Such high discrimina-

tory ability suggests that the motor scores are therefore highly correlated with the

response variable of the models.

Clinicians routinely rely on motor scores for early detection and monitoring of

Parkinsons disease. Our findings, supported by the confusion matrix and ROC curve

(see Figure 5.6), reinforce the pivotal role of motor assessment in clinical practice.

In summary, the motor score emerges as a vital tool for identifying and managing

PD, emphasizing its clinical relevance and diagnostic accuracy.

We then analyzed the UPSIT data (olfactory scores) from the PPMI archive,

focusing on four columns representing different UPSIT booklets. After removing

missing values (NaNs), our dataset included 893 patients.

To evaluate the performance of a ML model in predicting UPSIT scores, we

employed a XGBoost classifier with the following hyperparameters: learning rate =

0.1, max depth = 1, and n estimators = 60. We further employed stratified 10-fold

stratified cross-validation. In stratified cross-validation, the dataset is divided into

folds while preserving the proportion of instances (PD vs HC) for each class. This

helps ensure that each fold maintains a representative distribution of classes, which
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Figure 5.7: ROC and Precision-Recall Curves for UPSIT Score Prediction (10-Fold
Cross-Validation)

can be crucial when dealing with imbalanced datasets. we use it to prevent one class

from being overrepresented or underrepresented in any particular fold.

The model achieved a promising average Area Under the Curve (AUC) of 0.884,

indicating good discrimination between patients with different UPSIT performance.

Additionally, the average precision score reached 0.960, demonstrating the model’s

ability to accurately identify patients with high UPSIT scores (indicating better

cognitive function).

For a more detailed visualization of the model’s performance across different

folds, please refer to Figure 5.7. This figure depicts the ROC curves and precision-

recall curves for each fold within the cross-validation process.
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Chapter 6

Conclusion and Future Perspective

In this thesis, we have extensively explored transcriptomics, proteomics, and clinical

datasets such as UPDRS and UPSIT, utilizing advanced ML techniques to improve

predictive outcomes. Despite facing imbalances in our datasets between Parkinson’s

disease and healthy controls, we discovered unique strengths in each dataset during

our analysis. We applied a variety of machine learning algorithms, each showcasing

its own advantages. We pinpointed significant genes in RNA-Seq data and important

proteins in the proteomics dataset. While we encountered overfitting issues with

MDS-UPDRS scores, we also recognized the UPSIT dataset’s ability to effectively

differentiate between Parkinson’s disease and healthy controls.

It is worth noting that several studies, such as the notable investigation by [27],

have adopted multimodal machine learning approaches to comprehend Parkinson’s

disease. These studies integrated proteomic, genetic, and UPSIT test data, yielding

impressive results with AUC scores reaching 89.72%. However, when relying solely

on transcriptomics data, they achieved a lower AUC of 79.73%, with a sensitivity

of 98% and specificity of only 0.12%.

In another study by [28], which exclusively utilized transcriptomics data, they

obtained an AUC score of 72%, with a mean sensitivity of 82% and specificity of 47%.

In our research, focusing solely on the transcriptomics dataset, we have contributed

significantly to this advancement by achieving a noteworthy improvement, with an

AUC of 85%, maximum mean specificity of 92%, and sensitivity of 56%.

This review paper [10] examines n = 110 papers on how machine learning is used

to analyze diverse data from the PPMI, identifying variations in methods and sug-

gesting ways to better utilize the dataset’s unique features for biomarker discovery

and prognostic prediction.To follow this, our future perspective involves adopting a

multimodality approach, aiming to enhance all evaluation metrics in our ML algo-

rithm by combining data such as clinical and *omics datasets.
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The promising AUC score attained in our study indicates significant potential.

However, there is a recognized need for improvements in sensitivity and specificity,

crucial metrics in clinical studies. The algorithm needed to go through a refinement

which can target not only selecting the highest AUC score but also an overall boost

across all metrics.

Given the expansive nature of RNA-seq data, expected to grow over time, we

emphasize the necessity for faster and more robust algorithms. Achieving this re-

quires leveraging the full potential of high-performance computing facilities and

implementing parallelism in our algorithms.

The algorithm which we discussed in is not fully automated, we also use the

excel. There is a need for automation of our progressive feature selection algorithm.

For Parkinson’s diagnosis using the PPMI dataset, we aim to optimize a model

that integrates gene expression data with Single Nucleotide Polymorphism (SNP)

data. Boosting algorithms with tunable parameters like number of trees and tree

complexity (e.g., cp) will be our initial approach. We will explore even more complex

models like neural networks, especially for handling the high dimensionality of SNP

data (millions of features), potentially employing pruning or filtering to focus on

informative features. This combined model has the potential to significantly improve

diagnostic accuracy.

In this study we have used PPMI data repository. It is always recommended

to reduce the potential overfitting, it is important to of validate evaluations using

external datasets like the Parkinson’s Disease Biomarkers Program (PDBP) data

repository [29].

Despite the strides made, Parkinson’s disease data remains relatively scarce. To

fully unleash the potential of ML in prediction, increased investments in data acqui-

sition at a global scale are imperative. Combining results from various continents

is vital for obtaining more reliable and meaningful predictions, steering clear of

potential biases.
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Appendix A

Pearson’s Correlation

Pearson’s correlation coefficient, also known as Pearson’s R, is a statistical measure

used to quantify the strength and direction of a linear relationship between two

continuous variables.

It measures how well the data points fit a straight line (similar to linear regres-

sion).

The main formula for Pearson’s correlation coefficient (r) is as follows:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

where Xi and Yi are individual data points for variables X and Y , and X̄ and

Ȳ denote the means of X and Y , respectively.

The value of r ranges from -1 (perfect negative correlation) to 1 (perfect positive

correlation), with 0 indicating no linear correlation.

We do not apply Pearson’s correlation to UPDRS and UPSIT data as they

already have few features for training and test.
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Appendix B

Genetic Mutations

To ensure less biased data for ML, we remove specific gene mutations associated

with PD. These mutations are as follows:

SNCA stands for alpha-synuclein, which is the gene that encodes for alpha-

synuclein protein. Mutations in the SNCA gene have been linked to increased risk

of developing synucleinopathies, particularly PD.

Synucleinopathies are a group of neurodegenerative diseases that share the com-

mon pathological feature of misfolded alpha-synuclein protein deposits in the brain.

The most common synucleinopathy is PD, but other synucleinopathies include Lewy

body dementia (LBD), multiple system atrophy (MSA), and pure autonomic failure

(PAF) [30, 31, 32].

GBA stands for glucocerebrosidase, which is a lysosomal enzyme that breaks

down a complex sugar called glucosylceramide. Glucosylceramide is a major com-

ponent of the myelin sheath, which insulates and protects nerve cells.

GBA mutations are the most common genetic risk factor for PD. People with

GBA mutations have a higher risk of developing PD, and they tend to develop the

disease earlier in life than people without GBA mutations.

GBA mutations can also cause other neurological disorders, such as Gaucher’s

disease and Lewy body dementia (LBD) [33].

LRRK2 stands for leucine-rich repeat kinase 2, which is a protein found in many

cells throughout the body, including the brain. LRRK2 plays a role in a variety of

cellular processes, including vesicle trafficking, autophagy, and inflammation.

Mutations in the LRRK2 gene are the most common genetic risk factor for PD.

People with LRRK2 mutations have a higher risk of developing PD, and they tend

to develop the disease earlier in life than people without LRRK2 mutations.

LRRK2 mutations can also cause other neurological disorders, such as Gaucher’s

disease and Lewy body dementia (LBD) [34].
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